
From the Institute of Theoretical Computer Science
of the University of Lübeck

Director: Prof. Dr. math. K. Rüdiger Reischuk

N E W R E S U LT S O N F E A S I B I L I T I E S A N D L I M I TAT I O N S O F
P R O VA B L E S E C U R E S T E G A N O G R A P H Y

Dissertation
for Fulfillment of

Requirements
for the Doctoral Degree

of the University of Lübeck
from the Department of Computer Sciences

Submitted by
Sebastian Berndt

from Berlin

Lübeck, 2017

First referee: Prof. Dr. Maciej Liśkiewicz
Second referee: Prof. Dr. Matthias Krause

Date of oral examination: 17 April 2018

Approved for printing: 22 October 2018

Dedicated to the memory of Georg Berndt.

08.02.1921 – 04.07.2007

A B S T R A C T

Steganography is the art of hiding important information in unsuspi-
cious looking communication. While there is a large empirical work
on practical stegosystems, a theoretical security analysis of them is
only given very rarely. This is in contrast to the cryptographic com-
munity, where the development of practical algorithms and their the-
oretical security analysis go hand in hand. More than a decade ago,
Hopper, Langford and von Ahn gave a sound complexity-theoretic
formulation of steganographic security. They also argued that the ex-
istence of provably secure encryption schemes implies the existence
of provably secure stegosystems and vice versa. This lead to the com-
mon belief that »provably secure steganography is provably secure
cryptographic encryption«. One of the main results of this thesis is
the insight that this belief is wrong in this form. We first give an super-
polynomial universal stegosystem that is unconditionally secure and
achieves an optimal information-theoretic transmission rate. We also
prove that the additional requirement of efficiency does not help in
uniting the concepts of steganography and encryption by present-
ing a communication channel such that successful steganography on
this channel negates the existence of provably secure cryptographic
encryption. This also improves the best known lower bounds for uni-
versal steganography. We thus aim to reignite the interest in the theo-
retical analysis of steganographic systems. To give concrete examples
for the possibilities of this fascinating area, we take a look at pub-
lic key steganography. We give the first SS-CCA-secure stegosystem
that works on a wide range of channels and prove that this is the
best one can hope for by ruling out SS-CCA-secure stegosystems for
slightly more complex channels. As universal stegosystems only have
very low transmission rate, the design of non-universal rate-efficient
stegosystems for realistic channels is a possible way to bring the-
ory and practice together. The only such non-universal rate-efficient
stegosystem is due to Liśkiewicz, Reischuk, and Wölfel, but only
works for very simple channels. We design such a stegosystem for
the more practical relevant set of channels described by patterns. Fi-
nally, we show that steganographic systems are already present in the
modern cryptographic literature by investigating so called algorithm
substitution attacks. We prove that such attacks are just stegosystems
on a certain set of channels and are thus able to give much easier
proofs for a wide range of results concerning these attacks.

Z U S A M M E N FA S S U N G

Steganographie ist die Wissenschaft, wichtige Informationen in un-
verdächtig aussehender Kommunikation zu verbergen. Obwohl es
eine große Menge an empirischer Forschung zu praktischen Stego-
systemen gibt, werden nur selten beweisbare Aussagen über deren
Sicherheit untersucht. Dies ist ein starker Kontrast zur Kryptogra-
phie, bei der die Entwicklung praktischer Algorithmen und ihre Si-
cherheitsanalyse Hand in Hand einhergehen. Vor über einem Jahr-
zehnt gaben Hopper, Langford und von Ahn eine komplexitätstheo-
retische Formulierung steganographischer Sicherheit und argumen-
tierten, dass die Existenz eines beweisbar sicheren Kryptoschemas
auch die Existenz eines beweisbar sicheren Stegosystems impliziert
und umgekehrt. Dies führte zum weit verbreiteten Glauben, dass be-
weisbar sichere Steganograpie dasselbe wie beweisbar sichere kryp-
tographische Verschlüsselung ist. Eines der Hauptergebnisse dieser
Arbeit ist die Erkenntnis, dass dieser Glaube in dieser Form falsch
ist. Zunächst präsentieren wir ein super-polynomielles universelles
Stegosystem, dessen Sicherheit nicht auf unbewiesenen Annahmen
basiert und welches eine informations-theoretisch optimale Übertra-
gungsrate besitzt. Wir beweisen ebenfalls, dass die Annahme über
die Effizienz der Stegosysteme nicht zu einer Vereinheitlichung der
beiden Konzepte führt, indem wir einen Kommunikationskanal an-
geben, so dass erfolgreiche Steganographie auf diesem Kanal die
Existenz von beweisbar sicherer kryptographischer Verschlüsselung
widerlegt. Gleichzeitig verbessern wir damit die beste bekannte un-
tere Schranke für universelle Steganographie. Unsere Absicht ist es,
das Interesse an der theoretischen Analyse von steganographischen
Systemen wieder aufleben zu lassen. Um konkrete Beispiele für die
Möglichkeiten in diesem faszinierenden Feld aufzuzeigen, betrach-
ten wir asymmetrische Steganographie. Wir konstruieren das erste
SS-CCA-sichere Stegosystem, welches auf einer großen Zahl von Kanä-
len funktioniert. Wir zeigen zugleich, dass dies das bestmögliche Re-
sultat ist, da SS-CCA-sichere Stegosysteme für nur leicht komplexere
Kanäle nicht existieren. Da universelle Stegosysteme nur sehr gerin-
ge Übertragungsraten bieten, ist der Entwurf von nicht-universellen
Systemen mit deutlich höheren Raten ein möglicher Weg, um Theo-
rie und Praxis anzunähern. Das einzig bekannte solche System wur-
de von Liśkiewicz, Reischuk und Wölfel vorgeschlagen, funktioniert
aber nur auf sehr simplen Kanälen. Wir entwickeln solch ein Stegosys-
tem für die praktisch relevanten Kanäle, die durch sogenannte »Pat-
tern« beschrieben werden. Schlussendlich zeigen wir, dass stegano-
graphische Systeme bereits Einzug in die moderne kryptographische
Literatur gefunden haben, indem wir sogenannte »algorithm substitu-

tion attacks« untersuchen. Wir beweisen, dass solche Angriffe nichts
anderes als Stegosysteme auf einer bestimmten Menge von Kanälen
sind und sind so in der Lage, bekannte Ergebnisse aus der Literatur
deutlich einfacher zu beweisen.

No Man Is an Island

— John Donne

A C K N O W L E D G M E N T S

The mediocre teacher tells.
The good teacher explains.
The superior teacher demonstrates.
The great teacher inspires.

(William Arthur Ward)

First, I would like to thank my advisor Maciej Liśkiewicz, who truly
inspired me, for his incredible support and his amazing ability to ask
the right questions at just the right time.

I also thank Rüdiger Reischuk for giving me the opportunity to
perform this work in such a productive environment. Thanks also
to my coauthors Max Bannach, Thorsten Ehlers, Klaus Jansen, Kim-
Manuel Klein, and Matthias Lutter. I really enjoyed our collaboration
and your inspiring ideas. I also thank all other colleagues in Lübeck
for the motivating discussions and the wonderful working environ-
ment: Katharina Dannenberg, Jens Heinrichs, Tim Kunold, Claudia
Mamat, Martin Schuster, Christoph Stockhusen, Till Tantau, Florian
Thaeter, and Oliver Witt.

Without a doubt, I would not have managed to finish this work
without the support of my family and friends: Christa, Marion, Man-
fred, Anika, Dirk, Jan, Jule, Martin, Katrin, Annika, Matze, Jenny, Oli,
Torben, and Änni.

Finally, none of this would have been possible without the amazing
support of my wonderful wife Svea, who always bolstered me up and
our daughter Sybil, who always brings me joy. I love you.

C O N T E N T S

1 introduction 1

1.1 History 2

1.2 Our Results 3

2 preliminaries 7

2.1 Probabilities 7

2.2 Algorithms 9

2.3 Cryptographic Primitives 10

3 models of steganography 23

3.1 Unsuspicious Communication 24

3.2 Stegosystems 26

3.3 Security Notions 29

3.4 Relativized Security 34

3.5 Rejection Sampling 36

4 a computational expensive universal secret-key

stegosystem 41

4.1 The Relationship Between Steganography and Crypto-
graphic Encryption 42

4.2 Known Upper and Lower Bounds on the Security of
the Rejection Sampling Stegosystem 44

4.3 Our Contributions 47

4.4 Pseudorandom Functions of Very High Hardness 48

4.5 Rate-efficient Steganography 51

4.6 Unconditional Lower Bound 57

4.7 Conclusions and Further Work 58

5 hardness results on universal efficient secret-
key steganography 61

5.1 Our Contributions 62

5.2 A Channel such that Efficient Steganography on C Does
Imply the Non-existence of One-way Functions 63

5.3 A Channel C such that Efficient Steganography on C

Does Imply the Existence of One-way Functions 69

5.4 Conclusions and Further Work 71

6 on the gold standard of public-key steganogra-
phy 73

6.1 Our Contributions 75

6.2 Detecting the Scheme of Backes and Cachin 76

6.3 An High-Level View of our Stegosystem 77

6.4 Obtaining Biased Ciphertexts 79

xii contents

6.5 Ordering the Documents 84

6.6 The Steganographic Protocol 88

6.6.1 Proofs of Reliability and Security 90

6.7 An Impossibility Result 97

6.7.1 Lower Bound on Truly Random Channels 97

6.7.2 Lower Bound on Pseudorandom Channels 99

6.8 Conclusion and Further Work 100

7 a private-key stegosystem for pattern channels 103

7.1 Our Contribution 104

7.2 Pattern Languages 104

7.3 Steganography Using Pattern 106

7.4 Coding Bits by Random Subsets 107

7.4.1 Bounding the Rank of Matrices Obtained by Ran-
dom Assignments of Intermediate Pattern 108

7.4.2 Modifying Strings of a Pattern Language to Em-
bed Secrets 113

7.4.3 Sampling a Pattern Channel 114

7.4.4 A Secure Stegosystem for Pattern Channels 116

7.5 Conclusion and Further Work 121

8 application of steganography : algorithm sub-
stitution attacks 123

8.1 Our Results 124

8.2 Substitution Attacks against Encryption Schemes 126

8.3 The Steganographic Setting 128

8.4 Encryption Schemes as Steganographic Channels 132

8.5 ASAs against Encryption as Steganography 133

8.5.1 Steganography implies ASAs 134

8.5.2 ASAs imply Steganography 136

8.6 General Results 139

8.6.1 ASA against a Randomized Algorithm 139

8.6.2 Channel determined by a Randomized Algo-
rithm 140

8.6.3 Results 141

8.7 A Lower Bound for Universal ASA 142

8.8 Conclusions and Further Work 145

9 conclusions and research questions 147

bibliography 149

L I S T O F F I G U R E S

Figure 1 Countries involved in the arab spring. The col-
ors indicate the severeness of the demonstra-
tion ranging from black (the government was
overthrown) to light brown (minor protests).
Image by Kudzu1 distributed under CC-BY 3.0. 1

Figure 2 Dependencies between rate and query com-
plexity of three hypothetical stegosystems. 29

Figure 3 Known results (under cryptographic assump-
tions) on the dependence of rate and query
complexity of stegosystems. 46

Figure 4 Results (without any assumptions) of Chap-
ter 4 on the dependence of rate and query com-
plexity of stegosystem. 48

Figure 5 Outline of the situation in Theorem 32 due to
the reduction. 68

Figure 6 An overview of hybrids H1 and H6 used in
Theorem 46 93

Figure 7 Distributions of throwing colored balls into bins
and completely independent Poisson variables. 109

L I S T O F TA B L E S

Table 1 A short overview of the models used in each
chapter 24

Table 2 Comparison of the public-key stegosystems 75

A C R O N Y M S

AES advanced encryption standard

ASA algorithm substitution attack

http://creativecommons.org/licenses/by/3.0/

xiv acronyms

CBC cipher block chaining

CCA$ chosen-ciphertext$ attack

CCA chosen-ciphertext attack

CNF conjunctive normal form

CPA$ chosen-plaintext$ attack

CPA chosen-plaintext attack

CRHF collision resistant hash function

FEG false entropy generator

IP internet protocol

JPEG joint photographic experts group

LES linear equation system

NSA national security agency

PKES public key encryption scheme

PPTM polynomial probablistic Turing machine

PRF pseudorandom function

PRP pseudorandom permutation

PTM probabilistic Turing machine

RCCA$ replayable chosen-covertext$ attack

RMA random message attack

ROR real-or-random

RSA RSA (abbrevation of the last names of its inventors Rivest,
Shamir, Adleman)

SALT2 strategic arms limitation treaty 2

SES symmetric encryption scheme

SETUP secretly embedded trapdoor with universal protection

SS-CCA steganographic chosen-covertext attack

SS-CHA steganographic chosen-hiddentext attack

SS-KHA steganographic known-hiddentext attack

SS-RCCA steganographic replayable chosen-covertext attack

TCP transmission control protocol

UTF-8 unicode transformation format – 8-bit.

1
I N T R O D U C T I O N

Start by doing what is necessary, then what is possible, and suddenly you
are doing the impossible.

— Franz von Assisi

The word »steganography « comes from the greek words »steganos steganography

(στεγανοσ)« (hidden) and »graphein (γραφειν)« (writing) and denotes
the art of hiding the transmission of information. While cryptographic
encryption tries to hide the content of a message, it still allows an ob- cryptography

server to notice the transmission of the encrypted message. In con-
trast to this, steganography aims to hide the fact that an important
message was transported at all by embedding this important message
– called the hiddentext – into an unsuspicious document – called the hiddentext

covertext. While steganographic and cryptographic techniques have covertext

been used for several centuries, a concrete definition of cryptographic
security was only given in 1949 by Shannon in [Sha49]. Shannon’s se-
curity notion (also called information-theoretic security) provided secu- information-

theoretic
security

rity against attackers with unlimited resources. Goldwasser and Mi-
cali weakened this security notion and introduced the notion of crypto-
graphic security against computationally bounded attackers in [GM84] – a
work for which they were awarded the Turing award in 2012 [Mic15].
This notion is also known as provable security. Since then, the research provable security

on provable secure cryptography has grown immensely.
However, there are problems where the mere fact that an encrypted

message is send at all is problematic. One of the most recent exam-
ple is the revolutionary wave in Tunisia, Libya, Egypt, Yemen, Syria
and Iraq commonly known as arab spring [Rob+16], as depicted in arab spring

Figure 1.

Figure 1: Countries involved in the arab spring. The colors indicate the
severeness of the demonstration ranging from black (the govern-
ment was overthrown) to light brown (minor protests).
Image by Kudzu1 distributed under CC-BY 3.0.

http://creativecommons.org/licenses/by/3.0/

2 introduction

Social networks and digital media played a very important role in
the organization of the protests [HH11] and cryptographic services
such as the Tor network [DMS04] were widely utilized. While the useTor

of these services allowed the protesters to hide the content of their
messages, the governments of the involved countries were still able to
see that the encrypted Internet traffic increased dramatically [Wei+12].
The reaction of some of the governments ranged from the blocking
of several social media websites to the total blockade of the Inter-
net [Dai+13]. Using steganography to hide the important protester
messages in unsuspicious communication would have prevented the
attention brought by the cryptographic services.

Another current example was brought to the public eye due to the
publication of internal documents of the NSA by Edward Snowden
[Gre14]. Those documents heavily imply that the NSA researched the
possibility of manipulating encryption algorithms in such a way that
these manipulated algorithms also send covert information. The exis-
tence of these information is undetectable for everyone but the NSA

who may use them to e. g. reconstruct the key of the user. Such attacks
were coined algorithm substitution attacks (ASAs) .algorithm

substitution attack

1.1 history

The notion of steganography was first made popular by the prisoners’prisoners’ problem

problem due to Simmons in [Sim84]. He describes a situation where
two prisoners – Alice and Bob – want to plan a jailbreak. But their
only way of communicating is via mails, which are read by a warden.
Alice and Bob thus need to find a way to embed their plan into un-
suspicious mails. This situation was inspired by the development of
the strategic arms limitation treaty 2 (SALT2) between the Soviet Unionstrategic arms

limitation treaty
2 (SALT2)

and the United States in the late seventies [Sim98a]. One of the ma-
jor points of these talks was the design of a protocol that made sure
that both parties were able to verify the number of armed silos while
concealing which silos were armed. This needed a highly non-trivial
cryptographic protocol, based upon an encryption scheme. In order
to find out about the Soviet’s knowledge, the United States proposed
to use an encryption scheme of the soviets. It was then noted by Sim-
mons that there were encryption schemes that opened a subliminalsubliminal channel

channel in the original protocol that would allow the Soviets to recon-
struct the positions of the armed silos. This did not have immediate
consequences, as the SALT2 was never ratified due to the Soviet war
in Afghanistan.

While information-theoretic security for cryptography was defined
nearly 70 years ago, the first definition of information-theoretic secureinformation-

theoretic secure
steganography

steganography was given only 20 years ago by Cachin in [Cac98]. Four
years later, Hopper, Langford, and von Ahn were the first to give a
formal definition of provably secure steganography in [HLv02]. A simi-provably secure

steganography

1.2 our results 3

lar definition was also suggested by Katzenbeisser and Petitcolas in
[KP02], but no formal definition was given here. Both Cachin and
Hopper, Langford, and von Ahn analyzed a universal stegosystem –
using the so called rejection sampling approach – and proved (upon rejection sampling

cryptographic assumptions) the security of this system in their re-
spective security models [Cac98; HLv02]. The transmission rate of this transmission rate

system – the number of bits embedded in a single document – is very
small: The system can only embed log(n) bits into a document of
length n. Dedić et al. later proved (upon cryptographic assumptions)
that this logarithmic rate is the best one can hope for in a setting,
where the running time of the stegosystem is bound by a polyno-
mial [Ded+09].

Similar to the cryptographic setting, von Ahn and Hopper intro-
duced the notion of public-key steganography and gave security defi- public-key

steganographynitions against passive wardens [vH04]. This work was extended by
Backes and Cachin by introducing active wardens into their framework
and proving (upon cryptographic assumptions) that the rejection sam-
pling approach also yields a provably secure stegosystem, but not
in their strongest security model [BC05]. Hopper gave (upon crypto-
graphic assumptions) for every efficiently sampleable channel – a chan-
nel that can be constructed efficiently – a provably secure stegosystem
in the strongest security model of Backes and Cachin in [Hop05].
Liśkiewicz, Reischuk, and Wölfel introduced grey-box steganography, grey-box

steganographya notion where the stegosystem and the warden are unaware of the
concrete channel distribution and presented (upon cryptographic as-
sumptions) a provably secure stegosystem for channels described by
monomials [LRW13]. The concept of grey-box steganography was fur-
ther explored by Liśkiewicz, Reischuk, and Wölfel in [LRW17]. They
provided several alternative, more realistic security notions.

1.2 our results

steganography
vs. encryptionThe first main theme of this thesis is the relation between steganog-

raphy and cryptographic encryption. Besides giving the first formal
definition for secure steganography in [HvL09], Hopper, von Ahn,
and Langford also argued that steganography and cryptographic en-
cryption are equivalent in the sense that a secure stegosystem implies
a secure encryption scheme and vice versa. We take a closer look at
this correspondence and its underlying assumptions. Hopper, Lang-
ford, and von Ahn demanded in [HLv02] that the adversary must run
in polynomial time while the stegosystem itself could have an arbi-
trary running time. We investigate this interesting scenario and show
that the rejection sampling approach can be modified to have an arbi-
trarily good transmission rate. While these results disprove the belief
that »steganography is encryption« in this scenario, there is still an
imbalance as the running time of the stegosystem is much larger than

4 introduction

the running time of the adversary. We thus also look at the more re-
alistic case of efficient steganography. We present a channel C1 such
that provably secure rate-efficient steganography on C1 foils all cryp-
tographic primitives (based on one-way functions). We also present
another channel C2 such that provably secure steganography implies
the existence of a wide range of cryptographic primitives. The exis-
tence of these channels thus shows that the more refined statement
»efficient steganography is encryption« is also false in this general-
ity. We thus conclude that steganography and encryption – while
connected – are somehow orthogonal to each other. As a byprod-
uct, we also improve the best known impossibility results on univer-
sal steganography in two different ways. Dedić et al. showed (under
cryptographic assumptions) in [Ded+09] that there exists a family F

of channels such that every stegosystem with super-logarithmic trans-
mission rate is either insecure or unreliable on one of the channels in
F. We first show an alternative construction of such a family that does
not depend on any cryptographic assumptions. Second, we general-
ize the result of Dedić et al. and provide (under cryptographic as-
sumptions) a single channel C such that each stegosystem with super-
logarithmic transmission rate is insecure or unreliable on C.development of

secure stegosystems The second main theme of this thesis is the development of secure
stegosystems for a wide range of different scenarios. As noted above,
the public-key variant of the rejection sampling stegosystem of Backes
and Cachin in [BC05] does not work in the strongest known security
model (called the SS-CCA model) and the public-key stegosystem of
Hopper in [Hop05] only works for single channels that can be simu-
lated efficiently. We construct a public-key stegosystem that works in
the SS-CCA model for a large family of channels – the so called memo-
ryless channels. This is the best result possible, as we also prove that
no universal public-key stegosystem can work in the SS-CCA model if
the history – the sequence of already transmitted documents – has
any influence on the channel distribution. While the grey-box model
of Liśkiewicz, Reischuk, and Wölfel presented in [LRW13] is a much
more realistic model of the practical steganographic setting than the
black-box (or universal) model, the only known stegosystem in this
model works on channels described by monomials. These channels
are rather simple and cannot model many real communication chan-
nels. We investigate more realistic channels described by so called
patterns and present a grey-box stegosystem for these channels that
achieves a very high transmission rate, essentially matching those
of all known practical stegosystems. As explained above, Simmons
derived the prisoners’ problem from the possibility that certain cryp-
tographic protocols may leak information via a subliminal channel.
These algorithm substitution attacks (ASAs) have been studied inten-
sively in the last few years. We analyze them from a steganographic
viewpoint and show that ASAs are just stegosystems on certain chan-

1.2 our results 5

nels. We use this knowledge to give simpler proofs for some of these
recent results concerning ASAs and also develop attacks against all
randomized algorithm.

The next two chapters contain the necessary background on proba-
bilities, algorithms, cryptography and steganography. Chapter 4 and Organization

Chapter 5 contain the positive and negative results regarding the re-
lation between steganography and cryptographic encryption. The fol-
lowing chapter, Chapter 6, contains our SS-CCA-secure stegosystem
for memoryless channels and a proof of its optimality. The grey-box
stegosystem for pattern channels is presented and analyzed in Chap-
ter 7. Finally, Chapter 8 contains our results regarding the equiva-
lence of ASAs and stegosystems on certain channels. We finish this
thesis with some concluding remarks and interesting open research
problems.

Publications

Preliminary versions of parts of this thesis have been published in the
following publications.

[BL16a] Sebastian Berndt and Maciej Liśkiewicz. “Hard Commu-
nication Channels for Steganography.” In: Proc. ISAAC.
Vol. 64. Leibniz International Proceedings in Informat-
ics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2016, pp. 16:1–16:13.

[BL16b] Sebastian Berndt and Maciej Liśkiewicz. “Provable Se-
cure Universal Steganography of Optimal Rate: Provably
Secure Steganography does not Necessarily Imply One-
Way Functions.” In: Proc. IH&MMSec. awarded Best Stu-
dent Paper. ACM, 2016, pp. 81–92.

[BL17] Sebastian Berndt and Maciej Liśkiewicz. “Algorithm Sub-
stitution Attacks from a Steganographic Perspective.” In:
Proc. CCS. ACM, 2017, pp. 1649–1660.

[BL18] Sebastian Berndt and Maciej Liśkiewicz. “On the Gold
Standard for Security of Universal Steganography.” In:
Proc. EUROCRYPT. Vol. 10820. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 29–60.

[BR16] Sebastian Berndt and Rüdiger Reischuk. “Steganography
Based on Pattern Languages.” In: Proc. LATA. Vol. 9618.
Lecture Notes in Computer Science. Springer, 2016, pp.
387–399.

2
P R E L I M I N A R I E S

The next step in solving the problem is to introduce appropriate notation:
name and conquer

— Graham, Knuth, Patashnik

To understand the formal models of steganography presented in
the next chapter, we first need to introduce some basic notations con-
cerning probabilities, algorithms and cryptographic primitives. We
denote the set of natural numbers, including 0, by N, the set of real
numbers by R and the set of rational numbers by Q. For an alphabet
Σ and a string s ∈ Σ∗, we denote the length of s by |s| and for two
strings s, s ′ ∈ Σ∗, the concatenation of s and s ′ is written as s || s ′. For
a set S, denote by P(S) the set of all subsets of S. If P is some logical
proposition, the Iverson bracket [P] equals 1 if P is true and 0 if P is
false. For example, [3 = 2+ 1] = 1 and [3 = 1+ 1] = 0.

2.1 probabilities

As the undetectable embedding of a message into a document is an
inherent random process, we will now give a short overview on the
probability theory needed in this work. As no continuous probability
spaces are used in this thesis, it is sufficient to focus on the discrete
case. For a thorough discussion of this subject, see e. g. the textbook
of Mitzenmacher and Upfal [MU05]. A probability distribution Pr upon probability

distributiona probability space Ω – a finite or countable infinite set – is a function
probability spacePr : P(Ω) → [0, 1] such that Pr(∅) = 0, Pr(Ω) = 1 and Pr(A ∪ B) =

Pr(A) + Pr(B) − Pr(A ∩ B) for all A,B ⊆ Ω. The elements of Ω are
called elementary events and subsets of Ω are simply called events. To elementary events

eventssimplify notation, we omit the probability space if it is clear from the
context or denote it by dom(Pr). A very important subset of elemen-
tary events is the set of all elementary events that may occur, i. e. those
that have probability greater than zero. This set is called the support support

of Pr and we denote it by supp(Pr) = {ω ∈ dom(Pr) | Pr(ω) > 0}.
The min-entropy measures the amount of randomness of a probability min-entropy

distribution Pr and is defined as H∞(Pr) = infω∈supp(Pr){− log Pr(ω)}.
For two events A and B with Pr(B) > 0, the conditional probability that conditional

probabilityA occurs given that B occurs is defined as Pr(A | B) :=
Pr(A∩B)

Pr(B) . We
say that A and B are independent events, if Pr(A | B) = Pr(A). independent events

Example 1. To describe the throw of a six-sided dice, the elementary
events are described by Ω = dom(Pr) = { , , , , , }. The prob-
abilities are then given by Pr({ }) = Pr({ }) = Pr({ }) = Pr({ }) =

8 preliminaries

Pr({ }) = Pr({ }) = 1/6. The Events A = { , , } (whether the
thrown side shows an odd number of eyes) and B = { , } (whether
the number of eyes is strictly larger than four) are independent, as
Pr(A) = 1/2, Pr(B) = 1/3 and Pr(A∩B) = Pr({ }) = 1/6. �Examples always

end with �
It is often convenient to assign certain values from a set S to the

elementary events. This is formally described by the notion of a S-
valued random variable, which is a mapping from Ω to S. If Pr is arandom variable

probability distribution on Ω and X : Ω → S is a random variable,
we define Pr[X = x] := Pr(X−1(x)) as the probability that X gets the
value x. Most of the time, the probability space that we use is clear
from the context. If it is not clear or if we want to remark the reader
that a certain value y is chosen at random, we will denote this as Pry
or write it down explicitly.

To measure the expected outcome of a real-valued random variable
X : Ω→ R, we define the expected value of X as Exp[X] :=

∑
x∈X(Ω) x ·expected value

Pr[X = x]. Two random variables X and Y are independent randomindependent random
variables variables, if X−1(x) and Y−1(y) are independent events for all x ∈

img(X) and all y ∈ img(Y).

Example 2. Continuing the previous example, the canonical random
variable X would assign X() = 1, X() = 2 and so on. But we
could also measure whether the number of eyes was odd by using
the random variable Y with Y() = Y() = Y() = 1 and Y() =

Y() = Y() = 0. Hence Pr[Y = 1] = Pr(Y−1(1)) = Pr({ , , }). The
respective expected values are Exp[X] = 7/2 and Exp[Y] = 1/2. �

The simplest random variable one can think of is a binary indicator
variable that only takes values 0 and 1. A Bernoulli random variable XBernoulli random

variable with parameter p only takes the values 0 and 1 with probability p
and 1− p, i. e. Pr[X = 0] = p and Pr[X = 1] = 1− p. If X1,X2, . . . ,Xn
are independent Bernoulli random variables with parameters p1 =

p2 = . . . = pn = p, their sum X =
∑n
i=1 Xi is called a binomial randombinomial random

variable variable X with parameters p and n. It takes values 0, 1, . . . ,n with
Pr[X = k] =

(
n
k

)
· pk · (1− p)n−k for each k = 0, 1, . . . ,n.

It is often important to rule out some events by proving that they
very rarely occur. For the special case of a (generalized) binomial
random variable X, the extremely helpful Chernoff bound shows that
X very rarely deviates from its expected value.

Theorem 1 (Chernoff Bound). Let X1, . . . ,Xn be independent Bernoulli
random variables with parameters p1,p2, . . . ,pn and X =

∑n
i=1 Xi with

expected value µ = Exp[X] =
∑n
i=1 pi. For every 0 < δ < 1,

Pr[|X− µ| > δ · µ] 6 2 · exp(−(µ · δ2)/3).

Example 3. The Chernoff bound tells us that after throwing 1,000 fair
coins, the probability that at most 100 heads or at least 900 heads
occurred, is bounded by 2 · exp(−(500 · 0.8 · 0.8)/3) 6 10−48. �

2.2 algorithms 9

By letting the parameter n grow to ∞, while keeping p = p(n) as
a bounded function of n, the resulting random variable will also be
useful in the later chapters and is easily described by the following
theorem (see e. g. [MU05, pp. 98-99] for a proof).

Theorem 2. Let Xn be a binomial random variable with parameters n and
p(n), where p is a function of n and limn→∞ n · p(n) = µ is a constant
independent of n. Then, for any fixed k,

lim
n→∞ Pr[Xn = k] =

exp(−µ) · µk

k!
.

This fact leads to the definition of a Poisson random variable. A
Poisson random variable with parameter µ takes values in N with prob- Poisson random

variableability Pr[X = k] =
exp(−µ)·µk

k! . These random variable can be used to
analyze a variety of balls into bin experiments relatively easy and we
will make use of them later on.

If P andQ are probability distributions upon a common ground set
Ω, their statistical distance DS(P,Q) is defined as statistical distance

DS(P,Q) :=
∑
x∈Ω

|P({x}) −Q({x})|.

2.2 algorithms

We use Turing machines as our model of computation in this work.
For a detailed introduction and formal definitions, see the textbooks
of Papadimitriou [Pap94] or Sipser [Sip06]. The Turing machines in
this work will also be able to make independent fair coin flips and
will thus be called probabilistic Turing machines (PTMs). We will use probabilistic Turing

machines (PTMs)the terms PTM and algorithm interchangeably. The output of such a
machine is thus a random variable upon the probability space {0, 1}k,
where k is the maximum number of coin flips performed by the ma-
chine. If M is a PTM, we write M(x) for the random variable that
describes the output of M on input x. If M uses at most ρ(x) coin flips
on input x and ~r ∈ {0, 1}ρ(x) is a vector describing those coin-flips,
we write M(x;~r) for the (deterministic) output of M on input x if we
replace the result of the random coin flips by ~r. A machine M is a de- deterministic PTM

terministic PTM, if M(x;~r) = M(x;~r ′) for all coin flips ~r,~r ′. The running
time of M on input x with random coins ~r – the number of steps the
machine performs – is denoted by TM(x,~r). Similarly, the (worst-case
expected) running time TM(n) of a PTM M is defined as the expected running time

number of steps that the machine performs, i. e.

TM(n) := max
x∈{0,1}n

{Exp~r[TM(x,~r)]},

where the expected value is taken over the random choices of the coin
flips ~r and not over some distribution on x. If the running time of a

10 preliminaries

PTM M is bounded by a polynomial, we say that M is a polynomialpolynomial
probablistic Turing

machine (PPTM)
probablistic Turing machine (PPTM) or an efficient algorithm.

Often, the machine M will also be equipped with different oracles,oracles

that allow us to increase the abilities of M. See the next section for
examples of this.

• For a random variable X (e. g. the output of another machine),
the PTM MX can get a sample x distributed according to X. If
M can choose some parameters of X (e. g. the inputs), we will
make this clear in the context. If X is the uniform distribution
on a set S, we simply write MS. The running time to receive a
single sample is simply the encoding length of the sample (plus
the encoding length of all given inputs).

• If f : U→ V is a function, Mf can provide an element u ∈ U and
gets back the value f(u). The running time for this operation is
the encoding length of u plus the encoding length of f(u).

If M can access several oracles O1,O2, . . ., we write MO1,O2,.... If an
algorithm M gets a sample x distributed according to the random
variable X, we denote this as x ← X and x ← M for the output of the
randomized algorithm. If M is not randomized, i. e. it can only output
a single value for fixed inputs, we denote this by x := M to highlight
this difference. If S is a finite set, we denote the uniform sampling of
a random element s of S by s� S.

2.3 cryptographic primitives

We will make use of a wide range of cryptographic primitives ranging
from one-way functions to public-key cryptosystems. Most of the defini-
tions are taken from or inspired by the excellent textbook of Katz and
Lindell [KL07].

Two main approaches for the definition of cryptographic primitives
exist in the literature. In the first approach, the length of the key (also
called the security parameter) is treated as a constant. Consequently,security parameter

the running time of all involved algorithms are also constant. The typ-
ical assumption in this model is that a primitive is (t, ε)-secure, i. e.
the advantage of every attacker with running time t against the prim-
itive is at most ε. This line of work was first introduced by Bellare
et al. and is commonly called concrete security [Bel+97]. The secondconcrete security

approach – the asymptotic security – treats the security parameter as aasymptotic security
variable and analyzes the security of the primitives in an asymptotic
way, i. e. for large enough values. We typically denote this variable
with κ and the corresponding key of length κ with k. To define se-
curity in this setting, the notion of negligible functions is needed. A
function negl : N→ [0, 1] is called negligible if for every polynomial p,negligible

there is n0 ∈ N such that negl(n) < p(n)−1 for every n > n0. Hence,

2.3 cryptographic primitives 11

a negligible function decreases faster than the inverse of every poly-
nomial.

Example 4. Typical examples for negligible functions are n 7→ 2−n,
n 7→ 1.01−n, n 7→ 2−0.1n, but also n 7→ n− logn. �

The typical assumption in the asymptotic security setting is now
that upon security parameter κ, every attacker that runs in time p(κ)
for a polynomial p only has a negligible advantage of negl(κ) to break
the primitive.

While the concrete approach gives more concrete bounds, the analy-
sis of the security in the asymptotic approach is often more helpful in
understanding the underlying arguments. Additionally, it is unclear
for which parameters t and ε we can treat a primitive as ”secure“.
As one can typically easily translate asymptotic bounds into concrete
bound and as we want to emphasize upon the arguments rather than
those concrete bounds, we have decided to use the asymptotic ap-
proach in this work. For a more thorough discussion of this models,
see the textbook of Katz and Lindell [KL07, pp. 49-52]. For an exam-
ple of the concrete approach in steganography see e. g. [BR16].

A sequence of probability distributions Pr1, Pr2, . . . will also be de-
noted as {Prλ}λ∈N and is called an distribution ensemble. A distribution distribution

ensembleensemble {Prλ}λ∈N is called an efficiently sampleable ensemble, if there is
efficiently
sampleable ensemble

a PPTM M such that its output upon the unary encoding of a number λ
– denoted by 1λ – is nearly the same as Prλ: Formally, we require that
there is a negligible function negl such that DS(M(1λ), Prλ) 6 negl(λ).
Note that such a requirement is necessary in order to also generate
events with a probability such as 1/3, as that number has no finite bi-
nary representation. To simplify the presentation, we will sometimes
ignore this negligible function and pretend that M(1λ) = Prλ. Simi-
larly, a function f : U→ V is a efficiently computable function, if there is efficiently

computable functiona deterministic PPTM M such that M(u) = f(u) for all u ∈ U.

Indistinguishability

A main idea behind several cryptographic primitives is the notion of
indistinguishability of two objects O and O ′. We say that O and O ′ are indistinguishability

indistinguishable, if no PPTM can distinguish them. Note that O and
O ′ may differ significantly, but only with respect to non-polynomial
properties. In the following, we look at a simple example: The indis-
tinguishability of two distribution ensembles.

Let P = {Pκ}κ∈N and Q = {Qκ}κ∈N be two distribution ensembles.
For a PPTM DDist (the distribution distinguisher), the advantage of DDist distribution

distinguisherto distinguish P and Q is defined as

Advdist
DDist,P,Q(κ) =

∣∣Pr[DDistPκ(1κ) = 1] − Pr[DDistQκ(1κ) = 1]
∣∣ ,

12 preliminaries

where DDistD has the ability to get samples distributed accordingly
to D in unit time. The insecurity of P and Q is defined as

InSecdist
P,Q(κ) = max

DDist
{Advdist

DDist,P,Q(κ)}.

If there is a negligible function negl such that InSecdist
P,Q(κ) 6 negl(κ),

we say that P and Q are indistinguishable.indistinguishable

To give a more fine-grained security analysis, we also give a more
refined version of InSecdist

P,Q(κ). For two polynomials q and t, we de-
note by

InSecdist
P,Q(q, t, κ) = max

DDist
{Advdist

DDist,P,Q(κ)},

where the maximum is taken over all distribution distinguisher that
run in time t(κ) and make at most q(κ) queries to their distribution
oracle.

In order to simplify our notation, we sometimes identify a set M
with the uniform distribution onM. IfM andN are two finite sets, we
hence write DDistM, DDistN, Advdist

DDist,M,N, and InSecdist
M,N with the

meaning thatM andN are uniformly distributed. Similarly, if F : M→
N is a function, we write F(M) for the distribution on N that arises, if
the argument to F is chosen uniformly from M.

By the following well-known theorem (see e. g. [Gol04, p.173]) we
get that the statistical distance is a stronger measure than the compu-
tational indistinguishability.

Theorem 3. Let {Pκ}κ∈N and {Qκ}κ∈N be two distribution ensembles on
the same domains. Then it holds that for all sufficiently large κ:

InSecdist
P,Q(q, t, κ) 6 q(κ) ·DS(Pκ,Qκ).

One-Way Functions

A function F : {0, 1}∗ → {0, 1}∗ is called a one-way function, if the follow-one-way function

ing properties hold:

• There are two polynomials `, ` ′ such that for all n ∈ N and all
x ∈ {0, 1}n, we have `(n) 6 |F(x)| 6 ` ′(n).

• The function F is efficiently computable.

• For every PPTM Inv (the inverting algorithm), there exists a negli-
gible function negl such that for all sufficiently large n ∈N,

Pr[Inv(F(x)) ∈ F−1(F(x))] 6 negl(n),

where the probability is taken over the random choice of x �
{0, 1}n and the internal coin flips of Inv.

2.3 cryptographic primitives 13

Example 5. One of the most famous candidates for a one-way func-
tion is the factoring function. Let P be the set of primes and P[2] factoring

be the set of products of two primes. The multiplication function
mult : (P × P) → P[2] simply computes the products of its inputs if
both inputs have the same length.1 Clearly, this can be done in poly-
nomial time in the length of the inputs. But inverting this operation
efficiently, i. e. finding mult−1(n) = (p,q) from a number n = p · q
is a notoriously hard open problem. The famous RSA-cryptosystem
relies on the hardness of a variant of this problem. �

A wide range of works shows that the existence of one-way func-
tions is the minimal assumption needed for cryptography, as most of
the following primitives can be constructed out of them [KL07, Chap-
ter 6].

Hash Functions

In the following, we will often use keyed functions f : {0, 1}∗ × {0, 1}∗ → keyed functions

{0, 1}∗. The first parameter of f is then called the key of the function.
To simplify notation, for each key k ∈ {0, 1}∗, we define the function
fk : {0, 1}∗ → {0, 1}∗ with fk(x) = f(k, x). If A is an algorithm that
takes a key k as input, we will also write Ak to denote the modified
algorithm where k is fixed.

A cryptographic primitive typically consists of a keyed function f
and a generator algorithm f.Gen that upon input 1κ produces a suit- generator

able key k of size κ for f. It might be useful for practical purposes to
allow f.Gen to output keys that are longer than κ, but we can safely
ignore this issue in this thesis.

A hash function H = (H.Gen, H.Eval) is a pair of PPTMs such that hash function

H.Gen upon input 1κ produces a key k ∈ {0, 1}κ. The keyed function
H.Eval takes the key k ∈ supp(H.Gen(1κ)) and a string x of length
H.in(κ) and produces a string H.Evalk(x) of length H.out(κ) < H.in(κ).

In order to define the ”security“ of this function, we first need to
define a corresponding experiment. This is a typical approach in cryp-
tography and steganography: For a primitive Π, we define an experi-
ment E(Π), that takes an ”attacker“ A. Whenever the probability that
A passes (its advantage AdvA,Π(κ)) is negligible, we say that Π is se- advantage

cure.
As it should be hard for an adversary to find two different ele-

ments x 6= x ′ such that H.Evalk(x) = H.Evalk(x ′), we need to find a
corresponding experiment. A collision finder Fi for a hash function H collision finder

is a PPTM that upon input k ∈ supp(H.Gen(1κ)) outputs two strings
x, x ′ ∈ {0, 1}H.in(κ). Its goal is to pass the following experiment:

1 This prevents the composite number from having a small prime factor. See Katz and
Lindell [KL07, Section 6.1.2] for a discussion.

14 preliminaries

Collision-Finding Experiment: CollFi,H(κ)

Parties: Hash function H = (H.Eval, H.Gen), Finder Fi
Input: key length κ

1 : k← H.Gen(1κ)

2 : (x, x ′)← Fi(k)

3 : if x 6= x ′ and H.Evalk(x) = H.Evalk(x ′) then return 1

4 : else return 0

A hash function H is a collision resistant hash function (CRHF), if forcollision resistant
hash

function (CRHF)
all collision finders Fi, there is a negligible function negl such that

Advhash
Fi,H (κ) := Pr[CollFi,H(κ) = 1] 6 negl(κ).

The maximal advantage of any collision finder against H is called
the CRHF-insecurity InSechash

H (κ) and is defined asCRHF-insecurity

InSechash
H (κ) := max

Fi
{Advhash

Fi,H (κ)}.

As CRHFs compress an input of length H.in(κ) into a smaller value
of length H.out(κ) < H.in(κ), they are often used to create short signa-
tures of a longer bit string.

Note that CRHFs can not be constructed from one-way functions in
a black-box way, as Simon [Sim98b] showed an oracle-separation (see
Impagliazzo and Rudich [IR88] for a discussion on this fascinating
subject) between those concepts.

Pseudorandom Functions

For two numbers `, ` ′ ∈N, denote the set of all functions from {0, 1}` toset of all functions

{0, 1}`
′

by Fun(`, ` ′). Clearly, in order to specify a random element of
Fun(`, ` ′), one needs 2` × ` ′ bits and we can thus not use completely
random functions in an efficient setting if ` is too large. We will thus
use efficient functions that are indistinguishable from completely ran-
dom function. A pseudorandom function (PRF) F = (F.Gen, F.Eval) is apseudorandom

function (PRF) pair of PPTMs such that F.Gen upon input 1κ produces a key k ∈ {0, 1}κ.
The keyed function F.Eval takes the key k ∈ supp(F.Gen(1κ)) and a bit
string x of length F.in(κ) and produces a string F.Evalk(x) of length
F.out(κ). An attacker, called distinguisher, Dist upon input 1κ gets ora-distinguisher

cle access to a function that is either a completely random function in
Fun(F.in(κ), F.out(κ)) or equals F.Evalk for a randomly chosen key k
and its goal is to distinguish between those cases. Hence if F is pseu-
dorandom, for every distinguisher Dist there is a negligible function
negl such that

Advprf
Dist,F(κ) :=∣∣∣Pr[DistF.Evalk(1κ) = 1] − Pr[Distf(1κ) = 1]

∣∣∣ 6 negl(κ),

2.3 cryptographic primitives 15

where k← F.Gen(1κ) and f� Fun(F.in(κ), F.out(κ)).
As usual, the maximal advantage of any distinguisher against F is

called the PRF-insecurity InSecprf
F (κ) and defined as PRF-insecurity

InSecprf
F (κ) := max

Dist
{Advprf

Dist,F(κ)}.

As for the distribution distinguisher, we also use more refined no-
tion of insecurity: If q and t are two polynomials, let

InSecprf
F (q, t, κ) := max

Dist
{Advprf

Dist,F(κ)},

where the maximum is taken over all distinguishers that run in time
t(κ) and make at most q(κ) queries to their function oracle.

Furthermore, if F.in(κ) = F.out(κ) and if every F.Evalk is a permu-
tation we say that F is a pseudorandom permutation (PRP). pseudorandom

permutation (PRP)Note that due to the definition of PRFs, they share all properties of
totally random functions that one can test in polynomial time (up to
a negligible probability). A typical security analysis of a protocol that
uses PRFs thus starts with the analysis of the protocol if one replaces
the PRF with a totally random function. This modified protocol is
then examined with probability- or information-theoretic means to
conclude something about the behaviour of the modified protocol. By
replacing the totally random function with a PRF, one can conclude
that the behaviour of the modified protocol and the behaviour of the
original protocol are very similar. This allows one to also use the
results of the modified protocol for the original protocol.

In Chapter 4, we will investigate super-polynomial steganography
and thus will drop the requirement that F.Gen and F.Eval can be com-
puted in polynomial time and say that such a pair is a super-polynomial super-polynomial

PRFPRF.

Signature Schemes

A signature scheme SIG = (SIG.Gen, SIG.Sign, SIG.Vrfy) is a triple of signature scheme

PPTMs such that the algorithm SIG.Gen(1κ) produces a pair (pk, sk)
of keys with |pk| = κ and |sk| = κ. We call pk a public key and sk a se-
cret/private key. The signing algorithm SIG.Sign takes as input the secret signing algorithm

key sk, a message m ∈ {0, 1}SIG.ml(κ) of length SIG.ml(κ) and outputs
a signature σ ∈ {0, 1}SIG.sl(κ) of length SIG.sl(κ). The verifying algorithm signature

verifying algorithmSIG.Vrfy takes as input the public key pk, a message m ∈ {0, 1}SIG.ml(κ)

and a signature σ ∈ {0, 1}SIG.sl(κ). It outputs a bit b. We always as-
sume that it outputs b = 1 if σ ∈ supp(SIG.Sign(pk,m)). Note that it
also may output b = 1, even if σ could not be created via Sign. We
will typically treat SIG.Vrfy as keyed function and will thus also write
SIG.Vrfypk for the corresponding function, where the key is fixed. A
forger Fo is a PPTM that upon input pk and oracle access to SIG.Signsk forger

16 preliminaries

tries to produce a pair (m,σ) such that SIG.Vrfypk(m,σ) = 1. Formally,
this is defined via the following experiment Sig-Forge.

Signature-Forging Experiment: Sig-ForgeFo,SIG(κ)

Parties: Forger Fo, Signature Scheme SIG = (Gen, Sign, Vrfy)
Input: length κ

1 : (pk, sk)← Gen(1κ)

2 : (m,σ)← FoSIGN(pk)

3 : let Q be the set of messages given to SIGN by Fo

4 : return [m 6∈ Q and Vrfypk(m,σ) = 1]

oracle SIGN(m)

1 : σ← SIG.Signsk(m)

2 : return σ

A signature scheme SIG is called existentially unforgeable if for everyexistentially
unforgeable forger Fo, there is a negligible function negl such that

Advsig
Fo,SIG(κ) := Pr[Sig-ForgeFo,SIG(κ) = 1] 6 negl(κ).

As usual, the maximal advantage of any forger against SIG is called
the sig-insecurity InSecsig

SIG(κ) and defined assig-insecurity

InSecsig
SIG(κ) := max

Fo
{Advsig

Fo,SIG(κ)}.

Note that this definition of security implies that a existentially un-
forgeable signature scheme is publicly verifiable and has the property
of non-repudiation [KL07], two important aspects that we will also
make use of.

Symmetric Encryption Schemes

A symmetric encryption scheme (SES) is a triple of polynomial probab-symmetric
encryption

scheme (SES)
listic Turing machines SES = (SES.Gen, SES.Enc, SES.Dec) such that
the key generator SES.Gen(1κ) produces a key k ∈ {0, 1}κ. The en-

encryption
algorithm cryption algorithm SES.Enc takes as input the key k and a plaintext

plaintext
m ∈ {0, 1}SES.ml(κ) of length SES.ml(κ) and outputs a ciphertext c ∈

ciphertext
{0, 1}SES.cl(κ) of length SES.cl(κ). The decryption algorithm SES.Dec of

decryption algorithm
the SES takes as input the key k and a ciphertext c and outputs a
plaintext m ∈ {0, 1}SES.ml(κ). In order to make sure that the decryption
is successful, we assume that there exists a negligible function negl
such that

max
m∈{0,1}SES.ml(κ),

k∈supp(SES.Gen(1κ))

{Pr[SES.Dec(k, SES.Enc(k,m)) 6= m]} 6 negl(κ),

2.3 cryptographic primitives 17

where the probability is taken over the internal coin-flips of SES.Enc
and SES.Dec. In the literature, one also encounters a similar definition,
where the term above should be zero, i. e. no decryption errors are
allowed. Note that many practical cryptosystems such as the Ajtai-
Dwork cryptosystem in [AD97] or the ntru cryptosystem in [HPS98]
do not fulfill this stricter requirement. A more in-depth discussion of
this is provided by Dwork, Naor, and Reingold in [DNR04].

An attacker A = (A.Find, A.Guess) on an encryption scheme is a pair attacker

of PPTMs that works in two stages: First, A.Find can encode arbitrary
messages with Enck and outputs two messages m0,m1 and a state σ.
Second, A.Guess receives the encryption of mb for a randomly chosen
bit b via the challenging oracle CH and should try to reconstruct b.
This security notion is known as security against chosen-plaintext
attacks (CPAs). Formally, this is defined via the following experiment
CPA-Dist.

Chosen-Plaintext-Attack experiment: CPA-DistA,SES(κ)

Parties: Attacker A = (Find, Guess), symmetric encryption
scheme SES = (Gen, Enc, Dec)
Input: length κ

1 : k← Gen(1κ);b� {0, 1}

2 : (m0,m1,σ)← A.FindENC(1κ)

3 : c← CH(m0,m1)

4 : b ′ ← A.GuessENC(c,σ)

5 : return [b = b ′]

oracle ENC(m)

1 : c← Enck(m)

2 : return c

oracle CH(m0,m1)

1 : c← Enck(mb)

2 : return c

A symmetric encryption scheme SES = (Gen, Enc, Dec) is CPA-secure CPA-secure

if for every attacker A, there is a negligible function negl such that

Advcpa
A,SES(κ) :=

∣∣∣∣Pr[CPA-DistA,SES(κ) = 1] −
1

2

∣∣∣∣ 6 negl(κ).

As usual, the maximal advantage of any attacker against SES is
called the CPA-insecurity InSeccpa

SES(κ) and defined as CPA-insecurity

InSeccpa
SES(κ) := max

A
{Advcpa

A,SES(κ)}.

Similarly to above, a more refined version of the insecurity exists.
If q and t are two polynomials, let

InSeccpa
SES(q, t, κ) := max

A
{Advcpa

A,SES(κ)},

18 preliminaries

where the maximum is taken over all attackers that run in time t(κ)
and make at most q(κ) queries to the encryption oracle.

An even stronger security notion is the notion of security against
chosen-plaintext$ attacks (CPA$s), where the attacker A outputs a sin-
gle message m and the string c is either taken from Enck(m) (b = 0)
or a completely random bit string of length |Enck(m)| = SES.cl(κ)
(b = 1). The goal of A is to reconstruct the bit b from c. Denote this
modification of CPA-Dist by CPA$-Dist. Informally, this implies that
the ciphertexts constructed by the SES are indistinguishable from ran-
dom strings. A symmetric encryption scheme SES is CPA$-secure if forCPA$-secure

every attacker A, there is a negligible function negl such that

Advcpa$
A,SES(κ) :=

∣∣∣∣Pr[CPA$-DistA,SES(κ) = 1] −
1

2

∣∣∣∣ 6 negl(κ).

As usual, the maximal advantage of any attacker against SES is
called the CPA$-insecurity InSeccpa$

SES (κ) and defined asCPA$-insecurity

InSeccpa$
SES (κ) := max

A
{Advcpa$

A,SES(κ)}.

Clearly, CPA$-security implies CPA-security, but the other implica-
tion is not true: For example, the encryption algorithm Enc may al-
ways append a certain string at the end of each ciphertext. Fortu-
nately, most known CPA-secure symmetric encryption scheme are also
CPA$-secure.

Random Counter Mode

We will sometimes use a simple, yet incredibly useful SES called the
random counter mode. Let F be a PRF that maps input strings of lengthrandom counter

mode F.in(κ) into output strings of length F.out(κ). The following algo-
rithms then yields a symmetric encryption scheme SESF:

• The generator algorithm SESF.Gen simply uses F.Gen to create a
symmetric key k, i. e. SESF.Gen(1κ) = F.Gen(1κ).

• The encryption algorithm works as follows for messages m =

m1m2 . . .mn with mi ∈ {0, 1}F.in(κ) if SESF.ml(κ) = n · F.in(κ):

Random Counter Mode Encryption: SESF.Enc

Input: key k, m = m1m2 . . .mn ∈ {0, 1}n·F.in(κ)

1 : κ := |k|

2 : r� {0, 1}F.in(κ)// r is treated as string and number

3 : for i := 1, . . . ,n :

4 : ci := F.Evalk([r+ i] mod 2F.in(κ))⊕mi
5 : return r || c1 || c2 || . . . || cn

2.3 cryptographic primitives 19

• Similarly, the decryption inverts the encryption:

Random Counter Mode Decryption: SESF.Dec

Input: key k, c = c0c1 . . . cn ∈ {0, 1}(n+1)·F.out(κ)

1 : κ := |k|

2 : r := c0

3 : for i := 1, . . . ,n :

4 : mi := F.Evalk([r+ i] mod 2F.in(κ))⊕ ci
5 : return m1 || m2 || . . . || mn

Clearly, every ciphertext c ∈ supp(SESF.Enc(k,m)) is decoded cor-
rectly. Concerning the security, Bellare et al. already proved the fol-
lowing theorem in [Bel+97], where they called this construction the
XOR-scheme.

Theorem 4 (Theorem 2, Theorem 4, and Theorem 13 in the full ver-
sion of [Bel+97]). If F is a secure pseudorandom function, the symmet-
ric encryption scheme SESF is CPA$-secure. More precisely if SESF.ml =

n · F.in(κ), for all polynomials q and t in κ, it holds:

InSeccpa
SESF(q, t, κ) 6

q2(κ) · (n+ 1) · F.out(κ) · (q(κ) − 1)
F.in(κ) · 2F.out(κ) + 2 InSecprf

F (2qn, t, κ).

Cipher Block Chaining Mode

Another useful SES is the cipher block chaining (CBC) mode. Let P be cipher block
chaining (CBC)a PRP such that P.Eval−1k (·) is also efficiently computable with the

knowledge of the key k. The following algorithm then yields a sym-
metric encryption scheme SESP with message length SESP.ml(κ) =

P.in(κ).

• The generator algorithm SESP.Gen simply uses P.Gen to create
a symmetric key k.

• The encryption algorithm is defined as:

Cipher Block Chaining Mode Encryption: SESP.Enc

Input: key k, message m ∈ {0, 1}P.in(κ)

1 : κ := |k|

2 : r0 � {0, 1}P.in(κ)

3 : r1 := P.Evalk(r0 ⊕m)

4 : return r0 || r1

20 preliminaries

• Similarly, the decryption is defined as:

Cipher Block Chaining Mode Decryption: SESP.Dec

Input: key k, ciphertext c = r0 || r1

1 : m := P.Eval−1k (r1)⊕ r0
2 : return m

The security of CBC was also proved by Bellare et al. in [Bel+97]:

Theorem 5 (Theorem 17 in the full version of [Bel+97]). If P is a se-
cure pseudorandom permutation, such that P.Eval−1k (·) can be computed
efficiently, the symmetric encryption scheme SESP is CPA$-secure.

Public-Key Encryption Schemes

While SESs are very useful, the problem of the key management re-
mains complicated. If n parties want to communicate via a SES, each
pair i, j ∈ {1, . . . ,n} needs to share a key ki,j. Hence,

(
n
2

)
keys are

needed if every party wants to communicate with every other party.
And furthermore, those

(
n
2

)
keys somehow need to be exchanged over

a secure communication channel before the actual communication
may take part. In order to remedy these problems, Diffie and Hell-
man introduced the notion of public-key cryptography in their ground-
breaking work [DH76].

A public key encryption scheme (PKES) is a triple of PPTMs PKES =public key
encryption

scheme (PKES)
(PKES.Gen, PKES.Enc, PKES.Dec) such that PKES.Gen(1κ) produces a
pair of keys (pk, sk) with |pk| = κ and |sk| = κ. The key pk is called the
public key and the key sk is called the secret key (or private key).2 Whilepublic key

secret key pk will be publicly available to all parties, the secret key sk must be
kept secret by its owner. The public-key encryption algorithm PKES.Encpublic-key

encryption
algorithm

takes as input the public key pk and a plaintext m ∈ {0, 1}PKES.ml(κ)

of length PKES.ml(κ) and outputs a ciphertext c ∈ {0, 1}PKES.cl(κ) of
length PKES.cl(κ). The public-key decryption algorithm PKES.Dec takespublic-key

decryption algorithm as input the secret key sk and the ciphertext c and produces a plain-
text m ∈ {0, 1}PKES.ml(κ). In order to make sure that the decryption is
successful, we assume that there exists a negligible function negl such
that

max
m∈{0,1}PKES.ml(κ),

(pk,sk)∈supp(PKES.Gen(1κ))

{Pr[PKES.Dec(sk, PKES.Enc(pk,m)) 6= m]}

is smaller than negl(κ), where the probability is taken over the internal
coin-flips of PKES.Enc and PKES.Dec.

2 Throughout this work, we always assume that the secret key sk also contains the
public key pk or that pk can be efficiently derived from sk.

2.3 cryptographic primitives 21

While an attacker against a SES was given oracle access to the en-
cryption algorithm, this is not needed in the public-key setting: Ev-
eryone knows the public key pk needed to encrypt messages. On the
other hand, this provides the possibility of different attacks, as Bob
does not know his communication partner in advance. Hence, the se-
curity requirements for PKESs are much higher. Informally, we will
allow an attacker to first choose a message that should be encrypted.
In the next step, the attacker is allowed to insert arbitrary ciphertexts
into the communication and watch Bob’s behaviour upon receiving
those texts. Formally we equip an attacker with a decryption oracle in
order to perform this kind of attack.

An public-key attacker A = (A.Find, A.Guess) on a public key encryp- public-key attacker

tion scheme PKES is a pair of PPTMs. Upon input pk and with oracle
access to PKES.Decsk, the algorithm A.Find generates two messages
m0,m1 and a state σ. A random bit b � {0, 1} is then chosen and in
the second round, A.Guess is given the encryption c of mb and should
decide whether b = 0 or b = 1. While we still allow A.Guess to have
oracle access to the decoding algorithm PKES.Decsk, clearly we must
forbid that it uses it to decrypt c. This security notion is known as
security against chosen-ciphertext attacks (CCAs). Formally, this is de-
fined via the following experiment CCA-Dist.

Chosen-Ciphertext-Attack Experiment: CCA-DistA,PKES(κ)

Parties: Attacker A = (Find, Guess), public key encryption
scheme PKES = (Gen, Enc, Dec)
Input: length κ

1 : (pk, sk)← Gen(1κ);b� {0, 1}

2 : (m0,m1,σ)← A.FindDEC1(pk)

3 : ĉ← CH(m0,m1)

4 : b ′ ← A.GuessDEC2(pk, ĉ,σ)

5 : return [b = b ′]

oracle DEC1(c)

1 : m← Decsk(c)

2 : return m

oracle CH(m0,m1)

1 : c← Encpk(mb)

2 : return c

oracle DEC2(c)

1 : if c = ĉ return ⊥
2 : m← Decsk(c)

3 : return m

A public key encryption scheme PKES is called CCA-secure, if for CCA-secure

every attacker A, there is a negligible function negl such that

Advcca
A,PKES(κ) :=

∣∣∣∣Pr[CCA-DistA,PKES(κ) = 1] −
1

2

∣∣∣∣ 6 negl(κ).

As usual, the maximal advantage of any attacker against PKES is
called the CCA-insecurity InSeccca

PKES(κ) and defined as CCA-insecurity

22 preliminaries

InSeccca
PKES(κ) := max

A
{Advcca

A,PKES(κ)}.

As in the symmetric key, this notion of security can also be strength-
ened to security against chosen-ciphertext$ attacks (CCA$s), where
the attacker needs to distinguish the ciphertext of a chosen message
(b = 0) from a completely random bit string (b = 1) of corresponding
length PKES.cl(κ). Denote this modification of CCA-Dist by CCA$-Dist.
This implies that the output of the PKES is indistinguishable from ran-
dom strings. A public key encryption scheme PKES is CCA$-secure ifCCA$-secure

for every attacker A, there is a negligible function negl such that

Advcca$
A,PKES(κ) :=

∣∣∣∣Pr[CCA$-DistA,PKES(κ) = 1] −
1

2

∣∣∣∣ 6 negl(κ).

The CCA$-insecurity is defined asCCA$-insecurity

InSeccca$
PKES(κ) := max

A
{Advcca$

A,PKES(κ)}.

Goldreich and Rothblum showed in [GR13] that one can construct
CCA$-secure public-key encryption schemes from doubly enhanced trap-doubly enhanced

trapdoor
permutations

door permutations.

3
M O D E L S O F S T E G A N O G R A P H Y

[...]it was shown that such a subliminal channel can be made just as
difficult to detect as the underlying cryptoalgorithm is difficult to break.

— Gustavus J. Simmons

After the previous chapter introduced all necessary notions con-
cerning cryptography, this chapter deals with the formal definitions
of provably secure steganography. Throughout this thesis, we will use
multiple different models of steganography, that mainly differ in the
following three aspects:

resource limitations : The first formal definition of provably se-
cure steganography was given by Hopper, von Ahn, and Lang-
ford in [HvL09], where the running time of a stegosystem was
allowed to be super-polynomial in the security parameter κ.
While some subsequent works demanded that a stegosystem
should run in polynomial time (see e. g. [BC05; Ded+09]), Hop-
per, von Ahn, and Langford make use of the fact that their
stegosystems may run for a long time to obtain their results.
We thus distinguish between the original definition – which we
will call super-polynomial stegosystems – and the updated notion super-polynomial

stegosystemsefficient stegosystems. Note that super-polynomial stegosystems
efficient
stegosystems

will only be used in Chapter 4.

applicability : A typical problem that arises when one designs a
stegosystem concerns their applicability: On which kind of chan-
nels should the stegosystem work? One could for example de-
sign a stegosystem that works for a concrete channel where the
documents are 200 JPEG pictures of size 600× 600 pixels that we
know in beforehand. Such a stegosystem is called a white-box This nomenclature is

taken from
[LRW13].

white-box
stegosystem

stegosystem, as the stegosystem has complete knowledge of the
channel. Typically one wants to design more general stegosys-
tems. For example, it might be appropriate to design a stego-
system that works for all channels that contain JPEG pictures of
size 600× 600 pixels. As the stegosystem still has some knowl-
edge about the documents, such a system is called a grey-box grey-box

stegosystemstegosystem. The most general form of a stegosystem is a stego-
system that works on every channel (containing sufficiently many
documents). We call such a system a universal stegosystem or universal

stegosystema black-box stegosystem. As we try to give as general results as
black-box
stegosystem

possible in this thesis, we will develop grey-box or black-box
stegosystems for our positive results and rule out white-box
stegosystems for our negative results.

24 models of steganography

chapter running time applicability key-symmetry

4 super-polynomial black-box secret-key

5 polynomial white-box secret-key

6 polynomial grey-box public-key

7 polynomial grey-box secret-key

8 polynomial white/grey-box secret-key

Table 1: A short overview of the models used in each chapter

key-symmetry : As in the cryptographic setting, the stegoencoder
needs a key k to encode the message into the channel and the
stegodecoder also needs a key k ′. If k = k ′ we speak of a
symmetric-key stegosystem or secret-key stegosystem. In contrast, ifsymmetric-key

stegosystem

secret-key
stegosystem

k 6= k ′ and k is publicly known and k ′ is kept secret, we call
such a system a public-key stegosystem. Furthermore, we denote

public-key
stegosystem

the publicly known key k as pk (for public key) and the secret
key k ′ as sk (for secret key). Depending on the setting we will
also analyze different security notions.

To help the reader to keep track which of these 2 · 3 · 2 = 12 configu-
rations we currently use, the names of the chapters typically indicate
the notions used in the chapter. We will also always give a short de-
scription about these aspects in the first few sentences of the chapter.
An overview of the used combinations is given in Table 1.

3.1 unsuspicious communication

In order to formalize that the output of a secure stegosystem is in-
distinguishable from unsuspicious communication, we first need a
mean to define this unsuspicious communication. We will do this via
the notion of a channel. We will think of this unsuspicious communi-channel

cation as the unidirectional transmission of documents from Alice todocuments

Bob and will model this as a probability distribution upon those doc-
uments. This distribution indicates the probability that Alice sends a
certain document to Bob. There are two more things we need to con-
sider to make this model realistic and useful for us. First, the prob-
abilities may change over the time depending on the already sent
documents. If Alice sends Bob a postcard from the beach, it is quite
unlikely (though not impossible) that the next postcard that Bobs get
will come from the Antarctic. This change of the probability distribu-
tion will be reflected by something we call the history – the sequencehistory

of already transmitted documents. Second, larger security parameters
typically allow us to send larger messages. Hence, the amount of in-
formation needed to hide those messages also grows. To hide those

3.1 unsuspicious communication 25

messages, there are two approaches to handle this need for more in-
formation: Different

Approaches to
documents• In the first approach used by Hopper, von Ahn, and Langford

in [HvL09], it is assumed that the size of the documents is in-
dependent from the security parameter and thus treated as a
constant. In order to have a large enough entropy to handle
larger messages, Hopper, von Ahn, and Langford do not deal
with single documents, but rather with sequences of documents
of sufficient length. This model was criticized by Lysyanskaya
and Meyerovich in [LM06], as one should only be able to look at See [LM06] for an

entertaining
example about
teddy-bears.

the distribution with history h containing the document d after
the document d was transmitted to Bob especially if the size of
documents is very small.

• In the second approach – the one we will use –, we assume that
the size of the document depends on the security parameter, i. e.
the entropy of a single document is high enough already. This
approach is more general then the first one as we will simply
interpret a sequence of constant-sized objects as a single docu-
ment. This simplifies the analysis and our notation as we can
always directly talk about documents and not about sequences.

Example 6. Let us look at the example that Alice send Bob pictures
from her holiday. Suppose that every picture is encoded in JPEG and
of size 600× 600 pixels. Denote the set of all such pictures by Pics.
Furthermore suppose that on security parameter κ, we want to embed
messages of length ml(κ).

In the first approach described above, a document d would consist
of a single picture, i. e. d ∈ Pics. Hence, our channel would be a proba-
bility distribution on Pics, but our stegosystem would only deal with
sequences taken from this distribution.

In the second approach, a document d would already consists of
a sequence of pictures, i. e. d ∈ Picsdl(κ) for some polynomial dl in
the security parameter κ. Hence, our channel would be a probability
distribution on Picsdl(κ) and our stegosystem would also directly deal
with elements of this distribution. �

Formally, a channel C on the alphabet Σ is a function that maps channel

an element h ∈ Σ∗ – the history – and a number n ∈ N – the doc- history

document lengthument length – to a probability distribution on Σn. We will denote
this probability distribution by Ch,n instead of C(h,n). An element
of Σn is called a document or covertext. Typically, we will implicitly document

covertextassume that Σ = {0, 1} to simplify the following analysis concerning
the amount of information that is present in the channel C. The min- min-entropy of a

channelentropy of a channel H∞(C,n) for a channel C and a natural number
n ∈ N is defined as H∞(C,n) = minh∈Σ∗{H∞(Ch,n)}. As demon-
strated in [HvL09], the number of bits embeddable in a single docu-
ment is bounded by H∞(C,n).

26 models of steganography

Note that some works (e. g. [HvL09; LRW13]) also limit the histo-
ries to those that actually may occur. They call those histories legallegal histories

histories. While it may seem useful to limit the used histories in such
a way, several problems arise from it such as:

• What happens if the stegosystems sends an “illegal” document,
that is not recognized as such by the warden?

• How can a warden make sure that he only chooses legal histo-
ries?

Answering these questions in a completely satisfactory way seem to
lead to a change in the steganographic model. To the best of our
knowledge, all works that use the notion of legal histories also ignore
these problems. We thus decided to also ignore this issue.

3.2 stegosystems

We are now able to finally describe the notion of a stegosystem. As
discussed in the beginning of the section, we will follow the defi-
nition of [HvL09] and will not assume that a stegosystem needs to
run in polynomial time. In order to reduce the redundancy of this
work, we will only define secret-key stegosystems and then explain
the (relatively minor) differences to public-key systems later on. We
will model that the stegosystem StS upon security parameter κ on
channel C takes a message of length StS.ml(κ) (the message length)message length

and embeds it into StS.olC(κ) (the output length) documents of lengthoutput length
StS.dlC(κ) (the document length). Formally, some parameters of a stego-document length
system like the output length or the document length may depend on
the current channel C it is used on. This is reflected by the subscript
C given in the above definition. As the channel is always clear from
the context, we typically drop the subscript C.

A (secret-key) stegosystem StS = (StS.Gen, StS.Enc, StS.Dec) is a triple(secret-key)
stegosystem of PTMs such that the algorithm StS.Gen(1κ) produces a key k ∈ {0, 1}κ.

The stegoencoder StS.Enc takes as input the key k, a message (the hid-stegoencoder

hiddentext dentext) m ∈ {0, 1}StS.ml(κ) of length StS.ml(κ), a history h ∈
(
Σdl(κ)

)∗
and some state information σ ∈ {0, 1}∗ and outputs a single document
(the stegotext) d ∈ ΣStS.dl(κ) of length StS.dl(κ) and updated state in-stegotext

formation σ ′ ∈ {0, 1}∗. Its goal is to embed a piece of m into the
document d. It will also have access to samples of the probability dis-
tribution Ch,StS.dl(κ). The complete output of length StS.ol(κ) of the
run of the stegoencoder is denoted by StS.EncC(k,m,h) and defined
by the following scheme:

3.2 stegosystems 27

Complete run of stegoencoder StS.Enc: StS.EncC(k,m,h)

Input: Key k, message m, history h

1 : σ := ∅// initialize the empty state

2 : for i := 1, 2, . . . , StS.ol(κ) :

3 : (di,σ)← StS.EncCHAN(k,m,h,σ)

4 : h := h || di

5 : return d1,d2, . . . ,dStS.ol(κ)

oracle CHAN

1 : d← Ch,StS.dl(κ)// h is the fixed current history

2 : return d

Hence, the notation StS.EncC(k,m,h) denotes the complete output
of the stegosystem, while StS.EncC(k,m,h,σ) denotes the output of a
single document (upon state σ). To simplify the presentation, we will
sometimes only give the complete run of the stegoencoder and thus
update the state information implicitly.

The stegodecoder StS.Dec takes as input the key k, a sequence of stegodecoder

StS.ol(κ) documents d1,d2, . . . ,dStS.ol(κ) ∈ ΣStS.dl(κ) and returns a
message m ′ ∈ {0, 1}StS.ml(κ). While we could also give the decoder
access to the channel oracle, there is no known stegosystem that
makes use of it. For the history, the situation is a bit more compli-
cated, as some decoders make use of it. In this case, we will sim-
ply give the history as the last parameter to the decoder and write
StS.Dec(k, (d1, . . . ,dStS.ol(κ)),h) to denote this situation.

The difference between a stegosystem and a public-key stegosystem is
similar to the setting for cryptosystems. We say that StS = (StS.Gen,
StS.Enc, StS.Dec) is a public-key stegosystem, if the output of StS.Gen public-key

stegosystemconsists of two keys pk and sk both of size κ. We call pk the public
key and sk the secret key and denote such a stegosystem by PKStS.1 public key

secret keyWhile the stegoencoder only uses the public key pk that is available
to all parties, the stegodecoder also uses the secret key sk that is kept
secret.

If the expected running time of the stegoencoder and the stegode-
coder is bounded by a polynomial in the security parameter, we speak
of an efficient stegosystem or an polynomial stegosystem. Otherwise, we efficient stegosystem

polynomial
stegosystem

call such a system a super-polynomial stegosystem. As super-polynomial

super-polynomial
stegosystem

steganography will only be used in Chapter 4, we typically omit
the adjective ”efficient“ and highlight the use of super-polynomial
stegosystems by using the corresponding adjective.

The following properties also play a crucial role when designing a
stegosystem StS besides its security:

1 As above, we always assume that the public key pk can be derived from sk efficiently.

28 models of steganography

reliability : The stegodecoder Dec should be able to reliably de-
code the original message from the documents generated by
the stegoencoder Enc. To measure this formally, we define the
unreliability UnRelStS,C(κ) as the maximum probability that theunreliability

stegodecoder fails in this, i. e.

UnRelStS,C(κ) :=

max
k∈supp(Gen(1κ)),
m∈{0,1}ml(κ),
h∈(Σdl(κ))

∗

{Pr[Dec(k, EncC(k,m,h)) 6= m]},

where the probability is taken over the internal coin-flips of Enc
and Dec and the samples of C.

If there exists a negligible function negl with UnRelStS,C(κ) 6
negl(κ), we say that StS is reliable on C. If StS is reliable on everyreliable on C

channel C, we call StS universally reliable.universally reliable

query complexity : As sampling from the channel C may be very
expensive, we are interested in the number of samples that the
stegoencoder Enc takes from C to produce its output. For a ste-
goencoder Enc, a key k ← Gen(1κ), a message m ∈ {0, 1}ml(κ)

and a history h ∈
(
Σdl(κ)

)∗
, let StS.query(k,m,h) be the ex-

pected number of samples that StS.EncCh,StS.dl(κ)(k,m,h,σ) gets
from C in order to output a single document. The maximum
of these values StS.query(κ) is called the query complexity of Encquery complexity

and is defined as

StS.query(κ) := max
k∈supp(Gen(1κ)),
m∈{0,1}ml(κ),
h∈(Σdl(κ))

∗

σ∈{0,1}∗

{StS.EncCh,StS.dl(κ)(k,m,h,σ)}

transmission rate : Clearly, we have ml(κ) 6 dl(κ) · log(Σ) as the
document length is a trivial upper bound on the message length.
But we will see later on that this upper bound is hard to achieve.
In order to measure the number of bits embedded into a single
document, we define the transmission rate of StS as StS.rate(κ) :=transmission rate

StS.ml(κ)/ StS.ol(κ).

Another upper bound on the rate of StS is given by the min-
entropy of the channel C [HvL09]. We say that StS is rate-efficient,rate-efficient

if there is a δ < 1 such that for all sufficiently large security
parameters κ, we have StS.rate(κ) > H∞(C, StS.dl(κ))1−δ. A rate-
efficient stegosystem thus uses at least H∞(C, dl(κ))1−δ bits of
the available H∞(C, dl(κ)) bits to embed its message.

One of the main goals of this thesis is understanding the influ-
ence of the rate on the security of a stegosystem. We will show
that the structure of certain channels allows us to distinguish be-
tween channels that yield rate-efficient stegosystems and those

3.3 security notions 29

where the rate is only logarithmic in the security parameter κ. A
lot of unnecessary information needs to be sent in order to trans-
mit a very short message in the latter case. E. g. if one wants to
embed the UTF-8 encoding of “hello world” (where a single char-
acter is encoded in a byte) into a single document, one needs to
transfer 28·11 = 288 bits, around 3× 1013 Terabyte.

As indicated above, there is a close connection between the query
complexity StS.query of a stegosystem StS and its transmission rate
StS.rate. Obviously, for nontrivial systems, i. e. for such of small in-
security and unreliability, there is a trade-off between these require-
ments, as depicted exemplary in Figure 2. We analyze there three hy-
pothetical universal stegosystems for cover documents of length n :=

dl(κ). To embed r := rate(κ) bits per document the systems needs
q := query(κ) samples to achieve negligible insecurity, denoted as
InSec(κ), and unreliability, denoted as UnRel(κ).

For channels of sufficiently high entropy, StS2 and StS3 are scalable
with respect to the rate, but StS1 is not. System StS1 would illustrate
e. g. a spread-spectrum steganography: although, strictly speaking, not
universal, such systems are very general. They need just one sample
document to embed a secret message but their rate is very limited
(see e. g. [Fri09] for more discussion). Systems StS2 and StS3 achieve
almost optimal rate but a drawback of StS3 is that its query complex-
ity grows exponentially with respect to the rate.

#queries q

rate rlogn
√
n n1−δ

nO(1)

StS1

StS2

StS3

InSec(κ) + UnRel(κ) 6 negl

Figure 2: Dependencies between rate and number of queries of three hypo-
thetical stegosystems of small insecurity and unreliability. The sys-
tems StS2 and StS3 are scalable with respect to the rate, but StS1
is not. However to increase the rate in StS3 the number of queries
increases drastically. The axes are stretched to increase readability.

3.3 security notions

In order to define the security of a stegosystem, we first need to de-
fine the abilities that an attacker (the warden) has against the system.
We will first define attackers against secret-key stegosystems that are

30 models of steganography

passive except for the choice of the embedded message and the corre-
sponding history and then proceed to present active attackers against
public-key systems that are much more powerful. The presented se-
curity notions will be quite similar to the cryptographic notions of se-
curity against chosen-plaintext$ attacks and security against chosen-
ciphertext$ attacks of Chapter 2. We will later see in Chapter 5 that
this is no coincidence. On some channels – namely those consisting
of random bit strings – our definitions coincide. Those are exactly the
channels, where the notions of information encryption and informa-
tion hiding are the same.

Chosen-Hiddentext Attackers

An attacker – the warden – W = (W.Find, W.Guess) on the secret-keywarden

stegosystem StS is a pair of PPTMs. In the first round, the algorithm
W.Find produces upon input 1κ and with oracle access to StS.EncCk
and to C a message m ∈ {0, 1}StS.ml(κ) and a history h ∈

(
Σdl(κ)

)∗
.

In the second round, W.Guess is either given the stegotexts contain-
ing m or a sequence of completely random documents. Its goal is to
distinguish between those cases. Such an attacker is often called a
passive warden, as he only supplies the stegosystem with a message
and a history and then watches the interaction of the stegoencoder
and the stegodecoder. This security notion is called security against
steganographic chosen-hiddentext attack (SS-CHA). Formally, this is
defined via the following experiment SS-CHA-Dist.

Steganographic-Chosen-Hiddentext-Attack Experiment:
SS-CHA-DistW,StS,C(κ)

Parties: Warden W = (W.Find, W.Guess), Stegosystem StS =

(Gen, Enc, Dec), channel C
Input: length κ

1 : k← Gen(1κ);b� {0, 1}

2 : (m,h,σ)←W.FindENC,CHAN(1κ)

3 : d1, . . . ,dol(κ) ← CH(m,h)

4 : b ′ ←W.GuessENC,CHAN(1κ,d1, . . . ,dol(κ),σ)

5 : return [b = b ′]

Note that the value σ produced by Find is only used as a way of
communication between Find and Guess. All of our wardens will thus
be stateful.

The oracles used in the definition of the game are as follows:

3.3 security notions 31

Oracles used in SS-CHA-DistW,StS,C(κ)

Parties: Warden W = (Find, Guess), Stegosystem PKStS =

(Gen, Enc, Dec), channel C
oracle ENC(m,h)

1 : d1, . . . ,dol(κ) ← EncC(k,m,h)

2 : return d1, . . . ,dol(κ)

oracle CHAN(h)

1 : d← Ch,dl(κ)

2 : return d

oracle CH(m,h)

1 : if b = 0 : d1, . . . ,dol(κ) ← EncC(k,m,h)

2 : else :

3 : for j := 1, . . . , ol(κ) : dj ← Ch,dl(κ);h = h || dj

4 : return d1, . . . ,dol(κ)

A secret-key stegosystem StS is SS-CHA-secure on C if for every war- SS-CHA-secure on C

den W, there is a negligible function negl such that

Advss-cha
W,StS,C(κ) :=

∣∣∣∣Pr[SS-CHA-DistW,StS,C(κ) = 1] −
1

2

∣∣∣∣ 6 negl(κ).

We denote the maximal advantage of a warden W against the sys-
tem StS on channel C as

InSecss-cha
StS,C (κ) = max

W
{Advss-cha

W,StS,C(κ)}

and call it the SS-CHA-insecurity of StS. As in the last chapter, we also SS-CHA-insecurity

use a more refined notion of insecurity: If q and t are polynomials,
the term InSecss-cha(q, t, κ) denotes the maximal advantage of any
warden that runs in time t(κ) and makes at most q(κ) queries to its
encryption oracle.

If StS is SS-CHA-secure on every channel C, we say that StS is uni- universally
SS-CHA-secureversally SS-CHA-secure.

In the literature, one can often also find a slightly different security
definition that is equivalent to our definition. A ROR-Warden W is a ROR-Warden

PPTM that has access to the channel oracle and to another oracle, that
either equals the stegosystem or the channel. Its goal is to distinguish
those cases. Formally, the security definition is given by the following
game SS-ROR-Dist:

32 models of steganography

Steganographic-Real-or-Random-Attack Experiment:
SS-ROR-DistW,StS,C(κ)

Parties: ROR-Warden W, Stegosystem StS = (Gen, Enc, Dec),
channel C
Input: length κ

1 : k← Gen(1κ);b� {0, 1}

2 : b ′ ←WCHAN,CH(1κ)

3 : return [b = b ′]

oracle CHAN(h)

1 : d← Ch,dl(κ)

2 : return d

oracle CH(m,h)

1 : if b = 0 :

2 : d1, . . . ,dol(κ) ← EncC(k,m,h)

3 : else :

4 : for j := 1, . . . , ol(κ) :

5 : dj ← Ch,dl(κ);h = h || dj

6 : return d1, . . . ,dol(κ)

Similarly to the above situation, one can now define the advantage
Advss-ror

W,StS,C(κ) as the winning probability of the ROR-Warden W in
SS-ROR-Dist and the corresponding insecurity InSecss-ror

StS,C(κ). A simi-
lar situation arises in the context of cryptography, and we can use the
same hybrid argument as used by Bellare et al. in [Bel+97] to show
that InSecss-ror

StS,C(κ) is negligible iff InSecss-cha
StS,C (κ) is negligible. More

formally, if InSecss-ror
StS,C(q, t, κ) is the maximal advantage of any ROR-

warden that makes q(κ) queries to its challenging oracle and runs in
time t(κ), the following theorem holds.

Theorem 6 ([Bel+97, Theorem 2 and Theorem 4]). For all stegosystems
StS, all channels C, and all polynomials q and t in κ, it holds:

InSecss-cha
StS,C (q, t, κ) 6 InSecss-ror

StS,C(q, t, κ) 6 q(κ) · InSecss-cha
StS,C (q, t, κ).

We thus typically only use the SS-CHA-Dist game for our security
proofs.

This steganographic security notion was developed independently
by Katzenbeisser and Petitcolas in [KP02] and by Hopper, Langford,
and von Ahn in [HLv02] and first formalized by the latter authors.

Chosen-Covertext Attackers

A public-key warden W = (W.Find, W.Guess) against the public-keypublic-key warden

stegosystem StS is a pair of PPTMs. In the first round, the algorithm
W.Find produces upon input pk and with oracle access to C a mes-
sage m ∈ {0, 1}StS.ml(κ), a history h ∈

(
Σdl(κ)

)∗
and a state σ ∈

3.3 security notions 33

{0, 1}∗. In the second round, W.Guess is either given the stegotexts con-
taining m or completely random documents. To distinguish those
cases, it is allowed to inject documents in the channel and observe
the stegodecoder’s behaviour. This notion is called security against
steganographic chosen-covertext attacks (SS-CCAs) and defined via the
following experiment SS-CCA-Dist.

Steganographic-Chosen-Covertext-Attack Experiment:
SS-CCA-DistW,StS,C(κ)

Parties: Warden W = (Find, Guess), public-key stegosystem
PKStS = (Gen, Enc, Dec), channel C

1 : (pk, sk)← Gen(1κ);b� {0, 1}

2 : (m,h,σ)← FindDEC1,CHAN(pk)

3 : d̂1, . . . , d̂ol(κ) ← CH(m,h)

4 : b ′ ← GuessDEC2,CHAN(pk, d̂1, . . . , d̂ol(κ),σ)

5 : return [b = b ′]

The oracles used in the definition of the game are as follows:

Oracles used in SS-CCA-DistW,StS,C(κ)

Parties: Warden W = (Find, Guess), public-key stegosystem
PKStS = (Gen, Enc, Dec), channel C

oracle DEC1(d1, . . . ,dol(κ),h)

1 : m← Dec(sk,d1, . . . ,dol(κ),h)

2 : return m

oracle CHAN(h)

1 : d← Ch,dl(κ)

2 : return d

oracle DEC2(d1, . . . ,dol(κ),h)

1 : if d1, . . . ,dol(κ) = d̂1, . . . , d̂ol(κ) then return ⊥
2 : m← Dec(sk,d1, . . . ,dol(κ),h)

3 : return m

oracle CH(m,h)

1 : if b = 0 then d1, . . . ,dol(κ) ← EncC(pk,m,h)

2 : else : for j := 1, . . . , ol(κ) : dj ← Ch,dl(κ);h = h || dj

3 : return d1, . . . ,dol(κ)

A public-key stegosystem StS is SS-CCA-secure on C if for every SS-CCA-secure on C

public-key warden W, there is a negligible function negl such that

Advss-cca
W,StS,C(κ) :=

∣∣∣∣Pr[SS-CCA-DistW,StS,C(κ) = 1] −
1

2

∣∣∣∣ 6 negl(κ).

34 models of steganography

We denote the maximal advantage of a warden W against the sys-
tem StS on channel C as

InSecss-cca
StS,C(κ) = max

W
{Advss-cca

Ward,StS,C(κ)}

and call it the SS-CCA-insecurity of StS.SS-CCA-insecurity

If StS is SS-CCA-secure on every channel C, we say that StS is uni-universally
SS-CCA-secure versally SS-CCA-secure.

A relaxed notion of SS-CCA-security is inspired by the work of
Canetti, Krawczyk, and Nielsen [CKN03]. This notion – called secu-
rity against steganographic replayable chosen-covertext attacks (SS-RCCAs)steganographic

replayable
chosen-covertext

attacks (SS-RCCAs)

– disallows the warden to mount so called replay attacks. If ~d is a se-
quence of documents, a replay of ~d is a sequence ~d ′ with ~d 6= ~d ′ such

replay that StS.Dec(sk,~d,h) = StS.Dec(sk, ~d ′,h). If W.Guess is presented with
the documents ~d = d1, . . . ,dStS.ol(κ), as in the SS-CCA-setting, the war-
den is not allowed to decrypt ~d, but in addition it is also not allowed
to decrypt any replay of ~d. The experiment SS-RCCA-DistW,StS,C(κ)

to describe SS-RCCA-security is hence the same as for SS-CCA-security,
but line 1 in DEC2 also contains a check, whether the query of Guess
is a replay of d̂1, . . . , d̂StS.ol(κ). A stegosystem is called SS-RCCA-secureSS-RCCA-secure

and universally SS-RCCA-secure, if the corresponding probabilities con-universally
SS-RCCA-secure cerning SS-RCCA-Dist are negligible.

Both notions of security against active wardens were first formu-
lated and formalized by Backes and Cachin in [BC05].

3.4 relativized security

One of the most important differences between the formalization of
cryptographic primitives and the formalization of stegosystems is the
presence of the channel. As we will use cryptographic primitives to
construct secure stegosystems, we suddenly bring the notion of the
channel also in the realms of the cryptographic primitives. In order to
base the security of a stegosystem on the security of a cryptographic
primitive Π, a typical reduction works along the following lines:

1. Suppose there is a successful warden W on the stegosystem StS;

2. Construct an attacker A on the cryptographic primitive Π that
simulates W on StS;

3. Prove that the advantage of A and W is very similar.

Using such reductions, it is important to note that the attacker A on
the cryptographic primitive Π completely simulates the warden W
and the encoder of StS (assuming a black-box access to the crypto-
graphic primitive it is based on). As both W and StS make calls to the
sampling oracle of the channel, A also needs access to those samples.
Hence, the presence of the channel oracle may influence the security

3.4 relativized security 35

of the used primitives. This problem was already observed by Hop-
per, von Ahn, and Langford in [HvL09]. There are essentially two
solutions to take the access to the sampling oracle into account:

• One assumes that the sampling oracle can be simulated in poly-
nomial time. Hence, the simulation of W and StS can be per-
formed in polynomial time. As the typical requirement is that
the cryptographic primitives remains secure against attackers
that run in polynomial time, the security reduction remains
valid.

Backes and Cachin choose this solution and write that “In order
to avoid technical complications, assume w. l. o. g. that the sam-
pling oracle is implemented by a probabilistic polynomial-time
algorithm and therefore does not help an adversary beyond its
own capabilities [. . .]” in [BC05, page 213].

• One assumes that the cryptographic primitive remains secure
even if the attacker has access to the sampling oracle of the
channel C. One then proceeds to define relativized versions of
the common insecurity terms, e. g. we could define the advan-
tage Advprf

Dist,F,C(κ) of a pseudorandom function F, where the
distinguisher Dist also has access to the sampling oracle of the
channel C to help it distinguish between a totally random func-
tion or a pseudorandom one.

Dedić et al. were the first that gave a formal definition for this
in [Ded+09], but they did not use it consistently in their work.
Hopper, von Ahn, and Langford implicitly used a similar no-
tion as they assume that “[. . .] cryptographic primitives remain
secure with respect to oracles that draw from the marginal chan-
nel distribution [. . .]” in [HvL09, page 665], but gave no formal
definition.

Note that the assumption that the sampling oracle for channel C can
be simulated in polynomial time is quite artificial: Arguably, the sin-
gle most studied channels for steganography are those containing
multimedia-files such as images or videos. Typically, we do not as- See e. g. the

proceedings of
ACM’s IH&MMSec
or IWDW for such
examples.

sume that one is able to efficiently sample from the set of all valid
images or videos. This rules out the first possibility. On the other
hand, the second possibility is completely valid, as we have access to
these channels in real-life, but suspect that this access does not break
the security of cryptographic primitives. Due to this advantage, we
will use the second possibility in this work. If Π is a cryptographic
primitives (e. g. a pseudorandom function) and A an attacker on this
primitive (e. g. a distinguisher), we write AdvA,Π,C to indicate the suc-
cess probability of A against Π, if A also has oracle access to C, i. e.

AdvA,Π,C(κ) := AdvAC,Π(κ).

36 models of steganography

We say that Π is secure relative to C, if for every attacker A, there issecure relative to C

a negligible function negl such that AdvA,Π,C(κ) 6 negl(κ). Similarly,
InSecΠ,C(κ) is the relativized version of the insecurity of Π.

We also note that Theorem 3 holds in the relativized setting, as its
proof is black-box.

3.5 rejection sampling

A very common technique in the design of secure stegosystems called
rejection sampling goes back to an idea of Anderson, presented inrejection sampling

[And96]. The basic idea is that Alice samples from the channel until
she finds a document that already encodes the hiddentext. This was
first used by Cachin in [Cac98] to construct a secure stegosystem in
the information-theoretic sense. We will also make use of variants of
this approach in Chapter 4 and Chapter 8 and will also show its lim-
its in Chapter 5 and in Chapter 6. Hence, we present this stegosystem
here in detail. We first need the notion of a strongly K-universal hashstrongly K-universal

hash function function, which is a set F ⊆ Fun(`, ` ′), i. e. a set of functions mapping
bit strings of length ` to bit strings of length ` ′ < ` such that for all
pairwise different x1, . . . , xK ∈ {0, 1}` and all (not necessarily differ-
ent) y1, . . . ,yK ∈ {0, 1}`

′
, we have

|{f ∈ F | f(xi) = yi ∀i = 1, . . . ,K}| =
|F|

2K·`
′ .

Example 7. If `/` ′ = l ∈ N and K = 2, a typical example of such a
family is the set of functions

F = {fa1,...,al,b | a1, . . . ,al,b ∈ {0, . . . , 2`
′
− 1}}

with fa1,...,al,b(x) =
(∑l

i=1 aix[i] + b
)

mod 2`
′
, where x[i] denotes

the i-th block of length ` ′ of x and we implicitly use the canonical
bijection between {0, 1}n and the finite field {0, . . . , 2n − 1}. See e. g.
the textbook of Mitzenmacher and Upfal [MU05, Section 13.3] for
more information on this. �

For polynomials `, ` ′ and K, a strongly K-universal hash family is astrongly K-universal
hash family family {Fκ}κ∈N such that every Fκ is a strongly K(κ)-universal hash

function and Fκ ⊆ Fun(`(κ), ` ′(κ)). Formally, we also need to require
that the family is uniform, i. e. that there is an algorithm SampF that
on input 1κ returns a uniform distributed element of Fκ. But this re-
quirement is easily fulfilled by almost all known strongly K-universal
hash families (such as the one above) and we will thus simply write
f� Fκ instead of f← SampF(1κ).

In the following, let {Fκ}κ∈N be a strongly 2-universal hash family
such that all functions in Fκ map input strings of length in(κ) (docu-
ments) to strings of length out(κ) (message parts) and SES be an CPA$-
secure symmetric encryption scheme. The stegosystem RejSam{Fκ}κ,SES

3.5 rejection sampling 37

that works on documents of document length RejSam{Fκ}κ,SES.dl(κ) =
in(κ) and has output length RejSam{Fκ}κ,SES.ol(κ) = SES.cl(κ)/ out(κ)
is defined as follows:

Key-generator of RejSam: RejSam{Fκ}κ,SES.Gen(1κ)

Input: length κ

1 : f� Fκ

2 : k← SES.Gen(1κ)

3 : return (f,k)

Stegoencoder of RejSam: RejSam{Fκ}κ,SES.Enc((f,k),m,h)

Input: function f ∈ Fκ, key k, message m, history h; channel C

1 : c← SES.Enc(k,m)

2 : parse c into c1c2 . . . cStS.ol(κ) with |ci| = out(κ)

3 : for j := 1, 2, . . . , StS.ol(κ) :

4 : i := 0

5 : do :

6 : d← Ch,StS.dl(κ)

7 : i := i+ 1

8 : until f(d) = cj or i > κ · 2out(κ)

9 : dj := d

10 : h := h || dj

11 : return d1, . . . ,dStS.ol(κ)

Decoder of RejSam: RejSam{Fκ}κ,SES.Dec((f,k),h,d1, . . . ,dStS.ol(κ))

Input: function f ∈ Fκ, key k, documents d1, . . . ,dStS.ol(κ)

1 : for j := 1, 2, . . . , StS.ol(κ) :

2 : cj := f(dj)

3 : c := c1 || c2 || . . . || cStS.ol(κ)

4 : m← SES.Dec(k, c)

5 : return m

Clearly, the running time of the encoder is bounded by O(tf · κ ·
2out(κ)), where tf is the time to evaluate the function f.

In [HvL09], Hopper, von Ahn, and Langford were the first to prove
the security of this stegosystem in their complexity-theoretic model,
if Fκ = {F.Evalk | k ∈ supp(F.Gen(1κ))} is constructed via a pseudo-

38 models of steganography

random function F. As Fun(`, ` ′) is a strongly 2-universal hash family,
every PRF thus also inherits this property (up to its insecurity).

Their argument was simplified by Backes and Cachin in [BC05],
where the following theorem regarding the statistical distance of the
channel distribution Ch,dl(κ) and the following probability distribu-
tion P(h, F, ol, dl) was shown.

Probability distribution: P(h, F, ol, dl)

Input: history h, set of functions F, integers ol, dl

1 : f� F// f maps bits strings of length f.in to bit strings of length f.out

2 : m� {0, 1}cl(κ)

3 : parse m into m1m2 . . .mol with |mi| = f.out

4 : for j := 1, 2, . . . , ol :

5 : i := 0

6 : do :

7 : d← Ch,dl

8 : i := i+ 1

9 : until f(d) = mj or i > κ · 2f.out

10 : dj := d

11 : h := h || dj

12 : return d1, . . . ,dol

Theorem 7 ([BC05, Proposition 1]2). Let {Fκ}κ∈N be a strongly 2-universal
hash family, where each function in Fκ maps input strings of length in(κ) to
output strings of length out(κ). If κ is a sufficiently large key-length, then
there exists a constant η < 1 such that for all polynomials ol and dl, we have

DS(P(h, Fκ, ol(κ), dl(κ)),Ch,dl(κ)) 6

ol(κ) ·
(
2out(κ)−H∞(C,dl(κ)) + η2

out(κ)·κ
)

,

where P(h, Fκ, ol(κ), dl(κ)) is the above distribution generated by the run
of the stegoencoder upon random choice of m, where the call to SES.Enc is
removed (i. e. the encoded message c equals m).

If Fκ = {F.Evalk | k ∈ supp(F.Gen(1κ))} for a pseudorandom func-
tion F with output length F.out(κ) 6 log(κ) and if SES is a CPA$-
secure symmetric encryption scheme, Theorem 7 implies that the
rejection sampling stegosystem RejSam{Fκ}κ,SES runs in polynomial-
time and is universally secure, as no knowledge of C is needed by
the algorithms. This is due to the fact that no PPTM can distinguish

2 The exact wording of this proposition and a corresponding proof can be found as
Proposition 7 in the full version available under the link: www.zurich.ibm.com/~cca/
papers/pkstego.pdf

www.zurich.ibm.com/~cca/papers/pkstego.pdf
www.zurich.ibm.com/~cca/papers/pkstego.pdf

3.5 rejection sampling 39

Fκ from Fun(F.in(κ), F.out(κ)) and no PPTM can distinguish random
bit strings from the ciphertexts of SES. The reliability come from
the fact that Fκ is strongly 2-universal and the embedding thus only
fails with negligible probability. To highlight that the set of functions
{Fκ}κ is coming from a PRF F, we also denote this stegosystem as
RejSamF,SES. As at most log(κ) bits are embedded per document, its
rate RejSamF,SES.rate(κ) is also bounded by log(κ). It is thus not rate-
efficient for channels with sufficient (i. e. super-logarithmic in κ) min-
entropy. We thus get the following result with F and SES as above:

Theorem 8 ([HvL09, Theorems 3 and 4]). There exists a universal stego-
system StS = RejSamF,SES such that for every channel C:

• StS.ml(κ) = SES.ml(κ),

• StS.dl(κ) = F.in(κ)

• StS.ol(κ) = SES.cl(κ)/F.out(κ),

• StS.query(κ) 6 κ · 2F.out(κ),

• StS.rate(κ) = F.out(κ),

• InSecss-cha
StS,C (κ) 6 Φ

F,SES
C (κ · 2F.out(κ)), and

• UnRelStS,C(κ) 6 Φ
F,SES
C (κ · 2F.out(κ)),

where

ΦF,SES
C (t) :=

InSecprf
F,C(t) + InSeccpa$

SES,C(t) + negl(κ) + 2F.out(κ)−H∞(C,F.in(κ))

for a negligible function negl.

Similarly, if {Fκ}κ∈N is some strongly 2-universal hash family where
each function in Fκ has input length in(κ) and output length out(κ),
and PKES is a replayable chosen-covertext$ attack (RCCA$)-secure
PKES,3 one can simply modify the stegosystem above into a public key
stegosystem: The stegoencoder only uses the public key, as PKES.Enc
only needs access to the public key while the stegodecoder only uses
the private key, as PKES.Dec only needs the private key. The security
of this construction relies on the following theorem due to Hopper in
[Hop05], which generalizes Theorem 7:

Theorem 9 ([Hop05, Proposition 1]). Let {Fκ}κ∈N be a strongly 2-univer-
sal hash family, where each function in Fκ maps input strings of length in(κ)

3 The definition of a RCCA$-secure cryptosystem is analogous to the definition of a
SS-RCCA stegosystem. Such a system also has ciphertexts that are indistinguishable
from random bits.

40 models of steganography

to output strings of length out(κ). If κ is a sufficiently large key-length, for
all f ∈ Fκ and all polynomials ol and dl, it holds that

DS(P(h, {f}, ol(κ), dl(κ)),Ch,dl(κ)) 6 ol(κ) · 2out(κ)−H∞(C,dl(κ))/2,

where P(h, {f}, ol(κ), dl(κ)) is the above distribution generated by the run of
the stegoencoder upon random choice of m and fixed choice of f, where the
call to SES.Enc is removed (i. e. the encoded message c equals m).

A proof of this theorem based on the leftover hash lemma of Im-
pagliazzo, Levin, and Luby (see [ILL89] or [Hås+99]) can be found in
[Hop04, Section 5.2.1].

Similarly to Theorem 8, we can conclude the following theorem:

Theorem 10 ([BC05, Theorem 10]). There exists a universal public key
stegosystem PKStS = RejSam{Fκ}κ,PKES such that for every channel C:

• PKStS.ml(κ) = PKES.ml(κ),

• PKStS.dl(κ) = in(κ)

• PKStS.ol(κ) = PKES.cl(κ)/ out(κ),

• PKStS.query(κ) 6 κ · 2out(κ),

• PKStS.rate(κ) = out(κ),

• InSecss-rcca
PKStS,C(κ) 6 Φ

PKES
C (κ · 2out(κ)), and

• UnRelPKStS,C(κ) 6 ΦPKES
C (κ · 2out(κ)),

where

ΦPKES
C (t) :=

InSecrcca$
PKES,C(t) + negl(κ) + 2out(κ)−H∞(C,in(κ))/2

for a negligible function negl.

4
A C O M P U TAT I O N A L E X P E N S I V E U N I V E R S A L
S E C R E T- K E Y S T E G O S Y S T E M

Time is on my side, yes it is.

— The Rolling Stones

chapter running time applicability key-symmetry

4 super-polynomial black-box secret-key
As already noted in Chapter 3, in the steganographic model intro-

duced by Hopper, von Ahn, and Langford in [HvL09], an asymme-
try between Alice and Warden was introduced: While the running
time of Warden is restricted to a polynomial in κ, the running time
of Alice might be super-polynomial. On the other hand, a universal
stegosystem StS is insecure, if there exists a single channel C0 and a
single warden W0 that detects StS. Note that W0 has full knowledge
of C0 and may thus use some strategy that depends on C0 and on StS,
while the stegosystem can only gain information on C0 via sampling
from the channel. This shows that the construction of a secure univer-
sal stegosystem is a highly non-trivial task, even if the stegosystem
may run in super-polynomial time.

This asymmetry between the running times of the stegosystem and
the warden is present in several works, e. g. [HLv02; HvL09; Hop04]
and also used therein. In this chapter, we will focus on the following
questions raised by these works and by the work of Dedić et al. in
[Ded+09]:

1. What is the relationship between cryptographic encryption and
steganography?

2. Can one construct an unconditionally secure stegosystem in this
asymmetric setting?

3. What is the tradeoff between the rate and the query complexity
of a secure and reliable stegosystem?

The main results of this chapter are the following two theorems that
prove the existence of rate-efficient unconditional (but super-polynomial)
secure stegosystems and unconditionally relate the query complexity
and the transmission rates of all universal stegosystems thereby im-
proving upon conditional results in [HvL09] and [Ded+09]:

Theorem 11 (Informal). For every 1 > α1 > α2 > 0 and every polyno-
mial `(κ), there exists a super-polynomial stegosystem StSα1,α2 with doc-
ument length StSα1,α2 .dl(κ) = κα1 , such that for every channel C with

42 a computational expensive universal stegosystem

min-entropy H∞(C, dl(κ)) > 2 · κα2 , the stegosystem StSα1,α2 has the fol-
lowing properties:

• StSα1,α2 .ml(κ) = `(κ) · κα2 ,

• StSα1,α2 .ol(κ) = `(κ),

• StSα1,α2 .query(κ) 6 κ2κ
α2

• StSα1,α2 .rate(κ) = κα2

• InSecss-cha
StSα1 ,α2 ,C(κ) + UnRelStSα1 ,α2 ,C(κ) 6 negl(κ) (if C does not

break the used hard functions)

Theorem 12 (Informal). There exists a channel C such that for every uni-
versal stegosystem StS, it holds that

InSecss-cha
StS,C (κ) + UnRelStS,C(κ) >

1

2
−
e · StS.query(κ)
2StS.rate(κ) − o(1).

A preliminary version of the results of this chapter was published
as [BL16b]. In the next section, we discuss our first question regard-
ing the relationship between steganography and cryptographic en-
cryption. We will then discuss the relevant literature for this chapter
in Section 4.2 and prove our two main results. Section 4.4 contains
a construction of super-polynomial pseudorandom function of very
high hardness. These functions will be used with the rejection sam-
pling stegosystem in Section 4.5 to construct our super-polynomial
rate-efficient stegosystem.

4.1 the relationship between steganography and cryp-
tographic encryption

Although there is a strong connection between these areas, steganog-
raphy is not encryption. Our example below shows even more, name-
ly that polynomial-time bounded steganography is not encryption.
A commonly heard argument for the premise that steganography is
cryptographic encryption goes as follows:

Let m and m ′ be two different secret messages and d
and d ′ be stegodocuments which embed m, resp. m ′.
If the distributions of d and d ′ are indistinguishable
from the distribution of the cover-documents, then
by the triangle-inequality, the distributions of d and
d ′ are also indistinguishable. Hence, a secure stego-
system is also a secure cryptosystem.

While the argument concerning the triangle-inequality is true, one
can not simply use the stegosystem as a cryptosystem, as the stego-
system needs access to samples from the channel. Arguably, the most

4.1 steganography vs . encryption 43

researched channel is that of natural digital pictures (say in the JPEG

format). A typical stegosystem for this channel takes a sample picture
and modifies it in a way that is not detectable. A cryptosystem that
simulates this stegosystem thus needs a way to get a sample picture.
But the standard definition of cryptosystems does not assume such
access and it is highly unlikely that an efficient algorithm to simulate
sampling for this channel can be constructed. We will note later on
that ignoring this access leads to misunderstandings, e. g. in the often
cited work [HvL09] of Hopper, von Ahn, and Langford.

Beside providing a rigorous definition for computationally secure
steganography, the main contribution of [HvL09] is demonstrating
that a widely believed complexity-theoretic assumption – the exis-
tence of one-way functions – and access to a channel oracle are both
necessary and sufficient conditions for the existence of secure and
reliable steganography:

Theorem 13 ([HvL09, Corollary 1], informal). Relative to an oracle for
channel C, secure (and reliable) stegosystems exist if and only if one-way
functions exist.

This claim is now widely circulated in the literature. In her hand-
book [Fri09, p. 101] on steganography, Fridrich writes:

“One of the most intriguing implications of this com-
plexity-theoretic view of steganography is the fact that
secure stegosystems exist if and only if secure one-
way (hash) functions exist [...]”.

While one direction of Theorem 13 – namely that one can construct
secure stegosystems from one-way functions – is correct, as argued
in Section 3.5, we will prove that super-polynomial steganography
does not necessarily implies the existence of one-way functions. The
following theorem of Hopper, von Ahn, and Langford in [HvL09] ar-
gues that one-way functions are necessary for secure steganography:

Theorem 14 ([HvL09], informal). For all channels C it is true: if secure
and reliable steganography for C exists then there exist one-way functions
relative to an oracle for C.1

Combining Theorem 11 with Theorem 13 one would conclude that
(1) relative to an oracle for channel C one-way functions exist and
much more startling, that (2) one-way functions exist in the standard
model, i. e. without assuming oracle access to the channel C. As a proof
on the existence of one-way functions seems to be far away from our
current knowledge and would imply P 6= NP, one must wonder at the

1 Hopper, von Ahn, and Langford prove even stronger result using a weaker notion of
security. Theorem 9 in [HvL09] says that if there is a stegosystem StS that is SS-KHA-
D-C secure for some hiddentext distribution D and some channel C, then there exists
a pseudorandom generator, relative to an oracle for C.

44 a computational expensive universal stegosystem

validity of Theorem 13. Indeed, we found errors in the proof of Theo-
rem 14 which consequently do not allow to conclude Theorem 13.

There are three issues concerning this proof.
time complexity

• Firstly, the time complexity of the proposed false entropy gener-
ator (FEG) is more intriguing than stated. Informally, a FEG is a
function such that its output (on a suitable distribution) is indis-
tinguishable from a distribution with higher entropy. The aim
was to provide an algorithm for an FEG, assuming the existence
of a stegosystem StS that is SS-KHA-D-C secure for some hidden-
text distributionD and some channel C (for the exact definitions,
see [HvL09]).

The proposed construction for the FEG uses, as a subroutine, the
encoder of StS having an oracle access to C. Since no restrictions
on the running time of the encoder are given, it does not follow
that the running time of the obtained algorithm for the FEG is
bounded by a polynomial. This problem can be fixed by assum-
ing that the stegosystem runs in polynomial time. Note, how-
ever, that making the assumption of polynomial time complex-
ity for stegosystems, the claim of [HvL09, Section 4.3] concern-
ing rate-optimality is false, as their system requires exponential
time. By proving Theorem 11, we will show that the assumption
on the running time of a stegosystem is very relevant.

randomization

• Secondly, according to the definition, an FEG is a function. How-
ever, the FEG relative to an oracle C does not seem to be deter-
ministic, as it sometimes returns the samples generated by the
channel oracle. This does not seem to be fixable easily, but one
can make use of randomized cryptographic primitives in order
to give an alternative proof.

channel access

• The third obstacle still remains: In order to construct a crypto-
graphic primitive out of a stegosystem, one needs to simulate
the access to the channel oracle. If this simulation can be carried
out in polynomial time, the constructed primitive is indeed ef-
ficient. But, as discussed in Section 3.4, such an assumption is
quite artificial. And indeed, if the channel oracle can not be sim-
ulated in polynomial time, the constructed cryptographic prim-
itive is not efficient. It seems that the only remedy to this is to
define another way of relativized primitives, where the primitive
has also access to the channel oracle as in this work.

4.2 known upper and lower bounds on the security of

the rejection sampling stegosystem

We use this section to present the relevant literature concerned with
upper and lower bounds for the rejection sampling stegosystem. In

4.2 known upper and lower bounds 45

the following, let F be a pseudorandom function and SES be a sym-
metric encryption scheme.

Upper Bounds

As discussed in Theorem 8 in Section 3.5, the rejection sampling sys-
tem RejSamF,SES with rate F.out(κ) and document length F.in(κ) ful-
fills the following inequalities

InSecss-cha
RejSamF,SES,C(κ) 6 Φ

F,SES
C (κ · 2F.out(κ)), and (*)

UnRelRejSamF,SES,C(κ) 6 Φ
F,SES
C (κ · 2F.out(κ)),

with

ΦF,SES
C (t) :=

InSecprf
F,C(t) + InSeccpa$

SES,C(t) + negl(κ) + 2F.out(κ)−H∞(C,F.in(κ))

for a negligible function negl.
Hence, the system is reliable and secure if and only if the term

ΦF,SES
C (κ · 2F.out(κ)) is negligible. We notice that, if the transmission

rate exceeds the logarithm of the key length κ, then the proofs pro-
vided in [HvL09] do not guarantee that unreliability and insecurity
(recall, even against polynomial-time bounded warden) of the pro-
posed stegosystems are negligible.

More precisely, in case the number of bits F.out(κ) embedded in
a single document grows asymptotically faster than logκ, the term
ΦF,SES

C (κ · 2F.out(κ)) is not guaranteed to be negligible, as the two
terms InSecprf

F (κ · 2F.out(κ)) and InSeccpa$
SES (κ · 2

F.out(κ)) are not guar-
anteed to be negligible in κ even if the existence of PRFs and SESs is
assumed. This is due to the fact that one assumes security of PRFs

and SESs against polynomial-time attacker and the term κ2F.out(κ) is
super-polynomial for F.out(κ) ∈ ω(log κ). Thus, if a channel C al-
lows to embed up to poly(κ) bits per document, i. e. if its min-entropy
H∞(C, dl(κ)) is very high, the stegosystem of Hopper, von Ahn, and
Langford is not scalable to meet the optimal rate: for any F.out(κ) 6
poly(κ) its query complexity is RejSamF,SES.query(κ) = κ2F.out(κ), but
its insecurity and unreliability is guaranteed negligible only for very
low rates F.out(κ) ∈ O(log κ). We illustrate this in Figure 3.

Using the rejection sampling technique, Dedić et al. constructed
two new universal stegosystems with upper bounds on the insecu-
rity and unreliability similar to those of Theorem 8 in their work
[Ded+09]. Similarly to the system of Hopper, von Ahn, and Langford,
if the number of bits per document grows asymptotically faster than
log κ, the security of the system is not guaranteed, even if the encoder
and decoder use PRFs. Thus, the results given in [Ded+09] also do not
guarantee the existence of universal steganography of negligible un-
reliability and insecurity in case that the number of bits embedded is
in ω(log κ).

46 a computational expensive universal stegosystem

#queries q

rate rlog κ
√
κ κ1−δ

poly(κ)
InSec(κ) + UnRel(κ) 6 negl

?

Figure 3: Known results (under cryptographic assumptions): the green line
shows the dependence between the rate and number of queries
to ensure negligible insecurity and unreliability of the system of
Hopper, von Ahn, and Langford (Theorem 8). This bound is sharp:
any system of rate and with number of queries in the red area is
insecure or unreliable (due to Theorem 15 by Dedić et al.). The
situation for F.out(κ) ∈ ω(log κ) has remained open, so far. The
axes are stretched to increase readability.

Lower Bounds

In [Ded+09], Dedić et al. prove (under cryptographic assumptions)
the existence of channels such that the number of samples the encoder
of any secure and reliable universal stegosystem must obtain from
those channels is exponential in the number of bits embedded per
document. In our terms, their result can be stated as:

Theorem 15 ([Ded+09, Theorem 2], informal). For every universal stego-
system StS there exists a channel C such that

InSecss-cha
StS,C (κ) + UnRelStS,C(κ) >

1

2
−
e · StS.query(κ)
2StS.rate(κ) −Ψ(StS.query(κ)) − o(1), (**)

where Ψ describes a term caused by the insecurity of the PRF used in the
construction of C, i. e.

Ψ(t) := InSecprf
F (t) + negl(κ)

for a negligible function negl.

They thus prove that the exponential query complexity κ · 2F.out(κ)

of RejSamF,SES is asymptotically optimal: indeed, if StS.query(κ) ∈
o(κ · 2F.out(κ)) and StS.query(κ) is of the form poly(κ), the right hand
side of Equation (**) goes to 1/2. However, analogously to our dis-
cussion on the upper bound in Equation (*), we notice that the lower
bound is not meaningful if StS.query(κ) ∈ ω(poly(κ)) (even if the
query complexity StS.query(κ) is in o(κ2F.out(κ))), as the right hand
side of the inequality does not necessarily need to go to 0 in this case.
The red area in Figure 3 illustrates this lower bound.

Later, Hopper, von Ahn, and Langford provided another lower
bound on the insecurity and unreliability [HvL09, Theorem 5] . They

4.3 our contributions 47

show that for every universal stegosystem StS and for any κ there
exists a channel C such that:

InSecss-cha∗
StS,C (κ, StS.query(κ)) + UnRel(κ) >

1−
StS.query(κ)
2StS.rate(κ) − 2−κ, (***)

where InSecss-cha∗
StS,C (κ,q), in contrast to InSecss-cha

StS,C (κ), denotes inse-
curity over wardens of time complexity and size > q. Note that
in the case of StS.rate(κ) ∈ ω(log κ), the bounds in Equation (**)
and Equation (***) are incomparable in the following sense. Due to
Equation (**), if in a reliable universal stegosystem StS the number
of queries is dominated by 2StS.rate(κ) then there exists a polynomial-
time bounded warden whose advantage to detect StS is big. The time
complexity of the warden must not depend on the query complexity
StS.query of StS but Equation (**) needs the assumption that pseudo-
random functions exist and it may be meaningless if the rate exceeds
log κ. The bound in Equation (***) does not need any cryptographic
assumption, it is meaningful for any StS.rate(κ), but the warden who
tries to detect StS needs time and size bigger than the query com-
plexity StS.query(κ) of StS. Thus, in cases of super-polynomial query
complexity, the warden is not polynomial-time bounded anymore im-
plying InSecss-cha∗

StS,C (κ,q)� InSecss-cha
StS,C (κ).

4.3 our contributions

Thus, as shown above, if high rate is required we have no guaran-
tee that the discussed systems are secure and reliable. And indeed,
no secure and reliable universal stegosystem (irrespective of its query
complexity) with rate larger than logκwas known before, even under
unproven cryptographic assumptions. Note that the secure stegosys-
tems used in practice typically achieve a rate of

√
κ – much larger

than log(κ) [Ker+13]. A longstanding conjecture, the Square Root Law Square Root Law of
Steganographic
Capacity

of Steganographic Capacity [FKF09; Ker+08] deals with just this fact. It
says that a rate of the form (1− ε)

√
κ is always achievable (not nec-

essarily in a setting of universal steganography). We thus have the
situation, that the best known theoretical rate is logκ, while all prac-
tical rates are of order

√
κ.

One of the main results of this chapter – Theorem 11 – is the con-
struction of a universal stegosystem that is scalable with respect to
the rate up to κα for every α < 1. However, to achieve this rate, an ex-
ponential number of queries is needed. On the other hand we prove
in Theorem 12 that this query complexity is minimal. We give a com-
plete answer to the question shown in Figure 3 of determining the
relationship between rate and number of queries. For an illustration
of our results see Figure 4.

48 a computational expensive universal stegosystem

#queries q

rate rlog κ
√
κ κ1−δ

poly(κ)

InSec(κ) + UnRel(κ) 6 negl

Figure 4: Results (without any assumptions) of this chapter: our stego-
system achieves negligible insecurity and unreliability for the num-
ber of queries depending on the rate as shown by the green plot.
This bound is sharp: any system of rate and query complexity
in the red area is unreliable or insecure against polynomial-time
bounded wardens. The axes are stretched to increase readability.

4.4 pseudorandom functions of very high hardness

We construct two families of super-polynomial pseudorandom func-
tions that are secure against adversaries of sub-exponential running
times. Our result does not rely on any unproven assumptions but
to construct the family, super-exponential time is needed. Note that,
while the PRF may run in super-polynomial time, this is a non-trivial
task, as Alice and Bob are only allowed to share a key of length κ. We
can thus not simply create a truly random function table, as its size
would be exponential in κ.

In our stegosystem we will construct a super-polynomial PRF based
on an algorithm G that also takes super-polynomial time, which is
given by the following result due to Goldreich and Krawczyk in
[GK92]. In order to simplify the notation throughout this and the
next section, let α1,α2 be constants with 1 > α1 > α2 > 0 and let

n = dl(κ) = κα1 ,b = F.out(κ) = κα2 ,N = 2n ·b, and B = 2b ·b. (1)

Theorem 16 ([GK92, Lemma 5]). Let ϕ(n) be any sub-exponential func-
tion in n. There are super-polynomial generators which expand truly random
strings of length n into pseudorandom string of length ϕ(n).

A close inspection of the result and its proof immediately implies
the following theorem:

Theorem 17. There is a deterministic algorithm G running in time O(22
n
),

that on input x ∈ {0, 1}κ produces a string G(x) ∈ {0, 1}N, and a negligible
function negl such that for all polynomials t in N:

InSecdist
G({0,1}κ),{0,1}N(1, t,N) 6 negl(N) 6 negl(κ).

4.4 pseudorandom functions of very high hardness 49

There is also another deterministic algorithm G ′ running in time O(22
b
),

that on input x ∈ {0, 1}κ produces a string G ′(x) ∈ {0, 1}B, and a negligible
function negl ′ such that for all polynomials t:

InSecdist
G ′({0,1}κ),{0,1}B(1, t,B) 6 negl ′(B) 6 negl ′(κ).

The theorem says that no polynomial time algorithm in N (recall
N = 2n · b) can distinguish between the distribution G({0, 1}κ) and
the uniform distribution on {0, 1}N. Similarly, no polynomial time al-
gorithm in B can distinguish G ′({0, 1}κ) and the uniform distribution
on {0, 1}B.

The running time of G and G ′ is exponential in N (resp. B), while
the running time of the distinguisher is polynomial in N (resp. B).
Note that the usual construction to obtain a pseudorandom function
from a pseudorandom generator due to Goldreich, Goldwasser, and
Micali [GGM86, Section 3] is not suited for our situation: Its security
proof relies on the ability of the attacker on the function to simulate
the generator. As a simulation of the generator takes exponential time
and our attackers are polynomial, we can not use this approach. In-
stead, we observe that the generators produce very long strings. We
will interpret these strings as the table of a function.

For a bit string ω = ω1,ω2, . . . of length 2X · Y, for some positive
integers X and Y, let the function Fω : {0, 1}X → {0, 1}Y be defined as

Fω(z) = ωiz·Yωiz·Y+1 . . .ω(iz+1)·Y−1,

if z is the binary representation of the number iz.

Example 8. For example, the bit string ω = 01 11 00 11 00 01 01 10 cor-
responds to the function Fω : {0, 1}3 → {0, 1}2 with e. g. Fω(000) = 01,
Fω(001) = 11, and Fω(111) = 10. �

The definition of Fω implies a bijection between {0, 1}2
X·Y and the

set of all function from {0, 1}X → {0, 1}Y , i. e. Fun(X, Y).
We will now construct PRFs out of the algorithms G and G ′ that

we will call F respectively F ′. Both PRFs share the same key-generator
Gen, that upon input 1κ chooses k � {0, 1}κ and returns the key k.
The keyed function F.Eval takes a key k and a bit string x of length n,
computes ω = G(k) and returns Fω(x). Similarly, F ′.Eval takes a key
k ′ and a bit string x ′ of length b, computes ω ′ = G ′(k ′) and returns
the value Fω ′(x ′). As G and G ′ are super-polynomial, so are F and
F ′: A single call to F.Evalk(x) takes time O(22

n
) while a single call

to F ′.Evalk ′(x ′) takes time O(22
b
). The following theorem shows that

F is not distinguishable from Fun(n,b) by any algorithm with time
complexity poly(N) and F ′ is not distinguishable from Fun(b,b) by
any algorithm with time complexity poly(B).

Theorem 18. Let F and F ′ be the super-polynomial PRFs defined above. For
all functions q and t of κ such that there are polynomials p and p ′ with
t(κ) 6 p(N) and t(κ) 6 p ′(B), we have

50 a computational expensive universal stegosystem

1. InSecprf
F (q, t, κ) 6 InSecdist

G({0,1}κ),{0,1}N(1,p,N) and

2. InSecprf
F ′ (q, t, κ) 6 InSecdist

G ′({0,1}κ),{0,1}B(1,p
′,B).

The proof of the theorem relies simply on the fact that any PPTM

attacking F has only access to an excerpt of size poly(κ) of G(x).
Theorem 17 states that even access to the whole string of length
N� poly(κ) does not help an adversary. The advantage of any adver-
sary is thus only negligible.

Proof. We only prove the theorem for F, as the proof for F ′ is anal-
ogous. Let Dist be any PPTM (distinguisher) that runs in time t(κ)
and tries to distinguish F from Fun(n,b) by making q(κ) queries.
The algorithm Dist has access to a function oracle f, which is either
uniformly chosen from Fun(n,b) or equal to F.Evalk for a certain
k ∈ {0, 1}κ. We will now construct a distribution distinguisher DDist
for G, such that∣∣∣Pr[DDistG({0,1}κ)(1κ) = 1] − Pr[DDist{0,1}N(1κ) = 1]

∣∣∣ =∣∣∣∣Pr
k
[DistF.Evalk(1κ) = 1] − Pr

f
[Distf(1κ) = 1]

∣∣∣∣ ,
where the probabilities are taken over the samples from the distribu-
tions and the choice of k� {0, 1}κ and f� Fun(n,b). The distribution
distinguisher DDist makes a single query to its distribution oracle and
receives a bit string ω ∈ {0, 1}N, which is either a random string or
produced by G(x). Whenever Dist makes a query z to its function or-
acle, DDist returns Fω(z). In the end, DDist returns the same value as
Dist. We thus have

Pr
k
[DistF.Evalk(1κ) = 1] = Pr[DDistG({0,1}κ)(1κ) = 1]

and because of the bijection between Fun(n,b) and {0, 1}N, we have

Pr
f
[Distf(1κ) = 1] = Pr[DDist{0,1}N(1κ) = 1].

The computation of Fω(z) takes time O(N) for each query and the
simulation of Dist takes time t(κ). In total, DDist makes a single query
and has running time N · q(κ) + t(κ) 6 p(N).

The following corollary thus follows directly from Theorem 17 and
from Theorem 18 and sums up the results of this section.

Corollary 19. There exists super-polynomial PRFs F and F ′ and negligible
functions negl and negl ′ such that

• F.in(κ) = n and F ′.in(κ) = b,

• F.out(κ) = F ′.out(κ) = b,

4.5 rate-efficient steganography 51

• InSecprf
F (q, t, κ) 6 negl(κ) for all functions q and t with t(κ) 6

poly(N), and

• InSecprf
F ′ (q, t, κ) 6 negl ′(κ) for all functions q and t with t(κ) 6

poly(B).

4.5 rate-efficient steganography

In this section we prove that there exists secure, reliable and rate-
efficient steganography. Our result does not rely on any unproven
assumption.

To construct a universal stegosystem, which is unconditionally se-
cure we will use the PRFs F and F ′ of the previous section in the
rejecting-sampling algorithm. As in the previous section, let α1,α2
be constants with 1 > α1 > α2 > 0 and let n,b,N,B be as defined in
(1) in Section 4.4.

In the following, let StS be the rejection sampling stegosystem that
is constructed by using the PRF F to construct the set of functions and
SESF ′ be the SES derived from the random counter mode explained in

Section 2.3, i. e. StS = RejSamF,SESF ′
.

Backes and Cachin proved in [BC05] that RejSam is secure against
SS-CHA wardens as long as the family of functions used is pseudoran-
dom and as long as the number of bits embedded in a single docu-
ment is at most logκ. We will expand this result and prove that one
can embed up to κ1−δ bits into a single document for all δ > 0.

By using our PRFs of very high hardness, we prove that the stego-
system StS is secure for every channel with sufficient min-entropy
that is sampleable in exponential time. Moreover, it remains secure
for any channel which does not break the security of those PRFs. This
analysis resembles the analysis in [BC05], but spells out the relation
of InSecss-cha

StS,C and InSecprf
F,C respectively InSecprf

F .

Theorem 20. The rejection-sampling stegosystem StS satisfies the following
properties relative to channel C for all polynomials q and t:

• InSecss-cha
StS,C (q, t, κ) 6

InSecprf
F,C

(
q(`+ 1)2bκ , q(`+ q)2bκ , 2b · κ

)
+

q(κ)(`(κ) + 1)
(
2b−H∞(C,n) + η2

bκ
)
+

InSecprf
F ′ (`+ 1 , (`+ 1)2 , κ)+

2 InSecprf
F ′,C(2q` , t , κ) +

q2(κ) · (n+ 1) · b · (q(κ) − 1)
n · 2b

for a constant η < 1.

• UnRelStS,C(κ) 6

InSecprf
F,C

(
(`+ 1)2bκ , (`+ 1)2bκ , 2bκ

)
+

(`(κ) + 1) · exp(−κ) + (`(κ) + 1)2 · κ2 · 22b−H∞(C,n)

52 a computational expensive universal stegosystem

Proof. We first bound the insecurity of the system and will then take
a look at its unreliability.Security

Security

In order to bound the insecurity of the stegosystem, we construct for
every warden W that runs in time t(κ) and makes q(κ) queries to its
encryption-oracle a distinguisher Dist on F such that

Advss-cha
W,StS,C(q, t, κ) 6

Advprf
Dist,F,C

(
q(`+ 1)2bκ , q(`+ q)2bκ , 2b · κ

)
+

q(κ)(`(κ) + 1)
(
2b−H∞(C,n) + η2

bκ
)
+

InSecprf
F ′ (`+ 1 , (`+ 1)2 , κ)+

2 InSecprf
F ′,C(2q` , t , κ) +

q2(κ) · (n+ 1) · b · (q(κ) − 1)
n · 2b

for a constant η < 1. This yields the security of the stegosystem.
Let W be any such warden on the stegosystem StS with respect

to the channel C. The distinguisher Dist has access to a function or-
acle f, which is either uniformly chosen from Fun(n,b) or equal to
F.Evalk for a certain k ∈ {0, 1}κ. The distinguisher Dist simulates the
warden W. Whenever W makes a query to the channel-oracle, Dist
uses its channel-oracle to produce such a sample. When W makes
a query (m,h) to its encryption oracle, Dist uses the encoding algo-
rithm StS.Encf(k,m,h), where the call to the function F.Evalk is re-
placed by a call to f. After the first phase, W.Find produces a triple
(m,h,σ) and Dist generates a random bit b � {0, 1}. If b = 0, it com-
putes d1, . . . ,dol(κ) ← StS.Encf(k,m,h) and if b = 1, it samples ol(κ)
random documents d1, . . . ,dol(κ) from C. The distinguisher then sim-
ulates W.Guess on input d1, . . . ,dol(κ), s and returns 1 iff the output
of W.Guess equals the bit b.f = F.Evalk

If f = F.Evalk, the distinguisher Dist simply simulates the run of W
against the stegosystem and we thus have

Pr
k
[DistF.Evalk(1κ) = 1] =

1

2
±Advss-cha

W,StS,C(κ).
f� Fun(n,b)

We still need to look at the case that f is truly random. In this case,
we will show that the distinguisher needs to distinguish between the
channel distribution C and the distribution StS.Encf(k,m,h) that is
statistically close to C. If f is truly randomly andm = m1m2 . . .mml(κ)
is a message of length `(κ) · b such that mi 6= mj for every i 6= j, we
can think of StS.Encf(k,m,h) as `(κ)-fold product of the probability
distribution StS.Encf(k,mi, ·), where f is chosen randomly for every i.
The output of StS.Encf(k,mi, ·) is nearly identical to the channel (see
Theorem 7), if the corresponding message of length b is also chosen
uniformly. The statistical distance is bounded by

`(κ) ·
(
2b−H∞(C,n) + η2

b·κ
)

4.5 rate-efficient steganography 53

for a constant η < 1. Theorem 4 implies that for W, the difference be-
tween the behavior of StS.Encf(k,mi,h) on a uniformly chosen mes-
sage mi or an mi generated by the encryption SESF ′ .Enc is bounded
by

2 InSecprf
F ′,C(q`, t, κ) +

q2(κ) · (n+ 1) · b · (q(κ) − 1)
n · 2b

.

As we do not use m directly in StS.Enc, but rather the encrypted
message m ′ ← SESF ′ .Enc(k,m) with m ′ = m ′1m

′
2 . . .m

′
`(κ)+1, the

probability that there are i 6= j such that m ′i = m
′
j is at most

InSecprf
F ′ (`+ 1, (`+ 1)

2, κ) +
(`(κ) + 1)2

2b
,

by constructing an attacker on F ′ which guesses values x1, . . . , x`(κ)+1
and tests, whether f(x1), f(x2), . . . , f(x`(κ)+1) are pairwise different.

As the notion of statistical distance is stronger than computational
indistinguishability (see Theorem 3), we can thus conclude that there
is a constant η < 1 such that for every PPTM DDist, we have

Advdist
DDist,C,StS.Encf(κ) 6

`(κ) ·
(
2b−H∞(C,n) + η2

b·κ
)
+

2 InSecprf
F ′,C(q`, t, κ) +

q2(κ) · (n+ 1) · b · (q(κ) − 1)
n · 2b

+

InSecprf
F ′ (`+ 1, (`+ 1)

2, κ) +
(`(κ) + 1)2

2b
.

If f is truly random, W thus needs to distinguish between the chan-
nel distribution and between StS.Encf. This immediately implies that

Pr
f
[Distf(1pκ) = 1] 6

1

2
+ `(κ) ·

(
2b−H∞(C,n) + η2

outF(κ)·κ
)
+

2 InSecprf
F ′,C(q`, t, κ) +

q2(κ) · (n+ 1) · b · (q(κ) − 1)
n · 2b

+

InSecprf
F ′ (`+ 1, (`+ 1)

2, κ) +
(`(κ) + 1)2

2b
.

As Advprf
Dist,F(κ) =

∣∣Pr[DistFk(1κ) = 1] − Pr[Distf(1κ)]
∣∣, we can thus

conclude our security analysis of InSecss-cha
StS,C (q, t, κ).

The simulation of each call to StS.Encf can be carried out in time
O((`(κ) + 1) · 2b · κ) if one has access to the channel oracle. The num-
ber of calls to the function oracle f is bounded by O(q(κ) · (`(κ) + 1) ·
2b · κ) The running time of Dist is thus at most O(q(κ) · (`(κ) + 1) ·
2b · κ) + t(κ) and the number of queries that Dist performs is at most
O(q(κ) · (`(κ) + 1) · 2b · κ).

54 a computational expensive universal stegosystem

Reliability
Reliability

We construct for every message m = m1, . . . ,mml(κ) and every his-
tory h a different distinguisher Distm,h against F to prove the sys-
tems reliability. The attacker Distm,h with function oracle f first com-
putes the decoding m ′ ← StS.Decf(k, StS.Encf(k,m,h)) and returns 1
if m = m ′.f = F.Evalk

If f = F.Evalk, we have

Pr
k
[DistFkm,h(1

κ) = 1] = Pr
k
[m 6= StS.Dec(k, StS.Enc(k,m,h))].

f� Fun(n,b)
Similar to the security analysis, we will show that if f is truly ran-

dom, the probability for an decoding error is negligible. If f is a truly
random function from Fun(n,b) and all samples d1,d2, . . . taken
from the channel oracle C are different, the probabilities Pr[f(di) =

mj] are independent, as we can assume that a new random func-
tion is evaluated on each di. Denote the event that all of the di are
pairwise different with Collision. The probability that none of this
samples evaluates to m is then bounded by

Pr
f
[m 6= StS.Decf(StS.Encf(m,h)) | Collision] 6

`(κ)+1∑
j=1

2b·κ∏
i=1

Pr
f
[f(di) 6= mj] 6 (`(κ) + 1) ·

(
1−

1

2b

)2b·κ
6

(`(κ) + 1) · exp(−κ). (*)

By definition, the maximal probability of any element from the chan-
nel is bounded from above by 2−H∞(C,n). The probability that di = dj
for i 6= j is thus bounded by 2−H∞(C,n(κ)). Hence

Pr[Collision] 6 ((`(κ) + 1) · κ · 2b)2 · 2−H∞(C,n), (**)

which is equal to (`(κ) + 1)2 · κ2 · 22b−H∞(C,n).
If p = Pr[Collision], we can use the law of total probability (see e. g.

[MU05, Theorem 1.6]) to rewrite the unreliability as

Pr
f
[m 6= StS.Decf(StS.Encf(m,h))] =

Pr
f
[m 6= StS.Decf(StS.Encf(m,h)) | Collision] · (1− p)+

Pr
f
[m 6= StS.Decf(StS.Encf(m,h)) | Collision] · p.

By combining (*) and (**), we can bound the probability that a mes-
sage is not correctly decoded by

(`(κ) + 1) · exp(−κ) + (`(κ) + 1)2 · κ2 · 22b−H∞(C,n).

We thus have∣∣∣∣Pr
k
[DistFkm,h(1

κ) = 1] − Pr
f
[Distfm,h(1

κ) = 1]

∣∣∣∣ =∣∣Pr
k
[m 6= StS.Dec(k, StS.Enc(k,m,h))]−

(`(κ) + 1) · exp(−κ) + (`(κ) + 1)2 · κ2 · 22b−H∞(C,n)∣∣.

4.5 rate-efficient steganography 55

The simulation of the call to StS.Encf can be carried out in time
O((`(κ) + 1) · 2b · κ) with 2b · κ calls to the function oracle f. The run-
ning time of Distm,h is thus at most O((`(κ) + 1) · 2b · κ) + t and the
number of queries of Distm,h is at most O((`(κ) + 1) · 2b · κ).

Reordering these terms thus gives us

UnRelStS,C(κ) 6

InSecprf
F,C

(
(`+ 1)2bκ , (`+ 1)2bκ , 2bκ

)
+

(`(κ) + 1) · exp(−κ) + (`(κ) + 1)2 · κ2 · 22b−H∞(C,n).

By combining Theorem 17, Theorem 18 and Theorem 20 together,
we can conclude the existence of a secure black-box stegosystem (see
Theorem 11 for an informal statement) and in particular:

Theorem 21. Let C be a channel and let α1,α2 be constants with 1 > α1 >
α2 > 0. Furthermore, let neglG and neglG ′ be two negligible functions such
that for every polynomial p, it holds that

InSecdist
G({0,1}κ),{0,1}N,C(1,p,N) 6 neglG(κ),

InSecdist
G ′({0,1}κ),{0,1}B,C(1,p,B) 6 neglG ′(κ).

Furthermore, let F and F ′ be the PRFs constructed from G and G ′, let
n(κ) = κα1 be the document length and `(κ) · b(κ) = `(κ) · κα2 be the
message length for some polynomial `. If H∞(C,n(κ)) > 2b(κ), then the
rejection sampling stegosystem

StS = RejSamF,SESF ′

is a secure, reliable and rate-efficient stegosystem on C.
Security

Proof. Recall that N = 2n · b and B = 2b · b. Assume that W is a
Warden with Advss-cha

W,StS,C(κ) = InSecss-cha
StS,C (q, t, κ). Theorem 20 then

implies that

InSecss-cha
StS,C (q, t, κ) 6

InSecprf
F,C

(
q(`+ 1)2bκ , q(`+ q)2bκ , 2b · κ

)
+ (a)

q(κ)(`(κ) + 1)
(
2b−H∞(C,n) + η2

bκ
)
+ (b)

InSecprf
F ′ (`+ 1 , (`+ 1)2 , κ)+ (c)

2 InSecprf
F ′,C(2q` , t , κ)+ (d)

q2(κ) · (n+ 1) · b · (q(κ) − 1)
n · 2b

(e)

for a constant η < 1. (b)+(e)

56 a computational expensive universal stegosystem

Clearly, both of the two terms q(κ)(`(κ) + 1)
(
2b−H∞(C,n) + η2

bκ
)

and q2(κ)·(n+1)·b·(q(κ)−1)
n·2b are negligible in κ, as C has sufficiently

high min-entropy. There is thus a negligible function negl such that

q(κ)(`(κ) + 1)
(
2b−H∞(C,n) + η2

bκ
)
+

q2(κ) · (n+ 1) · b · (q(κ) − 1)
n · 2b

6 negl(κ).
(a)

As q, t, ` and b are polynomials, by using Theorem 18, we have

InSecprf
F,C

(
q(`+ 1)2bκ , q(`+ q)2bκ , 2b · κ

)
6

InSecdist
G({0,1}κ),{0,1}N(1,p,N)

for a polynomial p. This insecurity is negligible by assumption and
there is thus a negligible function negl ′ such that

InSecprf
F,C

(
q(`+ 1)2bκ , q(`+ q)2bκ , 2b · κ

)
6 negl ′(κ).

(c)+(d)
Furthermore, Theorem 18 also implies (as q, t and ` are polynomi-

als) that

InSecprf
F ′
(
`+ 1, (`+ 1)2, κ

)
+ 2 InSecprf

F ′,C(q`, t, κ) 6

3 InSecdist
G ′({0,1}κ),{0,1}B,C(1,p,B)

for some polynomial p. This insecurity is negligible in κ by assump-
tion and there is thus a negligible function negl ′′ such that

InSecprf
F ′
(
`+ 1, (`+ 1)2, κ

)
+ 2 InSecprf

F ′,C(q`, t, κ) 6 negl ′′(κ).

In conclusion, we have

InSecss-cha
StS,C (q, t, κ) 6 negl(κ) + negl ′(κ) + negl ′′(κ).

The stegosystem StS is thus secure on C.Reliability

Concerning the unreliability, we can proceed similarly. Theorem 20

implies that

UnRelStS,C(κ) 6

InSecprf
F,C

(
(`+ 1)2bκ , (`+ 1)2bκ , 2bκ

)
+

(`(κ) + 1) · exp(−κ) + (`(κ) + 1)2 · κ2 · 22b−H∞(C,n).

Due to sufficient min-entropy of C and the fact, that `, b and n are
polynomials, there is a negligible function negl such that

(`(κ) + 1) · exp(−κ) + (`(κ) + 1)2 · κ2 · 22b−H∞(C,n) 6 negl(κ).

As above, Theorem 18 shows that

InSecprf
F,C

(
(`+ 1)2bκ , (`+ 1)2bκ , 2bκ

)
6

InSecdist
G({0,1}κ,{0,1}N,C(1,p,N)

4.6 unconditional lower bound 57

for a polynomial p. This is negligible by assumption and there is thus
a negligible function negl ′ such that

UnRelStS,C(κ) 6 negl(κ) + negl ′(κ).

The stegosystem StS is thus reliable on C.
As we embed b(κ) = κα2 bits into a single document of length

n(κ) = κα1 , the transmission rate F.out(κ) equals b(κ). The stego-
system StS is rate-efficient on the channel C, as both α1 and α2 are
constants and H∞(C,n) 6 κα1 .

Note that the precondition concerning the two negligible functions
neglG, neglG ′ is always fulfilled, if the channel oracle can be simulated
in time poly(N) = exp(κα1). This is due to Theorem 18, that states the
security of the pseudorandom functions. We have thus shown that
the imbalance between the running times of the stegoencoder and
the warden introduced and used in [HvL09] by Hopper, von Ahn,
and Langford has dramatic consequences: Unconditionally secure, re-
liable and rate-efficient universal stegosystems exists in this scenario.

4.6 unconditional lower bound

In order to give an unconditional lower bound, we make use of a
lower bound by Dedić et al. in [Ded+09]. By providing the warden W
with an efficient test whether a document belongs to the support of
the channel, they prove:

Theorem 22 ([Ded+09, Theorem 1]). For every universal (not necessarily
of polynomial-time complexity) stegosystem StS there exists a channel C

such that

ÎnSecStS,C(κ) + UnRelStS,C(κ) >
1

2
−
e · StS.query(κ)
2StS.rate(κ) − o(1),

where ÎnSec denotes the insecurity against polynomial SS-CHA-wardens
with an auxiliary oracle for testing membership in the support of C.

Dedić et al. then argue that the assumption that a warden has an
oracle for membership-testing is not feasible, if the channel is chosen
completely random. By making use of the fact that the warden can
choose a history, while the stegoencoder can not, we will show how
an efficient warden is able to test membership of a completely random
channel.

Let Sn be the set of all subsets of {0, 1}n of cardinality 2n−1, i. e.
Sn = {S ⊆ {0, 1}n : |S| = 2n−1}. For S ∈ Sn, let C(S) be the following
channel, where ~1 denotes the vector of length n that contains a 1 at
every position:

• C(S)∅,n is the uniform distribution on {0, 1}n.

58 a computational expensive universal stegosystem

• C(S)~1||d,n is the uniform distribution on all strings in {0, 1}n that
start with 1, if d ∈ S or the uniform distribution on all strings in
{0, 1}n that start with 0, if d 6∈ S (i. e. the first position indicates
the membership of d in S).

• C(S)h,n is the uniform distribution on S for all other histories.

The warden W for the family {C(S) | S ∈ Sn}n∈N now works as fol-
lows: It randomly chooses a history h� {0, 1}n \ {~1} and m = 00 . . . 0

– a message of length ml(κ) containing only 0-bits – and gets the re-
sults d1,d2, . . . ,dol(κ) from the challenging oracle on h and m. For
i ∈ {1, . . . , ol(κ)}, it takes a sample si ← C(S)~1||di,n. If every sam-
ple si starts with 1, the warden returns “Non-Stego” (i. e. b ′ = 1 in
the SS-CHA-experiment) and else “Stego” (i. e. b ′ = 0 in the SS-CHA-
experiment). The warden W is thus able to test membership in S ef-
ficiently by making use of the channel. Note that the stegoencoder
can not make use of these capabilities of C(S) as Alice can only make
queries to C(S)h,n, where h does not start with ~1. We use here the
definition for channel access as in [HvL09], which assumes that the
encoder has an access only to the marginal channel distributions Ch
for the histories h starting with adversarial chosen prefixes.

We can thus efficiently simulate an oracle for membership-testing
and Theorem 22 thus implies (the formal statement of Theorem 12):

Theorem 23. For every universal (not necessarily efficient) stegosystem StS
there exists a channel C such that

InSecss-cha
StS,C (κ) + UnRelStS,C(κ) >

1

2
−
e · StS.query(κ)
2StS.rate(κ) − o(1).

Note that in contrast to Theorem 15, no cryptographic assumption
is necessary and in contrast to Theorem 22, no membership-oracle
is necessary. Our lower bound thus holds unconditionally. Further-
more, this lower bound holds even when the running time of the
stegosystem StS is much larger (say 22

κ
) than the running time of W

(say poly(κ)). As the stegosystem StS of Section 4.5 has StS.query(κ) =
2κ

α2 · κ and StS.rate(κ) = κα2 , Theorem 23 also directly implies that
StS has (asymptotically) optimal query complexity.

Note that this method only works because of the asymmetry be-
tween Alice and Warden: While Warden has oracle-access for all pos-
sible histories, Alice can only use the history chosen by Warden.

4.7 conclusions and further work

We gave the first universally secure, reliable and rate-efficient stego-
system by using pseudorandom functions of very high hardness. The
running time of the stegosystem is roughly 22

o(κ)
. The work of Dedić

et al. in [Ded+09] gives the best known lower bound of a running

4.7 conclusions and further work 59

time of ω(poly(κ)) for any universal secure, reliable stegosystem (un-
der cryptographic assumptions and of the rate ω(log κ)). We proved
that by making use of the ability of the warden to choose the his-
tory, this lower bound also holds without any assumption and for
any rate-efficient stegosystem.

We also showed that the common phrase “Steganography is En-
cryption” is provably wrong as the communication channel is a very
important part of the steganographic setting.

5
H A R D N E S S R E S U LT S O N U N I V E R S A L E F F I C I E N T
S E C R E T- K E Y S T E G A N O G R A P H Y

Every thought you produce, anything you say, any action you do, it bears
your signature.

— Thich Nhat Hanh

chapter running time applicability key-symmetry

5 polynomial white-box secret-key
We have seen in the last chapter that super-polynomial provably

secure steganography is not cryptographic encryption by constructing
an unconditional secure, reliable, rate-efficient and universal stego-
system, that runs in super-polynomial time. This chapter deals with
the question about the relationship between cryptographic encryp-
tion and steganography in the more realistic setting of polynomial-
time steganography. We will prove that the often-quoted equivalence
between cryptographic encryption and steganography also does not
hold in this scenario. We prove this by constructing (a) a channel for
which secure steganography exists if and only if one-way functions
exist and (b) another channel such that secure steganography implies
that no one-way functions exist.

Theorem 15 of Dedić et al. shows a very important property, inter-
esting in itself: when requiring polynomial time, the applicability of
universal steganography is very limited. Due to this reason it makes
sense to consider the security of a stegosystem StS only for a specific
channel or for channels of a specific family (such as those of Chap-
ter 7 and Chapter 8), and do not to require its security for all possible
channels. This is also a common approach in practical steganography
where a system has to satisfy security properties for a specific chan-
nel, like e. g. natural images in JPEG-format, but its security for texts,
audio signals, TCP/IP transmission packages, etc. is irrelevant.

For this setting, the relationship between steganography and cryp-
tographic encryption remains unsolved. Particularly, it is not known
whether for any channel C there exists a secure, reliable, and rate-
efficient (polynomial time) stegosystem for StS. The question remains
open both for unconditional security and under some unproven as-
sumptions like the existence of one-way functions.

Note that the lower bound of Theorem 15 in Chapter 4 does not
allow to answer this question. To prove their result, Dedić et al. show

62 hardness results on universal efficient steganography

that for every (polynomial time) stegosystem StS there exists a chan-
nel C that satisfies the inequality

InSecss-cha
StS,C (κ) + UnRelStS,C(κ) >

1

2
−
e · StS.query(κ)
2StS.rate(κ) −Ψ(StS.query(κ)) − o(1),

where Ψ describes a term caused by the insecurity of the PRF used in
the construction of C, i. e.

Ψ(t) := InSecprf
F (t) + negl(κ)

for a negligible function negl [Ded+09].
However, every channel C of Dedić et al. has a secure, reliable and

rate-efficient (polynomial time) stegosystem as shown by [LRW17].
Also the lower bound provided by Hopper, von Ahn, and Langford
in [HvL09] and described in the last chapter does not suffice to solve
this problem. They show that for any polynomial-time stegosystem
StS there exists a channel C such that:

InSecss-cha∗
StS,C (κ, StS.query(κ)) + UnRel(κ) >

1−
StS.query(κ)
2StS.rate(κ) − 2−κ.

Remember that InSecss-cha∗
StS,C (κ,q) denotes insecurity over wardens of

time complexity and size > q.
In case StS.rate(κ) ∈ ω(log κ) the right-hand side of the inequality

is large, meaning that StS is insecure or unreliable, but again in this
situation one can construct an polynomial-time stegosystem StS ′ of
query complexity StS.query(κ) + 1 that is secure, reliable and rate-
efficient on C.

Hence both of these lower bounds prove that every stegosystem
that hidesω(log κ) bits is insecure or unreliable on some channel from
a channel family F. On the other hand, for all of those channels, one
can construct a secure and reliable stegosystem. Hence, the insecurity
or unreliability of the stegosystem on those channels comes from the
fact that the stegosystem must work for all channels in F and not
necessarily from the complexity of a single channel.

5.1 our contributions

We prove that the existence of efficient, provably secure, reliable, and
rate-efficient stegosystems is independent of standard cryptographic
assumptions such as the existence of one-way functions. This is a
consequence of the following results.

Theorem 24 (Informal). Assuming one-way functions exist there exists a
channel C such that for C no secure and reliable polynomial time stegosystem
of rate ω(log κ) is possible.

5.2 non-existence of one-way functions 63

Theorem 24 is the main technical achievement of this chapter. We
complement our result by showing a channel for which the existence
of one-way functions is equivalent to the existence of an secure, reli-
able, efficient and rate-efficient stegosystem. Constructions of similar
channels are known in the steganography community. However, for
the sake of correctness and completeness we formulate and prove a
suitable result in this chapter:

Theorem 25 (Informal). There exists a channel C such that if one-way
functions exist then secure, reliable, and rate-efficient polynomial time stego-
system for C exists.

The proofs of the theorems are constructive. Interestingly, the chan-
nel C satisfying Theorem 24 is specified by cryptographic signature
schemes widely used in practice. While C per se is artificial, its close
relative, the channel of cryptographic signed emails on the internet, is
widely used. In this chapter we also prove that there exist more such
hard channels satisfying the conditions of Theorem 24. In fact we
show that any channel which can express signature scheme belongs
to this family. Our construction is inspired by the technique used in
the work of De, Diakonikolas, and Servedio [DDS15]. They apply this
method to show that it is not possible to uniformly generate satisfy-
ing assignments to a 3-CNF formula if one is given polynomial many
samples of satisfying assignments.

A preliminary version of the results of this chapter was published
as [BL16a]. The proof of Theorem 24 and its extension can be found
in Section 5.2, while Theorem 25 is proved in Section 5.3.

5.2 a channel such that efficient steganography on C

does imply the non-existence of one-way functions

The main result of this section, Corollary 31, says that for the widely
used channel specified by a signature scheme protocol, secure and ef-
ficient steganography implies that one-way functions do not exist. We
then show that our construction can be generalized to more channels.

Our first technical goal is to formalize the following intuition: A
secure and reliable stegosystem for a channel C must (a) have negli-
gible probability of producing documents outside of supp(Ch,dl) and
(b) be able to generate new documents out of the sampled documents.
These properties have been formulated first in [Ded+09] for universal
stegosystems.

We start with showing that the probability that the output of a se-
cure stegosystem is not in the support of the channel is very small
(under the assumption that Warden can efficiently test whether a doc-
ument belongs to the support of the channel). Before, let us intro-
duce an auxiliary notion of a membership-testable channel: We say that
C is membership-testable if there exists a deterministic PPTM, call it Test, membership-testable

64 hardness results on universal efficient steganography

which takes a polynomial number ~x = x1, x2, . . . of documents such
that Cx1||x2||...||xi−1,dl(xi) > 0 for every i > 1 and a document x and it
returns 1 if x ∈ supp(C~x,dl) and 0 if x 6∈ supp(C~x,dl).

Lemma 26. Let StS be a stegosystem for the channel C such that StS is
secure on C. Furthermore, let C be membership-testable. Then for all κ ∈N,
m ∈ {0, 1}StS.ml(κ), histories h ∈

(
Σdl(κ)

)∗
, we have:

Pr
k←StS.Gen(1κ),

d1,d2,...,dStS.ol(κ)←StS.EncC(k,m,h)

[d1 6∈ supp(Ch,StS.dl(κ))] 6 InSecss-cha
StS,C (κ).

Proof. Construct a warden that randomly samples documents ~d, ran-
domly samples message m, computes d1, . . . ,dol(κ) ← CH(m,h) and
outputs b← Test(~d,d1). If the challenging oracle CH equals the chan-
nel, it will always output 1. If the challenging oracle CH equals the
stegosystem StS, it will output 0 iff d1 6∈ supp(Ch,StS.dl(κ)).

Next, we will prove that, as long as the support of Ch,dl is large
enough, a reliable stegosystem needs to produce non-seen examples
of supp(Ch,dl). Intuitively, we need to embed 2StS.ml(κ) ≈ 2κ

α
mes-

sages (hereby creating at least 2κ
α

different documents) while we
only have access to poly(κ) example documents. Note that for a rate-
efficient polynomial time stegosystem, the term

(StS.ol(κ) · StS.query(κ))StS.ol(κ)

2StS.ml(κ) =

(StS.ol(κ) · StS.query(κ))StS.ol(κ)

2StS.rate(κ)·StS.ol(κ) =(
StS.ol(κ) · StS.query(κ)

2StS.rate(κ)

)StS.ol(κ)

is negligible.

Lemma 27. Let StS be a reliable stegosystem for the channel C. Then for
every κ, the probability that the encoder StS.Enc produces a cover-document,
which was not provided by the channel oracle, is at least

1− UnRelStS,C(κ) −
(StS.ol(κ) · StS.query(κ))StS.ol(κ)

2StS.ml(κ) .

Proof. Clearly, the probability

Pr[StS.EncC(k,m,h) = StS.EncC(k,m ′,h)]

is bounded by UnRelStS,C(κ) for all m 6= m ′. As StS takes StS.ol(κ) ·
StS.query(κ) samples in total and outputs StS.ol(κ) documents, it can
generate at most (StS.ol(κ) · StS.query(κ))StS.ol(κ) different output se-
quences without outputting a document that was not provided by the
channel oracle. As StS needs to embed 2StS.ml(κ) different messages,
the bound follows.

5.2 non-existence of one-way functions 65

We will now combine the two lemmas in order to construct an
attacker to a signature scheme. For a signature scheme SIG, define
the channel CSIG with probability distributions CSIG

h,dl(κ) as follows: If
h is the empty history ∅, the probability distribution CSIG

∅,dl(κ) is the
uniform distribution on all public keys generated by SIG.Gen(1dl(κ)).
If (pk, sk) ∈ supp(SIG.Gen(1dl(κ))), the probability distribution CSIG

pk,dl(κ)
is then created by the following experiment:

Distribution of the channel: CSIG
pk,dl(κ) = Pairssk

Input: Signature Scheme SIG, pk ∈ supp(SIG.Gen(1κ))

1 : m� {0, 1}SIG.ml(κ)

2 : σ← SIG.Sign(sk,m)

3 : return (m,σ)

Furthermore, for every r > 1 and every series of valid (with respect
to (pk, sk)) message-signature pairs (m1,σ1), (m2,σ2) . . . the distribu-
tion CSIG

pk||(m1,σ1)||(m2,σ2)||...||(mr,σr),dl(κ) is also equal to CSIG
pk,dl(κ). Note

that CSIG is membership-testable due to the public key. Furthermore,
if a forger Fo would only sign random messages with the help of
its signature-oracle, the resulting distribution on message-signature
pairs would be exactly CSIG

pk,dl(κ). We thus also denote this distribu-
tion as Pairssk. Such a forger is sometimes also called a random mes-
sage attack (RMA)-forger. A similar technique was used by Dwork et al.
[Dwo+09] and later by Ullman [Ull13] in the context of differential
privacy [Dwo06]. They prove that a certain class of databases exists
such that any algorithm for a given set of counting queries is either
not differentially private or inaccurate.

Theorem 28. Let SIG be a signature scheme. For every efficient stegosystem
StS for CSIG, there exists an efficient forger Fo on SIG with advantage at least

1− InSecss-cha
StS,CSIG(κ) − UnRelStS,CSIG(κ) −ϕ(StS, κ)

for every κ, where

ϕ(StS, κ) =
(StS.ol(κ) · StS.query(κ))StS.ol(κ)

2StS.ml(κ) .

Proof. Fix κ ∈ N and (pk, sk) ∈ supp(SIG.Gen(1κ)). We will now con-
struct a RMA-forger on SIG with the help of the stegosystem StS.
Choose a random message m∗ � {0, 1}StS.ml(κ) and a random key
k∗ ← StS.Gen(1κ). The forger now simulates the run of the stego-
system StS.EncC

SIG
(k∗,m∗,h = pk) on the distribution CSIG

pk,dl(κ). When-
ever StS.Enc makes an access to the sampling oracle of the channel,
the forger makes an access to its signing oracle SIG.Signsk upon a

66 hardness results on universal efficient steganography

random message m � {0, 1}SIG.ml(κ), which returns a valid message-
signature pair (m,σ), that the forger returns to StS.Enc. This simu-
lation hence yields the same result as StS.EncC

SIG
(k∗,m∗, pk). Denote

the first document produced by StS.EncC
SIG
(k∗,m∗, pk) as (m̂, σ̂). By

Lemma 26, the probability that the pair (m̂, σ̂) does not belong to
supp(CSIG

pk,dl(κ)) (i. e. it is no valid message-signature pair) is bounded

by InSecss-cha
StS,CSIG(κ), as CSIG is membership-testable. Furthermore, the

probability that (m̂, σ̂) is equal to any (m,σ) which was given to the

stegosystem is at most UnRelStS,C(κ) +
(StS.ol(κ)·StS.query(κ))StS.ol(κ)

2StS.ml(κ) by
Lemma 27. Hence, with probability

1− InSecss-cha
StS,CSIG(κ) − UnRelStS,CSIG(κ) −ϕ(StS, κ)

the message-signature pair (m̂, σ̂) is a valid message-signature pair
and was not produced by the oracle SIG.Signsk The advantage of the
forger against the signature scheme SIG is thus at least

1− InSecss-cha
StS,CSIG(κ) − UnRelStS,CSIG(κ) −ϕ(StS, κ).

The running time of the forger is polynomial in κ due to the polyno-
mial running time of StS.Enc.

This theorem implies that a reasonable stegosystem on CSIG allows
to break SIG. But this only shows that a single signature scheme SIG
is insecure. In order to use Theorem 28 to prove the non-existence of
one-way functions, we need to find a signature scheme ŜIG such that
the insecurity of ŜIG implies that no secure signature schemes exist
at all. The construction of such a complete signature scheme relies
on the following theorem of Levin which states the existence of a
complete one-way function F̂:

Theorem 29 (Levin [Lev87]). The function F̂ is a one-way function iff
one-way functions exist.

As signature schemes can be constructed out of one-way functions
(see [EGM96]), this implies the existence of such a complete signature
scheme ŜIG.

Corollary 30. The signature scheme ŜIG is secure iff one-way functions
exist.

Combining Theorem 28 and Corollary 30 with ŜIG, we obtain the
following result that directly implies Theorem 24.

Corollary 31. The existence of a secure, reliable and rate-efficient polyno-
mial time stegosystem on the channel CŜIG implies that one-way functions
do not exist.

In the rest of this section we show that the proof of Theorem 28

can be generalized to more channels if they can express the signature

5.2 non-existence of one-way functions 67

scheme. Examples for such channels include satisfying assignments
of 3-CNF formulas, satisfying assignments of monotone 2-CNF formu-
las or the intersection of two halfspaces (see [DDS15] for details on
the concrete distributions). Our construction is inspired by the work
of De, Diakonikolas, and Servedio [DDS15]. They used a similar tech-
nique to show that it is not possible to uniformly generate satisfying
assignments to a 3-CNF formula if one is given polynomial many sam-
ples of satisfying assignments.

Let B be a class of Boolean functions such that there is a polynomial- polynomial-time
invertible Levin
reduction

time invertible Levin reduction from circuit-sat (see e. g. [AB09] for a
formal definition of this decision problem) to B. Such a reduction is a
triple of deterministic PPTMs [A, B, C] that transforms a circuit C into a
function f := A(C) and a satisfying assignment β of C into a value x :=
B(C,β) with f(x) = 1. Furthermore, every x ′ with f(x ′) = 1 can be
transformed into a satisfying assignment β ′ := C(f, x ′) of C. Moreover
let code : A(circuit-sat) → {0, 1}∗ be a polynomial-time computable
encoding of the functions generated by the reduction such that red(κ)
is an upper bound on |code(A(C))|, if C has in(κ) input gates.

Let SIG be a signature scheme and in(κ) = SIG.ml(κ) + SIG.sl(κ)
be an upper bound on the size of every message-signature pair con-
structed by the signing algorithm SIG.Sign on security parameter κ.
Furthermore, fix a class of Boolean functions B, a polynomial-time
invertible Levin reduction [A, B, C], a corresponding encoding code,
and the bound red defined as above. We now define a channel C =

C(SIG,B, [A, B, C], code) with probability distributions Ch,dl(κ) defined
as follows:

• For the empty history ∅, the distribution C∅,dl(κ) is a distribu-
tion on {0, 1}red(κ). An element h0 with h0 = code(A(Cpk)) –
where Cpk is the circuit implementing the verifying algorithm
Vpk with Vpk(m,σ) = SIG.Vrfy(pk,m,σ) – has probability equal
to the probability that SIG.Gen(1κ) outputs pk. If h0 is not of this
form, its probability is 0.

• For every history h0 that encodes the verifying circuit Cpk, i. e.
h0 = code(A(Cpk)), the probability distribution Ch0,dl(κ) is a dis-
tribution on documents x ∈ {0, 1}in(κ) with A(Cpk)(x) = 1. If
x = B(Cpk, (m,σ)), its probability is that of (m,σ) in the proba-
bility distribution Pairssk used in Theorem 28, where m is uni-
formly drawn and σ← SIG.Sign(sk,m) is then computed.

• Furthermore, for every i > 1 and every series of documents
x1, x2, . . . ∈ {0, 1}in(κ) with A(C)(xj) = 1 for every j, the proba-
bility distribution Ch0||x1||x2||...||xi,dl(κ) equals Ch0,dl(κ).

Note that C is membership testable, as the description of Cpk is pub-
licly known.

68 hardness results on universal efficient steganography

Theorem 32. Let SIG be a signature scheme and let C be a channel as defined
above. Assume StS is an polynomial-time stegosystem for C.

Then for every κ, there is a polynomial forger for SIG with advantage at
least

1− InSecss-cha
StS,C (κ) − UnRelStS,C(κ) −ϕ(StS, κ)

with

ϕ(StS, κ) =
(StS.ol(κ) · StS.query(κ))StS.ol(κ)

2StS.ml(κ) .

Proof. Fix κ ∈ N and a key-pair (pk, sk) ∈ supp(SIG.Gen(1κ)). De-
note by Cpk the circuit implementing the algorithm SIG.Vrfypk. Note
that Cpk has at most in(κ) input gates, as it is deterministic. The re-
duction from circuit-sat to B thus implies that there is a function
f := A(Cpk) ∈ B with arity at most red(κ) such that

• for every (m,σ) with SIG.Vrfypk(m,σ) = 1, we have f(x) = 1

with x = B(Cpk, (m,σ)),

• for every x with f(x) = 1, we have SIG.Vrfypk(m,σ) = 1 with
(m,σ) = C(f, x),

• and C(f, B(Cpk, (m,σ))) = (m,σ) for all valid pairs (m,σ).

Hence, there is a bijection between valid message-signature pairs
(m,σ) and points x ∈ {0, 1}red(κ) with f(x) = 1. See Figure 5 for an
outline of the situation.

Vrfypk
∼= Cpk

f := A(Cpk)

Red.

(m,σ) | Vrfypk(m,σ) = 1

x := B(Cpk, (m,σ)) | f(x) = 1

Red.

Figure 5: Outline of the situation in Theorem 32 due to the reduction.

We will now construct a RMA-forger for the signature scheme with
the help of StS. Choose a random message m∗ � {0, 1}StS.ml(κ) and
a random key k∗ ← StS.Gen(1κ). As pk is known to the adversary,
he can compute f = A(Cpk) and choose a history h = code(f) such
that Ch,dl(κ) corresponds to the distribution Pairssk on f−1(1). The at-
tacker now simulates the run of StS.EncC(k∗,m∗,h) on the distribu-
tion Ch,dl(κ). Whenever StS.Enc makes an access to the sampling ora-
cle of the channel, the attacker makes an access to its oracle SIG.Signsk
upon a random message m � {0, 1}SIG.ml(κ), which returns a valid
message-signature pair (m,σ). The attacker then computes the doc-
ument x = B(Cpk, (m,σ)) and returns x to StS.Enc. As (m,σ) is dis-
tributed according to Pairssk, so is x, because of the bijection. The

5.3 existence of one-way functions 69

simulation thus yields the same result as StS.EncC(k∗,m∗,h). De-
note the first document produced by StS.EncC(k∗,m∗,h) as x̂. By
Lemma 26, the probability that x̂ does not belong to the set f−1(1) is
thus bounded by InSecss-cha

StS,C (κ). Furthermore, Lemma 27 implies that
the probability that the document x̂ is equal to any xwhich was given

to the stegosystem is at most UnRelStS,C(κ)+
(StS.ol(κ)·StS.query(κ))StS.ol(κ)

2StS.ml(κ) .
Hence, with probability

1− InSecss-cha
StS,C (κ) − UnRelStS,C(κ) −ϕ(StS, κ)

the produced document x̂ belongs to f−1(1) and does not equal any
sampled document x which was given to StS.Enc. As the invertible
reduction implies a bijection between f−1 and the message-signature
space, (m̂, σ̂) = C(f, x̂) does not equal any (m,σ) produced by the
signing oracle SIG.Signsk and SIG.Vrfypk(m̂, σ̂) = 1. The advantage of
the adversary against the signature scheme SIG is thus at least

1− InSecss-cha
StS,C (κ) − UnRelStS,C(κ) −ϕ(StS, κ).

The running time of the adversary is polynomial in κ due to the poly-
nomial running time of StS and the efficiency of the reduction.

5.3 a channel C such that efficient steganography on

C does imply the existence of one-way functions

We will now show a channel C such that secure and reliable steganog-
raphy on it implies the existence of one-way functions. This will fol-
low from the theorem below and the fact that the existence of a sym-
metric encryption scheme is equivalent to the existence of a one-way
function (see e. g. [KL07, Chapter 6]). Then a straightforward argu-
ment implies the following equivalences between steganography and
cryptography on certain channels.

Theorem 33. Let C be a channel such that Ch,n is the uniform distribution
on {0, 1}n for all histories h,h ′ and all n ∈ N. If there exists a SS-CHA-
secure, reliable, and polynomial-time stegosystem StS for the channel C then
there exists a CPA$-secure symmetric encryption scheme SES with:

• SES.ml(κ) = StS.ml(κ)

• SES.cl(κ) = StS.dl(κ) · StS.ol(κ)

Proof. Let StS be a SS-CHA-secure and reliable stegosystem for C. De-
fine the following symmetric encryption scheme SES on security pa-
rameter κ:

• The key generation algorithm SES.Gen(1κ) equals StS.Gen(1κ).

• The algorithm SES.Enc on input m ∈ {0, 1}SES.ml(κ) and k ∈
supp(SES.Gen(1κ)) simulates StS.Enc on the empty history h =

70 hardness results on universal efficient steganography

∅. Whenever StS.Enc makes a call to the sampling oracle of the
channel, SES.Enc uniformly generates a bit string of the corre-
sponding length. The output of SES.Enc(k,m) is thus the same
as the concatenated output of StS.EncC(k,m,h).

• The decoder SES.Dec on input d1 || d2 || . . . || dStS.ol(κ) and
k ∈ supp(SES.Gen(1κ)) simulates StS.Dec on the empty history
h = ∅. As StS.Dec does not make calls to the sampling oracle,
the output of SES.Dec(k,d1 || d2 || . . . || dStS.ol(κ)) is the same as
StS.Dec(k,d1,d2, . . . ,dStS.ol(κ)).

As StS is reliable, SES decodes all messages correctly with proba-
bility 1− negl(κ) for a negligible function negl. The time-efficiency of
StS also implies the efficiency of SES. In order to prove that SES is
secure, we construct for every attacker A on SES a warden W on StS
such that Advcpa$

A,SES(κ) = Advss-cha
W,StS,C(κ). As StS is SS-CHA-secure, this

implies that SES is CPA$-secure.
Let A be an attacker on SES and let W be a warden, that simulates

the behaviour of A:

• The finding algorithm W.Find simulates A.Find. Whenever A
makes a query concerning the message m ∈ {0, 1}StS.ml(κ) to
its encryption oracle SES.Enck, the warden W makes a query to
its oracle StS.Enck oracle with the message m and the empty
history. When A.Find outputs (m,σ), the stegosystem outputs
(m,h = ∅,σ).

• The guessing algorithm W.Guess simulates A.Guess by simulat-
ing the queries as above. Note that whenever A.Guess is given
a totally random bit string, W.Guess is given a totally random
document and whenever A.Guess is given a ciphertext produced
by SES.Enck(m), the warden W.Guess is given a stegotext. In the
end, W.Guess returns the same result as A.Guess.

We thus have

Advss-cha
W,StS,C(κ) =

∣∣∣∣Pr[SS-CHA-DistW,StS,C(κ) = 1] −
1

2

∣∣∣∣ =∣∣∣∣Pr[CPA$-DistA,SES(κ) = 1] −
1

2

∣∣∣∣ = Advcpa$
A,SES(κ).

Theorem 34. Let SES be a CPA$-secure symmetric encryption scheme. Let
C be a channel such that Ch,n is the uniform distribution on {0, 1}n for all
histories h,h ′ and all n ∈ N. There exists a SS-CHA-secure, reliable, and
efficient stegosystem StS for C with:

• StS.ml(κ) = SES.ml(κ)

• StS.dl(κ) = SES.cl(κ)

• StS.ol(κ) = 1

5.4 conclusions and further work 71

Proof. Let SES be a CPA$-secure symmetric encryption scheme. We
construct a stegosystem StS as follows:

• The key generation StS.Gen(1κ) is the same as SES.Gen(1κ).

• The algorithm StS.Enc on input m ∈ {0, 1}StS.ml(κ) and k ∈
supp(StS.Gen(1κ)) and h simulates SES.Enc on inputs k and m.
The output of StS.EncC(k,m,h) is thus the same as the output
of SES.Enc(k,m).

• The algorithm StS.Dec on input d ∈ {0, 1}StS.dl(κ) and on input
k ∈ supp(StS.Gen(1κ)) and h simulates SES.Dec(k,d). The out-
put of StS.Dec(k,d) is thus the same as SES.Dec(k,d).

As SES can reliably decrypt its messages, this implies the reliability
of StS. The polynomial running time of SES shows that StS runs in
polynomial time. In order to prove that StS is secure, we construct for
every warden W on StS an attacker A on SES such that Advcpa$

A,SES(κ) =

Advss-cha
W,StS,C(κ). As SES is CPA$-secure, this implies that StS is SS-CHA-

secure.
Let W be a warden on the stegosystem StS and let A be an attacker

on SES that simulates W:

• The finding algorithm A.Find simulates W.Find. Whenever W
makes a query to the sampling oracle of C, the attacker A gen-
erates a random bit string and whenever W queries its encod-
ing oracle, A answer that call with its own encryption oracle. If
W.Find outputs (m,h,σ), the attacker outputs (m,σ).

• The guessing algorithm A.Guess simulates W.Guess. The oracle-
calls are handled as above.

As Ch,n equals the uniform distribution on {0, 1}n, we have

Advcpa$
A,SES(κ) =

∣∣∣∣Pr[CPA$-DistA,SES(κ) = 1] −
1

2

∣∣∣∣ =∣∣∣∣Pr[SS-CHA-DistW,StS,C(κ) = 1] −
1

2

∣∣∣∣ = Advss-cha
W,StS,C(κ).

Thus, reasonable steganography on the channel Cn that is the uni-
form distribution on {0, 1}n, is equivalent to the existence of one-way
functions. This proves Theorem 25.

5.4 conclusions and further work

We have proved that steganography and cryptographic encryption
are somehow orthogonal to each other. To show this statement, we
constructed a specific channel based upon secure signature schemes
and proved that every rate-efficient stegosystem on this channels
breaks the security of the signature scheme. By using a universal

72 hardness results on universal efficient steganography

one-way function due to Levin, we were then able to show that the
existence of such a rate-efficient stegosystem implies that one-way
functions do not exist. This is a generalization of the result of Dedić
et al. [Ded+09], who only proved the existence of a family of channels
F such that the existence of a rate-efficient stegosystem that works
for every channel in F implies the non-existence of one-way functions.
We thus proved that there is a channel C1 such that rate-efficient
steganography on C1 implies the non-existence of one-way functions.
On the other hand, we also gave a simple channel C2 and proved that
rate-efficient steganography on C2 implies the existence of one-way
functions.

The existence of those channels thus implies that statements of the
form “Steganography is Encryption” or “Steganography implies En-
cryption” are wrong in this universality. Furthermore, it proves that
the communication channel is a fundamental object in steganography
and can not be ignored. In order to explore the fascinating connection
between steganography and cryptography, it would be interesting to
broaden our understanding of the influence of the communication
channels.

6
O N T H E G O L D S TA N D A R D O F P U B L I C - K E Y
S T E G A N O G R A P H Y

Those who cannot remember the past are condemned to repeat it.

— George Santayana

chapter running time applicability key-symmetry

6 polynomial grey-box public-key
A drawback of the symmetric-key approach is that the encoder

and the decoder must have shared a key in a secure way. This may be
unhandy, e. g. if the encoder communicates with several parties.

In order to avoid this problem in cryptography, Diffie and Hellman
provided in their groundbreaking work [DH76] the notion of a public-
key scenario. This idea has proved to be very useful and is currently
used in nearly all cryptographic applications. Over time, the notion
of security against so-called chosen ciphertext attacks (CCA-security) has
established itself as the “gold standard” for security in the public-
key scenario (see e. g. [HRW16; KMO10]). In this setting, an attacker
has also access to a decoding oracle that decodes every ciphertext
different from the challenge-text. Dolev, Dwork, and Naor [DDN00]
proved that the simplest assumption for public-key cryptography –
the existence of trapdoor permutations – is sufficient to construct a
CCA-secure public key cryptosystem.

Somewhat in contrast to the research in cryptography, only very
little studies in steganography have been concerned so far within
the public-key setting. Von Ahn and Hopper [vH03; vH04] were the
first to give a formal framework and to prove that secure public-key
steganography exists. They formalized security against a passive ad-
versary in which Warden is allowed to provide challenge-hiddentexts
to Alice in hopes of distinguishing covertexts from stegotexts encod-
ing the hiddentext of his choice. For a restricted model, they also
defined security against an active adversary; It is assumed, however,
that Bob must know the identity of Alice, which deviates from the
common bare public-key scenario.

In [BC05], Backes and Cachin provided a notion of security for
public-key steganography with active attacks, called steganographic se-
curity against adaptive covertext attacks (SS-CCA-security). In this sce-
nario the warden may provide a challenge-hiddentext to Alice and
enforce the stegoencoder to send stegotexts encoding the hidden-
text of his choice. The warden may then insert documents into the
channel between Alice and Bob and observe Bob’s responses in hope

74 on the gold standard of public-key steganography

of detecting the steganographic communication. This is the stegano-
graphic equivalent of a chosen ciphertext attack against encryption
and it seems to be the most general type of security for public-key
steganography with active attacks similar to CCA-security in cryptog-
raphy.

In [BC05], Backes and Cachin gave an universal public-key stego-
system which, although not secure in the general SS-CCA-setting, sat-
isfies a relaxed notion called steganographic security against publicly-
detectable replayable adaptive chosen-covertext attacks (SS-RCCA) inspired
by the work of Canetti, Krawczyk, and Nielsen [CKN03]. In this re-
laxed setting the warden may still provide a hiddentext to Alice and
is allowed to insert documents into the channel between Alice and
Bob but with the restriction that the warden’s document does not
encode the chosen hiddentext. Backes and Cachin left as an open
problem if secure public-key steganography exists at all in the SS-CCA-
framework.

This question was answered by Hopper [Hop05] in the affirma-
tive in case Alice and Bob communicate via an efficiently sampleable
channel C. A channel C is efficiently sampleable, if there exists a PPTMefficiently

sampleable CHAN – the sampling algorithm – that takes the history h and the
sampling algorithm document length dl(κ) and outputs documents such that Ch,dl(κ) and

CHAN(h, dl(κ)) are computational indistinguishable for all h and all
dl(κ).

He proved (under the assumption of a CCA$-secure cryptosystem)
that for every such channel C there is an SS-CCA-secure stegosystem
PKStSC on C. The stegosystem cleverly “derandomizes” sampling
documents by using the sampling algorithm of the channel and using
a pseudorandom generator to deterministically embed the encrypted
message. As PKStSC makes extensive use of the fact that C is effi-
ciently sampleable, it is not universal.

Hopper [Hop05] posed as a challenging open problem to show
the (non)existence of a universal SS-CCA-secure stegosystem. During
the last decade, public key steganography has been used as a tool
in different contexts (e. g. broadcast steganography [FNP14] and pri-
vate computation [Cha+07; CDJ16]), but this fundamental question
remained open.

We solve Hopper’s problem in a complete manner by proving (un-
der the assumption of the existence of doubly-enhanced trapdoor
permutations and collision-resistant hash functions) the existence of
an SS-CCA-secure public key stegosystem that works for every mem-
oryless channel, i. e. such that the documents are independently and
identically distributed. On the other hand, we also prove that the in-
fluence of the history – the already sent documents – dramatically
limits the security of stegosystems in the realistic non-look-ahead
model: We show that no stegosystem can be SS-CCA-secure against all
0-memoryless channels in the non-look-ahead model. In these chan-

6.1 our contributions 75

nels, the influence of the history is minimal. We hereby demonstrate
a clear dichotomy for steganography: While memoryless channels do
exhibit a SS-CCA-secure stegosystem, the introduction of the history
into the picture prevents this kind of security.

6.1 our contributions

As noted above, the stegosystem of Backes and Cachin has the draw-
back that it achieves a weaker security than SS-CCA-security while
working on every channel [BC05]. On the other hand, the stegosystem
of Hopper achieves SS-CCA-security but is specialized to a single chan-
nel [Hop05]. We prove that there is a stegosystem that is SS-CCA-
secure on a large class of channels (namely the memoryless ones).
The main technical novelty is a method to generate covertexts for the
message m such that finding a second sequence of covertexts that
encodes m is hard. Hopper achieves this at the cost of the univer-
sality of his system, while we still allow a very large class of chan-
nels. We thereby answer the question of Hopper in the affirmative, in
case of memoryless channels. Note that before this work, it was not
even known whether an SS-CCA-secure stegosystem for any class of
channels exists at all. Furthermore, we prove that SS-CCA-security for
memoryless channels is the best one can hope for: If the history influ-
ences the channel distribution in a minor way i. e. only by its length,
we can prove that SS-CCA-security is not achievable. See Table 2 for a
short comparison of the results with the previous work.

Table 2: Comparison of the public-key stegosystems

Paper Security Channels Applicability

von Ahn and Hopper [vH03] passive universal possible

Backes and Cachin [BC05] SS-RCCA universal possible

Hopper [Hop05] SS-CCA single eff. sampleable possible

This work (Theorem 46) SS-CCA all memoryless possible

This work (Theorem 48) SS-CCA universal impossible*

* In the non-look-ahead model against non-uniform wardens.

In Section 6.2, we give an example attack on the stegosystem of
Backes and Cachin to highlight the differences between the concepts
of SS-RCCA-security and SS-CCA-security. The following Section 6.3
contains a high-level view of our construction. Section 6.4 uses the
results of [Hop05] to prove that one can construct cryptosystems
with ciphertexts that are indistinguishable from a distribution on
bit strings related to the hypergeometric distribution, which we will
need later on. The main core of our protocol is an algorithm to order
the documents in an undetectable way that still allows us to trans-
fer information. This ordering is described in Section 6.5. Our results

76 on the gold standard of public-key steganography

concerning the existence of SS-CCA-secure steganography for every
memoryless channel are then presented and proved in Section 6.6. Fi-
nally, Section 6.7 contains the impossibility result for SS-CCA-secure
stegosystems on 0-memoryless channels – channels with distributions0-memoryless

channels describable by a memoryless Markov chain. A simple alternative charac-
terization of these channels is that Ch,n = Ch ′,n for all histories with
|h| = |h| ′. A memoryless channel C is a 0-memoryless channel such thatmemoryless channel

Ch,n = Ch ′,n for all histories h,h ′ independent of their length.
Throughout this chapter, we will often talk about details of the

rejection sampling stegosystem. We therefore encourage the reader
to reread Section 3.5 if necessary. A preliminary version of the results
of this chapter was published as [BL18].

6.2 detecting the scheme of backes and cachin

In order to understand the difference between SS-CCA-security and
the closely related, but weaker, SS-RCCA-security, we give a short pre-
sentation of the universal SS-RCCA-stegosystem of Backes and Cachin
[BC05]. We also prove that their system is not SS-CCA-secure. This
was already noted by Hopper in [Hop05]. The proof that the stego-
system is not SS-CCA-secure nicely illustrates the difference between
the security models. The proof also highlights the main difficulty of
SS-CCA-security: One needs to prevent so called replay attacks, where
the warden is able to construct upon a stegotext d another stegotext
d ′ that embeds the same message as d.

Backes and Cachin [BC05] proved the existence of an universal
SS-RCCA-secure stegosystem assuming that a RCCA$-secure cryptosys-
tem exists. They make use of the rejection sampling stegosystem of
Section 3.5. If PKES is a RCCA$-secure cryptosystem, they define a
stegosystem that computes (b1, . . . ,b`) ← PKES.Enc(pk,m) and then
sends d1,d2, . . . ,d` produced by the rejection sampling algorithm
with the publicly known hash function f.

They then prove that this stegosystem is SS-RCCA-secure (see The-
orem 10). And indeed, one can show that their stegosystem is not
SS-CCA-secure by constructing a generic warden W that works as fol-
lows: The first phase W.Find chooses the message m̂ = 00 · · · 0 and the
empty history ĥ = ∅. The second phase W.Guess gets d̂ = d̂1, . . . , d̂`
which is either a sequence of totally random documents or the out-
put of the stegosystem on m̂ and ĥ. The warden W now samples
documents until it finds a document d ′ with f(d ′) = f(d̂`). Hence,
d̂1, . . . , d̂`−1,d ′ is a replay of d̂. It then decodes d̂1, . . . , d̂`−1,d ′ via the
decoder of the rejection sampling stegosystem to obtain message m ′

and returns 0 if m ′ consists only of zeroes. If d̂ was a sequence of
totally random documents, it is highly unlikely that d̂ decodes to a
message that only consists of zeroes. If d̂ was produced by the stego-
system, the decoder only returns something different from the all-

6.3 an high-level view of our stegosystem 77

zero-message if d ′ = d̂` which is highly unlikely. The warden W thus
has advantage of 1− negl(κ) and the stegosystem is thus not SS-CCA-
secure. Backes and Cachin posed the question whether an universal
SS-CCA-secure stegosystem exists.

6.3 an high-level view of our stegosystem

The stegosystem of Backes and Cachin only achieves SS-RCCA-security
as a single ciphertext has many different possible encodings in terms
of the documents used. Hopper achieves SS-CCA-security by limiting
those encodings: Due to the sampleability of the channel, each cipher-
text has exactly one deterministic encoding in terms of the documents.
While Hopper achieves SS-CCA-security, he needs to give up the uni-
versality of the stegosystem. In order to handle as many channels as
possible, we will allow many different encodings of the same cipher-
text, but make it hard to find them for anyone but the stegoencoder.
To simplify the presentation, we concentrate on the case of embed-
ding a single bit per document. Straightforward modifications allow
to embed up to log(κ) bits per document.

Our stegosystem, named PKStS∗, will use the following approach
to encode a message m: It first samples, for sufficiently large N, a set
D ofN documents from the channel C and uses a strongly 2-universal
hash function f to split these documents into documents D0 that en-
code bit 0 (i. e. D0 = {d ∈ D | f(d) = 0}) and documents D1 that
encode bit 1 (i. e. D1 = {d ∈ D | f(d) = 1}). Now we encrypt the mes-
sage m via a certain public-key encryption system, named PKESwor

(described in the next section), and obtain a ciphertext ~b = b1, . . . ,bL
of length L = bN/8c. Next our goal is to order the documents in
D into a sequence ~d = d1, . . . ,dN such that the first L documents
d1, . . . ,dL encode ~b (i. e. f(d)i = bi). This ordering is performed by
the algorithm generate. However, the attacker still has several possi-
bilities for a replay attack on this scheme, for example: possible replays

• He could exchange some document di by another document d ′i
with f(di) = f(d ′i) (as f is publicly known) and the sequence
d1, . . . ,di−1,d ′i,di+1, . . . ,dN would be a replay of ~d. Such at-
tacks will be called sampling attacks. To prevent the attacker from sampling attacks

exchanging a sampled document by a non-sampled one, we also
encode a hash-value of all sampled documents D and transmit
this hash value to Bob.

• The attacker can exchange documents di and dj, with i < j and
f(di) = f(dj), and the resulting sequence

d1, . . . ,di−1,dj,di+1, . . . ,dj−1,di,dj+1, . . . ,dN

would be a replay of ~d. Such attacks will be called ordering at- ordering attacks

tacks. We thus need to prevent the attacker from exchanging the

78 on the gold standard of public-key steganography

positions of sampled documents. We achieve this by making
sure that the ordering of the documents generated by generate
is deterministic, i. e. for each set of documents D and each ci-
phertext ~b, the ordering ~d generated by generate is determinis-
tic. This property is achieved by using PRPs to sort the sampled
documentsD. The corresponding keys of the PRPs are also trans-
mitted to Bob and the stegodecoder can thus also compute this
deterministic ordering.

In total, our stegoencoder PKStS∗.Enc works on a secret message m
and on a publicly known hash-function f as follows:

1. Sample N documents D from the channel;

2. Get a hash-key kH and compute H = H.EvalkH(lex(D)), a hash-
value of the sampled documents, where lex(D) denotes the se-
quence of elements of D in lexicographic order. This prevents
sampling attacks, where a sampled document is replaced by a
non-sampled one;

3. Get two PRP-keys1 kP and k ′P that will be used to determine
the unique ordering of the documents in D via generate. This
prevents ordering attacks, where the order of the sampled doc-
uments is switched;

4. Encrypt the concatenation of m,kH,kP,k ′P,H via a certain pub-
lic key encryption scheme PKESwor and obtain the ciphertext
~b of length L = bN/8c. As long as PKESwor is secure, the ste-
godecoder is thus able to verify whether all sampled documents
were sent and can also verify the ordering of the documents.

5. Compute the ordering ~d of the documents D via generate that
uses the PRP keys kP and k ′P to determine the ordering of the
documents. It also uses the ciphertext ~b to guarantee that the
first L send documents encode the ciphertext ~b, i. e. b1 . . . bL =

f(d1) . . . f(dL);

6. Send the ordering of the documents ~d.

To decode a sequence of documents ~d = d1, . . . ,dN, the stegode-
coder of PKStS∗ computes the ciphertext b1 = f(d1), . . . ,bL = f(dL)

encoded in the first L documents of ~d. It then decodes this cipher-
text b1 . . . bL via PKESwor to obtain the message m, the PRP keys kP

and k ′P, the hash-key kH and the hash-value H. First it verifies the
hash-value by checking whether H.EvalkH(lex({d1, . . . ,dN})) equals
the hash-value H to prevent sampling attacks. It then uses the PRP

keys kP and k ′P ′ to compute an ordering of the received documents

1 We believe that one permutation suffices. But in order to improve the readability of
the proof for security, we use two permutations in our stegosystem.

6.4 obtaining biased ciphertexts 79

via generate to verify that no ordering attack was used. If these vali-
dations are successful, the decoder PKStS∗.Dec returns m; Otherwise,
it decides that ~d is not a valid stegotext and returns ⊥.

Intuitively, a successful sampling attack on our scheme would break
the collision resistant hash function H, as it needs to create a colli-
sion of lex(D) in order to pass the first verification step. Furthermore,
a successful ordering attack would need manipulate the ciphertext
~b and thus break the security of the public key encryption scheme
PKESwor, as the PRP keys kP and k ′P guarantee a deterministic order-
ing of the documents.

As explained above, our stegoencoder computes the ordering ~d =

d1, . . . ,dN of the documents D = {d1, . . . ,dN} via the deterministic
algorithm generate, that is given the following parameters: the set
of documents D, the hash-function f and the ciphertext ~b to ensure
that the first documents of the ordering encode ~b. It has furthermore
access to the PRP keys kP and k ′P that guarantee a deterministic or-
dering of the documents in D and thus prevents ordering attacks. As
the ordering ~d produced by generate is sent by the stegoencoder, this
ordering must be indistinguishable from a random permutation on
D (which equals the channel distribution) in order to be undetectable.
As f(d1) = b1, . . . , f(dL) = bL, not every distribution upon the ci-
phertext ~b can be used to guarantee that ~d is indistinguishable from
a uniformly random permutation. This indistinguishability is guaran-
teed by requiring that the ciphertext ~b is distributed according to a
certain distribution corresponding to a random process modeled by
drawing black and white balls from an urn without replacement. In
our setting, the documents in D will play the role of the balls and the
coloring is given by the function f.

Section 6.4 describes this random process in detail and proves that
we can indeed construct a public-key encryption system that pro-
duces ciphertexts that are indistinguishable from this random pro-
cess. Section 6.5 contains a formal description of generate, proves that
no attacker can produce a replay of its output and shows that the
generated permutation is indeed indistinguishable from a random
permutation. Finally, Section 6.6 contains the complete description of
the stegosystem.

6.4 obtaining biased ciphertexts

We will now describe two different but related probability distribu-
tions and show how one can derive symmetric encryption schemes
with ciphertexts that are indistinguishable from these distributions.
Later on, we will only need the second distribution, but we present
the first distribution as an introduction to the more complex case.
This simpler distribution might also be useful for other applications.
In order to do derive these symmetric encryption schemes, we first

80 on the gold standard of public-key steganography

define a channel that represents the required probability distribution
together with appropriate parameters, use Theorem 35 to derive a
stegosystem for this channel, and finally derive a cryptosystem from
this stegosystem.

Based upon a CCA$-secure public-key cryptosystem PKES, Hopper
constructs for every efficiently sampleable channel C a SS-CCA-secure
stegosystem PKStS(C) by “derandomizing” the rejection sampling al-
gorithm. The only requirement upon the channel C is the existence
of the efficient sampling algorithm and that the stegoencoder and
the stegodecoder use the same sampling algorithm. Importantly, due
to the efficient sampleability of C, the encoder of PKStS(C) does not
need an access to the sample oracle. Thus, we get the following result.

Theorem 35 (Theorem 2 in [Hop05]). If C is an efficiently sampleable
channel and PKES is a CCA$-secure public-key cryptosystem (which can be
constructed from doubly enhanced trapdoor permutations, see Chapter 2),
there is a stegosystem PKStS(C) (without an access to the sample oracle)
such that for all wardens W there is a negligible function negl with

Advss-cca
W,PKStS(C),C(κ) 6 negl(κ) + 2−H∞(C,κ)/2.

Note that the system PKStS(C) is guaranteed to be secure (under
the assumption that CCA$-secure public-key cryptosystems exist), if
the channel C is efficiently sampleable and has min-entropy ω(log κ).
We call such a channel suitable for Theorem 35 or simply suitable.suitable for

Theorem 35 The probability distribution for the ciphertexts we are interested
in is the distribution for the bit strings ~b we announced in the the
previous section. As we will see later, the required probability can be
described equivalently as follows:

• We are given N elements: N0 of them are labeled with 0 and the
remaining N−N0 elements are labeled with 1.

• We draw randomly a sequence of K elements from the set and
look at the generated bit string ~b = b1, . . . ,bK of length K deter-
mined by the labels of the elements.

Drawing With replacements

First, we look at the easier situation with replacements. The resulting
probability distribution Dwr

(N,N0,K) upon bit strings of length K can be
described easily, asdistribution Dwr

Pr[Dwr
(N,N0,K) = b1, . . . ,bK] =

(N0
N

)|~b|0 · (1− N0
N

)|~b|1 ,
where ~b = b1 . . . bK and |~b|0 denotes the number of zero bits in ~b and
|~b|1 denotes the number of one bits in ~b.channel Cwr

With the help of this distribution, we will now construct a channel
distribution Cwr. For an integer x < 2r, denote by bin(x)r the unique

6.4 obtaining biased ciphertexts 81

binary representation of x of length exactly r. We now define the
channel distributions upon key parameter κ with dl(κ) = κ.

• For the empty history ∅, let Cwr
∅,κ be the uniform distribution

on all strings bin(N)dκ/2e bin(N0)bκ/2c for all positive integers
N,N0 6 2bκ/2c such that 1/3 6 N0/N 6 2/3.

• If the history is of the form h ′ = bin(N)dκ/2e bin(N0)bκ/2ch for
some h ∈ {0, 1}∗, the distribution Cwr

h ′,κ is equal to the distribu-
tion Dwr

(N,N0,κ).

We can now easily see the following facts about the channel Cwr:

Lemma 36. The channel Cwr is suitable, i. e. it is efficiently sampleable
and has min-entropy ω(log κ). Furthermore, if we draw ` consecutive doc-
uments d1, . . . ,d` from Cwr

bin(N)dκ/2e bin(N0)bκ/2c,κ
, their concatenation d1 ||

d2 || . . . || d` is distributed according to Dwr
(N,N0,`·κ).

Proof. We can efficiently simulate the choice of N,N0 and the sam-
pling of Dwr

(N,N0,κ). The min-entropy of Cwr
∅,κ is at least κ/2 and the

min-entropy of the channel distributions Cwr
bin(N)dκ/2e bin(N0)bκ/2ch,κ

is at
least κ/3 for all histories h. This establishes the suitability of Cwr. The
second property follows from that fact, that if ~b and ~b ′ are distributed
according to Dwr

(N,N0,κ), their concatenation ~b || ~b ′ is distributed ac-
cording to Dwr

(N,N0,2κ).

Combining the first point of Lemma 36 with Theorem 35 thus im-
plies the following corollary. stegosystem

PKStSwr

Corollary 37. If doubly enhanced trapdoor permutations exists, there is a
stegosystem PKStSwr (without an access to the sample oracle) such that for
all wardens W there is a negligible function negl with

Advss-cca
W,PKStSwr,Cwr(κ) 6 negl(κ).

Based upon this, we construct a public-key cryptosystem PKESwr

that is also equipped with another algorithm, called PKESwr.Setup,
that takes parameters N,N0 6 2bκ/2c with N0/N ∈ [1/3, 2/3]. Calling
PKESwr.Setup(N,N0) stores the values N,N0 such that PKESwr.Enc
and PKESwr.Dec can use them. cryptosystem

PKESwr

• The key generation PKESwr.Gen of the cryptosystem equals the
key generation PKStSwr.Gen of the stegosystem.

• The encoding algorithm PKESwr.Enc takes as parameters the
public key pk and a message m. It then simulates the run of
PKStSwr.Enc on history h = bin(N)dκ/2e bin(N0)bκ/2c and pro-
duces a bit string of length PKESwr.cl(κ) = PKStSwr.ol(κ) · κ by
concatenating all produced documents.

82 on the gold standard of public-key steganography

• The decoding algorithm PKESwr.Dec simply inverts this process
by simulating the run of the stegodecoder PKStSwr.Dec on his-
tory h = bin(N)dκ/2e bin(N0)bκ/2c and key sk.

Clearly, the ciphertexts produced by PKESwr.Enc(pk,m) are indist-
inguishable from the distribution Dwr

(N,N0,PKESwr.cl(κ)) after a call of
PKESwr.Setup(N,N0) by the last point of Lemma 36. This application
of Theorem 35 thus yields the following corollary:

Corollary 38. If doubly-enhanced trapdoor permutations exist, there is a
secure public-key cryptosystem PKESwr that is also equipped with the al-
gorithm PKESwr.Setup taking two parameters N and N0, such that after
PKESwr.Setup(N,N0) was called, its ciphertexts are indistinguishable from
the distribution Dwr

(N,N0,PKESwr.cl(κ)) whenever N0/N ∈ [1/3, 2/3].

Drawing Without replacements

We now look at the more complicated probability distribution with-
out replacements. Again, we are given N elements and N0 of those
elements are labeled with 0 and the remaining N−N0 elements are
labeled with 1. We draw K elements from those sets and look at the
generated bit string of length K. But in contrast to the previous case,
we do not replace the elements. We only consider the case that there
are enough elements of both types, i. e. N0 > K and N−N0 > K. The
resulting probability distribution Dwor

(N,N0,K) upon bit strings of length
K is then given asdistribution Dwor

Pr[Dwor
(N,N0,K) = b1, . . . ,bK] =

1(
K

|~b|0

) · (N0|~b|0

)
·
(N−N0
K−|~b|0

)(
N
K

) = (2)

(K−1∏
j=0

1

N− j

)
·
(|~b|0−1∏
j=0

N0 − j
)
·
(|~b|1−1∏
j=0

N−N0 − j
)
,

where, as before, |~b|0 denotes the number of zero bits in the bit string
~b = b1, . . . ,bK and |~b|1 the number of one bits in ~b. Note that the
distribution on the number of zeroes within such bit strings is a hy-
pergeometric distribution with parameters N, N0, and K.

As before, we now want to construct a channel Cwor, but we need
to be more careful due to the requirement on the min-entropy of the
channel, as the probability distribution changes over time and the
min-entropy of these distribution might drop, if one type of element
“exhausts”.

Now we will construct a channel Cwor upon key parameter κ with
document length n = dl(κ) = κ:channel Cwor

• For the empty history ∅, let Cwor
∅,κ be the uniform distribution on

all strings bin(N)dκ/2e bin(N0)bκ/2c that range over all positive

6.4 obtaining biased ciphertexts 83

integers N,N0 6 2bκ/2c such that N > 8κ and 1/3 6 N0/N 6
2/3 (in our construction we need initially a stronger condition
than just N0 > κ and N−N0 > κ).

• If the history is of the form h ′ = bin(N)dκ/2e bin(N0)bκ/2ch
for some h ∈ {0, 1}∗, then we consider two cases: if |h| 6 1

8N

then the distribution Cwor
h ′,κ equals Dwor

(N−|h|,N0−|h|0,κ); Otherwise,

i. e. if |h| > 1
8N then Cwor

h ′,κ equals the uniform distribution over
{0, 1}κ.

It is easy to see that the min-entropy H∞(Cwor,n) – defined as
minh ′{H∞(Cwor

h ′,n)} – of the channel Cwor is obtained if the history h ′

is of the form h ′ = bin(N)dκ/2e bin(N0)bκ/2ch, with 8κ 6 N 6 2bκ/2c

such that (i) N0 = 1
3N and h = 00 . . . 0 of length 1

8N − κ or (ii)

N0 = 2
3N and h = 11 . . . 1 of length 1

8N− κ. In the first case we get
that the min-entropy of the distribution Cwor

h ′,n is achieved on the bit
string 1, 1, . . . , 1 of length κ and in the second case on 0, 0, . . . , 0 of
length κ. By Equation 2 the probabilities to get such strings are equal
to each other and, since κ 6 N/8, they can be estimated as follows:

κ−1∏
j=0

2N/3− j

7N/8− κ− j
6

(
2N/3

7N/8− κ

)κ
6

(
2N/3

6N/8

)κ
= (8/9)κ.

Thus, we get that H∞(Cwor,n) > κ log(9/8).
Moreover one can efficiently simulate the choice of N,N0, the sam-

pling process of Dwor
(N,N0,κ) and the uniform sampling in {0, 1}κ. There-

fore, similar to Lemma 36, we can conclude the following lemma.

Lemma 39. The channel Cwor is suitable, i. e. it is efficiently sampleable and
has min-entropy ω(log κ). Furthermore, for the history h of the form h =

bin(N)dκ/2e bin(N0)bκ/2c, with 8κ 6 N 6 2dκ/2e and 1/3 6 N0/N 6
2/3, and for any integer ` 6 N

8κ , the bit strings ~b = b1, . . . ,bK of length
K = κ · ` 6 N/8 obtained by the concatenation of ` consecutive documents
sampled from the channel with history h, i. e. bi ← Cwor

h||b1||...||bi−1,κ, have
distribution Dwor

(N,N0,K).

A proof for the second statement of the lemma follows directly
from the construction of the channel.

Combining the first point of Lemma 39 with Theorem 35 thus im-
plies the following corollary. stegosystem

PKStSwor

Corollary 40. If doubly-enhanced trapdoor permutations exist, there is a
stegosystem PKStSwor (without an access to the sample oracle) such that for
all wardens W there is a negligible function negl such that

Advss-cca
W,PKStSwor,Cwor(κ) 6 negl(κ).

Based upon this, similar to our construction of PKESwr, we con-
struct a public-key cryptosystem PKESwor with ciphertexts of length

84 on the gold standard of public-key steganography

PKESwor.cl(κ) = κ · PKStSwor.cl(κ) such that PKESwor also has another
algorithm, called PKESwor.Setup, that takes two parameters: two in-
tegers N and N0 that satisfy the condition that 8 · PKESwor.cl(κ) 6
N 6 2bκ/2c and N0/N ∈ [1/3, 2/3]. Calling PKESwor.Setup(N,N0)
stores the values N,N0 such that PKESwor.Enc and PKESwor.Dec can
use them.cryptosystem

PKESwor

• The key generation PKESwor.Gen simply equals the key genera-
tion algorithm PKStSwor.Gen.

• The encoding algorithm PKESwor.Enc takes as parameters the
public key pk and a message m. It then simulates the encoder
PKStSwor.Enc on history h = bin(N)dκ/2e bin(N0)bκ/2c and pro-
duces a ciphertext of length PKESwor.cl(κ) = PKStSwor.ol(κ) · κ.

• The decoder PKESwor.Dec simply inverts this process by sim-
ulating the run of the stegodecoder PKStSwor.Dec on history
h = bin(N)dκ/2e bin(N0)bκ/2c.

Clearly, the ciphertexts of PKESwor.Enc(pk,m) are indistinguishable
from Dwor

(N,N0,PKESwor.cl(κ)) after a call of PKESwor.Setup(N,N0) by the
last point of Lemma 39. This generalization of Theorem 35 yields the
following corollary:

Corollary 41. If doubly-enhanced trapdoor permutations exist, there is a
secure public-key cryptosystem PKESwor that is also equipped with the al-
gorithm PKESwor.Setup that takes two parameters N and N0, such that
such that after PKESwor.Setup(N,N0) was called, its ciphertexts are indis-
tinguishable from the distribution Dwor

(N,N0,PKESwor.cl(κ))) whenever N and

N0 satisfy 8 · PKESwor.cl(κ) 6 N 6 2bκ/2c and N0/N ∈ [1/3, 2/3].

6.5 ordering the documents

As described before, to prevent replay attacks, we need to order the
sampled documents. This is done via the algorithm generate described
in this section. To improve the readability, we will abbreviate some
terms and define n = PKStS∗.dl(κ) and L = PKESwor.cl(κ), where
PKESwor is the public-key encryption scheme from the last section
and PKStS∗ is our target stegosystem that we will provide later on.
We also define N = 8L.

To order the set of documents D we use the algorithm generate,
presented below. It takes the set of documents D with |D| = N, a hash
function f : Σn → {0, 1}, a bit string b1, . . . ,bL, and two keys kP,k ′P for
a PRP. It then uses the PRP to find the right order of the documents.

6.5 ordering the documents 85

Generate algorithm: generate(D, f,b1, . . . ,bL,kP,k ′P)

Parties: PRP P, CRHF H
Input: setD of sizeN, hash function f, bits b1, . . . ,bL, PRP-keys
kP,k ′P

1 : D0 := {d ∈ D | f(d) = 0} and D1 := {d ∈ D | f(d) = 1}

2 : // assert that |D0 ∪D1| =N and |D0| ∈ [N/3,2N/3]

3 : for i = 1, . . . ,L :

4 : di := arg min
d∈Dbi

{P.EvalkP(d)}

5 : // minX is taken with respect to the lexicographic ordering of X

6 : Dbi := Dbi \ {di}

7 : D ′ := D0 ∪D1// collect remaining documents

8 : for i = L+ 1, . . . ,N :

9 : di := arg min
d∈D ′

{P.Evalk ′P(d)}

10 : D := D ′ \ {di}

11 : return d1,d2, . . . ,dN

Note that the permutation P.EvalkP is a permutation upon the set
{0, 1}n (i. e. on the documents themselves) and the canonical ordering
of {0, 1}n thus implicitly gives us an ordering of the documents.

We note the following important property of generate that shows
where the urn model of the previous section comes into play. If P and
P ′ are truly random permutations, we denote by generate(· · · ,P,P ′)
the run of generate, where the use of P.EvalkP is replaced by P and
the use of P.Evalk ′P is replaced by P ′. If the bits ~b = b1, . . . ,bL are
distributed according to Dwor

(N,|D0|,L)
, the resulting distribution on the

documents then equals the channel distribution. generate ∼ C

Lemma 42. Let C be any memoryless channel, f be some hash function and
D be a set of N = 8L documents of C such that N/3 > |D0| > 2N/3, where
D0 = {d ∈ D | f(d) = 0}. If the permutations P,P ′ are completely random
and the bit string ~b = b1, . . . ,bL is distributed according to Dwor

(N,|D0|,L)
,

the output of generate(D, f,b1, . . . ,bL,P,P ′) is distributed according to C.

Proof. Fix any document set D of size N = 8L and a function f

that splits D into D0∪̇D1, with |D0| > N/3 and |D1| > N/3. Let
d̂ = d̂1, . . . , d̂N be any permutation on D. We will prove that the
probability (upon bits ~b and permutations P, P ′) that d̂ is produced, is
1/N! and thus establish the result. Let d = d1, . . . ,dN be the random
variables that denote the outcome of generate(D, f,b1, . . . ,bL,P,P ′).

86 on the gold standard of public-key steganography

Note that if d[i] (resp. d̂[i]) denotes the prefix of length i of d
(resp. d̂), then using the chain rule formula we get

Pr
~b,P,P ′

[d1d2 . . . dN = d̂1d̂2 . . . d̂N] =

N∏
i=1

Pr
~b,P,P ′

[di = d̂i | d[i− 1] = d̂[i− 1]].

To estimate each of the factors of the product, we consider two cases:

• Case i 6 L: Let b̂ = b̂1, . . . , b̂L be the bit string such that
b̂i = f(d̂i) and let b̂[i] be the prefix b̂1, . . . , b̂i of b̂ of length
i. Clearly, for i 6 L it holds that the event di = d̂i under the
condition d[i− 1] = d̂[i− 1] occurs iff (A) di ∈ Db̂i and (B) di is
put on position |b̂[i]|b̂i by the permutation P with respect toDb̂i .
Due to the distribution of bit bi in the random bits ~b, the event
di ∈ Db̂i occurs with probability (|Db̂i |− |b̂[i− 1]|b̂i)/(N− i+ 1)

(under the above condition). As d[i − 1] = d̂[i − 1] holds, ex-
actly |b̂[i − 1]|b̂i documents from Db̂i are already used in the
output. As P is a totally random permutation, the probability
that di is put on position |b̂[i]|b̂i by the permutation P (with
respect to Db̂i) is thus 1/(|Db̂i |− |b̂[i− 1]|b̂i). Since (A) and (B)
are independent, we conclude for i 6 L that the probability
Pr~b,P,P ′ [di = d̂i | d[i− 1] = d̂[i− 1]] is equal to

Pr~b[di ∈ Db̂i | d[i− 1] = d̂[i− 1]] ×

PrP[P puts di on position |b̂[i]|b̂i | d[i− 1] = d̂[i− 1]] =

|Db̂i |− |b̂[i− 1]|b̂i
N− i+ 1

· 1

|Db̂i |− |b̂[i− 1]|b̂i

=
1

N− i+ 1
.

• Case i > L: As the choice of P ′ is independent from the choice
of P, the remaining 2L items are ordered completely random.
Hence, for i > L we also have

Pr
~b,P,P ′

[di = d̂i | d[i− 1] = d̂[i− 1]] =
1

N− i+ 1
.

Putting it together, we get

Pr
~b,P,P ′

[d1d2 . . . dN = d̂1d̂2 . . . d̂N] =

N∏
i=1

1

N− i+ 1
=
1

N!
.

As explained above, no attacker should be able to produce a “re-
play” of the output of generate. Below, we formalize this notion and
analyze the security of the algorithm.

Definition 43. An attacker A on generate is a polynomial probablisticattacker A on
generate Turing machine that receives the following input:

6.5 ordering the documents 87

• a sequence d1, . . . ,dN of pairwise different documents,

• a hash function f : Σn → {0, 1},

• a sequence b1, . . . ,bL of L = bN/8c bits, and

• a hash-key kH for H.

The attacker A then outputs a sequence d ′1, . . . ,d ′N of documents.
Note that the attacker knows the mapping function f and even the
hash-key kH for H.

We say that A is successful if the following experiment, which we successful

denote as Sgen(A,D, f,b1, . . . ,bL), returns value 1:

Security of generate: Sgen(A,D, f,b1, . . . ,bL)

Input: Attacker A, set D, hash function f, bits b1, . . . ,bL

1 : kP ← P.Gen(1κ)

2 : k ′P ← P.Gen(1κ)

3 : kH ← H.Gen(1κ)

4 : d1, . . . ,dN := generate(D, f,b1, . . . ,bL,kP,k ′P)

5 : d ′1, . . . ,d ′N ← A(d1, . . . ,dN, f,b1, . . . ,bL,kH)

6 : if f(d ′i) = bi for every i = 1, . . . L :

7 : D ′0 := {d ′i | f(d
′
i) = 0};D

′
1 := {d ′i | f(d

′
i) = 1};D

′ := D ′0 ∪D ′1
8 : if d ′1, . . . ,d ′N = generate(D ′, f,b1, . . . ,bL,kP,k ′P) :

9 : if H.EvalkH(lex(D ′)) = H.EvalkH(lex(D)) :

10 : if d ′1, . . . ,d ′N 6= d1, . . . ,dN :

11 : return 1

12 : return 0

Lemma 44. LetD ⊆ Σn be a set of documents, with |D| = N, let b1, . . . ,bL
be a bit string, and f : Σn → {0, 1}. For every attacker A on generate, there
is a collision finder Fi for the hash function H such that

Pr[Sgen(A,D, f,b1, . . . ,bL) = 1] 6 Advhash
Fi,H,C(κ),

where the probability is taken over the random choices made in experiment
Sgen.

Proof. Let A be an attacker on generate with maximal success probabil-
ity. Let D = D0 ∪D1 be the input to generate, the sequence d1, . . . ,dN
its output and d ′1, . . . ,d ′N be the output of A. Furthermore, let D ′b =

{d ′j | f(d
′
j) = b} and D ′ = D ′0 ∪D ′1. We now distinguish three cases of

the relation between D and D ′. If D ′ (D, the sequence d ′1, . . . ,d ′N D ′ \D = ∅
must contain the same element on at least two positions, but generate
does only accept sets of size exactlyN. Hence, A was not successful in

88 on the gold standard of public-key steganography

this case. If D ′ = D and A was successful, it holds that d ′1, . . . ,d ′N 6=
d1, . . . ,dN. Hence, there must be positions i < j and j ′ < i ′ such that
di = di ′ and dj = dj ′ . As kP and k ′P define a total order, the series
d ′1, . . . ,d ′N could not be produced by generate. Thus, A can not be
successful in this case.D ′ \D 6= ∅

The only remaining case is D ′ \ D 6= ∅. If A was successful, it
holds that H.EvalkH(lex(D ′)) = H.EvalkH(lex(D)), i. e. this is a colli-
sion with regard to H. We will now construct a finder Fi for H, such
that Advhash

Fi,H,C(κ) > Pr[A is successful]. The finder Fi receives a hash
key kH. It then samples D documents of length |D| = N via rejection
sampling and chooses PRP-keys kP,k ′P randomly. The finder simulates
A and receives the output d ′1, . . . ,d ′N from

A(generate(D0 ∪D1, f,b1, . . . ,bL,kP,k ′P), f,b1, . . . ,bL,kH),

where Db = {d ∈ D | f(d) = b}.
Then, it returns lex(D) and lex(D ′). Whenever A succeeds, we have

D 6= D ′ by the discussion above and know that H.EvalkH(lex(D)) =

H.EvalkH(lex(D ′)). Hence, Fi has successfully found a collision. This
implies that Advhash

Fi,H,C(κ) > Pr[A succeeds].

If H is collision resistant with respect to C, there is a negligible func-
tion negl such that Advhash

Fi,H,C(κ) 6 negl(κ) and thus Pr[A succeeds] 6
negl(κ) for all A.

6.6 the steganographic protocol

We now have all of the ingredients of our stegosystem, namely the
CCA-secure cryptosystem PKESwor from Section 6.4 and the order-
ing algorithm generate from Section 6.5. To improve the readability,
we will abbreviate some terms and define n = PKStS∗.dl(κ), ` =

PKStS∗.ol(κ) and L = PKESwor.cl(κ) , where PKESwor is the public-key
encryption scheme from Section 6.4 and PKStS∗ is the stegosystem
that we will define in this section. Moreover, let N = 8L.

In the following, let C be a channel, P be a PRP relative to C, the
function H be a CRHF relative to C, and {Fκ}κ∈N be a strongly 2-
universal hash family. Furthermore, let PKESwor be the cryptosystem
designed in Section 6.4. Remember that PKESwor has the algorithm
PKESwor.Setup that takes the additional parameters N,N0 6 2dκ/2e,
such that if N > 8 · PKESwor.cl(κ) and N0/N ∈ [1/3, 2/3] then the
output of the encoder PKESwor.Enc(pk,m) is indistinguishable from
Dwor

(N,N0,PKESwor.cl(κ)) for each N > 8 · PKESwor.cl(κ) (see Section 6.4 for
a discussion). Note that we have chosen N in such a way that this
always holds. Furthermore, we assume that PKESwor has very sparse
support, i. e. the ratio of valid ciphertexts compared to {0, 1}PKESwor.cl(κ)

is negligible: If the encoder PKESwor.Enc(pk,m) is called, we first use
some public key encryption scheme PKES with very sparse support

6.6 the steganographic protocol 89

to compute c ← PKES.Enc(pk,m) and then encrypt c via PKESwor.
This construction is due to Lindell [Lin03] and also maintains the in-
distinguishability of the output of PKESwor.Enc and the distribution
Dwor, as this properties hold for all fixed messages m.

Now we are ready to provide our stegosystem named PKStS∗. Its
main core is the ordering algorithm generate.

• The key generating PKStS∗.Gen queries PKESwor.Gen for a key-
pair (pk, sk) and chooses a hash function f� Fκ. The public key
of the stegosystem will be pk ′ = (pk, f) and the secret key will
be sk ′ = (sk, f).

• The encoding algorithm PKStS∗.Enc presented below (as Cn is
memoryless we skip the history in the description) works as
described in Section 6.3: It chooses appropriate keys, samples
documents D, computes a hash value of these documents, gen-
erates the bit string ~b via PKESwor and finally orders the docu-
ments via generate.2

The steganographic encoder: PKStS∗.Enc((pk, f),m)

Input: public key pk, function f, message m; channel C

1 : L := PKESwor.cl(κ);N = 8L

2 : D0 := ∅;D1 := ∅
3 : for j := 1, . . . ,N :

4 : dj ← Cdl(κ)

5 : Df(dj) := Df(dj) ∪ {dj}
6 : N0 = |D0|

7 : if |D0 ∪D1| < N or N0/N 6∈ [1/3, 2/3] :

8 : return d1, . . . ,dN and halt

9 : else :

10 : choose first PRP key kP ← P.Gen(1κ)

11 : choose second PRP key k ′P ← P.Gen(1κ)

12 : choose a hash key kH ← H.Gen(1κ)

13 : H := H.EvalkH(lex(D0 ∪D1))
14 : m ′ := m || kH || kP || k ′P || H

15 : PKESwor.Setup(N,N0)// setup N,N0

16 : b1, . . . ,bL ← PKESwor.Enc(pk,m ′)

17 : return generate(D0 ∪D1, f,b1, . . . ,bL,kP,k ′P)

2 That the number of produced documents is always divisible by 8 does not hurt the
security: The warden always gets the same number of documents, whether steganog-
raphy is used or not.

90 on the gold standard of public-key steganography

If one wants to embed λ 6 log(κ) bits per document, we will
construct a set Dβ for each bit string β of length λ and sample
enough documents such that all of the 2λ sets contain at least
N/3 elements.

• In order to decode a sequence of documents, PKStS∗.Dec first de-
crypts the message, the keys and the hash-value. It then checks
if the hash-value is correct and if the series was produced by
generate. Only if this is the case, the message is returned. Oth-
erwise, it decides that it can not decode the documents and
returns ⊥.

The steganographic decoder:
PKStS∗.Dec((sk, f),d1, . . . ,dN)

Input: secret key sk, function f, documents d1,d2, . . . ,dN

1 : L := bN/8c;N0 = |{di | f(di) = 0}| // compute the bias

2 : for i := 1, . . . ,L :

3 : bi := f(di)

4 : PKESwor.Setup(N,N0)// setup N,N0

5 : ~b = b1 || b2 || . . . || bL

6 : m || kH || kP || k ′P || H← PKESwor.Dec(sk,~b)

7 : D0 := ∅;D1 := ∅
8 : for i = 1, . . . ,N :

9 : Df(di) := Df(di) ∪ {di}
10 : if generate(D0 ∪D1, f,~b,kP,k ′P) = d1, . . . ,dN :

11 : if H.EvalkH(lex({d1, . . . ,dN})) = H :

12 : return m

13 : return ⊥

6.6.1 Proofs of Reliability and Security

We will first concentrate on the reliability of the system and prove that
its unreliability is negligible. This is due to the fact, that the decoding
always works and that the encoding only fails if a document was
drawn more than once.Reliability

Theorem 45. The probability that a message is not correctly embedded is at
most 9N2 · 2−H∞(C,dl(κ)) + 2 exp(−N/27), where N = 8 · PKESwor.cl(κ).

Proof. Note that PKStS∗.Enc may not correctly embed a message m if
(a) |D0 ∪D1| < N (in line 7) i. e. a document sampled in line 4 was
drawn twice, or (b) N0/N 6∈ [1/3, 2/3] (in line 7) i. e. the bias is too
large, or (c) the number of elements ofD0 orD1 is too small to embed

6.6 the steganographic protocol 91

b1,b2, . . . ,bL by generate. The probability of (a) can be bounded sim-
ilar to the birthday attack. It is roughly bounded by 9N2 · 2−H∞(Cdl(κ))

as the probability of every document is bounded by 2−H∞(Cdl(κ)).
A simple calculation shows that the probability of (b) or (c) is neg-

ligible. Note that the algorithm always correctly embeds a message,
if N0/N ∈ [1/3, 2/3], as this implies if |D0| > L and |D1| > L. We will
thus estimate the probability for this. As f is drawn from a strongly
2-universal hash family, we note that the probability that a random
document d is mapped to 1 is equal to 1/2. For i = 1, . . . ,N, let Xi be
the indicator variable such that Xi equals 1 if the i-th element drawn
from the channel is mapped to 1. The random variable X =

∑N
i=1 Xi

thus describes the size of D1. Clearly, its expected value is N/2. The
probability that |X − N/2| > N/6 (and thus N0/N 6∈ [1/3, 2/3]) is
hence bounded by

Pr[|X−N/2| > N/6] 6 2 exp(−
N · (1/3)2

3
) = 2 exp(−N/27)

by Theorem 1 and δ = 1/3. The probability that the message m is in-
correctly embedded is thus bounded by 2−H∞(C,dl(κ))+ 2 exp(−N/27).

If λ 6 log(κ) bits per document are embedded, this probability
is bounded by 22λ · 9N2 · 2−H∞(C,dl(κ)) + 2λ+1 exp(−3N/16), which is
negligible in κ.

It only remains to prove that our construction is secure. The proof
proceeds similar to the security proof of Hopper [Hop05]. But instead
of showing that no other encoding of a message exists, we prove that
finding any other encoding of the message is infeasible via Lemma 44. Security

Theorem 46. Let C be a memoryless channel, P be a PRP that is secure
relative to C, the algorithm H be a CRHF that is secure relative to C, the
cryptosystem PKESwor be the cryptosystem designed in Section 6.4 with
very sparse support that is secure relative to C, and {Fκ}κ∈N be a strongly
2-universal hash family, where all functions in Fκ maps strings of length
in(κ) to strings of length out(κ). We then have

• PKStS∗.dl(κ) = in(κ),

• PKStS∗.ol(κ) = 8 · PKESwor.cl(κ),

• PKStS∗.ml(κ) 6 PKESwor.ml(κ),

• UnRelPKStS∗,C(κ) 69 · PKStS∗.ol(κ)2 · 2−H∞(C,dl(κ))

+ 2 exp(−PKStS∗.ol(κ)/27),

• InSecss-cca
PKStS∗,C(κ) 62 · InSecprp

P (κ)

+ InSechash
H (κ) + InSeccca

PKESwor(κ).

92 on the gold standard of public-key steganography

Proof. The statements concerning the stegosystems document length,
output length and message length directly follow from the construc-
tion of PKStS∗. The bound on the unreliability follows from Theo-
rem 45. The only remaining item to show is that PKStS∗ is secure.
We prove this via a hybrid argument. We thus define the following six
distributions H1, . . . ,H6:

6.6 the steganographic protocol 93

H1

1 : pk ′ = (pk, f)← PKStS∗.Gen(1κ)

2 : for j := 1, 2, . . . ,N :

3 : dj ← Cdl(κ)

4 : return (d1, . . . ,dN, pk ′)

H2

pk ′ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 9 in PKStS∗.Enc

10 : P � Perm

11 : return (dP(1), . . . ,dP(N), pk ′)

// dP(i) is the i-th document, if {d1, . . . ,dN} is ordered by P

H3

pk ′ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 9 in PKStS∗.Enc

10 : P � Perm;P ′ � Perm;kH ← H.Gen(1κ)

11 : b1,b2, . . . ,bL ← Dwor
(N,N0,L)

12 : return (generate(D0 ∪D1, f,b1, . . . ,bL,P,P ′), pk ′)

// generate(. . . ,P,P ′) uses the permutations P,P ′

H4

pk ′ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 9 in PKStS∗.Enc

10 : kP ← P.Gen(1κ);P ′ � Perm;kH ← H.Gen(1κ)

11 : b1,b2, . . . ,bL � Dwor
(N,N0,L)

12 : return (generate(D0 ∪D1, f,b1, . . . ,bL,kP,P ′), pk ′)

// generate(. . . ,P ′) uses the permutation P ′

H5

pk ′ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 9 in PKStS∗.Enc

10 : kP ← P.Gen(1κ);k ′P ← P.Gen(1κ);kH ← H.Gen(1κ)

11 : b1,b2, . . . ,bL � Dwor
(N,N0,L)

12 : return (generate(D0 ∪D1, f,b1, . . . ,bL,kP,k ′P), pk ′)

H6

pk ′ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 9 in PKStS∗.Enc

10 : kP ← P.Gen(1κ);k ′P ← P.Gen(1κ);kH ← H.Gen(1κ)

11 : H := H.EvalkH(lex(D0 ∪D1))
12 : PKESwor.Setup(N,N0)

13 : b1,b2, . . . ,bL ← PKESwor.Enc(pk,m || kH || kP || k ′P || H)

14 : return (generate(D0 ∪D1, f,b1, . . . ,bL,kP,k ′P), pk ′)

Figure 6: An overview of hybrids H1 and H6 used in Theorem 46.
Changes between the hybrids are marked.

94 on the gold standard of public-key steganography

We now proceed as usual by proving that Hi and Hi+1 are indistin-
guishable in a certain sense. This implies the theorem, as H1 simply
describes the channel and H6 describes the stegosystem.

If P and Q are two probability distributions, let SS-CCA-DistP,Q,C

denote the modification of the game SS-CCA-Dist, where the chal-
lenge oracle CH is replaced as follows: if b = 0, its output is a ran-
dom sample distributed according to P and if b = 1, its output is
a random sample distributed according to Q. The remaining oracles
DEC1, DEC2, and CHAN and the rest of the game remain the same.

If W is some warden (for the original SS-CCA-Dist game), denote
by Advss-cca

W,P,Q,C(κ) the advantage of W in game SS-CCA-DistP,Q,C. If
Advss-cca

W,P,Q,C(κ) 6 negl(κ) for all wardens W and a negligible function
negl, we denote this situation as P ∼ Q and say that P and Q are
indistinguishable with respect to SS-CCA-Dist. Furthermore, we define
Adv(i)

W (κ) = Advss-cca
W,Hi,Hi+1,C(κ). As the term Adv(i)

W (κ) can also be
written as

1

2

∣∣Pr[W.Guess outputs b ′ = 0 | b = 0]−

Pr[W.Guess outputs b ′ = 0 | b = 1]
∣∣,

the triangle inequality implies that Advss-cca
W,PKStS∗,C(κ) 6

1
2 [Adv(1)

W (κ)+

Adv(2)
W (κ) + Adv(3)

W (κ) + Adv(4)
W (κ) + Adv(5)

W (κ)]. Hence, every war-
den that is successful against PKStS∗ must thus also be able to distin-
guish at least one pair of hybrids (Hi,Hi+1).

In principle, we argue that:

1. H1 = H2 and thus H1 ∼ H2 because a totally random permu-
tation on a memoryless channel does not change any probabili-
ties;

2. H2 = H3 and thus H2 ∼ H3 because our choice of b1, . . . ,bL
and random permutations equals the channel by Lemma 42;

3. H3 ∼ H4 because P is a PRP;

4. H4 ∼ H5 because P is a PRP;

5. H5 ∼ H6 because PKESwor is secure due to Corollary 41 and due
to Lemma 44.

Now, we provide the necessary details of the indistinguishability
arguments. Therefore, fix some warden W.

H1 ∼ H2

indistinguishability of H1 and H2 : If |D0 ∪ D1| < N, i. e. a
document was sampled twice or |D0|/|D| 6∈ [1/3, 2/3], the sys-
tem only outputs the sampled documents. Hence H1 equals H2
in this case. In the other case, we first permute the items be-
fore we output them. But, as P is a completely random per-
mutation and the documents are drawn independently from

6.6 the steganographic protocol 95

a memoryless channel, we have PrH1 [d1, . . . ,dN are drawn] =
PrH1 [dP(1), . . . ,dP(N) are drawn], if dP(i) is the i-th document
in the ordering of {d1, . . . ,dN} produced by P. As pk is not used
in these hybrids, H1 = H2 follows and thus Adv(1)

W (κ) = 0.
H2 ∼ H3

indistinguishability of H2 and H3 : If |D0 ∪D1| < N, i. e. a
document was sampled twice or |D0|/|D| 6∈ [1/3, 2/3], the sys-
tem only outputs the sampled documents. Hence H2 equals H3
in this case. If |D0 ∪D1| = N, Lemma 42 shows that the hybrid
H2 equals H3 and thus Adv(2)

W (κ) = 0.
H3 ∼ H4

indistinguishability of H3 and H4 : We will construct a distin-
guisher Dist on the PRP P with Advprp

Dist,P,C(κ) = Adv(3)
W (κ). Note

that such a distinguisher has access to an oracle that either cor-
responds to a truly random permutation or to P.EvalkP for a
key kP ← P.Gen(1κ).

The PRP-distinguisher Dist now simulates the run of W. It first
chooses a key-pair (pk ′, sk ′) ← PKStS∗.Gen(1κ). It then simu-
lates W. Whenever the warden W makes a call to its decoding-
oracle PKStS∗.Dec, it computes PKStS∗.Dec(sk ′, ·) (or ⊥ if neces-
sary). In order to generate the challenge sequence upon the mes-
sage m, it simulates the run of PKStS∗.Enc and replaces every
call to P or P.EvalkP by a call to its oracle. Similarly, the bits out-
put by PKESwor.Enc(pk ′,m) are ignored and replaced by truly
random bits distributed according to Dwor

(N,|D0|,L)
. If the oracle is

a truly random permutation, the simulation yields exactly H3
and if the oracle equals P.EvalkP for a certain key kP, the simula-
tion yields H4. The advantage of Dist is thus exactly Adv(3)

W (κ).
As P is a secure PRP, this advantage is negligible and H3 and H4
are thus indistinguishable.

H4 ∼ H5

indistinguishability of H4 and H5 : We will construct a distin-
guisher Dist on the PRP P with Advprp

Dist,P,C(κ) = Adv(4)
W (κ). Note

that such a distinguisher has access to an oracle that either cor-
responds to a truly random permutation or to P.Evalk ′P for a
key k ′P ← P.Gen(1κ).

The PRP-distinguisher Dist now simulates the run of W. It first
chooses a key-pair (pk ′, sk ′)← PKStS∗.Gen(1κ) and a key kP ←
P.Gen(1κ) for the PRP P. It then simulates W. Whenever the war-
den W makes a call to its decoding-oracle PKStS∗.Dec, it com-
putes PKStS∗.Dec(sk ′, ·) (or ⊥ if necessary). In order to generate
the challenge sequence upon the message m, it simulates the
run of PKStS∗.Enc and replaces every call to P ′ or P.Evalk ′P by
a call to its oracle. Similarly, the output of PKESwor.Enc(pk ′,m)

is ignored and replaced by truly random bits distributed ac-
cording to Dwor

(N,|D0|,L)
. If the oracle is a truly random permuta-

tion, the simulation yields exactly H4 and if the oracle equals

96 on the gold standard of public-key steganography

P.Evalk ′P for a certain key k ′P, the simulation yields H5. The ad-

vantage of Dist is thus exactly Adv(4)
W (κ). As P is a secure PRP,

this advantage is negligible and H4 and H5 are thus indistin-
guishable.

H5 ∼ H6

indistinguishability of H5 and H6 : We will construct an at-
tacker A on the public key encryption scheme PKESwor such that
Advcca

A,PKESwor,C(κ)+ InSechash
H (κ) > Adv(5)

W (κ). Note that such an
attacker A has access to the decryption-oracle PKESwor.Decsk(·).
The attacker A simply simulates W. Whenever the warden W
uses its decryption-oracle to decrypt d1, . . . ,dN, the attacker A
simulates PKStS∗.Dec(sk,d1, . . . ,dN) and uses its own decryp-
tion-oracle PKESwor.Decsk(·) in this. When W outputs the chal-
lenge m, the attacker A chooses D0, D1, kH, kP, and k ′P as in
PKStS∗.Enc and chooses its own challenge m̃ := m || kH || kP ||

k ′P || H, where H = H.EvalkH(lex(D0 ∪D1)). If the assumptions
|D0 ∪D1| = N orN0/N ∈ [1/3, 2/3] are not fulfilled, the attacker
outputs some random bit. By Theorem 45, this only happens
with negligible probability.

The attacker now either receives b ← PKESwor.Enc(pk, m̃) or L
random bits b from Dwor

(N,|D0|,L)
and computes

d1, . . . ,dN = generate(D0 ∪D1, f,b,kP,k ′P).

If the bits correspond to PKESwor.Enc(pk, m̃), this simulates the
stegosystem and thus H6 perfectly. If the bits are random, this
equals H5.

After the challenge is determined, A continues to simulate W.
Whenever W.Guess uses its decryption-oracle to decrypt the doc-
ument sequence d1, . . . ,dN, it behaves as above. There is now a
significant difference to the pre-challenge situation: The attacker
A.Guess is not allowed to decrypt the bits b = b1, . . . ,bL. Hence,
when W.Guess tries to decrypt documents d1, . . . ,dN such that
f(di) = bi, the attacker can not use its own decryption-oracle
W.DEC2 and must simply return ⊥. Suppose that this situa-
tion arises. Note that the decryption-oracle of W would only
return a message not equal to ⊥ iff d1, . . . ,dN = generate(D0 ∪
D1, f,b,kP,k ′P) and H.EvalkH(lex{d1, . . . ,dN}) = H.

If b is a truly random string from Dwor
(N,|D0|,L)

, the sparsity of
PKESwor implies that the probability that b is a valid encoding
is negligible. Hence the probability that the decryption-oracle of
W would return a message not equal to ⊥ is negligible. It only
remains to prove that the probability that the decryption-oracle
of W returns a message not equal to ⊥ is negligible if b is a
valid encryption of a message. But Lemma 44 states just that. We
thus have Advcca

A,PKESwor,C(κ) + InSechash
H (κ) > Adv(5)

W (κ). As the

6.7 an impossibility result 97

system PKESwor is CCA-secure by Corollary 41, this advantage
is negligible. Hence, H5 and H6 are indistinguishable.

Hence, the stegosystem PKStS∗ is SS-CCA-secure on C and the insecu-
rity is bounded as stated in the theorem.

6.7 an impossibility result

We first describe a simple argument for very random channels under
some infeasible assumptions and then proceed to simplify those chan-
nels and get rid of the assumptions. As all of the following channels
will be 0-memoryless, only the length of the history matters. If C is a
channel and h is a history containing η documents, we will thus write
Cη,dl (or simply Cη) for the distribution instead of Ch,dl. The notation
and some of the ideas are inspired by Dedić et al. [Ded+09].

The main idea of our construction lies on the unpredictability of
random channels. If Cη and Cη+1 are independent and sufficiently
random, we can not deduce anything about Cη+1 before we have sam-
pling access to it, which we only have after we sent the document of
Cη. Hence, to be reliable, there must be enough documents in Cη+1
that allow us to continue with the already sent documents (we call
these documents suitable). On the other hand, to be SS-CCA-secure, suitable

the number of suitable documents in Cη+1 must be very small to pre-
vent replay attacks like those in Section 6.2. By replacing the random
channels with pseudorandom channels, we can thus prove that every
stegosystem is either unreliable or SS-CCA-insecure on one of these
channels.

6.7.1 Lower Bound on Truly Random Channels

For n ∈ N, we denote by Rn all subsets of {0, 1}n of cardinality
2n/2, i. e. Rn = {R ⊆ {0, 1}n : |R| = 2n/2}. For an infinite sequence
~R = R0,R1, . . . with Ri ∈ Rn, we construct a channel C(~R) where the
distribution C(~R)i,n is the uniform distribution on Ri. The family of
all such channels is denoted by C(Rn). In the rest of the section, we
assume that a warden has complete knowledge of ~R, i. e. he can test
whether a document d belongs to the support of C(~R)i,n and denote
this warden by W~R. In the next section, we replace the totally ran-
dom channels by pseudorandom ones and will thus get rid of this
infeasible assumption.

For a universal stegosystem PKStS that outputs ` = PKStS.ol(κ)
documents, we are now interested in two possible events that may
occur during the run of PKStS.Enc on a channel C(~R). The first inter-
esting event, denoted by Nq (for nonqueried), happens if PKStS.Enc nonqueried

outputs a document it has not seen due to sampling. We are also
interested in the case that PKStS.Enc outputs something that is not

98 on the gold standard of public-key steganography

in the support of the channel, denoted by Ins for In Support. Clearly,In Support

upon random choice of ~R, η (the length of the history), m and pk we
have

Pr[Ins | Nq] 6 ` · 2
dl(κ)/2 − PKStS.ol(κ) · PKStS.query(κ)
2dl(κ) − PKStS.ol(κ) · PKStS.query(κ)

6 ` · 2− dl(κ)/2.

This is negligible in κ as dl and ` are polynomials in κ. As warden
W~R can efficiently test whether a document belongs to the random
sets, we have Advss-cca

W~R,PKStS,C(~R)(κ) > Pr[Ins]. Since we can assume

Ins ⊆ Nq, we obtain

Pr[Nq] =
Pr[Ins ∧ Nq]
Pr[Ins | Nq]

6
Advss-cca

W~R,PKStS,C(~R)(κ)

1− ` · 2−PKStS.dl(κ)/2 . (*)

Hence, if PKStS is SS-CCA-secure, the term Pr[Nq] must be negligible.
If PKStS works on a history of length η and outputs the docu-

ments d1, . . . ,d`, we note that PKStS.Enc only gets sampling access to
C(~R)η+`−1,PKStS.dl(κ) after it sent d1, . . . ,d`−1. Clearly, due to the ran-
dom choice of ~R, the set Rη+`−1 is independent of Rη, . . . ,Rη+`−2.
The encoder PKStS.Enc thus needs to decide on the subsequence
of documents d1, . . . ,d`−1 without any knowledge of Rη+`−1. As
PKStS.Enc draws a sample set D from C(~R)η+`−1,PKStS.dl(κ) with at
most PKStS.query(κ) documents, we now look at the event Nsui (for
Not Suitable) that none of the documents in D are suitable for theNot Suitable

encoding, i. e. if the sequence d1,d2, . . . ,d`−1,d is not a suitable en-
coding of the message m for all d ∈ D. To improve the readability,
denote the reliability of the stegosystem by ρ. Clearly, if Nsui occurs,
there are two possibilities for the stegosystem: It may either output
something from D and thus reduce the reliability or it may output
something it has not queried. We thus have

Pr[Nsui] 6 max{1− ρ, ρ · Pr[Nq]}.

Note that the term 1− ρ must be negligible if PKStS.Enc is reliable
and, as discussed above, the term Pr[Nq] (and thus the term ρ ·Pr[Nq])
must be negligible, if PKStS.Enc is SS-CCA-secure. Hence, if PKStS.Enc
is SS-CCA-secure and reliable, the probability Pr[Nsui] must be negli-
gible.

The insight that Pr[Nsui] must be negligible directly leads us to
the construction of a warden W~R on the channel C(~R). The warden
simply chooses some history of length η and a random message m
and sends those to its challenging oracle. It then receives the docu-
ment sequence d1, . . . ,d`. If di 6∈ Rη+i−1, the warden returns »Stego«.
Else, it samples q documents D from C(~R)η+`−1,PKStS.dl(κ) and tests
for all d ∈ D via the decoding oracle PKStS.Decsk if the sequence
d1,d2, . . . d`−1,d decodes to m. If we find such a document d, we

6.7 an impossibility result 99

return »Stego« and else return »Not Stego«. If the documents are ran-
domly chosen from the channel, the probability to return »Stego« is
at most q/|2PKStS.ml(κ)|, i. e. negligible. If the documents are chosen by
the stegosystem, the probability that the warden returns »Not Stego«
is exactly Pr[Nsui]. Hence, the stegosystem must be either unreliable
or SS-CCA-insecure on some channel in C(Rn).

6.7.2 Lower Bound on Pseudorandom Channels

To give a formal proof and justify the ability of the warden to test doc-
uments for membership, we will now replace the random channels
C(~R) by pseudorandom channels constructed upon the CBC mode SESP pseudorandom

channelsfor a PRP P. Note that | supp(SESP.Enc(ω,m))| = 2n/2 for all keys ω
and m, where n = SESP.cl(κ). For a key ω ∈ supp(SESP.Gen(1κ)), let
C(ω)i,dl(κ) be the distribution SESP.Enc(ω, bin(i)), where bin(i) is the
binary representation of the number i of length SESP.ml(κ) modulo
2SESP.ml(κ). The family of channels CSESP = {C(ω)}ω∈supp(SESP.Gen(1κ))
thus has the following properties:

1. For each ω and each i, the support | supp(C(ω)i,dl(κ))| has size
2SESP.cl(κ)/2 by construction of the CBC mode.

2. An algorithm with the knowledge of ω can test in polynomial
time, whether d ∈ supp(C(ω)i,dl(κ)), i. e. whether d belongs to
the support by simply testing whether SESP.Dec(ω,d) equals
bin(i).

3. Every algorithm Q that tries to distinguish C(ω) from a random
channel C(~R) fails: For every polynomial algorithm Q, we have
that the term∣∣ Pr

~R�R∗dl(κ)

[QC(~R)(1κ) = 1] − Pr
ω←SESP.Gen(1κ)

[QC(ω)(1κ) = 1]
∣∣

is negligible in κ if P is a secure PRP. The algorithm QC(~R)

resp. QC(ω) can submit an index i to its oracle and receive sam-
ples from Ri resp. SESP.Enc(ω, bin(i)).

The security of P implies that SESP is CPA$-secure (see Theo-
rem 5). No polynomial algorithm can distinguish C(~R) upon
random choice of ~R from the uniform distribution on {0, 1}n, as
|C(~R)i,n| is super-polynomial. Hence, no algorithm Q can distin-
guish C(~R) from SESP.Enc(ω,m).

Note that the third property directly implies that no polynomial
algorithm can conclude anything about C(ω)i,dl(κ) from samples of
previous distributions C(ω)0,dl(κ), . . . ,C(ω)i−1,dl(κ), except for a neg-
ligible term. The second property directly implies that we can get rid
of the infeasible assumption of the previous section concerning the

100 on the gold standard of public-key steganography

ability of the warden to test whether a document belongs to the sup-
port of C(ω): We simply equip the warden with the seed ω. Call the
resulting warden Wω.

As above, we are interested in the events that a stegosystem PKStS
with output length ` = PKStS.ol(κ) outputs a document that it has
not seen by sampling (here denoted as N̂q), the probability that a
document is outputted that does not belong to the support (here de-
noted as Îns) and the probability that a random set of q documents
is not suitable to end a given document prefix d1,d2, . . . ,d`−1 (here
denoted as N̂sui).

As Îns is a polynomially testable property (due to the second prop-
erty of our construction), we can conclude a pseudorandom version
of inequality (*):

Lemma 47. Let PKStS be a SS-CCA-secure universal stegosystem. For every
warden W, we have

Pr[N̂q] 6
Advss-cca

W,PKStS,C(ω)(κ)

1− ` · 2−PKStS.dl(κ)/2 + InSeccpa$
SESP(κ).

Hence, if the stegosystem PKStS is SS-CCA-secure and SES is CPA$-
secure, the term Pr[N̂q] must be negligible.

As above, if the stegosystem has reliability ρ, we can conclude that

Pr[N̂sui] 6 max{1− ρ, ρ · Pr[N̂q]}.

The warden Wω – defined similar to W~R from the preceding section –
thus succeeds with very high probability. Hence, no SS-CCA-secure
and reliable stegosystem can exist for the channel family CSESP if
SESP is CPA$-secure. Due to Theorem 5 and [KL07, Chapter 6], we
know that the existence of one-way functions implies that SESP is
CPA$-secure. We can thus conclude the following theorem.

Theorem 48. If one-way functions exist, for every stegosystem PKStS there
is a 0-memoryless channel C such that PKStS is either unreliable or it is not
SS-CCA-secure on C.

Note the contrast to the private key setting discussed by Dedić et al.
in [Ded+09], where it was only proved that no universal stegosystems
of a certain rate exists. Our negative result also holds if the stego-
system is extremely rate-inefficient (e. g. if it only embeds a single bit
per document).

6.8 conclusion and further work

We have given a complete answer to the question of existence of a uni-
versal SS-CCA-secure public-key steganography. We have proved that,
restricted to memoryless channels, universal secure stegosystems ex-
ist, but in general, universal SS-CCA-secure public-key steganography

6.8 conclusion and further work 101

is not possible. We have shown that this impossibility result holds for
channels just above memoryless ones, i. e. already for 0-memoryless.

Our SS-CCA-secure construction uses minimal complexity-theoretic
assumption: We only assume, as Hopper’s system [Hop05], the exis-
tence of doubly enhanced trapdoor permutations and the existence
of collision resistant hash functions. In this work we have presented
a construction which allows to embed one bit per document. How-
ever, a straightforward modification can increase the embedding up
to log(κ) bits. Due to Dedić et al. [Ded+09], we know that this is the
best possible payload for universal systems, as every public-key stego-
system can be interpreted as a private-key stegosystem: The symmet-
ric key k equals the key-pair (pk, sk). Arguably, the most significant
restriction of our construction lies in the fact that it does not work
for channels where the history of the already sent documents plays a
role. But due to our impossibility result we know that this is the best
possible situation: As soon as the history influences the distribution
of the documents, e. g. by its length, SS-CCA-security is not achievable
anymore.

We thus know that requiring SS-CCA-security and universality si-
multaneously is not feasible. Two possible research directions imme-
diately come to mind: First, one could try to find a reasonable notion
of security that is stronger than SS-RCCA-security, but weaker than
SS-CCA-security and try to find a universal stegosystem for this no-
tion, similar to Backes and Cachin [BC05]. Second, one could try to
identify families of channels that still exhibit such a SS-CCA-secure
stegosystem. Possible candidate channels for this could e. g. be de-
scribed by formal languages.

7
A P R I VAT E - K E Y S T E G O S Y S T E M F O R PAT T E R N
C H A N N E L S

There are only patterns, patterns on top of patterns, patterns that affect
other patterns. Patterns hidden by patterns. Patterns within patterns.

— Chuck Palahniuk

chapter running time applicability key-symmetry

7 polynomial grey-box secret-key
All of the last chapters dealt with universal steganography, and

either (a) needed super-polynomial time or (b) had only a logarithmic
rate. As shown by Dedić et al. in [Ded+09], this is the best one can
hope for. In this chapter, we are interested in the question whether
the restriction to a certain set of memoryless channels – in our case
those described by pattern – helps to significantly reduce the overhead
of the stegosystems.

While all presented polynomial-time stegosystem had only a log-
arithmic rate, it has been observed that the stegosystems used in
practice typically embed up to O(

√
n) bits in documents of length n

[Ker+13; Ker+08], but they are non-universal and tailored to specific
types of channels. In order to close this gap between theory and prac-
tice, Liśkiewicz, Reischuk, and Wölfel [LRW13] have introduced the
model of grey-box stegosystems that are specialized to certain subsets of
all possible channels – thus there is some a priori information how the
channel may look like. In addition, they have investigated a weaker
notion of security called undetectability, where both stegoencoder and
adversary face the same learning problem of determining the actual
channel out of the possible elements in this subset.

In [LRW13] it has been shown that the family of channels described
by arbitrary monomials – a family that can be learned easily – pos-
sesses a secure stegosystem that can embed up to

√
n bits in a single

document. Monomials are rather simple objects, thus cannot model
many real communication channels. It is therefore an interesting ques-
tion whether secure grey-box stegosystems can be designed for more
complex communication channels. Since some common structure is
necessary in order to apply embedding techniques for secret mes-
sages, channels that can be described by formal languages are of spe-
cial interest. To construct a good stegosystem, two tasks have to be
solved efficiently: learning the channel distribution and modifying
this distribution in an (almost) undetectable way. Obviously, one can-
not allow arbitrary distributions on the document space since for sim-
ple information theoretic reasons they cannot be learned efficiently.

104 a private-key stegosystem for pattern channels

The goal of this chapter is to investigate this question for pattern lan-
guages, and therefore let us call the corresponding channels pattern
channels. Learning algorithms for pattern languages have been stud-
ied intensively. Thus, here we concentrate on the second issue, the
undetectable modification of strings within such a language.

Pattern languages have been introduced by Angluin [Ang80]. It
makes a significant difference whether erasing substitutions are al-
lowed or not [Rei02]. Both cases have sparked a huge amount of work
both in the fields of formal languages (e. g. [Sal94]) and machine learn-
ing (e. g. [Cas+06; Cas+12; LW91; Rei02; RZ00; Shi82; SYZ11]). Some
of these results were also used in the context of molecular biology
(e. g. [SA95]). An important example of communication channels that
can be defined by pattern languages is the set of filled out forms
(either in paper or digital).

A preliminary version of the results of this chapter was published
as [BR16].

7.1 our contribution

We design a method to alter strings of a pattern language that are
provided according to some distribution in an almost undetectable
way. On this basis we show how a rate-efficient, secure and reliable
stegosystem can be constructed for a wide class of pattern channels
if the pattern can be learned efficiently or are given explicitly. As a
novel technical contribution, we analyze the rank of random matrices
that are generated by the distribution of random strings when sub-
stituting variables in a pattern. We also present a generalized form
of the Poisson approximation typically used for randomized processes
that may be of independent interest.

The next section contains the needed definition for patterns and
pattern languages. Section 7.3 contains an overview on our general
strategy. In the final section, Section 7.4, we first analyze the ranks
of certain random matrices in order to show that random substitu-
tions can be used for steganography with high probability. We then
show how two general classes of probability distributions on pattern
languages can be used for rate-efficient steganography.

7.2 pattern languages

Let Fq denote the unique finite field on q elements for a prime
power q. Furthermore, let A ∈ Fm×nq be an matrix of dimensionsHence q = pk for

some prime p m × n and b ∈ Fmq be a compatible vector of length m. The set
Sol(A,b) = {x ∈ Fnq | Ax = b} denotes the solutions of the linear
equation system (LES) Ax = b. The rank rk(A) of a matrix A is therank

size of the largest subset of rows or columns that are linearly inde-
pendent. It is a known fact that Sol(A,b) is either empty or of size

7.2 pattern languages 105

qn−rk(A) (see e. g. [Lan93, Chapter 8]). For a fixed matrix A, varying
over b ∈ Fmq defines a partition of Fnq . Hence, the number of vectors
b such that | Sol(A,b)| > 0 is exactly qrk(A).

Let Γ be a finite alphabet of size at least 2, V = {v1, v2, . . .} be
a disjoint set of variables and PAT := (Γ ∪ V)+. An element π =

π1π2 · · ·πm of PAT is called a pattern. Let Var(π) denote the set of pattern

variables appearing in π — we may assume Var(π) = {v1, . . . , vr} for
some r ∈N. For v ∈ Var(π) let occ(v,π) be the number of occurrences
of v in π, that is occ(v,π) = |{j ∈ {1, . . . ,m} : πj = v}|.

A (possibly erasing) substitution Θ is a string homomorphism Θ : Γ ∪ (possibly erasing)
substitutionV → Γ∗ such that Θ(a) = a for all a ∈ Γ . By πΘ we denote the

application of Θ to π i. e., πΘ := Θ(π1)Θ(π2) · · ·Θ(πm). For n ∈ N,
let Subsn(π) denote the set of all substitutions that generate strings
of length n and Langn(π) be these strings, i. e. Langn(π) = {πΘ | Θ ∈
Subsn(π)} ⊆ Γn. The set Lang(π) =

⋃
n∈N Langn(π) is the language language generated

by πgenerated by π.
According to the length of the variable substitutions we further

partition Subsn(π) into subsets Subs[~̀]n (π) where ~̀ = (`1, . . . , `r) ∈
{0, 1, . . . ,n}r describes a possible length vector that substitutes the vari- length vector

able vi with a string of length `i = |Θ(vi)|:

Subs[~̀]n (π) = {Θ ∈ Subsn(π) : |Θ(vi)| = `i ∀i}.

Note that the subscript n is redundant, as the pattern and the length
vector uniquely determine the length of the resulting string. We will
thus sometimes omit it.

Such a set may be empty for many parameters n,~̀, but if not, then
its size is exactly |Γ |η(

~̀) where η(~̀) :=
∑
i `i denotes the total length η(~̀) represents the

degree of freedom
of ~̀

of all variable substitutions. Let Lang[~̀]
n (π) denote the set of strings

generated by substitutions in Subs[~̀]n (π).
For steganographic applications it is necessary that a substitution

has enough entropy. This could either be guaranteed by requiring
that the pattern contains a sufficient number of different variables,
but also make sure that erasing substitutions are not allowed. Al-
ternatively, if we do not want to exclude erasing substitutions, the
number of independent symbols that are generated by all variables
substitutions has to be of a certain size – the number η(~̀) as de-
fined above. Otherwise, a pattern like v1v2v1v3 . . . v1vn could gen-
erate strings cn−1 for c ∈ Γ by substituting v1 by c and erasing all
other variables. Such strings are obviously not suitable for embedding
secret information, as η(~̀) = 1.

For steganography with strings generated by a pattern π, we model
the application of a substitution Θ to a variable v as generating a se-
quence of new intermediate variables u(1)v ,u(2)v , . . . ,u(|Θ(v)|)

v which
later can be replaced by a single letter of Γ . The intermediate pattern intermediate pattern

[π]Θ for π and Θ is thus defined as [π]Θ := [π1]Θ[π2]Θ · · · [πm]Θ with

106 a private-key stegosystem for pattern channels

[a]Θ = a for all a ∈ Γ and [v]Θ = u
(1)
v u

(2)
v · · ·u(|Θ(v)|)

v for new vari-
ables u(j)v . Note that two substitutions Θ, Θ ′ generate the same inter-
mediate pattern ([π]Θ = [π]Θ ′) iff they belong to the same subset
Subs[~̀](π). Thus, we denote the intermediate pattern also by [π~̀].

Example 9. Let π = v1v200v20v1v1 and `1 = |Θ(v1)| = 1, `2 =

|Θ(v2)| = 3, thus η(~̀) = 4. Then Θ belongs to Subs[(1,3)]
12 (π). The

intermediate pattern [π(1,3)] = [π]Θ of length n = 12 has the form

u
(1)
v1 u

(1)
v2 u

(2)
v2 u

(3)
v2 0 0 u

(1)
v2 u

(2)
v2 u

(3)
v2 0 u

(1)
v1 u

(1)
v1 . �

7.3 steganography using pattern

For a pattern π ∈ PAT on alphabet Γ with a special blank symbol
� 6∈ Γ and n ∈ N, let L̂angn(π) ⊆ (Γ ∪ {�})n be the set of all strings
of length at most n, generated by π and padded to length n, i. e.

L̂angn(π) :=
⋃
n ′6n

{w�n−n
′
| w ∈ Langn ′(π)}.

We also define L̂ang
[~̀]

n (π) accordingly.

Example 10. If π = v1av2 on the alphabet Γ = {a,b}, we have these
languages for n = 3:

Lang3(π) = {aaa,aab,baa,bab,abb,aba,bba} = Γ3 \ {bbb}

L̂ang3(π) = {a��,aa�,ba�,ab�}∪ Lang3(π) �

A pattern channel C(π) is a channel such that C(π)h,dl(κ) is a dis-pattern channel

tribution on L̂angdl(κ)(π) for all dl(κ) and all h. To simplify our pre-
sentation, we also assume that all channels used in this chapter are
memoryless. We will later give concrete examples of the pattern chan-
nels that are suitable for steganography.

The general strategy used by us to design a secure stegosystem
StS works as follows: Alice and Bob share two keys k, k ′ for two
pseudorandom functions F, F ′. First, the message m is encrypted intogeneral strategy

ciphertext c of length cl(κ) by the random counter mode using the
PRF F with key k. Then the PRF F ′ with key k ′ is used to compute a
partition of the positions of a document d = d1d2 . . . di . . . dStS.dl(κ)
into cl(κ) subsets B1, . . . ,Bcl(κ). The letters at positions in Bj will be
used to encode the j-th secret bit.

When Alice has access to a pattern channel C(π), she needs infor-
mation about π in order to transmit stegodocuments. Either this in-
formation is given to her explicitly, or in case of a grey-box situation
she has to learn the pattern by sampling from the channel. It has been
shown that this can be done efficiently for certain subclasses of pat-
tern languages: Typical examples are pattern that contain a constant

7.4 coding bits by random subsets 107

number of variables (e. g. [LW91; RZ00]) or regular pattern that con-
tain each variable at most once (e. g. [Shi82; Cas+06]). We will assume
that Alice knows π, either by learning it or it being hardwired into
the description of Alice. To generate a stegotext that encodes the se-
cret c, Alice tries to modify a document slightly into a stegotext d of
the same length that can also be generated by π. In order to make this
modification undetectable, Alice must ensure that the distribution of
these documents d is (almost) identical to the original distribution
of documents generated by C(π). In the next section we will show

that with high probability a nonempty subset Lang[~̀]
dl(κ)(π) is able to

encode every possible secret c for a suitable length vector ~̀.
In the following we restrict to the case of a binary alphabet Γ =

{0, 1}, but our techniques can be simply adapted to larger alphabets.
Arithmetic in Γ will be done as in the field F2.

7.4 coding bits by random subsets

Let π be a pattern and ~̀ a vector for the length of variable substitu-
tions that generates an intermediate pattern [π~̀] of length dl(κ) with
corresponding variables Var([π~̀]) = {v1, v2, . . . , vη(~̀)}. In the follow-

ing we consider only parameters such that the set Subs[
~̀]
dl(κ)(π) is

non-empty. For a partition of {1, . . . , dl(κ)} into cl(κ) subsets speci-
fied by a function f : {1, . . . , dl(κ)} → {1, . . . , cl(κ)} we define a binary
(cl(κ)× η(~̀))-matrix Zf,π,~̀ = (zr,i), called the encoding matrix. The en- encoding matrix

try zr,i equals the parity of the number of positions in [π~̀] that hold
the i-th variable and are mapped to position r, i. e.

zr,i = |{j ∈ {1, . . . , dl(κ)} : [π~̀]j = vi ∧ f(j) = r}| mod 2.

Example 11. For π and ~̀, resp. Θ used in Example 9 and the parti-
tion f(j) = (j mod 3) + 1, the subset B1 collects the symbols at posi-
tions 3, 6, 9, 12 (which are u(2)v2 , 0,u(3)v2 ,u(1)v1), the set B2 those at posi-
tions 1, 4, 7, 10 (which are u(1)v1 ,u(3)v2 ,u(1)v2 , 0) and B3 those at 2, 5, 8, 11,
namely u(1)v2 , 0,u(2)v2 ,u(1)v1 . Then the matrix Zf,π,~̀ has rank 3 and looks
as follows

Zf,π,~̀ =

u
(1)
v1 u

(1)
v2 u

(2)
v2 u

(3)
v2

1 1 0 1 1

2 1 1 0 1

3 1 1 1 0

. �

For a reliable embedding of an arbitrary ciphertext of length cl(κ)
into a string of L̂angdl(κ)(π) the matrix Zf,π,~̀ must have maximal rank
cl(κ). As already noted, this implies that the pattern and the substitu-
tion must generate enough entropy with respect to cl(κ). In particular,
η(~̀) has to be larger than cl(κ).

108 a private-key stegosystem for pattern channels

7.4.1 Bounding the Rank of Matrices Obtained by Random Assignments
of Intermediate Pattern

Fix a pattern π and a vector ~̀ ∈ {0, . . . , dl(κ)}|Var(π)| representing all
substitutions that replace the variables in π by a string of total length
η(~̀) =

∑
i `i.

With high probability a random (0, 1)-matrix of dimension cl(κ)×
η(~̀) has maximal rank cl(κ) over F2 if η(~̀) is slightly larger than
cl(κ) (see e. g. [Kol99, Theorem 3.2.1]). In Zf,π,~̀, however, the entries
are not independent. In addition, an entry does not necessarily take
value 0 and 1with probability exactly 1/2. The second problem can be
solved by showing that the deviation from the uniform distribution
is not too large. To handle the non-independence, significantly more
technical effort is required. We already noted that not every pattern
and not every substitution is suitable for steganographic applications.
We thus define the following assumption used throughout the rest of
this chapter:

Assumption (A)
Assumption (A). The necessary entropy is high enough, i. e.

η(~̀) > max{(2e cl(κ))2, |π|}.

To simplify the notation, we define the following function ζ(x,y)
that will arise in our analysis:

ζ(x,y) =
y · (4/5)y

1− 2 exp
(
−
√
x

12e

)
Note that ζ(η(~̀), cl(κ)) is negligible under Assumption (A). We will
now prove that Assumption (A) implies that the matrix Zf,π,~̀ – de-
fined as above – has full rank with high probability.

Theorem 49. Let cl and dl be two polynomials in κ. Then, for every π ∈
PAT and every vector ~̀ ∈ {0, . . . , dl(κ)}|Var(π)| fulfilling Assumption (A),
we have

Pr
f�Fun(dl(κ),cl(κ))

[Zf,π,~̀ has rank cl(κ)] > 1− ζ(η(~̀), cl(κ)) .

The rest of this section is devoted to the proof of Theorem 49. The
main idea of the proof is to show that a random assignment of pattern
variables to subsets can be approximated by independent Poisson
processes.

Remember, that a Poisson random variable X with mean µ is dis-
tributed such that for all n ∈N:

Pr[X = n] = exp(−µ) · µ
n

n!
.

Later on, we will need the probability that X is even (resp. odd). A
simple calculation yields the following lemma.

7.4 coding bits by random subsets 109

Lemma 50. Let X be a Poisson distributed random variable with mean µ.
The probability that X is odd is given by

Pr[X mod 2 = 1] =
1− exp(−2µ)

2
.

Proof. Note that Pr[X mod 2 = 1] =
∑∞
r=0 exp(−µ) µ

2r+1

(2r+1)! . The power

series of exp(µ) is given as exp(µ) =
∑∞
n=0

µn

n! . We thus have

exp(µ) − exp(−µ) =
∞∑
n=0

µn − (−µ)n

n!
=

∞∑
r=0

2µ(2r+1)

(2r+ 1)!
= 2 · Pr[X mod 2 = 1] · exp(µ).

In the following, let ~a = (a1, . . . ,aη(~̀)) ∈ N
η(~̀)
>0 be a vector of

positive integers and α = maxi{ai} be its maximal value.
We will now show that the behaviour of the following two probabil-

ity distributions is very similar. The first distribution C(~a) is created
by throwing aj balls of color j into cl(κ) bins for colors j ∈ {1, . . . ,η(~̀)},
while the second distribution X(~a) is generated by independent Pois-
son random variables that have the same mean as the variables in
C(~a).

Input: Positive integers ~a = a1, . . . ,aη(~̀), integer cl(κ)

Distribution C(~a)

1 : for j = 1, . . . ,η(~̀) :

2 : for r = 1, . . . , cl(κ) :

3 : cr,j = 0

4 : for j = 1, . . . ,η(~̀) :

5 : for i = 1, . . . ,aj :

6 : // choose bin

7 : r� {1, . . . , cl(κ)}

8 : cr,j = cr,j + 1

Distribution X(~a)

1 : for j = 1, . . . ,η(~̀) :

2 : for r = 1, . . . , cl(κ) :

3 : xr,j ← Poisson(aj/ cl(κ))

4 : // Poisson(µ) is a Poisson random

5 : // variable with parameter µ

Figure 7: Distributions of throwing colored balls into bins and completely
independent Poisson variables.

If we only throw balls of a single color, i. e. look at a single column,
the following theorem also known as Poisson approximation tells us Poisson

approximationthat C(~a) and X(~a) behave very similar [MU05, Theorem 5.6].

Theorem 51. For every j = 1, . . . ,η(~̀), the distribution of the j-th column
(c1,j, c2,j, . . . , ccl(κ),j) of C(~a)is the same as the distribution of the j-th col-
umn of X(~a) (x1,j, x2,j, . . . , xcl(κ),j) conditioned on

∑cl(κ)
r=1 xr,j = aj.

110 a private-key stegosystem for pattern channels

This result also implies that every predicate P over Ncl(κ), i. e. ev-
ery function P : Ncl(κ) → {0, 1}, behaves the same on these columns
(under the above condition). We now want to use this result by show-
ing that as long as the number of columns η(~̀) is much larger than
the number of rows cl(κ), we can find sufficiently many columns, i. e.
values of j, such that

∑cl(κ)
r=1 xr,j = aj. This allows us to analyze the

behaviour of the distribution C(~a) via the distribution X(~a).
Therefore, let P be a predicate over Ncl(κ)×l, i. e. P : Ncl(κ)×l →

{0, 1} where l 6 η(~̀)
2e·
√
α

. IfΩ = {A | A ∈Ncl(κ)×n} denotes the set of all
(cl(κ)×n)-matrices for n > l, we define the event EP ⊂ Ω as the event
that a matrix A has a subset of l different columns Ai1 , . . . ,Ail such
that P(Ai1 , . . . ,Ail) = 1. To simplify notation, we write EP(A) = 1

if A contains l such columns. We will now show that the event EP
behaves very similar on the distributions X(~a) and C(~a).

comparing colored
balls into bins with

truly random
assignments

Lemma 52. Let ~a = a1, . . . ,aη(~̀) be positive integers and α = maxj{aj}.
Let C(~a) = (cr,j)r∈{1,...,cl(κ)}, j∈{1,...,η(~̀)} be the random matrix of the first
distribution of Figure 7 and X(~a) = (xr,j)r∈{1,...,cl(κ)}, j∈{1,...,η(~̀)} be the
matrix of random variables of the second distribution. Then, for each predi-

cate P over Ncl(κ)×l with l 6 η(~̀)
2e·
√
α

we have

Pr
A←C(~a)

[EP(A) = 1] 6
PrA←X(~a)[EP(A) = 1]

1− 2 exp
(
−

η(~̀)
12e·
√
α

) .

Proof. Denote the columns of X by X1,X2, . . . ,Xη(~̀) and the i-th entry
of the j-th column by Xj[i]. Similarly, let C1, . . . ,Cη(~̀) be the columns
of C and Cj[i] the i-th entry of the j-th column.

For j = 1, . . . ,η(~̀), let Sj =
∑cl(κ)
i=1 Xj[i] be the sum of the entries in

the j-th column. By the definition of a Poisson random variable, the
probability that Sj = aj holds, is given by

a
aj
j · exp(−aj)

aj!
>

1

e · √aj
>

1

e ·
√
α

,

as n! 6 e ·
√
n
(
n
e

)n (see e. g. [MU05, Lemma 5.8]). Denote by S the
random variable counting the number of indices j = 1, . . . ,η(~̀) such

that Sj = aj. We thus have Exp[S] > η(~̀)
e·
√
α

. We now want to show
that S is at least l with very high probability. Due to the definition
of l and our lower bound on Exp[S], we have that S < l implies that
S < Exp[S]/2. Hence, we have

Pr[S < l] 6 Pr[|S− Exp[S]| > Exp[S]/2].

The Chernoff bound (Theorem 1) then gives us the bound of Pr[S <
l] 6 2 exp(−(Exp[S])/12). Due to the monotonicity of the exponen-
tial function, we can use our lower bound on Exp[S] again to bound

Pr[S < l] by 2 exp(− η(~̀)
12e·
√
α
).

7.4 coding bits by random subsets 111

Hence, with probability at least 1 − 2 exp
(

η(~̀)
12e·
√
α

)
, there are at

least l different values for j such that Sj = aj. W. l. o. g., let those val-
ues be 1, 2, . . . , l. Theorem 51 shows that the probability distribution
of the column Cj = (Cj[1],Cj[2], . . . ,Cj[cl(κ)]) and the conditional
probability distribution Xj = (Xj[1],Xj[2], . . . ,Xj[cl(κ)]) with condi-
tion

∑cl(κ)
i=1 Xi[j] = aj are the same. We can thus conclude that

Pr[EP(X1[·], . . . ,Xl[·]) = 1 |
cl(κ)∑
i=1

Xi[j] = aj for j = 1, . . . , l] =

Pr[EP(C1[·], . . . ,Cl[·]) = 1].

We thus have

Pr
A←C(~a)

[EP(A) = 1] 6
PrA←X(~a)[EP(A) = 1]

1− 2 exp
(
−

η(~̀)
12e·
√
α

) .

Note that the term 2 exp(− η(~̀)
12e·
√
α
) is negligible in η(~̀) for α 6 η(~̀).

In order to prove Theorem 49, we still need to examine the proba-
bility that the random matrix X of the lemma above has full rank. rank of random

matrix X
Lemma 53. Let X be a (cl(κ)×η(~̀))-matrix of independent Poisson random
variables generated by the second distribution in Figure 7 with Exp[xr,j] =

aj/ cl(κ) > 0 and assume that Assumption (A) holds with cl(κ) > 6.
The matrix M = (mr,j) with mr,j = xr,j mod 2 has full rank over F2

with probability at least 1− cl(κ) · (4/5)cl(κ).

Proof. Let M1,M2, . . . ,Mcl(κ) be the rows of the matrix, i. e., Mi =

(X1[i] mod 2,X2[i] mod 2, . . . ,Xη(~̀)[i] mod 2)>. The probability of the

variable Xi[j] to be even is 1+exp(−2ai/ cl(κ))
2 6 1+exp(−2/ cl(κ))

2 due to
Lemma 50. The matrixM has full rank iff the rows are linear indepen-
dent. Denote by Li the event, that the row Mi is linear independent
from the previous rows M1, . . . ,Mi−1 and that Mi is not completely

zero. We thus have Pr[L1] > 1 −
(
1+exp(−2/ cl(κ))

2

)η(~̀)
and further-

more Pr[M has full rank] = Pr[
∧cl(κ)
i=1 Li]. To simplify readability, let

g(κ) =
(
1+exp(−2/ cl(κ))

2

)
. If one is given i − 1 vectors, there are at

most
∑i−1
j=0

(
i−1
j

)
linear dependent vectors which one can obtain from

their linear combinations. For Mi with i > 2, we thus have at least

2η(
~̀) −

i−1∑
j=0

(
i− 1

j

)

possible vectors that are linear independent of M1,M2, . . . ,Mi−1.
Note that the vectors are not identically distributed with probability
(1/2)η(

~̀), but can have probability up to g(κ)η(~̀). In the worst case,

112 a private-key stegosystem for pattern channels

all of these Ni =
∑i−1
j=0

(
i−1
j

)
linear combinations have probability

g(κ)η(
~̀). Hence

Pr[Li] 6 g(κ)r ·Ni.

This probability is maximized for i = cl(κ), as

Ncl(κ) =

cl(κ)−1∑
j=0

(
cl(κ)
j

)
= 2cl(κ) − 1 6 2cl(κ).

We thus have Pr[Li] 6 g(κ)η(
~̀) · 2cl(κ). By construction, we have

Pr[M has full rank] = Pr[
cl(κ)∧
i=1

Li].

This allows us to conclude

Pr[M does not have full rank] = Pr[M has full rank] =

Pr[

cl(κ)∨
i=1

Li] 6 cl(κ) · g(κ)η(~̀) · 2cl(κ).

As η(~̀) > (2e cl(κ))2 > cl(κ)2 by Assumption (A), we can bound
this furthermore by

cl(κ) · g(κ)η(~̀) · 2cl(κ) 6 cl(κ) · g(κ)cl(κ)2 · 2cl(κ) =

cl(κ) · (g(κ)cl(κ) · 2)cl(κ).

Note that the term g(κ)cl(κ) =
(
1+exp(−2/ cl(κ))

2

)cl(κ)
is monotonically

decreasing, as its derivative is strictly smaller than 0. For cl(κ) > 6,
the value g(κ)cl(κ) is smaller than 2/5. The term is thus bounded by
cl(κ) · (4/5)cl(κ), which is negligible.

Note that the property whether a (cl(κ) × η(~̀))-matrix does not
have full rank can also be expressed as an event EP for a certain
predicate P : Ncl(κ)×cl(κ) → {0, 1}. By setting ai = occ(vi, [π~̀]), it is
not hard to see that

α = max
i

{ai} = max
i

{occ(vi, [π~̀])} = max
i

{occ(vi,π)} 6 |π|.

Assumption (A) thus implies that α 6 η(~̀) and l = cl(κ) 6 η(~̀)
2e·
√
α

.
We can thus use Lemma 52 in combination with Lemma 53 to finally
conclude Theorem 49.

In the steganographic application described below we replace the
totally random function f by a PRF F. Its seed is determined by the
secret key of Alice and Bob. The function F may add another super-
polynomial small error to the property that Zf,π,~̀ has maximal rank.

7.4 coding bits by random subsets 113

7.4.2 Modifying Strings of a Pattern Language to Embed Secrets

Note that the equation Zf,π,~̀ · x = b has a solution x ∈ {0, 1}η(~̀) for
every b ∈ {0, 1}cl(κ) if the matrix Zf,π,~̀ has full rank.

Example 12. For the matrix

Zf,π,~̀ =

u
(1)
v1 u

(1)
v2 u

(2)
v2 u

(3)
v2

1 1 0 1 1

2 1 1 0 1

3 1 1 1 0

of Example 11 and b = (1, 1, 0), the vector x = (0, 0, 0, 1) is a so-
lution to the linear equation Zf,π,~̀ · x = b. The corresponding sub-
stitution Θx(v1) = 0,Θx(v2) = 001 applied to π yields the string
d = 0 0 0 1 0 0 0 0 1 0 0 0. �

This example illustrates how we generate a string d(x) in Lang[~̀]
dl(κ)

from a solution x ∈ {0, 1}η(~̀) of the equation Zf,π,~̀ · x = b : Sim-
ply replace each intermediate variable by the corresponding symbol
in x. Note that for prime alphabets Γ ′ larger than {0, 1}, all of these
operations would be performed in Γ ′ and the matrix Z would be con-
structed mod |Γ ′|.

To embed a ciphertext c into a string of Lang[~̀]
dl(κ) we use the follow-

ing algorithm modify. For a given pattern π ∈ PAT and length vector
~̀ let Ter(π,~̀) be those positions in [π~̀] that are taken by constants.

Modifying algorithm: modify(f, c,π,~̀)

Input: function f : {1, . . . , dl(κ)} → {1, . . . , cl(κ)}, ciphertext c =

c1 . . . ccl(κ) ∈ {0, 1}cl(κ), pattern π ∈ PAT on Γ = {0, 1}, vector ~̀

1 : for r := 1, . . . , cl(κ) :

2 : br := cr +
∑

j∈Ter(π,~̀),f(j)=r

[π~̀]j

3 : b := (b1,b2, . . . ,bcl(κ))

4 : if | Sol(Zf,π,~̀,b)| > 0 :

5 : // this is always true if rk(Z
f,π,~̀) = cl(κ)

6 : x� Sol(Zf,π,~̀,b)

7 : else :

8 : x← (0, 0, . . . , 0)

9 : return d(x)

The running time of modify is clearly polynomial, as we only use
arithmetic operations on numbers of bounded size and the sampling

114 a private-key stegosystem for pattern channels

from Sol(Zf,π,~̀,b) can be performed as follows: Transform the ma-
trix Zf,π,~̀ into row echelon form via Gaussian elimination and set
the lower dl(κ) − rk(Zf,π,~̀) free variables randomly. The remaining
rk(Zf,π,~̀) variables are then uniquely determined.

With the help of Assumption (A), we can now prove the following
lemma.

Lemma 54. For every π ∈ PAT and every vector ~̀ ∈ {0, . . . , dl(κ)}|Var(π)|,

the output of modify(f, c,π,~̀) is uniformly distributed over L̂ang
[~̀]

dl(κ)(π) if
c� {0, 1}cl(κ) is chosen at random.

Furthermore, if f : {1, . . . , dl(κ) → {1, . . . , cl(κ)} is chosen randomly and
Assumption (A) holds, with probability at least 1− ζ(η(~̀), cl(κ)) the output
d satisfies the following property: for every c ∈ {0, 1}cl(κ) and every r ∈
{1, . . . , cl(κ)}, we have

∑
j: f(j)=r dj = cr.

The second property indicates how the receiver of a string d can
decrypt each bit cr of the ciphertext: Add up all symbols in d whose
positions are mapped to r by f.

Proof. If Zf,π,~̀ has maximal rank, for each vector c ∈ {0, 1}cl(κ) the
set Sol(Zf,π,~̀, c) is nonempty. These sets form an equal size partition

of {0, 1}η(~̀). If m is chosen at random, the vector c generated in the
for-loop is random, too. Thus, modify returns a random element of

L̂ang
[~̀]

dl(κ)(π). In the other case this property is obvious.

By Theorem 49, with probability at least 1− ζ(η(~̀), cl(κ)) the rank
is maximal. If we take any solution x ∈ Sol(Zf,π,~̀, c), a simple calcu-
lation shows that the string d(x) specifies all bits cr correctly.

7.4.3 Sampling a Pattern Channel

suitable
distributions Next we discuss how to select ~̀ in order to match the distribution of

the pattern channel C(π). In general, we cannot sample directly from
C(π) to determine the parameter ~̀, as determining the substitution
lengths of the variables allows to solve the membership problem for
Lang(π) easily and this problem is already NP-hard in case of arbi-
trary pattern as shown by Angluin in [Ang80].

We call a distribution on Lang(π) fixed variable length if, indepen-fixed variable length

dently to each variable vi, a substitution of length `i is applied where
the value `i is chosen according to some distribution ∆i. For fixed
`i, each possible substitution by a string in Γ `i is equally likely. In
this case we assume that the distributions ∆i are known to the ste-
goencoder. Thus, a typical channel document can be generated by
selecting a value `i for each vi and then a random string of Γ `i . For
the modification procedure described above, it suffices to generate a
random vector ~̀ = (`1, . . . , `r) that matches the distribution of C(π).

7.4 coding bits by random subsets 115

We can also handle a second type of distributions that focuses
on the length dl(κ) of the documents. Let us call a distribution on

L̂ang(π) total length-uniform if every nonempty set Subs[
~̀]
dl(κ)(π) has the total length-uniform

same probability and within such a set all substitutions are equally
likely. Formally, a document d ∈ Lang[~(`)]

n (π) has probability ρ(n) ·
|{Θ∈Subsn(π)|πΘ=d}|

Ln(π)·2η(~̀)
, where Ln(π) = |{~̀ | Subs[~̀]n (π) 6= ∅}| and ρ is

the probability density function of some probability distribution, i. e.∑
n∈N ρ(n) = 1 and ρ(n) > 0 for all n ∈N.
We now describe how to sample such length vectors ~̀ uniformly in

order to sample strings from a total length-uniform distribution.
For Var(π) = {v1, . . . , vr} and ai = occ(vi,π), let ~a = (a1, . . . ,ar) ∈

Nr. Given dl(κ), consider the task to uniformly generate vectors ~̀ =

(`1, . . . , `r) ∈ {0, . . . , dl(κ)}r of integers that satisfy the Diophantine
equation

∑r
i=1 ai`i = dl(κ) − t, where t = |Ter(π)| is the number of

terminals in π. Therefore, let S~a(dl(κ)) denote the set of such vectors ~̀.
For all integers k ∈ {1, . . . , r} and all integers n 6 dl(κ), define

F~a(n,k) = |{~̀ ∈ {0, . . . ,n}k |

k∑
i=1

ai`i = n}|.

The value |S~a(dl(κ) − t)| = F~a(dl(κ) − t, r) can be computed by dy-
namic programming. It holds F~a(n, 1) = iff a1 divides n and 0 else.
If F~a(n ′,k) is known for all n ′ 6 n we can compute F~a(n,k+ 1) as
F~a(n,k+ 1) =

∑bn/ak+1c
i=0 F~a(n− ak+1 · i, k).

Thus, the size of S~a(dl(κ) − t) can be obtained in time O(dl(κ)2 · r).
Since the problem of computing such solution sets is self-reducible,1

the work of Jerrum, Valiant, and Vazirani [JVV86, Theorem 6.3] im-
plies the existence of a PPTM M that generates these elements with
arbitrary precision efficiently. For every ~̀ ∈ S~a(dl(κ) − t) and every
ε > 0

(1+ ε)−1|S~a(dl(κ) − t)|−1 6 Pr[M(~a, dl(κ) − t, ε) = ~̀]

6 (1+ ε)|S~a(dl(κ) − t)|−1.

Furthermore M is polynomially time-bounded with respect to dl(κ), ~a,
and log ε−1. The statistical distance between the output of the PPTM

M(~a, dl(κ) − t, ε) and the uniform distribution on S~a(dl(κ)) is thus at
most ε · |S~a(dl(κ) − t)|.

Note that by setting e. g. ε = δ · dl(κ)− dl(κ), the statistical distance
between the output M(~a, dl(κ) − t, ε) and the uniform distribution on
S~a(dl(κ)) is bounded by δwhile the running time is still polynomially
time-bounded with respect to dl(κ), ~a, and log δ−1, as |S~a(dl(κ)− t)| 6
dl(κ)dl(κ).

We can thus construct the following algorithm Samp(π, ε) that sam-
ples from a total length-uniform distribution C(π).

1 Intuitively, deciding on the values of `1, . . . , `j leads to a new, smaller instance with
vector ~a ′ = (aj+1, . . . ,ar) and right hand side dl(κ) −

∑j
i=1 ai`i.

116 a private-key stegosystem for pattern channels

Sampling algorithm: Samp(π, ε)

Input: Pattern π ∈ PAT, ε > 0

1 : Var(π) := {v1, . . . , vr}

2 : t := |Ter(π)|

3 : for i := 1, . . . , r : ai := occ(vi,π)

4 : sample x from the channel C(π)

5 : ~̀← M((a1, . . . ,ar), |x|− t, ε · |x|−|x|)// ` ∈ {0, . . . , |x|− t}r

6 : for i := 1, . . . , r :

7 : Θ(vi)� {0, 1}`i

8 : return |x|,~̀,πΘ

Theorem 55. The statistical distance of the string πΘ generated by the fol-
lowing algorithm and a total length-uniform distribution C(π) on L̂ang(π)
is at most ε.

Proof. As the document x is sampled from the channel, it is dis-
tributed with probability ρ(|x|), where ρ is the probability upon the
lengths of the total length-uniform distribution. The statistical dis-
tance between M((a1, . . . ,ar), |x|− t, ε · |x|−|x|) and the uniform distri-
bution on S~a(|x|− t) is at most ε by our discussion above. Clearly, for
fixed S~a(|x|− t), the concrete substitution Θ has probability 2η(~̀) by
definition.

We can thus conclude that for every document d ∈ L̂ang(π), there
is an ε(d) such that we have

ρ(|d|) ·
(1− ε(d))|{Θ ∈ Subs|d|(π) | πΘ = d}|

|S~a(|d|− t)| · 2η(~̀)
6

Pr[Samp(π, ε) outputs document d = πΘ] 6

ρ(|d|) ·
(1+ ε(d))|{Θ ∈ Subs|d|(π) | πΘ = d}|

|S~a(|d|− t)| · 2η(~̀)
,

with
∑
d ε(d) = ε.

7.4.4 A Secure Stegosystem for Pattern Channels

Let Π be a subset of PAT that restricts the family of pattern chan-
nels C(π). We consider two cases: either Π is a simple concept like
1-variable pattern or regular pattern with terminal blocks of fixed
length that efficiently can be learned probabilistically exact [Cas+06].
Alternatively, Π may be more complex, but then we have to assume
that the stegoencoder is told the pattern π of the channel to be used.
But note that in any case Alice and Bob first have to agree on a stego-
system and a secret key. After that the pattern channel is determined,
and this may even be done by an adversary.

7.4 coding bits by random subsets 117

In addition, one cannot allow arbitrary distributions on L̂ang(π)
since the stegoencoder needs information on the distribution and
such a description in general is at least of exponential size. Above,
we have introduced two families of meaningful distributions, fixed
variable length and total length-uniform. In both cases, for an arbitrary
pattern π, a pattern channel C(π) with such a distribution can be sam-
pled efficiently given π.

Throughout this section, we assume that Assumption (A) holds. We
can thus assume that all documents in the channel have sufficiently
large freedom, i. e. that η(~̀) is sufficiently large.

The new techniques to design a stegosystem for pattern channels
have been described above. To get a complete picture we list the main
steps of the stegosystem StS, that depends upon two PRFs F and F ′.

1. Alice and Bob have agreed on a secret key (k,k ′) used as seed
for two pseudorandom functions;

2. Alice learns or gets the pattern defining the channel and is in-
formed about the type of the channel distribution;

3. given a message m, Alice randomizes it into a string m ′ by
using the random counter mode SESF and key k;

4. Alice draws a length vector ~̀ using Samp(π) in case of a total
length-uniform distribution, or samples it for each variable in-
dividually in case of a fixed variable length distribution;

5. using modify(F ′.Evalk ′ ,m ′,π,~̀), Alice generates a stegotext d
that encodes m ′, which is then sent to Bob.

Informally, the stegosystem works as follows:

Key-generator: StS.Gen

Input: length κ

1 : k← F.Gen(1κ)

2 : k ′ ← F ′.Gen(1κ)

3 : return (k,k ′)

118 a private-key stegosystem for pattern channels

Stegoencoder: StS.Enc

Input: PRF-keys (k,k ′), message m, history h

1 : Obtain π

2 : // via learning or from the hardwired description

3 : c← SESF.Enc(k,m)

4 : get a sample string with length vector ~̀

5 : // via sampling or generating it itself

6 : d← modify(F ′.Evalk ′ , c,π,~̀)

7 : return d

Stegodecoder: StS.Dec

Input: PRF-keys (k,k ′), document d = d1, . . . ,ddl(κ), history h

1 : for r = 1, . . . , cl(κ) :

2 : cr :=
∑

j : f(j)=r

dj

3 : m← SESF.Dec(k, c)

4 : return m

We will first bound the unreliability of the system in terms of the
insecurity of the PRFs F and F ′.

For a function f ∈ Fun(F.in(κ), F.out(κ)) with the same range and
domain as F, denote by StS.Encf,F ′ (resp. StS.Decf,F ′) the algorithm
StS.Enc (resp. StS.Dec), where the access to F.Evalk is replaced by f.
Similarly, for a function f ′ ∈ Fun(F ′.in(κ), F ′.out(κ)) with the same
range and domain as F ′, denote by StS.EncF,f ′ (resp. StS.DecF,f ′) the
algorithm StS.Enc (resp. StS.Dec), where the access to F ′.Evalk ′ is re-
placed by f ′.reliability

Theorem 56. Let C = C(π) be a channel fulfilling our assumptions (i. e.
π ∈ Π and Assumption (A)) and StS be the described stegosystem. It holds
that there is a negligible function negl such that

UnRelStS,C(κ) 6 negl(κ) + InSecprf
F ′,C(κ) + 2 InSecprf

F,C(κ).

Proof. Fix a message m and a history h. We construct a distinguisher
Distm,h on F ′ that has access to a function oracle f ′, which is either
taken totally random from Fun(log dl(κ), log cl(κ)) or equals F ′.Evalk ′
for some k ′. The distinguisher randomly chooses a key k← F.Gen(1κ),
computes

m ′ ← StS.DecF,f ′((k, ·), StS.EncF,f ′((k, ·),m,h)),

7.4 coding bits by random subsets 119

and returns 1 iff m 6= m ′. Its advantage upon distinguishing F ′ from
a random function is thus given by∣∣∣ Pr

k,k ′
[StS.Dec((k,k ′), StS.Enc((k,k ′),m,h)) 6= m]−

Pr
k,f ′

[StS.DecF,f ′((k, ·), StS.EncF,f ′((k, ·),m,h) 6= m]
∣∣∣,

where k ← F.Gen(1κ), k ′ ← F ′.Gen(1κ), and f ′ is chosen randomly
from Fun(log dl(κ), log cl(κ)). As the running time of StS is polyno-
mial in κ, the running time of Distm,h is also polynomial in κ and the
above difference is thus bounded by InSecprf

F ′,C(κ).
Note that the first term is simply the unreliability of the stego-

system. By using an appropriate hybrid, we will show that the second
term is also negligible. For a string s ∈ {0, 1}|m

′|, denote by StS.Enc〈s〉
the output of StS.Enc if the computation involving SESF.Enc(k,m) is
skipped and the output is replaced by s. Similarly, let StS.Dec〈s〉 de-
note the output of StS.Dec if the computation SESF.Dec is skipped and
only s is returned. Note that the PRF F is not used in this algorithm
anymore.

It holds that

Pr
k,f ′

[StS.DecF,f ′((k, ·), StS.EncF,f ′((k, ·),m,h) 6= m] =

Pr
k,f ′

[StS.DecF,f ′((k, ·), StS.EncF,f ′((k, ·),m,h) 6= m]−

Pr
s,f ′

[StS.Dec〈s〉·,f ′(·, StS.Enc〈s〉·,f ′((·, ·),m,h) 6= s]+

Pr
s,f ′

[StS.Dec〈s〉·,f ′(·, StS.Enc〈s〉·,f ′((·, ·),m,h) 6= s]

The only difference in those terms lies in the fact, that a random
string s is used instead ofm ′. The result on counter mode (Theorem 4)
then implies that there is a negligible function negl such that∣∣∣ Pr

k,f ′
[StS.DecF,f ′((k, ·), StS.EncF,f ′((k, ·),m,h) 6= m−

Pr
s,f ′

[StS.Dec〈s〉·,f ′(·, StS.Enc〈s〉·,f ′((·, ·),m,h) 6= s]
∣∣∣ 6

negl(κ) + 2 InSecprf
F,C(κ).

The only remaining term is

Pr
s,f ′

[StS.Dec〈s〉·,f ′(·, StS.Enc〈s〉·,f ′((·, ·),m,h) 6= s].

Note that StS.Dec〈s〉·,f ′(·, StS.Enc〈s〉·,f ′((·, ·),m,h) 6= s iff the linear
equation system Zf,π,~̀x = b in modify does not have a solution. This
LES does have a solution if the matrix Zf,π,~̀ has full rank cl(κ). As s
and f ′ are chosen randomly and Assumption (A) holds, Theorem 49

implies that there is another negligible function negl ′ such that

Pr
s,f ′

[StS.Dec〈s〉·,f ′(·, StS.Enc〈s〉·,f ′((·, ·),m,h) 6= s] 6 negl ′(κ).

120 a private-key stegosystem for pattern channels

We can thus conclude that

UnRelStS,C(κ) 6

negl(κ) + negl ′(κ) + InSecprf
F ′,C(κ) + InSecprf

F,C(κ).

We now proceed by proving the security of the stegosystem.security

Theorem 57. Let C = C(π) be a channel fulfilling our assumptions (i. e.
π ∈ Π and Assumption (A)) and StS be the described stegosystem. It holds
that there is a negligible function negl such that

InSecss-cha
StS,C (κ) 6 negl(κ) + InSecprf

F ′,C(κ) + InSecprf
F,C(κ).

Proof of the security. Let W be a warden. Fix a message m and a his-
tory h. We construct a distinguisher Distm,h on F that has access to
a function oracle f, which is either taken totally random from Fun or
equals F.Evalk for some k. The distinguisher randomly chooses a key
k ′ ← F ′.Gen(1κ) and simulates the run of W on StS.Encf,F ′((k, ·),m,h).
Its advantage is then given as∣∣∣ Pr

k,k ′
[DistF.Evalk

m,h (1κ) = 1] − Pr
f,k ′

[Distfm,h(1
κ) = 1]

∣∣∣.
As the running time of StS is polynomial in κ, the running time
of Distm,h is also polynomial in κ and the above difference is thus
bounded by InSecprf

F,C(κ).
Note that the first term is simply the advantage of W if the challeng-

ing oracle equals the stegosystem. We will now prove that the second
term is essentially the advantage of W if the challenging oracle equals
the channel. If f is chosen randomly, the proof of Theorem 4 implies
that there is a negligible function negl such that the statistical distance
between the output of SESf and the uniform distribution on strings of
length SESf.cl(κ) is bounded by negl(κ) for a negligible function negl.
For a string s with length SESf.cl(κ), denote by StS.Enc〈s〉 the output
of StS.Enc if the computation involving SESF.Enc(k,m) is skipped
and the output is replaced by s. Similarly, denote by StS.Dec〈s〉 the
output of StS.Dec if the computation SESF.Dec is skipped and only s
is returned. Note that the PRF F is not used in this algorithm anymore.
We thus have∣∣∣ Pr

f,k ′
[SS-CHA-DistW,StSf,k ′ ,C(κ) = 1]−

Pr
s,k ′

[SS-CHA-DistW,StS·,k ′〈s〉,C(κ) = 1]
∣∣∣

6 negl(κ).

7.5 conclusion and further work 121

As the running time of StS.Enc and W is polynomial, we can con-
clude that∣∣∣ Pr

s,k ′
[SS-CHA-DistW,StS·,k ′〈s〉,C(κ) = 1]−

Pr
s,f ′

[SS-CHA-DistW,StS·,f ′〈s〉,C(κ) = 1]
∣∣∣

6 InSecprf
F ′,C(κ).

As in the previous proof, Assumption (A), Theorem 49, and the fact
that s and f ′ are chosen randomly implies that there is a negligible
function negl ′ such that the statistical distance between StS·,f ′〈s〉 and
the channel C is bounded by negl ′. This implies that

Advss-cha
W,StS,C(κ) 6

negl(κ) + negl ′(κ) + InSecprf
F,C(κ) + InSecprf

F ′,C(κ).

Note that by setting η(~̀) = cl(κ)2 and under the condition that
|π| 6 cl(κ)2, we fulfill Assumption (A) and have documents of length
dl(κ) 6 2 cl(κ)2. By using the random counter mode, we transform a
message of length ml(κ) into a ciphertext with length cl(κ) 6 2ml(κ)
and embed this ciphertext. We thus achieve a transmission rate of
O(
√

dl(κ)). Furthermore, our techniques can be easily adapted to the
non-memoryless case, if all underlying pattern can be learned effi-
ciently or if they are given in before (as stated above).

7.5 conclusion and further work

We have shown that the upper bound on the logarithmic transmission
rate present in universal steganography can be beaten, if one restricts
the stegosystem to a certain set of channels. Liśkiewicz, Reischuk, and
Wölfel already proved this in [LRW13], but for a very artificial class
of channels – those described by monomials. In contrast to this, we
designed a secure and reliable stegosystem that works for a realistic
class of channels – those described by pattern and their correspond-
ing substitutions.

While pattern channels already capture some realistic channels,
generalizing this approach to other channels described by formal lan-
guages (e. g. network protocols described by regular languages or
even programming languages described by context-sensitive gram-
mars) seems like an interesting and meaningful task.

Interestingly enough, we achieve a rate of O(
√
n) which coincides

with the predictions made by the square root law of [Ker+13; Ker+08]
in the context of information-theoretic secure steganography. Investi-
gating whether this law also holds in our complexity-theoretic model
is a natural open question.

8
A P P L I C AT I O N O F S T E G A N O G R A P H Y: A L G O R I T H M
S U B S T I T U T I O N AT TA C K S

No system of mass surveillance has existed in any society that we know of
to this point that has not been abused.

— Edward Snowden

chapter running time applicability key-symmetry

8 polynomial white/grey-box secret-key
The previous chapters focused on the design of concrete stegosystems
or on the proof that certain stegosystems can not exist. This chapter
deals with an important application of steganography, so called algo-
rithm substitution attacks. While this concept is known to be closely
related to steganography, we will prove that it is steganography on a
certain kind of channels.

The publication of secret internal documents of the national se-
curity agency (NSA) by Edward Snowden (see e. g. [BBG+Se; Gre14;
PLS13]) has allowed the cryptographic community an unique insight
into some well-kept secrets of one of the world’s largest security
agency. Two conclusion drawn from this insight are:

This belief stems
from a lack of
information on
attacks against those
implementations in
the published
documents.

• One the one hand, even a large organization such as the NSA

seems not to be able to break well established implementations
of cryptographic primitives such as RSA or AES. We thus believe
that the NSA is not able to win the cryptographic games devel-
oped in the last decades.

• On the other hand, the documents clearly show that the NSA

develops methods and techniques to circumvent the well estab-
lished security notions by e. g. manipulating standardization
processes (e. g. the issues surrounding the Dual_EC_DRBG num-
ber generator [Che+14; Sch07; SF07]) or reason about metadata.

While the first observation implies that the security guarantees pro-
vided by the cryptographic community are sound, the second conclu-
sion shows that some security definitions are too narrow to evade
all possible attacks. One common realistic scenario are those attacks
where the implementation – call it IMPL – of a secure protocol Π is
undetectably modified. The goal of such an attack is that an attacker
is able to extract information from IMPL he should not be able to get
from a truthful implementation of Π. An overview of such attacks
and several examples are given in the survey [Sch+15] by Schneier

124 algorithm substitution attacks

et al. An important subset of such attacks that we will focus on –
coined secretly embedded trapdoor with universal protection (SETUP) at-secretly embedded

trapdoor with
universal

protection (SETUP)
attacks

tacks – was presented over twenty years ago by Young and Yung in
the kleptographic model [YY96; YY97]. The kleptographic model is
meant to capture a situation where an adversary (or “big brother”
as we shall occasionally say) has the opportunity to implement (and,
indeed, “mis-implement” or subvert) our basic cryptographic tools.

While such a scenario seems to be artificial at first glance, it is a
very realistic attack scenario. By using closed source software, the user
is forced to trust the developers of the software that their implemen-
tation of cryptographic primitives is truthful and does not contain
any backdoors. This is especially true for hardware-based cryptog-
raphy [BPR14]. But even if the software is open source – the source
code is publicly available – the sheer complexity of cryptographic im-
plementations allows only a very specialized subset of experts to be
able to validate these implementations. Two of the most prominent
bugs of the widely spread cryptographic library OpenSSL1 – the Heart-
bleed bug and Debian’s faulty implementation of the pseudorandom
number generator – remained undiscovered for more than two years
[Sch+15].

The recent developments started by Edward Snowden’s publica-
tion reignited the interest in these kind of attacks. Bellare, Paterson,
and Rogaway named these attacks algorithm substitution attacks (ASAs)
and showed several attacks on certain symmetric encryption schemes
[BPR14]. Note that they defined only a very weak attacker scenario,
where the sole goal of the attacker was to distinguish between two ci-
phertexts, but mostly used a stronger model with the aim to recover
the encryption key. Degabriele, Farshim, and Poettering criticized the
model of [BPR14] by pointing out that their results crucially rely on
the fact that a subverted encryption algorithm always needs to pro-
duce valid ciphertexts (the decryptability assumption) and proposed adecryptability

assumption refined security model [DFP15]. The model of [BPR14] was extended
to signature schemes by Ateniese, Magri, and Venturi in [AMV15].
Simultaneously, Bellare, Jaeger, and Kane [BJK15] strengthened the
model of [BPR14] by enforcing that the attack needs to be stateless.

8.1 our results

We first investigate algorithm substitution attacks against symmetric
encryption schemes in the framework by Bellare, Jaeger, and Kane
[BJK15]. We model encryption schemes as steganographic channels
in an appropriate way which allows to relate algorithm substitution
attacks with steganographic systems and vice versa. This leads to the
following result.

1 https://www.openssl.org/

https://www.openssl.org/

8.1 our results 125

Theorem 58 (Informal). Let SES be a symmetric encryption scheme. Then
there exists a secure and reliable algorithm substitution attack against SES
if and only if there exists a secure and reliable stegosystem on the channel
determined by SES.

The proof of the theorem is constructive in the sense that we give
an explicit construction of an algorithm substitution attack against
SES from a stegosystem and vice versa. As conclusion, we provide a
generic ASA against every symmetric encryption scheme whose inse-
curity is negligible if the SES has sufficiently large min-entropy. Our al-
gorithm achieves almost the same security guarantee as the construc-
tion of Bellare, Jaeger, and Kane (see Theorem 4.1 and Theorem 4.2
in [BJK15]).

Next, we generalize our construction and show a generic algorithm
substitution attack against any (polynomial-time) randomized algo-
rithm R which, with hardwired secret s, takes inputs x and generates
outputs y. Our attack – using a hidden hardwired random key ak
– outputs on secret s, and inputs x1, x2, . . . the sequence ỹ1, ỹ2, . . .
such that the output is indistinguishable from R(s, x1), R(s, x2), . . .
and ỹ1, ỹ2, . . . embeds the secret s. From this result we then conclude:

Theorem 59 (Informal). There exists a generic algorithm substitution at-
tack that allows an undetectable subversion of any cryptographic primitive
of sufficiently large min-entropy.

Theorem 60 (Informal). Let R be an algorithm with sub-logarithmic min-
entropy. There is no ASA that subverts R.

As a corollary we obtain the result of Ateniese, Magri, and Venturi
[AMV15, Theorem 1]) that for every coin-injective signature scheme,
there is a successful algorithm substitution attack of negligible inse-
curity. We can also conclude [AMV15, Theorem 3] that unique signa-
ture schemes are resistant to ASAs fulfilling the verifiability condition.
Roughly speaking the last property means that each message has ex-
actly one signature and each signature produced by the ASA must be
valid.

We furthermore introduce the concept of universal ASAs that can
be used without a detailed description of the implementation of the
underlying cryptographic primitive and note that almost all known
ASAs belong to this class. Based upon this definition, we prove the
following upper bound on the information that can be embedded
into a single ciphertext:

Theorem 61 (Informal). No universal ASA is able to embed more than
O(1) · log(κ) bits of information into a single ciphertext unless one-way
functions do not exist.

A related result showing that so called decoy password vaults are decoy password
vaultsvery closely related to stegosystems on a certain kind of channels was

presented by Pasquini, Schöttle, and Böhme in [PSB17]. A preliminary
version of the results of this chapter was published as [BL17].

126 algorithm substitution attacks

8.2 substitution attacks against encryption schemes

While it is certainly very useful for an attacker to be able to recon-
struct the key, one can also construct situations where the extractor
should be able to extract different information from the ciphertexts or
signatures. We will thus generalize the algorithm substitution attacks
described in the literature to the setting where the substituted algo-
rithm also takes an attacker message am as argument and the goal ofattacker message

the extractor is to extract this message from the produced ciphertext.
By always setting am := k, this is the model described in [BJK15] by
Bellare, Jaeger, and Kane. We thus strengthen the models of [BPR14],
[AMV15] and [BJK15] in this sense.

Below we give in detail the model which is based upon the model
proposed by Bellare, Jaeger, and Kane in [BJK15]. If the substitution
attack is stateful, we allow the distinguisher that tries to identify the
attack to also choose this state and observe the internal state of the
attack. Every algorithm substitution attack thus needs to be stateless,
as in the model of Bellare, Jaeger, and Kane in [BJK15]. Note that
this is a stronger requirement than in [BPR14] and [AMV15], as those
works also allowed stateful attacks. In order to distinguish between
key and message of the user and key and message of the ASA, we will
write k and m for the former and ak and am for the latter.

In our setting, an algorithm substitution attack (ASA) against symmet-algorithm
substitution
attack (ASA)

ric encryption scheme SES is triple of PPTMs

ASA = (ASA.Gen, ASA.Enc, ASA.Ext)

with parameter ASA.ml(κ) for the message length – the length of the
attacker message – and output length ASA.ol(κ) – the number of ci-
phertexts needed to extract am – and the following functionality.

• The key generator ASA.Gen produces upon input 1κ an attackerkey generator

key ak of length κ.

• The subverted encryption algorithm ASA.Enc takes as input an at-subverted encryption
algorithm tacker key ak ∈ supp(ASA.Gen(1κ)), an attacker message am ∈

{0, 1}ASA.ml(κ), an encryption key k ∈ supp(SES.Gen(1κ)), an en-
cryption message m ∈ {0, 1}SES.ml(κ), and a state σ ∈ {0, 1}∗ and
produces a ciphertext c ∈ {0, 1}SES.cl(κ) and a new state σ ′.

• The extraction algorithm ASA.Ext takes as input an attacker keyextraction algorithm

ak ∈ supp(ASA.Gen(1κ)) and ` = ASA.ol(κ) ciphertexts c1, . . . , c`
with ci ∈ {0, 1}SES.cl(κ) and produces an attacker message am ′.

An algorithm substitution attack needs (a) to be indistinguishable
from the symmetric encryption scheme (it is secure) and (b) be able to
extract the message am from the ciphertexts (it is reliable).

An algorithm substitution attack ASA should be able to reliably ex-
tract the message am of length ASA.ml(κ) from the ciphertexts. Due

8.2 substitution attacks against encryption schemes 127

to information-theoretic reasons, it might be impossible to embed the
attacker message am into a single ciphertext: If SES.Enc uses 10 bits
of randomness, at most 10 bits from am can be reliably embedded
into a ciphertext. Hence, the ASA needs to produce more than one ci-
phertext in this case. For messagesm1, . . . ,m` with ` = ASA.ol(κ), the
complete output ASA.Enc(ak, am,k,m1, . . . ,m`) is defined as follows:

Complete run of ASA encoder: ASA.Enc(ak, am,k,m1, . . . ,m`)

Input: attacker key ak, attacker message am, key k, messages
m1, . . . ,m`

1 : σ := ∅// initialize the empty state

2 : for i := 1, 2, . . . , ` :

3 : (ci,σ)← ASA.Enc(ak, am,k,mj,σ)

4 : return c1, . . . , c`

To formally define the probability that the extractor is able to reli-
ably extract am from the given ciphertexts c1, . . . , c`, we define its re- reliability

liability2 as 1− UnRelASA,SES(κ), where the unreliability UnRelASA,SES unreliability
is given as

UnRelASA,SES(κ) =

max{Pr[ASA.Ext(ak, ASA.Enc(ak, am,k,m1, . . . ,m`)) 6= am]}.

The maximum is taken over all attacker keys ak ∈ supp(ASA.Gen(1κ)),
all attacker messages am ∈ {0, 1}ASA.ml(κ), and all messages mi ∈
{0, 1}SES.ml(κ).

The algorithm is reliable, if there is negligible function negl such that
UnRelASA,SES(κ) 6 negl(κ). If F is a family of symmetric encryption
schemes, the unreliability of ASA on F is given as

UnRelASA,F(κ) = max
SES∈F

{UnRelASA,SES(κ)}.

The security of an ASA is defined as follows. A watchdog Watch = watchdog

(Watch.Find, Watch.Guess) is a pair of PPTMs that tries to distinguish
the output of the subverted encryption algorithm ASA.Enc from the
original encryption algorithm SES.Enc.

The security is defined via the game named ASA-Dist:

2 In [BJK15], this is called the key recovery security.

128 algorithm substitution attacks

ASA-distinguishing (detection) experiment:
ASA-DistWatch,ASA,SES(κ)

Parties: watchdog Watch, algorithm substitution attack ASA,
and encryption scheme SES

1 : ak← ASA.Gen(1κ);b� {0, 1}

2 : (am,k,m,σ,σWatch)←Watch.FindENC(1κ)

3 : (c,σ ′)← CH(am,k,m,σ)

4 : b ′ ←Watch.GuessENC(c,σ ′,σWatch)

5 : return b = b ′

oracle ENC(am,k,m,σ)

1 : (c,σ)← ASA.Enc(ak, am,k,m,σ)

2 : return (c,σ)

oracle CH(am,k,m,σ)

1 : if b = 0 :

2 : c← SES.Enc(k,m)

3 : else :

4 : (c,σ)← ASA.Enc(ak, am,k,m,σ)

5 : return (c,σ)

An algorithm substitution attack ASA is called secure for the sym-secure

metric encryption scheme SES, if for every watchdog Watch, there is
a negligible function negl such that

Advenc-asa
Watch,ASA,SES(κ) :=∣∣∣∣Pr[ASA-DistWatch,ASA,SES(κ) = 1] −

1

2

∣∣∣∣ 6 negl(κ).

The maximal advantage of any watchdog distinguishing ASA from
SES is called the insecurity of ASA and is defined asinsecurity

InSecenc-asa
ASA,SES(κ) = max

Watch
{Advenc-asa

Watch,ASA,SES(κ)}.

If F is a family of symmetric encryption schemes, the insecurity of
ASA against F is defined as

InSecenc-asa
ASA,F (κ) = max

SES∈F
{InSecenc-asa

ASA,SES(κ)}.

8.3 the steganographic setting

As we will use stegosystems to construct ASAs and vice versa, we
will also denote the key of the stegosystem by ak and the hidden-
text by am to simplify readability. In order to prove the equivalence

8.3 the steganographic setting 129

of ASAs to steganography, we will need three minor changes to our
steganographic setting. First, our simulations makes it necessary that
the stegodecoder does not know the history of the previously send
messages. We call such decoders history-ignorant and note that all de- history-ignorant

coders present in this work are indeed history-ignorant. Second, we
need a slightly stronger form of reliability that guarantees a success-
ful message recovery even if the stegosystem is restarted. The reboot- reboot-reliability

reliability of the stegosystem StS is defined as

UnRel?StS,C(κ) :=

max
ak, am

max
τ

max
h1,...,hτ

max
`1,...,`τ

{Pr[StS.Dec(ak,d1,d2, . . . ,d`) 6= am]},

where the maxima are taken over all ak ∈ supp(StS.Gen(1κ)), am ∈
{0, 1}StS.ml(κ), all positive integers τ 6 `, all histories h1, . . . ,hτ, and all
positive integers `1, . . . , `τ such that `1 + . . .+ `τ = `. The documents
d1, . . . ,d` are the concatenated output of the runs

StS.Enc`1,C(ak, am,h1) || . . . || StS.Enc`τ,C(ak, am,hτ),

where StS.Enc`i,C(ak, am,hi) denotes the first i documents output by
the complete run of StS.EncC(ak, am,hi). We say that the stegosystem
StS is reboot-reliable if UnRel?StS,C(κ) is bounded from above by a
negligible function. This corresponds to a situation where the ste-
goencoder is restarted τ times, each time with the history hi, and
is allowed to generate `i documents. Note that reboot-reliability is
a strictly stronger requirement than reliability and we can thus con-
clude

UnRelStS,C(κ) 6 UnRel?StS,C(κ).

Third, we need to also strengthen our wardens: In the previous
setting, the warden needed to distinguish between a sequence of ran-
dom documents and between the sequential output of the stegoen-
coder that can store some information in an internal state. We will
strengthen the warden by allowing it to choose this internal state of
the encoder which forces the stegoencoder to be stateless. The games
thus differ at three positions:

1. The encryption oracle ENC now also takes a state as parameter
and returns a single document instead of a sequence of docu-
ments (note that StS.EncC(ak, am,h,σ) denotes the output of a
single document).

2. The challenging oracle CH also takes a state as parameter and
returns a single document and the following state.

3. In our original setting, the warden is given a complete sequence
d1, . . . ,d` of documents by the challenging oracle. By using the
hybrid argument of Bellare et al. in [Bel+97] (see also Theo-
rem 6), one can see that this difference is at most StS.ol(κ) – the
number of documents output by StS.

130 algorithm substitution attacks

For the sake of completeness, we now give the complete experi-
ment. Formally, a state-controlling warden W = (W.Find, W.Guess) onstate-controlling

warden the secret-key stegosystem StS is a pair of PPTMs, that tries to win the
following game SS-CHA-Dist-σ:

Steganographic-Chosen-Hiddentext-Attack with state Experi-
ment: SS-CHA-Dist-σW,StS,C(κ)

Parties: state-contr. Warden W, Stegosystem StS; channel C
Input: length κ

1 : ak← StS.Gen(1κ);b� {0, 1}

2 : (am,h,σ,σW)←W.FindENC,CHAN(1κ)

3 : (d,σ)← CH(am,h,σ)

4 : b ′ ←W.GuessENC,CHAN(1κ,d,σ,σW)

5 : return b = b ′

oracle ENC(am,h,σ)

1 : (d,σ)← StS.EncC(ak, am,h,σ)

2 : return (d,σ)

oracle CHAN(h)

1 : d← Ch,dl(κ)

2 : return d

oracle CH(am,h,σ)

1 : if b = 0 :

2 : (d,σ)← StS.EncC(ak, am,h,σ)

3 : else :

4 : d← Ch,dl(κ)

5 : return (d,σ)

Similar to the experiment SS-CHA-Dist, we denote the advantage of
a state-controlling warden W by Advss-cha-σ

W,StS,C(κ) and the insecurity by
InSecss-cha-σ

StS,C (κ).
Note that our workhorse in universal steganography – the rejection

sampling stegosystem RejSamF,SES from Section 3.5 – makes use of its
state, as it splits a message m into single bits m1,m2, . . . and em-
beds bit mi in the i-th document. This value of i is thus the state of
RejSamF,SES. But in the scenario of this chapter, we need a stateless
version. Fortunately, one can combine the rejection sampling algo-
rithm by Dedić et al. in [Ded+09] – which differs from the algorithm
of Backes and Cachin presented in Section 3.5 – with an idea of Bel-
lare, Jaeger, and Kane in [BJK15] to construct such a universal state-
less stegosystem.

In the following, let F be pseudorandom function that maps input
strings of length F.in(κ) (documents) to strings of length F.out(κ) =

log(ml(κ)) + 1 (message parts). We will always assume that ml(κ) is a

8.3 the steganographic setting 131

power of 2. To simplify notation, we treat the output of F.Evalk as a
pair (b, j) with |b| = 1 and |j| = log(ml(κ)). The encoder of the stateless stateless rejection

sampling
stegosystem

rejection sampling stegosystem RejSamF is defined as follows:

Stegoencoder of RejSam: RejSamF.Enc(ak, am,h,σ)

Input: key ak, message am, history h, state σ

1 : i := 0

2 : do :

3 : d← Ch,dl(κ); i := i+ 1

4 : (b, j) := F.Evalak(d)

5 : until am[j] = b or i > κ ·ml(κ)2// am[j] is the j-th bit of am

6 : return (d,σ)
Note that no
encryption is needed
here

The key generator RejSamF.Gen is equal to F.Gen. The decoder re-
ceives documents d1,d2, . . . and computes the set of send bit-index
pairs B = { (bi, ji) = F.Evalak(di)}. As long as |B| > |am|, every bit am[j]

of am can be reconstructed. The encoder is clearly stateless and the
decoder is clearly history-ignorant.

We will now show that it is also reboot-reliable. The idea to em-
bed random bits and their position in am is due to Bellare, Jaeger,
and Kane in [BJK15] and relies on the coupon collector’s problem. The coupon collector’s

problemanalysis of the coupon collector’s problem shows that by sending
ml(κ) · (ln ml(κ)+β) documents for an appropriate value β, one intro-
duces a term exp(−β) into the unreliability (see e. g. [MU05, Section
3.3.1] for a proof of this fact). This can be made negligible by setting
β > ml(κ) − ln(ml(κ)). The output length ol(κ) on messages of length
ml(κ) will thus be ml(κ)2.

The insecurity of this system follows directly from the analysis of
Dedić et al. in [Ded+09], as this stateless system behaves exactly as
the stateful system, after the following algorithm coupon(m, ak) was
used:

132 algorithm substitution attacks

Message modifier: coupon(m, ak)

Input: message m, attacker key ak

1 : for r := 1, . . . , |m|2 :

2 : i := 0

3 : do :

4 : d← Ch,dl(κ); i := i+ 1

5 : (b, j) := F.Evalak(d)

6 : until m[j] = b or i > κ · |m|2// m[j] is the j-th bit of m

7 : amr := (b, j)

8 : return am1am2 . . . am|m|2

We can thus conclude the following theorem:

Theorem 62 ([Ded+09, Theorems 4 and 5]). For every polynomial ml(κ),
there exists a universal history-ignorant stegosystem StS = RejSamF such
that for every channel C we have

• StS.ml(κ) = ml(κ),

• InSecss-cha-σ
StS,C (κ) 6 poly(κ) · [2−H∞(C,dl(κ)) +

exp(−ml(κ))] + InSecprf
F,C(κ), and

• UnRel?StS,C(κ) 6 poly(κ) · [exp(−2H∞(C,dl(κ))/2ml(κ)2) +

exp(−ml(κ) − ln(ml(κ)))] + InSecprf
F,C(κ).

Note that the terms 2−H∞(C,dl(κ)) and exp(−ml(κ)) arise from the
probability that no suitable documents were sampled. The exponen-
tial term exp(−ml(κ) − ln(ml(κ))) is introduced by the analysis of the
coupon collector’s problem.

8.4 encryption schemes as steganographic channels

Let SES be a symmetric encryption scheme that encodes messages
of length SES.ml(κ) into ciphertexts of length SES.cl(κ) > SES.ml(κ)
and let ` be a polynomial in κ. For SES we define a channel, named
CSES(`), with documents corresponding to the input of ASAs. Note
that in order to show the equivalence of steganography on CSES(`)

and algorithm substitution attacks against SES, we need to make sure
that the stegoencoder will embed information into ciphertexts. If the
channel would be defined as alternating between plaintexts m and
corresponding ciphertexts c, the stegoencoder would be able to only
embed messages in the plaintexts. The essential idea behind the def-
inition of the channel CSES(`) is that for all k ∈ supp(SES.Gen(1κ))

8.5 asas against encryption as steganography 133

and all messages m1,m2, . . . ,m`(κ), with mi ∈ {0, 1}SES.ml(κ), for the
history

h = k || m1 || m2 || . . . || m`(κ)

the distribution of the sequences of documents

c1 || c2 || . . . || c`(κ)

generated by the channel is exactly the same as the distribution for

SES.Enc(k,m1) || SES.Enc(k,m2) || . . . || SES.Enc(k,m`(κ)).

To give a formal definition of CSES(`), we need to specify the probabil-
ity distributions for any history h. Note that the formal definition of a
channel requires that all documents have the same length. As our doc-
uments will be keys, messages and ciphertexts with different lengths,
we formally need to pad them to the same length with a padding sym-
bol �. To improve the readability, we will omit this padding. Thus,
we define the channel on the alphabet {0, 1,�} as follows. For empty
history h = ∅, let CSES(`)∅ be the distribution of SES.Gen(1κ). For
k ∈ supp(SES.Gen(1κ)) and a (possibly empty) sequence of messages
m1,m2, . . . ,ms with mi ∈ {0, 1}SES.ml(κ) and 0 6 s 6 `(κ) − 1, the
distribution

CSES(`)k||m1||m2||...||ms

is the uniform distribution on all messages ms+1 ∈ {0, 1}SES.ml(κ). For
k ∈ supp(SES.Gen(1κ)), a sequence of messages m1,m2, . . . , m`(κ)
with mi ∈ {0, 1}SES.ml(κ), and a (possibly empty) sequence of cipher-
texts c1, . . . , cs with ci ∈ supp(SES.Enc(k,m((i−1) mod `(κ))+1)), the
distribution

CSES(`)k||m1||m2||...||m`(κ)||c1||c2||...||...||cs

is the distribution of SES.Enc(k,m(s mod `(κ))+1).

8.5 asas against encryption as steganography

The main message of this chapter is that algorithm substitution at-
tacks against a primitive Π are equivalent to the use of steganography
on a corresponding channel CΠ determined by the protocol Π. Focus-
ing on symmetric encryption schemes as a common cryptographic
primitive, we will show in this section exemplary proofs for the gen-
eral relations between ASAs and steganography.

In the previous section we showed a formal specification of the
communication channels CSES(`) determined by a symmetric encryp-
tion scheme SES. We will now prove that secure and reliable steganog-
raphy on CSES(`) implies the existence of an secure and reliable algo-
rithm substitution attack on SES. On the other hand, we will also

134 algorithm substitution attacks

show that the existence of an secure and reliable algorithm substi-
tution attack on SES implies a secure and reliable stegosystem on
CSES(`).

As a consequence we get a construction of an ASA against all sym-
metric encryption schemes using a generic stegosystem like those pro-
posed by Dedić et al. [Ded+09]. Thus, we can conclude Theorem 4.1
and 4.2 in [BJK15] proposed by Bellare, Jaeger, and Kane that there ex-
ist secure and reliable ASAs against all symmetric encryption schemes.
Moreover we obtain Theorem 4 in [BPR14] which says that an ASA is
impossible for unique ciphertext symmetric encryption schemes.

8.5.1 Steganography implies ASAs

Theorem 63. Assume SES is a symmetric encryption scheme and let StS
be a stegosystem on the channel C := CSES(StS.ol(κ)) determined by SES.
Then there exists an algorithm substitution attack ASA against SES such
that:

InSecenc-asa
ASA,SES(κ) 6 InSecss-cha-σ

StS,C (κ) and

UnRelASA,SES(κ) = UnRel?StS,C(κ).

Proof. Let SES be a symmetric encryption scheme and let StS be a
stegosystem on the channel C. To simplify notation, let ` = `(κ) :=

StS.ol(κ). We will construct the algorithm substitution attack ASA on
SES from the stegosystem StS and show the security and reliability
of ASA depending on security and reliability of StS. The components
of the ASA are defined as follows.

The key generator ASA.Gen just simulates StS.Gen – the key gen-
erator of the stegosystem. It will output the attack key ak. The en-construction of ASA

coding algorithm ASA.Enc on input ak ∈ supp(ASA.Gen(1κ)), am ∈
{0, 1}StS.ml(κ), k ∈ supp(SES.Gen(1κ)), m ∈ {0, 1}SES.ml(κ), and state σ
simulates StS.Enc(ak, am,h(k,m),σ) on channel C where the history
h(k,m) = k || m || m || . . . || m consists of the key k and ` copies of
m. Whenever StS.Enc makes a query to its channel oracle, algorithm
ASA.Enc uses SES.Enc on input k and m to produce a corresponding
ciphertext and sends it to StS.Enc. The encoder ASA.Enc then outputs
the documents d1, . . . ,d` generated by StS.Enc. Finally, the extraction
algorithm ASA.Ext on input ak ∈ supp(ASA.Gen(1κ)) and documents
d1, . . . ,d` just simulates StS.Dec on the same inputs.

As one can see from the definitions, ASA is a algorithm substitution
attack against SES. We will now prove that it is indistinguishable from
SES and that it is reliable.

We first prove the security of the system. Let Watch be a watchdogsecurity of ASA

against the above ASA with maximal advantage, i. e.

Advenc-asa
Watch,ASA,SES(κ) = InSecenc-asa

ASA,SES(κ).

8.5 asas against encryption as steganography 135

We will now construct a warden W from Watch such that

Advss-cha-σ
W,StS,C(κ) = Advenc-asa

Watch,ASA,SES(κ).

Thus, we will get that

InSecenc-asa
ASA,SES(κ) 6 InSecss-cha-σ

StS,C (κ). (3)

The warden W on input 1κ just simulates the watchdog Watch and
gives the same output as Watch at the end of the simulation. When-
ever the watchdog makes a query on inputs am, k, m, and σ to its en-
cryption oracle, i. e. Watch.ENC(am,k,m,σ), the warden answers this
with a call to its own encryption oracle, i. e. W.ENC(am,h(k,m),σ)
where h(k,m) = k || m || m || . . . || m consists of k and ` copies of
m. By definition of ASA.Enc, the result equals ASA.Enc(ak, am,k,m,σ)
perfectly. If Watch.Find outputs (am,k,m,σ,σWatch), Warden W.Find
will output (am,h(k,m),σ,σWatch). Note that the challenging oracle
of W is either equal to the channel C or to StS.Enc(ak, am,h,σ) for
ak← StS.Gen(1κ).

If the challenging oracle of W is equal to the steganographic encod-
ing StS.Enc(ak, am,h,σ) (i. e. the bit b in the scheme SS-CHA-Dist-σ
equals 0, denoted by SS-CHA-Dist-σW,StS,C(κ)〈b = 0〉), the answer
(d,σ) of the challenge oracle is by construction of ASA the same as
ASA.Enc(ak, am,k,m,σ). Thus,

Pr[SS-CHA-Dist-σW,StS,C(κ)〈b = 0〉 = 1]
= Pr[ASA-DistWatch,ASA,SES(κ)〈b = 0〉 = 1].

If the challenging oracle of W is equal to the channel (the bit b
in SS-CHA-Dist-σ equals 1), by the definition of the channel C for
the symmetric encryption scheme SES, the answer of the challenging
oracle is equal to the output of SES.Enc(k,m). Hence,

Pr[SS-CHA-Dist-σW,StS,C(κ)〈b = 1〉 = 1]
= Pr[ASA-DistWatch,ASA,SES(κ)〈b = 1〉 = 1].

We thus have

Advss-cha-σ
W,StS,C(κ) =

∣∣Pr[SS-CHA-Dist-σW,StS,C(κ) = 1] −
1
2

∣∣
=

∣∣Pr[ASA-DistWatch,ASA,SES(κ) = 1] −
1
2

∣∣
= Advenc-asa

Watch,ASA,SES(κ)

which completes the proof of (3).
We still need to prove that ASA.Ext is reliable. But, as ASA.Ext = reliability of ASA

StS.Dec, the reboot-reliability of StS.Dec directly implies that ASA.Ext
is reliable with probability of 1− negl(κ).

By combining Theorem 62 and Theorem 63, we can conclude the
following corollary.

136 algorithm substitution attacks

Corollary 64. For every symmetric encryption scheme SES, there exists an
algorithm substitution attack ASA with message length ml(κ) such that

• InSecss-cha-σ
StS,C (κ) 6 poly(κ) · [2−H∞(C,dl(κ)) + exp(−ml(κ))] +

InSecprf
F,C(κ), and

• UnRel?StS,C(κ) 6 poly(κ) · [exp(−2H∞(C,dl(κ))/2ml(κ)2) +

exp(−ml(κ) − ln(ml(κ)))] + InSecprf
F,C(κ).

where C := CSES(StS.ol(κ)).

One can compare this corollary to the construction used in the
proof of Theorem 4.1 and Theorem 4.2 in [BJK15]. We can see that our
generic algorithm substitution attack gets almost the same bounds for
insecurity and for unreliability.

In [BPR14], Bellare, Paterson, and Rogaway proposed a (stateful)
construction ASA against randomized, stateless, coin-injective sym-
metric encryption schemes SES. They prove in Theorem 3 that if SES
has randomness-length r and if the ASA uses a pseudorandom func-
tion F, for every watchdog Watch, it holds: If Watch makes q queries
to its challenge oracle, we can construct an distinguisher Dist such
that Advenc-asa

Watch,ASA,SES(κ) 6 q/22
r
+ Advprf

Dist,F(κ). The distinguisher
Dist makes q oracle queries and its running time is that of Watch.
Their analysis presented in [BPR14] is slightly wrong. Intuitively, their
construction also uses rejection sampling, but their analysis relies
on the crucial fact that they can sample from the set of ciphertexts
S = {c ∈ supp(Enc(k,m)) | F.Evalk ′(c) = b} efficiently for given m, k,
k ′ and b. But – as explained by Cachin [Cac98] – one can only sample
from S approximately via rejection sampling. Their analysis should
thus also take this into account which adds a term > 2−r related
to the min-entropy of SES to their analysis that also appears in our
result.

8.5.2 ASAs imply Steganography

Theorem 65. Assume SES is a symmetric encryption scheme and let ASA
be an algorithm substitution attack against SES of output length ASA.ol(κ).
Then there exists a stegosystem StS on the channel C := CSES(StS.ol(κ))
determined by SES with output length StS.ol(κ) = 2 · ASA.ol(κ) + 1 such
that:

InSecss-cha-σ
StS,C (κ) 6 InSecenc-asa

ASA,SES(κ) and

UnRelStS,C(κ) = UnRelASA,SES(κ).

Proof. Let SES be an symmetric encryption scheme and ASA be an
algorithm substitution attack against SES. To simplify notation, let
` = ASA.ol(κ). We construct the stegosystem StS on C out of ASA.

8.5 asas against encryption as steganography 137

The key generation algorithm StS.Gen simply simulates ASA.Gen. It
will output the key ak. To encode a message am using the key ak, the construction of StS

encoding algorithm StS.Enc generates for any history h a document.
To describe the algorithm we need to distinguish between different
given histories h.

• If h = ∅, the encoder StS.Enc chooses a random key k ←
SES.Gen(1κ) using the generation algorithm of SES and outputs
the key k.

• If h = k || m1 || m2 || . . . || ms for 0 6 s 6 `− 1, the algorithm
StS.Enc samples a random message ms+1 and outputs it.

• If h = k || m1 || m2 || . . . || m` || c1 || . . . || cs with s > 0, the en-
coder StS.Enc simulates ASA.Enc(ak, am,k,m(s+1) mod `+1) and
outputs the generated ciphertext.

Note that by construction, the last ` documents generated by the
complete run StS.Enc(ak, am,h) embed the message am in the same
way as done by the complete run ASA.Enc(ak, am,k,m1, . . . ,m`) in all
cases.

If the decoder StS.Dec is given documents d1, . . . ,d2`+1, we output
ASA.Ext(ak,d`+2, . . . ,d2`+1).

As one can see from the definitions, the decoding algorithm of StS
is history-ignorant. We will prove that on the channel C = CSES(2`+1)

the security and reliability of the stegosystem StS satisfy the stated
conditions.

We first analyze the security of the system. Let W be a warden security of StS

against StS on C with maximal advantage, i. e.

Advss-cha-σ
W,StS,C(κ) = InSecss-cha-σ

StS,C (κ).

We will construct a watchdog Watch against the algorithm substitu-
tion attack ASA with the same advantage as W:

Advenc-asa
Watch,ASA,SES(κ) = Advss-cha-σ

W,StS,C(κ).

This will prove that

InSecss-cha-σ
StS,C (κ) 6 InSecenc-asa

ASA,SES(κ). (4)

The watchdog Watch on input 1κ simply simulates the warden W.
Whenever the warden W makes a query to its own encryption oracle
W.ENC(am,h,σ), the watchdog distinguishes upon history h:

• If h = ∅, it returns SES.Gen(1κ).

• If h = k || m1 || m2 || . . . || ms for 0 6 s 6 `− 1, it samples a
random message ms+1 and outputs it.

138 algorithm substitution attacks

• If h = k || m1 || m2 || . . . || m` || c1 || . . . || cs with s > 0, the
it simulates ASA.Enc(ak, am,k,m(s+1) mod `+1) and outputs the
generated ciphertext.

By construction of StS.Enc, this gives a perfect simulation. When-
ever the warden W makes a query to its channel oracle C with a his-
tory h, the watchdog Watch simulates the oracle response as follows:

• If h = ∅, the watchdog uses SES.Gen(1κ) to construct a key k
and returns k to the warden.

• If h = k || m1 || . . . || ms with s < `, the watchdog uniformly
chooses a message ms+1 from {0, 1}SES.ml(κ) and outputs ms+1.

• If h = k || m1 || . . . || m` || c1 || . . . || cs with s > 0, the watchdog
computes c← SES.Enc(k,m(s mod `)+1) and outputs c.

Clearly, this simulates the channel distribution C perfectly. If the war-
den queries its challenge oracle CH with chosen message am, his-
tory h, and state σ (that is either equivalent to sampling from Ch or
to calling StS.Enc(ak, am,h,σ)), the watchdog simulates the response
of the oracle W.CH as follows:

• If h = ∅ then Watch chooses a random key k ← SES.Gen(1κ)
and outputs it.

• If h = k || m1 || m2 || . . . || ms for 0 6 s 6 `− 1 then Watch
samples a random message m and outputs it.

• If h = k || m1 || m2 || . . . || m` || c1 || . . . || cs with s > 0 then
Watch queries its own oracle on am, k, m(s mod `)+1 and σ.

If CH is equal to SES.Enc (the bit b in ASA-Dist is set to 0) the corre-
sponding answer is identically distributed to a sample of the channel
C. Hence,

Pr[ASA-DistWatch,ASA,SES(κ)〈b = 0〉 = 1] =
Pr[SS-CHA-Dist-σW,StS,C(κ)〈b = 0〉 = 1].

On the other hand, if CH is equal to ASA.Enc (the bit b in ASA-Dist
is set to 1), the corresponding answer is identically distributed to
StS.Enc(ak, am,h,σ) and thus

Pr[ASA-DistWatch,ASA,SES(κ)〈b = 1〉 = 1] =
Pr[SS-CHA-Dist-σW,StS,C(κ)〈b = 1〉 = 1].

We thus have

Advenc-asa
Watch,ASA,SES(κ) =

∣∣Pr[ASA-DistWatch,ASA,SES(κ) = 1] −
1
2

∣∣
=

∣∣Pr[SS-CHA-Dist-σW,StS,C(κ) = 1] −
1
2

∣∣
= Advss-cha-σ

W,StS,C(κ)

8.6 general results 139

which proves (4).
The reliability of StS is the same as the success probability of ASA

since we have that StS.Dec is simply simulates Ext. reliability of StS

By using the fact that channels with min-entropy 0 can not be
used for steganography (see e. g. [HvL09, Theorem 6]) and observ-
ing that channels corresponding to deterministic encryption schemes
have min-entropy 0, we can conclude the following corollary:

Corollary 66. For all deterministic symmetric encryption schemes SES and
all algorithm substitution attacks ASA against SES:

InSecenc-asa
ASA,SES(κ) > 1.

Note that this is exactly Theorem 4 in [BPR14].

8.6 general results

Let R be a polynomial-time randomized algorithm with hardwired
secret s generated by R.Gen (similar to the key k of an SES) which
takes inputs x (similar to the message m of an SES) and generates
outputs y (similar to the ciphertext c of an SES). The general task of
an ASA against R is to construct a subverted algorithm ARak which –
using a hidden hardwired random key ak – outputs on message am
and secret s the sequence ARak(am, s, x1), ARak(am, s, x2), . . . such that

1. the outputs of the calls of ARak(am, s, x1), ARak(am, s, x2), . . . are
indistinguishable from R(s, x1), R(s, x2), . . . (even for adversari-
ally chosen s, xi, and am) and

2. ARak(am, s, x1), ARak(am, s, x2), . . . embeds the message am.

In our setting, we model an ASA on R as a stegosystem on a channel
determined by R and also define such a channel.

8.6.1 ASA against a Randomized Algorithm

Now we give formal definitions for an algorithm substitution attack
AR against the randomized algorithm R. Formally, an algorithm substi- algorithm

substitution attack
ASA against R

tution attack ASA against R is a triple of PPTMs

ASA = (ASA.Gen, ASA.R, ASA.Ext),

where ASA.Gen generates the key ak, the algorithm ASA.R takes the
key ak, a message am, secret s and all inputs x1, x2, . . . to R and the ex-
tractor ASA.Ext tries to extract am from the outputs of ASA.R with the
help of ak (but without knowing s, x1, x2, . . .). Similarly to the setting
for encryption schemes, the algorithm ASA is called secure, if every
PPTM Watch – the watchdog – is not able to distinguish between the out-
puts ARak(am, s, x1), ARak(am, s, x2), . . . and R(s, x1), R(s, x2), . . . even

140 algorithm substitution attacks

if he is allowed to choose am, s and all xi. This is defined via the
game RASA-DistWatch,ASA,R defined similar to ASA-Dist. The maximal
advantage of any watchdog distinguishing ASA from R is called the
insecurity of ASA and is defined asinsecurity

InSecasa
ASA,R(κ) = max

Watch
{Advasa

Watch,ASA,R(κ)},

where

Advasa
Watch,ASA,R(κ) :=

∣∣∣∣Pr[ASA-DistWatch,ASA,R(κ) = 1] −
1

2

∣∣∣∣ .
The unreliability of ASA is also defined like before:unreliability

UnRelASA,R(κ) =

max{Pr[ASA.Ext(ak, ASA.AR(ak, am, s, x1, . . . , x`)) 6= am]},

where the maximum is taken over all ak ∈ supp(ASA.Gen(1κ)), am ∈
{0, 1}ASA.ml(κ), secrets s and inputs x1, . . . , x` to R.

Known examples which fit into this setting include for example
the subversion-resilient signature schemes in the work of Ateniese,
Magri, and Venturi [AMV15].

8.6.2 Channel determined by a Randomized Algorithm

Let R be a polynomial-time randomized algorithm with parameter
κ. We assume that the secret s is generated by R.Gen and that s and
the inputs x to R are chosen adversarially as shown in the definition
above. Let ` be a polynomial of κ. For R we define a channel, named
CR(`), with documents which correspond to the inputs of AR. The
essential idea behind the definition of the channel CR(`) is that for all
s ∈ supp(R.Gen(1κ)) and every sequence of inputs x1, x2, . . . , x`(κ),
for the history

h = s || x1 || x2 || . . . || x`(κ)

the distribution of the sequences of documents

y1 || y2 || . . . || y`(κ)

generated by the channel is exactly the same as the distribution for

R(s, x1) || R(s, x2) || . . . || R(s, x`(κ)).

To give a formal definition of CR(`), we need to specify the probability
distributions for any history h. As the outputs y of R(s, x) might differ
in length, we will use the symbol� as blank symbol used for padding.
Thus, we define the channel on the alphabet {0, 1,�}, as follows:As before, we use �

implicitly
• For the empty history h = ∅, the distribution CR(`) is the distri-

bution of R.Gen(1κ).

8.6 general results 141

• For a secret s and a possibly empty sequence of inputs x1, . . . , xr
and r 6 `(κ) − 1, the distribution CR(`)s||x1||x2||...||xr is the uni-
form distribution on inputs xr+1.

• For a secret s, a sequence of inputs x1, x2, . . . , x`(κ) and a (pos-
sibly empty) sequence of outputs y1, . . . ,yr of R such that yi ∈
supp(R(s, x((i−1) mod `(κ))+1)), the probability distribution

CR(`)s||x1||x2||...||x`(κ)||y1||y2||...||...||yr

is the probability distribution of R(s, x(r mod `(κ))+1).

8.6.3 Results

The theorems proved in the previous section can simply be general-
ized by using our general construction of the channel CR(`) for the
randomized algorithm R and the generic stegosystem of Theorem 62:

Theorem 67. For every randomized algorithm R, there exists a generic al-
gorithm substitution attack ASA against R such that

• InSecasa
ASA,R(κ) 6 poly(κ) · [2−H∞(C,dl(κ)) + exp(−ml(κ))] +

InSecprf
F,C(κ), and

• UnRelASA,R(κ) 6 poly(κ) · [exp(−2H∞(C,dl(κ))/2ml(κ)2) +

exp(−ml(κ) − ln(ml(κ)))] + InSecprf
F,C(κ).

where C := CR(StS.ol(κ)).

Theorem 68. For all deterministic algorithms R and all algorithm substitu-
tion attacks ASA against R:

InSecasa
ASA,R(κ) = 1.

This general results also imply several other results from the liter-
ature, for example on signature schemes. Ateniese, Magri, and Ven-
turi in [AMV15] study algorithm substitution attacks on signature
schemes.3

On the positive side (from the view of an algorithm substitution
attack) they show that all randomized coin-injective schemes are vul-
nerable to ASAs. A randomized algorithm A is coin-injective, if the coin-injective

function fA(x, r) = A(x; r) is injective, where r denotes the random
coins used by A. They prove the following theorem:

Theorem 69 (Theorem 1 in [AMV15]). For every coin-injective signa-
ture scheme SIG, there is a reliable algorithm substitution attack ASA and a
negligible function negl such that

InSecasa
ASA,SIG(κ) 6 InSecprf

F (κ) + negl(κ)

for a pseudorandom function F.

3 To be more precise, their attacks only replace the signing algorithm Sign.

142 algorithm substitution attacks

This result is easily implied by Theorem 67.
On the negative side (from the view of an algorithm substitution

attack), they show that unique signature schemes are resistant to ASAsunique signature
schemes fulfilling the verifiability condition. Informally this means that (a) each

verifiability
condition

message has exactly on signature (for a fixed key-pair) and (b) each
signature produced by the ASA must be valid.

Theorem 70 (Theorem 3 in [AMV15]). For all unique signature schemes
SIG and all algorithm substitution attacks ASA against them that fulfill the
verifiability condition, there is a negligible function negl such that

InSecasa
ASA,SIG(κ) > 1− negl(κ).

As unique signature schemes do not provide enough min-entropy
for a stegosystem, this results follows from Theorem 68.

8.7 a lower bound for universal asa

A setting similar to steganography, where universal stegosystems ex-
ist, that can be used for any channel of sufficiently large min-entropy,
would be quite useful for attackers that plan to launch algorithm sub-
stitution attacks. Such a system would allow them to attack any sym-
metric encryption scheme without knowing the internal specification
of the encryption algorithm. A closer look at the results in [BPR14;
BJK15; AMV15] reveals that their attacks do indeed go without in-
ternal knowledge of the used encryption algorithm. They only ma-
nipulate the random coins used in the encryption process. Note that
SES.Enc(k,m; r) (where r denotes the random coins used by Enc) is
deterministic, as SES.Enc is a PPTM.

We thus define a universal ASA as a triple of PPTMsuniversal ASA

ASA = (ASA.Gen, ASA.Enc, ASA.Ext)

such that for every symmetric encryption scheme SES, the triple

ASASES = (ASA.Gen, ASA.EncSES.Enc(·,·;·), ASA.Ext)

is an algorithm substitution attack against SES. Hence, ASA.Enc has
only oracle access to the encryption algorithm SES.Enc of the SES: It
may thus choose arbitrary values k,m, and r and receives a ciphertext

c← SES.Enc(k,m; r)

without having a complete description of the encryption schemes.
As noted above, all attacks in [BPR14; BJK15; AMV15] are universal

and Bellare, Jaeger, and Kane explicitly state in their work [BJK15]
that their ASA works against any encryption scheme of sufficiently
large min-entropy. We also remark that the rejection sampling ASA

RejSam presented earlier is universal.

8.7 a lower bound for universal asa 143

For a universal algorithm substitution attack ASA and a symmetric
encryption scheme SES, denote by ASA.query(SES, κ, ak, am,k,mj,σ)
the expected number of oracle calls that a single call of the substitu-
tion encoder ASA.EncSES.Enc(·,·;·)(ak, am,k,mj,σ) makes to its encryp-
tion oracle SES.Enc. We then define

ASA.query(SES, κ) =

max
ak∈supp(ASA.Gen(1κ)),

am∈{0,1}ASA.ml(κ),
k∈supp(SES.Gen(1κ)),
m∈{0,1}SES.ml(κ),

σ∈{0,1}∗

{ASA.query(SES, κ, ak, am,k,mj,σ)}.

For a family F of symmetric encryption schemes, let ASA.query(F, κ)
be the maximal value of ASA.query(SES, κ) for SES ∈ F.

In the steganographic setting, Dedić et al. showed in [Ded+09] that
(under the cryptographic assumption that one-way functions exist)
no universal stegosystem can embed more than O(1) · log(κ) bits per
document and thus proved that the rejection sampling based systems
have optimal rate. The needed ingredients of this proof are summa-
rized by two key lemmas that we already encountered in Chapter 5.

Lemma 71 (Analogue of Lemma 26). Let ASA be a algorithm substitu-
tion attack for the symmetric encryption scheme SES such that ASA is secure
against SES. Then for all integers κ ∈N, messages m ∈ {0, 1}ASA.ml(κ), we
have

Pr
ak←ASA.Gen(1κ),

c1,c2,...,cASA.ol(κ)←ASA.Enc(ak,am,k,m,σ)

[c1 6∈ supp(SES.Enc(k,m))]

6 InSecenc-asa
ASA,SES(κ).

Lemma 72 (Analogue of Lemma 27). Let ASA be a universal and re-
liable algorithm substitution attack against symmetric encryption scheme
SES. Then for every κ, the probability that the encoder ASA.Enc produces a
ciphertext, which was not provided by the encryption oracle, is at least

1− UnRelASA,SES(κ) −
(ASA.ol(κ) ·ASA.query(SES, κ))ASA.ol(κ)

2ASA.ml(κ) .

We will now show how one can modify an existing symmetric en-
cryption scheme SES with the help of a signature scheme SIG into
a family of symmetric encryption schemes such that no universal
ASA can achieve a super-logarithmic rate on all of these symmetric
encryption schemes. The construction is very similar to the construc-
tion used in Chapter 5. For (pk, sk) ∈ supp(SIG.Gen(1κ)), let SESpk,sk
be the SES with

• SESpk,sk.Gen = SES.Gen, i. e. the key generation algorithm re-
mains the same.

144 algorithm substitution attacks

• The encryption algorithm SESpk,sk.Enc is given as:

Encryption Algorithm: SESpk,sk.Enc

Input: key k, message m

1 : c← SES.Enc(k,m)

2 : σ← SIG.Sign(sk, c)

3 : return (c,σ)

• Similarly, the decryption algorithm SESpk,sk.Dec is given as:

Decryption Algorithm: SESpk,sk.Dec

Input: key k, ciphertext (c,σ)

1 : if SIG.Vrfy(pk, c,σ) = 1 :

2 : return SES.Dec(k, c)

3 : else return ⊥

By using this family F(SES, SIG) = {SESpk,sk}(pk,sk)∈supp(SIG.Gen(1κ)),
we can derive the following upper bound on the rate of each universal
ASA analogue to Theorem 28:

Theorem 73. Let SES be a symmetric encryption scheme, SIG be a signa-
ture scheme and F = F(SES, SIG) be defined as above. For every universal
algorithm substitution attack ASA against SES, there exist a forger Fo on
SIG with advantage at least

1− InSecenc-asa
ASA,F (κ) − UnRelASA,F(κ) −ϕ(ASA, κ)

for every κ, where

ϕ(ASA, κ) =
(ASA.ol(κ) ·ASA.query(F, κ))ASA.ol(κ)

2ASA.ml(κ) .

Proof. The proof is analogue to the proof of Theorem 28.
Fix κ ∈N and (pk, sk) ∈ supp(SIG.Gen(1κ)). We will now construct

a random message attack-forger on SIG with the help of the algorithm
substitution attack ASA. Choose a random attacker message am∗ �
{0, 1}ASA.ml(κ), a random attacker key ak∗ ← ASA.Gen(1κ), a random
message m∗ � {0, 1}SES.ml(κ) and a random key k∗ ← SES.Gen(1κ).

The forger now simulates the run of the algorithm substitution at-
tack ASA.EncSESpk,sk.Enc(·,·;·)(ak∗, am∗,k∗,m∗) against the symmetric en-
cryption scheme SESpk,sk. Whenever ASA.Enc makes an access (k,m; r)
to its encryption oracle, the forger computes c = SES.Enc(k,m; r) and
uses its signing oracle SIG.Signsk upon c. This returns a valid signa-
ture σ for c and the forger returns (c,σ) to ASA.Enc. This simulation

8.8 conclusions and further work 145

hence yields the same result as ASA.EncSESpk,sk.Enc(·,·;·)(ak∗, am∗,k∗,m∗).
Denote the first document produced by the run of the algorithm
substitution attack ASA.EncSESpk,sk.Enc(·,·;·)(ak∗, am∗,k∗,m∗) as (ĉ, σ̂). By
Lemma 71, the probability that the pair (ĉ, σ̂) does not belong to
supp(SESpk,sk.Enc(k,m)) (i. e. it is no valid ciphertext-signature pair)
is bounded by InSecenc-asa

ASA,SESpk,sk
(κ). Furthermore, Lemma 72 implies

that the probability that (ĉ, σ̂) is equal to any (c,σ) which was given
to the ASA is at most UnRelASA,SESpk,sk(κ) + ϕ(ASA, κ). We can thus
conclude that with probability

1− InSecenc-asa
ASA,SESpk,sk

(κ) − UnRelASA,SESpk,sk(κ)−

(ASA.ol(κ) ·ASA.query(SESpk,sk, κ))ASA.ol(κ)

2ASA.ml(κ) ,

the ciphertext-signature pair (ĉ, σ̂) is a valid ciphertext-signature pair
and was not produced by the oracle SIG.Signsk The advantage of the
forger against the signature scheme SIG is thus at least

1− InSecenc-asa
ASA,SESpk,sk

(κ) − UnRelASA,SESpk,sk(κ)−

(ASA.ol(κ) ·ASA.query(SESpk,sk, κ))ASA.ol(κ)

2ASA.ml(κ) ,

The running time of the forger is polynomial in κ due to the polyno-
mial running time of ASA.Enc.

This allows us to conclude the following corollary bounding the
number of bits embeddable into a single ciphertext by a universal
algorithm substitution attack.

Corollary 74. There is no universal algorithm substitution attack that em-
beds more than O(1) · log(κ) bits per ciphertext (unless one-way functions
do not exist).

8.8 conclusions and further work

In this chapter, we showed that algorithm substitution attacks are a
special case of steganographic systems and that most of the current
results on ASAs are already implied by known steganographic results.
We also generalized the notion of ASAs by allowing attacks against all
randomized algorithms R with secret s. We then showed that generic
attacks against such algorithms can be constructed by using the re-
jection sampling stegosystem. Inspired by this connection, we define
universal ASAs that work with no knowledge on the internal imple-
mentation of the symmetric encryption schemes and thus work for
all such encryption schemes with sufficiently large min-entropy. As
almost all known ASAs are universal, we investigate their rate – the
number of embedded bits per ciphertext – and prove a logarithmic
upper bound on this rate (under cryptographic assumptions).

146 algorithm substitution attacks

Besides of the results on the (im)possibility of ASAs against differ-
ent cryptographic primitives, this chapter also shows that stegano-
graphic concepts are sometimes contained in cryptographic applica-
tions in unexpected ways. It would thus be interesting to search out
other primitives making use of steganography. The work [PSB17] of
Pasquini, Schöttle, and Böhme already investigated so called decoy
password vaults, although in an information-theoretic setting.

9
C O N C L U S I O N S A N D R E S E A R C H Q U E S T I O N S

So long, and thanks for all the fish.

— Douglas Adams

In this thesis, we analyzed problems in several different stegano-
graphic models. By doing this, we disproved the widely spread be-
lief that »steganography is cryptographic encryption« and tried to
reignite the interest on theoretical research about provably secure
steganography as it is not simply a byproduct of encryption schemes.
We hope that this motivates other authors to conduct theoretical and
practical research on this fascinating topic. By showing that certain
channels do not (under cryptographic assumptions) inhibit secure
stegosystems, we showed that the influence of the communication
channel on the stegosystem plays a major part in the design of prov-
ably secure stegosystems. Furthermore, we provided (im)possibility
results concerning the SS-CCA-security of public key stegosystems.
This strengthens the notion that steganography and cryptographic en-
cryption are two quite different topics, as CCA-secure cryptosystems
are widely spread. In order to get a better understanding on the chan-
nels that allow rate-efficient steganography, we gave an rate-efficient
stegosystem for the important class of pattern channels. Finally, we
discovered steganography in the modern cryptographic scenario of
algorithm substitution attacks and showed that ASAs are a special
case of stegosystems on certain channels.

As noted in the final sections in each chapter, a lot of important
open questions on provably secure steganography still exist or are
generated by the results of this thesis. In the following, we give an
exemplary overview of some of these questions:

• Can one use the techniques of provably secure steganography in
order to prove the (in)security of practical stegosystem? Which
assumptions are necessary to derive such security results?

• Can one find additional attacker models that are more suitable
for the analysis of practical stegosystems?

• Can one find a natural security notion for public key steganog-
raphy that is strictly stronger than SS-RCCA-security, but still
weaker than SS-CCA-security that allows universal steganogra-
phy?

• Can one identify classes of (non-memoryless) channels which
allows SS-CCA-secure steganography?

148 conclusions and research questions

• Can one construct SS-CCA-secure universal stegosystems, if the
stegoencoder is allowed to »look into the future«?

• Can one design rate-efficient grey-box stegosystems for more re-
alistic channels (e. g. network protocols described by regular lan-
guages or even programming languages described by context-
sensitive grammars)?

• Can one observe the square root law also in the setting of prov-
ably secure grey-box steganography?

• Can one identify more steganographic primitives useful for the
design of provably secure stegosystems?

• Can one find more steganographic applications such as algo-
rithm substitution attacks?

B I B L I O G R A P H Y

[AD97] Miklós Ajtai and Cynthia Dwork. “A Public-Key Cryp-
tosystem with Worst-Case/Average-Case Equivalence.”
In: Proc. STOC. ACM, 1997, pp. 284–293.

[And96] Ross J. Anderson. “Stretching the Limits of Steganogra-
phy.” In: Proc. IH. Vol. 1174. Lecture Notes in Computer
Science. Springer, 1996, pp. 39–48.

[Ang80] Dana Angluin. “Finding Patterns Common to a Set of
Strings.” In: Journal of Computer and System Sciences 21.1
(1980), pp. 46–62.

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity:
a modern approach. Cambridge University Press, 2009.

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi.
“Subversion-resilient signature schemes.” In: Proc. CCS.
ACM. 2015, pp. 364–375.

[BC05] Michael Backes and Christian Cachin. “Public-Key
Steganography with Active Attacks.” In: Proc. TCC. Vol.
3378. Lecture Notes in Computer Science. Springer, 2005,
pp. 210–226.

[BBG+Se] James Ball, Julian Borger, Glenn Greenwald, et al. Re-
vealed: how US and UK spy agencies defeat internet privacy
and security. The Guardian. 6 September 2013.

[BJK15] Mihir Bellare, Joseph Jaeger, and Daniel Kane. “Mass-
surveillance without the State: Strongly Undetectable
Algorithm-Substitution Attacks.” In: Proc. CCS. ACM,
2015, pp. 1431–1440.

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway.
“Security of Symmetric Encryption against Mass Surveil-
lance.” In: Proc. CRYPTO. Vol. 8616. Lecture Notes in
Computer Science. Springer, 2014, pp. 1–19.

[Bel+97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rog-
away. “A Concrete Security Treatment of Symmetric En-
cryption.” In: Proc. FOCS. Full version available under
http://web.cs.ucdavis.edu/~rogaway/papers/sym-

enc.pdf. IEEE Computer Society, 1997, pp. 394–403.

[BL16a] Sebastian Berndt and Maciej Liśkiewicz. “Hard Commu-
nication Channels for Steganography.” In: Proc. ISAAC.
Vol. 64. Leibniz International Proceedings in Informat-
ics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2016, pp. 16:1–16:13.

http://web.cs.ucdavis.edu/~rogaway/papers/sym-enc.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/sym-enc.pdf

150 bibliography

[BL16b] Sebastian Berndt and Maciej Liśkiewicz. “Provable Se-
cure Universal Steganography of Optimal Rate: Provably
Secure Steganography does not Necessarily Imply One-
Way Functions.” In: Proc. IH&MMSec. awarded Best Stu-
dent Paper. ACM, 2016, pp. 81–92.

[BL17] Sebastian Berndt and Maciej Liśkiewicz. “Algorithm Sub-
stitution Attacks from a Steganographic Perspective.” In:
Proc. CCS. ACM, 2017, pp. 1649–1660.

[BL18] Sebastian Berndt and Maciej Liśkiewicz. “On the Gold
Standard for Security of Universal Steganography.” In:
Proc. EUROCRYPT. Vol. 10820. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 29–60.

[BR16] Sebastian Berndt and Rüdiger Reischuk. “Steganography
Based on Pattern Languages.” In: Proc. LATA. Vol. 9618.
Lecture Notes in Computer Science. Springer, 2016, pp.
387–399.

[Cac98] Christian Cachin. “An information-theoretic model for
steganography.” In: Proc. IH. Vol. 1525. Lecture Notes in
Computer Science. Springer, 1998, pp. 306–318.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen.
“Relaxing Chosen-Ciphertext Security.” In: Proc. CRYPTO.
Vol. 2729. Lecture Notes in Computer Science. Springer,
2003, pp. 565–582.

[Cas+06] John Case, Sanjay Jain, Rüdiger Reischuk, Frank Stephan,
and Thomas Zeugmann. “Learning a subclass of regular
patterns in polynomial time.” In: Theoretical Computer Sci-
ence 364.1 (2006), pp. 115–131.

[Cas+12] John Case, Sanjay Jain, Trong Dao Le, Yuh Shin Ong,
Pavel Semukhin, and Frank Stephan. “Automatic learn-
ing of subclasses of pattern languages.” In: Information
and Computation 218 (2012), pp. 17–35.

[Cha+07] Nishanth Chandran, Vipul Goyal, Rafail Ostrovsky, and
Amit Sahai. “Covert Multi-Party Computation.” In: Proc.
FOCS. IEEE Computer Society, 2007, pp. 238–248.

[Che+14] Stephen Checkoway, Ruben Niederhagen, Adam
Everspaugh, Matthew Green, Tanja Lange, Thomas Ris-
tenpart, Daniel J. Bernstein, Jake Maskiewicz and
Hovav Shacham, and Matthew Fredrikson. “On the Prac-
tical Exploitability of Dual EC in TLS Implementations.”
In: Proc. USENIX. USENIX Association, 2014, pp. 319–
335.

bibliography 151

[CDJ16] Chongwon Cho, Dana Dachman-Soled, and
Stanislaw Jarecki. “Efficient Concurrent Covert Compu-
tation of String Equality and Set Intersection.” In: Proc.
CT-RSA. Vol. 9610. Lecture Notes in Computer Science.
Springer, 2016, pp. 164–179.

[Dai+13] Alberto Dainotti, Claudio Squarcella, Emile Aben, Kim-
berly C. Claffy, Marco Chiesa, Michele Russo, and An-
tonio Pescapè. “Analysis of Country-Wide Internet Out-
ages Caused by Censorship.” In: IEEE/ACM Transactions
on Networking 22.6 (2013), pp. 1964–1977.

[DDS15] Anindya De, Ilias Diakonikolas, and Rocco A. Servedio.
“Learning from satisfying assignments.” In: Proc. SODA.
SIAM, 2015, pp. 478–497.

[Ded+09] Nenad Dedić, Gene Itkis, Leonid Reyzin, and Scott Rus-
sell. “Upper and Lower Bounds on Black-Box Steganog-
raphy.” In: Journal of Cryptology 22.3 (2009), pp. 365–394.

[DFP15] Jean Paul Degabriele, Pooya Farshim, and Bertram Poet-
tering. “A More Cautious Approach to Security Against
Mass Surveillance.” In: Proc. FSE. Vol. 9054. Lecture
Notes in Computer Science. Springer, 2015, pp. 579–598.

[DH76] Whitfield Diffie and Martin E. Hellman. “New directions
in cryptography.” In: IEEE Transactions on Information The-
ory 22.6 (1976), pp. 644–654.

[DMS04] Roger Dingledine, Nick Mathewson, and
Paul F. Syverson. “Tor: The Second-Generation Onion
Router.” In: Proc. USENIX. USENIX Association, 2004,
pp. 303–320.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. “Nonmal-
leable Cryptography.” In: SIAM Journal on Computing 30.2
(2000), pp. 391–437.

[Dwo06] Cynthia Dwork. “Differential Privacy.” In: Proc. ICALP.
Vol. 4052. Lecture Notes in Computer Science. Springer,
2006, pp. 1–12.

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. “Immu-
nizing Encryption Schemes from Decryption Errors.” In:
Proc. EUROCRYPT. Vol. 3027. Lecture Notes in Computer
Science. Springer, 2004, pp. 342–360.

[Dwo+09] Cynthia Dwork, Moni Naor, Omer Reingold,
Guy N. Rothblum, and Salil P. Vadhan. “On the com-
plexity of differentially private data release: efficient algo-
rithms and hardness results.” In: Proc. STOC. ACM, 2009,
pp. 381–390.

152 bibliography

[EGM96] Shimon Even, Oded Goldreich, and Silvio Micali. “On-
Line/Off-Line Digital Signatures.” In: Journal of Cryptol-
ogy 9.1 (1996), pp. 35–67.

[FNP14] Nelly Fazio, Antonio Nicolosi, and Irippuge Milinda Per-
era. “Broadcast Steganography.” In: Proc. CT-RSA. Vol.
8366. Lecture Notes in Computer Science. Springer, 2014,
pp. 64–84.

[FKF09] Tomáš Filler, Andrew D. Ker, and Jessica J. Fridrich. “The
square root law of steganographic capacity for Markov
covers.” In: Proc. SPIE. Vol. 7254. SPIE, 2009, pp. 08–1––
08–11.

[Fri09] Jessica Fridrich. Steganography in digital media: principles,
algorithms, and applications. Cambridge University Press,
2009.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume
2, Basic Applications. Cambridge University Press, 2004.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio
Micali. “How to construct random functions.” In: Journal
of the ACM 33.4 (1986), pp. 792–807.

[GK92] Oded Goldreich and Hugo Krawczyk. “Sparse Pseudo-
random Distributions.” In: Random Structures and Algo-
rithms 3.2 (1992), pp. 163–174.

[GR13] Oded Goldreich and Ron D. Rothblum. “Enhancements
of trapdoor permutations.” In: Journal of cryptology 26.3
(2013), pp. 484–512.

[GM84] Shafi Goldwasser and Silvio Micali. “Probabilistic
Encryption.” In: Journal of Computer and System Sciences
28.2 (1984), pp. 270–299.

[Gre14] Glenn Greenwald. No place to hide: Edward Snowden, the
NSA, and the US surveillance state. Macmillan, 2014.

[Hås+99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and
Michael Luby. “A Pseudorandom Generator from any
One-way Function.” In: SIAM Journal on Computing 28.4
(1999), pp. 1364–1396.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman.
“NTRU: A Ring-Based Public Key Cryptosystem.” In: ANTS.
Vol. 1423. Lecture Notes in Computer Science. Springer,
1998, pp. 267–288.

[HRW16] Dennis Hofheinz, Vanishree Rao, and
Daniel Wichs. “Standard Security Does Not Imply Indis-
tinguishability Under Selective Opening.” In: Proc. TCC.
Vol. 9986. Lecture Notes in Computer Science. Springer,
2016, pp. 121–145.

bibliography 153

[Hop04] Nicholas J Hopper. “Toward a theory of Steganography.”
PhD thesis. Carnegie Mellon University, 2004.

[HLv02] Nicholas J. Hopper, John Langford, and Luis von Ahn.
“Provably Secure Steganography.” In: Proc. CRYPTO. Vol.
2442. Lecture Notes in Computer Science. Springer, 2002,
pp. 77–92.

[HvL09] Nicholas J. Hopper, Luis von Ahn, and John Langford.
“Provably Secure Steganography.” In: IEEE Transactions
on Computers 58.5 (2009), pp. 662–676.

[Hop05] Nicholas Hopper. “On Steganographic Chosen Covertext
Security.” In: Proc. ICALP. Vol. 3580. Lecture Notes in
Computer Science. Springer, 2005, pp. 311–323.

[HH11] Philip N. Howard and Muzammil M. Hussain. “The role
of digital media.” In: Journal of democracy 22.3 (2011), pp.
pp. 35–48.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
“Pseudo-random Generation from one-way functions (Ex-
tended Abstracts).” In: Proc. STOC. ACM, 1989, pp. 12–
24.

[IR88] Russell Impagliazzo and Steven Rudich. “Limits on the
Provable Consequences of One-way Permutations.” In:
Proc. CRYPTO. Vol. 403. Lecture Notes in Computer Sci-
ence. Springer, 1988, pp. 8–26.

[JVV86] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani.
“Random Generation of Combinatorial Structures from
a Uniform Distribution.” In: Theoretical Computer Science
43 (1986), pp. 169–188.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern
Cryptography. Chapman and Hall/CRC Press, 2007.

[KP02] Stefan Katzenbeisser and Fabien A. P. Petitcolas. “Defin-
ing security in steganographic systems.” In: Security and
Watermarking of Multimedia Contents. Vol. 4675. Proc. SPIE.
SPIE, 2002, pp. 50–56.

[Ker+08] Andrew D. Ker, Tomás Pevný, Jan Kodovský, and Jessica
Fridrich. “The square root law of steganographic capac-
ity.” In: Proc. MMSec. ACM. 2008, pp. 107–116.

[Ker+13] Andrew D. Ker, Patrick Bas, Rainer Böhme,
Rémi Cogranne, Scott Craver, Tomáš Filler,
Jessica Fridrich, and Tomáš Pevnỳ. “Moving steganogra-
phy and steganalysis from the laboratory into the real
world.” In: Proc. IH&MMSec. ACM. 2013, pp. 45–58.

154 bibliography

[KMO10] Eike Kiltz, Payman Mohassel, and Adam O’Neill. “Adap-
tive Trapdoor Functions and Chosen-Ciphertext
Security.” In: Proc. EUROCRYPT. Vol. 6110. Lecture
Notes in Computer Science. Springer, 2010, pp. 673–692.

[Kol99] Valentin Fedorovich Kolchin. Random graphs. 53.
Cambridge University Press, 1999.

[Lan93] Serge Lang. Algebra (3. ed.) Addison-Wesley, 1993.

[LW91] Steffen Lange and Rolf Wiehagen. “Polynomial-time in-
ference of arbitrary pattern languages.” In: New Genera-
tion Computing 8.4 (1991), pp. 361–370.

[Lev87] Leonid A. Levin. “One way functions and pseudorandom
generators.” In: Combinatorica 7.4 (1987), pp. 357–363.

[Lin03] Yehuda Lindell. “A Simpler Construction of CCA2-Secure
Public-Key Encryption under General Assumptions.” In:
Proc. EUROCRYPT. Vol. 2656. Lecture Notes in Computer
Science. Springer, 2003, pp. 241–254.

[LRW13] Maciej Liśkiewicz, Rüdiger Reischuk, and Ulrich Wölfel.
“Grey-box steganography.” In: Theoretical Computer Sci-
ence 505 (2013), pp. 27–41.

[LRW17] Maciej Liśkiewicz, Rüdiger Reischuk, and Ulrich Wölfel.
“Security levels in steganography – Insecurity does not
imply detectability.” In: Theoretical Computer Science 692

(2017), pp. 25–45.

[LM06] Anna Lysyanskaya and Mira Meyerovich. “Provably Se-
cure Steganography with Imperfect Sampling.” In: Proc.
PKC. Vol. 3958. Lecture Notes in Computer Science.
Springer, 2006, pp. 123–139.

[Mic15] Silvio Micali. “What it means to receive the Turing
award.” In: Communications of the ACM 58.1 (2015), pp. 52–
53.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and com-
puting - randomized algorithms and probabilistic analysis.
Cambridge University Press, 2005.

[Pap94] Christos H. Papadimitriou. Computational complexity.
Addison-Wesley, 1994.

[PSB17] Cecilia Pasquini, Pascal Schöttle, and Rainer Böhme. “De-
coy Password Vaults: At Least as Hard as Steganogra-
phy?” In: Proc. SEC. Vol. 502. IFIP Advances in Infor-
mation and Communication Technology. Springer, 2017,
pp. 356–370.

[PLS13] Nicole Perlroth, Jeff Larson, and Scott Shane. NSA able to
foil basic safeguards of privacy on web. The New York Times.
2013.

bibliography 155

[Rei02] Daniel Reidenbach. “A Negative Result on Inductive In-
ference of Extended Pattern Languages.” In: Proc. ALT.
Vol. 2533. Lecture Notes in Computer Science. Springer,
2002, pp. 308–320.

[RZ00] Rüdiger Reischuk and Thomas Zeugmann. “An average-
case optimal one-variable pattern language learner.” In:
Journal of Computer and System Sciences 60.2 (2000), pp.
pp. 302–335.

[Rob+16] Adam Roberts, Michael J Willis, Rory McCarthy, and Tim-
othy Garton Ash. Civil Resistance in the Arab Spring: Tri-
umphs and Disasters. Oxford University Press, 2016.

[Sal94] Arto Salomaa. “Patterns.” In: Bulletin of the EATCS 54

(1994), pp. 194–206.

[Sch07] Bruce Schneier. Did NSA put a secret backdoor in new en-
cryption standard? https://www.schneier.com/essays/
archives/2007/11/did_nsa_put_a_secret.html. 2007 (vis-
ited on 27 September 2017).

[Sch+15] Bruce Schneier, Matthew Fredrikson, Tadayoshi Kohno,
and Thomas Ristenpart. Surreptitiously Weakening Crypto-
graphic Systems. IACR Cryptology ePrint Archive. 2015.

[Sha49] Claude E. Shannon. “Communication theory of secrecy
systems.” In: Bell Labs Technical Journal 28.4 (1949), pp.
pp. 656–715.

[Shi82] Takeshi Shinohara. “Polynomial time inference of
extended regular pattern languages.” In: Proc. RIMS. Vol.
147. Lecture Notes in Computer Science. Springer, 1982,
pp. 115–127.

[SA95] Takeshi Shinohara and Setsuo Arikawa. “Pattern infer-
ence.” In: Algorithmic Learning for Knowledge-Based
Systems: GOSLER Final Report. Vol. 961. Lecture Notes in
Computer Science. Springer, 1995, pp. 259–291.

[SF07] Dan Shumow and Niels Ferguson. On the Possibility of a
Back Door in the NIST SP800-90 Dual Ec Prng. Presentation
at the CRYPTO 2007 Rump Session. 2007.

[Sim84] Gustavus J. Simmons. “The prisoners’ problem and the
subliminal channel.” In: Proc. CRYPTO. Springer. 1984,
pp. 51–67.

[Sim98a] Gustavus J. Simmons. “The history of subliminal chan-
nels.” In: IEEE Journal on Selected Areas in Communications
16.4 (1998), pp. 452–462.

https://www.schneier.com/essays/archives/2007/11/did_nsa_put_a_secret.html
https://www.schneier.com/essays/archives/2007/11/did_nsa_put_a_secret.html

156 bibliography

[Sim98b] Daniel R. Simon. “Finding Collisions on a One-Way
Street: Can Secure Hash Functions Be Based on General
Assumptions?” In: Proc. EUROCRYPT. Vol. 1403. Lecture
Notes in Computer Science. Springer, 1998, pp. 334–345.

[Sip06] Michael Sipser. Introduction to the Theory of Computation.
Vol. 2. Thomson Course Technology Boston, 2006.

[SYZ11] Frank Stephan, Ryo Yoshinaka, and Thomas Zeugmann.
“On the Parameterised Complexity of Learning Patterns.”
In: Proc. ISCIS. Springer, 2011, pp. 277–281.

[Ull13] Jonathan Ullman. “Answering n2+o(1) counting queries
with differential privacy is hard.” In: Proc. STOC. ACM,
2013, pp. 361–370.

[Wei+12] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran,
Linda Briesemeister, Steven Cheung, Frank Wang, and
Dan Boneh. “StegoTorus: a camouflage proxy for the Tor
anonymity system.” In: Proc. CCS. ACM, 2012, pp. 109–
120.

[YY96] Adam Young and Moti Yung. “The Dark Side of “Black-
Box” Cryptography or: Should We Trust Capstone?” In:
Proc. CRYPTO. Vol. 1109. Lecture Notes in Computer Sci-
ence. Springer, 1996, pp. 89–103.

[YY97] Adam Young and Moti Yung. “Kleptography: Using cryp-
tography against cryptography.” In: Proc. EUROCRYPT.
Vol. 1233. Lecture Notes in Computer Science. Springer,
1997, pp. 62–74.

[vH03] Luis von Ahn and Nicholas J. Hopper. Public Key Stegano-
graphy. IACR Cryptology ePrint Archive. 2003.

[vH04] Luis von Ahn and Nicholas J. Hopper. “Public-Key
Steganography.” In: Proc. EUROCRYPT. Vol. 3027. Lec-
ture Notes in Computer Science. Springer, 2004, pp. 323–
341.

I N D E X

0-memoryless channels, 76

advantage, 13

algorithm substitution
attack (ASA), 126

algorithm substitution attack
ASA against R, 139

arab spring, 1

asymptotic security, 10

attacker, 17

attacker A on generate, 86

attacker message, 126

Bernoulli random variable, 8

binomial random variable, 8

black-box stegosystem
(informal), 23

channel, 25

channel (informal), 24

CCA$-insecurity, 22

CCA-insecurity, 21

CCA$-secure, 22

CCA-secure, 21

CPA$-insecurity, 18

CPA-insecurity, 17

CPA$-secure, 18

CPA-secure, 17

cipher block chaining (CBC), 19

ciphertext, 16

coin-injective, 141

collision finder, 13

collision resistant hash
function (CRHF), 14

CRHF-insecurity, 14

concrete security, 10

conditional probability, 7

coupon collector’s problem,
131

covertext, 25

covertext (informal), 1

decoy password vaults, 125

decryptability assumption, 124

decryption algorithm, 16

deterministic PTM, 9

distinguisher, 14

distribution distinguisher, 11

distribution ensemble, 11

document, 25

document length, 25, 26

documents (informal), 24

doubly enhanced trapdoor
permutations, 22

efficient stegosystem, 27

efficient stegosystems
(informal), 23

efficiently computable
function, 11

efficiently sampleable, 74

efficiently sampleable
ensemble, 11

elementary events, 7

encoding matrix, 107

encryption algorithm, 16

events, 7

existentially unforgeable, 16

expected value, 8

extraction algorithm, 126

factoring, 13

fixed variable length, 114

forger, 15

generator, 13

grey-box steganography, 3

grey-box stegosystem
(informal), 23

hash function, 13

hiddentext, 26

hiddentext (informal), 1

history, 25

158 index

history (informal), 24

history-ignorant, 129

independent events, 7

independent random
variables, 8

indistinguishability (informal),
11

indistinguishable, 12

information-theoretic security
(informal), 1

insecurity, 128, 140

intermediate pattern, 105

keyed functions, 13

language generated by π, 105

legal histories, 26

length vector, 105

membership-testable, 63

memoryless channel, 76

message length, 26

min-entropy, 7

min-entropy of a channel, 25

negligible, 10

one-way function, 12

oracles, 10

ordering attacks, 77

output length, 26

pattern, 105

pattern channel, 106

plaintext, 16

Poisson approximation, 109

Poisson random variable, 9

polynomial probablistic
Turing
machine (PPTM), 10

polynomial stegosystem, 27

polynomial-time invertible
Levin reduction, 67

prisoners’ problem, 2

probabilistic Turing
machines (PTMs), 9

probability distribution, 7

probability space, 7

provable security (informal), 1

pseudorandom channels, 99

PRF-insecurity, 15

pseudorandom function (PRF),
14

pseudorandom
permutation (PRP), 15

public key, 20

public key encryption
scheme (PKES), 20

public-key attacker, 21

public-key decryption
algorithm, 20

public-key encryption
algorithm, 20

public-key stegosystem, 27

public-key stegosystem
(informal), 24

public-key warden, 32

query complexity, 28

random counter mode, 18

random variable, 8

rank, 104

rate-efficient, 28

ROR-Warden, 31

reboot-reliability, 129

rejection sampling, 36

reliability, 127

reliable on C, 28

replay, 34

running time, 9

sampling algorithm, 74

sampling attacks, 77

secret key, 20

secret-key stegosystem
(informal), 24

secretly embedded trapdoor
with universal
protection (SETUP)
attacks, 124

secure, 128

secure relative to C, 36

security parameter, 10

set of all functions, 14

sig-insecurity, 16

index 159

signature, 15

signature scheme, 15

signing algorithm, 15

Square Root Law of
Steganographic
Capacity, 47

state-controlling warden, 130

stateless rejection sampling
stegosystem, 131

statistical distance, 9

SS-CCA-insecurity, 34

SS-CCA-secure on C, 33

SS-CHA-insecurity, 31

SS-CHA-secure on C, 31

steganographic replayable
chosen-covertext
attacks (SS-RCCAs), 34

SS-RCCA-secure, 34

stegodecoder, 27

stegoencoder, 26

(secret-key) stegosystem, 26

stegotext, 26

strategic arms limitation treaty
2 (SALT2), 2

strongly K-universal hash
family, 36

strongly K-universal hash
function, 36

subliminal channel, 2

(possibly erasing) substitution,
105

subverted encryption
algorithm, 126

successful, 87

suitable, 97

suitable for Theorem 35, 80

super-polynomial PRF, 15

super-polynomial stegosystem,
27

super-polynomial
stegosystems
(informal), 23

support, 7

symmetric encryption
scheme (SES), 16

symmetric-key stegosystem
(informal), 24

Tor, 2

total length-uniform, 115

transmission rate, 28

unique signature schemes, 142

universal ASA, 142

universal stegosystem
(informal), 23

universally SS-CCA-secure, 34

universally SS-CHA-secure, 31

universally SS-RCCA-secure, 34

universally reliable, 28

unreliability, 28, 127, 140

verifiability condition, 142

verifying algorithm, 15

warden, 30

watchdog, 127

white-box stegosystem
(informal), 23

curriculum vitae 161

C U R R I C U L U M V I TÆ

P E R S Ö N L I C H E D AT E N

Sebastian Berndt

Geboren am 27.04.1986 in Berlin

Verheiratet, ein Kind

W I S S E N S C H A F T L I C H E R W E R D E G A N G

2005 Abitur an der Geschwister-Prenski-Schule Lübeck, Note: 1,8

2005–2007 Studium der Mathematik und Informatik auf Lehramt an
Gymnasien an der Universität Rostock

2007–2010 Studium Bachelor Informatik an der CAU Kiel mit An-
wendungsbereich Medienpädagogik, Note: 1,4

2010–2012 Studium Master Informatik an der CAU Kiel mit Anwen-
dungsbereich Mathematik, Note: 1,1

2012–2017 Wissenschaftlicher Mitarbeiter am Institut für Theoretis-
che Informatik (Leitung: Rüdiger Reischuk) der Universität
zu Lübeck

seit 10/2017 Wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Al-
gorithmen und Komplexität (Leitung: Klaus Jansen) am Institut
für Informatik der Christian-Albrechts-Universität Kiel

V E R Ö F F E N T L I C H U N G E N

Berndt, Sebastian; Jansen, Klaus und Klein, Kim-Manuel:
Fully Dynamic Bin Packing Revisited, APPROX 2015

Berndt, Sebastian und Reischuk, Rüdiger: Steganography
Based on Pattern Languages, LATA 2016

Berndt, Sebastian und Liśkiewicz, Maciej: Provable Secure Uni-
versal Steganography of Optimal Rate, ACM IH&MMSEC 2016,
Auszeichnung Best Student Paper

Berndt, Sebastian und Liśkiewicz, Maciej: Hard Communica-
tion Channels for Steganography, ISAAC 2016

Berndt, Sebastian; Liśkiewicz, Maciej; Lutter, Matthias und
Reischuk, Rüdiger: Learning Residual Alternating Automata,
AAAI 2017

162 curriculum vitae

Bannach, Max; Berndt, Sebastian und Ehlers, Thorsten:
Jdrasil: A Modular Library for Computing Tree Decompositions,
SEA 2017

Berndt, Sebastian und Liśkiewicz, Maciej: Algorithm Substitu-
tion Attacks from a Steganographic Perspective, CCS 2017

Berndt, Sebastian und Liśkiewicz, Maciej: On the Gold Stan-
dard for Security of Universal Steganography, EUROCRYPT 2018

Bannach, Max; Berndt, Sebastian; Ehlers, Thorsten und
Nowotka, Dirk: SAT-Encodings of Tree Decompositions, SAT Com-
petition 2018

Berndt, Sebastian: Computing Tree Width: From Theory to Prac-
tice and Back, CiE 2018

Berndt, Sebastian und Klein, Kim-Manuel: Using Structural
Properties for Integer Programs, CiE 2018

Berndt, Sebastian; Jansen, Klaus und Klein, Kim-Manuel:
Fully Dynamic Bin Packing Revisited, Mathematical Program-
ming (accepted), 2018

Bannach, Max und Berndt, Sebastian: Practical Access to Dy-
namic Programming on Tree Decompositions, ESA 2018,
Auszeichnung Best Student Paper

A U S Z E I C H N U N G E N

2016 Best Student Paper Award für die Arbeit Provable Secure Uni-
versal Steganography of Optimal Rate

2016 Dritter Platz in den Tracks Sequentieller Exakter Löser und Par-
alleler Heuristischer Löser in der Parameterized Algorithms and
Computational Experiments Challenge (pace) 2016

2017 Dritter Platz im Track Exakter Löser in der pace 2017

2018 Best Student Paper Award für die Arbeit Practical Access to
Dynamic Programming on Tree Decompositions

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of October 24, 2018 (classicthesis version β).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 History
	1.2 Our Results

	2 Preliminaries
	2.1 Probabilities
	2.2 Algorithms
	2.3 Cryptographic Primitives

	3 Models of Steganography
	3.1 Unsuspicious Communication
	3.2 Stegosystems
	3.3 Security Notions
	3.4 Relativized Security
	3.5 Rejection Sampling

	4 A Computational Expensive Universal Secret-Key Stegosystem
	4.1 The Relationship Between Steganography and Cryptographic Encryption
	4.2 Known Upper and Lower Bounds on the Security of the Rejection Sampling Stegosystem
	4.3 Our Contributions
	4.4 Pseudorandom Functions of Very High Hardness
	4.5 Rate-efficient Steganography
	4.6 Unconditional Lower Bound
	4.7 Conclusions and Further Work

	5 Hardness Results on Universal Efficient Secret-Key Steganography
	5.1 Our Contributions
	5.2 A Channel such that Efficient Steganography on C Does Imply the Non-existence of One-way Functions
	5.3 A Channel C such that Efficient Steganography on C Does Imply the Existence of One-way Functions
	5.4 Conclusions and Further Work

	6 On the Gold Standard of Public-Key Steganography
	6.1 Our Contributions
	6.2 Detecting the Scheme of Backes and Cachin
	6.3 An High-Level View of our Stegosystem
	6.4 Obtaining Biased Ciphertexts
	6.5 Ordering the Documents
	6.6 The Steganographic Protocol
	6.6.1 Proofs of Reliability and Security

	6.7 An Impossibility Result
	6.7.1 Lower Bound on Truly Random Channels
	6.7.2 Lower Bound on Pseudorandom Channels

	6.8 Conclusion and Further Work

	7 A Private-Key Stegosystem for Pattern Channels
	7.1 Our Contribution
	7.2 Pattern Languages
	7.3 Steganography Using Pattern
	7.4 Coding Bits by Random Subsets
	7.4.1 Bounding the Rank of Matrices Obtained by Random Assignments of Intermediate Pattern
	7.4.2 Modifying Strings of a Pattern Language to Embed Secrets
	7.4.3 Sampling a Pattern Channel
	7.4.4 A Secure Stegosystem for Pattern Channels

	7.5 Conclusion and Further Work

	8 Application Of Steganography: Algorithm Substitution Attacks
	8.1 Our Results
	8.2 Substitution Attacks against Encryption Schemes
	8.3 The Steganographic Setting
	8.4 Encryption Schemes as Steganographic Channels
	8.5 ASAs against Encryption as Steganography
	8.5.1 Steganography implies ASAs
	8.5.2 ASAs imply Steganography

	8.6 General Results
	8.6.1 ASA against a Randomized Algorithm
	8.6.2 Channel determined by a Randomized Algorithm
	8.6.3 Results

	8.7 A Lower Bound for Universal ASA
	8.8 Conclusions and Further Work

	9 Conclusions and Research Questions
	 Bibliography
	Index
	CV
	Colophon

