
Algorithms for Minimum Graph Bisection
and their Performance on
Specific Graph Classes

Martin R. Schuster

From the Institute of Theoretical Computer Science
of the Universität zu Lübeck

Director: Prof. Dr.math. Rüdiger Reischuk

Algorithms for Minimum Graph Bisection and their
Performance on Specific Graph Classes

Dissertation
for the Fulfillment of
Requirements for the

Doctoral Degree
of the Universität zu Lübeck

from the Department of Computer Science

Submitted by

Martin R. Schuster
from Leipzig

Lübeck 2018

i

First referee Prof. Dr.Maciej Lískiewicz
Second referee Prof. Dr.Klaus Jansen

Date of oral examination 07. 06. 2018
Approved for printing 12. 06. 2018

ii

Abstract

The Minimum Graph Bisection Problem is a well-studied NP-hard
problem. It is defined to partition the vertices of an undirected graph
into two equal sized sets, such that the number of edges between the sets
is minimized. In this thesis we focus on polynomial-time heuristics that
determine provably minimum graph bisections or output “fail” when the
optimality cannot be certified. Boppana’s spectral based heuristic is one
of the most prominent methods of this type. It is claimed to work well
on the random planted bisection model – the standard class of graphs for
the analysis of minimum bisection and related problems – but a complete
proof was missing so far. We provide one now.
Since the behavior of Boppana’s algorithm on the semirandom model

by Blum and Spencer remained unknown, Feige and Kilian proposed a
new semidefinite programming (SDP) based approach and proved that it
works on this model. The relationship to Boppana’s algorithm, however,
was still left as an open problem. We solve this by proving that both
algorithms obtain the same results. As a consequence, we get that
Boppana’s algorithm achieves the optimal threshold for exact cluster
recovery in the stochastic block model. On the other hand, we prove some
limitations of Boppana’s approach: we show that, if the density difference
on the parameters of the planted bisection model is too small, then the
algorithm fails with high probability in the model.

The inherent weakness of Boppana’s approach is the huge computational
complexity of the required high-dimensional convex optimization. We
propose a simple modification of Boppana’s algorithm which avoids the
extensive convex search. This leads to a substantial speedup: while
Boppana’s algorithm works only for graphs with up to 150 vertices in a
reasonable amount of time, our heuristic bisects graphs of up to millions of
vertices in few seconds. Our heuristic also outperforms the SDP approach
from Feige and Kilian, which reaches its limit at 2000 vertices.

In order to obtain graphs with largest bisection width and thus largest
pathwidth, we provide an explicit construction for simple cubic Ramanu-
jan graphs, which can be easily generated in linear time. Our construction
allows, for the first time, to analyze experimentally a dense family of
explicitly constructed cubic Ramanujan graphs. We estimate the asymp-
totic bisection width at approximately 0.12 times the number of vertices,
leading to the conjecture that the lower bound of Kostochka and Melnikov
on the worst case bisection width over all cubic graphs of n vertices is
fulfilled already by the cubic Ramanujan graphs.

iii

Zusammenfassung

Das Minimum-Graph-Bisektionsproblem ist ein gut untersuchtes NP-
hartes Problem. Es ist definiert als Partitionierung der Knoten eines
ungerichteten Graphen in zwei gleichgroße Teilmengen, sodass die An-
zahl der Kanten zwischen den beiden Mengen minimiert wird. In dieser
Arbeit konzentrieren wir uns auf Polynomialzeit-Heuristiken, die beweis-
bar minimale Bisektionen finden oder “fail” ausgeben, wenn die Opti-
malität nicht nachgewiesen werden kann. Boppanas Spektralansatz ist
eine der bekanntesten Heuristiken dieser Art. Sie funktioniert gut für
das Planted-Bisection-Modell – einem Standardmodell zur Analyse des
Minimum-Bisektionsproblems und anderen relevanten Problemen – wobei
bisher ein vollständiger Beweis fehlte. Wir liefern diesen.
Da das Verhalten von Boppanas Algorithmus auf dem Semi-Zufalls-

Modell von Blum und Spencer offen war, entwickelten Feige und Kilian
einen neuen Ansatz basierend auf semidefiniter Programmierung (SDP).
Das Verhältnis zu Boppanas Algorithmus blieb ein offenes Problem. Wir
lösen es, indem wir zeigen, dass beide Algorithmen die gleichen Ergebnisse
liefern. Als direkte Konsequenz daraus können wir ableiten, dass Boppanas
Algorithmus die optimale Grenze für das Exact-Cluster-Recovery-Problem
im Stochastic-Block-Modell erreicht. Auf der anderen Seite zeigen wir eini-
ge Einschränkungen von Boppanas Ansatz: Wenn die Dichteunterschiede
der Parameter des Planted-Bisection-Modells zu klein sind, dann gibt der
Algorithmus mit hoher Wahrscheinlichkeit “fail” aus.

Eine grundsätzliche Schwäche von Boppanas Ansatz ist der hohe Berech-
nungsaufwand in der erforderlichen hochdimensionalen konvexen Optimie-
rung. Wir schlagen eine einfache Anpassung von Boppanas Algorithmus
vor, die die aufwendige konvexe Optimierung überflüssig macht. Dies führt
zu einer erheblichen Beschleunigung: Während Boppanas Algorithmus
nur für Graphen bis zu 150 Knoten in angemessener Zeit läuft, findet
unsere neue Heuristik die optimale Bisektion für Graphen mit mehreren
Millionen Knoten. Unsere Heuristik überzeugt auch im Vergleich mit dem
SDP-Ansatz von Feige und Kilian, der seine Grenze bei 2000 Knoten
erreicht.
Um Graphen mit größtmöglicher Bisektionsweite und folglich größt-

möglicher Pfadweite zu erhalten, entwickeln wir eine explizite Konstrukti-
on von einfachen kubischen Ramanujan-Graphen, die sich in Linearzeit
generieren lassen. Unsere Konstruktion lässt es erstmalig zu, experimen-
tell eine dichte Klasse von explizit konstruierten kubischen Ramanujan-
Graphen zu analysieren. Wir schätzen die asymptotische Bisektionsweite
mit ungefähr 0.12-facher Anzahl der Knoten ab und stellen die Vermutung
auf, dass die untere Schranke von Kostochka und Melnikov für die Worst-
Case-Bisektionsweite aller kubischer Graphen mit n Knoten bereits für
kubische Ramanujan-Graphen gilt.

iv

Contents

1 Introduction 1
1.1 Main Contributions of this Thesis 2
1.2 Related Work . 4
1.3 Organization of this Thesis . 5

2 Preliminaries: Graph Models and Bisection Algorithms 6
2.1 Random Graph Models . 6
2.2 Definitions, Notations, and Basic Properties 7
2.3 Boppana’s Spectral-Based Algorithm BB 11
2.4 Semidefinite Programming (SDP) 16
2.5 Feige and Kilian’s SDP Algorithm FK 16

3 Boppana’s Lower Bound: Completed Proofs 18
3.1 Proof of Boppana’s Lower Bound 18
3.2 Bounding Eigenvalues of A− E(A) 22
3.3 Bounding Eigenvalues of diag(d)− E(diag(d)) 26

4 Boppana’s Reconstruction: Issues and Solutions 29
4.1 BB’s Reconstruction Succeeds if Multiplicity is One 30
4.2 Issues with Multiplicity Two or More 31
4.3 Finding a Unique Optimum Bisection BB-U 35
4.4 Finding Non-Unique Optimum Bisections BB-NU 37

5 Boppana’s Approach: New Frontiers of Applicability 40
5.1 Bisections in Adversarial Models 40
5.2 An Improved Algorithm for Unique Optimum Bisections BB-UI 43
5.3 The Limitations of the Spectral Approach 47
5.4 Technical Proofs . 50

6 Boppana’s Approach: SDP Characterizations 59
6.1 An SDP Formulation for Boppana’s Approach 60
6.2 Feige and Kilian’s SDP equals SDP for Boppana’s Approach . . 64
6.3 Comparison of Running Times 67

v

6.4 Optimality of Boppana’s Approach on the Cluster Recovery
Problem . 68

7 A New Fast Heuristic for Certified Minimum Graph Bisections 70
7.1 Avoiding High-Dimensional Optimization 72
7.2 A New Heuristic FB . 74
7.3 Performance in the Planted Bisection Model 75
7.4 Performance in the Regular Graph Model 77
7.5 Achieving the Optimal Threshold for Cluster Recovery 77
7.6 An Improved Heuristic FB∗ . 79
7.7 Comparison of Running Times 80

8 Hard Instances with Provable Large Bisection Width: Ramanujan
Graphs 81
8.1 Known Constructions of Explicit Ramanujan Graphs 85
8.2 Construction of Almost Dense Families – General Case 87
8.3 Almost Dense Explicit Cubic Ramanujan Graphs 91
8.4 Computing the Bisection Width of Ramanujan Graphs 99

9 Discussion and Open Problems 104

List of Algorithms 107

List of Figures 108

List of Tables 109

Bibliography 110

vi

1 Introduction

Graph partitioning problems are notorious for their intractability, both in
theory and in practice. This thesis studies a fundamental variant of this
problem – the minimum graph bisection. It consists in partitioning the set
of vertices V = {1, . . . , n} (n even) of a given undirected graph G into two
equal sized sets, such that the number of cut edges, i. e. edges with endpoints
in different bisection sides, is minimized. The bisection width of G, denoted
by bw(G), is then the minimum number of cut edges in a bisection of G.
The research on graph bisection is motivated by computational challenges

arising in many diverse applications such as VLSI design [50, 8], image pro-
cessing and computer vision [75, 49], divide-and-conquer graph algorithms [51],
scientific simulations [67], and many others. Since the Minimum Graph Bisec-
tion Problem is NP-hard [38], in theory its complexity has been a subject of
intensive studies from an approximability point of view [66, 6, 33, 32] as well
as from the parameterized [57, 73, 27] and average-case [15] perspectives. The
research shows that the problem is even hard to approximate [32].

Promisingly, the problem is fixed parameter tractable – in their breakthrough
paper [27] Cygan et al. provide an algorithm finding a minimum bisection

in time 2O(bw3(G))n3 log3 n. However, this implies a polynomial-time exact
algorithm only for graphs of bisection width O(3

√
log n).

In this thesis we study polynomial-time heuristics that, for any input graph,
either determine an optimum bisection or output “fail” when the optimality of
the solution cannot be certified by the algorithm. We will focus on Boppana’s
spectral-based algorithm [12] which belongs to one of the most prominent
methods of this type, and we focus on particular random graph models used
in the context of bisection problems. Boppana’s algorithm works well in
the random planted bisection model – the standard class of graphs for the
analysis of minimum bisection and related problems. In the planted bisection
model, denoted by Gn(p, q), a vertex set with an even number of vertices n is
partitioned randomly into two equal sized sets V1 and V2, called the planted
bisection. Then, for every pair of vertices do independently: if both vertices
belong to the same part of the bisection, include an edge between them with
probability p; if the two vertices belong to different parts, connect the vertices

1

by an edge with probability q. Assuming the density difference

p− q ≥ c
√

p log n/
√
n for a certain constant c > 0, (1.1)

Boppana’s algorithm finds and certifies the minimum bisection of Gn(p, q) with
probability tending to 1 as the number of vertices n → ∞. We will refer to
this by w.h.p. (with high probability) and say the algorithm works well on
this model. Boppana’s algorithm also finds and certifies w.h.p. the minimum
bisection of graphs from the regular graph model Rn(r, b), assuming that1

r ≥ 6 and b ≤ o(n1−1/b(r/2+1)/2c).

In this model, a graph is chosen at random from the set of all regular graphs
with degree r and bisection width b.

In 2001, Feige and Kilian [31] posed the question if Boppana’s algorithm works
well in the semirandom model by Blum and Spencer [9]. In the semirandom
model, initially a graph G is chosen at random according to the model Gn(p, q).
Then a monotone adversary is allowed to remove any edge crossing a minimum
bisection and is allowed to add any edge not crossing the bisection.

1.1 Main Contributions of this Thesis

In this thesis we answer the question from Feige and Kilian affirmatively:
Boppana’s algorithm works well in the semirandom model. Moreover, we
introduce and analyze a natural generalization of the semirandom model.
Instead of Gn(p, q), we start with an arbitrary initial graph model Gn, and
then the monotone adversary applies changes as in the semirandom model.
We denote such a model by A(Gn). One of our main positive results is that,
if Boppana’s algorithm outputs the minimum-size bisection for graphs in Gn
w.h.p., then the algorithm finds a minimum bisection w.h.p. for the adversarial
graph model A(Gn), too. As a corollary, we get that Boppana’s algorithm
works well not only in the semirandom model A(Gn(p, q)) but also in the
semirandom regular model A(Rn(r, b)). To the best of the author’s knowledge,
Boppana’s algorithm is the only method known so far that finds (w.h.p.)
provably optimum bisections on all of these mentioned random graph classes.
On the other hand, we prove some limitations of Boppana’s approach. We

show that the density difference in Eq. (1.1) is tight: we prove that p − q ≤
o(
√
p · log n/

√
n) implies that the algorithm fails on Gn(p, q) w.h.p.

1In [12], one finds r ≥ 3 and b ≤ o(n1−1/b(r+1)/2c). Reviewing the reference [13], this seems
to hold for 2r-regular graphs.

2

Since the behavior of Boppana’s algorithm on semirandom graphs remained
unknown, Feige and Kilian proposed a new semidefinite programming (SDP)
based approach and proved that it works on this model. The relationship
between the performance of the SDP based algorithm and Boppana’s approach
was left as an open problem. In this thesis we solve the problem in a complete
way by proving that the bisection algorithm of Feige and Kilian provides exactly
the same results as Boppana’s algorithm.
A problem related to Minimum Graph Bisection is the Cluster Recovery

Problem, which asks to find the planted bisection from which the graph was
generated. Hajek et al. [42] showed that an SDP for cluster recovery equivalent
to the one of Feige and Kilian achieves the optimal threshold on the parameters
where exact cluster recovery is possible. We use our new results and show that
also Boppana’s algorithm achieves the optimal threshold for cluster recovery.
The inherent weakness of Boppana’s approach is the huge computational

complexity of the required high-dimensional convex optimization. This severely
limits the practical applicability of the algorithm. Therefore, we propose a
simple modification of Boppana’s algorithm which avoids the expensive convex
search. This leads to a new heuristic with substantial speedup: while Boppana’s
algorithm works only for graphs with up to 150 vertices in a reasonable amount
of time our heuristic bisects graphs of up to millions of vertices in few seconds.
We provide experimental results which show that the heuristic works well
on the graph models for which Boppana’s algorithm theoretically guarantees
provable solutions. The experiments also confirm that our heuristic achieves
the optimum threshold for exact cluster recovery in the stochastic block model.
Though, we leave as an open problem if this heuristic works provably well for
the planted bisection model.

Besides the Minimum Bisection Problem, i. e. finding the minimum bisection
in a given graph, we consider the task of constructing graphs with largest
possibly bisection width. We investigate explicit constructions for cubic Ra-
manujan graphs as deterministic candidates to have asymptotically the largest
bisection width and thus largest pathwidth. In 1992, Chiu [19] gave a con-
struction for such graphs of sizes roughly q3 for prime numbers q satisfying
some additional conditions. Accordingly, only four such graphs exist with the
number of nodes up to 106. In 2016, Cohen [20] obtained the first known
polynomial time algorithm to find bipartite Ramanujan multigraphs of any
degree and any size. However, so far it is not clear whether the algorithm
is practically implementable. Based on the method of Chiu, we provide an
explicit construction for simple cubic Ramanujan graphs of sizes q + 1 for
primes q (satisfying the same conditions as above) such that the proposed

3

graphs can be easily generated in linear time. Due to these properties, our
construction allows, for the first time, to analyze experimentally a dense family
of explicitly constructed cubic Ramanujan graphs. We estimate the asymptotic
bisection width at approximately 0.12 times the number of vertices, leading to
the conjecture that the lower bound of Kostochka and Melnikov [48] on the
worst case bisection width over all cubic graphs of n nodes is fulfilled already by
the cubic Ramanujan graphs. Our graphs can also serve as a benchmark with
cubic graphs of (provably) large bisection width, and thus of large pathwidth,
which seems to be useful for experimental analysis of parameterized algorithms.

1.2 Related Work

Several other algorithms have been proven to work on the planted bisection
model as well. Condon and Karp [26] developed a linear time algorithm for
the more general l-partitioning problem. Their algorithm finds the optimal
partition with probability 1− exp(−nΘ(ε)) in the planted bisection model with
parameters satisfying p− q = Ω(1/n1/2−ε). Carson and Impagliazzo [16] show
that a hill-climbing algorithm is able to find the planted bisection w.h.p. for
parameters p− q = Ω((log3 n)/n1/4). Dyer and Frieze [30] provide a min-cut
via degrees heuristic that, assuming n(p − q) = Ω(n), finds and certifies the
minimum bisection w.h.p. Note that the density difference in Eq. (1.1) assumed
by Boppana still outperforms the above ones. Moreover, a disadvantage of the
methods against Boppana’s algorithm, except for the last one, is that they
do not certify the optimality of the solutions. In [58], McSherry describes a
spectral based heuristic that, applied to G(p, q), finds a minimum bisection
w.h.p. if p and q satisfy assumption in Eq. (1.1), but it does not certify the
optimality. Importantly, the algorithms above, similarly as Boppana’s method,
solve the cluster recovery problem for the stochastic block model with two
communities.

In [24], Coja-Oghlan developed a new spectral-based algorithm that, on the
planted bisection model Gn(p, q), enables for a wider range of parameters than in
Eq. (1.1), certifying the optimality of its solutions. The algorithm [24] assumes
that p− q ≥ Ω(

√
p log(np)/

√
n). If the parameters p and q describe non-sparse

graphs, this condition is essentially the same as Boppana’s assumption. For
sparse graphs, however, Coja-Oghlan’s constraint allows a larger subclass. For
example, the algorithm works in Gn(p, q) for q = O(1)/n and p =

√
log n/n.

From our results we know that Boppana’s algorithm fails w.h.p. for such graphs.
Interestingly, the condition on the density difference by Coja-Oghlan allows
graphs for which the minimum bisection width is w.h.p. strictly smaller than

4

the width of the planted bisection. However, a drawback of Coja-Oghlan’s
algorithm is that, to work well in the planted bisection model with unknown
parameters p and q, the algorithm has to learn the parameters since it is based
on the knowledge of values p and q. Also the performance of the algorithm
on other families, like e. g. semirandom graphs and regular random graphs, is
unknown. Recent research by Coja-Oghlan et al. [25] contributes to a better
understanding of the planted bisection model and average case behavior of a
minimum bisection.

1.3 Organization of this Thesis

This thesis is organized as follows: we introduce Boppana’s graph bisection
algorithm [12] and the SDP algorithm by Feige and Kilian [31] in Chapter 2.
There we also present the random graph models used in the analysis of the bi-
section algorithms. Since the proof on the performance of Boppana’s algorithm
is incomplete in his original work, we provide a completed and self-contained
proof in Chapter 3. The reconstruction of an optimum bisection in Boppana’s
algorithm contains an issue which will be discussed in Chapter 4. We develop
modifications of the algorithm to fix this problem. In Chapter 5 we explore
the abilities of Boppana’s approach and show the limitations of the algorithm.
Then, in Chapter 6, we formulate Boppana’s algorithm as an SDP and show
that his approach is the same as the SDP provided by Feige and Kilian. Con-
sequently, Boppana’s algorithm proves to be optimal for certain regimes of the
planted bisection model on the Cluster Recovery Problem.

A huge drawback of Boppana’s algorithm and the SDP of Feige and Kilian is
the computational complexity. In Chapter 7 we develop a fast heuristic, which
allows to solve instances with up to 106 vertices while it is still able to give a
certificate of optimality. We conduct a series of experiments to show the power
of the new heuristic. Our experiments indicate that even this heuristic achieves
the optimal threshold on the Cluster Recovery Problem (see Section 6.4 for a
definition of this problem).

In Chapter 8 we move the focus on constructing graphs with largest possible
bisection width. We develop new explicit constructions of dense classes of
Ramanujan graphs and propose a new algorithm for finding a good estimate
of the bisection width on these graphs. We relate the results to the known
bounds on worst case bisection width. Finally, we have a discussion on the
results of this thesis and show up open problems.

5

2 Preliminaries: Graph Models and
Bisection Algorithms

In this chapter we present several random graph models commonly used
to analyze the performance of bisection heuristics, among them the already
mentioned planted bisection model and the semirandom model.

We further present Boppana’s graph bisection algorithm from [12], which is
known to work well on the planted bisection model and the random regular
model. Along we provide some known properties of Boppana’s algorithm.
Since the behavior of Boppana’s algorithm on the semirandom model re-

mained unknown so far, Feige and Kilian proposed in [31] a new semidefinite
programming (SDP) based approach which works for semirandom graphs. In
this chapter we also present their algorithm.
Let use note here that, although Boppana’s algorithm and the algorithm

from Feige and Kilian are different, they output exactly the same results, as
we will show in this thesis.

2.1 Random Graph Models

In order to analyze heuristics for graph bisection, we investigate two well-studied
graph models: the planted bisection model and its extension the semirandom
model, which are widely used to analyze and benchmark graph partitioning
algorithms. We refer to [15, 30, 12, 9, 26, 31, 16, 58, 11, 24, 53] to cite some of
the relevant works. We also include the stochastic block model in our discussions,
which is closely related to the planted bisection model. Moreover, we consider
the regular graph model introduced by Bui et al. [15], and a new extension of
the semirandom model.

In the planted bisection model, denoted as Gn(p, q) with parameters 1 > p =
p(n) ≥ q(n) = q > 0 and n even, the vertex set V = {1, . . . , n} is partitioned
randomly into two equal sized sets V1 and V2, called the planted bisection.
Then for every pair of vertices do independently: if both vertices belong to the
same part of the bisection (either both belong to V1 or both belong to V2), then
include an edge between them with probability p; if the two vertices belong to

6

different parts, then connect the vertices by an edge with probability q.
The planted bisection model was first proposed in the sociology literature [44]

under the name stochastic block model to study community detection problems
in random graphs. In this setting, the planted bisection V1, V2 (as described
above) models latent communities in a network and the goal here is to recover
the communities from the observed graph. In the general case, the model allows
some errors by recovering, allows multiple communities, and also allows that
p(n) < q(n). The community detection problem on the stochastic block model
has been subject of a considerable amount of research in physics, statistics
and computer science (see e. g. [1, 61] for current surveys). In particular, an
intensive study has been carried out on providing lower bounds on |p− q| to
ensure recoverability of the planted bisection.

In the semirandom model, as used by Feige and Kilian [31], initially a graph
G is chosen at random according to the model Gn(p, q). Then a monotone
adversary is allowed to modify G by applying an arbitrary sequence of the
following monotone transformations: (1) The adversary may remove from the
graph any edge crossing a minimum bisection; (2) The adversary may add to
the graph any edge not crossing the bisection.
We consider also the regular graph model introduced by Bui et al. [15] and

denote it as Rn(r, b), with r = r(n) < n and b = b(n) ≤ (n/2)2. In the model,
we start with a random partition V1 and V2 of equal sizes, and add firstly b
cut edges and then further edges within the sets, and this under the constraint
that at the end every vertex has degree r.

For a (semi)random model we say that some property is satisfied w.h.p. if the
probability that the property holds tends to 1, as the number of vertices n→∞.

2.2 Definitions, Notations, and Basic Properties

Before we are able to formulate Boppana’s algorithm, we need to give some
definitions and notations from linear algebra. Unless stated otherwise, we
consider simple undirected graphs G with an even number of vertices n and
vertex set V = {1, . . . , n}. For a pair of vertices u and v from G, the graph
G ⊕ {u, v} is obtained from G by “toggling” the edge, i. e. we perform the
following modification: if there is an edge between u and v in G, the edge is
removed. Otherwise, we add the edge. A graph G can be represented by an
adjacency matrix A ∈ {0, 1}n×n. By I(n) we denote the n-dimensional identity
matrix and by J we denote an n× n matrix of ones. For a vector x ∈ Rn we
denote ‖x‖2 = xTx. When using the logarithm, by log we refer to the natural
logarithm and by logb to logarithm with base b.

7

A vector x is called a bisection vector if x ∈ {+1,−1}n and
∑

i xi = 0. Such
x determines a bisection of G of the cut width denoted as

cw(x) =
∑

{i,j}∈E

1− xixj
2

. (2.1)

In the context of the planted bisection model Gn(p, q) with planted bisection V1

and V2, the planted bisection vector y is a bisection vector with entries yu = +1
for u ∈ V1 and yu = −1 for u ∈ V2. A vector x is called a relaxed bisection
vector if x ∈ Rn and

∑
i xi = 0, i. e. we drop the +1/− 1 constraint. We define

the subspace S ⊂ Rn of all vectors x ∈ Rn with
∑

i xi = 0, i. e. this subspace
contains all relaxed bisection vectors.
The subspace S plays a central role in Boppana’s algorithm. A projection

from Rn to S can be realized by the projection matrix P = I− 1
nJ . The matrix

P maps a vector x ∈ Rn to the projection Px of vector x into the subspace S.
This projection simply subtracts the mean of the components of x from each
component. However, using this mapping from an n-dimensional space to an
(n− 1)-dimensional subspace can be troublesome in computations.

Therefore, to be able to restrict computations to subspace S, we define a
matrix Q that provides a bijective mapping x 7→ Qx from Rn−1 to S: Let Q
be an n× (n− 1) matrix whose column vectors are an orthonormal basis of the
subspace S, i. e. span({Q·,1, . . . , Q·,n−1}) = S and QTQ = I(n−1). Note that
the inverse mapping from S to Rn−1 is done by x′ 7→ QTx′, since QTQ = I(n−1).
We point out that QQT = P holds.

Now, when we need to perform computations in S, we can use Rn−1 and the
bijective mapping via Q and QT . When we use Q in our algorithms, we e. g.
use the following explicit matrix Q ∈ Rn×(n−1) which fulfills the properties
described above:

Qij =
1

n+
√
n
·


−1 + n+

√
n if i = j

−1−
√
n if i = n

−1 otherwise.

For B ∈ Rn×n and d ∈ Rn we denote the sum of B’s elements as sum(B) =∑
ij Bij and by diag(d) we denote the n × n diagonal matrix D with the

entries of the vector d on the main diagonal, i. e. Dii = di. Often we will
have an adjacency matrix A ∈ {0, 1}n×n, a vector d ∈ Rn and then set
B := A+D = A+ diag(d).

Now assume B ∈ Rn×n is symmetric. Then the matrix has n real eigenvalues
λ1(B) ≥ . . . ≥ λn(B). We denote by λ(B) = λ1(B) its largest eigenvalue. The

8

largest eigenvalue can be computed using the Rayleigh quotient as follows:

λ(B) = max
x∈Rn\{0}

xTBx

xTx
. (2.2)

Vectors x that attain the maximum are exactly the eigenvectors corresponding
to the largest eigenvalue. In Boppana’s algorithm, we will need to compute

max
x∈S\{0}

xTBx

xTx
. (2.3)

For this purpose, let subscript Q of B for some matrix B be defined as
BQ = QTBQ. Note that here BQ is an (n− 1)× (n− 1) matrix and when B
is symmetric, BQ is symmetric as well. We obtain

max
x∈S\{0}

xTBx

xTx
= max

x∈Rn−1\{0}

(Qx)TB(Qx)

(Qx)T (Qx)

= max
x∈Rn−1\{0}

xTQTBQx

xTQTQx
= max

x∈Rn−1\{0}

xTBQx

xTx
= λ(BQ), (2.4)

i. e. Eq. (2.3) can be computed as λ(BQ).
There is another way to compute Eq. (2.3) which will be useful in our analysis

of SDP formulations. Instead of the matrix Q we will use the (quadratic)
projection matrix P . The matrix BP = P TBP projects a vector x ∈ Rn

to S, then applies B and projects the result again into S. Denote by Rn
6=c1

the real space Rn without the subspace spanned by the identity vector 1, i. e.
Rn
6=c1 = Rn \ {c1 : c ∈ R}. While we have seen that Eq. (2.3) is the same as

λ(BQ), we observe that it is almost the same as λ(BP):

max
x∈S\{0}

(
xTBx

xTx
, 0

)
Lemma 2.2

= max
x∈Rn

6=c1

(
xTBPx

xTx
, 0

)
BP (c1)=0

= max
x∈Rn\{0}

xTBPx

xTx
= λ(BP).

Note that a constant vector becomes a null vector when projected into S.
Now, if we want to use λ(BP) to compute Eq. (2.3), we have to ensure that
Eq. (2.3)≥ 0 holds. This will be discussed in detail when needed. We conclude:

Fact 2.1. Let B ∈ Rn×n be symmetric. Then max(λ(BQ), 0) = λ(BP).

This Lemma we have already used above:

9

Lemma 2.2. Let B ∈ Rn×n be symmetric. Then

max
x∈S\{0}

xTBx

‖x‖2
= max

x∈Rn
6=c1

xTBPx

‖x‖2
.

Proof. Since P projects a vector into S, we have Px′ ∈ S\{0} for all x′ ∈ Rn
6=c1.

Furthermore, Px′ = x′ for every x′ ∈ (S \ {0}) ⊂ Rn
6=c1. Thus, we replace

x = Px′:

max
x∈S\{0}

xTBx

‖x‖2
= max

x′∈Rn
6=c1

(Px′)TB(Px′)

‖Px′‖2
x = Px′ (2.5)

= max
x′∈Rn

6=c1

x′T (P TBP)x′

‖Px′‖2
.

In the next step we use the Pythagorean theorem, since the projected vector
Px′ (which has mean zero) and the remaining component x′ − Px′ (which is a
stretched 1-vector) are orthogonal:

= max
x′∈Rn

6=c1

x′T (P TBP)x′

‖x′‖2 − ‖x′ − Px′‖2
‖x′‖2 = ‖Px′‖2 + ‖x′ − Px′‖2

≥ max
x′∈Rn

6=c1

x′T (P TBP)x′

‖x′‖2
Increasing (or equal) denominator

(2.6)

≥ max
x′∈S\{0}

x′T (P TBP)x′

‖x′‖2
Restrict the set of vectors

= max
x′∈S\{0}

x′TBx′

‖x′‖2
.

This is the same term as the left term of Eq. (2.5) we started with. Hence, the
≥ has to be =, and we can use Eq. (2.6) to compute Eq. (2.5).

We will also use the following basic properties in this thesis.

Fact 2.3. For A,B ∈ Rn×n, it holds λ1(A+B) ≤ λ1(A) + λ1(B).

Proof.

λ1(A+B) = max
x∈Rn\{0}

xT (A+B)x

‖x‖2
= max

x∈Rn\{0}

xTAx+ xTBx

‖x‖2

10

≤ max
x∈Rn\{0}

xTAx

‖x‖2
+ max

x∈Rn\{0}

xTBx

‖x‖2

= λ1(A) + λ1(B)

For a matrix A ∈ Rn×n, the trace tr(A) is defined as

tr(A) =

n∑
i=1

Aii.

Fact 2.4. For a symmetric matrix A ∈ Rn×n and for k ∈ N, it holds

tr(Ak) =

n∑
i=1

(λi(A))
k.

Proof. Since A is symmetric, we can use an orthogonal transformation to
obtain a diagonal matrix. Then, the eigenvalues are its diagonal entries. The
trace is invariant under orthogonal transformations, such that the fact follows
directly from the definition of the trace.

2.3 Boppana’s Spectral-Based Algorithm BB

For a given graph G = (V,E), with V = {1, . . . , n}, Boppana defines a function
f for all real vectors x, d ∈ Rn as

f(G, d, x) =
∑

{i,j}∈E

1− xixj
2

+
∑
i∈V

di(x
2
i − 1). (2.7)

Based on f , the function g′ is defined as follows

g′(G, d) = min
‖x‖2=n, x∈S

f(G, d, x). (2.8)

Note as an interesting fact that g′ is invariant under shifting d, i. e. g′(G, d+
β(1, . . . , 1)T) = g′(G, d) for every β ∈ R (see Lemma 2.7).

For a bisection vector x (recall: x ∈ {+1,−1}n and
∑

i xi = 0) the function
f takes the value Eq. (2.7) regardless of d, as Eq. (2.7) is essentially the same
as the cutwidth defined in Eq. (2.1). Minimization over all such x would
give the minimum bisection width. Since g′ uses a relaxed constraint, we get
g′(G, d) ≤ bw(G), where, recall, bw(G) denotes the bisection width of G. To

11

improve the bound, Boppana tries to find some d which leads to a minimal
decrease of the function value of g′ compared to the bisection width:

h(G) = max
d∈Rn

g′(G, d). (2.9)

It is easy to see that for every graph G we have h(G) ≤ bw(G).
In order to compute g′ efficiently, Boppana expresses the function in spectral

terms. Let G be an undirected graph with n vertices and adjacency matrix A.
Let further d ∈ Rn be some vector and let B = A+ diag(d), then we define

g(G, d) =
sum(B)− nλ(BQ)

4
. (2.10)

Recall that we defined subscript Q of B as BQ = QTBQ.

Lemma 2.5 (In [12] without proof). Let G be an undirected graph with n
vertices and d ∈ Rn. Then

g(G, d) = g′(G,−d/4).

Proof. We start by reformulating the function f :

f(G,−d/4, x) =
∑

{i,j}∈E

1− xixj
2

+
∑
i∈V

−di
4

(x2i − 1) Def. f

=
2|E| − xTAx

4
− 1

4

(∑
i∈V

dix
2
i −

∑
i∈V

di

)

=
sum(A)− xTAx

4
− 1

4

(
xTDx− sum(D)

)
D = diag(d)

=
sum(A+D)− xT (A+D)x

4

=
sum(B)− xTBx

4
. B = A+D (2.11)

Next, we take the definition of g′ and insert f :

g′(G,−d/4) = min
‖x‖2=n,

∑
i xi=0

f(G,−d/4, x) Def. g′

= min
‖x‖2=n,

∑
i xi=0

sum(B)− xTBx

4
Insert Eq. (2.11)

=
sum(B)

4
− 1

4
max

‖x‖2=n, x∈S
xTBx

12

=
sum(B)

4
− n

4
max

‖x‖2=n, x∈S

xTBx

‖x‖2

=
sum(B)

4
− n

4
max

x∈S\{0}

xTBx

‖x‖2

=
sum(B)− nλ(BQ)

4
cf. Eq. (2.4)

= g(G, d). Compare Eq. (2.10)

Since in the definition of h in Eq. (2.9) we maximize over all d, we can
conclude that

h(G) = max
d∈Rn

g(G, d)

= max
d∈Rn

sum(A+ diag(d))− nλ((A+ diag(d))Q)

4
. (2.12)

Next, Boppana observes that g is concave and hence, the maximum in
function h(G) can be computed in polynomial time with arbitrary precision [40].
Since the proof is left out in the original paper, we provide it here:

Lemma 2.6 (In [12] without proof). Function g(G, d) is concave in d, i. e.

g(G,
d1 + d2

2
) ≥ g(G, d1) + g(G, d2)

2
.

Proof. The key to the proof of this lemma is simply the following property of the
largest eigenvalues of real symmetric matrices A and B: λ(A+B) ≤ λ(A)+λ(B)
(see Fact 2.3). We start from the definition of g found in Eq. (2.10):

g(G,
d1 + d2

2
) =

sum(B)− nλ(BQ)

4
. here: B = A+ (D1 +D2)/2

Now we have

sum(B) = sum(A+
1

2
(D1 +D2))

= sum(
1

2
(B1 +B2)) =

sum(B1) + sum(B2)

2
B1 = A+D1, B2 = A+D2

and

13

λ(BQ) = λ(QT (A+
1

2
(D1 +D2))Q)

= λ(
1

2
(QT (B1 +B2)Q)) B1 = A+D1, B2 = A+D2

=
1

2
λ(QTB1Q+QTB2Q)

≤
λ((B1)Q) + λ((B2)Q)

2
. Fact 2.3

Together, we obtain

sum(B)− nλ(BQ)

4
≥ 1

2

(
sum(B1) + sum(B2)− nλ((B1)Q)− nλ((B2)Q)

4

)
=

g(G, d1) + g(G, d2)

2
.

Now we are ready to formulate Boppana’s algorithm as Algorithm 2.1 (BB)
that finds and certifies an optimum bisection.

Algorithm 2.1: Boppana’s Algorithm BB (from [12])

Input :Graph G with adjacency matrix A.
1 Compute h(G): numerically find a vector dopt which maximizes g(G, d);
2 Construct a bisection x̂: Let x′ be an eigenvector of (A+ diag(dopt))Q

corresponding to the eigenvalue λ((A+ diag(dopt))Q) and let x = Qx′.
Construct a bisection vector x̂ by splitting at the median x̄ of x, i. e.
let x̂i = +1 if xi ≥ x̄ and x̂i = −1 if xi < x̄. If

∑
i x̂i > 0, move

(arbitrarily) 1
2

∑
i x̂i vertices i with xi = x̄ to part −1 letting x̂i = −1;

3 Output x̂; if cw(x̂) = h(G), output “optimum bisection”, else output
“fail”.

Last, we provide a useful property on the functions g′ and g:

Lemma 2.7. The function g′(G, d) is invariant under shifting d, i. e. for every
β ∈ R, it holds

g′(G, d+ β(1, . . . , 1)T) = g′(G, d).

The same holds for the function g(G, d).

14

Proof. Let 1 = (1, . . . , 1)T . Then

g′(G, d+ β1)

= min
‖x‖2=n, x∈S

f(G, d+ β1, x)

= min
‖x‖2=n, x∈S

 ∑
{i,j}∈E

1− xixj
2

+
∑
i∈V

(d+ β1)i(x
2
i − 1)


= min

‖x‖2=n, x∈S

 ∑
{i,j}∈E

1− xixj
2

+
∑
i∈V

di(x
2
i − 1) +

∑
i∈V

β1i(x
2
i − 1)


= min

‖x‖2=n, x∈S

(
f(G, d, x) + β

(∑
i∈V

x2i − n

))
= min

‖x‖2=n, x∈S
f(G, d, x) = g′(G, d).

This proves the invariance of g′. The invariance of g follows directly with
Lemma 2.5.

Boppana claims that his algorithm, assuming the density difference

p− q ≥ c
√

p log n/
√
n for a certain constant c > 0, (2.13)

finds and certifies an optimum bisection for Gn(p, q) w.h.p. In this thesis we
thoroughly examine the properties of Boppana’s algorithm. We will learn that
his algorithm indeed finds the optimum bisection width w.h.p., but for finding
the corresponding bisection itself a modification of the algorithm will be needed.
According to Boppana’s original paper [12], his algorithm also works well on
the regular graph model Rn(r, b), assuming that

r ≥ 6 and b ≤ o(n1−1/b(r/2+1)/2c). (2.14)

Our experimental data presented in this thesis give evidence that this indeed
is true, but, as for the planted bisection model, no complete proof has been
published on this result. However, since we focus our theoretical analysis
on the planted bisection model, we will not review the proof on the regular
graph model here. Let us note again that in [12], one finds the bounds
r ≥ 3 and b ≤ o(n1−1/b(r+1)/2c). Reviewing the reference [13], this seems to
hold for 2r-regular graphs. Hence, we modified the bounds accordingly and
backed up this modification by our experimental evidence.

15

2.4 Semidefinite Programming (SDP)

Before we provide the bisection algorithm from Feige and Kilian, we need
some more notations and the basics of semidefinite programs. For symmetric
matrices A,B ∈ Rn×n, we denote by A • B the inner product of A and B
defined as A •B = tr(AB) =

∑n
i=1

∑n
j=1AijBij . A matrix A ∈ Rn×n is called

symmetric positive semidefinite if A is symmetric, i. e. AT = A, and for all real
vectors v ∈ Rn we have vTAv ≥ 0. This property is denoted by A � 0. Note
that the eigenvalues of a symmetric matrix are real.

For a given real vector c ∈ Rn and m+ 1 symmetric matrices F0, . . . , Fm ∈
Rn×n, a semidefinite program (SDP) over variables x ∈ Rn is defined as

min
x

cTx subject to F0 +

m∑
i=1

xiFi � 0. (2.15)

The dual program associated with the SDP (for details see e. g. [74]) is the
program over the variable matrix Y = Y T ∈ Rn×n:

max
Y
−F0 • Y subject to ∀i : Fi • Y = ci and Y � 0. (2.16)

It is known that the optimal value of the maximizing dual SDP is never larger
than the optimal value of the minimizing primal counterpart. However, unlike
in linear programming, for semidefinite programs there may be a duality gap,
i. e. the primal and/or dual might not attain their respective optima.

2.5 Feige and Kilian’s SDP Algorithm FK

In [31], Feige and Kilian studied the bisection problem on the semirandom
graph model. In order to create an algorithm robust against the adversarial
modifications, they express the Minimum Bisection Problem for a graph G =
(V,E) as an SDP over an n× n matrix Y as follows:

hp(G) = min
Y ∈Rn×n

hY (G) s.t. ∀i yii = 1,
∑
i,j

yij = 0, and Y � 0, (2.17)

where hY (G) =
∑

{i,j}∈E
i<j

1−yij
2 .

The algorithm then uses an SDP solver as core component, as seen in Algo-
rithm 2.2 (FK). This way the function hp(G) can be computed in polynomial
time with arbitrary precision.

16

Algorithm 2.2: Feige and Kilian’s Algorithm FK (from [31])

Input :Graph G.
1 Compute hp(G) using an SDP solver.
2 Construct a bisection x̂: choose some vertex u and label it 1. Then, for

every vertex v 6= u compute hp(G⊕ {u, v}). If hp(G⊕ {u, v}) = hp(G),
label the vertex with 1, otherwise −1.

3 Output x̂; if cw(x̂) = hp(G), output “optimum bisection”, else output
“fail”.

Recall the notation G⊕ {u, v}, which means we “toggle” the edge {u, v}: if
there is an edge between u and v in G, the edge is removed. Otherwise, we
add the edge. Since SDPs can be solved in polynomial time, Algorithm FK
runs in polynomial.

Feige and Kilian also provide an alternative way to reconstruct the bisection.
That alternative requires solving their SDP only once to compute hp(G) and
then derives the bisection from the matrix Y which minimizes hp(G), as seen
in Algorithm 2.3 (FK∗).

Algorithm 2.3: Feige and Kilian’s Algorithm FK∗ (from [31])

Input :Graph G.
1 Compute hp(G) using an SDP solver. Let Y be the matrix which

minimizes h(G).
2 Construct a bisection vector x̂ using the sign of the elements in the first

row of Y , i. e. let x̂i = +1 if Y1i ≥ 0 and x̂i = −1 if Y1i < 0. If∑
i x̂i > 0, move (arbitrarily) 1

2

∑
i x̂i vertices i with xi = x̄ to part −1

letting x̂i = −1;
3 Output x̂; if cw(x̂) = hp(G), output “optimum bisection”, else output

“fail”.

The original paper [31] states that FK and FK∗ achieve the same perfor-
mance on the planted bisection model as Boppana’s Algorithm BB does, and
additionally proves that FK and FK∗ work on the semirandom model. The
performance on the regular graph model has not been discussed.

17

3 Boppana’s Lower Bound:
Completed Proofs

Let us recall the steps of Boppana’s Algorithm BB: first, a lower bound h(G)
on the bisection width is computed with spectral techniques. Then, a bisection
is derived and its width is compared with the lower bound. If they are equal, a
certified optimum bisection is found. A key step in proving that the algorithm
works well on the planted bisection model is to show that the lower bound h(G)
equals w.h.p. the bisection width bw(G) of graph G. Hence, for a sufficiently
large constant c > 0, Boppana states the following:

Claim 3.1 (Boppana [12] without proof). Let G be a random graph from
Gn(p, q), and let p − q ≥ c(

√
p log n/

√
n). Then with probability 1 − O(1/n),

the bisection width of G equals h(G), i. e. h(G) = bw(G).

The proof sketch for this claim found in [12] is incomplete, which has also
been emphasized by other authors, e. g. [31, 63]. Especially, the proof sketch
relies on a not further specified extension of a result due to Füredi and Komlós
[37]. For analyzing a random matrix, the original results require the variance
of each entry to be fixed, while Boppana’s application wants them to tend to
zero.
Unfortunately, the author of [12] has never provided a full journal version.

Up to our best knowledge, there has been no proof for Boppana’s lower bound
published so far, so we are the first to provide one. Our upcoming proof follows
in large parts the one of [31, Theorem 27] from Feige and Kilian, used to prove
properties of their SDP based Algorithm FK for finding minimum bisections.

3.1 Proof of Boppana’s Lower Bound

We prove the following Theorem 3.2 as refinement of Claim 3.1. In the proof, we
use two auxiliary Propositions 3.5 and 3.6, which we provide in the subsequent
sections.

Theorem 3.2. Let G be a random graph from Gn(p, q) with probabilities
fulfilling p − q ≥ 42

√
p log n/

√
n. Let A denote the adjacency matrix of G

18

and y be the planted bisection vector. Set d(y) = −diag(y)Ay and B(y) =
A+ diag(d(y)). Then with probability at least 1− 3n−5, it holds:
• g(G, d(y)) = bw(G) = h(G) and

• the largest eigenvalue of B
(y)
Q is λ(B

(y)
Q) = 0 with multiplicity 1.

Before we start with the proof, let us remark that the planted bisection
vector y is not needed to compute h(G). Note further that, with adjacency
matrix A and planted bisection vector y, we set

d(y) = −diag(y)Ay. (3.1)

An equivalent but more intuitive characterization of d(y) is the following: d
(y)
i

is the difference between the number of adjacent vertices in other part as vertex
i and the number of adjacent vertices in same part as i.
In the following proof, this vector will turn out to maximize the function

g(G, d) w.h.p. Still we need to be aware of the fact that, although the numerical
maximization used in Boppana’s algorithm finds some vector d with g(G, d) =
h(G), the vector d might differ from d(y).

Proof of Theorem 3.2. We first show that the vector QT y always is an eigen-

vector of B
(y)
Q corresponding to the eigenvalue 0:

B
(y)
Q (QT y) = QTB(y)QQT y = QTB(y)Py = QTB(y)y = QT (A+ diag(d(y)))y

= QT (Ay + diag(d(y))y)
(∗)
= QT (Ay −Ay) = 0.

At (*), we use diag(d(y))y = −Ay. For this, consider component i of diag(d(y))y:

d
(y)
i yi = (−yiAi·y)yi = −Ai·y.

Next we show that with probability at least 1−3n−5 all other eigenvectors of

B
(y)
Q correspond to eigenvalues strictly smaller than 0. From this we conclude

λ(B
(y)
Q) = 0 with multiplicity 1.

We use two auxiliary propositions: from Proposition 3.5, we have λ(A −
E(A)) < 15

√
pn log n with probability at least 1− n−5. From Proposition 3.6,

we have λ(diag(d(y)) − E(diag(d(y)))) ≤ 6
√
pn log n with probability at least

1− 2n−5. Then, with probability at least (1− n−5)(1− 2n−5) ≥ 1− 3n−5, it
holds

19

λ(B(y) − E(B(y)))

≤ λ(A− E(A)) + λ(diag(d(y))− E(diag(d(y)))) Fact 2.3

< 15
√
pn log n+ 6

√
pn log n Prop. 3.5 and 3.6

≤ 1

2
(p− q)n. Condition from Thm.

For the remaining proof, we proceed with the case that λ(B(y) − E(B(y))) <
1
2(p− q)n holds. We will derive λ(B

(y)
Q) = 0 with multiplicity 1 and h(G) =

bw(G). Let us define the matrix M (y) ∈ Rn×n as follows:

M
(y)
ij =

{
p if yi = yj

q otherwise.

Then

λ(B(y) − E(B(y))) <
1

2
(p− q)n

⇒ λ(B(y) − E(B(y))− 1

2
(p− q)nI) < 0 Shift all eigenvalues

⇒ λ(B(y) −M (y)) < 0. M(y) = E(B(y)) +
1

2
(p− q)nI

The strictly smaller < at this point will later give us the property that all
eigenvectors orthogonal to QT y correspond to eigenvalues strictly smaller
than 0.

0 > λ(B(y) −M (y)) = max
x∈Rn\{0}

xT (B(y) −M (y))x

xTx

≥ max
x∈S\{0}

xT (B(y) −M (y))x

xTx

≥ max
x∈S\{0},x⊥y

xT (B(y) −M (y))x

xTx

= max
x∈S\{0},x⊥y

xTB(y)x− xTM (y)x

xTx
(3.2)

With x ⊥ y, we have 0 = 〈x, y〉 =
∑

i:yi=1 xi−
∑

i:yi=−1 xi. With x ∈ S we also
have

∑n
i=1 xi = 0 and thus we conclude

∑
i:yi=1 xi =

∑
i:yi=−1 xi = 0. Now,

(M (y)x)i = M
(y)
i· x =

∑
j M

(y)
ij xj =

∑
j:yj=1M

(y)
ij xj +

∑
j:yj=−1M

(y)
ij xj . For

20

each i with yi = 1, this equals
∑

j:yj=1 pxj +
∑

j:yj=−1 qxj = p
∑

j:yj=1 xj +

q
∑

j:yj=−1 xj . From above we know this is zero. For each i with yi = −1, only
p and q are exchanged and we obtain zero as well. Hence, M (y)x = 0. We can
conclude:

(3.2) = max
x∈S\{0},x⊥y

xTB(y)x

xTx

= max
x∈Rn−1\{0},Qx⊥y

(Qx)TB(y)(Qx)

(Qx)T (Qx)

= max
x∈Rn−1\{0},Qx⊥y

xTQTB(y)Qx

xTQTQx

= max
x∈Rn−1\{0},x⊥QT y

xTB
(y)
Q x

xTx
. 〈Qx, y〉 = 〈x,QT y〉

Hence, we have

0 > max
x∈Rn−1\{0},x⊥QT y

xTB
(y)
Q x

xTx
.

Recall from above that QT y is eigenvector corresponding to eigenvalue 0. Now,
all other eigenvectors orthogonal to QT y have eigenvalue strictly smaller than 0.
Hence, 0 is largest eigenvalue with multiplicity 1. Note that this property was
derived from the specific choice of vector d(y) and the resulting specific matrix
B(y). The convex search for d in the bisection algorithm itself might obtain
the same function value with another vector.
Finally, we show that λ(B

(y)
Q) = 0 implies h(G) = bw(G). Recall, h(G) ≤

bw(G) and h(G) = maxd∈Rn g(G, d). Now

bw(G) ≥ g(G, d(y)) =
sum(B(y))− nλ(B

(y)
Q)

4
Def. in Eq. (2.10)

=
1

4
sum(B(y))

=
1

4
sum(A) + sum(−diag(y)Ay)

=
1

4

∑
i,j

(Aij − yiyjAij) = cw(y).

Thus, we get g(G, d(y)) = bw(G) = h(G), as claimed in the theorem.

To complete the proof, we provide the crucial Propositions 3.5 and 3.6 in
the next sections.

21

3.2 Bounding Eigenvalues of A− E(A)

In this section we want to bound the eigenvalues of A−E(A). We provide and
prove Proposition 3.5, which is a crucial part of the proof of Theorem 3.2. We
start with a definition and an auxiliary lemma.

Definition 3.3 (Closed walk). A closed walk of length k in a graph G is a
sequence of k + 1 vertices, where two consecutive vertices are connected by an
edge in G and the first and last vertex of the sequence are the same.

Lemma 3.4 (Proposition 26 in [31]). Let G be a graph with n vertices and m
edges. Then the number of closed walks of length k in G is at most n(2m)k/2.

Proof. Let A be the adjacency matrix of G. Then the largest eigenvalue
λ1(A) has also largest absolute value (Perron-Frobenius theorem). Obviously,

tr(A2) = 2m and further 2m = tr(A2)
Fact 2.4
=

∑n
i=1(λi(A))

2 ≥ (λ1(A))
2. It

follows λ1(A) ≤
√
2m.

Now, tr(Ak)
Fact 2.4
=

∑n
i=1(λi(A))

k ≤ n(λ1(A))
k ≤ n

√
2m

k
. Since tr(Ak) is

the number of closed walks of length k, the proof is completed.

Proposition 3.5. Let G be a random graph from Gn(p, q) with q ≤ p and
p ≥ 1/n. Let A denote the adjacency matrix of G. Then with probability at
least 1−n−5 over the choice of A, the eigenvalues of C = A−E(A) are bounded
by λ(C) < 15

√
pn log n.

Note that in Theorem 3.2, we require p−q ≥ 42
√
p log n/

√
n. Since p ≥ p−q,

we have p ≥ 422 log n/n ≥ 1/n, as required in this proposition.

Proof of Proposition 3.5. Let y denote the planted bisection vector of G. First
note that

E(Aij) =


0 if i = j

q if yi 6= yj

p otherwise.

Moreover, A, E(A), and C are symmetric with pairwise independent entries
(i, j) for all i < j.

We bound the expectation of (maxi(|λi(C)|))k from above using the trace of
matrix Ck for some even k ≥ 2:

E(tr(Ck)) = E

(
n∑

i=1

(λi(C))k

)
Fact 2.4

22

≥ E
(
max

i
((λi(C))k)

)
= E

(
(max

i
|λi(C)|)k

)
. k even (3.3)

We will later choose k = Θ(log n). The expectation of the trace of Ck can
further be computed as follows: we consider all closed walks of length k in
the complete graph to obtain an upper bound. Let each closed walk π(k)

be described by a vertex sequence π(k) = (v0, . . . , vk), with vi ∈ {1, . . . , n}
and v0 = vk. We define the weight w(π(k)) of the walk π(k) as w(π(k)) =∏k−1

j=0 Cvj ,vj+1 . Then tr(Ck) =
∑

π(k) w(π(k)). The expected weight of a single

walk is E(w(π(k))) = E
(∏k−1

j=0 Cvj ,vj+1

)
. We can rewrite the product using the

set of distinct edges E(π(k)) on the walk and for each edge e ∈ E(π(k)) its
multiplicity µ(e). Since the edges are stochastically independent, we obtain

E(w(π(k))) = E

 ∏
e∈E(π(k))

Cµ(e)
e

 =
∏

e∈E(π(k))

E(Cµ(e)
e). (3.4)

Since the expectation E(Ce) = 0, each walk which contains some edge only
once gets expectation 0. Thus, we restrict ourselves to walks which contain
each edge at least twice. The expected weight contribution of an edge e with
multiplicity µ(e) ≥ 2 and probability pe can be bounded as follows, where pe
is either p or q:

E(Cµ(e)
e) = (1− pe)

µ(e)pe + (−pe)µ(e)(1− pe)

≤ (1− pe)
µ(e)pe + (pe)

µ(e)(1− pe)

= pe(1− pe)
(
(1− pe)

µ(e)−1 + (pe)
µ(e)−1

)
≤ pe(1− pe)(1− pe + pe)

µ(e)−1
az + bz ≤ (a+ b)z , a, b ≥ 0

≤ min(pe, 1− pe) ≤ p. (3.5)

Let π(k,l) denote a walk with k vertices and l ≤ k/2 distinct edges. From
Eq. (3.4) and Eq. (3.5), we then obtain

E(w(π(k,l))) ≤ pl. (3.6)

We want to bound the expected weight sum E(k, t, l) of all closed walks π(k,t,l)

23

of length k with t distinct vertices and l distinct edges:

E(k, t, l) = E

 ∑
π(k,t,l)

w(π(k,t,l))


≤
∑

π(k,t,l)

E
(
w(π(k,t,l))

)
≤
∑

π(k,t,l)

pl. Eq. (3.6) (3.7)

To bound the number of walks, we consider subgraphs induced by walks. A
walk induces a connected subgraph with t ≤ l + 1 vertices. The number of
induced subgraphs can be bounded as follows. There are

(
n
t

)
ways to choose the

t vertices and tt−2 possible spanning trees on these t vertices, each having t− 1
edges. Next, there are at most (t2)l−t+1 ways to choose the remaining edges in
order to complete the spanning tree to the subgraph with l edges induced by a
walk. In total, we obtain the following upper bound on the number of induced
subgraphs: (

n

t

)
tt−2t2(l−t+1) ≤ ntt2(l−t) t

t

t!
≤ ntt2(l−t)et.

From Lemma 3.4, we know that there are at most t(2l)k/2 walks in each such
subgraph. Thus, there are at most ntt2(l−t)et · t(2l)k/2 walks of length k with t
distinct vertices and l distinct edges. Together with Eq. (3.7), we obtain

E(k, t, l) ≤ ntt2(l−t)ett(2l)k/2pl =
(n
t2

)t
(t2)lett(2l)k/2pl. (3.8)

Now the term (n/t2)t is increasing with t for t = O(log(n)) and n large
enough. Since for fixed k and l, the upper bound from Eq. (3.8) on E(k, t, l)
increases exponentially in t, the sum E(k, l) over the expected weights of all
closed walks of length k and with l distinct vertices can be bounded by

E(k, l) =
l+1∑
t=2

E(k, t, l)

≤ 2E(k, t = l + 1, l)

≤ 2

(
n

(l + 1)2

)l+1

((l + 1)2)lel+1(l + 1)(2l)k/2pl

≤ 2nl+1 1

l + 1
el+1(2l)k/2pl

24

≤ nl+1el+1(2l)k/2pl.

For p ≥ 1/n, this bound is monotone increasing in l. We can combine now:

E(tr(Ck)) =

k/2∑
l=2

E(k, l) ≤ k

2
E(k, l = k/2)

≤ k

2
nk/2+1ek/2+1kk/2pk/2 =

k

2
nk/2ek/2kk/2pk/2ne

=
(√

nekp
)k nek

2
(3.9)

and with λ̄ = maxi |λi(C)|

E(λ̄k)
Eq. (3.3)

≤ E(tr(Ck))
Eq. (3.9)

≤
(√

nekp
)k nek

2
. (3.10)

Now we use Markov’s inequality P (X ≥ z) ≤ E(X)
z as follows. We want to

bound the probability that λ̄ exceeds the upper bound stated in the proposition.
We have

1

ek
≥ Pr(λ̄k ≥ ekE(λ̄k)) Markov’s inequality

≥ Pr(λ̄k ≥ ek
(√

nekp
)k nek

2
) Eq. (3.10)

= Pr(λ̄ ≥ e3/2
√
nkp(nek/2)1/k).

With k = a log n we have n1/k = n1/(a log n) = e1/a and get

1

ek
=

1

na
≥ Pr(λ̄ ≥ e3/2+1/a+1/k(k/2)1/k

√
a
√
np log n).

Assume log n ≥ 4 and choose a ∈ [5, 5.2], such that k is even. We have k ≥ 20
and

e3/2+1/a+1/k(k/2)1/k
√
a < 15

and obtain

1

n5
≥ 1

na
≥ Pr(λ̄ > 15

√
np log n) ≥ Pr(λ(C) > 15

√
np log n).

25

3.3 Bounding Eigenvalues of diag(d)− E(diag(d))

In this section we want to bound the eigenvalues of diag(d)− E(diag(d)). We
provide and prove Proposition 3.6, which is, besides Proposition 3.5, the key
part of the proof of Theorem 3.2.

Proposition 3.6. Let G be a random graph from Gn(p, q) with p − q ≥
12
√
p log n/n. Let A denote the adjacency matrix of G and y be the planted

bisection vector. Set d(y) = −diag(y)Ay. The eigenvalues of C = diag(d(y))−
E(diag(d(y))) are bounded by λ(C) ≤ 6

√
pn log n with probability at least

1− 2n−5.

Proof. The eigenvalues of diag(d(y)) − E(diag(d(y))) are its diagonal entries.
Recall that in the model Gn(p, q), each edge crossing the planted bisection is
generated by probability q and each edge within a part with probability p.

Since we defined d(y) = −diag(y)Ay, each entry d
(y)
i can be modeled as the

sum of n/2 Bernoulli experiments with probability q and the sum of n/2− 1
Bernoulli experiments with probability p. We denote these sums by the random

variables X
(q)
i and X

(p)
i , i. e. d

(y)
i = X

(q)
i −X

(p)
i . The expectation values are

E(X(q)
i) = n

2 q and E(X(p)
i) = (n2 − 1)p. We can note here that two different

d
(y)
i and d

(y)
j are not independent but the Bernoulli experiments for each single

d
(y)
i are.

We want to show that the probability of any d
(y)
i − E(d(y)i) exceeding the

value

z = 6
√

pn log n (3.11)

tends to zero. For each i we have

Pr(d
(y)
i − E(d(y)i) ≥ z)

= Pr
((

X
(q)
i −X

(p)
i

)
− E

(
X

(q)
i −X

(p)
i

)
≥ z
)

= Pr
((

X
(q)
i − E(X(q)

i)
)
−
(
X

(p)
i − E(X(p)

i)
)
≥ z
)

≤ Pr
((

X
(q)
i − E(X(q)

i) ≥ z

2

)
∪
(
X

(p)
i − E(X(p)

i) ≤ −z

2

))
. (3.12)

The union bound theorem for a finite set of events Zi states

Pr

(⋃
i

Zi

)
≤
∑
i

Pr(Zi), (3.13)

26

while the Zi are not required to be independent. We obtain

Pr

(
max

i
(d

(y)
i − E(d(y)i)) ≥ z

)
= Pr

(⋃
i

(d
(y)
i − E(d(y)i) ≥ z)

)
(3.13)

≤
∑
i

Pr
(
d
(y)
i − E(d(y)i) ≥ z

)
(3.12)

≤
∑
i

(
Pr
(
X

(q)
i − E(X(q)

i) ≥ z

2

)
+ Pr

(
X

(p)
i − E(X(p)

i) ≤ −z

2

))
. (3.14)

To estimate these probabilities, we use the Chernoff bound in the following
form [59, Theorem 4.4]: for the sum X of n Bernoulli experiments with
probability p and for 0 < δ ≤ 1, [59, Theorem 4.4] gives

Pr (X − E(X) ≥ δ · E(X)) ≤ e−E(X)δ2/3. (3.15)

For the case δ > 1, we start with the following form [59, Theorem 4.4]:

Pr (X − E(X) ≥ δ · E(X)) ≤
(

eδ

(1 + δ)1+δ

)E(X)

. (3.16)

For δ > 1, we show that
eδ

(1 + δ)1+δ
≤ e−δ/3. (3.17)

Analogously to the proof of [59, Theorem 4.4], take the logarithm to obtain
the equivalent condition

f(δ) = δ − (1 + δ) log(1 + δ) + δ/3 ≤ 0

and its first derivative f ′(δ) = − log(1 + δ) + 1/3. Now, f(1) < 0 and since
f ′(δ) < 0 for δ > 1, f(δ) is monotone decreasing. Hence, Eq. (3.17) holds.
From Eq. (3.16) and Eq. (3.17), we obtain the following for δ > 1:

Pr (X − E(X) ≥ δ · E(X)) ≤ e−E(X)δ/3. (3.18)

Now we combine Eq. (3.15) and Eq. (3.18) to the following convenient bound
which holds for any δ > 0:

Pr (X − E(X) ≥ δ · E(X)) ≤ exp

(
−min(δ, δ2)

3
E(X)

)
. (3.19)

27

Additionally, for δ ∈ [0, 1], we will use the bound [59, Theorem 4.5]:

Pr (X − E(X) ≤ −δ · E(X)) ≤ exp

(
−δ2

2
E(X)

)
. (3.20)

We use the Chernoff bound from Eq. (3.19) with X = X
(q)
i , E(X) = qn

2 and

δ = 6 · pq
√

log n
pn . Then, with z as in Eq. (3.11), it holds δ · E(X) = z

2 and hence

Pr
(
X

(q)
i − E(X(q)

i) ≥ z

2

)
≤ exp

(
−min(δ, δ2)

3
E(X)

)
.

With δ · E(X) = 3
√
pn log n ≥ 18 log n, since p ≥ 36 log n

n , and δ2 · E(X) =
18 · pq log n ≥ 18 log n, since p ≥ q, we obtain min(δ, δ2) · E(X) ≥ 18 log n and
hence

Pr
(
X

(q)
i − E(X(q)

i) ≥ z

2

)
≤ exp (−6 log n) = 1

n6
. (3.21)

Next, we use the Chernoff bound from Eq. (3.20) with X = X
(p)
i , E(X) =

p
(
n
2 − 1

)
and δ = 6

√
log n

p(n−2) . Since p ≥ 72 log n
n , we have δ < 1. Furthermore,

z
2 > δ · E(X) = 3

√
p(n− 2) log n and δ2 · E(X) = 18 log n. Hence,

Pr
(
X

(p)
i − E(X(p)

i) ≤ −z

2

)
≤ Pr

(
X

(p)
i − E(X(p)

i) ≤ −δ · E(X(p)
i)
)

≤ exp

(
−δ2

2
E(X)

)
≤ exp (−9 log n) = 1

n9
.

(3.22)

We insert Eq. (3.21) and (3.22) into Eq. (3.14) and obtain

Pr

(
max

i
(d

(y)
i − E(d(y)i)) ≥ z

)
≤
∑
i

(
1

n6
+

1

n9

)
≤ 2

n5

with z = 6
√
pn log n.

28

4 Boppana’s Reconstruction: Issues
and Solutions

From Theorem 3.2 one can conclude that the value h(G) computed by Algo-
rithm BB is, w.h.p., equal to the optimum bisection width of G. However, to
guarantee that the algorithm works well one needs additionally to show that it
also finds an optimum bisection. The Algorithm BB is indeed successful in the
following case:

Proposition 4.1. Let G be a graph with adjacency matrix A and h(G) =
bw(G). Let dopt be a vector computed in Step 1 of Algorithm BB. If the
multiplicity of the largest eigenvalue of (A+ diag(dopt))Q is 1, then Boppana’s
Algorithm BB is able to certify the optimality of the resulting bisection.

Unfortunately, we cannot assume that the multiplicity of the largest eigen-
value of matrix BQ = (A+ diag(dopt))Q obtained by the algorithm is 1:

Proposition 4.2. Let G be a graph with adjacency matrix A and h(G) =
bw(G). Then there exists an optimum solution dopt, with g(G, dopt) = h(G),
such that the largest eigenvalue of (A+ diag(dopt))Q has multiplicity at least
two.

In this case, finding a bisection vector with Algorithm BB cannot be guar-
anteed, even though h(G) = bw(G) holds. Note that [12, Theorem 4.1]
(formulated as Claim 3.1 in this thesis) says nothing about the multiplicity of
the largest eigenvalue and that Theorem 3.2, which is a reformulation of the
main result of Boppana, does not give any guarantee on this.

In this chapter we prove Proposition 4.1 (in Section 4.1) and Proposition 4.2
(in Section 4.2). We further discuss the issues in the reconstruction process of
a bisection in Boppana’s algorithm arising from Proposition 4.2. We provide
several modifications of Algorithm BB to find unique and non-unique bisections,
where we say that a graph G has a unique optimum bisection if there exists a
unique, up to the sign, bisection vector x such that cw(x) = cw(−x) = bw(G).

29

4.1 BB’s Reconstruction Succeeds if Multiplicity is One

In this section we prove Proposition 4.1, i. e. show that Algorithm BB finds
and certifies an optimum bisection if h(G) = bw(G) and the multiplicity of
the largest eigenvalue of BQ is 1. A key observation for reconstructing the
optimum bisection is the following:

Lemma 4.3. Let G be a graph with n vertices and h(G) = bw(G). Let
dopt ∈ Rn s. t. g(G, dopt) = bw(G), and set Bopt = A+ diag(dopt). Then, for
every optimum bisection vector y, the vector y′ = QT y is an eigenvector of
Bopt

Q corresponding to the largest eigenvalue λ(Bopt
Q).

Proof. From the assumptions, we have

g(G, dopt) = bw(G) =
sum(Bopt)− nλ(Bopt

Q)

4
Bopt = A+ diag(dopt)

⇔ λ(Bopt
Q) =

sum(Bopt)− 4 bw(G)

n
. (4.1)

We compute the value of the Rayleigh quotient of Bopt
Q and the vector

y′ = QT y:

y′TBopt
Q y′

y′T y′
=

(QT y)TBopt
Q QT y

(QT y)TQT y
=

yTQBopt
Q QT y

yTQQT y

=
yTQ(QTBoptQ)QT y

yTQQT y

=
yTP TBoptPy

yTPy
=

yTBopty

yT y
QQT = P = PT and Py = y

=
yT (A+ diag(dopt))y

n
=

yTAy +
∑

i d
opt
i

n
. y2i = 1 on the diagonal

We have yTAy =
∑

i,j Aijyiyj . According to the definition, Aij = 1 if there
is an edge {i, j} ∈ E. Edges with both vertices in the same part contribute
(twice) by 1 to the sum. Cut edges on the other hand contribute (twice) by −1.
There are bw(G) cut edges. Hence, yTAy = sum(A)− 4 bw(G) and we get:

yTAy +
∑

i d
opt
i

n
=

sum(A)− 4 bw(G) +
∑

i d
opt
i

n

=
sum(Bopt)− 4 bw(G)

n

(4.1)
= λ(Bopt

Q).

30

Since the Rayleigh quotient of Bopt
Q and y′ takes the value λ(Bopt

Q), we

conclude that y′ is an eigenvector of Bopt
Q corresponding to the eigenvalue

λ(Bopt
Q).

This Lemma shows us that the Algorithm BB w.h.p. obtains some Bopt
Q

whose eigenspace of the largest eigenvalue contains vector QT y for an optimum
bisection vector y. If the largest eigenvalue has multiplicity 1, then the
obtained bisection vector is equal to y or −y and Proposition 4.1 follows
directly. Note that Theorem 3.2 states that the largest eigenvalue of matrix

B
(y)
Q = A+ diag(d(y)) has multiplicity 1 w.h.p., but the Algorithm BB might

compute some dopt different than d(y) which in consequence affects that Bopt
Q

differs from B
(y)
Q . The importance of the multiplicity of the largest eigenvalue

for the reconstruction process has also been observed by Boppana and Blumofe
in an unpublished work [10].
Now, on the one hand, the optimum bisection is unique w.h.p. under the

assumptions made in Theorem 3.2 and the Algorithm BB might obtain an
eigenspace of dimension 1. In experiments we have conducted on the algorithm,
we observe that this actually is the case. On the other hand, the algorithm
might also obtain an eigenspace which has dimension at least 2 for every input
graph, letting the algorithm fail. We show this in the next section.

4.2 Issues with Multiplicity Two or More

In this section we prove Proposition 4.2, i. e. the largest eigenvalue in Algo-
rithm BB can have multiplicity of 2 or more, even when the optimum bisection
is unique. The following fact has been observed independently in [10]:

Lemma 4.4. Let G be a graph with h(G) = bw(G) and let y be the bisection
vector of an arbitrary optimum solution. Let A denote the adjacency matrix of
G and set d(y) = −diag(y)Ay. Then for every dopt which gives g(G, dopt) =
bw(G), there exists some α(y) ∈ R such that dopt = d(y) + α(y)y + λ(Bopt

Q)1

with Bopt = A+ diag(dopt).

Note that the function g(G, d) is invariant under shifting of d (Lemma 2.7),
which now reflects in the term λ(Bopt

Q)1. However, this shifting affects all

eigenvalues of the matrix Bopt
Q equally, such that it has no further impact on

the properties we are going to discuss.

31

Proof of Lemma 4.4. From Lemma 4.3 we know that QT y is an eigenvector
of Bopt

Q corresponding to the largest eigenvalue λ(Bopt
Q). In the following we

shorthand λ = λ(Bopt
Q). We get the following sequence of equivalent conditions:

Bopt
Q QT y = λQT y

⇔ QTBoptQQT y = λQT y

⇔ QTBopty = λQT y y has mean zero

⇔ QQTBopty = λQQT y

⇔ PBopty = λy. QQT y = Py = y

Since P removes the mean of a vector, it holds for some α ∈ R that

⇔ Bopty = λy + α(1, . . . , 1)T

⇔ (A+Dopt)y = λy + α(1, . . . , 1)T Dopt = diag(dopt)

⇔ Ay +Dopty = λy + α(1, . . . , 1)T

⇔ Dopty = λy −Ay + α(1, . . . , 1)T .

In the next step, we multiply the vectors in the equation with the diagonal
matrix diag(y). Since the yi ∈ {1,−1}, the multiplication is revertible and
hence “⇔”.

⇔ diag(y)Dopty = λ diag(y)y − diag(y)Ay + α diag(y)(1, . . . , 1)T

⇔ dopt = λ1− diag(y)Ay + αy

⇔ dopt = λ1+ d(y) + αy.

This completes the proof.

From Lemma 4.4 we know two important things: first, every optimal vector
d can be expressed in terms of an optimum bisection vector y and some
parameter α. Second, if there are different optimal d and d′, both can be
expressed in terms of the same vector y, only with different α and α′. For
illustration let us consider the example graph Gex in Figure 4.1, which has a
unique optimum bisection of width 6. The lower bound h(Gex) is tight, i. e.
h(Gex) = bw(Gex) = 6.

From the known bisection vector y, we compute g(Gex, d
(y)+αy), as shown in

Figure 4.2 left. Obviously, every α ∈ [−0.535, 1.53] results in an optimal vector

32

1
9

10
3

4

7
2

8

6

15

13

18

5

16

11

17

19

12

20

14

Figure 4.1: Example graph Gex with optimum bisection {1, 2, . . . , 10} and
{11, 12, . . . , 20}. For this graph, h(Gex) = bw(Gex) = 6, i. e. the
lower bound is tight.

α

g(Gex, d(y) + αy)

−3 −2 −1 1 2 3

−6

−4

−2

2

4

6

α

λi((A+ diag(d(y) + αy))Q)

−3 −2 −1 1 2 3

−1

1

2 λ1
λ2

λ3

Figure 4.2: Function g(Gex, d
(y)+αy) for graphGex. Every vector d(y)+αy with

α ∈ [−0.535, 1.53] is optimal (see left figure). The computation of
g(Gex, d

(y)+αy) is based on the largest eigenvalue of (A+diag(d(y)+
αy))Q. The largest three eigenvalues of this matrix are shown on
the right. When λ1 coincides with λ2, the reconstruction of the
bisection vector cannot be done by simply using the eigenvector
corresponding to λ1.

d maximizing g(Gex, d). In the proof of Theorem 3.2 that h(G) = bw(G) w.h.p.,
we used the vector d(y) and have shown that w.h.p. the largest eigenvalue for the
core problem is unique and leads to a tight bound. This corresponds to α = 0,
and we observe that for the example graph Gex, the value of g(Gex, d

(y) + αy)
is maximal at α = 0. Figure 4.2 right shows the three largest eigenvalues of the
matrix (A+ diag(d(y) + αy))Q, where A denotes the adjacency matrix of Gex.
For α = 0, we indeed have a unique largest eigenvalue. Due to Lemma 4.3,
the eigenvector corresponding to the largest eigenvalue provides the optimum
bisection in this case.

33

However, Algorithm BB finds any dopt, which might not be the desired α = 0
but might just be that d(y)+αy where the largest and second largest eigenvalue
coincide. Then the largest eigenvalue has multiplicity of at least two and the
reconstruction cannot be done by simply taking some eigenvector from this
eigenspace. This property is stated formally in the following lemma:

Lemma 4.5. Let G be a graph with h(G) = bw(G) and let y be the bisection
vector of an arbitrary optimum bisection. Let further A denote the adjacency
matrix of G. Then there exists some α ∈ R such that g(G, dopt) = h(G) with
dopt = d(y)+αy and the largest eigenvalue of (A+diag(dopt))Q has multiplicity
at least two.

An intuition can be obtained from Figure 4.2 right: we start at some α
with optimal value for g and increase it, until λ1 = λ2. The formal proof is as
follows:

Proof. From the assumption h(G) = bw(G), we know there exists some d with
g(G, d) = bw(G). Let B = A+ diag(d). From Lemma 4.3, we know that QT y
is an eigenvector of BQ corresponding to the largest eigenvalue λ(BQ).

Consider d′ = d+α′y and B′ = A+diag(d′) = B+diag(α′y) for any α′ ∈ R.
We show that QT y is also eigenvector of B′

Q with the same eigenvalue. For

this, we multiply vector QT y from the right to B′
Q and obtain

B′
QQ

T y = BQQ
T y + diag(α′y)QQ

T y

= BQQ
T y +QT diag(α′y)QQT y

= BQQ
T y +QT diag(α′y)y QQT y = Py = y

= BQQ
T y +QTα′1

= BQQ
T y columns of Q are basis of S

= λ(BQ)Q
T y.

Note that λ(BQ) may not be the largest eigenvalue of B′
Q anymore. Next, we

analyze the eigenvalues of B′
Q, as we increase α

′ starting from α′ = 0. At α′ = 0,
the largest eigenvalue is λ(BQ). This value stays eigenvalue for any α′ ≥ 0, so
we only need to show that the second largest eigenvalue λ2(B

′
Q) grows until

it is equal to λ(BQ), while d′ = d+ α′y remains optimum solution. For this
purpose, we recall the definition of function g(G, d) as given in Eq. (2.10):

g(G, d) =
sum(B)− nλ(BQ)

4
.

34

If we consider g(G, d′), we have sum(B′) = sum(B + diag(α′y)) = sum(B),
since sum(α′y) = 0. Thus, the value of g(G, d′) changes if and only if λ(B′

Q)
changes. We know from Lemma 2.6 that g(G, d′) is concave in d′, hence
λ((A+ diag(d′))Q) has to be convex in d′. Eigenvalues are continuous in the
changes of d′. We increase α′ until g(G, d′) is no longer optimal. Formally, we
compute

α′
max = sup

α′≥0
{α′ : g(G, d′) = g(G, d)} = sup

α′≥0
{α′ : λ(B′

Q) = λ(BQ)}.

Necessarily, for α′
max, i. e. the largest α′ with optimal value for g, the matrix

B′
Q has equal largest and second largest eigenvalue. Note that such α′

max exists,
since there is some α′ > 0 with λ(B′

Q) > λ(BQ): for α
′ →∞, the diagonal part

α′y dominates the matrix B′. W.l.o.g., assume y1 = 1. Consider the vector
x′ ∈ Rn with x′1 = n/2− 1 and x′i = −1 for all i 6= 1 with yi = 1. Set x′i = 0
for all i with yi = −1. Then, for the vector x = QTx′ we consider the Rayleigh

quotient
xTB′

Qx

‖x‖2 which provides a lower bound for the largest eigenvalue. With

QQT = P , we obtain

λ(B′
Q) ≥

xTB′
Qx

‖x‖2
=

x′TPB′Px′

‖QTx′‖2
=

x′TB′x′

‖x′‖2

=
x′TBx′

‖x′‖2
+ α′ ‖x′‖2

‖x′‖2
=

x′TBx′

‖x′‖2
+ α′.

Now, as α′ →∞, it follows that the largest eigenvalue of B′
Q tends to ∞.

As last step, in order to obtain α and dopt as described in the lemma, we
take d′ = d+ α′

maxy from the point where the two eigenvalues coincide. Then
we apply Lemma 4.4 and decompose it into d′ = d(y) + α′′y + λ(BQ)1. Now,
α′′ and dopt = d(y) + α′′y are our solutions. The shifting part λ(BQ)1 can be
omitted due to the invariance of function g (Lemma 2.7).

Proposition 4.2 now follows directly from Lemma 4.5.

4.3 Finding a Unique Optimum Bisection BB-U

We have seen that the Algorithm BB might compute some Bopt
Q with multiplicity

of 2 or more for the largest eigenvalue and hence causing difficulties in finding
the optimum bisection. In this section we propose Algorithm BB-U, which is
able to find a unique optimum bisection, regardless of the multiplicity of the
largest eigenvalues in the computations.

35

For our modification of Boppana’s algorithm, we lend an idea from Feige
and Kilian [31] based on the following observation:

Lemma 4.6 (Similar to Lemma 20 in [31]). Let G be a graph chosen from
Gn(p, q) with probabilities fulfilling Eq. (2.13). Then, with probability at least
1− 1/n1−o(1) over the choice of G, h(G) = bw(G) and for every e ∈ V (G)×
V (G), it holds h(G⊕ e) = bw(G⊕ e).

The proof can be found in a similar form in [31] and is provided here for
completeness:

Proof. Due to Theorem 3.2, it holds h(G) = bw(G) with probability at least
1− 3n−5. We estimate the a priori probability that we sample G⊕ e instead
of G. Assume q > 1/n2+o(1) and p < 1 − 1/n2+o(1). Then the a priori
probabilities differ by a factor of at most n2+o(1). Hence, h(G⊕ e) 6= bw(G⊕ e)
with probability at most n2+o(1)(3n−5) = 3n−3+o(1). Since there are

(
n
2

)
possible choices of e, we obtain h(G⊕ e) = bw(G⊕ e) with probability at least
1− 1/n1−o(1).

This enables us to reconstruct the optimum bisection with n calls of the
function h(G), since w.h.p. the function h(G⊕ e) tells us if we modified a cut
edge or an inner edge. The Algorithm BB-U still runs in polynomial time.

Algorithm 4.1: Boppana-based algorithm for finding unique optimum
bisections BB-U
Input :Graph G.

1 Compute h(G): numerically find a vector dopt which maximizes g(G, d).
2 Construct a bisection x̂: choose some vertex u and label it 1. Then, for

every vertex v 6= u compute h(G⊕ {u, v}). If h(G⊕ {u, v}) = h(G),
label the vertex with 1, otherwise −1.

3 Output x̂; if cw(x̂) = h(G), output “optimum bisection”, else output
“fail”.

Lemma 4.7. Let G be a graph chosen from Gn(p, q) with probabilities fulfilling
Eq. (2.13). Then, w.h.p. Algorithm BB-U finds and certifies the optimum
bisection in polynomial time.

Proof. From Lemma 4.6, it holds w.h.p. h(G) = bw(G) and for every u, v
considered by the algorithm holds h(G ⊕ {u, v}) = bw(G ⊕ {u, v}). Now,
assuming G has a unique bisection, we have bw(G⊕ {u, v}) = bw(G) if and
only if u and v are in the same part of an optimum bisection of G.

36

However, making n calls to h(G) seems to be high costs for finding the
bisection, especially if we might have a largest eigenvalue of dimension two
and thus only have to separate the information from two vectors. We will later
propose our Algorithm BB-UI (see Section 5.2), which reduces the number of
evaluations of h and needs at most as many evaluations as the multiplicity of
the largest eigenvalue.
Under certain circumstances, there is another way of finding an optimum

bisection vector. The idea is to find two optimal vectors dopt1 and dopt2 :

Corollary 4.8. Let G be a graph with h(G) = bw(G) and a unique optimum
bisection with bisection vector y. Let dopt1 and dopt2 be two optimal vectors
such that g(G, dopt1) = g(G, dopt2) = bw(G) and dopt1 − mean(dopt1)1 6= dopt2 −
mean(dopt2)1. Then dopt1 − dopt2 = βy + γ1 for some β ∈ R \ 0 and γ ∈ R.

Proof. We use Lemma 4.4. Since the bisection y is unique, we have dopti =
d(y) + αiy+ γi1. The claim follows with β = α1 − α2 6= 0 and γ = γ1 − γ2.

In the unpublished work [10], Blumofe and Boppana propose to determine
the set of all optimal vectors d and derive the bisection from this set, e. g. as we
could do using two distinct vectors and apply Corollary 4.8. While it is known
that for the concave function g(G, d) an optimal d can be found in polynomial
time with arbitrary precision, it is not clear to the author how to find two
different optimal solutions. In practice choosing two random starting points
does the job, but there usually is no guarantee that the search algorithms do
not converge to the same optimal point.

4.4 Finding Non-Unique Optimum Bisections BB-NU

We are also able to provide a modification of Boppana’s algorithm which handles
cases where h(G) = bw(G) but for which no unique bisection of minimum size
exists. As we will see later, hypercubes satisfy these two conditions. We present
our modification as Algorithm 4.2 (BB-NU). Note that, if the multiplicity of
the largest eigenvalue of Bopt

Q is 1, then the algorithm outputs the same result
as in the original Algorithm BB by Boppana.

Theorem 4.9. If h(G) = bw(G), then Algorithm BB-NU reconstructs all
optimum bisections. Every achieved bisection vector corresponds to an optimum
bisection.

Proof. Due to Lemma 4.3, we know that for every optimum bisection vector
y, the vector QT y is eigenvector of the matrix Bopt

Q = (A + diag(dopt))Q

37

Algorithm 4.2: Boppana-based algorithm for finding non-unique opti-
mum bisections BB-NU
Input :Graph G with adjacency matrix A.

1 Perform Step 1 of Algorithm BB; Let x be an eigenvector corresponding
to the eigenvalue λ((A+ diag(dopt))Q) and let k be the multiplicity of
the largest eigenvalue of (A+ diag(dopt))Q;

2 If k = 1 then construct a bisection vector x̂ by splitting at the median x̄
of Qx as in Step 2 of Algorithm BB; Next output x̂ and if
cw(x̂) = h(G), output “optimum bisection”, else output “fail”; If k > 1
then perform the steps below;

3 Let M ∈ Rn×k be the matrix with the vectors Qx obtained from the k
linear independent eigenvectors x corresponding to the largest
eigenvalue of (A+ diag(dopt))Q; Transform the matrix to the reduced
column echelon form, i. e. there are k rows which form an identity
matrix, s. t. M still spans the same subspace;

4 Brute force: for every combination of k coefficients from {+1,−1}, take
the linear combination of the k column vectors of M with the
coefficients and verify if the resulting vector x is a bisection vector, i. e.
x ∈ {+1,−1}n with

∑
i xi = 0. If yes and if cw(x) = h(G), then

output x and continue. This needs 2k iterations;
5 If in Step 4 no bisection vector x is found, then output “fail”.

and thus QQT y = Py = y is in the subspace spanned by the columns of
M . We show even more, namely that non-optimum bisection vectors x are
not in this subspace. For contradiction, let x be a bisection vector with
cwG(x) > bw(G) and assume QTx is an eigenvector of Bopt

Q corresponding to
the largest eigenvalue. Then it holds

λ(Bopt
Q) =

(QTx)TBopt
Q (QTx)

(QTx)T (QTx)
=

xTBoptx

xTx

=
xT (A+ diag(dopt))x

xTx
=

xTAx+
∑

i d
opt
i

xTx
.

For a bisection vector x, it holds xTAx = 2|E(G)| − 4 cwG(x). Now, since
cwG(x) > bw(G), we obtain for a minimum bisection vector y, that xTAx <
yTAy. This is a contradiction to x maximizing the Rayleigh quotient above.
Thus, no non-optimum bisection vector x can be contained in the subspace
spanned by M .

38

Corollary 4.10. For the graph class of hypercubes Hn with n vertices, the
bound h(Hn) is tight and Algorithm BB-NU finds all optimum bisections.

Proof. The eigenvalues for the family of hypercubes are explicitly known [43].
For a hypercube Hn with n vertices we have h(Hn) = g(Hn, (2− log2 n)1) =
n/2 = bw(Hn). Due to Theorem 4.9, Algorithm BB-NU then finds all optimum
bisections.

Since the hypercube with n vertices has log2 n optimum bisections and the
eigenspace of the largest eigenvalue of BQ has multiplicity log2 n, the brute
force part in our modification of Boppana’s algorithm results in a linear factor of
n for the overall running time. Thus, the Algorithm BB-NU runs in polynomial
time for these graphs. With the results from Section 5.1, we will later extend
this result and obtain that BB-NU works on adversarially modified hypercubes
as well.

39

5 Boppana’s Approach: New Frontiers
of Applicability

In this chapter we systematically explore graph properties that guarantee
h(G) = bw(G) and thus, that the Boppana-based Algorithms BB-U and
BB-NU are able to certify the output bisections. We have already seen that
random graphs from Gn(p, q) and Rn(r, b) satisfy such properties w.h.p. under
the assumptions in Eq. (2.13) and Eq. (2.14) on p, q, r, and b.
However, the algorithms works also well for instances which deviate signifi-

cantly from such random graphs: We introduce the adversarial graph model
A(Gn) as a natural generalization of the semirandom model of Feige and Kilian
[31]. We will show that, if Algorithm BB-U or BB-NU outputs the minimum-
size bisection for graphs in Gn w.h.p., then the algorithm finds a minimum
bisection w.h.p. for the adversarial graph model A(Gn), too. As a corollary,
we get that, under the assumption in Eq. (2.13), the Algorithm BB-U works
well in the semirandom model, denoted here as A(Gn(p, q)), and, assuming
Eq. (2.14), in A(Rn(r, b)) – the semirandom regular model.

To analyze limitations of the spectral approach we provide structural prop-
erties of the space of feasible solutions searched by the algorithms. This allows
us to prove that, if an optimum bisection contains some forbidden subgraphs,
then Boppana’s approach fails. Using these tools, we are able to show that, if
the density difference p− q is asymptotically smaller than

√
p · log n/

√
n, then

Boppana’s approach fails to determine a certified optimum bisection on Gn(p, q)
w.h.p. Note that our impossibility result is not a direct consequence of the
lower bound for the exact cluster recovery. For example, for q = O(1)/n and
p =
√
log n/n from Mossel et al. [63], we know that for these parameters the

exact recovery is impossible, but obviously this does not imply that determining
of a certified optimum bisection is impossible either.

5.1 Bisections in Adversarial Models

We introduce the adversarial model, denoted by A(Gn), as a generalization of
the semirandom model in the following way: Let Gn be a graph model, i. e. a

40

class of graphs with n nodes (n even) and some probability distribution over
these graphs. In the model A(Gn), initially a graph G is chosen at random
according to Gn. Let (Y1, Y2) be a fixed but arbitrary optimum bisection of G.
Then, similarly as in [31], a monotone adversary is allowed to modify G by
applying an arbitrary sequence of the following monotone transformations:
The adversary may

1. remove from the graph any edge {u, v} crossing the bisection (u ∈ Y1
and v ∈ Y2);

2. add to the graph any edge {u, v} not crossing the bisection (u, v ∈ Y1 or
u, v ∈ Y2).

For example, A(Gn(p, q)) is the semirandom model as defined in [31].
We will prove that Boppana’s approach works well for graphs from the

adversarial model A(Gn) if it works well for Gn. First we show that, if a
Boppana-based algorithm is able to find an optimum bisection of a graph,
we can add edges within the same part of an optimum bisection and we can
remove cut edges, and the algorithm still works. This solves the open question
of Feige and Kilian [31].
Note that the result follows alternatively from Corollary 6.5 (presented in

Section 6) that the SDPs of [31] are equivalent to Boppana’s optimization
function and from the property proved in [31] that the objective function of
the dual SDP of Feige and Kilian preserves the minimal bisection regardless of
monotone transformations. The aim of this section is to give a direct proof of
this property for Boppana’s algorithm.

Theorem 5.1. Let G = (V,E) be a graph with h(G) = bw(G). Consider some
optimum bisection Y1, Y2 of G.

1. Let u and v be two vertices within the same part, i. e. u, v ∈ Y1 or
u, v ∈ Y2, and let G′ = (V,E ∪ {{u, v}}). Then h(G′) = bw(G′).

2. Let u and v be two vertices in different parts, i. e. u ∈ Y1 and v ∈ Y2, with
{u, v} ∈ E and let G′ = (V,E \ {{u, v}}). Then h(G′) = bw(G) − 1 =
bw(G′).

Proof. We start by proving the first part, i. e. when we add an edge {u, v}.
Let A and A′ denote the adjacency matrices of G and G′, respectively. It
holds A′ = A + A∆ with A∆

uv = A∆
vu = 1 and zero everywhere else. Since

h(G) = bw(G), there exists a dopt with g(G, dopt) = bw(G). The main idea is
now that we can derive a new optimal correction vector d′ for G′ based on the
optimal correction vector dopt for G. For G′, we set d′ = dopt + d∆ with

d∆i =

{
−1 if i = u or i = v,

0 else.

41

We set B′ = A+A∆ + diag(dopt + d∆) = Bopt +A∆ + diag(d∆) and get

λ(B′
Q) = max

x∈S\{0}

xT (Bopt +A∆ + diag(d∆))x

‖x‖2

= max
x∈S\{0}

xTBoptx+ xT (A∆ + diag(d∆))x

‖x‖2

= max
x∈S\{0}

xTBoptx+ 2xuxv − x2u − x2v
‖x‖2

= max
x∈S\{0}

xTBoptx− (xu − xv)
2

‖x‖2

≤ max
x∈S\{0}

xTBoptx

‖x‖2
= λ(Bopt

Q).

For an optimum bisection vector, we have xu = xv = 1 or xu = xv = −1 and
thus the last inequality is equality. Hence, λ(B′

Q) = λ(Bopt
Q). Note that by

our construction sum(B′) = sum(Bopt). It follows g(G′, d′) = g(G, dopt) =
bw(G) = bw(G′). This completes the proof for the first part.
The proof for the second part is similar to the first one. Let {u, v}, with

u ∈ Y1 and v ∈ Y2, be an edge that gets removed from G. We define d∆ as
we have done above and we let A′ = A+A∆, with A∆

uv = A∆
vu = −1 and zero

everywhere else. Note that this time sum(B′) = sum(Bopt)− 4.

λ(B′
Q) = max

x∈S\{0}

xTBoptx+ xT (A∆ + diag(d∆))x

‖x‖2

= max
x∈S\{0}

xTBoptx− 2xuxv − x2u − x2v
‖x‖2

= max
x∈S\{0}

xTBoptx− (xu + xv)
2

‖x‖2

≤ max
x∈S\{0}

xTBoptx

‖x‖2
= λ(Bopt

Q).

For an optimum bisection vector, we have xu = 1, xv = −1 or xu = −1, xv = 1
and hence the last inequality is equality. We can conclude

g(G′, d′) =
sum(B′)− nλ(B′

Q)

4

=
sum(Bopt)− 4− nλ(BQ)

4
= g(G, dopt)− 1 = bw(G)− 1.

This completes the proof of the second part and of the theorem.

42

The direct consequence for the algorithms BB-U and BB-NU is as follows:

Theorem 5.2. If BB-U resp. BB-NU finds a minimum bisection for a graph
model Gn w.h.p., then it finds a minimum bisection w.h.p. for the adversarial
model A(Gn), too.

We obtain the following corollary regarding the semirandom graph model
considered by Feige and Kilian:

Corollary 5.3. Under assumption Eq. (2.13) on p and q, w.h.p. Boppana’s
lower bound is tight on A(Gn(p, q)), i. e. on the semirandom model, and Algo-
rithm BB-U computes the minimum bisection.

In [12], Boppana also considers random regular graphs Rn(r, b), where a
graph is chosen uniformly over the set of all r-regular graphs with bisection
width b. He shows that his algorithm works w.h.p. on this graph under the
assumption that b = o(n1−1/b(r+1)/2c). We can now define the semirandom
regular graph model as adversarial model A(Rn(r, b)). Applying Theorem 5.2,
we obtain:

Corollary 5.4. Under assumption Eq. (2.14) on r and b, w.h.p. Boppana’s
lower bound is tight on the semirandom regular model A(Rn(r, b)) and Algo-
rithm BB-U computes the minimum bisection.

Theorem 5.2 can also be applied on deterministic graph classes, e. g. the
class of hypercubes. Extending Corollary 4.10, we obtain:

Corollary 5.5. Algorithm BB-NU finds and certifies an optimum bisection
on adversarial modified hypercubes.

5.2 An Improved Algorithm for Unique Optimum
Bisections BB-UI

We have already introduced Algorithm BB-U, which finds an optimum bisection
w.h.p. in the case of an unique bisection in graph G and h(G) = bw(G).
However, the algorithm always needs n evaluations of function h. Using
the robustness of h against adversarial changes from Theorem 5.1, we are
able to give a modified algorithm, namely Algorithm BB-UI, which needs at
most as many evaluations of h as the multiplicity of the largest eigenvalue of
(A+ diag(dopt))Q. The idea is to remove edges from the graph. If a cut edge
is removed, the multiplicity of the largest eigenvalue decreases by one. If an

43

inner edge is removed, we are able to reconstruct the bisection immediately.
Let us note that this algorithm is more of theoretical interest. In practice, our
experiments indicate that in case this algorithm is able to find and certify the
bisection, then Step 2 already reveals a largest eigenvalue with multiplicity 1.
Then, the algorithm is essentially the same as Algorithm BB.

Algorithm 5.1: Boppana-based algorithm for unique optimum bisec-
tions with improved performance BB-UI

Input :Graph G with n vertices.
1 Initialize G′ = G, hprev =∞, zprev =∞ and dprev = δ = 0.
2 Compute h(G′): numerically find a vector dopt which maximizes

g(G′, d). Let A′ denote the adjacency matrix of G′ and let Z be a set
of basis vectors of the eigenspace corresponding to the largest
eigenvalue of (A′ + diag(dopt))Q.

3 If h(G′) < 0: output “fail” and terminate.
4 If |Z| = 1: let x′ ∈ Z and set x = Qx′. Go to Step 9.
5 If h(G′) > hprev − 1: set x = dprev + δ − dopt. Go to Step 9.
6 If h(G′) = hprev − 1 and |Z| ≥ zprev: set x = dprev − δ − dopt. Go to

Step 9.
7 Store hprev = h(G′), dprev = dopt and zprev = |Z|. Find an edge
{u, v} ∈ E(G′) where vectors x,w ∈ Z exist with (Qx)u 6= (Qx)v and
(Qw)u 6= −(Qw)v. Remove edge {u, v}, i. e. set G′ ← G′ \ {{u, v}}.
Set δ ∈ Rn to δu = δv = 1 and δi = 0 for i = {1, . . . , n} \ {u, v}. Then
go to Step 2.

8 If no such edge is found, take any x′ ∈ Z and set x = Qx′. Proceed
with Step 9.

9 Construct a bisection vector x̂ by splitting at the median x̄ of x, i. e. let
x̂i = +1 if xi ≥ x̄ and x̂i = −1 if xi < x̄. If

∑
i x̂i > 0, move

(arbitrarily) 1
2

∑
i x̂i vertices i with xi = x̄ to part −1 letting x̂i = −1;

10 Output x̂; if cwG(x̂) = h(G), output “optimum bisection”, else output
“fail”.

Lemma 5.6. For every graph G, Algorithm BB-UI terminates in polynomial
time.

Proof. Each single step can be computed in polynomial time. The algorithm
has a loop, when Step 7 performs a goto to Step 2. In Step 5, the algorithm
leaves the loop when the value of h has decreased less than 1. Thus, as long as
the loop is active, h decreases at least by one at each iteration. Finally, Step 3

44

lets the algorithm terminate when h is below 0. Recall that h(G) is a lower
bound on the bisection width of G and trivially below n2. Thus, after at most
n2 loops, the algorithm terminates.

Lemma 5.7. Let G be a graph chosen at random from Gn(p, q) with probabilities
fulfilling Eq. (2.13). Let A denote the adjacency matrix of G and dopt be a
vector that maximizes g(G, d). Let k be the multiplicity of the largest eigenvalue
of (A + diag(dopt))Q. Then, w.h.p. Algorithm BB-UI finds and certifies the
optimum bisection with at most k evaluations of the function h.

Proof. Let us start to consider the base cases. In Step 4, we derive a bisection
in case |Z| = 1. From Lemma 4.3 we conclude that in this case, for x′ ∈ Z,
the vector Qx′ is w.h.p. the bisection vector. Next let us consider Step 8. We
show that this step is unlikely to occur. If no suitable edge has been found in
the preceding step, for each edge {u, v} ∈ E(G′) holds either ∀x ∈ Z : (Qx)u =
(Qx)v, or it holds ∀x ∈ Z : (Qx)u 6= −(Qx)v. If the graph is connected, this is
a contradiction to |Z| > 1, since there cannot be two such linear independent
vectors. By assuming Eq. (2.13), the graph is w.h.p. connected, and also
the subgraphs induced by the parts of the optimum bisection are connected
w.h.p. Consequently, when removing a series of cut edges, the graph remains
connected until the bisection width gets zero and Step 8 does not take an
action w.h.p. Nevertheless, taking any vector in case the step occurs seems to
be a reasonable fall back action (again due to Lemma 4.3).
We now discuss the iterative removal of edges from the graph. Assuming

Eq. (2.13), we have w.h.p. that h(G) = bw(G) (see Theorem 3.2) and for every
edge e ∈ E(G) that h(G \ e) = bw(G \ e) (see Lemma 4.6). Furthermore, the
bisection is w.h.p. unique [24]. We show that the algorithm then finds and
certifies an optimum bisection with at most k evaluations of h. When we
obtain a graph G′ from G by removing a series of cut edges and a single inner
edge, we obtain the same graph as when we first remove the inner edge and
then the cut edges. Since h(G \ e) = bw(G \ e), after removing the inner edge,
the bound is still tight. Then, removing the cut edges is an adversarial change
and the bound remains tight (see Theorem 5.1).

Step 7 either removes an inner edge or it removes a cut edge. First consider
it removes an inner edge {u, v} in Step 7. Denote by Gprev the graph before
removing the edge and G′ afterwards. Since we assumed that the bound
remains tight when removing a single inner edge, Step 2 gives h(G′) = hprev.
For the optimal vectors dprev and dopt computed in Step 2 then holds

g(Gprev, dprev) = g(G′, dopt) = bw(G′). (5.1)

45

By assumption of the algorithm there is a unique bisection vector y, so that
by Lemma 4.4 we can decompose the vectors dprev = dprev,y + αprevy + βprev1
and dopt = d(y) + αy + β1. We define δ ∈ Rn, δu = δv = 1 and δi = 0 for i =
{1, . . . , n} \ {u, v}. Since we removed an inner edge, it holds dprev,y + δ = d(y).

For contradiction, assume that αprev = α. Then dopt = dprev+δ+(β−βprev)1.
We insert this in Eq. (5.1) and obtain

g(Gprev, dprev) = g(G′, dprev + δ + (β − βprev)1)

and since g is invariant under shifting (Lemma 2.7), we get

⇔ g(Gprev, dprev) = g(G′, dprev + δ).

Applying the definition of g, we conclude with Bprev
Q = (A+ diag(dprev))Q:

⇔ max
x∈Rn−1\{0}

xTBprev
Q x

‖x‖2
= max

x∈Rn−1\{0}

xTBprev
Q x+ ((Qx)u − (Qx)v)

2

‖x‖2
.

Vectors maximizing the left term are the eigenvectors corresponding to the
largest eigenvalues of Bprev

Q . From Step 7 we know that there is some eigenvector

of Bprev
Q with (Qx)u 6= (Qx)v, such that ((Qx)u − (Qx)v)

2 > 0. Hence, the
right maximum is larger than the left one. This contradicts that αprev = α.
Now, since αprev 6= α, we can apply Corollary 4.8 and obtain a (stretched
and shifted) bisection vector via dprev + δ − d(y). Hence, after the algorithm
removed an inner edge, Step 5 is able to detect this case and continues with
Step 9, revealing the optimum bisection.

We remain to discuss the case of removing a cut edge. We show that either
we are able to reveal the optimum bisection similar as above, or |Z| decreases
by at least one. For removing a cut edge we assumed h(Gprev) = h(G′) + 1,
such that

g(Gprev, dprev) = g(G′, dopt) + 1. (5.2)

Again, we can decompose the vectors dprev = dprev,y + αprevy + βprev1 and
dopt = d(y) + αy + β1. Using the same δ as above, and since we removed
a cut edge, it holds dprev,y − δ = d(y). We show that, if αprev = α, then
|Z| < zprev: assuming αprev = α, we express dopt in terms of dprev as dopt =
dprev − δ + (β − βprev)1. We insert this in Eq. (5.2) and obtain

⇔ g(Gprev, dprev) = g(G′, dprev − δ + (β − βprev)1) + 1

⇔ g(Gprev, dprev) = g(G′, dprev − δ) + 1

46

⇔ max
x∈Rn−1\{0}

xTBprev
Q x

‖x‖2
= max

x∈Rn−1\{0}

xTBprev
Q x− ((Qx)u + (Qx)v)

2

‖x‖2
.

From Step 7 we know that there is some eigenvector of Bprev
Q with (Qx)u 6=

−(Qx)v, such that ((Qx)u + (Qx)v)
2 > 0. This vector obtains a smaller value

for the right term than for the left one. Consequently, the vector is no longer
eigenvector in the span of Z for graph G′. The size of Z has decreased by at
least one. If still |Z| > 1, the algorithm continues with removing another edge.
If |Z| did not decrease, i. e. |Z| ≥ zprev, we conclude from above that

α 6= αprev. Step 6 then provides a reconstruction: apply Corollary 4.8 and the
(stretched and shifted) bisection vector is obtained as dprev − δ − d(y).

Hence, removing an edge either provides a solution, or reduces |Z| by at
least one. This completes the proof.

5.3 The Limitations of the Spectral Approach

We have seen that Boppana’s approach works well on several classes of random
graphs. However, we did not see so far which graph properties force the
algorithm to fail. For example, for the considered planted bisection model,
we require a small bisection width. On the other hand, as we have seen in
Sections 4.4 and 5.1, Boppana’s approach works for hypercubes and their
semirandom modifications – graphs that have large minimum bisection sizes.
In the following, we present newly discovered structural properties from

inside the algorithm, which provide a framework for a better analysis of the
algorithm itself. Since the proofs for this section are rather technical, we moved
them to the separate Section 5.4.

Lemma 5.8. Let G be a graph with h(G) = bw(G) and assume there is more
than one optimum bisection in G. Then (up to constant translation vectors c1)
there exists a unique vector dopt with g(G, dopt) = bw(G). Additionally, for
every bisection vector y of an arbitrary optimum bisection of G, there exists a
unique α(y) and the corresponding d(y) with g(G, d(y) + α(y)y) = bw(G).

Thus, if there are two optimum bisections represented by y and y′ with
d(y) 6= d(y

′), then the difference of the d-vectors in component i is only dependent
on yi and y′i, since we have d(y) − d(y

′) = α′y′ − αy for some constants α and
α′.
This structural property allows us to show the following limitation for the

sparse planted bisection model Gn(p, q).

47

Theorem 5.9. Boppana’s approach fails w.h.p. in the subcritical phase of
Gn(p, q), defined in [24] as n(p− q) = o(

√
np · log n).

In the planted bisection model Gn(p, q), if the graphs are dense, e. g. p = 1/nc

for a constant c with 0 < c < 1, the constraints for the density difference p− q
assumed in Boppana’s [12] and Coja-Oghlan’s [24] algorithms are essentially
the same. However, for sparse graphs, e. g. such that q = O(1)/n, the situation
changes drastically. Now, e. g. p =

√
log n/n satisfy Coja-Oghlan’s constraint

p− q ≥ Ω(
√
p log(pn)/

√
n), but the condition on the difference p− q assumed

by Boppana is not true any more. Theorem 5.9 shows that Boppana’s algorithm
indeed fails under this setting.

The proof of this theorem relies on the following observation, which can be
derived from our newly discovered structural properties in Lemma 5.8.

Lemma 5.10. Let G be a graph with h(G) = bw(G) and let (Y1, Y−1) be an
arbitrary optimum bisection. Let e(v, Y) denote the number of edges incident
to vertex v and to a vertex from the set Y . Then, for each pair of vertices
v1 ∈ Y1 and v−1 ∈ Y−1, not connected by an edge ({v1, v−1} 6∈ E), we have: if
e(vi, Y1) = e(vi, Y−1) for i ∈ {1,−1} (the vertices have balanced degree), then
N(v1) = N(v−1), i. e. both vertices have the same neighbors.

In other words, if we have two balanced vertices in different parts of an
optimum bisection, not connected by an edge, then the two vertices must have
the same neighborhood as a necessary criterion for Boppana’s approach to
work. In the subcritical phase in Theorem 5.9, there exist most likely many of
such pairs of vertices, but they are unlikely to have all even the same degree.

We can also provide forbidden substructures which make Boppana’s approach
fail. This is e. g. the case, when the graph contains a path segment located
across an optimum bisection:

Corollary 5.11. Let G be a graph, as illustrated in Figure 5.1 (left), with
n ≥ 10 vertices containing a path segment {u′, u}, {u,w}, {w,w′}, where u and
w have no further edges. If there is an optimum bisection y, s. t. yu = yu′ = +1
and yw = yw′ = −1 (i. e. {u,w} is a cut edge), then h(G) < bw(G).

To prove this corollary, we use the following more general but also more
technical Lemma 5.12 from which Corollary 5.11 follows, setting parameters
C̃+1 = {u} and C̃−1 = {w}.

Lemma 5.12 (Necessity for many edges). Let G = (V,E) be a graph and y
be an optimum bisection vector of G. For i ∈ {+1,−1} let Ci = {u | yu =

48

. . . u′ u w w′ . . .

. . . u′1 u1 w1 w′
1 . . .

. . . u′2 u2 w2 w′
2 . . .

Figure 5.1: Forbidden graph structures as in Corollary 5.11 (left) and in Corol-
lary 5.13 (right).

i ∧ ∃v : yv = −i ∧ {u, v} ∈ E} be the set of vertices in part i incident to
the cut edges. If there exist non-empty C̃i ⊆ Ci with k = min{|C̃+1|, |C̃−1|},
k + δ = max{|C̃+1|, |C̃−1|}, l = |V | − (k + δ), s. t.

• (3k < l ∧ δ = 0) or (4k < l ∧ δ < min{ 4k2

l−4k ,
7

128 l})
• 2|E(C̃+1, C̃−1)| ≥ |E(C̃+1 ∪ C̃−1, V \ (C̃+1 ∪ C̃−1))|,

then h(G) < bw(G).

An illustration of the condition stated in Lemma 5.12 is given in Figure 5.2.
The parameter δ allows for some unbalanced size of the subsets.

C̃+1

δ

k

C̃−1

k

Figure 5.2: Forbidden graph structures as in Lemma 5.12.

Lemma 5.12 can also be applied for 2× c lattices:

Corollary 5.13. Let G be a graph with n ≥ 10c vertices containing a 2 × c
lattice with vertices ui and wi, as illustrated in Figure 5.1 (right). (The
construction is similar to Corollary 5.11, but now we have a lattice instead of
a single cut edge.) If there is an optimum bisection y, s. t. yui = yu′

i
= +1 and

ywi = yw′
i
= −1, for i = 1, 2, then h(G) < bw(G).

Furthermore, Boppana’s approach fails if there are isolated vertices in both
parts of an optimum bisection:

Theorem 5.14. Let G be a graph with h(G) = bw(G). Let G′ be the graph G

with two additional isolated vertices, then h(G′) ≤ h(G)− 4 bw(G)
n2 .

49

5.4 Technical Proofs

Now we provide the proofs left out in the previous section. Corollary 5.11 and
Corollary 5.13 follow easily from Lemma 5.12, thus we skip the proofs.

Proof of Lemma 5.8. Consider two optimum bisections with bisection vectors
y and y′. (Note that we consider y and −y as the same bisection.) For contra-
diction, assume there are two different dopt1 6= dopt2 , while for normalization we
require both vectors to have mean zero (see Lemma 2.7). Due to Lemma 4.4
we have that, for every y representing an optimum bisection, the vectors dopt1

and dopt2 can be expressed as dopt1 = d(y) + α1y and dopt2 = d(y) + α2y. The
difference is then

dopt1 − dopt2 = (α1 − α2)y.

For y′ representing an optimum bisection, we have analogously dopt1 = d(y
′)+β1y

′

and dopt2 = d(y
′) + β2y

′ with difference

dopt1 − dopt2 = (β1 − β2)y
′.

We conclude
(α1 − α2)y = (β1 − β2)y

′.

Since y and y′ are linearly independent, we conclude α1 = α2 and β1 = β2.
This means, if there are two optimum bisections, then there is only one dopt

and α is unique!

Proof of Theorem 5.9. Let G be a graph sampled from the subcritical phase
and (V1, V−1) be the planted bisection. Coja-Oghlan [24] defines two sets of
vertices (see [23, page 112]):

Ni = {v ∈ Vi : e(v, Vi) = e(v, V−i)} and

N∗
i = {v ∈ Ni : N(v) \ core(G) = ∅},

where core(G) is a subgraph whose connected components are, w.h.p., not cut
by any optimum bisection.
Let further (Y1, Y−1) be an optimum bisection. Coja-Oghlan claims that,

w.h.p., #(Yi ∩ N∗
i) ≥ µ/8 (eventually swap the parts), where µ = E(#N1 +

#N−1) and µ ≥ n1−Θ(γ) with n(p − q) =
√
np · γ log n, γ = O(1) [23, page

122]. Then there are exp(Ω(µ)) many optimum bisections. A growing set
size #(Yi ∩ N∗

i) contradicts then the following fact, which we are going to
show: assuming that Boppana’s approach works on G, the probability that
#(Yi ∩N∗

i) ≥ 2 will tend to 0.

50

Consider any pair of vertices v1 ∈ Y1 ∩N∗
1 and v−1 ∈ Y−1 ∩N∗

−1. v1 and v−1

are not connected by an edge, since they have only neighbors in the core of G.
Furthermore, they both have balanced degree. Thus, we can apply Lemma 5.10
and conclude that v1 and v−1 have the same neighbors. In direct consequence,
all vertices in Yi ∩ N∗

i , i ∈ {1,−1} have the same neighbors and the same
number of edges to each part as well. We denote this number by k = e(v1, V1).
In the following, we consider sets of 4 vertices, while two are chosen from

Y1 ∩N∗
1 and two from Y−1 ∩N∗

−1. By our assumption of #(Yi ∩N∗
i) ≥ 2, we

can choose at least one such set w.h.p.
Let us first rule out two edge cases. In the first case, the vertices have degree

k = 0. Then Boppana’s approach does not work due to Theorem 5.14. In the
second case, the vertices have maximal many edges, i. e. k = n/2 − 2 many
edges to each part. W.h.p., a graph does not even have two vertices in each
part with k edges:

(n/2)2(n/2− 1)2

4
(pn/2−2qn/2−2)4(1− q)4(1− p)2 → 0.

Thus, we have to consider 1 ≤ k ≤ n/2− 2. Let C
(k)
i = {v ∈ Vi : e(v, Vi) =

e(v, V−i) = k} be the set of vertices with a balanced number of exactly k edges

to each part. With the k from above, we have Yi ∩N∗
i ⊆ C

(k)
i .

We want to estimate the expected number of 4-element sets

{v1, u1, v−1, u−1} ⊆ C
(k)
1 ∪ C

(k)
−1 with v1, u1 ∈ C

(k)
1 and v−1, u−1 ∈ C

(k)
−1 ,

where all vertices have the same neighbors. Let us take v1 as a reference vertex
and thus the k edges from v1 to V1 as well as k edges to V−1 are given. Now we
estimate the probability that v−1, u1, u−1 have exactly the same neighbors. For
each vertex and each part, the k neighbors are chosen independently, since the
four vertices are not connected to each other. In both parts, there are n/2− 2

possible neighbors. This makes
(n/2−2

k

)
≥
(
n/2−2

1

)
= n/2− 2 possibilities for

the k edges in one part and only one of them coincides with the edges of v1. For
3 vertices to have the same neighbors as v1 in two parts each, the probability
is at most 1

(n/2−2)6
. The expected number of 4 vertices as described with the

same neighbors is therefore

E(#4− elem− set) ≤
(
n/2

2

)2

· 1

(n/2− 2)6
≤ (n/2)4

(n/2− 2)6
→ 0.

This means, w.h.p. we do not find any 4-element set. In consequence,
#(Yi ∩N∗

i) ≥ 2 may not be true w.h.p.

51

Proof of Lemma 5.10. Let y be the bisection vector corresponding to the op-
timum bisection in the lemma. Let vi ∈ Yi, i ∈ {1,−1} be vertices as in the
lemma, which fulfill e(vi, Yi) = e(vi, Y−i). We obtain the bisection vector y′

as vector corresponding to (Y1 \ {v1} ∪ {v−1}, Y−1 \ {v−1} ∪ {v1}). Due to the
balanced degree, this bisection is optimal as well.

Hence, we have two optimum bisections and from Lemma 5.8 we know that
the dopt is unique and there are unique α(y) and α(y′) corresponding to y and
y′, resp. It holds

d(y) + α(y)y = d(y
′) + α(y′)y′

⇔ d(y) − d(y
′) = α(y′)y′ − α(y)y

Since v1 has balanced degree and is only connected to vertices, which are in

the same part in y and y′, we have d
(y)
v1 = d

(y′)
v1 = 0. Furthermore, yv1 = 1,

y′v1 = −1. Thus we conclude by the equation above that −α(y′) − α(y) = 0.
Since y and y′ are optimum bisections and e(vi, Yi) = e(vi, Y−i), we have∑

i∈Y1\{v1}

d
(y)
i −

∑
i∈Y1\{v1}

d
(y′)
i = 0

because∑
i∈Y1\{v1}

d
(y)
i

= bw(G)− e(v1, Y−1)− 2 · |(Y1 \ {v1})× (Y1 \ {v1}) ∩ E(G)| − e(v1, Y1)

=
∑

i∈Y1\{v1}

d
(y′)
i .

But we have also∑
i∈Y1\{v1}

d
(y)
i − d

(y′)
i = (n/2− 1)(α(y′) − α(y)) = −2α(y)(n/2− 1).

Thus, α(y) = α(y′) = 0. It follows d
(y)
i − d

(y′)
i = 0 for any i, so that each vertex

must have no edge to v1 and v−1 or must have an edge to both of them. Hence,
the v1 and v−1 have exactly the same neighbors.

Proof for Lemma 5.12. For contradiction, we assume h(G) = bw(G). For
the bisection vector y, we then have dopt = d(y) + αy for some α ∈ R, such
that g(G, dopt) = bw(G). Let A denote the adjacency matrix of G and let

52

B = A + diag(dopt). Referring to the definition of g in Eq. (2.10), and since
sum(B) = 4 bw(G), we conclude from g(G, dopt) = bw(G) that λ(BQ) = 0. We
contradict this by choosing a vector x and then show that the Rayleigh quotient
for x and BP is larger than 0 (for any α). Note, since we assume λ(BQ) = 0,
we can consider BP instead of BQ (see Fact 2.1). This makes our analysis
using explicit vectors more readable. W. l. o. g. we assume |C̃+1| ≥ |C̃−1|. We
choose

xi =


−1 if yi = +1 ∧ i 6∈ C̃+1,

z if i ∈ C̃+1 ∪ C̃−1,

−βz if yi = −1 ∧ i 6∈ C̃−1,

with β =
√

δ+l/z2

δ+l and z =
2kl+δl+2

√
kl(k+δ)(l+δ)

4k2+4δk−δl
. Note that for δ = 0, we have

z = l/k > 3, β = 1/z < 1/3 and −βz = −1.
First, we derive the z above by enforcing

∑
i xi = 0 and choosing β as above:∑

i

xi = l(−1) + (k + δ)z + kz + (δ + l)(−βz)

= −l + (k + δ)z + kz − (δ + l)

√
δz2 + l

δ + l

= −l + (2k + δ)z −
√

(δ + l)(δz2 + l)
!
= 0

⇔
√
(δ + l)(δz2 + l) = (2k + δ)z − l

⇒ (δ + l)(δz2 + l) = ((2k + δ)z − l)2

⇔ δ2z2 + δl + δlz2 + l2 = (2k + δ)2z2 + l2 − 2(2k + δ)lz

⇔ δ2z2 + δl + δlz2 = 4k2z2 + δ2z2 + 4kδz2 − 4klz − 2δlz

⇔ 0 = (4k2 + 4kδ − δl)z2 + (−4kl − 2δl)z − δl

⇔ z =
2kl + δl ±

√
(2kl + δl)2 + δl(4k2 + 4kδ − δl)

4k2 + 4kδ − δl

⇔ z =
2kl + δl ±

√
4(kl)2 + 4klδl + δl(4k2 + 4kδ)

4k2 + 4kδ − δl

⇔ z =
2kl + δl ± 2

√
kl(kl + δl + δ(k + δ))

4k2 + 4kδ − δl

⇔ z =
2kl + δl ± 2

√
kl(k + δ)(l + δ)

4k2 + 4kδ − δl
.

We take the larger z-solution with the +.

53

We show that by our choice of β, the sum of squares for both parts is the
same:∑

i:yi=+1

x2i −
∑

i:yi=−1

x2i = (l(−1)2 + (k + δ)z2)− (kz2 + (δ + l)(−βz)2)

= l + (k + δ)z2 − kz2 − (δ + l)
δz2 + l

δ + l

= l + (k + δ)z2 − kz2 − (δz2 + l) = 0.

Thus, α will have no effect:

xTBPx

‖x‖2
=

xTBx

‖x‖2

=
xT (A+ diag(d(y) + αy)x

‖x‖2

=
xT (A+ diag(d(y)))x+ xT (αy)x

‖x‖2
xT (αy)x = α

∑
i

yix
2
i = 0

=
xT (A+ diag(d(y)))x

‖x‖2
. (5.3)

From now we consider the case 4k < l and δ < min{ 4k2

l−4k ,
7

128 l}. Next,

we show z > 4. From δ < 4k2

l−4k , we get for the denominator of z that

4k2 + 4kδ − δl > 0. For the enumerator, we have:

2kl + δl + 2
√
kl(k + δ)(l + δ)

= 2kl + 5δl + 2
√

kl(k + δ)(l + δ)− 4δl

> 8k2 + 20δk + 4
√
k2(k + δ)(4k + δ)− 4δl Assumption 4k < l

= 8k(k + δ) + 12δk + 4
√
k24k2 − 4δl

> 16k(k + δ)− 4δl

= 4(4k(k + δ)− δl). 4 times denominator of z

Since the enumerator is more than 4 times larger then the denominator and
both are positive, we conclude z > 4. From δ < 7

128 l follows further that
β < 1/3:

β2 =
δ + l/z2

δ + l
≤ 1

9
=

(
1

3

)2

54

⇔ 9(δ + l/z2) ≤ δ + l

⇔ 8δ ≤ l − 9l

z2

⇐ 8δ ≤ l − 9l

16
z > 4

⇔ δ ≤ 7

16 · 8
l.

Now we want to show that Eq. (5.3) is larger than zero. For this we decompose
B = A + diag(d(y)) into B =

∑
e∈E Be and analyze xTBex for each edge e

separately. Note that d
(y)
i is for vertex i the number of neighbors in the other

part minus the number of neighbors in the same part. For the decomposition,
we set Be

ii = Be
jj = 1, if e = {i, j} is a cut edge and Be

ii = Be
jj = −1, if e is a

inner edge. Further, Bij = Bji = 1.
If e = {i, j} is a cut edge, we have xTBex = 2xixj+x2i+x2j = (xi+xj)

2. Thus,

cut edges always contribute positive. We only consider the edges E(C̃+1, C̃−1).
Since xi = xj = z, they contribute 4z2 each.
If e = {i, j} is a inner edge, we have xTBex = 2xixj − x2i − x2j . For inner

edges in V \ (C̃+1 ∪ C̃−1), xi = xj and the contribution is 0. The same holds
for inner edges in C̃+1 and C̃−1. Thus, we only have to consider the edges
E(C̃+1 ∪ C̃−1, V \ (C̃+1 ∪ C̃−1)). One vertex is z, the other −1 or −βz < −1.
Thus, the contribution is −2z − 1− z2 or −2βz2 − β2z2 − z2 = −(3β + 1)z2.
Since 0 < β < 1/3, both are larger than −2z2.
We conclude:

xTBx > |E(C̃+1, C̃−1)| · 4z2 + |E(C̃+1 ∪ C̃−1, V \ (C̃+1 ∪ C̃−1))| · (−2z2).

By the assumption in the lemma, this is greater or equal to zero.

Proof of Theorem 5.14. Let A be the adjacency matrix of G and

A′ =

 A 0 0

0 0 0
0 0 0


be the adjacency matrix of G′, where we added two isolated vertices to G.
Since h(G) = bw(G), there exists a dopt, such that g(G, dopt) = bw(G).

h(G)− h(G′)

=g(G, dopt)−max
d′

g(G′, d′)

55

=
sum(A) + sum(dopt)

4
−max

d′

sum(A′) + sum(d′)− (n+ 2)λ(B′
Q)

4
B′

Q = (A′ + diag(d′))Q

=
sum(dopt)

4
−max

d′

sum(d′)− (n+ 2)λ(B′
Q)

4
sum(A) = sum(A′)

=
sum(dopt)

4
−max

z

sum(z + (dTopt, 0, 0)
T)− (n+ 2)λ(B′

Q)

4
d′ = z + (dTopt, 0, 0)

T

=−max
z

sum(z)− (n+ 2)λ(B′
Q)

4

=min
z

(
n+ 2

4
λ(B′

Q)−
sum(z)

4

)
=min

z

(
n+ 2

4
max

x∈S\{0}

xT (A′ + diag(d′))x

‖x‖2
− sum(z)

4

)
=min

z

(
n+ 2

4
max

x∈S\{0}

(
xT (A′ + diag(z + (dTopt, 0, 0)

T))x

‖x‖2

)
− sum(z)

4

)
.

We restrict ourselves to two kinds of vectors: xa = (x1, . . . , xn, 0, 0)
T with∑n

i=1 xi = 0, and xb = (1, . . . , 1,−n
2 ,−

n
2), and proceed to

≥min
z

(
n+ 2

4
max

x∈{xa,xb}

(
xT (A′ + diag(z + (dTopt, 0, 0)

T))x

‖x‖2

)
− sum(z)

4

)
.

(5.4)

We want to show that this term is at least 4 bw(G)
n2 . Therefore, we analyze the

max-term separately and then show, for which d′ we have to choose which of
the xa and xb.

Firstly, consider vector xa. Let z
(n) denote the first n components of vector z.

Then

max
xa=(x1,...,xn,0,0)T ,

∑n
i=1 xi=0

(
xTa (A

′ + diag(z + (dTopt, 0, 0)
T))xa

‖xa‖2

)

= max∑n
i=1 xi=0

(
xT (A+ diag(dopt))x

‖x‖2
+

xT diag(z(n))x

‖x‖2

)

= max∑n
i=1 xi=0

(
xTBx

‖x‖2
+

xT diag(z(n))x

‖x‖2

)
.

56

We choose an optimum bisection vector y of G:

≥yTBy

‖y‖2
+

yT diag(z(n))y

‖y‖2
=

∑n
i=1 zi
n

. Lemma 4.3

(5.5)

Secondly, we consider xb = (1, . . . , 1,−n
2 ,−

n
2)

T :

xTb (A
′ + diag(z + (dTopt, 0, 0)

T))xb

‖xb‖2

=
sum(A) +

∑
i d

opt
i + xTb diag(z)xb
‖xb‖2

=
4bw(G) + xTb diag(z)xb

‖xb‖2
∑
i

dopti = 4bw(G)− 2|E|

=
4bw(G)

(n+ 2)
(
n
2

) + ∑n
i=1 zi + (zn+1 + zn+2)

(
n
2

)2
(n+ 2)

(
n
2

) . (5.6)

We insert the result Eq. (5.5) for xa and Eq. (5.6) for xb into Eq. (5.4):

(5.4) ≥ min
z

(
n+ 2

4
max

(∑n
i=1 zi
n

,
4 bw(G)

(n+ 2)
(
n
2

)
+

∑n
i=1 zi + (zn+1 + zn+2)

(
n
2

)2
(n+ 2)

(
n
2

))
− sum(z)

4

)
.

We again simplify the terms separately for Eq. (5.5)

n+ 2

4

∑n
i=1 zi
n

−
∑n+2

i=1 zi
4

=
(n+ 2)

∑n
i=1 zi − n

∑n
i=1 zi − n(zn+1 + zn+2)

4n

=
2
∑n

i=1 zi − n(zn+1 + zn+2)

4n

=

∑n
i=1 zi
2n

− zn+1 + zn+2

4
=

1

2
δ δ =

∑n
i=1 zi

n
−

zn+1 + zn+2

2

and Eq. (5.6)

n+ 2

4
(5.6)−

∑n+2
i=1 zi
4

57

=
4bw(G)

2n
+

∑n
i=1 zi + (zn+1 + zn+2)

(
n
2

)2
2n

−
∑n

i=1 zi
4

− zn+1 + zn+2

4

=
4bw(G)

2n
+

(
1

2n
− 1

4

) n∑
i=1

zi +

(
n

8
− 1

4

)
(zn+1 + zn+2)

=
4 bw(G)

2n
+

2− n

4n

n∑
i=1

zi +
n− 2

8
(zn+1 + zn+2)

=
4 bw(G)

2n
+

2− n

4

(∑n
i=1 zi
n

− zn+1 + zn+2

2

)
=
2bw(G)

n
+

2− n

4
δ.

In both cases, the minimization over z could be reduced to a minimization
over δ and we conclude

h(G)− h(G′) ≥ (5.4) ≥ min
δ

max

(
1

2
δ,
2b

n
+

2− n

4
δ

)
.

The first term in the maximum is monotone increasing and the second one
monotone decreasing (for n ≥ 3). Hence, the minimum is at the intersection
point of these two lines:

1

2
δmin =

2bw(G)

n
+

2− n

4
δmin

2− 2 + n

4
δmin =

2bw(G)

n
n

4
δmin =

2bw(G)

n

δmin =
8bw(G)

n2
.

It follows

h(G)− h(G′) ≥ 1

2
δmin =

4bw(G)

n2
.

58

6 Boppana’s Approach: SDP
Characterizations

In this chapter we compare Boppana’s approach with the Algorithm 2.2 (FK)
from Feige and Kilian. Feige and Kilian express the Minimum Bisection Problem
for an instance graph G as a semidefinite programming problem (SDP) with
solution hp(G) and prove that the function hd(G), which is the solution to the
dual SDP, reaches bw(G) w.h.p. Since bw(G) ≥ hp(G) ≥ hd(G), they conclude
that hp(G) as well reaches bw(G) w.h.p. The proposed Algorithm FK computes
hp(G) and reconstructs the minimum bisection of G from the optimum solution
of the primal SDP. The authors conjecture in [31, Sec. 4.1.] the following:
“Possibly, for every graph G, the function hp(G) and the lower bound h(G)
computed in Boppana’s algorithm give the same value, making the lemma that
hp(G) = bw(G) w.h.p. a restatement of the main theorem of [12].” In this
chapter we answer this question affirmatively.
To compare the algorithms, we provide a primal SDP formulation for Bop-

pana’s approach and prove that it is equivalent to the dual SDP of Feige and
Kilian. Next, we give a dual program to the primal formulation of Boppana’s
approach and prove that the optima of the primal and dual programs are
equal to each other. Note that, unlike in linear programming, for semidefinite
programs there may be a duality gap. Thus, we show that the bisection
Algorithm 2.2 (FK) of Feige and Kilian provides exactly the same results as
Boppana’s approach with Algorithm 4.1 (BB-U).

We also conduct a series of experiments, which show that the SDP formulation
of Feige and Kilian can be solved more efficiently by state of the art SDP
solvers than the problem formulation of Boppana, although the SDP used
about n2 variables instead of n variables in the eigenvalue based approach.
However, in Chapter 7 we provide a new eigenvalue based heuristic that will
allow us to solve instances with up to 106 vertices, while the SDP approach is
limited to around 2000 vertices.
A problem related to Minimum Graph Bisection is the Cluster Recovery

Problem, which asks to find the planted bisection from which the graph was
generated. Since we show that the method by Feige and Kilian is equivalent

59

to Boppana’s, we get, as a consequence, that Algorithm BB-U achieves the
sharp threshold for exact cluster recovery in the stochastic block model. This
threshold has been obtained recently by Abbe et al. [2] and independently by
Mossel et al. [63].
In [2, 63] it is proved that in the (binary) stochastic block model, with

p = α log(n)/n and q = β log(n)/n for fixed constants α 6= β, if (
√
α−
√
β)2 > 2,

the planted clusters can be exactly recovered (up to a permutation of cluster
indices) with probability converging to one; if (

√
α−
√
β)2 < 2, no algorithm can

exactly recover the clusters with probability converging to one. Note that the
choice of p and q is well justified: Mossel et al. show that, if q < p = log(n)/n,
then the exact recovery is impossible for these parameters. In [42] Hajek et al.
proved that the SDP of Feige and Kilian achieves the optimal threshold, i. e. if
(
√
α−
√
β)2 > 2, the SDP reconstructs communities w.h.p. From our result

we get that Algorithm BB-U achieves the threshold, too.

6.1 An SDP Formulation for Boppana’s Approach

The semidefinite programming approach for optimization problems was studied
by Alizadeh [3], who as first provided an equivalent SDP formulation of
Boppana’s algorithm.

To prove that for any graph G Boppana’s function h(G) gives the same value
as hp(G) we formulate the function h as a (primal) SDP. We provide also its
dual program and prove that the optimum solutions of primal and dual are
equal in this case. Then, we show that the dual formulation of the Boppana’s
optimization is equivalent to the primal SDP defined by Feige and Kilian [31].

Below, G = (V,E) denotes a graph, A the adjacency matrix of G and for a
given vector d, as usually, let D = diag(d), for short. We provide the SDP for
the function h (Eq. (2.12)) that slightly differs from that one given in [3].

Proposition 6.1. For any graph G = (V,E), the objective function

h(G) = max
d∈Rn

sum(A+D)− nλ((A+D)Q)

4

maximized by Boppana’s approach can be characterized as an SDP as follows: p(G) = min
z∈R,d∈Rn

(nz − 1Td) subject to

zI −A+ JA+AJ
n − sum(A)J

n2 −D + 1dT+d1T

n − sum(D)J
n2 � 0,

(6.1)

60

with the relationship h(G) = |E|
2 −

1
4p(G). The dual program to the program in

Eq. (6.1) can be expressed as follows:

d(G) = max
Y ∈Rn×n

(
A • Y − 1

n

∑
j

(
deg(j)

∑
i yij

)
− 1

n

∑
i

(
deg(i)

∑
j yij

)
+ 1

n2

∑
i,j yij

)
subject to ∑

i yii = n,

∀i yii − 1
n

∑
j yji −

1
n

∑
j yij +

1
n2

∑
k,j ykj = 1,

Y � 0.

(6.2)

Proof. To obtain an SDP formulation we start with Boppana’s function h(G)
and transform it successively as follows:

h(G) =max
d∈Rn

sum(A+ diag(d))− nλ((A+ diag(d))Q)

4

=max
d∈Rn

J •A+ 1Td− nλ(QT (A+ diag(d))Q)

4

=
J •A
4

+
1

4
max
d∈Rn

(
1Td− nλ(QT (A+ diag(d))Q)

)
=
J •A
4
− 1

4
min
d∈Rn

(
nλ(QT (A+ diag(d))Q)− 1Td

)
. (6.3)

Obviously it holds (6.3) ≤ (6.4). We want to show that we have “=” by
showing that every d which is optimal in Eq. (6.4) fulfills λ(·) ≥ 0, such that
the maximization has no effect. For contradiction assume that the eigenvalue
z = λ(·) < 0 is negative for some d optimizing the term in Eq. (6.4). Then
choose d′ = d− 1 z

n . For d
′ we also have max(λ(·), 0) = 0, and the term within

the minimization is 0− 1Td′ = 0− (1Td− z) = 0− 1Td+ z < 0− 1Td. Thus,
for the minimization, d has not been optimal – a contradiction. Hence, we
continue with “=”:

=
J •A
4
− 1

4
min
d∈Rn

(
nmax(λ(QT (A+ diag(d))Q), 0)− 1Td

)
(6.4)

=
J •A
4
− 1

4
min
d∈Rn

(
nλ(P T (A+ diag(d))P)− 1Td

)
Fact 2.1

=
J •A
4
− n

4
min
d∈Rn

λ

(
P T (A+ diag(d))P − 1Td

n
I

)

61

=
J •A
4
− n

4
min
d∈Rn

λ(M(d)),

where M(d) = P T (A+diag(d))P − 1T d
n I. Hence, we want to solve the following

problem: minimize the largest eigenvalue of the matrix M(d) for d ∈ Rn. For
this problem, [74] gives the SDP formulation:

min z s.t. zI −M(d) � 0,

with z ∈ R, d ∈ Rn. Inserting M(d) and then substituting z with z − 1T d
n , we

get

min
z∈R,d∈Rn

(
z − 1Td

n

)
s.t. zI − P T (A+ diag(d))P � 0. (6.5)

It is easy to see that the constraint matrix above is equal to the constraint
matrix of Eq. (6.1), since P = I − J

n . This completes the proof that h(G)
maximized by Algorithm BB-U gives the same value as the optimum solution
of Eq. (6.1), because under the constraints we have

h(G) =
J •A
4
− 1

4
min

z∈R,d∈Rn
(nz − 1Td). (6.6)

To obtain the formulation for a dual program, consider the primal SDP in
the form:

min
z∈R,d∈Rn

(nz − 1Td) s.t. − P TAP + zI −
∑
i

diP
T IiP � 0,

where Ii denotes the matrix which has a single 1 in the ith row and the ith
column, and zero everywhere else. The dual can be derived by using the rules
in Eq. (2.16). We obtain:

max
Y ∈Rn×n

(P TAP) • Y s.t. I • Y = n, ∀i : −P T IiP • Y = −1, Y � 0.

Thus, since P = I − J
n , we get the following formulation for the dual SDP:

max
Y ∈Rn×n

(
A− JA+AJ

n
+

sum(A)J

n2

)
• Y

under the constraints:

62

∑
i

yii = n,

∀i yii −
1

n

∑
j

yji −
1

n

∑
j

yij +
1

n2

∑
k,j

ykj = 1,

Y � 0.

Here we can note that the second constraint is equal to (P TY P)ii = 1, for
all i. Note further that (AJ) • Y =

∑
i

(
deg(i)

∑
j yij

)
and an analogous holds

for (JA) • Y . Hence, we can reformulate the objective function as follows:

max
Y ∈Rn×n

(
A • Y − 1

n

∑
j

(
deg(j)

∑
i

yij
)
− 1

n

∑
i

(
deg(i)

∑
j

yij
)
+

1

n2

∑
i,j

yij

)
.

This completes the proof.

Using these formulations, we prove that the primal and dual SDPs attain
the same optima.

Theorem 6.2. For the semidefinite programs of Proposition 6.1 the optimal
value p∗ of the primal SDP in Eq. (6.1) is equal to the optimal value d∗ of the
dual SDP in Eq. (6.2). Moreover, there exists a feasible solution (z, d) achieving
the optimal value p∗.

Proof. Consider the primal SDP in Eq. (6.1) of Boppana in the form of Eq. (6.5)

min
z∈R,d∈Rn

z − 1Td

n
I s.t. zI −M(d) � 0,

with M(d) = P T (A + diag(d))P and, recall, P = I − J
n . Note that this

formulation is equivalent to Eq. (6.1), as we have shown as Eq. (6.6). We show
that this primal SDP problem is strictly feasible, i. e. that there exist a z′ and
a d′ with z′I −M(d′) � 0. To this aim we choose an arbitrary d′ and then
some z′ > λ(M(d′)). From [74, Theorem 3.1] follows that the optima of the
primal and dual problem obtain the same value.

To prove the second part of the theorem, i. e. there exists a feasible solution
achieving the optimal value p∗, consider the following. The function h(G)
maximizes g(G, d) over vectors d ∈ Rn. The function g is concave and goes
to −∞ for vectors d with some component going to ∞. Thus, g reaches its
maximum at some finite dopt. Now we choose d = dopt−mean(dopt)1+n1 and
z = λ(M(d)), while the shifting of d does not change the value of g(G, d) due

63

to Lemma 2.7. Clearly, this solution is feasible. We show that it also obtains
the optimal value. We insert z and d into Eq. (6.6) and obtain

J •A
4
− nλ(M(d))− 1Td

4
=

sum(A) + 1Td− nλ(M(d))

4
. (6.7)

Let us compare this with the definition of g(G, d) as found in Eq. (2.10). The
shifting of d ensures λ(M(d)) ≥ 0 and by Fact 2.1 we can use BP instead of
BQ in function g. We see that Eq. (6.7) is the same as g(G, d), which means
Eq. (6.6) gives us the optimal value g(G, dopt).

6.2 Feige and Kilian’s SDP equals SDP for Boppana’s
Approach

For a graph G = (V,E), Feige and Kilian express the minimum bisection
problem as an SDP over an n× n matrix Y as follows:

hp(G) = min
Y ∈Rn×n

hY (G) s.t. ∀i yii = 1,
∑
i,j

yij = 0, and Y � 0, (6.8)

where hY (G) =
∑

{i,j}∈E
i<j

1−yij
2 . For proving that the SDP takes as optimum

the bisection width w.h.p. on Gn(p, q), the authors consider the dual of their
SDP:

hd(G) = max
x∈Rn

(
|E|
2

+
1

4

∑
i

xi

)
s.t. M = −A−x0J−diag(x) � 0, (6.9)

where A is the adjacency matrix of G. They show that the dual takes the
value of the bisection width w.h.p. and bounds the optimum of the primal SDP.
Although we know that their SDP and Boppana’s algorithm both work well
on Gn(p, q), it was open so far how they are related to each other. Below we
answer this question showing that the formulations are equivalent. We start
with the following theorem:

Theorem 6.3. The primal SDP in Eq. (6.8) is equivalent to the dual SDP in

Eq. (6.2), with the relationship hp(G) = |E|
2 −

1
4d(G).

For proving this theorem, we need the following:

Claim 6.4. Let X be a positive semidefinite matrix. Then the conditions (a)
∀i :

∑
j xij = 0 and (b)

∑
i,j xij = 0 are equivalent.

64

Proof. We show two directions. The implication from (a) to (b) is obvious. We
proceed with proving of the second direction and assume that (b) holds.
Each positive semidefinite matrix X can be represented as a Gram matrix,

i. e. as matrix of scalar products xij = 〈ui, uj〉 of vectors ui. Thus, we have∑
i,j

xij =
∑
i,j

〈ui, uj〉 =
∑
i

〈ui,
∑
j

uj〉 = 〈
∑
i

ui,
∑
j

uj〉 = 0,

where we used condition (b). The scalar product of the vector
∑

i ui with itself
is zero and we conclude that it is the zero vector:

∑
i ui = 0. Now we compute∑

j

xij =
∑
j

〈ui, uj〉 = 〈ui,
∑
j

uj〉 = 〈ui,0〉 = 0

which gives condition (a).

Now we are ready to prove Theorem 6.3:

Proof of Theorem 6.3. For convenience we restate the primal SDP in Eq. (6.8)
as follows:

hp(G) = min
Y

(
|E|
2
− 1

4
(A • Y)

)
s.t. ∀i yii = 1,

∑
i,j

yij = 0, and Y � 0.

We show that for the following program

h′p(G) = max
Y

A • Y (6.10)

under the constraints:

∀i : yii = 1,∑
i,j

yij = 0,

Y � 0,

we have h′p(G) = d(G), where recall, d(G) is the objective function of Eq. (6.2).

Then we conclude hp(G) = |E|
2 −

1
4h

′
p(G) = |E|

2 −
1
4d(G).

Consider an optimum solution matrix Y for the SDP. We show that Y is
a solution to the dual program in Eq. (6.2) as well, with the value for the
objective function equal to Eq. (6.10).

65

Since yii = 1, the first constraint of Eq. (6.2) is fulfilled. Due to Claim 6.4 and
since

∑
i,j yij = 0, we have

∑
j yij = 0 for all i. Hence, the second constraint

of (6.2):

∀i yii −
1

n

∑
j

yji −
1

n

∑
j

yij +
1

n2

∑
k,j

ykj = 1

is fulfilled as well. In the objective function of Eq. (6.2), the second and third
term are zero, since (AJ) • Y =

∑
i

(
deg(i)

∑
j yij

)
= 0. Obviously, the fourth

term is zero due to the constraints as well. Hence, we obtain the same value
as h′p(G).
For the other direction, consider an optimum solution matrix Y of SDP in

Eq. (6.2). First, we show that the first and second constraint of Eq. (6.2) imply∑
i,j yij = 0:

∀i yii −
1

n

∑
j

yji −
1

n

∑
j

yij +
1

n2

∑
k,j

ykj = 1 second constraint of (6.2)

⇒
∑
i

yii −
1

n

∑
i,j

yji −
1

n

∑
i,j

yij +
n

n2

∑
i,j

yij = n sum all n constraints

⇒ n− 1

n

∑
i,j

yji −
1

n

∑
i,j

yij +
n

n2

∑
i,j

yij = n use first constraint of (6.2)

⇒
∑
i,j

yij = 0.

Next, due to Claim 6.4 we know that
∑

j yij = 0 for all i. Again from the
second constraint of Eq. (6.2), we conclude that yii = 1. Hence, the constraints
of the SDP in Eq. (6.8) are fulfilled. Obviously, the second, third, and fourth
term in the objective function of Eq. (6.2) are zero again and the objective
values of both SDPs are the same as well.

From Theorems 6.2 and 6.3 we get

Corollary 6.5. Let G be an arbitrary graph. Then, for the lower bound h(G)
of Boppana’s algorithm and for the objective functions hp(G) of the primal SDP
in Eq. (6.8), resp. hd(G) of the dual SDP in Eq. (6.8) of Feige and Kilian [31],
it holds

h(G) = hp(G) = hd(G).

Thus, for any graph G, both approaches provide the same objective value.
Regarding the algorithms, we obtain the following corollary:

66

Theorem 6.6. For a given graph G, the algorithms FK and BB-U either both
find and certify an optimum bisection, or both fail.

Proof. The algorithms FK and BB-U are based on the bounding functions
hp(G) and h(G), respectively. Due to Corollary 6.5, they both are the same.
The reconstruction process itself is identical for both algorithms. Hence, they
output the same results.

6.3 Comparison of Running Times

Theorem 6.6 raises the interesting question, how the approaches of Boppana
and of Feige and Kilian compare in their running time. We implemented
both methods: for Boppana’s approach we used the original Algorithm BB.
Although for a guarantee on a good reconstruction performance, we would
need Algorithm BB-U or better BB-UI, we noticed in our experiments that the
largest eigenvalue computed by the algorithm had almost always multiplicity 1,
in which case BB-UI does the same as BB. For implementing BB, we used
Matlab’s built-in optimization function fmincon and the eig function for
computing the largest eigenvalue. For the implementation of the SDP approach
of Feige and Kilian, we used Algorithm FK∗. We then used the SDP solver
from [72, 69] with Matlab integration. Table 6.1 shows the running times for
both of our implementations on an AMD Opteron 6272 CPU using a single
core. For each n we performed 20 runs, where in each run a graph with n
vertices is generated and then both algorithms are executed on this graph. On
almost all graphs, both algorithms were able to find and certify the optimum
bisection. The observed standard deviations have been below 0.2 times the
mean value.

Table 6.1: Average running times (in seconds) of 20 runs of the algorithms

BB and FK∗ on graphs from Gn(p = 9 log(n)
n , q = 2 log(n)

n). The “-”
indicates a timeout after 10 minutes. Standard deviations are below
0.2 times mean.

n 50 100 150 500 1000 1500 2000

BB 3.80 29.68 112.16 - - - -
FK∗ 0.19 0.48 1.00 9.97 50.15 140.43 312.09

As we can see, the SDP formulation is much faster, although the primal
problem has n2 variables for a graph with n vertices. In contrast, Boppana’s

67

algorithm uses n variables in the convex optimization problem. However,
Boppana’s algorithm needs to solve an eigenvalue problem in each evaluation
step within the convex optimization. In Chapter 7 we address the problem of
the slow convex optimization of Boppana’s approach and develop a heuristic
which solves input instances with up to 106 vertices in a reasonable time.
We present more experimental data for the comparison of FK∗ with our new
heuristic and show that the new heuristic clearly outperforms FK∗.

6.4 Optimality of Boppana’s Approach on the Cluster
Recovery Problem

So far we have extensively studied the Minimum Bisection Problem, which asks
to partition the vertices into two equally sized sets, such that the number of
edges crossing the sets is minimized. A related and also well studied problem
is the Cluster Recovery Problem. It is usually considered along with the
stochastic block model, which is a generalization of the planted bisection model
and is the same in the case of two communities V1 and V2 and symmetric
probabilities p for an edge within a cluster and q for an edge between two
clusters. The Cluster Recovery Problem now asks to find the partition which
has been used in the graph generation process, only using the graph itself.

Note an important difference between the Minimum Bisection Problem and
the Cluster Recovery Problem: while a minimum bisection always exists and
the difficulty is only in finding it, a cluster recovery might be impossible, e .g. if
p = q. Furthermore, while we usually restrict ourselves to q < p for analyzing
minimum bisections, the cluster recovery problem allows for q > p. For q > p
we can consider the complement graph, which is the same as taking a cut edge
probability of 1− q and an inner edge probability of 1− p. Then 1− q < 1− p.
The formal definition of Exact Cluster Recovery, e. g. found as strong

consistency in [63], considers the asymptotic regime n→∞ and allows p and
q to depend on n:

Definition 6.7 (Strong Consistency [63]). Let yn denote the planted bisection
of a graph Gn. Given two sequences pn, qn ∈ [0, 1], and given a map A from
graphs to vertex labellings, we say that A is consistent if

Pr(A(Gn) = yn or A(Gn) = −yn)→ 1,

where the probability is taken with respect to the distribution of (Gn, yn) ∼
Gn(pn, qn).

68

An intensive study has been carried out on providing lower bounds on |p− q|
to ensure recoverability of the planted bisection. Mossel et al. [63] provide a
characterization, for which sequences pn, qn an estimator for strong consistency
exists:

Theorem 6.8 (Characterization of Consistency [63]). Given n, p and q, let
X ∼ Binom(n,max(p, q)) and Y ∼ Binom(n,min(p, q)) be independent. We
define

P (n, p, q) = Pr(Y ≥ X).

Consider sequences pn, qn ∈ [0, 1]. There is a strongly consistent estimator for
Gn(pn, qn) if and only if P (n, pn, qn) = o(n−1).

In [63], a series of more specific regimes in terms of pn and qn is provided. We
focus on the model Gn(p, q) with p = α log(n)/n and q = β log(n)/n for fixed
constants α, β, α > β, since we can later compare the results to results on the
Minimum Bisection Problem. For this regime, Mossel et al. and independently
Abbe et al. [2] have shown that there is a sharp threshold phenomenon: exact
recovery of the planted bisection is possible if and only if (

√
α −
√
β)2 > 2.

Hajek et al. [42] show than an SDP equivalent to the one of Feige and Kilian
achieves this bound. Since, due to Corollary 6.5, we know that the SDP is
equivalent to Boppana’s algorithm, we conclude that also Boppana’s algorithm
achieves the optimal threshold for finding and certifying the optimum bisection
in the considered model. We get:

Theorem 6.9. Let α and β, α > β, be constants. Consider the graph model
Gn(p, q) with p = α log(n)/n and q = β log(n)/n. Then, as n → ∞, if
(
√
α −
√
β)2 > 2, Algorithm BB-U recovers the planted bisection w.h.p. If

(
√
α−
√
β)2 < 2, no algorithm is able to recover the planted bisection w.h.p.

Proof. The second part of the theorem is exactly the statement from [2]. The
first part, i. e. that Boppana’s algorithm is able to recover the bisection, follows
from [42, Theorem 2]. Hajek et al. show that for (

√
α−
√
β)2 > 2 the SDP of

Feige and Kilian obtains the optimal solution. Due to Theorem 6.6, the same
holds for Algorithm BB-U.

69

7 A New Fast Heuristic for Certified
Minimum Graph Bisections

Boppana’s algorithm, though good in theory1, is too slow in practice. This is
due to the huge computational complexity of the required high-dimensional
convex optimization, which needs a large amount of eigenvalue computations.
This severely limits the practical applicability of the algorithm. Numerical
experiments done so far, e. g. by Tu and Cheng [70] and Tu et al. [71], were
performed on small graphs only. Also, the experiments did not analyze the
extent to which Boppana’s algorithm certifies the optimality.

In this chapter we present a method to eliminate the time-consuming convex
optimization used in Boppana’s Algorithm BB. We propose a simple heuristic,
named FB (for fast spectral-based bisection), which, performing a single
computation of an eigenvector, is able to construct a bisection having in
most cases the same width as a candidate bisection determined by Boppana’s
algorithm. Next, based on new properties of the convex optimization of
Boppana’s method, FB is able to compute in a single step a lower bound
proving the optimality of the given bisection. This bound is close to the value
found in the convex optimization, thus allowing to achieve similar certificates
as in the original algorithm. However, there is a huge difference in time
efficiency between Boppana’s algorithm and our method. For example, on
graphs with 100 vertices, the convex search of Boppana’s algorithm needs
around 104 eigenvalue evaluations, while our heuristic does a single evaluation
to compute both the bisection and the lower bound. This results in a speedup
of factor 104 compared to plain Boppana in this case. As a consequence, the
lack of need of a high-dimensional optimization enables us to perform a large
series of experiments on graphs with up to millions of vertices.

As main result we provide a strong experimental evidence that our heuristic
works reasonably well in practice on graphs from the planted bisection model
and on random regular graphs. To compare the performance of the new heuristic

1The theoretical analysis forced us to provide Algorithm BB-UI to cope with a multiplicity
of the largest eigenvalue larger than one, but in practice BB does not run into this issue.
Thus, we use the original BB in this chapter.

70

FB and plain Boppana on Gn(p, q), we estimate, for fixed values n, the spaces
of parameters (p, q) ∈ [0, 1]× [0, 1] for which the algorithms find and certify
minimum size bisections with high empirical probability. Our experiments
demonstrate that for graphs with up to 100 vertices the parameter spaces
obtained by both methods almost coincide. Unfortunately, due to huge time
complexity of Boppana’s original Algorithm BB, we were not able to perform
this comparative study for larger values n. In the same way, we compare
the performance of our heuristic with a state-of-the-art algorithm by Chen,
Sanghavi, and Xu [17, 18] and demonstrate for graphs with up to n = 300 that
the corresponding parameter spaces are almost the same, but FB is much faster
than the algorithm by Chen et al. Furthermore, our experiments show that
the parameter spaces (r, b) for the random regular model Rn(r, b), for which
our heuristic works well, nicely capture the cases which satisfy Eq. (2.14), i. e.
for which plain Boppana theoretically guarantees certified optimum solutions.

We provide also experiments which demonstrate that our heuristic achieves
the sharp threshold for exact cluster recovery in the stochastic block model.
From our new theoretic results, we know that the original algorithm of Boppana
achieves the optimal threshold (Theorem 6.9), i. e. if (

√
α−
√
β)2 > 2 then the

algorithm reconstructs the communities w.h.p. Our experimental results in
this chapter demonstrate that in the stochastic model with p = α log(n)/n and
q = β log(n)/n our heuristic FB exactly recovers communities for parameters
α and β which achieve the provably optimum parameter space satisfying
(
√
α−
√
β)2 > 2.

Related Work.
Delling et al. [29] provide a branch-and-bound heuristic for finding a provably
minimum bisection. Their experimental results show that the heuristic dom-
inates other previously known exact algorithms as [68, 14, 5, 41, 47]. Since
in [29] the authors do not examine the performance of their algorithm on the
planted bisection model and random regular graphs, it would be interesting
to see a comparison to our polynomial time heuristic. Unfortunately, neither
the source code nor the binary of [29] is available. Thus, it was impossible to
compare the performances of both algorithms on the specific families of random
graphs. Since the experimental data used by Delling et al. is on weighted
graphs only, we don’t see a way to relate the performance of the algorithms to
each other on instances used in [29].

Organization of this Chapter.
In Section 7.1 we discuss theoretical properties on the lower bound of Bop-
pana and provide some experimental findings indicating how to avoid the

71

extensive convex search. Our new heuristic FB is described in Section 7.2.
In Sections 7.3–7.5 we analyze the performance of the heuristic with focus
on the success probability of finding and certifying an optimum bisection. In
Section 7.6 we propose a modification FB∗ of our heuristic which improves the
theoretical properties of FB. Finally, we compare the running times of our new
heuristic and several other algorithms.

7.1 Avoiding High-Dimensional Optimization

Consider Boppana’s original Algorithm BB. The high-dimensional optimization
to compute dopt in Step 1 seems to be indispensable for this algorithm. Firstly,
the bisection vector x̂ is obtained from an eigenvector corresponding to the
eigenvalue (A+diag(dopt))Q. Secondly, to certify the optimality of the solution
x̂ the algorithm uses h(G) = g(G, dopt) as a lower bound. However, the
optimization step comes with high computational costs. In this section we
discuss how to avoid the optimization step despite its inherent advantages.
Particularly, we show how to avoid the optimum vector dopt both in the
computation of good candidates for bisection vectors and in the lower bound
h(G) = g(G, dopt). We also provide experimental and theoretical arguments
which justify our approach.

Finding a Relaxed Bisection Vector without dopt.
In our experiments, we have analyzed the impact of the optimal correction
vector dopt on the bisection vector x̂ generated in Step 2 of BB. Therefore, we
examine the relaxed bisection vectors Qx′, where x′ denotes the eigenvector
corresponding to the largest eigenvalue of λ((A+ β · diag(dopt))Q) and we vary
β from 1 to 0. Note that for β = 1 we get just the computation from BB.
We have discovered that for β = 0 the relaxed bisection vector corresponding
to λ(AQ) carries almost the same information as the vector corresponding to
λ((A+ diag(dopt))Q). In Figure 7.1 we show some results which illustrate and
clarify our findings. We will use the property from Lemma 4.3.

We consider the example graph Gex presented in Figure 4.1. The graph is 5-
regular, has 20 vertices and a unique optimum bisection of width 6. The vertex
labels are arranged in such way that the first ten and the last ten vertices form
the optimum partition. The graph satisfies h(Gex) = g(Gex, d

opt) = bw(Gex),
thus, Boppana’s algorithm works well on Gex. This means that in Step 3 of BB
we get vector x̂ of the first ten components equal to +1 and the remaining ones
equal to −1. For this x̂ we have cw(x̂) = 6 and h(Gex) = g(Gex, d

opt) = cw(x̂),
where dopt is the optimum correction vector found in maximization Step 1

72

of BB.
Now we analyze for graph Gex to what extent the relaxed bisection vectors

still carry the bisection-relevant information. We compute the eigenvectors x′β
for λ((A + β · diag(dopt))Q), with β = 1, β = 0.9, β = 0.5, and β = 0. The
normalized (unique, up to a sign) vectors Qx′β for these eigenvectors x′β are
presented in Figure 7.1. From Lemma 4.3 we know that the optimum bisection
vector for Gex is equal to ±Qx′β in the case β = 1 (see Figure 7.1, first plot).
As could be expected, for β = 0.9 the vector Qx′β with eigenvector x′β for

λ(A + β · diag(dopt))Q) remains almost unchanged (second plot). Also the
distortion in Qx′β, with β = 0.5, seems to be negligible (third plot). However,
surprisingly, we can observe that also the vector Qx′β with eigenvector x′β
for λ(AQ) = λ((A + β · diag(dopt))Q), with β = 0, saves the full bisection
information, though with some noise (fourth plot). Based on these observations,
we will derive a heuristic which tries to gain the optimum bisection from
eigenvector x′ for λ(AQ).

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

Boppana (β = 1) β = 0.9 β = 0.5 β = 0

Figure 7.1: Vectors Qx′β obtained from eigenvectors x′β for graph Gex presented
in Figure 4.1 with adjacency matrix A: The plots show components
of the normalized transformed (by Q) eigenvectors for (unique)
eigenvalues λ((A+diag(dopt))Q) (left, this corresponds to Boppana’s
algorithm), and λ((A+ β · diag(dopt))Q), for β = 0.9 and β = 0.5,
resp. for λ((A)Q) (right). In the plots the components are displayed
as line graphs instead of scatter plots.

A Lower Bound without dopt.
Now we discuss how to handle the further issue to eliminate the need for the
computation of dopt, namely an estimation of a good lower bound to certify the
optimality of the solution. Let y be a bisection vector of G (not necessarily the
optimal one). We assign a specific correction vector d(y) to y that is defined as
follows (see also Eq. (3.1) and below for the intuition):

d(y) = −diag(y)Ay.

From Lemma 5.8 we know that for graphs G for which h(G) = bw(G), every

73

optimum bisection vector y satisfies the inequality

cwG(y)− g(G, d(y) + α(y)y) < 1. (7.1)

In this case, i. e. if h(G) = bw(G), we even have cw(y)− g(G, d(y) +α(y)y) = 0.
For graphs G with h(G) < bw(G), inequality Eq. (7.1) may not be true.
However, one can still try to verify the optimality of a bisection vector y by
testing if Eq. (7.1) holds for y. Importantly, to do this no computation of dopt

is needed. Actually, in our new heuristic we will use Eq. (7.1) to certify the
optimality of a bisection.

Note that, when Boppana’s algorithm is considered to work, the lower bound
h(G) exactly reaches the bisection width and the (normalized) eigenvector
for the largest eigenvalue is unique and it composes an optimum bisection
vector. From the theoretical analysis (see Lemma 5.8) we then know that the
optimum correction vector dopt can be derived from an optimum bisection
y and has always the form dopt = −diag(y)Ay + α(y)y for some scalar α(y).
Quite often, as in our example graph Gex (Figure 4.1), we can set α(y) = 0.
Hence, in our heuristic we will test the optimality of x̂ verifying if cw(x̂) −
g(G,−diag(x̂)Ax̂) < 1.

7.2 A New Heuristic FB

Motivated from the observations of the previous section, we propose a fast
bisection heuristic, named FB and based on the function g, that avoids the
expensive convex search used by Boppana’s algorithm. It can be found in
Algorithm 7.1. The idea is to derive the optimum bisection simply using the
adjacency matrix and afterwards using the function g to certify the optimality.
In an experimental analysis we will show that this new heuristic works well on
classes of random graphs.
While Boppana’s algorithm finds d using the convex search and afterwards

derives a bisection, we first derive a bisection from A and based on this bisection
determine some d which hopefully suffices to certify the optimality. The lack of
need of a convex search enables us to perform a large series of experiments for
FB’s performance analysis on graphs with up to several millions of vertices. In
our numerical experiments we use Matlab with machine precision computations.
In Step 3 we set the tolerance to 10−4, i. e. in our implementation we test if
cw(x̂) − g(G, d(x̂)) < 1 − 10−4. For the numerical stability of the eigenvalue
problem and the reliability of the results, we refer to [65, Chapter 13.7]. A vector
iteration algorithm for computing the largest eigenvalue and corresponding

74

Algorithm 7.1: Fast (Spectral-based) Bisection FB

Input :Graph G with adjacency matrix A.
1 Compute the eigenvector x′ corresponding to the largest eigenvalue of

the matrix AQ. Let x = Qx′. Construct a bisection vector x̂ by
splitting at the median x̄ of x, i. e. let x̂i = +1 if xi ≥ x̄ and x̂i = −1 if
xi < x̄. If

∑
i x̂i > 0, move (arbitrarily) 1

2

∑
i x̂i vertices i with xi = x̄

to part −1 letting x̂i = −1;
2 Let d(x̂) = −diag(x̂)Ax̂. Compute the function g(G, d(x̂)) as a lower

bound;

3 Output x̂; if cw(x̂)− g(G, d(x̂)) < 1, output “optimum bisection”, else
“fail”.

eigenvector, as done by our heuristic, works well for real symmetric matrices.
Rounding errors even prove to work in favor of the algorithm, since they help
to overcome problems when the start vector is perpendicular to the largest
eigenspace.

7.3 Performance in the Planted Bisection Model

We analyze the performance of FB on graphs from the planted bisection model
Gn(p, q) and provide a strong evidence that our heuristic achieves similar results
as plain Boppana. To compare the performance between both algorithms we
estimate, for fixed values n, the spaces of parameters (p, q) ∈ [0, 1]× [0, 1] for
which the heuristics find and certify optimum bisections with high empirical
probability.
In our experiment, we proceed for FB resp. BB as follows: we fix n = 100

and we take the number of trials to be 5. Next at each trial and for fixed
values (p, q) ∈ [0, 1]× [0, 1] we choose a random graph from Gn(p, q) and run
the algorithm on this instance. Then we count how many times the algorithm
succeeds and compute the empirical probability of success by dividing this
value by the number of trials. We iterate this, starting with (p, q) = (0, 0)
and increasing the parameters independently by 0.02 until (1, 1). Figure 7.2
summarizes our results. It demonstrates that for n = 100 the parameter spaces
obtained by both methods almost coincide. Due to the huge complexity of
Boppana’s algorithm, we were not able to perform the experiments for larger n.

Next, we analyze the performance of FB on graphs from Gn(p, q) for growing
values of n and with parameters p(n) and q(n) for which Boppana’s algorithm

75

0

0.5

1

0 0.5 1

0.5

1

q

p

FB

0 0.5 1

0.5

1

q

p

BB

0 0.5 1

0.5

1

q

p

Figure 7.2: Empirical probabilities that FB (left), resp. BB (middle) succeed
(n = 100). The right plot shows the differences between the
probabilities for BB and FB: white pixel means 0 and shades
of gray illustrate differences > 0.

n

psucc

102 103 104 105
0

0.5

1
α = 9, β = 2

α = 8, β = 2

Figure 7.3: The planted bisection model Gn(p, q): empirical probabilities that
the heuristic FB finds and certifies the optimum bisection, using
p = α log(n)/n and q = β log(n)/n.

theoretically works, i. e. the assumption Eq. (2.13) is satisfied. We perform
our experiments in the regime where p = α log(n)/n and q = β log(n)/n
(for justification see also [2, 63]). We estimate the probability psucc that the
optimum bisection of a graph can be found and certified. For this purpose, we
generate and analyze 200 random graphs for each set of parameters with n up
to 105.
Figure 7.3 presents the results for α = 9, β = 2, as well as for α = 8, β = 2.

While in the first case, the success probability is near one, the latter case
already results in a drop of the performance. In Theorem 3.2, we derived that
Boppana’s algorithm works w.h.p. assuming Eq. (2.13) with c = 42. When we
insert the p and q from our experiment in Eq. (2.13), we obtain

(α− β)/
√
α ≥ c.

This gives for α = 9, β = 2 the bound 7/3 ≈ 2.333 ≥ c and for α = 8, β = 2

76

the bound 6/
√
(8) ≈ 2.12 ≥ c. This indicates that our theoretical constant

still gives room for improvement.
We can further observe that the graphs for which our heuristic FB works

well, nicely capture the threshold for exact cluster recovery in the stochastic
block model: for α = 8, β = 2 the success probability is smaller, but this is
exactly the threshold case with (

√
α−
√
β)2 = 2 (see also Section 6.4).

7.4 Performance in the Regular Graph Model

n

psucc

102 103 104 105 106
0

0.5

1
r = 7, b(n) =

√
n

r = 6, b(n) = 2
√
n

Figure 7.4: Graph model Rn(r, b): empirical probabilities that the heuristic
FB finds and certifies the optimum bisection.

Now we consider the model Rn(r, b) – regular graphs with degree r and
planted bisection width b. The random instances used in our experiments
are generated by an algorithm proposed by Bui et al. [15]. We estimate the
empirical success probabilities on Rn(r, b) with increasing number of vertices
n and with parameters r and b(n) satisfying Eq. (2.14), i. e. where Boppana
claims that BB works well. Figure 7.4 shows the empirical success probability
for 6- and 7-regular graphs with bisection width 2

√
n, resp.

√
n. We observe

that for regular graphs, the bisection width may grow in the order of
√
n for a

success probability going to 1 asymptotically. Note that this is the border case
in assumption in Eq. (2.14) for r = 6 and r = 7. This justifies the relatively
slow growth of the plot for b(n) = 2

√
n.

7.5 Achieving the Optimal Threshold for Cluster
Recovery

We present that FB achieves the optimal threshold (
√
α−
√
β)2 > 2 for exact

cluster recovery in the stochastic block model (SBM) with p = α log(n)/n and

77

q = β log(n)/n for fixed constants α 6= β (see also Section 6.4).
Due to Theorem 6.6, we already know that Boppana’s approach, there using

BB-U, achieves the threshold. For the experimental evaluation of FB, we
compute for α ∈ [1, 40] and β ∈ [0.5, 25] the probability that FB finds the
planted bisection. For n = 1000 we sample 5 graphs for each combination of α
and β and count the number of successful recoveries by FB. For results see
Figure 7.5. Note that we do not test if FB found an (certifiable) optimum
bisection. Instead we check if the output bisection is the same as the planted
one, which generally is the task in the community detection literature.

0

0.5

1

α = (
√
β +

√
2)2

5 10 15 20 25

10

20

30

40

β

α

Figure 7.5: Empirical probabilities that FB exactly recovers the planted bisec-
tion (n = 1000). The red line represents the theoretical threshold.

We compare the performance of our heuristic with a state-of-the-art algorithm
for exact cluster recovery in the SBM by Chen, Sanghavi, and Xu [17, 18]. We
proceed analogously as in Section 7.3 and demonstrate in Figure 7.6 that, for
graphs with n = 300, the corresponding parameter spaces are almost the same.

0

1

0 0.5 1

0.5

1

q

p

FB

0 0.5 1

0.5

1

q

p

Chen

FB better

equal

Chen better0 0.5 1

0.5

1

q

p

Figure 7.6: A comparison between FB and the algorithm of Chen et al. [17, 18]
for exact cluster recovery in the stochastic block model (experiments
performed for n = 300). The meaning of the plots is analogous to
that presented in Figure 7.2.

78

7.6 An Improved Heuristic FB∗

In the following we propose an extension of FB, named as FB∗, which addition-
ally performs a one-dimensional convex search. The experiments we conducted
have shown that in the cases where h(G) = bw(G), the vector x̂ obtained by
our heuristic FB corresponds indeed to an optimum bisection vector. Although
FB is also able to certify the optimality of x̂ in most cases, there are cases
where Boppana’s Algorithm BB gives a certificate but FB does not. FB∗ fills
this gap and provides a certificate similar as Boppana does, but only using a
one-dimensional instead of an n-dimensional convex search.

For the eigenvector x′ of AQ corresponding to the largest eigenvalue λ(AQ),
set x = Qx′ and let x̂ be the bisection vector obtained by splitting at the
median x̄ of x. Our new heuristic FB∗ computes as a lower bound the function

h∗(G) = max
α∈R

g(G,−diag(x̂)Ax̂+ αx̂). (7.2)

For every graph G, both FB and FB∗ output the same bisection vector. The
only difference is that for some graphs FB∗, using for optimality test the
function h∗, can certify the solution as an optimal one, while FB labels the
computed bisection with “fail”. Algorithm 7.2 provides the details of FB∗.

Algorithm 7.2: FB with one-dimensional convex search FB∗

Input :Graph G with adjacency matrix A.
1 Do Step 1 of FB; Let x̂ be the computed bisection vector and let

d(x̂) = −diag(x̂)Ax̂;

2 Try to find a better lower bound than g(G, d(x̂)): to this aim perform a

convex search on α to compute h∗(G) = minα g(G, d(x̂) + αx̂);
3 Output x̂; if cw(x̂)− h∗(G) < 1, output “optimum bisection”, else “fail”.

Lemma 7.1. Let G be a graph with h(G) = bw(G). If the vector x̂ obtained
by FB∗ is an optimum bisection vector, then FB∗ certifies the optimality of x̂.

Proof. From h(G) = bw(G) and with Lemma 4.4, we know that there is a
vector dopt = d(y) + α(y)y, for any optimum bisection vector y, such that
g(G, dopt) = bw(G). By assumption, y = x̂ is an optimum bisection vector.
Thus, maximizing h∗(G) will find such a dopt and provide the certificate.

However, FB∗ is more of theoretical interest, since the gain in the success
probability is only marginal, while the additional computational effort of the
one-dimensional convex search makes it significantly slower than FB.

79

7.7 Comparison of Running Times

Finally, we compare the running times of our heuristic FB, Boppana’s Algorithm
BB, the SDP approach from Feige and Kilian FK∗, and the algorithm of Chen
et al. Additionally to the graphs from the planted bisection model Gn(p, q),
we tested the algorithms on regular random graphs Rn(r, b). The results are
shown in Table 7.1. For each n we performed 20 runs on an AMD Opteron 6272
CPU using a single core, as we already did in the experiments in Section 6.3.
Again, in each run a graph is generated and then the algorithms are executed
on this graph. On almost all graphs, the algorithms were able to find and
certify the optimum bisection, or, in case of the algorithm of Chen et al., the
algorithm was able to recover the planted bisection. The observed standard
deviations have been below 0.2 times the mean value.

Table 7.1: Average running times (in seconds) of 20 runs of the algorithms on
graphs from the corresponding family if the time did not exceed the
limit of 10 minutes. Otherwise we mark such cases by “-”. Standard
deviations are below 0.2 times mean.

Gn(p = 9 log(n)
n , q = 2 log(n)

n) Rn(r = 7, b =
√
n)

n FB BB FK∗ Chen FB BB FK∗ Chen

10 0.001 0.13 0.12 0.04 0.001 0.13 0.15 0.04
102 0.010 29.68 0.48 0.89 0.009 20.62 0.49 0.87
103 0.073 - 50.15 256.44 0.050 - 44.61 252.81
104 0.949 - - - 0.230 - - -
105 16.818 - - - 2.931 - - -
106 221.886 - - - 34.671 - - -

To conclude, we recall that our new heuristic FB finds on graphs from
Gn(p, q) and Rn(r, b) almost the same (optimal) bisections as BB. The results
from Table 7.1 moreover demonstrate that our heuristic FB significantly out-
performs each of the other algorithms, while it still is able to provide optimality
certificates. Let us note here that the algorithm by Chen et al. also finds
the optimum bisection, since w.h.p.the optimum bisection equals the planted
bisection.

80

8 Hard Instances with Provable Large
Bisection Width: Ramanujan Graphs

The bisection width is an important graph parameter with direct impact on
the worst case running time analysis of many algorithms. For the graphs
studied in this chapter, i. e. cubic graphs, the bisection width is also closely
related to the pathwidth of a graph – another parameter playing a prominent
role in parameterized complexity. Due to Fomin and Høie [34], we know that
the pathwidth of a cubic graph with n vertices is bounded from below by
bw3(n) – the worst case bisection width over all cubic graphs with n vertices.
Furthermore, using the best known upper bound 0.167n on bw3(n) by Monien
and Preis [60], Fomin and Høie improved the worst case time analysis for a
number of exact exponential algorithms on graphs of maximum vertex degree
three, including Independent Set, Dominating Set and Max-Cut. Accordingly,
an exact estimation of bw3(n) is an important theoretical challenge to address.

An important task for experimental analysis of parameterized algorithms is
to construct effectively graphs with bisection width equal or close to bw3(n),
and thus of largest pathwidth. We investigate cubic Ramanujan graphs as
good deterministic candidates for graphs with largest bisection width.

Known Results

The term of Ramanujan graphs was coined by Lubotzky, Phillips, and Sar-
nak [52]. We denote by λ2(G) the second largest eigenvalue of the adjacency
matrix of G, and define:

Definition 8.1. A connected r-regular graph G is Ramanujan if

λ2(G) ≤ 2
√
r − 1.

The lower bound by Alon-Boppana implies that for every (n, r)-graph G we
have ([64, 36]) λ2(G) ≥ 2

√
r − 1 · (1−O(1/ log2 n))). Here (n, r)-graph means

r-regular with n vertices. Thus, Ramanujan graphs are optimal in the sense
of a large spectral gap. A crucial property of Ramanujan graphs discovered
by Lubotzky et al. [52] and independently by Margulis [56] is that arbitrarily

81

large r-regular Ramanujan graphs exist when r − 1 ≥ 5 is prime congruent
to 1 mod 4, and moreover they can be explicitly constructed. In [19] Chiu
extends the construction of [52] and shows the existence of 3-regular Ramanujan
graphs, which are the main interests of this chapter. For a prime q 6= 2, 13,
with

√
−2 ∈ Zq and

√
13 ∈ Zq, Chiu provides an explicit construction, named

X2,q, that is a 3-regular Ramanujan graph with vertex set of size q(q2 − 1)

if
(
2
q

)
= 1 and q(q2 − 1)/2 if

(
2
q

)
= −1, where

(
a
q

)
is the Legendre symbol

of a and q. Chiu does not write explicitly if X2,q can be used to obtain a
richer family, e. g. allowing graphs of sizes q. Morgenstern [62] extended the
construction of [52] to the case when p ≥ 2 is a prime power.
It was long an open conjecture whether for every degree r ≥ 3 there exist

r-regular Ramanujan graphs of any size n. Very recently Marcus et al. have
shown in a seminal series of papers [55, 54] that there exist Ramanujan bipartite
graphs for all degrees and all number of vertices. In a follow-up to the work
of Marcus et al., Cohen [20] has shown a polynomial time algorithm to find
bipartite Ramanujan multi-graphs of all degrees via the method of interlacing
families. However, it is not clear whether this algorithm can be reasonably
implemented [21].
The importance of Ramanujan graphs follows from peculiar properties of

these graphs. For example, they belong to the class of expander graphs (see
e. g. [45]). Moreover, the explicit constructions by Lubotzky, Phillips, and
Sarnak [52] and by Margulis [56] share many of the extremal properties of
random graphs, e. g. they have girth, i. e. the length of the shortest circle, at
least 6 logr−1 n. In this chapter we analyze the bisection width of explicitly
constructed cubic Ramanujan graphs.
The best known upper bound on bw3(n) is due to Monien and Preis [60]:

For any ε > 0 and sufficiently large 3-regular graphs, it holds

bw3(n) ≤ (
1

6
+ ε)n ≈ (0.167 + ε)n.

The proof is constructive and based on a polynomial time algorithm doing
local improvements on an initial bisection. On the other hand, there are lower
bounds on the worst case bisection width which limit the improvement of the
upper bound. The best known lower bound of this kind is due to Kostochka
and Melnikov [48]. They show that almost all 3-regular graphs have a bisection
width of at least 1

9.9n ≈ 0.101n:

0.101n ≤ bw(G) for almost all (n, 3)-graphs G. (8.1)

82

As a consequence, we get 0.101 ≤ bw3(n) ≤ 0.167n for sufficiently large n.
However, since the proof by Kostochka and Melnikov uses a probabilistic
approach, it does not provide any graph construction satisfying the lower
bound. Consequently, we know there exist a large number of (n, 3)-graphs G
with 0.101n ≤ bw(G), but we do not know any explicit graph family satisfying
this inequality or how to compute such worst case graphs effectively. Note
that generating graphs randomly one gets with high probability G with bw(G)
satisfying the lower bound in Eq. (8.1), but it is unknown how to verify this
effectively.

A partial solution of this problem was given by Bezrukov et al. [7] who proved
for the cubic Ramanujan graphs the lower bound 0.082n on the bisection width:

0.082n ≤ bw(G) for all Ramanujan (n, 3)-graphs G. (8.2)

Obviously, the upper bound 0.167n for the bisection width on the class of cubic
Ramanujan graphs also applies. It can be shown (cf. [34, 35]) that the lower
bounds Eq. (8.1) and Eq. (8.2) on the worst case bisection width also yield the
lower bounds 0.101n, resp. 0.082n for pathwidth of graphs with maximum
degree three. It is an interesting challenge to reduce the gap between 0.101n
and 0.167n in the general case, and between 0.082n and 0.167n for explicitly
constructed graphs. A solution to this problem would give an impact on the
question what is the largest possible pathwidth of an n-vertex cubic graph.

Our Achievements

In our main theoretical results, we show explicit constructions for cubic Ra-
manujan graphs whose number of vertices is growing linear. In the first
construction, we start with Chiu’s graphs X2,q and transform them in the
linear fractional way, similarly as Lubotzky et al. [52] in case of Xp,q graphs,
with p ≥ 5. This way we obtain cubic Ramanujan multigraphs, i. e. graphs
which have multiple edges and self-loops.

Theorem 8.2. Let q 6= 2, 13 be a prime with
√
−2 ∈ Zq and

√
13 ∈ Zq. Then

there exists an explicitly constructed multigraph Y 2,q that is a non-bipartite
cubic Ramanujan graph with q+1 vertices. The graphs Y 2,q can be constructed
in linear time.

Next, based on structural properties of Y 2,q, we show how to modify these
graphs into simple graphs such that they remain Ramanujan. This is the main
theoretical result of this chapter. Note that the algorithm proposed by Cohen
[22] generates (bipartite) multigraphs as well.

83

Theorem 8.3. Let q 6= 2, 13 be a prime with
√
−2 ∈ Zq,

√
13 ∈ Zq and√

−15 6∈ Zq. Then there exists an explicitly constructed simple graph G2,q that
is a non-bipartite cubic Ramanujan graph with q + 1 vertices. The graphs G2,q

can be constructed in linear time.

Tables 8.1 and 8.2 illustrate quantitative differences between the constructions
by Morgenstern [62], the graphs X2,q by Chiu [19], and our families.

Table 8.1: Number of cubic Ramanujan graphs with n vertices for the specific
graph classes. The first three families allow self-loops and multiple
edges, while G2,q consists of simple graphs.

Number of graphs with n vertices
Graph class n ≤ 103 n ≤ 104 n ≤ 105 n ≤ 106 n ≤ 107

1. Morgenstern [62] 1 2 2 3 3
2. #X2,q Chiu [19] 1 2 3 4 11
3. #Y 2,q Our work 40 298 2389 19616 165882
4. #G2,q Our work 23 156 1191 9849 83049

Table 8.2: Sizes of the eight smallest cubic Ramanujan graphs of Morgen-
stern [62] (line 1), the graphs X2,q by Chiu [19] (line 2), and our
families Y 2,q and G2,q (line 3, resp. 4).

1. 60 4080 262080 16776960 ≈ 109 ≈ 7 · 1010 ≈ 4 · 1012 ≈ 3 · 1014
2. 24 2448 79464 721392 1224936 2247960 2685480 5735160
3. 4 18 44 108 114 132 140 180
4. 44 132 180 252 284 314 338 420

In Theorem 8.3, in addition to the constraints on Y 2,q given in Theorem 8.2,
we require that

√
−15 6∈ Zq. In this chapter we show how to modify the

multigraphs Y 2,q to obtain simple cubic graphs, which we call Ḡ2,q, such that
the construction allows q with

√
−15 ∈ Zq, and such that the bisection width

of the resulting graph Ḡ2,q is not smaller than bw(Y 2,q).
These constructions allow us to conduct an extensive experimental analysis on

the bisection width. We estimate the asymptotic bisection width of our graphs
at approximately 0.12n, leading to the conjecture that the cubic Ramanujan
graphs fulfill a better lower bound than in Eq. (8.2). Furthermore, we compare
the results with these of random graphs and observe a similar behavior as for
the Ramanujan graphs.

84

The graphs constructed in this chapter might be interesting as benchmark
graphs for the Parameterized Algorithms and Computational Experiments
Challenge (PACE), in the track on optimal tree decomposition.
(http://pacechallenge.wordpress.com)
In the 2017’s competition [28], the two best algorithms were able to solve all
instances from the benchmark set which contains graphs of sizes between 48
and 3104. We ran both algorithms on our newly constructed graphs and ob-
served that from the cubic graphs they could only solve instances with a number
of vertices below 100 within the time limit used in the competition. Thus, for
our graphs it seems to be hard to compute an optimal tree decomposition even
for a very small number of vertices.

Organization of this Chapter

In the next section we recall the known constructions of Ramanujan graphs.
Then, in Section 8.2 we show the transformation of the graphs Xp,q to Y p,q

and in Section 8.3 we analyze structural properties of the cubic Ramanujan
graphs Y 2,q. Both sections provide proofs for Theorem 8.2 and 8.3: Theorem 8.2
follows from Theorem 8.7 and Lemma 8.9, while Theorem 8.3 is a consequence
of Theorem 8.12, Lemma 8.9, and Theorem 8.10. In Section 8.3 we show also
how to obtain the simple cubic graphs Ḡ2,q. Finally, in Section 8.4 we provide
our experimental results.

8.1 Known Constructions of Explicit Ramanujan Graphs

Our constructions provided in this chapter are based on works by Lubotzky,
Phillips, and Sarnak [52] and by Chiu [19]. In this section we recall the most
relevant results of [52, 19] and we briefly present the extension by Morgen-
stern [62].
Lubotzky et al. [52] and Chiu [19] construct Ramanujan graphs as Cayley

graphs of the projective linear group PGL(2,Zq) and the projective special
linear group PSL(2,Zq). A Cayley graph is a directed graph which is induced
by a group and a generating set. Each vertex corresponds to a group element.
Edges are created by applying the elements of the generating set to the
element corresponding to a vertex. Zq denotes the group of integers modulo
a prime q. We represent the group PGL(2,Zq) as 2× 2 matrices M =

(
a b
c d

)
,

where all multiples kM of M , k ∈ Zq, represent the same group element in
PGL(2,Zq). For the PSL(2,Zq), we require the unit determinant ab− cd = 1.
The group operation is the usual matrix multiplication. The constructions by

85

Lubotzky et al. [52] and Chiu [19] differ in how the generating sets are chosen.
Once the generating set is determined, they both construct the Cayley graphs
over the mentioned groups. Lubotzky et al. [52] construct regular graphs with
degree p + 1 for p = 5, 13, . . ., while Chiu explicitly solves the problem for
p = 2.

We start with the definition of the generating set by Lubotzky, Philips, and
Sarnak. Let p 6= q be two primes with p, q ≡ 1 mod 4. Let further i be such
that i2 ≡ −1 mod q. There are 8(p+1) solutions to a20+ a21+ a22+ a23 = p (see
[52]), and thereof p+1 solutions with a0 > 0 odd and a1, a2, a3 even. Associate
a generator matrix to each such solution (ak,0, ak,1, ak,2, ak,3), k ∈ {1, . . . , p+1}:

Sp,q
k =

(
ak,0 + iak,1 ak,2 + iak,3
−ak,2 + iak,3 ak,0 − iak,1

)
. (8.3)

These p+ 1 matrices form the generating set Sp,q = {Sp,q
1 , . . . , Sp,q

p+1}.
This construction does not work for p = 2, such that we cannot generate

cubic graphs that way. Chiu [19] proposes generators explicitly for this case
using the following generating set S2,q. Let q 6= 2, 13 be a prime such that√
−2 ∈ Zq and

√
13 ∈ Zq. The set S2,q = {S2,q

1 , S2,q
2 , S2,q

3 } is defined as follows:

S2,q
1 =

(
1 0
0 −1

)
, S2,q

2 =

(
2 +
√
−2

√
−26√

−26 2−
√
−2

)
, (8.4)

S2,q
3 =

(
2−
√
−2 −

√
−26

−
√
−26 2 +

√
−2

)
.

We combine the constructions from Lubotzky et al. and the one of Chiu by
using primes p 6= q with

(i) p = 2, q 6= 2, 13 with
√
−2,
√
13 ∈ Zq or (ii) p, q ≡ 1 mod 4 (8.5)

and then construct Ramanujan graphs Xp,q as Cayley graphs using the genera-
tor sets Sp,q from above. The graph Xp,q is defined as follows:

Set of vertices V (Xp,q) =

PSL(2,Z/qZ) if
(
p
q

)
= 1,

PGL(2,Z/qZ) if
(
p
q

)
= −1

Set of edges E(Xp,q) = {(M,M · Sp,q
i) |M ∈ V (Xp,q), i = 1, . . . , p+ 1},

where
(
p
q

)
is the Legendre symbol of p and q.

86

Theorem 8.4 ([52], [19]). Let p, q be primes fulfilling condition Eq. (8.5). Then

Xp,q is a (p+ 1)-regular Ramanujan graph of order q(q2 − 1) if
(
p
q

)
= −1 and

of order q(q2 − 1)/2 if
(
p
q

)
= 1. Moreover, Xp,q is bipartite if and only if(

p
q

)
= −1.

The definitions above allow the construction of (p+ 1)-regular graphs for
primes p satisfying Eq. (8.5). Morgenstern [62] extended these results and pro-
vides a construction for prime powers. Particularly, he provides a construction
such that for any p which is a power of 2 and any even d, the resulting Cayley
graph is a (p+ 1)-regular Ramanujan graph with (p3d − pd) vertices. However,
in the case of 3-regular graphs, as illustrated in Tables 8.1 and 8.2, the obtained
class is much sparser than X2,q. For Morgenstern’s construction, it is also
possible to define smaller graphs analogously to our constructions in the next
section. We would then use the vertex set Fqd ∪{∞} and obtain (q+1)-regular

multigraphs with qd + 1 vertices. However, the number of vertices is still
growing exponentially.

8.2 Construction of Almost Dense Families – General
Case

A drawback of the graph family Xp,q is the growth of the number of vertices,
which is of order O(q3). Lubotzky et al. already mentioned the possibility
to construct an almost dense family Y p,q for p ≥ 5 of graphs using linear
fractional transformations on their construction [52, page 14]. This way we
obtain multigraphs of sizes O(q). We will use their idea and show that this
family can be generalized to also capture the case p = 2 covered by Chiu’s
construction, i. e. we add the case Y 2,q. For the sake of completeness, we
present here the transformation for any prime p ≥ 2. Furthermore, we show
that the construction of these dense graphs can be computed in time linear in
p · q.

Based on the generator sets Sp,q from above, we construct graphs Y p,q with
q + 1 vertices. A set of generators becomes a set of Möbius transformations,
which we first define as follows: let F be a field and a, b, c, d ∈ F with ad−bc 6= 0.
We define the Möbius transformation over the extension F∪{∞} as φ(z) = az+b

cz+d .

For c 6= 0, we define φ
(−d

c

)
= ∞ and φ(∞) = a

c . For c = 0, we define
φ(∞) =∞.
Now let p, q be primes fulfilling condition Eq. (8.5). The multigraph Y p,q

87

is defined as follows. The vertex set is V (Y p,q) = Zq ∪ {∞}. Then, for each

generator matrix Sp,q
i =

(
ai bi
ci di

)
, we define a Möbius transformation

φp,q
i (z) =

diz + bi
ciz + ai

.

The edges are the following multiset: E(Y p,q) = {(z, φi(z)) | z ∈ V, i =
1, . . . , p+ 1}.

The families Y p,q with p, q ≡ 1 mod 4 are quite dense: Let πa,b(x) denote
the number of primes in the arithmetic progression b+ ja for j = 0, 1, , . . . less
than x. The Siegel-Walfisz Theorem gives a good estimate for the distribution
of primes in the residue classes. We have in particular: π4,1(x) ∼ π4,3(x).
Empirically the primes congruent to 3 are more numerous and are nearly
always ahead in this sequence; the first reversal occurs at x = 26861. However,
Littlewood showed in 1914, that there are infinitely many sign changes for the
function π4,1(x)− π4,3(x) (see paper by Granville and Greg [39]).
Surely, Xp,q and Y p,q are related to each other. In the graphs Xp,q, we

labeled the vertices with matrices of the type
(
1 x
y z

)
or
(
0 1
y z

)
. In Y p,q, instead

of using matrices, we identify the vertices by some z ∈ Zq ∪ {∞}. The relation
can be viewed as simply ignoring the second row of the matrix labels from
Xp,q to obtain the corresponding labels of Y p,q, while preserving all edges.
In the following we formally give the mapping from Xp,q to Y p,q, and then

we show that Y p,q is Ramanujan.

Definition 8.5. We define the map h : PGL(2,Z/qZ)→ Zq ∪ {∞} as

h :

(
a b
c d

)
→ b

a
.

Since PSL(2,Z/qZ) is a subgroup of PGL(2,Z/qZ), the map h can be used
for graphs defined on PSL(2,Z/qZ) as well.

Lemma 8.6. The map h is a homomorphism: h(MSi) = φi(h(M)).

Proof. A computation from both sides ends in the same term:

h(MSi) = h

((
a b
c d

)(
ai bi
ci di

))
=

abi + bdi
aai + bci

,

φi(h(M)) = φi(h

((
a b
c d

))
) = φi

(
b

a

)
=

di
b
a + bi

ci
b
a + ai

=
dib+ bia

cib+ aia
.

88

Theorem 8.7. If Xp,q is Ramanujan, then Y p,q is Ramanujan.

Proof. Both graphs are regular with same degree, since the number of generators
is the same. Let AX denote the adjacency matrices of Xp,q and let f :
V (Xp,q) → N map the vertices of the graph to the corresponding row index
in the adjacency matrix. Analogously, we define AY and g : V (Y p,q)→ N for
the graph Y p,q. We show that every eigenvalue of AY is an eigenvalue of AX .
Thus, AY has a spectral gap at least as large as AX .

Consider an arbitrary eigenvector y of AY . We define the vector x as follows:
for every v ∈ V (Xp,q), set xf(v) := yg(h(v)). Now, for every w ∈ V (Xp,q):∑

v∈V (Xp,q)

AX
f(w),f(v) · xf(v) =

∑
i=1,...,p+1

xf(w·Si) Def. of Xp,q

=
∑

i=1,...,p+1

yg(h(w·Si)) Def. of x

=
∑

i=1,...,p+1

yg(φi(h(w))) Lemma 8.6

=
∑
v∈V Y

AY
g(h(w)),g(v) · yg(v). Def. of Y p,q

Hence, x describes an eigenvector of AX with the same eigenvalue as y
for AY .

Some edges coincide or form self-loops. However, the number of occurrences
is bounded in p, the prime which determines the degree, and does not grow
with the number of vertices:

Lemma 8.8. The multigraph Y p,q has at most 2(p+1) self-loops and (p+1)p
multi-edges.

Proof. Each self-loop corresponds to a solution of an equation φp,q
i (z) = z,

i = 1, . . . , p + 1. Since the equations are of degree ≤ 2, they have at most
two solutions each. Therefore, we have at most 2(p + 1) self-loops. Each
multi-edge corresponds to a solution of an equation φp,q

i (z) = φp,q
j (z) with

i, j = 1, . . . , p+ 1, i 6= j, which again are quadratic equations. Therefore, we
have at most (p+ 1)p multi-edges.

Lemma 8.9. The graphs Y p,q can be constructed in time O(pq).

89

Proof. First we need to compute the generators Sp,q. For p = 2, the generators
are already provided (see Eq. (8.4)). For other p, we need to solve the equation
a20 + a21 + a22 + a23 = p (see Eq. (8.3)). This can be done via bruteforce for
ai = −

√
p, . . . ,

√
p, with a1 odd and a2, a3, a4 even and has a running time

of O(p2). Since we generate (p+ 1)-regular graphs with q + 1 vertices, we can
assume p < q, and thus O(p2) ⊆ O(pq).
Using the generators and the corresponding Möbius transformations, we

proceed with the graph generation. The vertices are the numbers 0, . . . , q − 1
and the additional element ∞. We assume multiplication and addition in Zq

can be done in constant time. Roots can be computed via brute force in time
O(q). For the division we precompute the inverse of each element. This is
done as follows:

1. Find all distinct prime factors p1, . . . , pk of q − 1. This can be done by
successively testing if 2, 3, . . . divide z = q − 1. If a factor is found, it is
added to a list and the factor is eliminated from z. The time complexity
is O(q).

2. Find a primitive root modulo q: for m = 2, 3, . . ., test if m is a primitive
root. For this test we compute m(q−1)/pi mod q for every prime factor
pi. If the result is not congruent 1 for every pi, then m is a primitive
root. This is due to the fact that the order of an element m ∈ Zq is a
divisor of the order q − 1 of the group Zq itself. We have O(log q) prime
factors to test and the modular exponentiation can be done in O(log q).
Thus, a single test is in O(log2 q). If q is large enough, it is known that
the least primitive root is at most

√
q − 2 [22]. Thus, we obtain a total

running time of O(√q log2 q) for finding a primitive root.
3. Compute the multiplicative modular inverse r−1 of the primitive root

r as rq−2 mod q. This is O(log q). The result is stored in an array
at position r. Then successively compute ri and its inverse (r−1)i for
i = 2, . . . , q − 2. This has order O(q) operations.

Thus, the table of inverse elements can be created using O(q) operations.
To obtain the edges, we need to evaluate the p Möbius transformations φp,q

i ,
i = 1, . . . , p for each of the q + 1 vertices. Using the precomputed values, a
single Möbius transformation can be evaluated in constant time. Thus, we
obtain O(pq) for creating the graph Y p,q.

90

8.3 Almost Dense Explicit Cubic Ramanujan Graphs

We analyze the family of dense cubic Ramanujan graphs Y 2,q in more detail and
propose a construction of simple graphs G2,q based on them. The multigraphs
Y 2,q are constructed using the following Möbius transformations, which generate
graphs on the vertex set Zq ∪ {∞}:

φb(z) = −z, φr(z) =
(2−

√
−2)z +

√
−26√

−26z + (2 +
√
−2)

, φg(z) =
(2 +

√
−2)z −

√
−26

−
√
−26z + (2−

√
−2)

.

Recall that the graphs are constructed as directed graphs, having edges from
z to φi(z), i ∈ {r, g, b}. In this section we use color coded edges to illustrate
which Möbius transformation is used for a particular edge. Starting from a
vertex z, we have a blue edge z→φb(z), a red edge z→φr(z) and a green edge
z→φg(z). Note that, if there is a blue edge z→y, then there is a blue edge
z←y as well, since φb(φb(z)) = φb(−z) = z. On the other hand, a red edge
z→y implies a green edge z←y, since φg(φr(z)) = z. Thus, the graph can be
reinterpreted as an undirected graph, while each undirected edge corresponds
to two directed edges, one in each direction. Note, however, that either two
blue edges or a red and a green edge form an undirected edge.

Theorem 8.10. The graph Y 2,q has
1. a self-loop at vertex 0 and at vertex ∞,
2. if

√
−7 ∈ Zq, another two self-loops at each of the two vertices z1/2 =

−
√
−2±

√
−28√

−26
,

3. if
√
−15 ∈ Zq, with z3/4 = 2±

√
30√

−26
, a double edge between the vertices

{z3,−z3} and {z4,−z4}.
There are no further self-loops or multi-edges.

0 ∞ z1 z2
z3 z4

−z3 −z4

Figure 8.1: All possible self-loops and multi-edges in Y 2,q.

91

Proof. Self-loops occur exactly at the vertices which correspond to solutions of
the equations φb(z) = z, φr(z) = z, and φg(z) = z. For determining the multi-
edges, we solve the equations φb(z) = φr(z), φb(z) = φg(z) and φr(z) = φg(z).
A straight forward computation directly leads to the results stated in the
theorem:

• Case φb(z) = z
It holds −z = z and thus, we have self-loops at z = 0 and z =∞.

• Case φr(z) = z

⇔ (2−
√
−2)z +

√
−26√

−26z + (2 +
√
−2)

= z

⇔ (2−
√
−2)z +

√
−26 = z(

√
−26z + (2 +

√
−2))

⇔ (2−
√
−2)z +

√
−26 =

√
−26z2 + (2 +

√
−2)z

⇔ 0 = z2 +
2
√
−2√
−26

z − 1

⇒ z1/2 = −
√
−2±

√
−28√

−26
.

We have self-loops at z1 and z2, iff
√
−28 = 2

√
−7 exists. Note that

√
−2

and
√
13 are guaranteed to exist due to the choice of q.

• Case φg(z) = z

⇔ (2 +
√
−2)z −

√
−26

−
√
−26z + (2−

√
−2)

= z

⇔ (2 +
√
−2)z −

√
−26 = z(−

√
−26z + (2−

√
−2))

⇔ (2 +
√
−2)z −

√
−26 = −

√
−26z2 + (2−

√
−2)z

⇔ 0 = z2 +
2
√
−2√
−26

z − 1.

This is the same equation as in the case above, so z1 and z2 also have
self-loops from φg.

• Case φb(z) = φr(z)

⇔ −z =
(2−

√
−2)z +

√
−26√

−26z + (2 +
√
−2)

92

⇔ −z(
√
−26z + (2 +

√
−2)) = (2−

√
−2)z +

√
−26

⇔ −
√
−26z2 − (2 +

√
−2)z = (2−

√
−2)z +

√
−26

⇔ 0 = z2 +
4√
−26

z + 1

⇒ z3/4 = −
2±
√
30√

−26
.

We have a double edge between {z3, φb(z3)} and {z4, φb(z4)}.

• Case φb(z) = φg(z)

⇔ −z =
(2 +

√
−2)z −

√
−26

−
√
−26z + (2−

√
−2)

⇔ −z(−
√
−26z + (2−

√
−2)) = (2 +

√
−2)z −

√
−26

⇔
√
−26z2 − (2−

√
−2)z = (2 +

√
−2)z −

√
−26

⇔ 0 = z2 − 4√
−26

z + 1.

This equation has solutions −z3 and −z4.

• Case φr(z) = φg(z)

⇔ (2−
√
−2)z +

√
−26√

−26z + (2 +
√
−2)

=
(2 +

√
−2)z −

√
−26

−
√
−26z + (2−

√
−2)

⇔ −(2−
√
−2)
√
−26z2 + 26z + (2−

√
−2)2z +

√
−26(2−

√
−2) =

(2 +
√
−2)
√
−26z2 + 26z + (2 +

√
−2)2z −

√
−26(2 +

√
−2)

⇔ −2
√
−26z2 − 4

√
−2z + 2

√
−26 =

2
√
−26z2 + 4

√
−2z − 2

√
−26

⇔ 0 = z2 +
2
√
−2√
−26

z − 1

⇒ z1/2 = −
√
−2±

√
−28√

−26
.

This case coincides with the self-loop cases φr(z) = z and φg(z) = z.

93

In order to create a simple Ramanujan graph G2,q with q + 1 vertices, we
define the following graph construction:

Definition 8.11. Let q > 13 be a prime with
√
−2 ∈ Zq,

√
13 ∈ Zq, and√

−15 6∈ Zq. Graph G2,q is constructed as follows: start with the multigraph
Y 2,q. Then remove all self-loops. To obtain a cubic graph, perform the following
further steps:

1. If
√
−7 ∈ Zq, then with z1/2 = −

√
−2±

√
−28√

−26
, add the edges {z1, z2},

{z1, 0}, and {z2,∞}.
2. If

√
−7 6∈ Zq, add the edge {0,∞}.

z1 z2

0 ∞
→

z1 z2

0 ∞

0 ∞
↓

0 ∞

Note that we replaced the condition of Chiu, q to be a prime unequal 2 and
13, by the condition prime q > 13. Due to the other constraints, this only
eliminates the choice of q = 3.

Theorem 8.12. Let q > 13 be a prime with
√
−2,
√
13 ∈ Zq and

√
−15 6∈ Zq

as used in the construction of the graphs G2,q. Then G2,q is simple, cubic, and
Ramanujan.

Proof. Since by assumption
√
−15 6∈ Zq, we know from Theorem 8.10 that

there are no multi-edges, except for the self-loops. Now, if
√
−7 6∈ Zq, there

are only two self-loops at 0 and ∞. We need to show that replacing them
by an edge {0,∞} does not create a multi-edge. We examine where the
two edges starting from vertex 0 lead to: this is φr(0) =

√
−26/(2 +

√
−2)

and φg(0) = −
√
−26/(2 −

√
−2). For contradiction, assume φr(0) = ∞ or

φg(0) =∞. Then

2±
√
−2 = 0 ⇒ −2 = ±

√
−2 ⇒ 4 = −2 ⇒ 6 = 0.

Since q > 13, this is a contradiction.
Next, we consider

√
−7 ∈ Zq, where we place three new edges. At vertex

z1, we remove two self-loops and add two new edges. We need to show that
none of these two edges coincide with the already existing blue edge. The blue

94

edge leads to φb(z1) = −z1. Let us assume this would be vertex 0, such that
−z1 = 0. Then

√
−2 +

√
−28√

−26
= 0 ⇒

√
−2 +

√
−28 = 0 ⇒ −2 = −28 ⇒ 0 = −26.

Since q > 13, this is a contradiction. Let us assume the blue edge leads from
z1 to z2. Then φ(z1) = z2 and

√
−2 +

√
−28√

−26
= −
√
−2−

√
−28√

−26
⇒ 2

√
−2 = 0 ⇒ −2 = 0.

Again a contradiction. It remains to show that the blue edge at z2 does not
coincide with the new edge {z2,∞}. For contradiction, assume φb(z2) =∞.

√
−2−

√
−28√

−26
=∞ ⇒

√
−26 = 0 ⇒ −26 = 0.

We conclude that none of the added edges have been in the graph before, such
that the graph G2,q is cubic and simple.
Last, we show that G2,q is Ramanujan. We know that Y 2,q is Ramanujan.

Let AG and AY denote the adjacency matrices of these two graphs. We compute
the second largest eigenvalue of AG for the case

√
−7 6∈ Zq, while x0 and x∞

denote the vector components corresponding to the vertices labeled by 0 and
∞, respectively.

λ2(AG) = max
x⊥1

xTAGx

‖x‖2

= max
x⊥1

xTAY x− x20 − x2∞ + 2x0x∞
‖x‖2

= max
x⊥1

xTAY x− (x0 − x∞)2

‖x‖2

≤ max
x⊥1

xTAY x

‖x‖2
= λ2(AY).

Thus, λ2(AG) ≤ λ2(AY) and since Y 2,q is Ramanujan, G2,q is Ramanujan as
well.

95

For the case
√
−7 ∈ Zq, we have

λ2(AG)

= max
x⊥1

xTAGx

‖x‖2

= max
x⊥1

xTAY x− x20 − x2∞ − 2x2z1 − 2x2z2 + 2x0xz1 + 2xz1xz2 + 2xz2x∞
‖x‖2

= max
x⊥1

xTAY x− (x0 − xz1)
2 − (xz1 − xz2)

2 − (xz2 − x∞)2

‖x‖2

≤ max
x⊥1

xTAY x

‖x‖2
= λ2(AY).

Theorem 8.13. For all x, there are Θ(x/ log(x)) many primes q < x with√
−2,
√
13 ∈ Zq and

√
−15 6∈ Zq. This means there are Θ(x/ log(x)) graphs

G2,q with q + 1 < x+ 1 vertices.

For the proof, we need the following

Fact 8.14 (see e. g. [4]). For every odd prime p, it holds:(
−1
p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 mod 4

−1 if p ≡ 3 mod 4,

(
2

p

)
= (−1)(p2−1)/8 =

{
1 if p ≡ ±1 mod 8

−1 if p ≡ ±3 mod 8.

Now we are ready to prove Theorem 8.13:

Proof. The proof is similar to the argumentation by Chiu in [19]. We consider
primes of the form q = 104 · 30m+16 · 13+ 1 with m ∈ N. Let π(x) denote the
number of primes ≤ x and let πa(x) denote the number of primes ≤ x of the
form km+ a, m = 1, 2, Further, denote by ϕ(k) Euler’s totient function,
i. e. the number of relative primes smaller than k. Using the prime number
theorem for arithmetic progression, it holds

πa(x) ∼
π(x)

ϕ(k)
∼ 1

ϕ(k)

x

log x
, x→∞,

96

if the largest common divisor (a, k) = 1 [4]. In our case, for k = 104 · 30 and
a = 16 · 13 + 1, we have ϕ(104 · 30) = 768 and thus

π16·13+1(x) ∼
1

768

x

log x
.

We now need to show that −2 and 13 are quadratic residues modulo q and
−15 is a nonresidue. From Fact 8.14 follows directly that −2 is quadratic
residue modulo q: (

−2
q

)
=

(
−1
q

)(
2

q

)
= 1 · 1 = 1.

Using the quadratic reciprocity law
(
p
q

)(
q
p

)
= (−1)(p−1)(q−1)/4, we obtain(

13

q

)
=
(q

13

)
(−1)(13−1)(q−1)/4 =

(q

13

)
(−1)3(q−1) =

(q

13

)
(−1)(q−1)

=
(q

13

)
(−1)104·30m+16·13 =

(q

13

)
≡ q(13−1)/2 mod 13

≡ (104 · 30m+ 16 · 13 + 1 mod 13)6 mod 13

≡ 1 mod 13.

Hence, 13 is quadratic residue modulo q.
For −15, we first compute the following:(

5

q

)
=
(q
5

)
(−1)(5−1)(q−1)/4 =

(q
5

)
(−1)104·30m+16·13 =

(q
5

)
≡ q(5−1)/2 mod 5 ≡ q2 mod 5

= (104 · 30m+ 16 · 13 + 1 mod 5)2 mod 5 ≡ 1 mod 5,

(
3

q

)
=
(q
3

)
(−1)(5−1)(q−1)/4 =

(q
3

)
(−1)104·30m+16·13 =

(q
5

)
≡ q(3−1)/2 mod 3 ≡ q mod 3

= 104 · 30m+ 16 · 13 + 1 mod 3 ≡ −1 mod 3.

Now, (
−15
q

)
=

(
−1
q

)(
3

q

)(
5

q

)
= 1 · (−1) · 1 = −1.

Hence, −15 is a nonresidue.

97

In the definition of the graph class G2,q (Definition 8.11), we require
√
−15 6∈

Zq additionally to the constraints for Y 2,q. However, we can extend the
definition of G2,q to allow q with

√
−15 ∈ Zq as follows:

Definition 8.15. Let q > 13 be a prime with
√
−2 ∈ Zq,

√
13 ∈ Zq. For Ḡ2,q,

use the construction from Definition 8.11, extended by

3. If
√
−15 ∈ Zq, then with z3/4 = 2±

√
30√

−26
, add the edges {z3, z4} and

{−z3,−z4}.

z3 z4

−z3 −z4

→
z3 z4

−z3 −z4

We are now able to show that the resulting graphs are simple and cubic:

Theorem 8.16. Let q > 13 be a prime with
√
−2,
√
13 ∈ Zq. Then Ḡ2,q is

simple and cubic.

Proof. Most of the proof is covered by Theorem 8.12. We are left to discuss the
changes at the vertices ±z3 and ±z4, i. e. that the edges {z3, z4} and {−z3,−z4}
do not exist in Y 2,q. Consider z3: since φb(z3) = φr(z3) = −z3, we only have
to check if φg(z3) 6= z4. For contradiction, assume φg(z3) = z4. We apply φr

and obtain φr(φg(z3)) = φr(z4). Now the left hand side is z3 again, since red
and green are opposite to each other, and the right hand side is −z4 in the
considered case. Thus, z3 = −z4 and

2 +
√
30√

−26
= −2−

√
30√

−26
⇒ 4 = 0,

a contradiction. Analogously, there is no edge {−z3,−z4} in Y 2,q.

Unfortunately, the author was not able to show that the graphs Ḡ2,q are all
Ramanujan. However, we can show that they have a bisection width which is
at least as large as the one of Y 2,q:

Theorem 8.17. Let q > 13 be a prime with
√
−2,
√
13 ∈ Zq. Then bw(Ḡ2,q) ≥

bw(Y 2,q).

Proof. Let y be an optimum bisection vector for graph G2,q. We show that
there exists a bisection of the same or smaller width in Y 2,q. Therefore, we
analyze how G2,q is changed back to obtain Y 2,q. For modification 1, the three

98

edges {0, z1}, {z1, z2}, and {z2,∞} are removed and replaced by several self-
loops. These modifications clearly do not increase the width of any bisection.
The same applies for modification 2, where the edge {0,∞} is replaced by
two self-loops. We are left to discuss modification 3, where edges between the
vertices z3,−z3, z4,−z4 are rearranged. We discuss all possible labellings for
these four vertices, and since y and −y describe the same bisection, we say z3
has label 1. For z3,−z3, z4,−z4 being labeled as (1, 1, 1, 1), the cutwidth does
not change with the modifications. The same applies if one or three vertices
are labeled with −1, since we cut two edges before and after within our four
vertices. Thus, we are left with the labellings (1, 1,−1,−1), (1,−1,−1, 1) and
(1,−1, 1,−1). In the first case, the cutwidth of y for Y 2,q is smaller by two edges,
in the second case the width is the same. Finally, we discuss (1,−1, 1,−1).
Considering G2,q, we cut two edges within the four vertices. When we change
the labeling to (1, 1,−1,−1) and transform our graph to Y 2,q, no edge is cut
within the four vertices anymore. On the other hand, the new labeling might
cut the two other edges adjacent to −z3 and z4. However, in total the number
of newly cut edges is at most two, while we removed two cut edges. Thus, the
cutwidth less or equal.

8.4 Computing the Bisection Width of Ramanujan
Graphs

In this section we experimentally estimate the bisection width of our construc-
tive Ramanujan graphs G2,q and compare it with the best known lower and
upper bounds for largest bisection width. This will provide an idea how large
the actual worst case bisection width might be, since the exact bisection width
is not even known for explicit Ramanujan graph constructions such as the one
of Chiu. A way to determine an optimum bisection is to explicitly construct the
graph and then formulate an Integer Linear Program (ILP) for the Minimum
Bisection Problem on this specific instance.
A standard approach would be to introduce a variable xv ∈ {0, 1} for each

vertex v, indicating the part the vertex belongs to, and a variable eu,v ∈ {0, 1}
for each edge {u, v}, indicating if the edge is a cut edge. The objective function
would then be to minimize the number of cut edges, i. e. min

∑
{u,v}∈E eu,v.

99

We obtain the following ILP:

min
∑

{u,v}∈E

eu,v w.r.t.
∑
v∈V

xv = n/2

for each {u, v} ∈ E : eu,v ≥ xu − xv and eu,v ≥ xv − xu,

eu,v, xv ∈ {0, 1}.

In an optimal solution, the variable eu,v is 1 iff the edge {u, v} is a cut edge.
The value of the objective function then corresponds to the bisection width.

However, we use another, less convenient way to formulate the bisection
problem as ILP, which turned out to perform better in the upcoming experi-
ments. In regular graphs, the number of edges {u, v} with u, v ∈ V1 is the same
as the number of edges {u, v} with u, v ∈ V2 for every bisection V = V1∪̇V2: we
have the same number of valencies in both sets and every cut edge binds one
valency in each set. Consequently, in both sets the same number of valencies
has to be satisfied by edges within the parts. Furthermore, each edge is either a
cut edge or an inner edge. Using these observations, the problem of minimizing
the number of cut edges is equivalent to maximizing the number of inner edges
of lets say part V1. In our ILP, we use as above the variables xv and eu,v, but
this time eu,v is constructed to be 1 iff the edge {u, v} is an inner edge of part
V1. We obtain the following ILP:

min |E| − 2
∑

{u,v}∈E

eu,v w.r.t.
∑
v∈V

xv = n/2 (8.6)

for each {u, v} ∈ E : eu,v ≤ xu and eu,v ≤ xv,

eu,v, xv ∈ {0, 1}.

Solvers for linear programs are highly developed and optimized. They can
also prove the solution to be optimal, which is not the case for e. g. doing a
simple random search. However, this simple approach comes to an end for
even small graphs G2,q in the order of 100 vertices, since the ILP solver does
not terminate in a reasonable time. For graphs with around 1000 vertices, we
can even observe that the best solution found within the first hour does not
even come close to the solutions found by the algorithms we present below.
Thus, we need a more sophisticated approach.

As a starting point, we use a spectral based heuristic which is commonly
known to work well on many graph classes. For a given graph G, the bisection
is derived from the eigenvector corresponding to the second largest eigenvalue
of the adjacency matrix of G, as described in Algorithm 8.1.

100

Algorithm 8.1: Second-Eigenvalue-based Heuristic

Input :Graph G with adjacency matrix A.
1 Compute the eigenvector x to the second largest eigenvalue of the

adjacency matrix A.
2 Splitting at the median x̄ of vector x, we put all vertices i with xi ≥ x̄

to part V1 and all other vertices to part V2. If |V1| > |V2|, we move
arbitrarily (|V1| − |V2|)/2 vertices from V1 to V2. Output the partition
(V1, V2).

Next, we combine the second-eigenvalue-based heuristic with the idea of
using an ILP in Algorithm 8.2. We start with the spectral based heuristic and
then perform a greedy improvement. We then formulate the ILP as in Eq. (8.6)
but force some vertices to be in a certain part. For this we use the bisection
obtained after the greedy improvement has been performed, and compute for
each vertex its distance to the cut, starting with distance 1 for vertices incident
with a cut edge. All vertices with a distance of 3 or more will be fixed in the
ILP. Thus, the ILP only decides where to put vertices with distance 1 or 2.
This choice was made empirically for our graphs and results in fixing about
one-third of the vertices. Fixing less vertices results in worse solutions of the
ILP within the given time.

Algorithm 8.2: Spectral-ILP Heuristic

Input :Graph G with adjacency matrix A. Timeout t1.
1 Use Algorithm 8.1 to obtain an initial partition (V1, V2)
2 Perform a greedy improvement: find a vertex u in V1 which has more

neighbors in V2 than in V1. Next, find a vertex v in V2 which has more
neighbors in V1 than in V2. Move u to V2 and v to V1. Repeat, until
no such vertices are found anymore.

3 Compute the distance of each vertex to the cut: vertices adjacent to a
cut edge have distance 1, and all other vertices have a recursively
defined distance of the minimum of its neighbors plus 1. Formulate the
ILP given in Eq. (8.6), and then add constraints which set all vertices
with distance of 3 or more to the part determined by the previously
computed partition. Solve the ILP with timeout t1. Output the best
solution found.

In our experiments, we generated the cubic Ramanujan graph G2,q and cubic
random graphs with up to 10000 vertices. We then used the Algorithms 8.1

101

0.167

0.101
0.082

q

cw(G2,q)/(q + 1)

2 · 103 4 · 103 6 · 103 8 · 103 10 · 103

0.1

0.2

≈ 0.12

0.167

0.101
0.082

n

cw(R3(n))/n

2 · 103 4 · 103 6 · 103 8 · 103 10 · 103

0.1

0.2

≈ 0.12

Figure 8.2: Bisection estimates for cubic Ramanujan graphs G2,q (upper) and
cubic random graphs R3(n) (lower), obtained via the Second-
Eigenvalue-based Heuristic from Algorithm 8.1 (blue) and the
Spectral-ILP Heuristic from Algorithm 8.2 (black).

2
√
2

n

λ2(R3(n))

2 · 103 4 · 103 6 · 103 8 · 103 10 · 103
2.75

2.80

2.85

Figure 8.3: Second largest eigenvalues λ2(R3(n)) of the cubic random graphs
R3(n) used in Figure 8.2. Graphs with λ2 ≤ 2

√
2 are Ramanujan.

and 8.2 to estimate the bisection width. The results can be found in Figure 8.2.
There we plot the relative bisection width bw(G)/n. For the ILP step we chose
a timeout t1 of n/100 seconds, i. e. linear in the number of vertices. For small
graphs, we observed that a nearly-optimal solution was found very quickly, so
we believe that the bisection widths are nearly-optimal for all graphs in our

102

experimental analysis. However, the found bisections provide an upper bound
on the actual bisection width. Interestingly, the determined relative bisection
width does not increase with increasing n, which indicates that the quality
of the solution found by Algorithm 8.2 remains good even for large n. We
might add another step to Algorithm 8.2: first, we start the ILP solver on the
restricted ILP using the timeout as described in the algorithm. Thereafter, as
an additional step we remove the distance-based restrictions and resume the
ILP solver. However, we could observe no substantial improvement even with
a timeout of one hour for this additional step.

Except for the graphs with only very few vertices, the ratio of the bisection
width and the number of vertices seems to be about the constant of 0.12.
For comparison we did the same experiment for random cubic graphs. We
can observe roughly the same behavior and obtain the same estimation of the
constant of 0.12. Let us note that most of the random graphs are Ramanujan as
well: Figure 8.3 shows the second largest eigenvalue of the adjacency matrices
of the random cubic graphs from our experiment. Eigenvalues below 2

√
2

indicate that the corresponding graph is Ramanujan.

103

9 Discussion and Open Problems

In this thesis we have seen that Boppana’s Algorithm BB is a powerful method
for graph bisection with certifying the optimality of a solution. We provided
a full proof that the algorithm obtains a tight lower bound on the planted
bisection model w.h.p. and proposed several modifications to guarantee that
the algorithm also finds an optimum bisection. We were able to implement the
algorithms and demonstrated that they work well even for small graphs. We
conducted further experiments on the graph model Rn(r, b), which indicated
that Boppana’s algorithm also works for r = 5 but not for r = 3 and r = 4.
An interesting question arising is, which properties of 3- and 4-regular graphs
from the planted bisection model let the algorithm fail.
Further, we proved that the SDP approach due to Feige and Kilian [31] is

equivalent to Boppana’s approach. More precisely the dual SDP from Feige
and Kilian can be seen as formulation of the eigenvalue problem contained in
Boppana’s algorithm. Although their primal SDP uses about n2 variables and
the eigenvalue based approach only n variables, our SDP implementation of
FK∗ has shown to be much faster and was able to solve larger instances than
our implementation of BB. The explanation of this issue is that Boppana’s
Algorithm BB needs to solve a huge amount of eigenvalue problems within the
convex optimization. The limitation of the graph sizes the SDP in FK∗ can
handle is indeed dictated by the large number of variables. It is an interesting
task if one can find a solution to the dual SDP with n variables without solving
the primal SDP explicitly. Another question is if the eigenvalue optimization
can be done better and obtain similar performance as FK∗ but without using
the primal SDP.
There are still open questions about the interpretation of the variable ma-

trix X of the primal SDP, when trying to relate X to the vector d in the
dual SDP as well as to the eigenvalue problem, and there especially to the
eigenvectors corresponding to the largest eigenvalue. We know that e. g. in
the planted bisection model Gn(p, q) with appropriate parameters p and q, the
algorithms BB and FK∗ find and certify with high probability the optimum
bisection. In this case, an optimal vector d can be derived from the bisection
vector y as d = −diag(y)Ay. We also know that other optimal d might exist,

104

which must be of the form d = −diag(y)Ay + αy. The eigenvector to the
unique largest eigenvalue of the matrix B constructed in Boppana’s algorithm
is then a stretched vector y. For the primal SDP it is known that the matrix
X is a matrix with 1 or -1 entries, indicating if two vertices belong to the
same or to different parts. This gives us for both approaches a reconstruction
possibility. However, if we have a graph where the bound h(G) is not tight, i. e.
h(G) < bw(G), can we then use an optimal solution to Boppana’s approach to
obtain an optimal solution for the primal SDP?
The SDP implementation of FK∗ was able to solve graph instances only

up to 2000 vertices. To overcome this issue, we proposed a new heuristic
FB, which tries to guess an optimal vector dopt for Boppana’s approach and
then verify and certify the solution. This heuristic showed to be practically
implementable as well and was able to solve instances with up to 106 vertices.
Our new heuristic FB finds on graphs from Gn(p, q) and Rn(r, b) almost the
same (optimal) bisections as BB. It would be interesting to find a better
candidate for the correction vector than d(x̂), as used in FB, but which still
does not require an optimization search for dopt. Another interesting future
work would be to analyze theoretical properties of FB. We conjecture that for
random graphs G from Gn(p, q), with p− q ≥ c(

√
p log n/

√
n), our Algorithm

FB certifies the optimality revealing w.h.p. the bisection vector x̂ of cw(x̂)−
g(G,−diag(x̂)Ax̂) < 1.
The heuristics FB, FB∗, BB and FK handle graphs with bisection width

not too large, but for certain graph classes with bisection width Θ(n) they
do not work at all. For the graphs considered in Chapter 8 for example, the
bisection obtained by these algorithms has a much larger width than the best
solution we found by Algorithm 8.2. However, when considering minimum
bisections the question for the worst case of bisection width arises. In order to
analyze graphs with largest possible bisection width, we focused on explicitly
constructed Ramanujan graphs in comparison to random regular graphs. We
tried to estimate the asymptotic largest bisection width of this graph classes.
Based on our experimental analysis for the bisection width of cubic Ramanujan
graphs, we conjecture the lower bound to be around 0.12n for the graph class
G2,q. We observed the same result for 3-regular random graphs. This motivates
further research to improve the best known lower bound 0.082n on the worst
case bisection width by Bezrukov et al. [7] (see Eq. (8.2)) and simultaneously
shows that the lower bound by Kostochka and Melnikov [48] (see Eq. (8.1))
holds already for Ramanujan graphs. It is an interesting challenge to prove
the conjecture that 0.12n ≤ bw3,R(n). Since for any graph its bisection width
is less than or equal to the pathwidth of the graph, this would also imply that

105

the largest possible pathwidth of an n-vertex cubic graph is at least 0.12n.
Note that due to Fomin and Høie [34], we know that the upper bound on the
pathwidth is 0.167n. Another interesting question, we leave open, is to prove
that our graphs Ḡ2,q are Ramanujan.
For determining the bisection width of our Ramanujan graphs, we used

an algorithm combining spectral techniques, greedy improvements and ILP
optimization. This heuristic seems to perform well, but a thorough analysis on
its quality is still an open task. Since we have an explicitly constructed graph
class of cubic Ramanujan graphs, it is an interesting question if the bisection
width of these graphs can be computed or estimated analytically.

In this work we restricted ourselves to graph with an even number of vertices
and the task to obtain equally sized bisections. A more general formulation
of the problem allows for odd vertex degree. The partition should then have
parts which differ at most by 1 in size. A direct application of the algorithms
discussed in this work is not possible, since we need to obtain bisection vectors
y ∈ {1,−1}n which sum up to 0. An open task is to modify the algorithms
and allow for odd numbers of vertices, e. g. by carefully adding another vertex.

An even more general setting could allow the parts to differ in sizes by some
relative factor c, i. e. instead of a bisection we might search for a partition
V1, V2 with ||V1| − |V2|| < cn. For this problem, an algorithmic approach could
combine the spectral techniques from this work with decomposition techniques,
e. g. as used in [24].

Instead of minimizing the number of edges crossing a bisection, we can ask to
maximize them, i. e. consider the Maximum Bisection Problem. This problem is
NP-hard but allows e. g. for a polynomial-time approximation scheme (PTAS)
on planar graphs [46].

106

List of Algorithms

2.1 Boppana’s Algorithm BB (from [12]) 14
2.2 Feige and Kilian’s Algorithm FK (from [31]) 17
2.3 Feige and Kilian’s Algorithm FK∗ (from [31]) 17

4.1 Boppana-based algorithm for finding unique optimum bisections
BB-U . 36

4.2 Boppana-based algorithm for finding non-unique optimum bisec-
tions BB-NU . 38

5.1 Boppana-based algorithm for unique optimum bisections with
improved performance BB-UI . 44

7.1 Fast (Spectral-based) Bisection FB 75
7.2 FB with one-dimensional convex search FB∗ 79

8.1 Second-Eigenvalue-based Heuristic 101
8.2 Spectral-ILP Heuristic . 101

107

List of Figures

4.1 Example graph Gex with h(Gex) = bw(Gex) = 6. 33
4.2 Function g(Gex, d

(y)+αy) for graph Gex and α ∈ [−0.535, 1.53].
For the corresponding eigenvalue problem, the three largest
eigenvalues are shown. 33

5.1 Forbidden graph structures as in Corollary 5.11 (left) and in
Corollary 5.13 (right). 49

5.2 Forbidden graph structures as in Lemma 5.12. 49

7.1 VectorsQx′β obtained from eigenvectors x′β of (A+β·diag(dopt))Q
for graph Gex for β ∈ {0, 0.5, 0.9, 1}. 73

7.2 Empirical probabilities that FB, resp. BB succeed (n = 100), as
well as the differences of these probabilities. 76

7.3 The planted bisection model Gn(p, q): empirical probabilities
that the heuristic FB finds and certifies the optimum bisection,
using p = α log(n)/n and q = β log(n)/n. 76

7.4 Graph model Rn(r, b): empirical probabilities that the heuristic
FB finds and certifies the optimum bisection. 77

7.5 Empirical probabilities that FB exactly recovers the planted
bisection (n = 1000). Also shown is the theoretical threshold. . 78

7.6 A comparison between FB and the algorithm of Chen et al. for
exact cluster recovery in the stochastic block model (n = 300). 78

8.1 All possible self-loops and multi-edges in Y 2,q. 91
8.2 Bisection estimates for cubic Ramanujan graphs G2,q and cubic

random graphs R3(n), obtained via the Second-Eigenvalue-based
Heuristic from Algorithm 8.1 and the Spectral-ILP Heuristic
from Algorithm 8.2. 102

8.3 Second largest eigenvalues λ2(R3(n)) of the cubic random graphs
R3(n) used in Figure 8.2. Graphs with λ2 ≤ 2

√
2 are Ramanu-

jan. 102

108

List of Tables

6.1 Average running times of the algorithms BB and FK∗ on graphs
from Gn(p = 9 log(n)

n , q = 2 log(n)
n) for n ≤ 2000. 67

7.1 Average running times of the algorithms FB, BB, FK∗, and
Chen on graphs from Gn(p = 9 log(n)

n , q = 2 log(n)
n) and Rn(r =

7, b =
√
n) for n ≤ 106. 80

8.1 Number of cubic Ramanujan graphs with n vertices for the
specific graph classes X2,q, Y 2,q, G2,q, and these from Morgen-
stern [62]. 84

8.2 Sizes of the eight smallest cubic Ramanujan graphs of Morgen-
stern [62], the graphs X2,q by Chiu [19], and our families Y 2,q

and G2,q. 84

109

Bibliography

[1] Emmanuel Abbe. Community detection and stochastic block models:
recent developments. CoRR, abs/1703.10146, 2017.

[2] Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact recovery
in the stochastic block model. IEEE Transactions on Information Theory,
62(1):471–487, 2016.

[3] Farid Alizadeh. Interior point methods in semidefinite programming with
applications to combinatorial optimization. SIAM Journal on Optimiza-
tion, 5(1):13–51, 1995.

[4] Tom M. Apostol. Introduction to Analytic Number Theory. Undergraduate
Texts in Mathematics. Springer New York, 1998.

[5] Michael Armbruster, Marzena Fügenschuh, Christoph Helmberg, and
Alexander Martin. A comparative study of linear and semidefinite branch-
and-cut methods for solving the minimum graph bisection problem. In
Proceedings of the 13th International Conference on Integer Programming
and Combinatorial Optimization, IPCO 2008, pages 112–124, 2008.

[6] Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time
approximation schemes for dense instances of np-hard problems. Journal
of Computer and System Sciences, 58(1):193–210, 1999.

[7] Sergei L. Bezrukov, Robert Elsässer, Burkhard Monien, Robert Preis, and
Jean-Pierre Tillich. New spectral lower bounds on the bisection width of
graphs. Theoretical Computer Science, 320(2-3):155–174, 2004.

[8] Sandeep N. Bhatt and Frank Thomson Leighton. A framework for solving
VLSI graph layout problems. Journal of Computer and System Sciences,
28(2):300–343, 1984.

[9] Avrim Blum and Joel Spencer. Coloring random and semi-random k-
colorable graphs. Journal of Algorithms, 19(2):204–234, 1995.

110

[10] Robert D. Blumofe. Spectral methods for bisecting graphs. Unpublished
Manuscript, 1993.

[11] Béla Bollobás and Alex D. Scott. Max cut for random graphs with a planted
partition. Combinatorics, Probability and Computing, 13(4-5):451–474,
2004.

[12] Ravi B. Boppana. Eigenvalues and graph bisection: An average-case
analysis (extended abstract). In Proceedings of the 28th Symposium on
Foundations of Computer Science, FOCS 1987, pages 280–285, 1987.

[13] Andrei Z. Broder and Eli Shamir. On the second eigenvalue of random
regular graphs (preliminary version). In Proceedings of the 28th Symposium
on Foundations of Computer Science, FOCS 1987, pages 286–294, 1987.

[14] Lorenzo Brunetta, Michele Conforti, and Giovanni Rinaldi. A branch-
and-cut algorithm for the equicut problem. Mathematical Programming,
77:243–263, 1997.

[15] Thang Nguyen Bui, Soma Chaudhuri, Frank Thomson Leighton, and
Michael Sipser. Graph bisection algorithms with good average case behav-
ior. Combinatorica, 7(2):171–191, 1987.

[16] Ted Carson and Russell Impagliazzo. Hill-climbing finds random planted
bisections. In Proceedings of the 12th Symposium on Discrete Algorithms,
SODA 2001, pages 903–909, 2001.

[17] Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. In
Advances in Neural Information Processing Systems 25: 26th Conference
on Neural Information Processing Systems, NIPS 2012, pages 2213–2221,
2012.

[18] Yudong Chen, Sujay Sanghavi, and Huan Xu. Improved graph clustering.
IEEE Transactions on Information Theory, 60(10):6440–6455, 2014.

[19] Patrick Chiu. Cubic ramanujan graphs. Combinatorica, 12(3):275–285,
1992.

[20] Michael B. Cohen. Ramanujan graphs in polynomial time. In Proceedings
of the 57th Symposium on Foundations of Computer Science, FOCS 2016,
pages 276–281, 2016.

[21] Michael B. Cohen. Personal communication, 2017-06-28.

111

[22] Stephen D. Cohen, Tomás Oliveira e Silva, and Tim Trudgian. On
grosswald’s conjecture on primitive roots, 2015.

[23] Amin Coja-Oghlan. Spectral techniques, semidefinite programs, and
random graphs. Habilitationsschrift, Humboldt Universität zu Berlin,
Institut für Informatik, 2005.

[24] Amin Coja-Oghlan. A spectral heuristic for bisecting random graphs.
Random Structures and Algorithms, 29(3):351–398, 2006.

[25] Amin Coja-Oghlan, Oliver Cooley, Mihyun Kang, and Kathrin Skubch.
The minimum bisection in the planted bisection model. Theory of Com-
puting, 13(1):1–22, 2017.

[26] Anne Condon and Richard M. Karp. Algorithms for graph partitioning
on the planted partition model. Random Structures and Algorithms,
18(2):116–140, 2001.

[27] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk,
and Saket Saurabh. Minimum bisection is fixed parameter tractable. In
Proceedings of the 46th Symposium on Theory of Computing, STOC 2014,
pages 323–332, 2014.

[28] Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller.
The PACE 2017 Parameterized Algorithms and Computational Experi-
ments Challenge: The Second Iteration. In Proceedings of the 12th In-
ternational Symposium on Parameterized and Exact Computation, IPEC
2017, pages 30:1–30:12, 2018.

[29] Daniel Delling, Daniel Fleischman, Andrew V. Goldberg, Ilya P. Razen-
shteyn, and Renato F. Werneck. An exact combinatorial algorithm for
minimum graph bisection. Mathematical Programming, 153(2):417–458,
2015.

[30] Martin E. Dyer and Alan M. Frieze. The solution of some random
np-hard problems in polynomial expected time. Journal of Algorithms,
10(4):451–489, 1989.

[31] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems.
Journal of Computer and System Sciences, 63(4):639–671, 2001.

[32] Uriel Feige and Robert Krauthgamer. A polylogarithmic approximation
of the minimum bisection. SIAM Journal on Computing, 31(4):1090–1118,
2002.

112

[33] Uriel Feige, Robert Krauthgamer, and Kobbi Nissim. Approximating the
minimum bisection size (extended abstract). In Proceedings of the 32nd
Symposium on Theory of Computing, STOC 2000, pages 530–536, 2000.

[34] Fedor V. Fomin and Kjartan Høie. Pathwidth of cubic graphs and exact
algorithms. Information Processing Letters, 97(5):191–196, 2006.

[35] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2010.

[36] Joel Friedman et al. Some geometric aspects of graphs and their eigen-
functions. Princeton University, Department of Computer Science, 1991.

[37] Zoltán Füredi and János Komlós. The eigenvalues of random symmetric
matrices. Combinatorica, 1(3):233–241, 1981.

[38] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified
np-complete graph problems. Theoretical Computer Science, 1(3):237–267,
1976.

[39] Andrew Granville and Greg Martin. Prime number races. The American
Mathematical Monthly, 113(1):1–33, 2006.

[40] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. Combinator-
ica, 1(2):169–197, 1981.

[41] William W. Hager, Dzung T. Phan, and Hongchao Zhang. An exact
algorithm for graph partitioning. Mathematical Programming, 137(1-
2):531–556, 2013.

[42] Bruce E. Hajek, Yihong Wu, and Jiaming Xu. Achieving exact cluster
recovery threshold via semidefinite programming. IEEE Transactions on
Information Theory, 62(5):2788–2797, 2016.

[43] Frank Harary, John P. Hayes, and Horng-Jyh Wu. A survey of the theory
of hypercube graphs. Computers and Mathematics with Applications,
15(4):277 – 289, 1988.

[44] Paul W. Holland, Kathryn B. Laskey, and Samuel Leinhardt. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137, 1983.

113

[45] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs
and their applications. Bulletin of the American Mathematical Society,
43(4):439–561, 2006.

[46] Klaus Jansen, Marek Karpinski, Andrzej Lingas, and Eike Seidel. Polyno-
mial time approximation schemes for MAX-BISECTION on planar and
geometric graphs. SIAM Journal on Computing, 35(1):110–119, 2005.

[47] Stefan E. Karisch, Franz Rendl, and Jens Clausen. Solving graph bisec-
tion problems with semidefinite programming. INFORMS Journal on
Computing, 12(3):177–191, 2000.

[48] Alexandr V. Kostochka and Leonid S. Melnikov. On a lower bound
for the isoperimetric number of cubic graphs. Probabilistic Methods in
Discrete Mathematics, Proceedings of the 3rd International Petrozavodsk
Conference, Progress in Pure and Applied Discrete Mathematics, 1:251–265,
1993.

[49] Vivek Kwatra, Arno Schödl, Irfan A. Essa, Greg Turk, and Aaron F.
Bobick. Graphcut textures: image and video synthesis using graph cuts.
ACM Transactions on Graphics, 22(3):277–286, 2003.

[50] Thomas Lengauer. Combinatorial algorithms for integrated circuit layout.
Springer Science and Business Media, 2012.

[51] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar
separator theorem. SIAM Journal on Computing, 9(3):615–627, 1980.

[52] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs.
Combinatorica, 8(3):261–277, 1988.

[53] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaragha-
van. Approximation algorithms for semi-random partitioning problems. In
Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, pages 367–384, 2012.

[54] Adam Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing
families I: bipartite ramanujan graphs of all degrees. In Proceedings of the
54th Symposium on Foundations of Computer Science, FOCS 2013, pages
529–537, 2013.

[55] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing
families IV: bipartite ramanujan graphs of all sizes. In Proceedings of the

114

56th Symposium on Foundations of Computer Science, FOCS 2015, pages
1358–1377, 2015.

[56] Grigorii Aleksandrovich Margulis. Explicit group-theoretical constructions
of combinatorial schemes and their application to the design of expanders
and concentrators. Problemy peredachi informatsii, 24(1):51–60, 1988.

[57] Dániel Marx. Parameterized graph separation problems. Theoretical
Computer Science, 351(3):394–406, 2006.

[58] Frank McSherry. Spectral partitioning of random graphs. In Proceedings
of the 42nd Symposium on Foundations of Computer Science, FOCS 2001,
pages 529–537, 2001.

[59] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, New York, NY, USA, 2005.

[60] Burkhard Monien and Robert Preis. Upper bounds on the bisection width
of 3- and 4-regular graphs. Journal of Discrete Algorithms, 4(3):475–498,
2006.

[61] Cristopher Moore. The computer science and physics of community detec-
tion: Landscapes, phase transitions, and hardness. CoRR, abs/1702.00467,
2017.

[62] Moshe Morgenstern. Existence and explicit constructions of q + 1 regular
ramanujan graphs for every prime power q. Journal of Combinatorial
Theory, Series B, 62(1):44–62, 1994.

[63] Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds for
the planted bisection model. In Proceedings of the 47th Symposium on
Theory of Computing, STOC 2015, pages 69–75, 2015.

[64] Alon Nilli. On the second eigenvalue of a graph. Discrete Mathematics,
91(2):207–210, 1991.

[65] Robert Plato. Numerische Mathematik kompakt - Grundlagenwissen für
Studium und Praxis. Vieweg, 2000.

[66] Huzur Saran and Vijay V. Vazirani. Finding k cuts within twice the
optimal. SIAM Journal on Computing, 24(1):101–108, 1995.

115

[67] Kirk Schloegel, George Karypis, and Vipin Kumar. Graph partitioning
for high performance scientific simulations. Army High Performance
Computing Research Center, 2000.

[68] Norbert Sensen. Lower bounds and exact algorithms for the graph parti-
tioning problem using multicommodity flows. In Proceedings of the 9th
European Symposium on Algorithms, ESA 2001, pages 391–403, 2001.

[69] Kim-Chuan Toh, Michael J. Todd, and Reha H. Tütüncü. Sdpt3 — a
matlab software package for semidefinite programming. Optimization
Methods and Software, 11:545–581, 1999.

[70] Chih-Chien Tu and Hsuanjen Cheng. Spectral methods for graph bisection
problems. Computers and OR, 25(7-8):519–530, 1998.

[71] Chih-Chien Tu, Ce-Kuen Shieh, and Hsuanjen Cheng. Algorithms for
graph partitioning problems by means of eigenspace relaxations. European
Journal of Operational Research, 123(1):86–104, 2000.

[72] Reha H. Tütüncü, Kim-Chuan Toh, and Michael J. Todd. Solving
semidefinite-quadratic-linear programs using SDPT3. Math. Program.,
95(2):189–217, 2003.

[73] René van Bevern, Andreas Emil Feldmann, Manuel Sorge, and Ondrej
Suchý. On the parameterized complexity of computing graph bisections.
In Graph-Theoretic Concepts in Computer Science - 39th International
Workshop, WG 2013, Revised Papers, pages 76–87, 2013.

[74] Lieven Vandenberghe and Stephen P. Boyd. Semidefinite programming.
SIAM Review, 38(1):49–95, 1996.

[75] Zhenyu Wu and Richard M. Leahy. An optimal graph theoretic ap-
proach to data clustering: Theory and its application to image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(11):1101–1113, 1993.

116

	Introduction
	Main Contributions of this Thesis
	Related Work
	Organization of this Thesis

	Preliminaries: Graph Models and Bisection Algorithms
	Random Graph Models
	Definitions, Notations, and Basic Properties
	Boppana's Spectral-Based Algorithm BB
	Semidefinite Programming (SDP)
	Feige and Kilian's SDP Algorithm FK

	Boppana's Lower Bound: Completed Proofs
	Proof of Boppana's Lower Bound
	Bounding Eigenvalues of A-E(A)
	Bounding Eigenvalues of diag(d)-E(diag(d))

	Boppana's Reconstruction: Issues and Solutions
	BB's Reconstruction Succeeds if Multiplicity is One
	Issues with Multiplicity Two or More
	Finding a Unique Optimum Bisection BB-U
	Finding Non-Unique Optimum Bisections BB-NU

	Boppana's Approach: New Frontiers of Applicability
	Bisections in Adversarial Models
	An Improved Algorithm for Unique Optimum Bisections BB-UI
	The Limitations of the Spectral Approach
	Technical Proofs

	Boppana's Approach: SDP Characterizations
	An SDP Formulation for Boppana's Approach
	Feige and Kilian's SDP equals SDP for Boppana's Approach
	Comparison of Running Times
	Optimality of Boppana's Approach on the Cluster Recovery Problem

	A New Fast Heuristic for Certified Minimum Graph Bisections
	Avoiding High-Dimensional Optimization
	A New Heuristic FB
	Performance in the Planted Bisection Model
	Performance in the Regular Graph Model
	Achieving the Optimal Threshold for Cluster Recovery
	An Improved Heuristic FB*
	Comparison of Running Times

	Hard Instances with Provable Large Bisection Width: Ramanujan Graphs
	Known Constructions of Explicit Ramanujan Graphs
	Construction of Almost Dense Families – General Case
	Almost Dense Explicit Cubic Ramanujan Graphs
	Computing the Bisection Width of Ramanujan Graphs

	Discussion and Open Problems
	List of Algorithms
	List of Figures
	List of Tables
	Bibliography

