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Abstract

This thesis investigates the major rhythms of the thalamocortical system during non-REM sleep
– slow oscillations, K-complexes and sleep spindles. Alterations in these highly interesting
dynamic phenomena are linked to many diseases and they are involved in the processes that
lead to the consolidation of newly acquired memories and gist abstraction.

A promising research direction is the manipulation of these brain rhythms by external stim-
ulation. In order to elucidate the causal role rhythms in brain function one may selectively
suppress or enhance them. Models that capture the essential dynamics of slow oscillations and
spindles would allow an optimization of stimulation protocols and deepen our understanding
of disease mechanisms.

Here, we develop a series of models to describe the generation of the slow oscillation in brain
slices in vitro and the electroencephalogram of humans during natural sleep and anesthesia.
For the identification of dynamic regimes we derive a method that can estimate parameters in
nonlinear stochastic dynamic systems from data.

First, the slow oscillation is regarded as phase oscillator and characterized in terms of its phase
response curve. Second, a mechanistic neural mass model of the neocortex is presented that
allows us to identify the dynamic determinants of K-complexes and slow oscillations. The
proposed K-complex mechanism is further illustrated in a minimal model. In the following,
we extend the cortical neural mass to a thalamocortical model that can generate sleep spindles
and slow-wave activity and investigate its response to auditory stimulation. In particular, we
reproduce EEG data from closed-loop auditory stimulation.

Finally, we used the thalamocortical model to design a new acoustic stimulation protocol which
boosts slow oscillations and tested its effect on the consolidation of declarative memories in a
sleep study in humans.
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Zusammenfassung

Diese Arbeit untersucht die drei charakteristischsten Rhythmen des thalamokortischen Systems
im Non-REM-Schlaf – langsame Oszillationen, K-Komplexe und Schlafspindeln. Viele neu-
rologische Krankheiten sind von Veränderungen dieser interessanten dynamischen Phänomene
begleitet und es wird vermutet, dass sie eine entscheidende Rolle in der Konsolidierung von
neuen Gedächtnisinhalten und deren Abstraktion spielen.

Ein vielversprechender Forschungsansatz ist die Manipulation von Gehirnwellen mittels ex-
terner Stimulation. Dabei wird versucht langsame Oszillationen und Schlafspindeln selektiv
zu unterdrücken oder zu verstärken um kausale Zusammenhänge zu Gehirnfunktionen herzu-
stellen. Modelle, welche die zugrundeliegenden Prozesse abbilden, erlauben es Stimulations-
protokolle zu optimieren und einen tieferen Einblick in Krankheitsmechanismen zu erhalten.

Wir präsentieren Modelle, welche die Entstehung von langsamen Oszillationen in Hirnschnit-
ten in vitro und im Elektroenzephalogramm des Menschen während des Schlafes und unter
Anästhesie beschreiben. Um in diesen Modellen die zu den Daten passenden Schwingformen
finden zu können, entwickeln wir eine Methode, welche aus Messdaten die Parameter von
nichtlinearen stochastischen Systemen schätzt.

Zu Beginn approximieren wir die langsame Oszillation mit einem Phasenoszillator and bes-
timmen dessen Phasen-Antwort-Kurve. Wir entwickeln ein mechanistisches Feuerratenmodell
des Neokortex, welches uns erlaubt die dynamischen Determinanten von K-Komplexen und
langsamen Oszillationen zu identifizieren. Für den gefundenenen K-Komplex-Mechanismus
wird ein minmales Modell vorgeschlagen. Im Folgenden erweitern wir das Neokortex-Modell
zu einem thalamokortischen System, das in der Lage ist Schlafspindeln, langsamwellige Ak-
tivität und akustisch evozierte Potentiale zu generieren. Insbesondere gelingt es uns damit die
Wirkung von phasenabhängiger akustischer Stimulation im EEG des Tiefschlafs abzubilden.

Abschließend benutzen wir das thalamokortische Modell um ein neues Stimulationsprotokoll
zu entwerfen, welches langsame Oszillationen verstärkt, und untersuchen dessen Einfluss auf
die Gedächtniskonsolidierung des Menschen in einer Schlafstudie.
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1. Introduction

Sleep is a state of reduced responsiveness and behavioral activity. In humans it consists of three
major stages, which alternate in a cyclic manner. About 50% of time asleep is spent in a light
form of sleep, termed stage “N2”. It generally precedes slow-wave sleep (SWS, about 20%),
also called stage “N3”, and rapid-eye-movement (REM) sleep (about 20%) (Figure 1.1).

Sleep stands out because it involves a reversible loss of consciousness. For some reason it is
advantageous to decouple from the environment and spend one third of our lives in a vulnerable
condition. Certain indispensable processes must take place that are incompatible with wake
behavior or would degrade its performance (Tononi and Cirelli, 2014; Vyazovskiy and Harris,
2013).

Indeed, many studies indicate that sleep is important for the consolidation of newly acquired
memories (Rasch and Born, 2013) and facilitates creative insight (Verleger et al., 2013). In
particular, the consolidation of declarative memories seems to be linked to non-REM sleep,
which comprises sleep stages N1, N2 and N3, and is characterized by the occurrence of sleep
spindles, K-complexes and large amplitude slow oscillations (SO) in the EEG (Figure 1.2)
(Yaroush et al., 1971; Fowler et al., 1973; Plihal and Born, 1997; Walker and Stickgold, 2004;
Diekelmann and Born, 2010). Largely from research in amnesic patients it is known that newly
acquired memories initially depend on the hippocampus and other parts of the medial temporal
lobe (Squire, 2009). They only gradually become independent of this structure and transfer to
a long-term store, e.g., the neocortex. In the process, memories are transformed to a gist-like,
compressed representation (Winocur and Moscovitch, 2011; Dudai et al., 2015). A part of this
transfer is thought to take place during slow-wave sleep and rely on the reactivation of cell
assemblies that were involved in the wake experience (Wilson and McNaughton, 1994; Ji and
Wilson, 2007; Ego-Stengel and Wilson, 2010; Bendor and Wilson, 2012). In the hippocam-
pus, these reactivations occur within sharp wave-ripples, which are very fast (100 − 300 Hz)
oscillations in the local field potential (Buzsáki, 2015).

Figure 1.1.: Typical time course of sleep stages (hypnogram) of nocturnal sleep in humans. Slow-
wave sleep (N3) dominates in the first half of the night, whereas REM sleep occurs mainly in the second
half. Figure 1.2 shows typical EEG traces of each sleep stage.
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1. Introduction

Figure 1.2.: Sleep stages in the EEG. Depicted are representative 30 second excerpts of a healthy
human. Wake: low amplitude, broadband signal; with ocassional α rhyhthm. N1: less noisy appearance
of the EEG and lower frequencies as compared to wake activity. N2: Further increase of low frequency
components and larger amplitude as compared to N1. Appearance of spindles and large amplitude K-
complexes. N3: The EEG is dominated (>20%) by large amplitude slow oscillations. Spindles are less
visible due to diminished amplitude. REM: The EEG during REM is similar to wake and N1.
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Several studies also report a positive correlation between the EEG signal power of spindles and
overnight retention (Gais et al., 2002; Schabus et al., 2004; Fogel and Smith, 2011; Tamminen
et al., 2013). Spindles and ripples can occur independently of SOs, but appear at a higher rate
during the depolarized phases of SOs (Mölle et al., 2006; Clemens et al., 2007; Peyrache et al.,
2011). Furthermore, ripples appear to be synchronized to the troughs of spindle oscillations
(Sirota et al., 2003; Staresina et al., 2015). This temporal grouping has been suggested to be
critical for hippocampus-dependent memory consolidation, as learning dependent increases in
spindle activity are restricted to the SO up state (Mölle et al., 2011; Cox et al., 2012; Niknazar
et al., 2015).

An interesting research direction is the manipulation of brain rhythms by external stimulation
(Massimini et al., 2007; Bergmann et al., 2008; Marshall et al., 2006). In order to shed light
onto the specific contributions of SOs, ripples and spindles to memory consolidation, one may
selectively suppress or enhance them (Landsness et al., 2009; Girardeau et al., 2009; Ego-
Stengel and Wilson, 2010). There is evidence that the efficacy of memory consolidation can be
improved with oscillatory transcranial electric (Marshall et al., 2006; Antonenko et al., 2013)
and auditory stimulation in synchrony with the brain’s own rhythm (Ngo et al., 2013, 2015).
Apart from their possible link to memory consolidation brain rhythms are interesting dynamic
phenomena on their own and many diseases are linked to alterations in brain rhythms.

Much is known about the dynamics of the thalamocortical system during natural sleep, anes-
thesia and in slice preparations. However, its interaction with sensory stimuli is not fully un-
derstood.

Detailed knowledge of how different stimulation modalities effect critical brain rhythms would
enable an optimization of stimulation protocols and consequently an advantage for experiments
in basic research and clinical applications. Mathematical models and computational approaches
can yield meaningful insights into the underlying dynamics as well as provide predictions for
further experiments. This is the topic of the forthcoming chapters, with the focus on slow
oscillations, K-complexes and spindles.

We develop a series of models to describe the generation of the slow oscillation in brain slices
in vitro and the electroencephalogram of humans during natural sleep and anesthesia. For the
identification of dynamic regimes we derive a method that can estimate parameters in nonlinear
stochastic dynamic systems from data.

First, the slow oscillation is regarded as phase oscillator and characterized in terms of its phase
response curve. Second, a mechanistic neural mass model of the neocortex is presented that
allows us to identify the dynamic determinants of K-complexes and slow oscillations. The
proposed K-complex mechanism is further illustrated in a minimal model. In the following,
we extend the cortical neural mass to a thalamocortical model that can generate sleep spindles
and slow-wave activity and investigate its response to auditory stimulation. In particular, we
reproduce EEG data from closed-loop auditory stimulation. This validates our hypothesis on
K-complex and slow oscillation dynamics.

Finally, we use the thalamocortical model to design a new acoustic stimulation protocol which
boosts slow oscillations and tested its effect on the consolidation of declarative memories in a
sleep study in humans.
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1. Introduction

1.1. Outline & main research questions

The first 5 chapters will deal with dynamics and models. The necessary theory will be intro-
duced in the beginning of each chapter. Chapter 6 will turn to memory consolidation with an
experiment.

Chapter 2: The cortical slow oscillation as phase oscillator. How does stimulation
affect the slow oscillation in brain slices in vitro? We validate a neural network and a mean-
field model of slow oscillations by reproducing results of the stimulation experiment by Shu
et al. (2003) and derive phase response curves, which characterize the effect of stimuli on the
slow oscillation.

Chapter 3: Fitting models to time series of stochastic processes. In this chapter,
a method is presented to estimate parameters of nonlinear stochastic dynamic systems from
data. This method will be used in subsequent chapters to infer dynamic regimes.

Chapter 4: A thalamocortical neural mass model of non-REM sleep. What is a K-
complex from a mathematical point of view? What is the difference between a K-complex and
a slow oscillation? We find answers to these questions using neural mass models of the cortex,
thalamus and the thalamocortical system. The models generate K-complexes, slow oscillations
and sleep spindles and allow the investigation of responses to auditory stimulation during non-
REM sleep. In particular, they reproduce EEG data from closed-loop auditory stimulation of a
recent sleep study in humans (Ngo et al., 2013). We characterize K-complexes, slow oscilla-
tions and sleep spindles via bifurcation analysis.

Chapter 5: The K-complex in the Fitzhugh-Nagumo model. What is the minimal
model of a K-complex? Guided by the bifurcation structure derived in the previous chapter
we show that the Fitzhugh-Nagumo model - a minimal model of canard explosions - can be
regarded as such. A phase plane analysis allows novel predictions.

Chapter 6: Open-loop auditory stimulation during non-REM sleep and its effect
on memory consolidation. Can smartphones be used to boost memory? The application
of auditory clicks during non-REM sleep phase-locked to the active state of the slow oscillation
(closed-loop stimulation) has previously been shown to enhance the consolidation of declara-
tive memories. We designed and applied sequences of three clicks during deep non-REM sleep
to achieve a quasi-phase-dependent open-loop stimulation, without requiring the measurement
of EEG signals.

Chapters 7 & 8 The thesis concludes with a summary of the main findings and directions
for future work.

The remainder of this chapter will introduce the major dynamic phenomena of the thalamo-
cortical system during non-REM sleep, i.e., slow oscillations, K-complexes, delta activity and
sleep spindles, and their physiological basis, as this is the necessary foundation for modeling.

4



1.2. Slow oscillations & K-complexes

1.2. Slow oscillations & K-complexes

The EEG exhibits large amplitude oscillations at frequencies between 0.5 and 1 Hz during deep
non-REM sleep (N3) and certain types of anesthesia, termed slow oscillations (SO). Underlying
these SOs are widespread, almost synchronous, transient alternations of cortical networks be-
tween active (“up”, depolarized) and silent (“down”, hyperpolarized) states of activity, in which
literally all cortical cells participate (Steriade et al., 1993b; Contreras and Steriade, 1995; Vol-
gushev et al., 2006, 2011; Peyrache et al., 2012). Importantly, this phenomenon is not present
in isolated cells but emerges only in large enough networks. Slow oscillations can be observed
in subcortical structures, such as the thalamus, but are thought to be of cortical origin, because
they are present in isolated cortical slabs in vivo (Timofeev et al., 2000), in cortical brain slices
(Sanchez-Vives and McCormick, 2000; Sanchez-Vives et al., 2007), but absent in decorticated
cats (Timofeev and Steriade, 1996).

Silent (down) state. Silent states are not maintained by active inhibition, but are periods
of disfacilitation, i.e., there is no synaptic input anymore (Timofeev et al., 2001b). In natural
sleep, they usually do not last longer than 100 - 500 ms (Chauvette et al., 2011). However, the
duration can be of the order of tens of seconds under anesthesia and in slice preparations in
vitro (Metherate and Ashe, 1993; Sanchez-Vives and McCormick, 2000; Cossart et al., 2003).
Intracranial recordings in epileptic patients revealed a bi-modal distribution of active & silent
state durations (Botella-Soler et al., 2012). As a result of active and silent states the distribution
of the membrane potential becomes bimodal during non-REM sleep, whereas it is unimodal
during wakefulness and REM sleep. Silent states do not occur in other states of vigilance than
non-REM sleep (Steriade et al., 2001; Timofeev et al., 2001b; Mukovski et al., 2007; Rudolph
et al., 2007).

Active (up) state. The active state is very similar to activity observed during wakefulness
and is maintained by a balance of excitation and inhibition (Shu et al., 2003; Haider et al.,
2006), which is a direct consequence of the saturating (sigmoidal) input-ouput relation of neu-
rons (Abbott and van Vreeswijk, 1993; van Vreeswijk and Sompolinsky, 1998; Borisyuk and
Kirillov, 1992). This and the bimodal membrane potential distribution lead to the view that
slow oscillations reflect a bistability of cortical networks. During active states, spiking of pyra-
midal neurons was found to be sparse (<1 Hz) in epileptic patients and urethane anesthetized
rats (Csercsa et al., 2010; Waters and Helmchen, 2006; Peyrache et al., 2012; Chen et al., 2011),
but reached up to 40 Hz in naturally sleeping cats (Steriade et al., 2001) and is well above 1
Hz in the barrel cortex of naturally sleeping rats (Vijayan et al., 2010). This discrepancy stems
from the layer that was recorded from and the influence of anesthetics. Neurons in superficial
layers have lower firing rates than in deep layers (Sakata and Harris, 2009). On the population
level, high-frequency (beta,gamma) oscillations are transiently expressed by cortical tissue dur-
ing active states in natural sleep, anesthesia and in vitro (Le Van Quyen et al., 2010; Compte
et al., 2008; Mukovski et al., 2007; Piantoni et al., 2013). Gamma activity has no effect on the
duration of active states and is coincident with spindle oscillations during the rising phase a SO
(Valencia et al., 2013; Piantoni et al., 2013; Ayoub et al., 2012). Beta activity transforms into
gamma oscillation under slight membrane depolarization Steriade et al. (1996).

Both, AMPA and NMDA receptors at excitatory synapses, influence the maintenance of per-
sistent activity, however, in a counter intuitive way. In vitro studies indicate that active states
can be entirely mediated by slow NMDA-receptor excitation (Milojkovic et al., 2005, 2007;
Antic et al., 2010; Castro-Alamancos and Favero, 2015). In contrast, fast AMPA excitation
mainly drives feedforward inhibition, supressing active states (Favero and Castro-Alamancos,
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1. Introduction

2013). The level of both, excitatory and inhibitory, conductances decreases during an active
state (Rudolph et al., 2007; Neske et al., 2015).

Transitions between active and silent states. Several factors contributing to the
switching between active and silent state have been examined in modeling and experimental
studies, such as: arrival of excitation (Shu et al., 2003; Haider et al., 2006), synaptic depression
(Bazhenov et al., 2002), synaptic facilitation (Melamed et al., 2008), thalamic disfacilitation
(Contreras et al., 1996b), activation of Ca2+/Na+/ATP-dependent hyperpolarizing potassium
currents (Compte et al., 2003; Sanchez-Vives and McCormick, 2000; Timofeev et al., 2001b;
Cunningham et al., 2006) and extracellular potassium (Fröhlich et al., 2006) or calcium dy-
namics (Massimini and Amzica, 2001). The precise contributions of intrinsic versus synaptic
factors have not been disentangled so far.

The noise floor necessary to trigger transitions from silent to active as well as active to silent
states could be provided by a combination of miniature postsynaptic potentials (mPSPs) or
asynchronously firing, persistently active, pacemaker-like neurons (Le Bon-Jego and Yuste,
2007). In fact, pyramidal neurons are submitted to an intense spontaneous, spike-independent
synaptic bombardment (Paré et al., 1997). Furthermore, a distinct subgroup of intrinsically
bursting layer V pyramidal neurons was found to influence the rhythmicity of active and silent
state alterations in mouse brain slices in vitro (Lőrincz et al., 2015).

Role of extracortical inputs. Input from subcortical structures can profoundly alter the
expression of the slow oscillation (Sheroziya and Timofeev, 2014; Lemieux et al., 2014). The
block of thalamic output to the neocortex significantly decreases the frequency of slow waves
(Rigas and Castro-Alamancos, 2007; Hirata and Castro-Alamancos, 2010; David et al., 2013).
External stimuli may affect cortical dynamics during deep sleep, however, the information
content is masked by the stereotyped bursts of the relaying TC neurons. Paradoxically, it has
been reported that cortical dynamics during active states are insensitive to thalamic inputs in
thalamocortical slices of mouse somatosensory cortex in vitro (Watson et al., 2008).

Role of astrocytes. Astrocytes have also been suspected to play a role in shaping slow-
wave activity by tuning extracellular glutamate concentrations (Poskanzer and Yuste, 2011,
2016). Extracellular glutamate in turn can have a variety of effects on cortical pyramidal neu-
rons, such as desensitization of glutamate receptors (Featherstone and Shippy, 2008), inhibition
of several potassium channels (Anwyl, 1999) and generation of NMDA spikes (Chalifoux and
Carter, 2011).

Origin, propagation and local regulation. Slow oscillations can in principle be initi-
ated everywhere on the cortex, but tend to propagate from medial frontal cortex to the medial
temporal lobe and hippocampus (Nir et al., 2011). They were recorded in associative, motor, so-
matosensory, and visual cortices (Chauvette et al., 2011). Notably, at least one study in humans
reports that not all cortical areas participate in the slow oscillation, in particular the cingulate
gyrus and other deep midline structures (Wennberg, 2010). At the scalp level, slow oscillations
seem to be global events that behave like traveling waves (Massimini et al., 2004; Murphy
et al., 2009). However, intracranial recordings in humans and rodents reveal a different, more
complex picture (Hangya et al., 2011; Mohajerani et al., 2010). Activity spreads along typical
pathways and is determined by the cumulative drive of afferents that have just transitioned to

6



1.3. Delta oscillations

an active state (Fucke et al., 2011; Nir et al., 2011; Chauvette et al., 2010). Learning and inten-
sive use leads to localized increases of slow-wave activity in human sleep (Huber et al., 2004,
2006).

Furthermore, in humans the origin of slow oscillations is age-dependent, moving from posterior
cortical regions in early life to frontal regions during adolescence (Kurth et al., 2010).

Electrophysiological correlates. In the local field potential, silent states appear as
depth-positive and active states as depth-negative wave. However, the polarity reverses towards
superficial layers. In the EEG, positive peaks correspond to depth-negative waves and vice
versa (Nir et al., 2011; Csercsa et al., 2010; Cash et al., 2009; Wennberg, 2010). Note that this
also depends on the location of the reference electrode.

K-complex. The K-complex (KC) is an isolated sharp negative deflection in the EEG and
occurs during light non-REM sleep (N2) at the pace of the intracellular SO (Amzica and Ste-
riade, 1997b). It is often followed by a prominent positive half wave and a spindle oscillation
(Mölle et al., 2002). Common variations of this theme are multiple peaks in the negative com-
ponent or an initial positive bump before the negative-positive sequence. The K-complex has
long been viewed as an independent phenomenon, but is now believed to be the EEG expres-
sion of an isolated silent state (Steriade and Amzica, 1998; Cash et al., 2009; Wennberg, 2010).
The negative peak of the KC marks the transition to the cellular active state (Nir et al., 2011).
The components of peripherally evoked KCs were found to have typical latencies, namely the
P200, N550 and P900 peaks (Bastien et al., 2002; Laurino et al., 2014). It was suggested that
these components are not independent and share a common generation mechanism. Sometimes
later components (N1500, P1900) with smaller amplitude are reported too (Colrain, 2005).

1.3. Delta oscillations

Several sources contribute to the delta band (1−4 Hz) in the EEG. One is of thalamic origin, the
other is generated in the cortex. Furthermore, the non-sinusoidal wave form of the K-complex
produces higher harmonics that lie in the delta band (Amzica and Steriade, 1997b).

Delta and slow oscillations represent two distinct phenomena. The latter declines in activity
from the first to the second non-REM sleep episode, whereas the former does not (Achermann
and Borbély, 1997).

Thalamic delta. Thalamocortical (TC) neurons in the thalamus are able to generate a ste-
reotyped, clock-like delta rhythm in isolation via an interplay between their low-threshold Ca2+

current, IT, and the hyperpolarization-activated cation current, Ih (Steriade et al., 1993a). It was
also shown that at a certain level of leak current, the “window” component of IT in TC neurons
may create delta oscillations (Williams et al., 1997).

Due to the lack of connectivity between thalamocortical neurons, those oscillations in general
do not synchronize on their own (Timofeev and Steriade, 1996). External signals such as K-
complexes or slow oscillations, however, do exert a synchronizing influence on thalamocortical
neurons. They in turn project to the cortex, where they may lead to switching between active
and silent states at the frequency of the delta volley. The thalamus perceives cortical silent
states as a cessation of excitatatory inputs that causes a hyperpolarization. Simulations suggest,
that self-sustained delta oscillations can easily be reset to a new phase by cortical input (Lytton
et al., 1996).
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Delta oscillations also possess a sleep stage dependence, which might be related to the slowing
of K-complexes with deepening of sleep (Amzica and Steriade, 1998; Olbrich and Achermann,
2005). The frequency of the TC delta oscillation is increased at more negative membrane volt-
age (Dossi et al., 1992).

Delta oscillations are generated at a more negative voltage than spindles (Steriade et al., 1991,
1993a). The prerequisite for the appearance of delta waves in TC neurons is the hyperpolariza-
tion to levels between -65 and -90 mV, so that IT is deinactivated sufficiently (McCormick and
Pape, 1990; Leresche et al., 1991; Soltesz et al., 1991; Dossi et al., 1992). On average it starts
at -71 mV. Beyond -90 mV no delta oscillation is observed (Steriade, 2003; Dossi et al., 1992).
Moreover, delta oscillations and spindles oscillations were postulated to be mutually exclusive
(Nunez et al., 1992).

Cortical delta. Another delta oscillation is presumably generated within the cortex, be-
cause it can be recorded even after extensive thalamectomy (Ball et al., 1977; Villablanca,
1972). Combined EEG/PET and EEG/fMRI studies found strong association of EEG delta ac-
tivity with activity in ventromedial prefrontal regions. (Dang-Vu et al., 2005, 2008). A recent in
vitro study in cortical slices of the rat also demonstrated the ability of isolated cortical tissue to
generate a delta rhythm (Carracedo et al., 2013). There is evidence that cortical delta is driven
by a population of intrinsically bursting neurons, which discharges at 3-4 Hz upon depolar-
ization (Amzica and Steriade, 1998). An interesting observation comes from Steriade (2003),
who noted that depth-positive delta waves are associated with a diminished discharge rate or
even firing suppression that is generated by summation of long-lasting afterhyperpolarizations
(AHPs) produced by a variety of K+ currents in deeply lying pyramidal neurons (Schwindt
et al., 1988a,b).

1.4. Spindle oscillations

Spindle oscillations are field potentials in the EEG with a frequency of 9-15 Hz and a bell
shaped amplitude envelope, similar to Gabor wavelets (Figure 1.2). They last 0.5-3 s, recur
every 4-15 s and are typically observed during the light stages of non-REM sleep (N2), of-
ten during the active phases of slow oscillations (Achermann and Borbély, 1997; Olbrich and
Achermann, 2008; Panas et al., 2013). In vivo, in vitro, and modeling studies suggest that the
minimal substrate contributing to the generation of spindle oscillations is the thalamus (Steri-
ade and Deschenes, 1984; Steriade et al., 1985, 1987; Steriade and Llinás, 1988; Von Krosigk
et al., 1993). Spindles are also visible in the hippocampus (Sullivan et al., 2014; Andrillon
et al., 2011).

Generation of spindle oscillations. The ”classic“ theory of sleep spindle generation is
by the reciprocal interaction of inhibitory reticular thalamic (RE) and excitatory thalamocorti-
cal (TC) neurons (Timofeev and Bazhenov, 2005). A spontaneous burst in the RE population
causes hyperpolarization in the TC population, which deinactivates its T-type calcium current.
Upon release from inhibition a rebound of activity occurs that in turn drives the RE population
to produce another burst. Oscillations at spindle frequency may be sustained in an isolated net-
work of RE neurons (Steriade et al., 1987; Destexhe et al., 1994; Golomb et al., 1994), but see
Ulrich and Huguenard (1997) for a study that argues against this possibility. Underlying the
ability of TC and RE cells to produce rhythmic burst activity is the presence of a T-type Ca2+

current, which deinactivates upon hyperpolarization (Huguenard, 1996; Astori et al., 2011).
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Subsequent excitation causes the transient activation of this current, which leads to a slow de-
polarization called the low-threshold spike (LTS) (Llinás and Jahnsen, 1982). The LTS is often
crowned by 2-5 fast Na+ spikes, at a rate of≈ 300 Hz (Nunez et al., 1992). The hyperpolarizing
drive to keep this machinery going is provided by a potassium leak current, whose conductance
is increased due to lowered acetylcholine levels during non-REM sleep (Steriade et al., 1990).
Besides the T-type current, Ca2+-dependent small-conductance (SK)-type K+ channels and
sarco/endoplasmic reticulum Ca2+-ATPases have also been shown to significantly impact the
burst behavior of RE cells (Cueni et al., 2008). Interestingly, a study in knock-out mice lacking
T-type Ca2+ channels in TC nerons reported normal spindle activity despite the absence of LTS
(Lee et al., 2013).

Termination of spindle sequences. Several mechanisms have been suggested for the
termination of a spindle sequence. Intrinsic slow activity-dependent positive feedback in either
TC (Destexhe et al., 1996a; Bal and McCormick, 1996; Lüthi and McCormick, 1998, 1999)
or RE cells (Kim and Mccormick, 1998) during spindle oscillations increasingly counteracts
their ability to produce a LTS and determine the inter-spindle lull (Contreras et al., 1997; Des-
texhe and Sejnowski, 2003; Timofeev and Bazhenov, 2005). In TC cells, this is mediated by a
hyperpolarization-activated cation current, Ih. However, up-regulation of Ih alone was insuffi-
cient to terminate spindling (Steriade, 2003).

Another important source of spindle desynchronization is thought to be the corticothalamic
input, which progressively increases during a spindle. In cats anesthetized with ketamine-
xylazine, the length of spindles is less than 400 ms, while after decortication spindles last
more than 1 second (Timofeev et al., 2001a; Bonjean et al., 2011).

In contrast, a recent study during natural sleep in vivo indicates that termination of spindles
is controlled by inhibition from the reticular nucleus, which in turn depends on network state
(Barthó et al., 2014). The precise mechanism remained unclear. A possible explanation comes
from a theoretical investigation by Langdon et al. (2012). There it was shown that the reticular
nucleus is multistable and can switch between a homogenous oscillatory state, mutli-cluster
oscillations and silence. Furthermore, the inhibition involved may not be synaptic, but extra-
synaptic (Rovó et al., 2014).

Interaction with slow oscillation. Similar to slow oscillations, the full expression of
spindle rhythms depends on the interplay of the thalamus and neocortex (Bonjean et al., 2011;
David et al., 2013; Sheroziya and Timofeev, 2014). Cortical input synchronizes spindles locally
(Contreras et al., 1996a; Contreras and Steriade, 1996; Contreras et al., 1997) and is effective
in initiating spindles in the RE nucleus (Steriade et al., 1993a).

Spindle types. Despite the synchronizing influence of slow oscillations, spindle oscilla-
tions often occur independently and localized in different brain regions (Nir et al., 2011; An-
drillon et al., 2011; Frauscher et al., 2015; Peter-Derex et al., 2012), which might in part be
due to the existence of several distinct thalamic nuclei (Jones, 2001, 2002; Groh et al., 2014;
Sherman, 2005; Slezia et al., 2011; Sheroziya and Timofeev, 2014). Topographically specific
sleep spindles have also been found in mice (Kim et al., 2015).

At least two major types of spindles can be distinguished, which differ in frequency, topography
and possibly function: slow spindles (9-12 Hz), that are found at frontal cortical sites, and fast
spindles (12-15 Hz) with centro-parietal prevalence (Jobert et al., 1992; Żygierewicz et al.,
1999; Anderer et al., 2001).
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The mechanisms of these two types of spindles appear to be different. The fast spindles are usu-
ally triggered at a transition from silent to active states of the SO (Mölle et al., 2002), but slow
spindles are usually either independent of the SO or their onset is at a transition from active to
silent states (Mölle et al., 2011). Whether there is a temporal relation such that slow spindles
precede fast spindles or the other way around is still not resolved. Many studies conclude that
fast spindles occur before slow spindles (Andrillon et al., 2011; Mölle et al., 2011), but at least
in auditory evoked responses, slow spindles precede fast spindles (Weigenand et al., 2016). Op-
togenetic excitation of reticular thalamic nucleus neurons in mice triggered spindle activities in
the somatosensory cortex without any spindle oscillation in the corresponding thalamic nuclei
(Halassa et al., 2011). Systemic administration of the T-type Ca2+-current antagonist flunar-
izine reduced only fast spindles suggesting the classic mechanism of generation was disturbed.
In contrast, administration of the voltage-dependent Na+ channels antagonist carbamazepine
increased only slow spindles (Ayoub et al., 2013). Therefore, only properties of fast spindles
correspond to the classic mechanism. The mechanisms of generation of slow spindles remain
to be investigated.

Sleep stage dependence. The frequency of fast spindles exhibits a sleep stage depen-
dence, with lower frequencies at deeper sleep stages, which leads to a U-shape in the spec-
trogram when going from light non-REM to deep non-REM and back to a lighter sleep stage
(Himanen et al., 2002; Olbrich and Achermann, 2005). Their density is maximal in sleep stage
N2 and increases during the course of the night (Dijk et al., 1993; Knoblauch et al., 2003;
Olbrich and Achermann, 2008; Nir et al., 2011).

1.5. Models of the cortical slow oscillation

From experiments it is clear that bistability or transient switching to active or silent states is
not an intrinsic property of single neurons, but mediated by some kind of network effect. Firing
during the active state of slow oscillations must be asynchronous and firing rates must be in
a reasonably low range (1-50 Hz). Furthermore, transitions to the active state should occur
(quasi) synchronously across the whole network, not restricted to localized parts of it.

Sustained firing has been proposed to be a result of recurrent activity and is the expression of
network attractors. Models of slow oscillations can be classified by how these attractors are
initiated, maintained and terminated in cortical circuits. In general, self-sustained oscillations
involve a positive and a negative feedback loop at different time scales. The negative feed-
back loop is either mediated by activity-dependent hyperpolarizing currents (additive), synap-
tic (multiplicative) adaptation or feedforward inhibition via an inhibitory neuron population.
A negative feedback loop is not required if transitions between states are noise driven (Fig-
ure 1.3).

Different model types can be used to answer different questions. While biologically realistic
network models allow to relate to intracellular data, investigate the time course of membrane
potentials, timing of synaptic inputs, synchrony, correlations etc. they are hard to analyze and
tend to obscure the mechanisms that determine their dynamics. Rate models and their relatives,
neural mass models and mean-field models, on the other side often allow exact and comprehen-
sive statements about the dynamic repertoir of a model and the stability of states via bifurcation
analysis. They have shown great success in elucidating the generation of brain rhythms and
evoked responses of the awake brain (Wilson and Cowan, 1973; Lopes da Silva et al., 1974;
Jansen et al., 1993; Kerr et al., 2007). They describe the dynamics of a large number of cells
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1.5. Models of the cortical slow oscillation

Figure 1.3.: Illustration of oscillation types. Relaxation oscillations: typically nonsinusoidal oscilla-
tions, where slow drifts (relaxation) alternate with quick transitions between states. Hopf oscillation: a
more sinusoidal oscillation compare to relaxation oscillations. Noise driven transitions: although not a
true oscillation, frequent noise driven transitions between stable states may appear oscillatory.

by the evolution of a single population average and provide an output which directly relates to
EEG signals (Coombes, 2005; Deco et al., 2008).

Spike-dependent adaptation. Activity-dependent feedback via slow potassium channels
has been suggested as a mechanism for the generation of SOs and KCs because of their sen-
sitivity to the sleep related neuromodulator acetylcholine and their implication in the slow
afterhyperpolarization (Steriade et al., 1993b; Hasselmo and Giocomo, 2006).

Timofeev et al. (2000) developed a cortical model of the slow oscillation comprising pyramidal
and interneurons, AMPA and GABAA synapses with short-term depression (STD) (Tsodyks
et al., 1998). It is based on observations from isolated cortical slabs in cats. The transition
to the active state was achieved by spontaneously (stochastically) occuring miniature PSPs
(excitatory and inhibitory) (Bekkers and Stevens, 1995), which can increase the membrane
potential so much that a persistent sodium current, INa(p), (Kay et al., 1998; Alzheimer et al.,
1993) is activated, which in turn drives spiking. Termination of active states was proposed to
be mediated by slow adaptation currents, such as a Ca2+-dependent K+ current, and synaptic
depression.

The model of Bazhenov et al. (2002) builds on the same mechanisms as (Timofeev et al., 2000)
and extends it to a thalamocortical network model, with additional slow NMDA and GABAB

conductances. The thalamus model consists of RE and TC neurons, which contained IT and Ih

currents for the ”classic“ spindle generation mechanism.

Bonjean et al. (2012) extended the model of Bazhenov et al. (2002) to have 3 cortical layers
(layer II/III/IV, layer V, layer VI) and distinguished between thalamic core and matrix subpop-
ulations, which project to different cortical layers. A version with only two cortical layers was
subsequently used by Chen et al. (2012) to highlight the role of the inhibitory population in
active state termination. Both, increased feedforward inhibition and increased excitability of
interneurons lead to higher synchrony of active to silent transitions.

Wei et al. (2016) added spike-timing-dependent plasticity (STDP) to the model of Bonjean
et al. (2012) in order to explain the influence of hippocampal replay on the formation of spike

11



1. Introduction

patterns and, thus, memory consolidation.

The model of Compte et al. (2003) is very similar to Bazhenov et al. (2002), but restricted to
the cortex and based on in vitro data from ferret visual cortex slices (Sanchez-Vives and Mc-
Cormick, 2000). It does not include mPSPs and no short-term depression. Activity in the net-
work is initiated by neurons, which spontaneously fire due to higher intrinsic excitability (pace-
maker neurons). Among others channels, the model additionally includes a Na+-dependent K+

current as slow activity-dependent adaptation mechanism. Although it was not explicitly im-
plemented, the model exhibits rhythmicity in the beta and gamma range during active states
(Compte et al., 2008). Isolated model neurons were only weakly correlated with the global
rhythm, as it was in measurements. Furthermore, it successfully captures modulation of active
states by changes in synaptic inhibition (Sanchez-Vives et al., 2010) and propagation speed
(Sanchez-Vives et al., 2008).

A version with simplified synapses (instantaneous rise, exponential decay) was used to re-
produce the effects of weak electric fields on the slow oscillation in vitro (Fröhlich and Mc-
Cormick, 2010).

Short-term depression was added to the version of Compte et al. (2003) by Benita et al. (2012)
to study the different expression of short-term depression between active and silent states ob-
served by Reig and Sanchez-Vives (2007). Interestingly, an increase of short-term depression
lead to a stabilization of active states and abolished silent states. Decreasing synaptic depres-
sion resulted in higher firing rates of both excitatory and inhibitory neurons, which shortened
active states due to larger slow acitivity-dependent potassium conductances.

An elaborate thalamocortical model comprising two visual cortical areas with three layers and
associated thalmocortical and thalamic reticular nuclei is presented in Hill and Tononi (2005).
A change in leak conductance counteracts excitation and brings the system into a state where
transitions to silent states are possible. As in (Compte et al., 2003) and Bazhenov et al. (2002)
depolarization/activity-dependent currents build up during the active state and lead to its ter-
mination, together with short-term synaptic depression. A persistent sodium current helps to
maintain the active state, but is primarily needed for its initiation, together with a hyperpolar-
ization activated current. Sources of noise are mPSPs as well as external Poisson input.

The model was subsequently used by Esser et al. (2007) to model the impact of decreased
synaptic strength on the properties of slow oscillations and its EEG correlates. In Olcese et al.
(2010) this effect was achieved using STDP in the same model.

Activity-dependent adaptation. The main criticism regarding a spike-dependent adapta-
tion mechanism is that firing rates during active states are usually low so that adaptation would
not be sufficient to cause transitions to the silent state. However, activity-dependent mecha-
nisms can also simply be based on depolarization, not requiring spiking.

Ghorbani et al. (2012) developed a rate model encompassing an excitatory and an inhibitory
population that is capable of slow oscillatory activity. Instead of deploying synaptic or so-
matic adaptation they postulate a mechanism that mimics dendritic spike-frequency adaptation
and only affects excitatory-excitatory synapses. Nevertheless, this approach is analogous to the
synaptic depression mechanism deployed in Holcman and Tsodyks (2006). Only the functional
form differs slightly, by an additional sigmoidal nonlinearity. The noise free model performs
chaotic relaxation oscillations (Figure 1.3) - a property inherited by the multiplicative adapta-
tion mechanism (Cortes et al., 2013). The active state is close to a Hopf bifurcation, which may
induce prominent afteroscillations in the gamma range upon transition to the active state.
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1.5. Models of the cortical slow oscillation

A slow activity-dependent ionic mechanism has also been incorporated in the mean-field model
introduced by Molaee-Ardekani (2007), where it modulates the shape of the sigmoidal firing
rate function.

Curto et al. (2009) used the Fitzhugh-Nagumo model to investigate dynamics of multiunit activ-
ity in auditory cortex of urethane-anesthetized rats, as phenomenological approach motivated
by heuristic arguments. Basically, the model provides a rich set of dynamics, e.g., bistability,
and fits the data surprisingly well. In hindsight the model could be interpreted as one dimen-
sional rate model with slow negative feedback, as in (Compte et al., 2003) and Bazhenov et al.
(2002).

Mattia and Sanchez-Vives (2011) use network simulations and a simple rate model to empha-
size the necessity of some activity-dependent mechanism, synaptic or somatic, in addition to
bistability to achieve temporal correlations in the durations of active and silent states and to
produce regimes akin to relaxation oscillations. This way an anti-correlation between active
and silent state durations can be produced, as has been observed for the very regular slow
oscillation activity in ferret brain slices in vitro.

Short-term depression. (Holcman and Tsodyks, 2006) use a noise driven rate model with
one equation describing the mean activity of an excitatory population and a second equation
for the mean rate of synaptic depression, based on a phenomenological model for short-term
plasticity Markram et al. (1997); Tsodyks et al. (1998). Among other regimes, the model can
have two stable fixed points, separated by an unstable limit cylce around the active state. This
limit cycle may lead to large population spikes when the silent state gets sufficiently perturbed.
During a spike, noise may push the system into the basin of attraction of the active state,
which generates a typical overshoot on the transition from silent to active states. The presence
of the limit cycle also leads to noise driven oscillations when in the active state. Transitions
between states are purely noise driven. They report that adding an inhibitory population does
not change their results qualitatively. Notably, network models with similar mechanisms are
used to explain working memory (Barak and Tsodyks, 2007; Mongillo et al., 2008).

Deploying a synaptic short-term depression mechanism Millman et al. (2010) demonstrate in
a noise driven network of excitatory leaky integrate-and-fire neurons that active states exhibit
self-organized criticality and neural avalanches. In their model active state durations are also
exponentially distributed.

Mejias et al. (2010) analyze a bistable rate model model conceptually equivalent to that of
Holcman and Tsodyks (2006), but contains an additional noise term in the equation for synap-
tic depression. They show that in this model active state dynamics can be described by an
Ornstein-Uhlenbeck process and derive analytical solutions for the distribution of active state
durations - a power law with exponent −3/2. Without noisy synapses the distribution would
be exponential. A regime with well defined active state duration can also be found.

Short-term facilitation and feedforward inhibition. Holcman and Tsodyks (2006)
also investigated the emergence of bistability in a noise-free, wilson-cowan type firing rate
model with facilitating excitatory synapses onto interneurons (Melamed et al., 2008), which
have been observed in animal studies (Silberberg and Markram, 2007; Reyes et al., 1998;
Thomson et al., 1993; Markram et al., 1998). The same model of short-term plasticity was
used as in Holcman and Tsodyks (2006); Tsodyks et al. (1998). They show that such feedfor-
ward inhibition shapes the frequency of slow oscillations and determines the profile of active
and silent states. The transition from silent to active states occurs via increased excitability and
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low inhibition in the network, similar to the model by Compte et al. (2003). Up states termi-
nate due to increased feedforward inhibition, as in (Parga and Abbott, 2007; Chen et al., 2012;
Krishnamurthy et al., 2012). As there is no noise input to the model it oscillates regularly be-
tween active and silent states, as in relaxation oscillations. The authors point out that inhibitory
conductance increases throughout the active state, which is in contrast with experimental ob-
servations (Contreras et al., 1996b; Shu et al., 2003; Neske et al., 2015).

Interestingly, feedforward inhibition involving NMDA receptors and intriniscally bursting in-
terneurons has been reported to be responsible for the generation of cortical delta oscillations
in vitro Carracedo et al. (2013).

Krishnamurthy et al. (2012) build on the same mechanism as Melamed et al. (2008), but use a
neural network with two interneuron populations, one connected via depressing, the other by
facilitating synapses. They show that the population receiving depressing excitatory synapses
has a high firing rate at the beginning of the active state, while the population receiving facili-
tating synapses fires later in the slow oscillation cycle and tends to terminate the active state.

Increasing the time constant of inhibitory synaptic connections is the mechanism that is used
to induce slow oscillatory activity in some neural mass models of anesthesia (Steyn-Ross et al.,
2013, 1999; Wilson et al., 2005). The increased time constant spreads inhibition in time and
allows recurrent excitation to build up. The delayed impact of inhibition causes the destabiliza-
tion of the active state.

Intrinsic nonlinearity. Parga and Abbott (2007) examine a network of excitatory and in-
hibitory integrate-and-fire neurons endowed with a cubic nonlinearity and static synapses. The
cubic nonlinearity leads to bistability in connection with synaptic currents induced by popu-
lation activity. There is no bistability in isolated neurons. Noise drives the transitions between
active and silent states and the network is truly bistable, i.e., no oscillatory regime or canard
explosions were reported. As in other models (Compte et al., 2003; Hill and Tononi, 2005;
Kang et al., 2004) some neurons are persistently active due to randomness in the parameters
and lead the whole network into the active state.

Importantly, only inhibition seems to be able to induce a switch from the active to the silent
state, which is at odds with experimental observations (Shu et al., 2003). There remains the
possibility that this is only due to the specific choices of parameters and short stimuli used.
The model contains spike-frequency adaptation, which should be able to shift the excita-
tion/inhibition balance upon an extended excitatory stimulus. However, spike-frequency adap-
tation is actually not the critical component of the proposed mechanism.

Deco et al. (2009) use a data driven approach to capture the slow oscillation dynamics under-
lying intracellular recordings of slow oscillations. They assume a one dimensional stochastic
rate model with piecewise quadratic nonlinearity, that efficiently parameterizes doublewell-like
energy functions. Hence, the system allows the presence of several fixed points, but no other
bifurcations/oscillations are present. Transitions between attractor states are purely driven by
noise. The fitted model accurately captures the distribution of durations of active and silent
states for light ketamine-xylacine anesthesia in rats, but deviates for deep anesthesia.

A large set of mechanisms leading to slow oscillations has been investigated. However, little
work has been done in trying to find unique signatures that can unambiguously distinguish
between them. In the neural mass framework somatic (additive) and synaptic (multiplicative)
adaptation mechanisms have been discussed by Loxley and Robinson (2007). An attempt to
distinguish the contributions of additive and multiplicative adaptation in slow oscillation gen-
eration has been presented by Tabak et al. (2011).
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2. Model I: The cortical slow oscillation
as phase oscillator

Parts of this chapter have been published in Weigenand et al. (2012). Networks of neurons can
be approximated as one large oscillator, if they exhibit collective oscillations (Grannan et al.,
1993). Indeed, the cortical slow oscillation can be very regular in brain slices and under deep
anesthesia, with pronounced peaks in the distribution of durations of up and down states (Deco
et al., 2009; Steriade, 2006). In this chapter we regard the neural substrate underlying slow
oscillations as phase oscillator and obtain, based on computational models, predictions for the
phase response curve (PRC) of mammalian cortex during deep sleep or deep anesthesia for a
wide range of stimulus strengths.

The PRC is a map that describes how an oscillating system reacts in response to single pulses
(Granada et al., 2009). Phase oscillator models have a long tradition and were successfully
applied to study the interaction between systems (Acebrón et al., 2005; Smeal et al., 2010).
Knowing the PRC one has a valuable tool to analyze the influence of external stimulation, e.g.,
electric, magnetic or sensory stimulation, on cortical sleep rhythms and also to investigate the
interaction of the sleeping cortex with other brain structures, like hippocampus and thalamus.
These interactions are assumed to be of substantial relevance for memory consolidation and
transfer of memories between brain regions (Peyrache et al., 2009). However, only few analyti-
cal results exist for the PRCs of ensembles of oscillators (Levnajić and Pikovsky, 2010; Ko and
Ermentrout, 2009; Kori et al., 2009). Here, we numerically study the case where the collective
rhythm is a network effect and is not present in the isolated elements of the network.

The basic dynamics of slow oscillations can be modeled by a discrete-time integrate-and-fire
model having intrinsic inhibitory currents but lacking inhibitory connections (Ngo et al., 2010).
It would be desirable to validate and transfer this result to a biophysically more detailed model:
Cortical tissue ubiquitously is made of excitatory and inhibitory neural subpopulations con-
nected recurrently in a spatially distributed network. In addition, modeling of spike shapes or
the effects of neuromodulators requires incorporation of the respective ion channels. Moreover,
in many situations a certain degree of biological realism is required to be able to relate to an ex-
periment. Therefore, the established conductance-based cortex model by Compte et al. (2003)
was used and the double pulse stimulation protocol described by Shu et al. (2003) was applied
to this network.

Using ferret brain slices, Shu et al. (2003) characterized the response of slow-oscillation-like
recurrent activity to a variety of current pulses. Their main finding was that up states can not
only be triggered by applying a depolarizing current pulse, but can likewise be terminated
this way. The up state duration is a function of time between two pulses and their intensity
(Figure 2.2). Increasing the intensity decreased the duration of the up state. Delivery of the
second pulse during recurrent activity terminated it with a delay that depended on the time
since the onset of activity.

This chapter is organized as follows. In section 2.2, we demonstrate that in the biophysically
plausible network model by Compte et al. (2003) it is possible to switch up states on and off
with current pulses and reproduce qualitatively the experiment by Shu et al. (2003). Second,
we build on this result and argue that this model is a suitable candidate for a phase reduction
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2. The cortical slow oscillation as phase oscillator

that can then be used to study interactions of thalamus and hippocampus with the neocortex
during deep sleep. The phase response and phase transition curves for Type 1 (weak) and Type
0 (strong) resetting as well as for intermediate stimulus intensities are presented, that serve as
predictions for experiments. Third, we semi-analytically obtain the infinitesimal PRC from the
mean-field model for up-down state dynamics by Ngo et al. (2010). The network model and the
mean-field model yield qualitatively similar results. Finally, we discuss how the results can be
used in stimulation studies in vivo and to further investigate interactions of cerebral structures
within the phase oscillator framework.

2.1. Model description

The network network model originally introduced by Compte et al. (2003) is conductance-
based and exhibits up-down state dynamics as were observed in ferret brain slices in vitro
(Sanchez-Vives and McCormick, 2000). The model proved its usefulness in several studies
(Sanchez-Vives et al., 2008; Fröhlich and McCormick, 2010; Sanchez-Vives et al., 2010). We
provide the full equations of (Compte et al., 2003) in the appendix A. In the following we state
some of its main features. The system contains 80% regular spiking pyramidal neurons and
20% fast spiking interneurons. The pyramidal neurons possess two compartments and show
spike-frequency adaptation when seeing a constant injected current. Pyramidal neurons are all
excitatory and connect via AMPA and NMDA type synapses. Inhibitory connections are only
formed via GABAA synapses. The transition from the down to the up state is caused by spon-
taneously firing pyramidal neurons and recurrent excitation. Importantly, the model does not
require noise to switch between up and down states and exhibits self sustained activity without
external drive. The mechanism for the termination of up states is the activity dependent build
up of inhibitory currents during the up state. This occurs via a sodium dependent potassium
channel whose activation increases with each spike. The original model uses 1280 neurons in
total. However, one can reduce the size of the system without changing the overall dynamics,
if one also scales down the range of the synaptic connections accordingly. We compared the
behavior of the system for different sizes and found no significant differences. We therefore
chose to work with a system size of only 320 neurons because of the large number of simula-
tions necessary for the results presented in this chapter.

2.2. Network model reproduces characteristic delay of
up-down transition upon stimulation

In this section we show that the network model introduced by Compte et al. (2003) is capable of
qualitatively reproducing the experiment of Shu et al. (2003). Shu and colleagues showed that
cortical activity can be switched on and off externally with excitatory stimuli. In their experi-
ment two short current pulses of same polarity where applied to ferret brain slices exhibiting
spontaneous slow oscillations.

The second pulse was applied during the evoked up state and would lead to a termination of
the up state after a certain delay. That delay was consistent across trials and depended strongly
on the stimulus amplitude and the actual interstimulus interval.

The network is stimulated two times with depolarizing current pulses of same polarity, intensity
and duration. The pulses are applied to all neurons in the network at the same time. The pulse
duration is 10 ms. The first stimulus is applied during the hyperpolarization phase inbetween
two otherwise self–generated up states. We implicitly assume that the external stimulation with
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2.3. The slow oscillation’s phase response curve in a network model and a mean-field model
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Figure 2.1.: Response of neural network to two consecutive strong stimuli as in (Shu et al., 2003).
The first stimulus causes an immediate transition from the down to the up state . The following second
stimulus (straight line within second up state) determines the remaining time the system spends in the
up state (ISI = 310ms, Is = 1µA). It causes a massive influx of calcium which in turn activates the
inhibiting IKCa (not shown) that then leads to the termination of the up state. Only pyramidal neurons
are shown. The stimuli are applied to each neuron in the network.

electric shocks translates into atransmembrane current that equally effects pyramidal neurons
and interneurons. We also point out that stimulating all neurons is in contrast to the experiment,
where the stimulation was applied locally. The protocol is illustrated in the raster plot (model
data) in Figure 2.1. We applied the above stimulation protocol to the network model and yield a
similar dependence of up state duration on stimulus amplitude and interstimulus interval. This
is depicted in Figure 2.2. For comparison see Shu et al. (2003).

The protocol for obtaining a PRC is very similar to paired pulse stimulation. Hence, if a model
reproduces the response to a paired stimulus protocol it is likely that one can obtain the bio-
logically realistic PRC from it. The simulations show that the experimental results obtained by
Shu et al. (2003) are in the strong resetting regime.

2.3. The slow oscillation’s phase response curve in a
network model and a mean-field model

We now present PRCs of the network model introduced above for weak resetting (infinitesi-
mal PRC, Figure 2.5), intermediate stimulus intensities (Figure 2.6) and strong resetting (Fig-
ure 2.7) . The infinitesimal PRC of the network model is compared with the infinitesimal PRC
of the mean-field model introduced by Ngo et al. (2010). As in the network model the mecha-
nism for terminating up states is the activity dependent build up of an inhibiting current. This is
in contrast to rate models of the slow oscillation that are based on fluctuation-driven transitions
between two stable fixed points (Deco et al., 2009; Mejias et al., 2010). Although the models
are of a different class and complexity they lead to PRC’s with similar features.

2.3.1. Phase reduction of network model

The phase θ can assume values between 0 and 1. The beginning of the down state corresponds
to θ = 0 and the end of an up state corresponds to θ = 1, respectively. Determining the
beginning and end of up states from the voltage trace of single neurons of the network was
done with the MAUDS algorithm (Seamari et al., 2007). The phase definition is illustrated in
Figure 2.4.
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2. The cortical slow oscillation as phase oscillator
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Figure 2.2.: Qualitative reproduction of the experimental results reported by Shu et al. (2003) with
the network model. Data points are the average of 5 trials. Two depolarizing stimuli, separated by the
interstimulus interval, where applied (see Figure 2.1). The peaks just before the transition to shorter up
state durations, that are visible in every curve, are an artifact stemming from a heterogenous network
response like the one shown in Figure 2.3. (top) Weak stimuli, e.g., Is = 0.1µA, that already cause
strong resetting only reduce the up state duration by a certain amount, independent of the phase they
are applied at. Increasing the stimulus strength reduces the up state more the more the two stimuli are
apart, until the second stimulus directly terminates an up state. For certain stimulus strengths the second
stimulus ends an up state immediately for almost all interstimulus intervals. (bottom) In the simulations
it was possible to evoke up state like network behavior also with very high stimulus strengths. This
was different from mere after spiking. The higher the stimulus strength was the larger the interstimulus
interval had to be in order to reduce up state durations. This reversed tendency is not covered by (Shu
et al., 2003) and remains to be tested experimentally.
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2.3. The phase response of network and mean-field model
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Figure 2.3.: Disrupting effect of a strong stimulus applied at phases with rapidly changing slope of
the PRC for strong resetting, depicted in Figure 2.7. Stimulus: (Is = 6.7µA, θ ≈ 0.85). As individual
neurons never have identical phases when being in a collective up state it is possible to terminate the up
state in one part of the network while at the same time extending it in another part, thus resulting in an
effective desynchronization of the 1D system.
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Figure 2.4.: Definition of phase resetting in network model and mean-field model. The solid line is
the membrane potential trace produced by the network model averaged over all pyramidal neurons and
smoothed subsequently. The arrow indicates the time when the square pulse of 10ms duration is applied
to the whole network. The pulse I(t) causes a phase reset that can delay or advance the oscillation
(dashed line). We defined phases 0 and 1 to be the beginning of a down state/end of an up state. The
phase reset is ∆θ = ∆t

T .
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2. The cortical slow oscillation as phase oscillator

Figure 2.5.: Comparison of the two estimates of the slow oscillation’s infinitesimal PRC. The dashed
curves show the phase of the unperturbed oscillation in both plots and are in arbitrary units. Left: PRC of
the network model for I = 19nA. Black dots are from direct perturbation of the network at the respective
phase θ. The solid curve is a Fourier approximation of the data points of order 7. The voltage trace was
obtained by averaging one oscillation period over all pyramidal neurons and subsequent smoothing.
Right: PRC of mean field model with df = 0.17, db = 0.98, C = 0.6, σ = 0.05, λν = 0.96, λµ = 0.9,
g = 0.1,h = 0.2. The parameters where chosen to closely match the PRC of the network model. The
model has a similar qualitative behavior over a wide range of parameters. In both models stimulation
is ineffective right after an up state. It has the largest impact at the end of the down state right before
the transition to the up state. Within the up state, stimulation initially leads to a phase advance, i.e., a
reduced up state duration. During the following up-to-down transition a phase delay is possible resulting
in a prolonged up state.

The phase reset ∆θ is defined as the phase difference between the perturbed and unperturbed
system as

∆θ = θ − θ =
∆t

T
, (2.1)

where θ is the new phase of the system immediately after the perturbation and θ is the phase in
the unperturbed system at which the stimulus was applied. ∆t and T are as in Figure 2.4. The
new phase is calculated from the simulation data via

θ = 1− td − ts
T

(2.2)

with T being the oscillation period, td the beginning of the down state following the per-
turbation and ts the time when the perturbation is applied. The old phase θ is (ts − t2)/T ,
where t2 is the beginning of the down state before the perturbing stimulus. The PRC simply is
PRC(θ) = ∆θ(θ), i.e., it describes the phase resetting at all phases θ of an oscillation. Quan-
tifying the effect of external electric stimulation on a neuron is not trivial and a field of active
research (Reato et al., 2010; Radman et al., 2007). However, for determining the PRC in the
weak coupling regime this is not an issue because of the infinitesimal nature of the perturba-
tion. The PRC can be defined with respect to conductance changes or with respect to current
perturbations. We chose the latter option as this is more general and reflects only the intrinsic
properties of a neuron. It has been shown that both approaches are equivalent (Achuthan et al.,
2010). First, we calculated θ and θ for 50 different stimulus times, seperately for each neuron
in the network. The perturbation is applied to all neurons at the same time but of course they
are all in a slightly different phase of their oscillation. Because of that, we then used nearest
neighbor interpolation to transform the data points (θ, θ) to an equidistant grid. Finally, the
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2.3. The phase response of network and mean-field model

ensemble phase is determined using the order parameter

Z =
1

N

N∑
k=1

ei2πθk = Rei2πΘ (2.3)

withN being the number of pyramidal neurons. The ensemble phase Θ is then Θ = argZ. The
infinitesimal PRC of the network model is depicted in Figure 2.5 (left). For stimulus ampli-
tudes up to about 19nA it scales linearly with stimulus amplitude. Figure 2.6 shows the PRC’s
dependence on intermediate stimulus intensities. Between 19nA and ca 400nA the PRC is still
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Figure 2.6.: Dependence of the network model’s PRC on stimulus strength Is. The PRC tilts to the
left as the stimulus strength increases. Note that the phase resetting is only normalized to the oscillation
period and not to Is.

topologically equivalent to the infinitesimal PRC but does not scale linearly with stimulus in-
tensities anymore.

2.3.2. Phase reduction of mean-field model

Ngo et al. (2010) recently introduced a minimal model for the generation of cortical up and
down states The original model of Ngo et al. (2010) is a time-discrete map. The full model,
reformulated as system of differential equations, is

dx

dt
=
(

1 + e−β(Cx−df−ϑ)
)−1
− x (2.4a)

dµ

dt
= λµµ+ gx− µ (2.4b)

dϑ

dt
= λϑϑ+ h

(
1 + e−β(µ−db)

)−1
− ϑ. (2.4c)

The variable x ranges between 0 and 1 and describes to what extent the population is active.
µ is an activity dependent variable that increases when x is active and could be interpreted as
calcium current. ϑ has an inhibiting effect on x and is triggered by µ. It could be interpreted as
calcium dependent potassium current. β describes the noise level of the population, C stands
for the coupling strength, df is a constant firing threshold and λµ and λϑ are recovery rates of
µ and ϑ respectively.

XPP was then used to numerically obtain the PRC. The result is shown in Figure 2.5 (right).
The parameters of the mean-field model were chosen to closely match phases of up and down
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2. The cortical slow oscillation as phase oscillator
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Figure 2.7.: Phase transition curves (PTCs) of the network model for Type 0 (strong) resetting.
The solid line marks the condition θ = θ, e.g., slope 1. The shortening of an up state that results from
a stimulation at θ = [0.1 . . . 0.75] is almost independent of the stimulus intensity, as indicated by the
overlapping curves in that range. Significant differences are apparent at the transition from up to down
state and down to up state, respectively. (top) The PTCs mostly stay above θ = θ, indicating that in
this intensity range up state durations can only be decreased. (bottom) The model predicts that there is
a refractory period only for mediumly strong stimuli (Is = [23.2, 43, 58.7] · µA), as the phase transition
curve is close to θ = 1. Also, the slopes near the state transitions are steeper for strong stimuli. Hence,
it is more likely for very strong stimuli to have the desynchronizing effect shown in Figure 2.3.

states and PRC of the network model. According to this model perturbations have the largest
influence in a relatively short time window right before the transition to the up state and lead to a
phase advance, i.e., a shortening of the down state. At the beginning of an up state perturbations
also lead to a phase advance and a shortening of the up state, however only to a comparatively
small extent. Perturbations toward the end of an up state have a larger impact, leading to a
phase delay and hence can prolong the up state.

Figure 2.8 illustrates the formation of traveling waves and their entrainment by external stim-
ulation in a 2D network of weakly coupled phase oscillators, endowed with the PRC of the
mean-field model.
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2.4. Discussion

Figure 2.8.: Wave propagation in a network of phase oscillators. The images depict snapshots of
the phases of an array of 200x200 weakly coupled phase oscillators at different points in time. The
units are arranged as two-dimensional grid and each unit is coupled locally to its four nearest neighbors.
The phase response curve of the oscillators is the one derived from the mean-field model (Figure 2.5,
right). The frequency of unit (0,100), middle left in images, is fixed, i.e., an external forcing is applied.
(t = 1)Random initial state. (t = 25) Increasing homogeneity of phases. (t = 61) Appearance of several
local wave generators (red blobs). (t = 111) Reduced number of local wave generators. Periodically
forced unit (0,100) begins to dominate wave pattern. (t = 200) Wave fronts regularly originate from
unit (0,100). Only minor irregularities in propagation pattern remain. (t = 300) Regular wave propation
pattern originating from externally driven phase oscillator (0,100) is established.

2.4. Discussion

We obtained a testable prediction for the PRC of the neocortex during deep sleep and for slices
of cortex tissue exhibiting up and down states. In the weak resetting regime we found type II
PRCs with similar features for two different models that reproduce many aspects of up and
down states in slices. The obtained PRCs show maximal responsiveness to be close to the
transition to the up state. This is in agreement with evoked potential studies (Massimini, 2002).
In the strong resetting regime both models also conform to the experimental results by Shu et al.
(2003). The results strictly apply only to ferret brain slices, as both investigated models build
on observations from those preparations. However, considering the universality of sleep and
related phenomena like spindles and hippocampal ripples across mammals the results should,
at least qualitatively, translate to other species as well.

Treating a neural population as phase oscillator is a strong simplification that is not justified
in general. However, slow oscillations during deep sleep and deep anesthesia present a rare
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2. The cortical slow oscillation as phase oscillator

case where this approximation can be valid, because they exhibit a high degree of regularity.
Theoretical investigations predict a power law distribution (Mejias et al., 2010) of the residence
times in up and down states but also showed that a purely fluctuation driven transition between
up and down states is not sufficient to account for the statistics of residence times (Deco et al.,
2009). Rather, the probability density function obtained from experimental data is unimodal
and centered on a preferred frequency not close to zero (Deco et al., 2009), which is in contrast
to the theoretically derived power law distribution (Mejias et al., 2010).

The population activity of network and mean-field model is reminiscent of relaxation oscilla-
tions and phase model theory can be used to predict the synchronization behavior (Izhikevich,
2000; Varkonyi and Holmes, 2008). In particular, phase equations of a relaxation oscillator are
appropriate to describe its synchronization behavior if coupling is weak and the oscillator is
not close to the limiting case of discontinuous jumps.

Phase response theory allows for accurate prediction of phase locking between oscillators and
can be useful to analyze interactions between brain regions (Levnajić and Pikovsky, 2010; Ko
and Ermentrout, 2009; Kori et al., 2009; Perez Velazquez et al., 2007). During mammalian
deep sleep hippocampal sharp wave ripple complexes and thalamic spindles tend to be phase-
locked to the neocortical slow oscillation (Mölle et al., 2002; Clemens et al., 2007; Mayer
et al., 2007) and parahippocampal activity seems to be phase-locked to the troughs of parietal
and parahippocampal spindles. A characterization of these rhythms in terms of PRCs might
shed light on the nature of this observation.

Furthermore, knowing the PRC of a system enables one to estimate cortical inputs based on
the drift velocity of spiral waves (Biktasheva et al., 2010).
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3. Excursus: Fitting models to time
series of stochastic processes

This section describes a batch method for the estimation of parameters in nonlinear stochastic
dynamical models. It is based on the global optimization of a cost function that is evaluated
on the complete data set. State of the art methods usually fall into the category of recursive
Bayesian filters and smoothers (Särkkä, 2013; Daunizeau et al., 2009), e.g., unscented Kalman
filters (Wan and Van Der Merwe, 2000), which can perform simultaneous parameter and state
inference. However, they are somewhat hard to implement and can be computationally very
demanding, especially for long time series.

3.1. Cost function

We utilize the result from Kazakov and Lavrov (1994) that the two-dimensional density
w(x1, t1;x2, t2) of a stochastic process, s, notably even a non-Gaussian and non-Markov pro-
cess, is completely defined by two univariate functions, namely the the amplitude distribution,
f(x1) =

∫
w(x1, x2)dx2, and the correlation function, R(τ). Specifically, they show that w

can be represented by the expansion

w(x1, t1;x2, t2) = f(x1)f(x2)
∞∑
k=0

R(τ)γkQk(x1)Qk(x2) (3.1)

with τ = t1 − t2, γk related to f and the Qk being orthogonal polynomials of degree k,
satisfying the orthonormalization condition

∫
Qi(x)Qj(x)f(x)dx =

1, i = j,

0, i 6= j.
(3.2)

With this in mind we use the probability density function (pdf) f and correlation function R to
define a distance function between stochastic processes s1 and s2 as

D(s1, s2) := D1(fs1 , fs2) +D2(Rs1 , Rs2) +D1(fS1 , fS2). (3.3)

Regarding D1, a common choice for the ”distance“ between probability density functions
would be the Kullback-Leibler (KL) divergence. However, we chose to use the Mallows dis-
tance, because it is easy to compute, statistically efficient and assumes non-trivial values even
when the distributions have disjoint support. Consider two distinct probability density func-
tions f1 and f2, with fi(x) > 0 ∀x ∈ [a, b] and

∫ b
a fi(x)dx = 1. Further, let F1 and F2 be the

corresponding distribution functions and F−1
1 and F−1

2 the inverse distribution functions. The
Mallows distance for the one-dimensional case is

DM (f1, f2) =

(∫ 1

0
|F−1

1 (t)− F−1
2 (t)|rdt

)1/r

. (3.4)
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3. Excursus: Fitting models to time series of stochastic processes

If sample vectors x and y are given, each drawn from densities f1, f2, and having equal length,
then the Mallows distance can be calculated directly from these vectors via

D∗M (f1, f2) =

(
1

n

n∑
i=1

|x∗(i) − y
∗
(i)|

r

)1/r

, (3.5)

where x∗ and y∗ are the sorted versions of x and y.

Regarding D2, the Wiener-Kinchin theorem states that for a stationary stochastic process the
Fourier transform of its autocorrelation function is equivalent to the power spectral density
of the process (given the Fourier transform exists). Hence, the problem of calculating the dis-
tance between two correlation functions can be transformed to calculating the distance between
power spectral densities. For this problem several Riemannian metrics and geodesic distances
have been proposed that take into account the differential-geometric structure of spectral den-
sities (Li and Wong, 2013; Georgiou, 2007). Here, we use three of them and compare their
performance in the parameter estimation problem.

Moakher (2005) defined

DLS(f1, f2) =

√∫ π

−π
log2

(
f1(θ)

f2(θ)

)
dθ

2π
, (3.6)

which is sometimes called log spectral distance (Georgiou et al., 2009).

Li and Wong (2013) suggested

DH(f1, f2) =

√
1−

∫ π

−π

√
f1(θ)f2(θ)

dθ

2π
, (3.7)

which is equivalent to the Hellinger distance.

Georgiou (2007) proposed the ”geodesic prediction distance“

DG(f1, f2) =

√∫ π

−π

(
log

f1(θ)

f2(θ)

)2 dθ

2π
−
(∫ π

−π
log

f1(θ)

f2(θ)

dθ

2π

)2

. (3.8)

The term D1(fS1 , fS2) uses higher order statistics of the time series that are necessary to cap-
ture temporal asymmetry. A simple a way of doing this is to look at the pdf fS of the set
S = {st − st−1}.

The cost function D(s1, s2) can be optimized by standard methods, e.g., a stochastic global
optimizer. Here, the MEIGO package was used (Egea et al., 2014), which is based on scatter
search.

3.2. Evaluation

It is an obvious requirement that the cost function should allow an assessment of the quality of a
solution. For parameter estimation this means that the cost function should reflect the deviation
from the ground truth, i.e., the true parameters. This will be checked by reporting the average
relative error e = 1

N

∑N
i |pestim

i − ptrue
i |/ptrue

i , given an ensemble of candidate solutions from
a stochastic optimization scheme.
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3.2. Evaluation

Table 3.1.: Stochastic differential equations of test models.

Double well dx = (−a1x+ a2x
3)dt+ a3dW

Fitzhugh-Nagumo dV = (V (a1 − V )(V − 1)− w)dt+ a5dW

dw = (−a2w + V − a3)/a4)dt

Wilson-Cowan dE = (−E + f(a1E − a2I + a3))/a4dt+ a11dW

dI = (−I + f(a5E − a6I + a7))/a8dt

dc = (−a9c+ E)/a10dt

f = 1/(1 + exp[−x])

Table 3.2.: Parameters of test models.

Double well a1 = −1, a2 = 0.1, a3 = 2

Fitzhugh-Nagumo a1 = −1.33, a2 = 20.7, a3 = 9.5, a4 = 5.7, a5 = 0.04

Wilson-Cowan a1 = 16, a2 = 11, a3 = 2, a4 = 2, a5 = 12, a6 = 18, a7 = −3

a8 = 1, a9 = 0.2, a10 = 100, a11 = 0.02

Table 3.3.: Fitting results. The error e is measured as relative deviation from true parameter val-
ues, |(pestim − ptrue)/ptrue|. ebest is the best result in all runs and ē denotes the median error
across all runs. [parameters, function evaluations, samples, runs, step size]: 1 [5,5000,3000,20,0.1],
2[3,5000,3000,20,0.1], 3[11,10000,3000,20,1]. All SDEs were solved using the Euler-Maruyama
scheme and global optimization was done with MEIGO (Egea et al., 2014).

Fitzhugh-Nagumo1 Double well2 Wilson-Cowan3

D2

Method
ebest [%] ē ebest [%] ē ebest [%] ē

KL 2.8 30.6 9.1 49.5 55.2 374

Log-
spectral

2.5 31.1 2.4 46.3 65.1 509

Hellinger 2.2 26.1 3.1 37.2 72.0 214

Georgiou 5.7 29.8 9.7 49.7 45.8 240

Mallows 5.2 23.4 9.5 44.3 27.6 232
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3. Excursus: Fitting models to time series of stochastic processes

The algorithm is tested on three low-dimensional nonlinear stochastic systems, which can gen-
erate patterns that resemble slow oscillations: a double well potential, the Fitzhugh-Nagumo
model, and a Wilson-Cowan type two population model with adaptation. The equations are
given in Table 3.1, the parameters in Table 3.2. Simulations were performed using the Euler-
Maruyama scheme. Due to the different complexity of the models a different number of func-
tion evaluations was used for each model. The number was chosen so that convergence could
be achieved reliably. Each run was repeated 20 times. The results are summarized in Table 3.3.
No method performs consistently best on all test problems. The log-spectral distance achieved
the highest accuracy for the small problems, whereas the Mallows distance performed best in
the Wilson-Cowen model with many parameters. The generally large median errors across all
runs indicate that the stochastic solver sometimes fails to converge. A high variance in the es-
timate of a parameter might also indicate that the model is almost invariant with respect to this
parameter.

3.3. Discussion

The proposed method for parameter estimation in nonlinear stochastic differential equations
is simple, easy to implement and fast. The treatment of an observation function has not ex-
plicitly been described, as it is trivial to implement. In the given setting it belongs to the model
equations and parameters are inferred along with the model parameters. The evaluation showed
that it is possible to obtain small errors (<3%) in some test problems and the estimation error
becomes larger as the number of parameters increases.

It should be noted that the method will not perform well for deterministic problems, that de-
pend strongly on the initial conditions. It amounts to a single shooting approach in this limit
and multiple shooting methods are known to be superior in this setting (Voss et al., 2004). Fur-
thermore, it has been shown that simultaneous estimation of the system trajectory is necessary
to yield correct parameter estimates in the presence of measurement noise (Voss et al., 2004).

Kleinhans et al. (2005) proposed a related method based on minimization of the Kullback-
Leibler distance between the two-point distribution of the model and that of the data. The
problem with this approach is that it requires the evaluation of two-dimensional probability
density functions, which is error prone. This could be circumvented by using direct esimators
of multi-dimensional Kullback-Leibler distance based on nearest neighbors. However, these
estimators tend not to scale well with sample size (Wang et al., 2009).

Alternative ways of approaching the problem of parameter inference are Bayesian filters and
smoothers, e.g., the unscented Kalman filter or particle filters. These algorithms are recursive
and have the additional advantage of performing simultaneous state and parameter inference.
Moreover, gradient based optimzation methods can be used for inference, making them poten-
tially more accurate than algorithms relying on stochastic solvers. An excellent introduction to
recursive state and parameter estimation is (Särkkä, 2013). The reason to nevertheless resort to
a batch algorithm and a stochastic solver is that gradient based solvers in general only find lo-
cal minima. This suggests to use a batch algorithm and global optimization to find good initial
guesses and to refine the solution with a recursive technique.
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4. Model II: A thalamocortical neural
mass model of non-REM sleep

Parts of this chapter have been published in Weigenand et al. (2014) and Costa et al. (2016).
It is generally accepted that most parts of the neocortex (auditory cortex is a counterexample
(Hromadka et al., 2013)) are in an asynchronous active state during wakefulness, maintained
by a balance of excitatory and inhibitory inputs (Taub et al., 2013; Okun and Lampl, 2008; Shu
et al., 2003; Haider et al., 2006), and that a K-complex reflects an isolated silent state (Cash
et al., 2009). Hence, when transitioning from wakefulness to sleep a K-complex is necessarily
an excursion from the active state to the silent state and back to the active state.

Surprisingly, this obvious observation has been ignored in modeling studies so far, most likely
because they often relate to animal data from slice preparations or deep anesthesia, where down
states are dominant. KCs were described as excursions from a stable silent state to an unstable
active state and SOs as relaxation oscillations or purely noise driven transitions between stable
active and silent states (Mattia and Sanchez-Vives, 2011; Wilson et al., 2006; Curto et al., 2009;
Steyn-Ross, 2005; Ghorbani et al., 2012), which is not consistent with the observation above.
Furthermore, while for certain forms of anesthesia it seems plausible that the cortex undergoes
a phase transition, it is not clear whether this holds for natural sleep (Molaee-Ardekani, 2007;
Wilson et al., 2010). Therefore, a characterization of KCs in natural sleep is missing.

Addressing these issues a thalamocortical neural mass model is developed in the following sec-
tions, which generates K-complexes, slow-wave activity (<4 Hz) and fast spindles (12-15 Hz).
Neural mass models, pioneered by the work of Knight (1972), Wilson and Cowan (1973) and
Lopes da Silva et al. (1974), are an ideal tool to better understand the changes in neuronal dy-
namics between the different sleep stages in vivo, because they relate directly to the large-scale
dynamics measured by a non-invasive EEG. They successfully described many phenomena of
the human EEG, e.g., alpha and gamma rhythms, evoked responses and epilepsy (Jansen et al.,
1993; Wendling et al., 2002; David and Friston, 2003).

We incorporated a slow firing rate adaptation into a cortical neural mass and mechanisms for
rebound bursts into a thalamic neural mass to account for sleep specific dynamics. Activity-
dependent feedback via slow potassium channels has been suggested as a mechanism for the
generation of SOs and KCs because of their sensitivity to the sleep related neuromodulator
acetylcholine (McCormick, 1992; Hasselmo and Giocomo, 2006) and their implication in the
slow afterhyperpolarization (Steriade et al., 1993b; Timofeev et al., 2001b). Multiple studies
also point out that potassium leak channels can be activated by several anesthetics (Patel et al.,
1999; Nicoll et al., 1990; Talley and Bayliss, 2002). This approach links the neural mass model
to modeling studies on SO generation based on single neurons as well as to experimental studies
(Compte et al., 2003; Benita et al., 2012).

The model allows the investigation of responses to auditory stimulation during wake and non-
REM sleep. Its output resembles EEG time series of sleep stages N2 and N3 to a high degree
and shows key features of spontaneous and evoked KCs. In particular, it reproduces EEG data
from phase-independent and closed-loop auditory stimulation of recent sleep studies in humans
(Ngo et al., 2013).

29



4. Model II: A thalamocortical neural mass model of non-REM sleep

First, we introduce the concept of neural mass models. Next, the cortex model is motivated
and described. Building upon a bifurcation analysis, we go on to characterize the dynamic
repertoire of the cortex model. The analysis and identification of parameters from EEG data
with the method described in chapter 3 indicates that cortical SOs and KCs are related but
different phenomena. This suggests a route for the transition from wake to deep sleep and
highlights differences between natural sleep and anesthesia.

In section 4.3, we show that the isolated thalamic neural mass is able to generate different
oscillatory behavior found in vivo. In section 4.4, the model is extended to the thalamocortical
model. The extension serves two purposes. First, for sensory inputs the thalamus is the gateway
to the neocortex and, hence, indispensable. Second, it provides a proof of concept that the
postulated cortical K-complex dynamics indeed lead to reasonable thalamocortical dynamics,
in particular the experimentally observed grouping of spindles by the slow oscillation and the
specific phase relation (Mölle et al., 2002).

4.1. Neural mass framework

The class of conductance-based neural mass model employed here has been derived from
(Robinson et al., 1997; Liley et al., 1999, 2002; Wilson et al., 2006). Instead of considering
the evolution of high-dimensional states in a large ensemble of single neurons, the population
activity can be approximated by the evolution of the mean membrane voltage of that popula-
tion.

Firing rate function The complex spiking dynamics is replaced by an empirical firing rate
function

Qk =
Qmax
k

1 + exp(−(Vk − θ)/σk)
, (4.1)

with maximal firing rate Qmax
k , firing threshold θ and neural gain σk. It converts the average

membrane voltage Vk of the population k to an output spike rate. Here, k ∈ {p, i, t, r} stands
for cortical pyramidal, cortical interneuron, thalamic relay and thalamic reticular populations,
respectively. The firing rate function often has a sigmoidal shape and can be interpreted as stem-
ming from the fluctuations of neuronal states or a distribution of thresholds in the population
(Marreiros et al., 2008).

Postsynaptic response The spike rate Qk′ of the presynaptic population k′ then elicits a
postsynaptic response smk within the receiving population k. The strength of this response can
be calculated by the temporal convolution

smk =
∑
k′

αm ∗ (Nkk′Qk′), (4.2)

of the incoming spike rate Qk′ , scaled with the averaged connectivity constant Nkk′ between
the presynaptic population k′ and the postsynaptic population k and an alpha function

αm = γ2
mt exp(−γmt), (4.3)

representing the average synaptic response to a single spike. Here, γm depicts the rate constant
of the synaptic response, whereas m ∈ {e, g, r} denotes the type of synapse with e stand-
ing for excitatory AMPA and g, r for inhibitory GABA synapses in the cortex and thalamus,
respectively.
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4.1. Neural mass framework

The convolution can be written as second order differential equation

s̈mk = γ2
m (NmkQm(Vm) + φn − smk)− 2γmṡmk, (4.4)

External inputs Background noise, φn, coming from unspecified brain structures and spon-
taneous miniature postsynaptic potentials within the population is assumed to be uncorrelated
Gaussian white noise with zero mean. To model external stimulation the mean of the back-
ground noise is elevated by φs, representing increased incoming spike rates.

Population membrane voltage An important assumption of most neural mass models
is the existence of an equilibrium state V0 the system is always close to (Wilson and Cowan,
1973). However, this is not fulfilled for the large amplitude KCs and SOs and the scaling of
synaptic currents with the driving force (Vk−Erev) becomes important Liley et al. (1999). The
evolution of the population membrane voltage, Vk, then obeys

τkV̇k =− gL(Vk − EkL)− gAMPAsek(Vk − EAMPA)− gGABAsgk(Vk − EGABA),

=− IL − IAMPA(sek)− IGABA(sgk),
(4.5)

where g denotes the weights that relate the respective quantities to a change in mean popula-
tion voltage and E the corresponding Nernst potential. While we use the naming convention of
Hodgkin-Huxley models to highlight the structural similarity, please note that the above quan-
tities I and g have different units. The membrane potential is then again turned into an updated
firing rate according to Eq. 4.1.

Intrinsic currents may additionally be included in the equation of the mean membrane voltage,
given their time constant is large compared to the time constant of neuronal spiking (Marreiros
et al., 2008; Zandt and Visser, 2013). The signal measured in the EEG stems mainly from the
activity of pyramidal neurons (Buzsáki et al., 2012). we use the pyramidal membrane voltage
as model output, which is similar to other studies (Steyn-Ross et al., 2001; Sotero and Trujillo-
Barreto, 2008). Populations comprising multiple clusters have been considered in (Langdon
et al., 2012) and lead to interesting effects. In order to keep the complexity of the model low
we consider a single point source. Therefore, filtering effects by the skull/scalp can be approx-
imated by a linear scaling and do not affect the interaction between thalamus and cortex.

EEG signal The potential fluctuations measured in an EEG are mainly generated by pyra-
midal neurons (Buzsáki et al., 2012). Therefore, we use the membrane voltage of the excitatory
population as output variable. Similarly, multiple studies (Jansen et al., 1993; Liley et al., 1999;
Steyn-Ross et al., 2001; Suffczynski et al., 2004; Sotero and Trujillo-Barreto, 2008) used either
the deviation of the membrane voltage from the resting state, Ve−Vrest, or the membrane volt-
age itself. As the system has no spatial extension and we only assume ohmic effects of skull
and scalp, the EEG signal can be approximated by a linear scaling of the excitatory membrane
voltage. When comparing experimental data and model output both time series are z-scored,
because this linear transformation normalizes mean and standard deviation but preserves the
other statistical properties of a signal. As we are only interested in qualitative properties of the
model, e.g., the ratio between medium amplitude background oscillations and large amplitude
deflections during N2, the different sleep stages are z-scored independently. For quantitative
statements the same transformations must be used.
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4. Model II: A thalamocortical neural mass model of non-REM sleep

4.2. Cortex model

4.2.1. Model description

The cortical neural mass model consists of an excitatory and an inhibitory neural mass, rep-
resenting populations of pyramidal neurons (p) and interneurons (i), respectively. The connec-
tivity structure (all to all) of the model is given in Figure 4.1. The membrane potentials evolve
according to

τpV̇p = −IpL − IAMPA(sep)− IGABA(sgp)− C−1
m τpIKNa,

τiV̇i = −IiL − IAMPA(sei)− IGABA(sgi).
(4.6)

and are linked by the AMPA and GABAergic synaptic inputs. The pyramidal population con-
tains a slow, additive and activity-dependent firing rate adaptation in the form of a sodium
dependent potassium current (Schwindt et al., 1989; Bischoff et al., 1998),

τNa[Ṅa] = αNaQp(Vp)−Napump([Na]),

IKNa = ḡKNa
0.37

1 +
(

38.7
[Na]

)3.5 (Vp − EK), (4.7)

which is believed to be the main driver for the transition to the silent (down) state (Timofeev
et al., 2001b; Sanchez-Vives and McCormick, 2000; Benita et al., 2012). The current is con-
nected to the excitatory membrane voltage by a membrane capacity Cm = 1µF/cm. Sodium
influx responsible for IKNa activation results from spiking or INaP activation, for which a
depolarization above -60 mV is sufficient. We do not explicitly model these mechanisms but
combine their effects via the Ve-determined spike rateQe and regard αNa as average sodium in-
flux per spike. Sodium extrusion is due to an active pump (Wang, 2003; Bischoff et al., 1998).
For simplicity, we neglect synaptic depression and other candidate mechanisms for additive
feedback, like calcium dependent potassium currents.

This approach is qualitatively different to changes in the firing rate function, as utilized by
Molaee-Ardekani (2007). Gradually switching between two firing rates alters the overall shape
of the sigmoid function in a multiplicative, activity-dependent manner, whereas we employ an
additive threshold modulation.

4.2.2. Bifurcation analysis

In order to characterize the dynamic repertoire of the cortical model we conducted a numerical
bifurcation analysis of the noise-free system. The qualitative behavior of the model was most
sensitive to changes in the inverse gain, σe, of the pyramidal population and the strength of the
adaption, gKNa.

Figure 4.1.: Connectivity of the cortex model. The two populations are all to all coupled. In addition
to intrinsic activity both populations receive background noise from unspecified brain structures. Circles
indicate excitatory synapses, butts inhibitory synapses.
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4.2. Cortex model

Figure 4.2.: Bifurcation diagram of the cortex with respect to gKNa and σe. Overview over the
models dynamic regimes, obtained via numerical bifurcation analysis of the cortex with respect to σe
and gKNa. Hopf bifurcations are drawn in red, while the black line depicts saddle-node bifurcations.
The bottom gray line marks the intersection of Hopf and saddle curves, the top gray line the cusp
bifurcation. The green line depicts the proposed route for the transition from wake to sleep stage N3.
The region around ”wake” corresponds to parameter settings commonly used for wake EEG. N2 and
N3 are settings used within this study for the respective sleep stages, as given in Table 2 and 3. Regions
I-VI are described in the text and Table 4.2 (Parameters as in Table 4.1).

Figure 4.3.: One-dimensional bifurcation diagrams for different gain levels σe. Low gain corre-
sponds to high values of σe. Thick black lines depict stable fixed points, dashed lines unstable fixed
points and red lines stable periodic solutions. The gray dashed lines mark bifurcations and separate the
different regimes. (a) Two saddle-node bifurcations lead to excitability in region VI and bistability in
region V. (b) A Hopf bifurcation appears (between I and III) in addition to the two saddle-nodes. The ini-
tial small amplitude limit cycle transitions into a high-amplitude relaxation cycle via a canard explosion.
The high-amplitude periodic solutions vanish at the left saddle-node via a homoclinic bifurcation. The
period of the relaxation oscillations goes to infinity as one approaches the homoclinic bifurcation.(c)
Only the Hopf bifurcation remains, after the saddle nodes disappeared via a cusp bifurcation. Within
region II there is no canard anymore.
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4. Model II: A thalamocortical neural mass model of non-REM sleep

Table 4.1.: Parameters of stage N2 and N3.

Symbol N2 N3 Description

σe 4.6 mV 6.7 mV inverse gain

gKNa 1.33 mS/cm2 2 mS/cm2 conductivity

Table 4.2.: Dynamic regimes of the cortical module.

Region dynamical properties

I active cortex

II limit cycles

III limit cycles and relaxation cycles

IV silent cortex

V bistable

VI excitable

Additionally, both parameters are known to be susceptible to changes in the neuromodulatory
milieu, and the concentration of many major neuromodulators is known to change through-
out the sleep-wake cycle. Cortical acetylcholine levels are lowest during slow-wave sleep and
highest during wake and REM sleep, whereas serotonin and norepinephrine levels are highest
during wake, intermediate during SWS and lowest during REM sleep (Léna et al., 2005).

Tonic application of acetylcholine blocks leak and activity-dependent potassium currents
IKleak, Im, IKNa, IKCa (reviewed in (McCormick, 1992)), as well as INaP (Mittmann and
Alzheimer, 1998). Furthermore, many studies show that σe can be altered by norepinephrine,
serotonin, acetylcholine as well as dopamine (Soma et al., 2012; Disney et al., 2007; Polack
et al., 2013; Timmons et al., 2004; Thurley et al., 2008; Zhang and Arsenault, 2005) (Mehaffey,
2005; Gulledge et al., 2009; Hasselmo and Giocomo, 2006). Consequently, σe and gKNa were
chosen as bifurcation parameters. The adaptation currents are primarily found in excitatory
pyramidal cells and less so in inhibitory interneurons, which justifies the restriction of the
parameter changes to the excitatory population.

As can be seen in Figure 4.2 the dynamics of the system is shaped by two bifurcations. The first
one is a fold created by two saddle node bifurcations (black), that vanishes in a cusp. Between
the two saddle nodes there are three equilibrium states, leading to bistability or excitability,
see Figure 4.3a or Figure 4.3b. This is in good agreement with (Steyn-Ross et al., 2005) and
(Robinson, 2011), as in the case of a fixed sodium concentration IKNa is constant, and an
increase in gKNa acts as a decrease in resting potential.

The second bifurcation is a Hopf arising at the upper stable branch (red). Importantly there is
a canard explosion, where the small amplitude limit cycle of the Hopf bifurcation transitions
into a high-amplitude relaxation cycle. This phenomenon was first described by Benoit et al.
(1981) and is typical for systems where fast and slow subsystems interact. The relaxation cycle
vanishes at the left saddle-node via a homoclinic bifurcation. At the cusp both saddle nodes
coalesce and the homoclinic bifurcation turns into a second Hopf point.

Based on those bifurcations we define multiple dynamical regimes, see Table 4.2 for a short
overview. Within region I a single stable state exists at depolarized membrane voltages where
the cortex shows relatively high activity (see Figure 4.3). Especially for small values of gKNa
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4.2. Cortex model

even large excitatory and inhibitory inputs only cause a passive response. A switch to the lower
branch of the S-shaped curve in Figure 4.3 (region IV, silent state) is not possible. Because of
these properties we assume the waking brain to operate within this regime.

When crossing the curve of saddles to region V two new fixed points appear (see also Fig-
ure 4.3a). The system becomes bistable, with a stable active and silent state. Positive and neg-
ative inputs can cause a switching between the two stable branches.

A further increase in gKNa turns the upper branch (active state) unstable. However, within re-
gion VI there are still multiple equilibria leaving the system excitable. Here a stimulus can
produce a large positive response, which was previously thought to be responsible for the gen-
eration of KCs as well as SOs (Wilson et al., 2005).

Only after the second saddle node is crossed the upper two equilibria vanish and a single stable
state remains. This state is characterized by hyperpolarized membrane voltages leading to a
quiescent cortex.

Region III is characterized by periodic limit cycles or relaxation oscillations and, hence, high
rhythmicity. The initial Hopf bifurcation is accompanied by a canard explosion: due to an
exponentially small variation of the bifurcation parameter an abrupt transition from a medium-
amplitude limit cycle to a high-amplitude relaxation cycle can take place.

This phenomenon was first described in (Benoit et al., 1981) and is typical for systems where
fast and slow subsystems interact. The corresponding one-dimensional bifurcation diagram is
shown in Figure 4.3b. The periodic solutions vanish at the left saddle-node via a homoclinic
bifurcation, and the period of the relaxation oscillations goes to infinity as one approaches the
homoclinic bifurcation.

Additionally, with increasing σe the amplitude of the limit cycle increases and approaches
the form of relaxation oscillations. This explains the similarity between the limit cycles and
relaxation oscillations. Both are shaped by the same homoclinic orbit.

At the cusp the two saddle nodes vanish and the homoclinic bifurcation turns into a second Hopf
point. Without the homoclinic bifurcation there is no canard anymore. Therefore, in region II
above the cusp bifurcation only limit cycles remain, illustrated in Figure 4.3c, leading to high-
amplitude oscillations.

4.2.3. Response to perturbations

While the bifurcation analysis provides the basic repertoire of the unperturbed model, its re-
sponsiveness with respect to perturbations, e.g., external stimuli or background noise, is crucial
for its behavior. As mentioned before, within region I the cortex shows only a passive response.
However, this changes for larger values of gKNa, i.e., closer to the curve of Hopf points (red
line in Figure 4.2, separating region I from II and III).

There, positive as well as negative inputs may cause a reverse spike resembling a KC. Addi-
tionally, close to the curve of Hopf points the stable active state turns into a stable focus, i.e.,
the system behaves like a damped oscillator upon perturbation. In Figure 4.4a we show the
response to artificial stimuli φstim of varying strength, when the cortex is set close to the Hopf
bifurcation between region I and III.

Stimuli of low strength lead to damped oscillations whose amplitudes are considerably larger
than during the wake state but smaller than KCs or SOs. However, as the strength of the stimuli
increases the system is pushed into the canard explosion and the amplitude of the response
increases rapidly. While in Figure 4.4a there seems to be a threshold separating the two types
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4. Model II: A thalamocortical neural mass model of non-REM sleep

Figure 4.4.: Response of the noise-free cortex to artificial stimuli. Excitatory bursts of 50 ms duration
were applied to both populations. The spike rate of the stimuli φstim varies uniformly from 5 Hz (dark
blue) to 100 Hz (dark red). The stimulus is shown in grey. (a) Bifurcation parameters are set to the mark
“N2” close to region III (see Table 2). There, a canard explosion leads to large amplitude responses that
qualitatively resemble a typical evoked KC with its P200, N550 and P900 components. (b) Parameters
are set to mark “N3“, so that the cortex is beyond the cusp close to region II (see Table 3). The canard
vanished, leading to an even increase in the amplitude of the response.

of responses, it is actually a smooth transition given sufficiently small increases in stimulation
strength.

The induced relaxation cycles show a good qualitative match with KCs seen during sleep. In the
noise driven simulation the majority of inputs would lead to medium-amplitude oscillations,
whereas only the rare outliers would trigger a KC like response. This is in good agreement
with the dynamics seen in sleep stage N2, where medium-amplitude background oscillations
are interrupted by large amplitude KCs.

We assume this mechanism to be responsible for the generation of KCs during sleep stage N2.
Furthermore, this requires the cortex to be in the active state close to the Hopf bifurcation to
region III, rather than being in the silent down state. This is in good agreement with multiple
studies who report that during SWS of naturally sleeping animals more time is spent in up
states than in down states (Steriade et al., 2001; Destexhe et al., 1999; Timofeev et al., 2001b;
Chauvette et al., 2011; Ji and Wilson, 2007; Vyazovskiy et al., 2009).

Close to the Hopf, an increase of the inverse gain, σe, leads to an increase in the amplitude
of the background oscillations and they approach the shape of a relaxation cycle. Beyond the
cusp the canard vanishes and isolated events in the sense of KCs are not possible anymore (see
Figure 4.4b).

This behavior is well reflected in what is seen during sleep stage N3, where SOs appear as large
amplitude oscillations, that are not separated from the ongoing background activity. Further-
more, it explains the high similarity between KCs and SOs, as they are both shaped by the same
homoclinic orbit. We hypothesize that during sleep stage N3 the cortex is in region I close to
the Hopf bifurcation to region II.

Together these findings give rise to a new interpretation of the sleep/wake transition. At the tran-
sition to sleep stage N2, the cortex approaches the Hopf bifurcation close to region III, which
shifts the EEG trace to higher amplitudes and lower frequencies compared to wake activity.
By virtue of a canard explosion this background activity is then interrupted by single, isolated
relaxation cycles. As sleep deepens further, the cortex follows the route depicted in Figure 4.2,
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4.2. Cortex model

while the amplitude of the background oscillations increases and ultimately approaches the
form of a KC.

However, this is in contrast with the view that the cortex undergoes a phase transition when
entering non-REM sleep. Interestingly, a similar model was utilized to describe characteristics
of anesthesia (Molaee-Ardekani, 2007). We can reproduce similar behavior, e.g., burst suppres-
sion in region VI (See Supplementary Figure 1).

4.2.4. Reproduction of sleep stages N2 and N3

To verify the ability of the model to reproduce sleep stage N2 we set the model to parameter
configuration “N2” from Figure 4.2 (See Table 4.1). The chosen parameter set is within region
I close to the border of region III, an example time series is shown in Figure 4.5.

Figure 4.5.: Comparison of human EEG with model output in regime N2. Qualitative comparison of
(a) human EEG data of sleep stage N2 from electrode Cz with (b) the isolated cortical module in regime
N2 (region IV in the bifurcation diagram in Figure 4.2). The traces illustrate the medium-amplitude
background oscillations and the stereotypical shape of spontaneous KCs at the EEG level. It may or
may not have an initial bump followed by a large negative peak and a pronounced positive overshoot.
The model-KC is noise induced and represents a single relaxation cycle. An evoked KC in the noise-free
case is shown in Figure 4.4a. Model output is excitatory membrane voltage Ve, and both time series are
z-scored (Parameters as in Table 4.1).

Figure 4.6.: Comparison of human EEG with model output in regime N3. Qualitative comparison of
(a) human EEG data of sleep stage N3 from electrode Cz with (b) the isolated cortical module in regime
N3 (region I in the bifurcation diagram in Figure 4.2). As the system is close to the Hopf bifurcation
noise leads to quasiperiodic oscillations around the stable focus (up state). Large amplitude oscilla-
tions resemble KCs as both are shaped by the same homoclinic orbit. The model output is excitatory
membrane voltage Ve, and both time series are z-scored (Parameters as in Table 4.1).

In a region close to the chosen parameters the cortex is in the up state and shows the expected
noise driven medium-amplitude oscillations. In addition, background noise may push the model
into high-amplitude deflections that closely resemble KCs seen in human EEG. Similar to the
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4. Model II: A thalamocortical neural mass model of non-REM sleep

data the KCs can show a single pronounced peak or a prolonged down state, which depends on
the noise.

Following the proposed route for the sleep/wake transition in Figure 4.2 we then moved along
the Hopf bifurcation to a setting beyond the cusp and close to region II, labeled as “N3”. In
Figure 4.6 a representative time series is shown with the parameters given in Table 4.1. There
the cortex shows high amplitude oscillations around 0.8 Hz. In contrast to the N2 stage, the
cortex does not produce KCs in the sense of isolated events that differ from the background
oscillations. Rather, the response increases until it approaches the form of a KC, depending on
the strength of the perturbation.

4.3. Thalamus model

In the previous section, we have shown that the cortical neural mass model equipped with an
additive activity-dependent feedback current can generate a time series that closely resembles
the EEG signal of sleep stages N2 and N3, without spindles. Here, we extend the cortical
model by adding a thalamic module to incorporate spindle activity and investigate the under-
lying dynamics of the coupled system. We test the evocability of SOs and spindles by auditory
stimulation during non-REM sleep and validate the results with scalp EEG data from a recent
sleep study in humans (Ngo et al., 2013). This demonstrates the possible application in pre-
dicting the outcome of external stimulation on EEG rhythms. This adds further support to the
dynamic mechanisms proposed in the previous section.

The model employed for spindle generation follows the “classical” mechanism and is very
similar to the neural mass model of Żygierewicz et al. (2001). We first show that the isolated
thalamic submodule is able to generate different oscillatory behavior found in vivo.

4.3.1. Model description

Similarly to the cortex model, the thalamic module comprises an excitatory and an inhibitory
neural mass, representing a thalamocortical (t) and the reticular (r) nucleus. They are coupled
via AMPA and GABA synapses but have different synaptic time constants and only the RE
population possesses a self-connection (Figure 4.7).

Both populations are equipped with additional currents. The inclusion of those currents within
the thalamic submodule is necessary because spindle oscillations require rebound bursts. In
classical neural mass models, this kind of bursting is not possible due to the monotonic fir-
ing rate function and demands the inclusion of additional mechanisms. The same argument
was used in a previous neural mass model of spindle activity (Żygierewicz et al., 2001) and a
thalamocortical neural mass model of epileptic activity (Suffczynski et al., 2004). Finally, in

Figure 4.7.: Connectivity of the thalamus model. The TC and RE populations are interconnected. The
reticular nucleus is recurrently connected, while thalamocortical neurons do not connect to each other.
The TC population receives background noise from unspecified brain structures and external input.
Circles indicate excitatory synapses, butts inhibitory synapses.
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4.3. Thalamus model

(Langdon et al., 2012) the authors arrive at a HH-type extension of their population model of
thalamic burst activity, which has been derived from integrate-and-fire-or-burst neurons. The
potassium leak current is given by

ILK = ḡLK(Vk − EK), (4.8)

as well as T-type calcium currents

IT = ḡTm
2
∞h(Vk − ECa), (4.9)

which deinactivate upon hyperpolarization. They are essential for the generation of low-thresh-
old spikes (LTSs) and rebound bursts. We use the description of IT given in (Destexhe et al.,
1996a) for the RE and the one in (Destexhe et al., 1998) for the TC population.

The TC population further includes the anomalous rectifier current

Ih = ḡh(mh1 + gincmh2)(Vt − Eh), (4.10)

responsible for the waxing and waning structure of spindle oscillations in the isolated thalamus
(Destexhe et al., 1996a). Other currents, such as the calcium-dependent potassium currents
IKCa and ICAN, are also known to play a role in spindle oscillations, but are omitted for sim-
plicity. The thalamic module is summarized by

τtV̇t = −ItL − IAMPA(set)− IGABA(srt)− C−1
m τt(I

t
LK − ItT − Ih),

τrV̇r = −IrL − IAMPA(ser)− IGABA(srr)− C−1
m τr(I

r
LK − IrT).

(4.11)

Parameter settings for the currents are identical to (Chen et al., 2012), with the exception of the
deactivation function ht∞ of the thalamic relay population, which is shifted towards more depo-
larized membrane voltages. The complete equations and all parameters are in Appendix C.

4.3.2. Thalamic spindle oscillations

In the isolated thalamic module, incorporation of the intrinsic currents may lead to oscilla-
tions in the spindle band (Figure 4.8). We follow closely the mechanisms established in the
models by Destexhe et al. (1996a); Bazhenov et al. (2002); Destexhe and Sejnowski (2003).
Physiologically, these oscillations are generated, through reciprocal interaction of the RE and
TC populations. A LTS in the RE population causes hyperpolarization in the TC population,
that deinactivates its T-type calcium current. Upon release from inhibition a rebound of activity
occurs, that in turn drives the RE module to produce another LTS. Additionally, the deinacti-
vation of the T-type calcium currents requires a strong tonic hyperpolarization by a potassium
leak current (Destexhe et al., 1996b; Bazhenov et al., 2002).

4.3.3. Bifurcation analysis

As previously shown in (Destexhe et al., 1996a; Lüthi and McCormick, 1999; Destexhe and
Sejnowski, 2003; Timofeev and Bazhenov, 2005), the rhythmicity of spindle occurrence and
the waxing and waning of the spindle amplitude is caused by an anomalous rectifier channel Ih.
A sequence of LTS leads to the build-up of calcium, which increases the effective conductivity
ḡh = ḡh(mh1 + gincmh2) of Ih. The ensuing depolarization of the TC population increas-
ingly counteracts its ability to produce a LTS and terminates the spindle oscillation (Lüthi and
McCormick, 1998; Contreras et al., 1997). Therefore, we chose ḡh and ḡLK as bifurcation
parameters. A two-dimensional bifurcation analysis of the thalamic module reveals the exis-
tence of a Hopf bifurcation, as depicted in Figure 4.9, which generates continuous oscillations
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4. Model II: A thalamocortical neural mass model of non-REM sleep

Figure 4.8.: Dynamic modes of the isolated thalamic module. Here, we illustrate the different dy-
namic modes the isolated thalamic module exhibits. The left panels depict the thalamic relay membrane
voltage, whereas the right panels illustrate that of the thalamic reticular population. The parameter values
are depicted in Figure4.9 and given in Table 4.3. SI and SII: The isolated thalamus generates rhythmic
spindle oscillations via a balanced interplay between IT and Ih. The length and the average time be-
tween spindles is governed by ḡh. CI and CII: Outside of the spindle regime fast oscillations generated
by the T-type calcium currents dominate and Ih is unable to sufficiently depolarize the thalamic relay
population to cease them. DI and DII: For strong hyperpolarization through ILK the thalamic module
switches into low frequency delta oscillations.
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4.3. Thalamus model

Figure 4.9.: Two-dimensional bifurcation analysis. Here, we illustrate the bifurcation diagram of
the isolated thalamus with respect to the two key parameters ḡh and ḡLK. The interaction between
the currents incorporated into the thalamic module results in the emergence of two torus bifurcations
via a blue sky catastrophe. They lead to spindle oscillations in the orange shaded regions. The left
spindle regime (SI) is encased by a Hopf and a torus bifurcation, whereas the right spindle regime (SII)
is constrained by two global bifurcations that are indicated by the dashed gray lines. The vertical line
marks the emergence of the torus bifurcation, whereas the horizontal gray line marks the cusp bifurcation
where the two saddle-nodes that accompany the left torus bifurcation vanish. The torus bifurcation on
the right marks the transition from spindle oscillations to delta oscillations. The labeled points mark the
parameter settings utilized in Figure 4.8, which are given in Table 4.3.

in the spindle band due to hyperpolarization induced rebound bursts, see Figure 4.8-CI and
Figure 4.8-CII for representative time series.

The torus bifurcations emerge from a blue sky catastrophe that is generated by the slow-fast
interaction between the fast T-type channels and their slow modulation via Ih, which is similar
to other models that exhibit switching between tonic spiking and structured bursting activity
(Shilnikov and Cymbalyuk, 2005; Mayer et al., 2006).

Table 4.3.: Parameter settings of the isolated thalamus. This table lists the parameter values for the
different dynamic regimes of the isolated thalamic module, that are utilized in Figure 4.8.

Symbol SI SII DI DII CI CII Unit

ḡLK 0.018 0.032 0.052 0.052 0.025 0.04 mS/cm2

ḡh 0.062 0.062 0.066 0.04 0.025 0.066 mS/cm2

As depicted in Figure 4.8-SI and Figure 4.8-SII this leads to spindle like oscillations in the
orange shaded regions in Figure 4.9. The spindles exhibit an oscillation frequency of around
13 Hz. The spindle frequency depends on the strength of the T-type calcium current ḡT. Im-
portantly, spindle oscillations are initiated intrinsically. The thalamic module does not require
modulatory input from external sources to initiate/terminate them.
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4. Model II: A thalamocortical neural mass model of non-REM sleep

Activation of Ih is responsible for a refractory period that follows a spindle. As long as Ih ac-
tivation persists, LTS generation is impeded and stronger perturbations are necessary to trigger
spindle oscillations. Consequently, an increase in ḡh results in a larger inter-spindle interval.
The left spindle regime (SI) is encased by the Hopf and the torus bifurcation, whereas the right
spindle regime (SII) is constrained by two global bifurcations that are indicated by the dashed
gray lines. The vertical line marks the emergence of the torus bifurcation, whereas the horizon-
tal gray line marks the cusp bifurcation where the two saddle-nodes that accompany the left
torus bifurcation vanish.

Furthermore, for larger values of ḡLK the model transitions from high frequency spindle oscil-
lations to low frequency delta oscillations, e.g., Figure 4.8-DI and Figure 4.8-DII.

4.4. Thalamocortical model

4.4.1. Model description

Figure 4.10.: Connectivity of the thalamocortical model. Excitatory synapses are depicted by filled
circles, inhibitory synapses by bars. Independent background noise entering the different populations
is denoted by φn, φ

′

n and φ
′′

n, respectively. Stimulation is applied as an elevation in the mean of the
background noise φ

′′

n of the thalamic relay population.

The model consists of one thalamic and one cortical module. We assume the long range affer-
ents from the cortical pyramidal population project to both populations of the thalamic nuclei,
and the long range afferents of the thalamic relay population project to both populations of the
cortex, as depicted in Figure 4.10. The delays introduced by these long range afferents might
play a crucial role in cortical dynamics (Jirsa, 2009; Nakagawa et al., 2014). However, as the
axonal conduction delay between thalamus and cortex is rather small (Agmon and Connors,
1992; Salami et al., 2003; Gentet and Ulrich, 2004; Traub et al., 2005), we approximate it by a
convolution with an alpha function (Biggio et al., 2013), which can be written as

φ̈k = ν2 (Qk(Vk)− φk)− 2νφ̇k, (4.12)

where φk is the resulting delayed firing rate and ν depicts the average delay introduced by
that connection. In the case of short range connections φk can be replaced with Qk. The full
equations and parameter values of the thalamocortical model are given in Appendix C.

Auditory stimulation We model an auditory stimulus as an elevation in background noise
φ
′′
n (square pulse) being gated through the thalamus. For all stimuli, we use a duration of 80 ms

and 70 spikes per second.
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4.4. Thalamocortical model

Event triggered averages KCs and SOs were detected similar to (Mölle et al., 2011). The
model output was bandpass filtered between 0.25 and 4 Hz. Zero-crossings were detected to
extract the negative half-waves. Negative half-waves with peaks below -70 mV were considered
to be KCs/SOs.

Experimental data Experimental data has been described in (Ngo et al., 2013). 11 Subjects
were measured during two experimental nights in balanced order in a stimulation and control
condition. For averages of the endogenous activity data was taken from the control condition.

In the following section we perform a bifurcation analysis and demonstrate the ability of the
thalamic module to generate spindle oscillations and reproduce different experimental obser-
vations. Afterwards, we investigate the interplay between thalamus and cortex to reproduce the
characteristics of different sleep stages. Finally, we examine the effect of auditory stimulation
in the model and compare different stimulation protocols with experimental findings.

4.4.2. Approximation of long range connection delay

As discussed in the methods section (Eq. 4.12), long range connections are modeled by a
convolution with an alpha function representing the average axonal conduction delay. This is
an approximation of the delay differential equations that describe the axonal conduction delay,
which we justify briefly.

First, the alpha function acts as a lowpass filter with magnitude response function |H(ω)| =
ν2/(ν2 + ω2) and cutoff frequency fc = ν/(2π). Hence, with ν = 120 · 10−3 ms−1 the
input is attenuated by 3dB at ≈ 19 Hz. This is not problematic as long as the model does not
generate sharp discontinuities or high frequency oscillations, which is the case for our model
(see Figure 4.11).

Second, physiological measurements suggest that the transmission delay between the thalamus
and the cortex is in the range of a few milliseconds Agmon and Connors (1992); Swadlow
(2000); Salami et al. (2003); Gentet and Ulrich (2004), in particular for neurons receiving
sensory inputs. Recent investigations in humans find a one-way conduction delay in the range
of 12.5-19.8 ms Roux et al. (2013). We find that for those cases the effective delay is well
approximated by the median of the alpha function ∆t = −1 − W−1(− 1

2e) = 1.67835/ν,
where W−1 is the bottom branch of the Lambert W function (see Figure 4.12). Please note that
the effective delay is considerably larger than the time to peak of the alpha function. This is
due to the asymmetric shape of the alpha function, which has a heavy tail.

4.4.3. K-complexes and spindles during sleep stage N2

In the coupled system, the cortex provides excitatory drive to the thalamic module, since it
is predominantly in the active state. In order for the thalamic module to exhibit rhythmically
occurring spindle oscillations we had to adjust ḡh and ḡLK (see Table 4.4).

As can be seen in Figure 4.13 spindles may be triggered by KCs in the full model, but may also
occur independent of KCs. During a KC the sudden drop of excitatory drive hyperpolarizes the
RE and TC population, leading to deinactivation of IT. The ensuing depolarization upon the
transition back to the active state triggers a LTS and a spindle sequence in turn. The spindle
then projects back into the depolarizing phase of the KC. This is in good agreement with the
grouping of spindles and KCs observed experimentally (Contreras and Steriade, 1995; Mölle
et al., 2002).
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4. Model II: A thalamocortical neural mass model of non-REM sleep

Figure 4.11.: Comparison of convolved and time shifted signals. The panels depict a comparison
of the thalamic firing rate time shifted by 13 ms and the axonal flux φ. The upper 6 panels represent
excerpts from the time series shown in Figure 4.8, with a focus on the sharpest features. The bottom
panel additionally compares both signals for a delta pulse.

44



4.4. Thalamocortical model

Figure 4.12.: Effective delay for different rate constants. Here the effective delay determined by
crosscorrelation of the different time series from Figure 4.8 is depicted for a range of axonal rate con-
stants ν. For comparison the median of the respective alpha function is depicted in black.

Although less likely the model can also give rise to KCs triggered by a spindle. This can
be achieved by increasing the connection strength from the thalamic to the cortical module
(model output not shown). During N2, KCs occur at a low rate. Hence, spindle initiation and
termination are closely linked to the time course of Ih (Figure 4.8A), similar to the isolated
thalamic module. The parameters for the output in Figure 4.13 are given in Table 4.4.

Table 4.4.: TC parameter settings. This table shows the different parameter settings of the full model
used throughout this study. Columns N2 and N3 give the parameters for the respective sleep stages.

Symbol N2 N3 Unit Description

σp 4.7 6 mV Neuronal gain

ḡKNa 1.33 1.88 mS/cm2 Adaption strength

ḡLK 0.034 0.034 mS/cm2 Potassium leak conductance

ḡh 0.052 0.062 mS/cm2 h-current conductance

Given the parameter setting in Table 4.4, the cortical module is within a stable focus, close to a
Hopf bifurcation accompanied by a canard explosion. This leads to noise driven medium am-
plitude background oscillations around the stable focus, that are interrupted by large amplitude
deflections (KCs). In good agreement with experimental findings, KCs also appear within the
isolated cortex, although they may be initiated through thalamic input.

4.4.4. Slow oscillations and spindles during sleep stage N3

On the transition to sleep stage N3 the canard phenomenon vanishes in a cusp bifurcation and
only a high amplitude limit cycle remains. SOs are noise driven oscillations around a stable
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4. Model II: A thalamocortical neural mass model of non-REM sleep

Figure 4.13.: Example time series of sleep stage N2. Shown are membrane voltages of the cortical
pyramidal (top) and the thalamic relay population (bottom). The spindle oscillations induced within the
thalamic module project into the cortical module. While the spindle oscillations are generally induced
by fluctuations in background noise, there is also a grouping between cortical KCs and thalamic spindles
(see 7s-9s and 19s-21s). The grouping stems from the lack of depolarizing input during a cortical KC.
Parameters are as in Table 4.4.

focus, close to a Hopf bifurcation (Weigenand et al., 2014).

In contrast to sleep stage N2 spindle initiation and termination are now dominated by the mod-
ulatory input from the cortical module, that overrules the Ih rhythm. Rather than occurring
rhythmically spindles are time-locked to the depolarized phase of a SO. In Figure 4.14 an ex-
ample time series is shown. Importantly, not every SO is able to trigger a spindle, as can be
seen in Figure 4.14 (1-3 s, 11-13 s, 25-28 s). We observed that in a sequence of SOs the first
triggers a spindle, which leads to an activation of Ih. This reduces spindle amplitude or even
inhibits spindle initiation by the following SO.

Figure 4.14.: Example time series of sleep stage N3. Shown are membrane voltages of the cortical
pyramidal (top) and the thalamic relay population (bottom). During N3 the model shows ongoing slow
oscillatory activity. In contrast to sleep stage N2, SOs cannot be identified as isolated events. Further-
more, there are no isolated spindle oscillations and spindle activity is time-locked to SOs. Parameters
are given in Table 4.4.
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4.4. Thalamocortical model

4.4.5. Endogenous event triggered averages

To further validate the model, we determined averages of the generated EEG signal and fast
spindle power time-locked to the negative peak of the endogenous KCs/SOs during N2 and
N3. This method is often used to illustrate the grouping of spindles by SOs and morphological
features of SOs, e.g., in (Ngo et al., 2013, 2015; Mölle et al., 2002). Model output and data for
N2 and N3 is depicted in Figure 4.15.

Figure 4.15.: Event triggered average potentials. Averaged EEG signal (top) and fast spindle band
power (bottom) time-locked to the negative peaks (t = 0 s) of all detected events from electrode Cz
(black, left axis) and model output (red, right axis). (A) Detected KCs from data scored as sleep stage N2
(Experiment: 227, 45± 19, 22, Model: 180 events). (B) SO average from data scored as sleep stage N3
(Experiment: 983, 64±106, 1, Model: 530 events). Each simulation was run for 3600 s with parameters
set according to Table 4.4.

As can be seen in Figure 4.15, the grouping of spindles by SOs is present in the model. Spin-
dle power is highest during the positive half-wave following the negative peak. However, there
are some notable differences. Compared to the experimental data the initial depolarization pre-
ceding the transition to the down state is less prominent, leading to a shallower slope of the
transition to the down state. In the thalamocortical model the transition to the depolarized up
state occurs considerably earlier with a time to peak of 300 ms, compared to 440 ms in the data.
This stems from strong depolarizing input by thalamic spindle bursts, which start directly after
the negative peak of a KC/SO and push the cortex further into the depolarized state. However,
this is still in line with other experimental studies, that find different timings of spindles for the
supplementary motor area of the cortex (Andrillon et al., 2011).

4.4.6. Closed-loop and open-loop auditory stimulation

In the following we show the ability of the model to reproduce data from a recent experiment
in humans performing auditory closed-loop stimulation during non-REM sleep (Ngo et al.,
2013). The stimulation protocol is as follows: After the negative peak of a SO was detected, two
auditory stimuli were applied phase-locked to the following positive peak of the depolarized
up phase of the detected and the subsequent SO.
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4. Model II: A thalamocortical neural mass model of non-REM sleep

In the experimental study the delay time between the negative peak and the ensuing positive
half-wave peak was determined for every subject independently. The second stimulus followed
after a fixed interval of 1075 ms. Detection was then paused for 2.5 s. We accordingly deter-
mined the delay time from the model output, resulting in a delay of 450 ms for the N3 parameter
setting. The second stimulus was chosen to occur 1075 ms after the first one and we also paused
detection for 2.5 s. Stimuli are given as elevations in mean background noise of the thalamic
relay population for a duration of 80 ms.

Figure 4.16.: Closed-loop stimulation. The upper panel depicts in black the mean (± SEM) evoked
potentials of human EEG data from electrode Cz during closed-loop stimulation, time locked to the first
stimulus (11 subjects, 245.6 ± 38.1 stimuli). In red the reproduction of the stimulation protocol with
the model is shown (mean ± SD, 88 stimuli). The dashed line marks the stimulus onset. The lower
panel shows the corresponding fast spindle power. Parameters used for model simulation are given in
Table 4.4.

Figure 4.16 shows the averaged EEG signal and model output time-locked to the first stimulus
(t = 0). There is a good agreement between model output and the experimental data. Especially
the large amplitude, late components of the ERP are very close to the original waveform. The
early component of the evoked potential, the P200, can be seen in the experimental data after
each stimulus, but it is more pronounced in the model output.

In addition, the evoked spindle responses of model and data also have similar time courses. In
both cases spindle power is systematically increased during the depolarized up phases induced
by the stimuli. However, the strong increase in spindle power seen in the data after the first
stimulus is not visible in the model. We hypothesize this to stem from a recruitment effect,
where the stimulus activates a larger fraction of the thalamus than the endogenous slow oscil-
lation would. As the thalamic module is a point model without any spatial extent, these effects
are excluded by construction.

Interestingly, in the experimental data there is a drop in spindle power after the second stimulus
is applied. This seems to be a refractoriness of the thalamus after the second slow oscillation,
which has also been observed in (Ngo et al., 2015). Despite the model showing such a refractory
period in the isolated thalamus (Figure 4.8A), as well as during trains of endogenous SOs in
the full model (Figure 4.17A), it lacks it upon stimulation (Figure 4.17B).

This happens because stimulation disturbs the Ih mediated spindle termination mechanism.
As the stimulation depolarizes the TC population, the calcium concentration drops, because
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4.5. Discussion

Figure 4.17.: Stimulation disturbs refractoriness. The upper two panels depict the membrane voltages
of the pyramidal and thalamic relay populations, respectively. In the third panel the conductivity of the
Ih current is shown. (A) Example time series of an unperturbed train of SOs during sleep stage N3.
The first SO leads to an activation of Ih, that slowly declines back to baseline levels. As Ih activation is
still well above baseline, the second and third SOs are unable to trigger a spindle response. During the
fourth SO Ih activation is sufficiently low so that a spindle occurs. (B) Shown is an example of closed-
loop stimulation during sleep stage N3, with the dashed lines indicating stimulus onset. In contrast to the
endogenous case, the depolarization of the thalamic relay population induced by the stimulation leads to
a rapid decrease in Ih activation, so that the following SO triggers a spindle. Parameters as in Table 4.4.

calcium influx through the IT current stops and calcium leaks out with a time constant of
10ms. Without the elevated calcium concentration, Ih deactivates back to baseline levels and
immediately allows for a new full fledged spindle.

We also reproduced the EEG response of the open-loop stimulation used in the experiment
presented in detail in chapter 6 (Figure 4.18). The model parameters and stimuli where the
same as for the closed-loop stimulation, except for the timing of the stimuli. Stimuli consisted
of sequences of 3 clicks, where the first and second click were separated by 975 ms and the
second and third click by 1075 ms. Sequences were separated randomly by 5-9 s.

Similar to the closed-loop paradigm cortical model responses match the experimental observa-
tion quite well, in particular the afteroscillation around t = 3.7 s and the P200 bumps following
each stimulus. A notable difference is again in the spindle response, which is comparable in
magnitude across all three stimuli, whereas it is maximal for the first stimulus and markedly
lower upon second and third stimuli in the experimental data.

4.5. Discussion

Characterization of KCs and SOs We explored an extended neural mass model of the
cortex and related its multiple dynamical regimes to different sleep stages.

A bifurcation analysis revealed the existence of a fold as well as a Hopf bifurcation accompa-
nied by a canard phenomenon. We argue that deflections generated by the canard explosion are
identical to KCs seen in the EEG during natural sleep, leading to the spike-like nature of the
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4. Model II: A thalamocortical neural mass model of non-REM sleep

Figure 4.18.: Open-loop stimulation. The upper panel depicts in black the mean (± SEM) evoked
potentials of human EEG data from electrode Cz during open-loop stimulation, time locked to the first
stimulus (21 subjects, 295 ± 119 stimuli). In red the reproduction of the stimulation protocol with
the model is shown (mean ± SD, 88 stimuli). The dashed line marks the stimulus onset. The lower
panel shows the corresponding fast spindle power. Parameters used for model simulation are given in
Table 4.4.

KCs. Increasing the bifurcation parameter σe the canard vanishes, explaining the damped oscil-
latory behavior of SOs. Our analysis provides a clear theoretical distinction between KCs and
SOs. However, as both the limit and the relaxation cycle are shaped by the same underlying ho-
moclinic orbit, the actual transition is rather smooth even in the noise-free deterministic system
(see Figure 4.4). Therefore, it might be challenging to find this distinction within experimental
data.

Based on the bifurcation analysis we identified parameter regimes that show characteristics of
sleep stage N2 and N3 and showed that the model is able to reproduce the EEG of both sleep
stages to a high degree. Building upon these findings we propose an alternative scenario for the
sleep wake transition. Rather than entering a bistable regime the cortex stays primarily within
the active state. As sleep deepens, the cortex approaches the Hopf bifurcation, leading to an
increase in amplitude and slowing of noise driven background oscillations, as well as large
amplitude deflections, i.e., KCs. At the transition to sleep stage N3 the canard phenomenon
vanishes due to the cusp bifurcation. The remaining Hopf bifurcation is responsible for the
generation of noise driven SOs. Isolated events as in sleep stage N2 are not possible within that
regime.

Parameter settings within region II or III lead to highly regular relaxation oscillations or limit
cycles, that do not resemble human EEG. It is crucial that the cortex must be within region I
close to region II or III to reproduce the data. In a study on resting state networks (Deco and
Jirsa, 2012) found the awake brain to be in a state of criticality, which leads to an increased
responsiveness. In this study, we also find the sleeping cortex close to a phase transition and
suggest that the concept of criticality is not restricted to wakefulness, but carries over to sleep.
However, the phase transition and computational goal are different.
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4.5. Discussion

Due to the presence of noise bifurcations do not lead to clear-cut qualitative changes of the
dynamics (Curto et al., 2009). Noise can shift critical points or induce behavior that is not seen
in the deterministic case, such as noise-induced transitions.

Relation to intracellular recordings Our work deals primarily with the characteristics
of EEG signals during non-REM sleep. However, the presented bifurcation analysis is useful in
a broader context. Similar activity is found e.g., during non-REM sleep, anesthesia, coma and
in isolated cortical preparations. It becomes increasingly clear that there exists a continuum
of slow oscillatory states, which are mainly characterized by the fraction of time spent in up
or down states, the temporal regularity with which state transitions occur and the response to
external stimuli.

The phenomenon of up and down states in intracellular recordings is commonly associated
with the notion of bistability or relaxation oscillations. However, it is important to note that
most results on SOs were obtained in deeply anesthetized animals or slice preparations. Under
these conditions, the system is down state dominated, i.e., down states last longer than up
states, the occurrence of up states is often highly rhythmic (Deco et al., 2009; Chauvette et al.,
2011) or up states are infrequent and transient (Poskanzer and Yuste, 2011). In the model these
classical regimes are also present, namely in regions III, V and VI.

Generally, SOs produced by anesthesia are much more regular than during natural sleep (Chau-
vette et al., 2011; Amzica and Steriade, 1998). Under ketamine-xylazine anesthesia neurons
spend twice the time in silent states compared to natural SWS (Chauvette et al., 2011), and in
the auditory cortex of awake rats prolonged up states are not even observed at all (Hromadka
et al., 2013). Furthermore, SO properties differ from one anesthetic to the other (Amzica and
Steriade, 1997a). Ketamine-xylazine anesthesia produces a uniform and continuous SO state
(Ruiz-Mejias et al., 2011), whereas with urethane epochs of stable SOs are short-lived and
desynchronized periods may occur spontaneously (Clement et al., 2008). This is similar to
SWS where one finds waxing and waning of slow-wave complexes interleaved with periods
reminiscent of active states (Destexhe et al., 1999).

In contrast, (Cash et al., 2009) pointed out that a KC during light sleep is not always embedded
in an ongoing SO, but is mostly an isolated event. Clearly, in N2 the active state dominates.
Similarly, many studies report that during SWS of naturally sleeping animals more time is spent
in up states than in down states (Destexhe et al., 1999; Steriade et al., 2001) (Timofeev et al.,
2001b; Ji and Wilson, 2007; Vyazovskiy et al., 2009; Chauvette et al., 2011) Furthermore, it
has been reported that SWS contains many episodes of low-amplitude fast oscillations, lasting
several seconds and resembling the active state (Destexhe and Sejnowski, 2003). This evidence
points to natural sleep being up state dominated.

Furthermore, bistability is inferred via bimodality in the distribution of individual cells mem-
brane potential. In local field potentials, one can observe a markedly conserved waveform of
individual SO events (Crunelli and Hughes, 2010), but bimodality is already less visible. It
is known that collective dynamics can exhibit, e.g., limit-cycle regimes, but at the same time
emerge from irregular and high-dimensional neuronal activity, which is only apparent at small-
scales (Boustani and Destexhe, 2009).

The spectrum of SO phenomena cannot be fully captured by the concepts of bimodality or re-
laxation oscillations. Our analysis corroborates that the KC can be identified with a single, iso-
lated relaxation cycle and slow-wave activity, including prolonged episodes of low-amplitude
fast oscillations, stems from noise driven oscillations around a stable focus. Down states occur
frequently in the up state dominated cortex, but they are transient.
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Predictions The assumption that a substantial gain change accompanies the change of sleep
stages is reasonable, but still has to be clearly demonstrated experimentally for natural sleep.
The only publication we are aware of that touches this issue is (Steriade et al., 2001). Our
model indicates that an increase in gain can induce a bistable state when awake, moving from
region I to region V. Likewise, looking at comatose states (region IV) a decrease in gain should
induce limit cycle oscillations.

Additionally, constant neural activation, i.e., arousal, causes relaxation oscillations in the mo-
del. Indeed, this phenomenon seems to occur in comatose patients, too, where one observes an
increase in delta activity after stimulation (Evans, 1976). This is termed paradoxical arousal and
should not be confused with the paradoxical excitation/biphasic response during the induction
process of anesthesia.

Furthermore, given the suggested role of gain change in the transition between N2 and N3, an
altered slope of the f-I-relation of excitatory pyramidal cells could be a key factor in distin-
guishing wake and REM sleep. Activity-dependent and leak potassium currents (or tonically
activated extrasynaptic GABAA receptors) are both able to promote bistability in a cortical
population. However, only activity-dependent mechanisms contribute to rhythmicity. It would
be interesting to see their contributions revealed for natural sleep and anesthesia.

A study by Molaee-Ardekani (2007) showed that a similar model of slow firing rate adaptation
can reproduce the effects seen under anesthesia. A comparison of my findings with their results
suggest that the region of bistability (V) as well as as well as the region of excitability (VI) are
actually associated with anesthesia.

Sleep: more than bistability and relaxation oscillations A main result of this work
is that on the macroscopic level the cortex is not necessarily in a bistable regime during natural
deep sleep. We argue that properties of KCs and SOs at the EEG level support the view of a
monostable active cortex close to a Hopf and a saddle node bifurcation.

We stress that the characterization of KCs and SOs is made on the population level. While the
switching between up and down states on the cellular level points to relaxation oscillations or
bistability with noise driven transitions, relatively regular oscillation at the cellular level may
appear less regular at the EEG level, due to varying spatial synchrony (Amzica and Steriade,
1998). Relaxation oscillations in the EEG usually correspond to pathological conditions like
epilepsy.

We have not explicitly analyzed other adaptation mechanisms like multiplicative feedback aris-
ing due to synaptic depression or depletion of extra-cellular calcium or inhibitory modulation
(Sanchez-Vives et al., 2010). However, the additive activity-dependent feedback investigated
here is sufficient to account for a multitude of phenomena in healthy and pathological con-
ditions. Furthermore, we expect that the bifurcation structure of the system, i.e., presence of
saddle-nodes, Hopf and homoclinic bifurcation, will persist in alternative settings. Thus, the
main conclusions do not depend on the particular choice of the feedback mechanism.

We developed a neural mass model of the thalamocortical system that produces realistic time
courses of EEG signals during sleep stages N2 and N3 and correctly replicates the timing of
KCs and spindles. We validated the model with SO triggered averages of the EEG signal and
spindle power. Finally, we used the model to reproduce evoked responses from closed-loop
auditory stimulation during human non-REM sleep.
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4.5. Discussion

Mechanisms of spindle generation. The model emphasizes the role of IT and Ih cur-
rents in the generation of thalamocortical rhythms as they were sufficient to reproduce the
investigated EEG phenomena. It reproduces the grouping of spindles and KCs/SOs, observed
in human EEG (Mölle et al., 2002), that is thought to play a crucial role in the consolidation of
memory (Mölle et al., 2006; Diekelmann and Born, 2010). Additionally, it exhibits refractori-
ness of spindle oscillations, i.e., not every SO in a train of endogenous SOs triggers a spindle.
Although adding extra currents increases dimensionality and parameter space, the model still
preserves the overall simplicity and computational efficacy common to neural mass models.

Spindle timing. Relative to the negative deflection of a KC, spindles consistently start ear-
lier than in the data. Consistently, the depolarizing up phase of endogenous KCs and SOs
arrives earlier in the model than in the data. A comparison with the results from the isolated
cortical module shows, that this is mostly due to strong depolarizing input from the thalamus.
Yet, there is no clear explanation for the difference between model and experiment. It might
be due to the simplification of the intrinsic mechanisms, e.g., firing rate adaptation in cortex
and spindle dynamics in thalamus. On the other hand it could also be that finer details, e.g.,
spatial extension or the layered structure of the cortex are important for its temporal dynamics.
Also the way conduction delays between cortex and thalamus were implemented, namely via
an extra convolution with an alpha function, might play a role.

Auditory stimulation. A recent experimental study suggests that the refractoriness of tha-
lamic spindles is a limiting factor for the impact of auditory stimulation upon memory consoli-
dation (Ngo et al., 2015). They found, that longer trains of stimuli do not provide any benefit in
memory consolidation compared to the two stimulus protocol. Remarkably, the first stimulus
triggers a strong spindle, whereas the following stimuli show a diminished spindle response.
This clearly indicates the importance of the grouping of spindles and SOs for the consolida-
tion of memory. In contrast to these experimental findings, auditory stimulation in the model
alleviates the refractoriness of the thalamic module, leading to spindle oscillations with similar
amplitude following every stimulus. This is because strong depolarization of the thalamic pop-
ulations by the stimulus interrupts the thalamic Ih rhythm. We see this as a challenge for the
understanding of how auditory stimulation is processed during sleep and how it interacts with
spindle generation.

Relation to other work. Recently, Cona et al. also developed a neural mass model to
describe the sleeping thalamocortical system (Cona et al., 2014). They combined two distinct
firing modes via the activation of the T-type calcium current, showing that this multiplicative
change in firing rate can lead to periodic spindle-like oscillations. However, in this study we
include the currents directly into the equation of the membrane voltage, similar to (Żygierewicz
et al., 2001; Weigenand et al., 2014). Our model relates directly to scalp EEG signals during
natural sleep and auditory stimulation.

Effect of neuromodulators and sleep regulation. In the model, we induce the tran-
sition between the different sleep stages by changes of the three key parameters (gKNa and σp
in the cortex and ḡLK in the thalamus), that are directly linked to the action of neuromodula-
tors (McCormick, 1992; Hughes et al., 2002; Steriade, 2004; Weigenand et al., 2014). These
parameters are known to be affected by neuromodulators, such as noradrenalin, serotonin and
acetylcholine (McCormick, 1989; Timmons et al., 2004; Zhang and Arsenault, 2005; Gulledge
et al., 2009; Soma et al., 2012), whose concentrations vary over the night. Regulation of neuro-
modulator concentrations arises through complex interactions within different sleep regulatory
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4. Model II: A thalamocortical neural mass model of non-REM sleep

networks (Léna et al., 2005; Lydic and Baghdoyan, 2005). Recently there has been progress in
the mathematical description of sleep regulatory networks (Tamakawa, 2005; Diniz Behn and
Booth, 2010; Phillips and Robinson, 2007; Rempe et al., 2009; Kumar et al., 2012). However,
as we focus on the different dynamical modes the thalamocortical system can exhibit and how
thalamus and cortex interact, we do not include sleep regulation in this manuscript.

Are KCs biphasic or triphasic? The waveform of a KC has been described as being
biphasic, consisting of a large negative deflection (down state) followed by a pronounced de-
polarization (up state) - or triphasic, comprising an initial positive bump followed by a down
state and an up state. Menicucci et al. (2013) analyzed the shapes of KCs in N2 and N3 and
found that on average a triphasic pattern, up-down-up, is present in both sleep stages. Our
model does not show this sequence for sleep stage N2. In vivo, sleep stage N2 is rarely station-
ary and spans varying depths of sleep, as well as transitions to other sleep stages. In contrast,
the model depicts idealized N2 at a single point in time, to separate it from wakefulness and N3.
Choosing a parameter setting closer to N3 will naturally give rise to a depolarization preceding
the down state. We predict that biphasic KCs should be found mostly in early N2 or very late
N2, as in the second half of the night after the major SWS episodes.

Is there true bistability during natural sleep? The model is consistent with the obser-
vation that during N2 and N3 of natural sleep the cortex is mostly in the active state (Chauvette
et al., 2011). We adopt the view of (Weigenand et al., 2014), where KCs were characterized as
transient events - reversed spikes - initiated by a canard explosion. Consequently the down state
is never stable in the model. This may seem counterintuitive as many intracellular recordings
support the notion of bistability. However, neural mass models represent population averages,
whereas intracellular recordings only sample individual members of a population, leaving open
this alternative interpretation derived from stereotypical graphoelements in the EEG.
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5. Model III: The K-complex in the
Fitzhugh-Nagumo model

5.1. Model description

The Fitzhugh-Nagumo (FHN) model

V̇ = aV 3 + bV 2 + cV + d− w + I(t)

ẇ = (−ew + V )/τ
(5.1)

has been used to elucidate many aspects of spiking in neurons and other excitable systems. In
the context of neural mass models, the variable V with the cubic nullcline can be regarded as
the membrane voltage of an excitatory population and the variable w represents an additive,
activity-dependent feedback current. The variable V is the fast system and variable w is slow
when τ is sufficiently large. External, time-dependent perturbations enter via I(t). Despite its
simplicity, the FHN model can generate a rich set of dynamics. It is known that it contains a ca-
nard explosion (Benoit et al., 1981; Eckhaus, 1983), which we found to be the key mechanism
underlying K-complex generation in the neural mass model of the previous chapter. Hence, the
FHN model might be a suitable approximation of large-scale cortical activity and reveal new
predictions and insights into the characteristics of K-complexes.

5.2. Reproduction of sleep stage N2 and delta activity

With the algorithm of chapter 3 we fitted the model to 30s traces of EEG data from sleep
stage N2. The output of the simple FHN model shares many features with the original data
(Figure 5.1), just like the more complicated conductance-based neural mass model (Figure 4.5).
Leaving aside the peaks in the spindle band it fits the experimental power spectrum very well,
in particular the low frequencies and the power law decay (Figure 5.2).

Using the linearized system one can compute an analytical approximation of the power spec-
trum. Given the Jacobian J = ∂F (x)

∂x

∣∣∣
x=x∗

of a system ẋ = F (x) + I at its steady-state x∗,
then the power spectrum S can be obtained via

S(p) = ‖(pE − J)−1F{I}‖2, (5.2)

where p = i2πf , E is the identity matrix and F{I} is the Fourier transform of the external
input. The steady-state is the solution to F (x∗) = 0.

The Jacobian of the FHN model is

J =

(
−3aV 2 + 2bV + c −1

1/τ −e/τ

)
. (5.3)

The result is depicted in Figure 5.3. It demonstrates that fitting a model only with spectral in-
formation of the linearized system, which unfortunately is common practice (Bojak and Liley,
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5. Model III: The K-complex in the Fitzhugh-Nagumo model
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Figure 5.1.: Qualitative comparison of (top) human EEG of sleep stage N2 with (bottom) the
behavior of the FHN model. The traces illustrate the medium-amplitude background oscillations and
the stereotypical shape of spontaneous KCs at the EEG level. The model’s KC is noise induced and
represents a single relaxation cycle. Both time series are z-scored. Note that the positive overshoot
following the sharp negative deflection in the experimental time series is not a filtering artifact.
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Figure 5.2.: Power spectra of a representative 10min N2 period and a fit of the FHN model (a =
−2.2, b = −3.6, c = −0.6, d = 0.6, e = −0.03, τ = 4.9, σ = 0.11). The EEG data has been lowpass
filtered to remove noise and components that cannot be captured by the model anyway. The same filter
was included in the model formulation for the fitting.
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5.3. Phase plane analysis & K-complex mechanism
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Figure 5.3.: (In)Validity of linear approximation. (A) For low noise, with only sub-threshold oscilla-
tions, the linear approximation (eigenspectrum, red line) of the nonlinear system by Eq. 5.2 provides a
remarkebly good fit to the true power spectrum obtained via simulation. For high noise, in the presence
of K-complexes, the linear approximation is significantly worse. In the true spectrum, signal power is
concentrated in lower frequencies. (B) Zoom into low frequency region of (A). Note the bump around
3 Hz. The peak of the model output has moved to lower frequencies. Parameters are the same as in
Figure 5.2

2005; Robinson et al., 2002; Foster et al., 2011; Hashemi et al., 2014), will miss important
features and bias the estimated parameters. Furthermore, the analysis shows that noise driven
“subthreshold” oscillations have a higher frequency than K-complexes. This could be the origin
of one type of cortical delta oscillations.

5.3. Phase plane analysis & K-complex mechanism

Figure 5.4.: K-complex and canard explosion in the phase plane of the Fitzhugh-Nagumo model.
(A) Time course of a canard cycle / K-complex in the noise-free Fitzhugh-Nagumo model. The initial
conditions were set away from the equilibrium to initiate the cycle. (B) Shown are the V -nullcline (red)
and w-nullcline (blue) of the system 5.1. The black line depicts the trajectory of the canard cycle /
K-complex in (A). The circle at the intersection of both nullclines marks the stable fixed point.

Figure 5.4 shows the phase plane of the FHN model and the trajectory of a proposed K-
complex. The scenario is the classical canard explosion. The cubic nullcline has two attracting
outer branches and a repelling middle branch. For small perturbations the system stays close
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5. Model III: The K-complex in the Fitzhugh-Nagumo model

to the stable fixed point and exhibits low amplitude oscillations. Large perturbations can move
the system beyond the stable manifold. It then moves quickly to the lower branch and follows
the upper branch for a significant amount of time, back to the stable fixed point.

The time-constant τ directly controls the width of the K-complex as well as of the slow decay
of the afterdepolarization. Furthermore, the shape of the afterdepolarization of the K-complex
is determined by the upper branch of the cubic V -nullcline.

At least in this simple model a pure instantaneous increase in voltage, e.g., by very brief strong
stimuli, does not cause a K-complex, as the system will stay within the region bordered by the
U-shaped stable manifold. In contrast, non-instantaneous stimuli with a certain duration will
additionally cause an increase in adaptation current w, which can move the system beyond the
basin of attraction of the fixed point. Moreover, excitatory inputs will more likely cause an all
or none response, whereas inhibitory inputs allow a more graded response, because the system
stays closer to the middle branch. In experiments with humans, such an inhibition could be
caused by short muting of a steady background noise or a sudden decrease in illumination.

As one can see from the graph, there is only one fixed point present at the intersection of the two
nullclines and the w-nullcline is almost horizontal. Notably, when inputs move the V -nullcline
to the left or right, the stability of the fixed point will not change over a wide range. This allows
the prediction that, if the slope of the w-nullcline is zero or very shallow, a gradual increase of
input and constant offset in the input will have no effect on the K-complex generation. This has
implications for e.g., transcranial direct current stimulation (tDCS), namely that it should not
affect K-complex dynamics. It also reveals a limitation of this simple model. Its dynamics are
almost invariant with respect to the input level. Clearly, an input current cannot grow without
bound in a biological system.

The canard phenomenon can also provide an elegant explanation for the consistent experimen-
tal observation that the transition to the down state is more synchronous than the one to the
up state. The drop to the bottom branch (Figure 5.4 B) occurs almost instantaneously (high
synchrony), but repolarization has to follow the bottom branch and takes more time (low syn-
chrony).

Due to its simplicity the FHN model will not exhibit additional rhythms. An extension of the
model with another fast subsystem, e.g., an inhibitory population, allows for more complex
behavior.
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6. Experiment: Open-loop auditory
stimulation during non-REM sleep and
its effect on memory consolidation

Parts of this chapter have been published in Weigenand et al. (2016).

A recent study in humans showed that two-click auditory stimulation in phase with positive
half-waves of endogenous SOs (“closed-loop stimulation”) is capable of improving memory
performance in a verbal paired-associate learning task (Ngo et al., 2013). This result has been
reproduced with more than two clicks, also relying on phase-dependent stimulation (Ngo et al.,
2015). Although spindles and SOs seem to be involved, the specific aspect of the closed-loop
stimulation paradigm responsible for the improvement remains unclear.

We tested whether a similar effect on learning performance can be achieved with a rhythmic
click sequence. The rhythmic sequence also achieves in-phase stimulation, but starts at a ran-
dom phase of the SO. The stimulation paradigm, termed open-loop stimulation in the following,
is based on the observation that a single click has a high probability of evoking a single SO or
a K-complex given some time has passed since the last click (Bastien and Campbell, 1994).

We used the first click in a sequence to evoke a SO, thereby resetting the ongoing activity to a
known phase. Using a defined interval, a subsequent click can then be delivered during the up
state of the evoked SO.

6.1. Materials and Methods

6.1.1. Participants

26 healthy right-handed volunteers participated in this study, of which 21 (11 male, mean age
22.2 years, range 18-28 years) were used for the analysis. Five participants left the study before
completion. The experimental protocol was approved by the ethics committee of the University
of Lübeck (application 13-172) and all volunteers gave their written consent prior to participa-
tion.

The subjects were native German speakers, non-smokers and had no history of neurological,
psychiatric or endocrine disorders. Furthermore, all participants were free from medication
except the females, who were all taking hormonal contraceptives. Participants slept 7-9 h per
night, did not normally take daytime naps and followed a regular sleep schedule as assessed
by interview and questionnaire. They reported no major disruptions of the sleep-wake cycle
during the 4 weeks before experimentation. Subjects were instructed to abstain from alcohol
and caffeine and to get up at 6:00 a.m. on the day of the experiment.
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6. Experiment: Open-loop auditory stimulation and memory consolidation

Figure 6.1.: Stimulation protocol. (A) Outline of experimental nights. PVT: psychomotor vigilance
test, PAL: paired-associate learning, SSS: Standford Sleepiness Scale, RWT: Regensburg Word Fluency
Test, DST: digit span test, SF-A: sleep questionnaire A, PANAS: Positive and Negative Affect Schedule.
(B) Sequences of 3 clicks were applied during N3. After a sequence of 3 clicks, there was a 5 to 9 s pause
(“inter-sequence-interval”) between the last click and the first click of the following sequence. The first
and last click of a sequence define the “within-sequence-interval”. The interval between the first and
second click within a sequence was set to the average SO period of the respective subject, which was
determined during the adaptation night from single-click evoked potentials at lead Fz. The interval
between the second and third click was fixed to 1.075 s. The first click had a high probability to evoke a
SO and, hence, was applied to induce a phase reset. The second and third clicks were then more likely
to occur in phase with a SO up state. Essentially, the protocol is a phase-independent modification of the
closed-loop auditory stimulation in Ngo et al. (2013). (C) A hypnogram indicating the pre-stimulation
period, stimulation period, stimulation epochs and post-stimulation period. Stimulation started after 5
min of stable N3 and only took place during N3 epochs of the 210 min stimulation period. Baseline
effects were controlled for in the N2 epochs of the pre-stimulation period. Non-REM sleep epochs of
the post-stimulation period were analyzed for after-effects.
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6.1. Materials and Methods

6.1.2. Experimental design and procedures

This study followed a single-blind, counterbalanced crossover design. Each subject participated
in one adaptation night, and two experimental nights of either a “Stimulation” or a “Sham”
session. Experimental nights were separated by at least one week to avoid carry-over effects.
Experimental sessions started at 8:30 p.m. with the application of EEG electrodes. Each ses-
sion consisted of a learning phase followed by an immediate recall phase with feedback and
subsequent sleep from 11 p.m.-6 a.m., with either auditory or sham stimulation. A second re-
call in the morning (6:30 a.m.) served to assess overnight retention. The experimental design
is summarized in Figure 6.1A. Please note that feedback at immediate retest does not allow for
assessment of a real baseline.

6.1.3. EEG recordings and polysomnography

EEG was recorded throughout the whole night using a BrainAmp DC amplifier (Brain Prod-
ucts) from 21 channels according to the international 10-20 system (Fp1, Fpz, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, O2), referenced to linked mas-
toid electrodes. Ag-AgCl electrodes were used and impedances were below 5 kΩ. Signals were
low-pass filtered (fcutoff=120 Hz), sampled at 500 Hz and stored for later offline analysis on a
PC together with the stimulation triggers. For all subsequent analysis data were downsampled
to 100 Hz. Vertical and horizontal eye movements (EOG) as well as electromyogram from the
chin (EMG) were obtained for standard polysomnography and artefact detection. For the adap-
tation night, a reduced set of scalp electrodes was used (Fp1, Fpz, Fp2, F3, Fz, F4, C3, Cz, C4,
P3, Pz, P4).

Each night was scored visually for succeeding 30-s epochs according to AASM criteria (Iber
et al., 2007) by an experienced sleep scorer blind to the condition. Total sleep time (TST),
time spent in different sleep stages (wake; sleep stages N1, N2, N3, REM) and the number
of movement arousals were determined for the whole night and separately for the stimulation
period and the remaining sleep time. Sleep onset, i.e., the first occurrence of sleep stage N2,
was defined with reference to lights off.

6.1.4. Auditory stimulation

The stimulation protocol is outlined in Figure 6.1B. In the Stimulation condition, groups of
three click sounds were delivered via in-ear headphones (Philips SHE 8500) during slow-wave
sleep (sleep stage N3). A single click consisted of 50ms of pink noise with a 5 ms rise and fall
time. The timing of the second and third click relative to the first click was chosen to maximize
their probability of coinciding with evoked SO up states, given that the preceding click triggers
a SO.

Specifically, the delay between first and second click was chosen individually as the mean
delay time between the first click and the maximum peak of the subject’s succeeding large
positive deflection at electrode Fz. This deflection reflects the presumed depolarizing up state
of the evoked K-complex. This delay was assessed in the adaptation night using sixty clicks
with interstimulus intervals of 5-9 s (uniformly distributed). The component is known as P900
in the evoked potential literature, since the positive peak occurs ca 900ms after the stimulus
(Bastien et al., 2002).

The second and third click were 1.075 s apart, which was adopted from (Ngo et al., 2013)
and corresponded to the average duration of a SO. Click sequences were separated by 5-9 s
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6. Experiment: Open-loop auditory stimulation and memory consolidation

(uniform scatter). In the Sham condition, subjects wore in-ear headphones but no clicks were
generated. The stimulation period always began after 5 minutes of stable N3, which was as-
sessed online by the experimenter and continued for 210 min. When arousals or changes in
sleep stage were detected stimulation was paused. It was resumed when stable N3 was de-
tected again. Signals were generated using a CED Power1401 mkII programmed via Spike2
version 7.11 (Cambridge Electronic Design Limited, Cambridge, England). Trigger markers of
each tone were recorded in the Stimulation condition. Trigger markers of the Sham condition
were generated offline and matched the markers of the Stimulation condition in number, distri-
bution of interstimulus intervals, number of stimulation epochs, and start and end time of the
stimulation period.

6.1.5. Paired-associate learning task

The word-pair memory task was adopted from a previous study (Ngo et al., 2013). In brief,
subjects had to memorize 120 German word-pairs, which were presented sequentially on a
monitor using E-Prime 2.0 (Psychology Software Tools). Each item was displayed for 4 s with
an interstimulus interval of 1 s between items. Two different word lists were used for the two
experimental sessions and the order of word lists was balanced across subjects and conditions.
Furthermore, the lists were matched in difficulty in order to reduce baseline variance. Dur-
ing the immediate recall phase, the subject had to respond by naming the second word upon
presentation of the first word of a pair and had unlimited time to recall the appropriate word.
The correct answer was revealed on the screen immediately after the response. At testing in
the morning after sleep, cued recall was tested in the same manner as after learning, except
that no feedback was given after the subject’s response. Participants were explicitly advised
to visualize word-pairs as learning strategy and to guess instead of giving no answer. Only
exact responses were considered correct. Several control tests were performed to assess non-
specific contributions of the stimulation to memory performance. Before and after sleep, the
subjects’ mood and tiredness were assessed with the Positive and Negative Affect Schedule
(PANAS) and the Stanford Sleepiness Scale (SSS) (Hoddes et al., 1973; Watson et al., 1988).
Sleep quality was assessed by means of questionnaire SF-A (Görtelmeyer, 1981). Addition-
ally, a digit span test (DST) and the Regensburg word fluency test (RWT) were administered
in the morning to control for general abilities to retrieve information from long-term memory
and for working memory performance (Tewes, 1991; Aschenbrenner et al., 2000). All subjects
underwent a psychomotor vigilance test (PVT) to control for general alertness and vigilance.
In this task, a counter appears at the center of a computer screen every 2-10 seconds for about
5 minutes and participants have to respond as quickly as possible by pressing a button.

6.1.6. Event related potentials

Data were analyzed using MATLAB R2013a (The MathWorks, Inc., Natick, Massachusetts,
United States). Event related potentials of the EEG signal were obtained from the downsampled
raw data of which a linear trend was removed ±6 s around the first click of each sequence.
This eliminated the influence of strong dc drifts without distorting the waveform. The number
of windows used for averaging in the Stimulation and Sham condition was on average 295 ±
119 and 287 ± 105, respectively.
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6.1.7. Offline detection of slow oscillations and K-complexes

The offline detection of SO events is based on (Mölle et al., 2002). A low-pass filter (Cheby-
shev type II, fstop=4.5 Hz, fpass=3.5 Hz, Astop=60 dB) and a high-pass filter (Butterworth,
fstop=0.1 Hz, fpass=0.5 Hz, Astop=20 dB) were applied to the raw signal of the individual
channel of interest. Then all zero-crossings were determined and negative and positive half-
waves extracted. Segments having a negative half-wave with a width between 150 and 800 ms
and exceeding a peak negativity of -65 µV were regarded as SOs and the negative half-wave
peaks were used for the identification of the SO events. The validity of detected events was
verified visually. Filters were applied in forward and reverse direction to eliminate phase dis-
tortion. SOs were considered to be evoked if they occurred within 200 - 900 ms following a
click.

6.1.8. Event histogram

In order to examine whether open-loop stimulation actually evoked SO events, delays between
the first clicks of presented click sequences and offline detected SO events (all endogenous +
evoked), using a bin size of 100 ms were assessed. The resulting histogram was then normal-
ized using the total number of click sequences, yielding the corresponding probability, P. The
analysis was limited to the interval [-2,5] s around first clicks (at t = 0 s).

6.1.9. Artefact detection

In a first step, epochs with artefacts were marked manually during scoring. Automatic resetting
of DC offsets, sudden signal jumps, increased muscle tone (EMG signal) and drifts induced by
sweating were regarded as artifacts. In a second step, an automatic algorithm classified epochs
as artefactual if the difference between consecutive samples was >100 µV or the standard
deviation of the epoch exceeded 150 µV. Epochs with artifacts were removed from the analysis.
In the rare case where a single electrode detached or persistently exhibited artifacts, it was
replaced by a combination of the remaining intact electrodes determined by linear regression.

6.1.10. Spectral analysis

Power spectra were computed for all artifact-free 30s epochs with Matlab’s pwelch method
using a Hanning window of 6 s length, 50% segment overlap and zero-padding to a total length
of 20 s. The spectra of the epochs of interest, i.e., the N2 epochs of the pre-stimulation period,
the stimulation epochs during non-REM sleep of the stimulation period, and the non-REM
sleep epochs of the post-stimulation period, were then averaged and subsequently normalized.
The mean of the power of all channels between 0.3 - 30 Hz, both conditions and all non-
REM sleep epochs of the subject was used for normalization. This procedure maintains the
within-subject variance, but reduces between-subject variance by levelling the large baseline
differences between subjects common to spectral data. It has the additional benefit of improving
gaussianity of the data. Frequencies below 0.3 Hz were discarded for normalization, because
they mainly comprise strongly varying DC and drift components. Finally, normalized spectral
data were split into the following frequency bands: SO, 0.5-1 Hz, Delta, 1-4 Hz, SWA, 0.5-4
Hz, Theta, 4-8 Hz, slow spindle, 9-12 Hz, fast spindle, 12-15 Hz. Topographic maps are based
on normalized spectral data. In order to extract the time-course of slow and fast spindle activity
(instantaneous power) the raw signal was band-pass filtered in the respective spindle band
(Chebyshev type II, 40 dB stop band attenuation, 2 Hz transition band) and the squared absolute
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value of its Hilbert transform was calculated. This procedure was used in the calculation of the
event-related power and the measure for phase-amplitude coupling.

6.1.11. Coupling between spindles and slow oscillations

We used two measures for investigating the relation between slow oscillations and spindles
in the 210 minute stimulation interval. First, instantaneous spindle power within positive half-
wave intervals was summed and normalized by the total duration of positive half-waves. Please
note that this is based on all offline detected, not just evoked, slow oscillations.

Second, for the quantification of phase-amplitude coupling between fast spindles and slow
oscillations we used the “mean vector length” method described in (Canolty et al., 2006; Tort
et al., 2010)

In short, the EEG signal s(t) of a single channel was band-pass filtered from 12 Hz to 15
Hz, Hilbert-transformed, squared and normalized by its standard deviation to obtain the time
course of instantaneous power, A(t). The normalization is necessary to facilitate a comparison
between conditions by eliminating the dependence on the overall power level. Similarly, s(t)
was band-pass filtered from 0.5 Hz to 3.5 Hz, Hilbert-transformed and converted into a phase-
signal ϕ(t) by calculating the angle of the resulting complex-valued time series. ϕ(t) assumes
values in the interval (−π, π] radians. The peak of the negative slow oscillation half-wave
corresponds to ϕ = π and the positive peak of the positive SO half-wave occurs at ϕ = 0.
The mean vector length, M, is then defined as M = ‖z‖ and the phase angle of the coupling
is ϕ∗ = ={log(z)}, with z = 1/T

∑T
t=0A(t) exp(iϕ(t)). As we compare modulation indices

across conditions, no further normalization is needed.

6.1.12. Time-frequency representation

Individual time-frequency representations were computed using EEGLAB’s newtimef (De-
lorme and Makeig, 2004). First, trials of [−6, 6] s around first clicks were extracted and a
linear trend removed (same as for event-related potentials). Second, a short-time Fourier trans-
form using the Hanning window and 300 equally spaced, overlapping segments of 1 s length
was applied to each trial. Third, the data was squared. Fourth, for each frequency the trial was
divided by the average power across trials of the baseline interval [−2000, 0] ms. Fifth, trials
were averaged and the logarithm taken. Sixth, P -values were obtained for each pixel using
via a paired permutation t-test (Stimulation vs. Sham) with 4999 permutations using EEGLAB
s statcond and corrected for multiple comparisons using the false discovery rate method for
positively dependent test (Benjamini and Hochberg, 1995).

6.1.13. Statistical analysis

Statistical analysis was performed in Matlab and R (R Development Core Team, 2008). Data is
expressed as mean± SD (or SEM when indicated). Normal distribution of data was assessed by
Shapiro-Wilk test. Normalized EEG power was separately analyzed in the six frequency bands
using two-way repeated measures analyses of variance (ANOVA) with the factors condition
(Stimulation vs. Sham) and lead (Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,
P3, Pz, P4, T6, O1, Oz, O2). Huynh-Feldt correction of degrees of freedom was applied where
appropriate. Running P -values in ERP plots were obtained using two-tailed Student’s paired
t-tests. P -values were corrected for multiple comparisons using the false discovery rate method
for positively dependent tests (Benjamini and Hochberg, 1995).
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6.2. Results

Twelve of 21 subjects reported to have noticed auditory stimulation during the night of which
4 perceived it as unpleasant. Eight subjects were clearly sensitive to stimulation, as they had
arousals upon the beginning of a stimulation sequence and could only receive stimulation to-
wards the end of the stimulation period. The mean duration of stimulation epochs within the
stimulation period was 49 ± 17 min for the Stimulation condition and 47 ± 14 min for the
Sham condition. During this time 295± 119 (Sham: 287± 105) click sequences were applied.
The individually determined delay between first and second click (P900) was on average 942
± 111 ms across subjects. Event-related potentials, power and acute spindle response similar
to auditory closed-loop stimulation The EEG (averaged across subjects) time-locked to the first
click revealed a series of strong slow oscillatory responses (Figure 6.2A, top). The ability of the
click sequences to evoke SO sequences is reflected in the event histogram of the delays (Fig-
ure 6.2C). The probability to evoke a SO is similar for each click in a sequence, namely Pclick
1=0.39± 0.16, Pclick 2=0.37± 0.15, Pclick 3=0.35± 0.15. However, the probability of a click
sequence to evoke 3 consecutive SOs is relatively low but still significantly higher as compared
to Sham (PStimulation(SO3|SO2|SO1) = 0.13± 0.09 vs. PSham(SO3|SO2|SO1)=0.05± 0.04;
P<0.001).

Event-related fast spindle power (12 − 15 Hz) is depicted in Figure 6.2A (middle). The first
click triggered not only a large positive wave reflecting the depolarized component of the EEG
(putative up state) around t = 1 s, but also a single strong response in spindle activity. In
contrast, responses to the second and third click of a sequence at t = 2 s and t = 3 s are
markedly lower. Furthermore, the baseline level of event-related fast spindle power is lower in
the “Stimulation” condition than in the “Sham” condition.

Similarly, the mean level of event related slow spindle power (9-12 Hz) is higher in Sham
(Figure 6.2A, bottom). However, in contrast to fast spindle power, an increase in slow spindle
power of similar magnitude can be seen after each click. This suggests that refractory processes
play less of a role for slow than for fast spindles.

Next, we analyzed the EEG response to clicks separately for the cases where the first click in a
sequence successfully evoked a KC and thus the succeeding click could be played into the next
up-states as compared to when the click failed to do so (“KC” vs. “no KC”). The event-related
responses in Figure 6.3 (top) clearly reflect the presence or absence of KCs. Notably, a signifi-
cant increase in fast spindle power after the second click was present, regardless of whether the
first click evoked a KC or not - the amplitude being larger in the “KC” case (Figure 6.3, mid-
dle). Furthermore, the amplitude of the fast spindle response following the second click is lower
when the first click successfully evoked a KC. Slow spindles already show an increase upon
the first click if it evoked a KC (Figure 6.3, bottom). In order to provide a more comprehen-
sive overview of the frequency content of the EEG response to click sequences we calculated
a time-frequency representation of the within-sequence-intervals comparing Stimulation and
Sham condition (Figure 6.4).

Next, we investigated how the morphology of slow oscillation events was influenced by the
stimulation. For this, we averaged all offline detected slow oscillation events time-locked to
the negative peak of their negative half-wave (Figure 6.2B, top). This revealed, that the am-
plitude of the main negative half-wave of the SO (t = 0 s) was unaffected by stimulation
(Pmathrmfdr = 0.17). Open-loop stimulation, however, increased the amplitudes of positive
half-waves (at t = ±0.5 s, Pfdr<0.01) and negative half-waves (at t = ±1 s, Pfdr < 0.01). This
may reflect the greater occurrence of SO trains induced by the click sequences, as indicated by
the event histogram in Figure 6.2C.
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6. Experiment: Open-loop auditory stimulation and memory consolidation

Figure 6.2.: No impact of open-loop auditory stimulation on memory consolidation despite effects
on SOs and on spindle power. (A) Mean (±SEM) event-related response at Cz averaged for the wide-
band EEG signal, (middle) fast spindle power (FS, 12 − 15 Hz) and (bottom) slow spindle power (SS,
9 − 12 Hz), time-locked to the first click of each sequence (t = 0 s), for Stimulation (red) and Sham
(black) condition. Vertical dashed lines indicate clicks. Time axis is adjusted for individual interstim-
ulus intervals such that the second click occurs at 940 ms. Baseline has not been removed. (B) Mean
(±SEM) of EEG signal (top), fast spindle power (middle) and slow spindle power (bottom), time-locked
to the negative peak (t = 0 s) of all offline detected slow oscillations at Cz, for Stimulation (red) and
Sham (black) condition. Baseline correction was not conducted. (C) Mean (±SEM) event histogram of
offline detected SO events at Fz during non-REM sleep, time-locked to first click of a click-sequence
(t = 0 s) and restricted to the window [-2,5] s, for the Stimulation (red) and Sham (black) condition,
averaged across subjects. (D) Mean (±SEM) difference between number of successfully recalled word
pairs before and after sleep (retention) for the Stimulation and Sham condition, averaged across sub-
jects. (A,B,C) Bottom panels indicate significant differences between conditions (P -values): yellow –
corrected using false discovery rate (Pfdr); grey – uncorrected (Praw).
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Figure 6.3.: EEG responses to click sequences: evoked KC versus no KC after the first click.
(Top) Mean (±SEM) event-related response at Cz averaged for the wide-band EEG signal, (middle) fast
spindle power (FS, 12 − 15 Hz) and (bottom) slow spindle power (SS, 9 − 12 Hz), time-locked to the
first click of each sequence (t = 0 s) for (red) successfully evoked KC after the first click and (black)
missing KC after the first click. Note that after the second and third click KCs may occur in both cases.
Vertical dashed lines indicate clicks. Time axis is adjusted for individual interstimulus intervals such that
the second click occurs at 940 ms. Baseline has not been removed. Bottom panels indicate significant
differences between conditions (P -values): yellow – corrected using false discovery rate (Pfdr); grey –
uncorrected (Praw).
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Figure 6.4.: Time-frequency representation of the response to click sequences at Cz. (Top) T-values
(Stimulation vs. Sham) time-locked to the first click of each sequence (t = 0 s) in interval [-2,5] s are
shown. Black contours indicate regions with Pfdr<0.05. (Bottom) Mean event-related response averaged
for the wide-band EEG signal, time-locked to the first click of each sequence (t = 0 s), for the Stimula-
tion condition. (Top, Bottom) Vertical dashed lines indicate clicks. Time axis is adjusted for individual
interstimulus intervals such that the second click occurs at 940 ms.

6.2.1. Differential effects on slow-wave power and spindle power

Stimulation had opposite effects on SOs and spindles. While power in SO, delta and SWA
bands was increased throughout non-REM sleep of the stimulation epochs (F1,20 = 7.6, P =
0.012; F1,20 = 4.5, P = 0.047; F1,20 = 7.7, P = 0.012), power in slow and fast spindle
bands decreased during this time (F1,20 = 17.6, P < 0.001; F1,20 = 25.1, P < 0.001; see
Figure 6.3, bottom row). The effect on SO power was strongest in frontal regions and exhibited
a lateralization to the right hemisphere. Slow spindle power was altered mainly at central leads
and fast spindle power at centro-parietal leads (Figure 6.3, top row).

In addition to the stimulation period, we evaluated EEG power during N2 epochs between sleep
onset and beginning of the stimulation (pre-stimulation period) and non-REM sleep epochs of
the post-stimulation period (see Figure 6.1B for definitions). As could be expected, power in
N2 epochs preceding the stimulation period did not differ between conditions (P > 0.24 for all
ANOVA condition main effects and condition × topography interaction). Hence, we can rule
out that the changes observed during the stimulation period are due to a preexisting baseline
offset.

During post-stimulation non-REM sleep epochs power in SO, delta and SWA bands was also
increased, despite absence of stimulation. The presence of this effect depended on electrode
site (condition × topography interaction: SO, F20,400 = 3.64, P = 0.036; delta, F20,400 =
3.41, P = 0.041; SWA, F20,400 = 3.85, P = 0.028). The suppression of slow spindle power
also extended beyond acute stimulation into the post-stimulation non-REM sleep epochs (con-
dition main effect: F20,400 = 4.44, P = 0.048). However, post-hoc t-tests did not reveal any
significant effects, neither for any electrode site nor for any frequency band (Pfdr > 0.18 at
all electrodes). Figure 6.5 summarizes therefore the overall time course of power across the
three periods of nocturnal sleep in the different frequency bands. Neither baseline nor rebound
effects are evident for any of the six frequency bands.
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Figure 6.5.: Spectral power at Cz across the night. Mean (±SEM) of normalized spectral power over
course of night at Cz averaged over subjects, for Stimulation (red) and Sham (black) condition. “pre”:
N2 epochs of the pre-stimulation period. “stim”: Non-REM sleep epochs with clicks during the 210 min
stimulation period, i.e., the stimulation epochs. “post”: Non-REM sleep epochs after stimulation period,
i.e., the post-stimulation period. ∗Pfdr < 0.05, ∗∗Pfdr < 0.01, paired t-test.

6.2.2. Within-sequence-interval and inter-sequence-interval spindle
power

To further characterize the decrease in spindle power within the stimulation period, we cal-
culated separately mean spindle power for the within-sequence-intervals and inter-sequence-
intervals (see Figure 6.1B for definitions). The results are given in Figure 6.6A. The decrease
in fast and slow spindle power is confined to the time between click sequences. Spindle power
in the inter-sequence-intervals is lower in the Stimulation than the Sham condition (fast spin-
dles: 19.1±7 µV2 vs. 25.8±9.9 µV2, P<0.001; slow spindles: 25.6±14.8 µV2 vs. 32.3±20.6
µV2, P < 0.001), whereas power levels of within-sequence-intervals are similar (P > 0.31).
For the Stimulation condition only spindle power in within-sequence-intervals is higher than
in inter-sequence-intervals (fast spindles: 26.1 ± 9.1 µV2 vs. 19.1 ± 7 µV2, P < 0.001; slow
spindles: 31.2 ± 17.5 µV2 vs. 25.6 ± 14.8 µV2, P < 0.001).

Surprisingly, within the stimulation period fast spindle power during positive half-waves of
SOs was not affected (36.1 ± 11.8µV 2 vs.35.7 ± 11.9µV 2, P = 0.83), but power decreased
in the case of slow spindles (30.4±15.4 vs. 35±21.3, P = 0.012; depicted in Figure 6.2B
middle/bottom and Figure 6.6B, see “Relations between spindles and SOs” in Methods).

This analysis is closely related to the mean vector length, M, a common measure for quantifica-
tion of phase-amplitude coupling. Since spindle power in positive half-waves of SOs remains
similar across conditions despite an overall decrease of spindle power in the Stimulation con-
dition, we expect the mean vector length to be higher in the Stimulation condition. Indeed,
this is what happens (Stimulation: M = 0.09 ± 0.03, Sham: M = 0.07 ± 0.03, P = 0.004).
The phase at which fast spindles are coupled strongest to the slow oscillation does not differ
between conditions (Stimulation: ϕ∗ = −24 ± 0.28, Sham: ϕ∗ = −0.19 ± 0.30, confidence
interval CI=[-0.11, 0.02], paired sample test for angular data (Zar, 1999)).

We also repeated the analysis separately for the sequences where the first click successfully
evoked a KC and for those where it did not. The spindle power in within-sequence and inter-

69



6. Experiment: Open-loop auditory stimulation and memory consolidation

Figure 6.6.: Topographical distribution of stimulation efficiency. (A, top row) Difference
(Stimulation-Sham) of normalized spectral power in SO, delta, SWA, theta, slow spindle and fast spindle
band for the 210 min stimulation period. Electrode locations with a significant difference (Pfdr < 0.05,
paired t-test, corrected for multiple comparisons) are depicted as white circles. (A, bottom row) Mean
(±SEM) of normalized spectral power averaged over all subjects and all electrodes, for the Stimulation
(white) and Sham (black bars) conditions. Frequency bands apply to top and bottom rows. (B) Same as
in A, but for (top) robust and (bottom) sensitive responders. ∗P < 0.05, ∗∗∗P < 0.001.
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sequence intervals for the “KC” and “no KC” cases are depicted in Figure 7C. A suppression
of spindle power in the inter-sequence intervals as compared to the within-sequence intervals
is present in both the “KC” as well as “no KC” group for fast and slow spindles. When the first
click successfully evoked a KC, however, power in within-sequence intervals was higher for
fast and slow spindles. In addition, for fast spindles the decrease in power in the inter-sequence
interval was also more pronounced in the KC group.

Figure 6.7.: Stimulation-related decrease in spindle power. (A) Mean (±SEM) of fast spindle power
(left) and slow spindle power (right) in within-sequence-intervals (red) and inter-sequence-intervals
(blue) for Stimulation and Sham condition. See Figure 6.1 for definition of the intervals. (B) Mean
(±SEM) of fast spindle power during positive half-waves of offline detected SOs in the 210 min stim-
ulation period for Stimulation (white) and Sham (black) condition. (C) Separately for the Stimulation
condition only, mean (±SEM) of fast spindle power (left) and slow spindle power (right) in within-
sequence-intervals (red) and inter-sequence-intervals (blue) for sequences where the first click success-
fully evoked a KC (“KC”) as compared to click sequences where it did not (“no KC”). (A, B, C) Power
is calculated from time series of instantaneous power, without normalization. ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001.

6.2.3. Open-loop stimulation does not improve memory consolidation

Open-loop auditory stimulation did not affect overnight retention, i.e., the difference in the
number of words recalled when tested after sleep and the number recalled at learning before
sleep, compared to Sham (26.0 ± 8.3 vs. 25.8 ± 1.8 word pairs, P = 0.89, see Figure 6.2D).
Learning performance before sleep did not differ significantly between conditions (Stimulation
vs. Sham: 61.3± 20.6 vs 62.3± 19.4 word pairs, P = 0.74). Control measures of sleep quality,
mood and tiredness (SF-A, PANAS, SSS) were comparable across conditions (all P > 0.13).
Similarly, the measures of general cognitive ability (DST, RWT) did not exhibit significant
differences (P > 0.12, see Table 6.1). The PVT differs between conditions (P = 0.05, in-
teraction condition × time, see also Table 6.1) due to a baseline difference in the evening, in
which performance in the Sham condition was slightly better than in the Stimulation condition
(PVTev,Stim = 309.0± 27.0 ms, PVTev,Sham = 304.3± 24.6 ms).

71



6. Experiment: Open-loop auditory stimulation and memory consolidation

Table 6.1.: Overview of control measures. Mean ± SD, ∗paired t-test, ∗∗two-way ANOVA (condition
× time)

Test Stimulation Sham P -value

evening morning evening morning

SF-A n.a. 3.2 ± 0.5 n.a. 3.2 ± 0.6 0.8∗

SSS 4.3 ± 1.1 3.5 ± 0.9 4.2 ± 1.1 3.3 ± 1.0 0.75∗∗

PANAS (P) 21.1 ± 5.4 21.4 ± 6.5 21.1 ± 4.3 23.6 ± 6.2 0.12∗∗

PANAS (N) 11.8 ± 3.3 11.4 ± 2.2 11.7 ± 2.7 11.5 ± 2.5 0.59∗∗

PVT 309.0 ± 27.0 305.0 ± 21.3 304.3 ± 24.6 307.6 ± 21.5 0.05∗∗

DST n.a. 20.9 ± 4.1 n.a. 21.5 ± 4.8 0.57∗

RWT n.a. 37.3 ± 8.6 n.a. 36.2 ± 8.5 0.45∗

Table 6.2.: Overview of control measures. Mean ± SD, ∗paired t-test, ∗∗two-way ANOVA (condition
× time)

Parameter Stimulation Sham P -value

Whole night

SPT (min) 398.8 ± 8.9 401.0 ± 6.3 0.67

W (%) 2.2 ± 0.7 1.9 ± 0.5 0.74

N1 (%) 7.6 ± 0.9 8.2 ± 0.9 0.41

N2 (%) 46.8 ± 1.5 48.3 ± 1.3 0.24

N3 (%) 25.9 ± 1.8 23.5 ± 1.5 0.04

REM (%) 17.5 ± 0.9 18.0 ± 1.0 0.88

MA (%) 7.4 ± 0.5 7.4 ± 0.6 0.85

Stimulation period

W (%) 1.7 ± 0.8 1.3 ± 0.6 0.45

N1 (%) 4.4 ± 0.8 4.5 ± 0.7 0.45

N2 (%) 39.7 ± 2.5 41.9 ± 2.0 0.15

N3 (%) 46.5 ± 3.2 45.1 ± 2.6 0.74

REM (%) 7.6 ± 1.3 7.2 ± 1.2 0.71

MA (%) 7.2 ± 0.7 7.0 ± 0.7 0.99

Post-stimulation period

W (%) 2.5 ± 1.1 1.7 ± 0.4 0.27

N1 (%) 7.8 ± 1.1 8.4 ± 1.0 0.64

N2 (%) 49.6 ± 1.8 52.3 ± 1.5 0.24

N3 (%) 15.0 ± 2.1 11.4 ± 1.5 0.10

REM (%) 25.1 ± 1.4 26.3 ± 1.6 0.39

MA (%) 7.5 ± 0.6 7.9 ± 0.7 0.71
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Table 6.3.: Correlations of memory performance with sleep parameters. Displayed P -values are
not corrected. None is significant after correcting for multiple comparisons. Sleep stages were given in
percent of sleep period time (first N1 until awakening). EEG power in the different bands is calculated
using non-REM sleep epochs of the whole night.

Overnight retention

Stimulation Sham

Sleep stage ρ P -value ρ P -value

W 0.03 0.89 -0.03 0.91

N1 0.26 0.26 0.53 0.01

N2 0.08 0.71 0.05 0.83

N3 -0.12 0.61 -0.48 0.03

REM -0.18 0.42 0.18 0.45

AI 0.43 0.05 0.29 0.20

Power

SO -0.07 0.76 -0.3 0.18

Delta -0.16 0.50 -0.41 0.06

SWA -0.12 0.61 -0.37 0.10

Theta -0.30 0.19 -0.52 0.02

slow spindle -0.25 0.28 -0.35 0.13

fast spindle -0.09 0.69 -0.46 0.04

6.2.4. Sleep architecture

There were no significant differences in sleep architecture between conditions for the full night,
except for N3, in which subjects spent more time during the “Stimulation” condition (P =
0.04, Wilcoxon signed-rank test, see Table 6.2). However, analysis of the N3 duration in the
stimulation period and the remaining period of nocturnal sleep with a two-way ANOVA (factors
time and condition), failed to reach significance (condition: F1,20 = 3.4, P = 0.08; time
× condition: F1,20 = 0.353, P = 0.56). We also failed to find any significant correlation
for either condition between overnight retention of word pairs and time (percentage) spent in
individual sleep stages or in EEG power within the six frequency bands at electrode Cz using
Pearson correlations after correcting for multiple comparisons (P > 0.12) (Table 6.3).

6.2.5. Comparison of “robust” and “sensitive” responders

Eight out of twenty-one subjects had frequent arousals in the beginning of the night, possi-
bly linked to stimulation. Therefore, most of the stimuli occurred towards the end of the 210
min stimulation period. It has been reported that reactivation processes during sleep seem to
be strongest at early portions of non-REM sleep (Bendor and Wilson, 2012). Furthermore,
SOs appear to be more global during early fractions of sleep (Nir et al., 2011). Hence, we
investigated whether the timing issue had an effect on memory consolidation and oscillatory
activity associated with auditory stimulation. We split the participants into the two groups “ro-
bust” (13 subjects) and “sensitive” (8 subjects). A 3-way ANOVA with factors time, condition
and responder type, however, did not reveal any significant influence of responder type on the
overnight consolidation of word pairs (time × condition × type: F1,19 = 0.373, P = 0.55).
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Interestingly, the efficacy of the stimulation in the SO and SWA bands indeed differed between
the groups, revealing a stronger impact on the sensitive responders (SO, main effect condition:
F1,19 = 12.2, P = 0.002, interaction condition× topography× type: F1,19 = 5.0, P = 0.001;
SWA, main effect condition: F1,19 = 10.6, P = 0.004, interaction condition × topography ×
type: F1,19 = 3.6, P = 0.005). There were no significant differences between responder types
in any other frequency band. Figure 6.6B depicts the topographies of both responder types.
The changes in slow and fast spindle activity are independent of responder type. Further, we
re-analyzed separately for robust and sensitive responders spindle power in within-sequence
and inter-sequence intervals and fast spindle power during putative slow oscillation up states.
The pattern of results does not differ between the groups (Figure 6.8).

Figure 6.8.: Stimulation-related decrease in spindle power: robust vs. sensitive responders. (A)
Mean (±SEM) of fast spindle power (FS, left) and slow spindle power (SS, right) in within-sequence-
intervals (red) and inter-sequence-intervals (blue) for Stimulation and Sham conditions. The top row is
for “all” subjects (n = 21), the middle row for “robust” responders (n = 13), and the bottom row for
“sensitive” responders (n = 8). Definitions for the intervals are shown in Figure 1. (B) Mean (±SEM)
of fast spindle power during the positive half-waves of offline detected SOs in the 210 min stimulation
period for Stimulation (white) and Sham (black) conditions. The top row is for all subjects (n = 21),
the middle row for “robust” (n = 13), and the bottom row for “sensitive” responders (n = 8). (A,B)
Power was calculated from time series of instantaneous power, without normalization (see Materials &
Methods). ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.
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6.3. Discussion

In this study, we investigated whether it is possible to improve the overnight consolidation of
declarative memories with a modified version of the auditory closed-loop stimulation paradigm
(Ngo et al., 2013, 2015), which is phase-independent. We found that open-loop stimulation
with sequences of three clicks evoked SOs, lead to an increase in SO power and a decrease
in slow and fast spindle power, but did not alter the overnight retention of word pairs. Similar
to the closed-loop stimulation we found that only the first click in a sequence evoked a strong
spindle response. We attribute this effect to the mechanisms of endogenous spindle termination
and the refractory period between spindles. This has been ascribed to 1) an upregulation of the
hyperpolarization-activated nonspecific cation current, Ih, in thalamocortical cells (Lüthi and
McCormick, 1998) or 2) depolarization in thalamocortical cells by cortical feedback which
is no longer phase-locked with inhibitory postsynaptic potentials (Bonjean et al., 2011). Both
mechanisms prevent the de-inactivation of the low threshold T-type Ca2+ channels involved in
spindle initiation.

Notably, open-loop stimulation caused an overall decrease of spindle power in the stimulation
period, whereas this has not been reported for the phase-dependent version (Ngo et al., 2013,
2015).

The observed decrease in spindle power suggests that open-loop stimulation disturbs ongoing
endogenous spindle generation. This has also been found with electric stimulation in the latero-
posterior thalamic nucleus of anesthetized cats, where a locally induced spindle, out-of-phase
with the endogenous rhythm, prevented the occurrence of the next endogenous spindle in the
same location (Contreras et al., 1997).

Our results suggest that open-loop stimulation disturbs spindle generation. This has also been
observed with electric stimulation in the lateroposterior thalamic nucleus of anesthetized cats,
where a locally induced spindle, out-of-phase with the endogenous rhythm, prevented the oc-
currence of the next endogenous spindle in the same location (Contreras et al., 1997). In order
to generate spindles, neurons in the reticular nucleus have to be sufficiently hyperpolarized, so
that low-threshold Ca2+ currents can deinactivate and initiate bursting (Astori et al., 2011; Lee
et al., 2013). On the other hand, a much increased level of hyperpolarization prevents spindle
oscillations and instead gives rise to thalamic delta oscillations (Nunez et al., 1992). Auditory
stimulation was shown to have a net excitatory, i.e., depolarizing, effect on its thalamic targets
(Yu et al., 2004). Thus, open-loop stimulation might reduce spindle power by preventing a re-
polarization of the membrane potential in thalamic nuclei. The main advantage of closed-loop
stimulation over open-loop stimulation is that the first click by design always occurs during
an up state. In this situation, many thalamic nuclei are already depolarized due to the cortical
up state (Sheroziya and Timofeev, 2014) and excitatory sensory inputs may cause only little
additional depolarization relative to a hyperpolarized state. Hence, auditory closed-loop stim-
ulation is less likely to disturb the endogenous spindle generating mechanisms. A further com-
parative observation to the study by Ngo et al. (2013) is that clicks were always preceded by
an endogenous SO, i.e., were preceded by an endogenous spindle with high probability (Mölle
et al., 2002; Steriade, 2006). Surprisingly, in Ngo et al. the spindle response following the first
click was even stronger than that of the preceding endogenous spindle (Ngo et al., 2013). This
suggests that there is no absolute refractory period of the spindle generating network, as also
noted in (Contreras et al., 1997). There, strong stimuli could trigger a spindle at any time, even
during an ongoing spindle sequence, because only a fraction of neurons participated in each
spindle (Contreras and Steriade, 1996; Destexhe et al., 1996a). Combined MEG-EEG record-
ings suggest that spindles are only visible in the EEG when they involve larger parts of the
cortex (Dehghani et al., 2011). Thus, the fact that an external auditory click can evoke a strong
spindle response directly after an endogenous spindle event indicates that it recruits otherwise
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silent neurons into a spindle oscillation and/or increases thalamic synchrony. It would be inter-
esting to see whether a sequence of sensory stimuli of different modality might overcome the
suppressive effect of open-loop sensory stimulation on spindle power during sleep.

Several studies report a positive correlation between spindle power and overnight retention
(Gais et al., 2002; Schabus et al., 2004; Fogel and Smith, 2011; Tamminen et al., 2013). In-
terestingly, in the present study, memory performance of the Stimulation night was similar to
that of the Sham night, although power in the slow and fast spindle band was markedly de-
creased throughout the stimulation period and no rebound of SO or spindle power occurred in
the post-stimulation period. One could argue that, albeit statistically significant, the effect was
not strong enough to influence the behavioral outcome. Alternatively, it could be that specific
aspects of spindle activity are responsible for its efficacy with respect to memory consolidation
and those are not altered by open-loop stimulation. In the present study, fast spindle power
during positive half-waves of SOs remained at the same level as in the Sham condition and the
reduction of fast spindle power is restricted to the intervals between click sequences only. Thus
the relative timing of spindles and SOs, which is critical for memory consolidation (Mölle
et al., 2009; Cox et al., 2012; Ngo et al., 2013) was mostly not perturbed during the stimu-
lation period. Finally, others have demonstrated that SO and spindle rhythms by themselves
may induce long-term plasticity and therefore may independently contribute to memory con-
solidation (Rosanova and Ulrich, 2005; Chauvette et al., 2012). Hence, in the present study
a positive effect of increased SO power on memory consolidation might offset a detrimental
effect of decreased spindle power. However, at least in humans enhancing slow-wave activity
alone by pharmacological means (without increasing sleep spindle activity) does not improve
overnight memory consolidation (Feld et al., 2013). Also, benzodiazepines which are known
to enhance sleep spindle activity and suppress slow-wave activity (Brunner et al., 1991; Arbon
et al., 2015) have inconsistent effects on memory consolidation (Meléndez et al., 2005; Med-
nick et al., 2013; Hall-Porter et al., 2014). Thus, at least some findings indicate that neither
enhancing slow-wave nor spindle activity alone might be sufficient to enhance later memory
performance. In contrast, increasing slow-wave and spindle activity simultaneously has shown
a benefit (Marshall et al., 2006; Ngo et al., 2013, 2015).
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7. Summary

In the preceding chapters, thalamocortical dynamics were modeled mathematically and probed
via auditory stimulation in an experiment.

First, we validated a neural network model and a mean-field model of slow oscillatory activity
in brain slice in vitro by reproducing the experiment of Shu et al. (2003). Then, we character-
ized their response to stimuli by means of a phase response curve. The PRCs of the different
models were qualitatively similar, thus encouraging the use of mean-field models, as they are
easier to analyze than networks of spiking neurons. Using the derived PRC, a 2D network of
phase oscillators predicts the emergence of wave patterns and entrainment of these wave pat-
terns to external stimuli in brain slice in vitro (Figure 2.8). These results apply when the slow
oscillation has the form of a relaxation oscillation.

This insight spurred the development of a more flexible model, that can more directly relate to
EEG data and unifies the multiple manifestations of slow oscillations. we presented a thalamo-
cortical neural mass model which generates K-complexes, slow wave activity (<4 Hz) and fast
spindles (12-15 Hz). A slow firing rate adaptation in the cortical neural mass and mechanisms
for rebound bursts in the thalamic neural mass accounted for sleep specific dynamics. The
model allows the investigation of responses to auditory stimulation during wake and non-REM
sleep. In particular, it reproduces EEG data of open-loop and closed-loop auditory stimulation
of recent sleep studies in humans (Ngo et al., 2013; Weigenand et al., 2016).

In chapter 3, we presented an algorithm for parameter estimation in nonlinear stochastic dy-
namical systems. It reliably identifies the dynamic regime and bifurcations of a model that
most likely generate the observed data. It is the key component that enabled the inferences of
dynamic determinants of K-complexes and slow oscillations.

In the model, transitioning from wake to non-REM sleep corresponds to approaching a Hopf
bifurcation, which manifests in the EEG by the slowing of frequencies and an increase in
amplitudes. A canard phenomenon and the associated homoclinic orbit determine the shape
of K-complexes and slow oscillations. Importantly, a K-complex is a transient event, which
corresponds to a single excursion along the homoclinic orbit. In contrast, slow oscillations are
noise-driven oscillations around a stable focus.

The significance of the thalamocortical model of chapter 4 is that it introduces a differenti-
ated view on cortical slow oscillation dynamics in common experimental conditions. The term
slow oscillation has been used indiscriminately in the experimental literature for a variety of
different phenomena, e.g., irregular or regular switching between two stable states, relaxation
oscillations, occasional population spikes or reversed spikes. Moreover, these dynamic regimes
were often claimed to be similar to the acitivity expressed during natural slow-wave sleep in
vivo.

The cortex model reconciles these different observations and suggests that during natural sleep
the cortex remains predominantly in the active state and only transiently assumes the silent
state. A stable silent state, hyperregular relaxation oscillations or genuine bistability are rather
found in anesthesia, coma and slice preparations and belong to other parameters of the same
system (bifurcation diagram in Figure 4.2). This view is supported by the thalamocortical
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7. Summary

model’s ability to capture the phase-coupling between spindles and slow oscillations, and
evoked responses.

However, adding more brain structures increases the parameter space, especially the number
of unknown parameters. This limits the identifiability of system parameters and, hence, the
information that can be gained from a mechanistic model. Thus, keeping models simple be-
comes more important. A step in this direction is chapter 5, where we illustrated the proposed
K-complex mechanism in the Fitzhugh-Nagumo model, which can be regarded as a minimal
model.

The thalamocortical model predicted, that the cortical response produced by closed-loop stim-
ulation can also be achieved with a simpler open-loop protocol that does not require real-time
feedback, while reaping the same positive effects on memory consolidation. Hence, we de-
signed and applied sequences of three clicks during deep non-REM sleep to achieve a quasi-
phase-dependent open-loop stimulation. This stimulation was successful in eliciting slow os-
cillation power in the stimulation period. However, memory consolidation did not differ from
the sham control condition. Even more surprising, fast and slow spindle power were markedly
decreased during the stimulation period. During putative up states fast spindle power remained,
however, at sham levels. We conclude that concurrence of slow oscillations and fast spindles
suffices to maintain memory consolidation at sham levels despite an overall decreased spindle
activity.
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8. Outlook

Following the investigation of the dynamical mechanisms of slow oscillations and K-com-
plexes, the next step is to investigate their computational role. The brain is close to optimal
with respect to several measures, e.g., it responds quickly, robustly, and accurately to stimuli
in various environments. At the same time, it is stable with respect to noise and degradation
of its constituting components and maximizes memory capacity. The mere presence of dif-
ferent mental states, like wakefulness, non-REM and REM sleep, strongly suggests that these
multiple processes are partly conflicting optimization targets which cannot be optimized si-
multaneously. Indeed, it has been proven that there is a fundamental trade-off between energy
consumption, speed and precision in neural communication (Lan et al., 2012; Govern and ten
Wolde, 2014; Lahiri et al., 2016). Moreover, there are tradeoffs between storing proximal and
distal memories. A memory system must be organized hierarchically and span multiple time
scales in order to provide long and short term memory, which has been formalized by Fusi and
Abbott (2007); Roxin and Fusi (2013); Lahiri and Ganguli (2013). The transfer of memories
to their long-term store is thought to involve gist abstraction, which denotes the process of
reducing memories to their essential features, devoid of contextual details. It needs to be inves-
tigated whether encoding, retrieval and gist abstraction are mutually exclusive, or if not, under
which conditions they can co-occur. Further, it remains to be shown how the temporal network
dynamics of wake, slow-wave sleep and REM sleep, provide optimal conditions for functions
like the formation of long-term memory, the optimization of the memory representation, recall
of memories and inference. While the role of sleep in the formation of long-term memories
and the ability to generalize is still under debate among experimentalists (Nettersheim et al.,
2015; Neske, 2016; Werchan and Gómez, 2014), these theoretical considerations are largely
independent of that.

The slow oscillation should be viewed in light of this context, instead of just being considered
the mediator in the thalamocortical-hippocampal dialogue, coordinating hippocampal sharp
wave ripples and thalamic spindles. This peculiar oscillation may in itself play a decisive role
and directly cause the changes in cortical representations leading to memory consolidation and
gist abstraction. One of the many open questions is which objective function is optimized by
the recurrent networks during slow oscillations. Slow oscillation dynamics have a profound im-
pact on calcium dynamics and spike shape (Massimini and Amzica, 2001; Crochet et al., 2005;
Boucetta et al., 2013), which are known to affect spike timing dependent plasticity (Aihara
et al., 2007; Krieg and Triesch, 2014). Consequently, network dynamics, single neuron dynam-
ics and synaptic plasticity rules must be optimized jointly. According to the generation mecha-
nism pursued in this thesis slow oscillations are a result of increased slow inhibitory feedback.
Notably, this increase does not take place in sudden discrete steps, but smooth transitions be-
tween sleep stages. Interestingly, adaptation currents are one way to implement decorrelation of
input and output in neurons (Wang, 2003) and, hence, predictive coding. Underlying the typical
alternation between sleep stages could be a systematic sweep across timescales of adaptation
currents to optimize a predictive coding target. I propose to call this the “timescale sweep hy-
pothesis”. This offers a new perspective on infra-slow oscillations, which consequently could
play an active role in memory consolidation and transformation.

The question whether synaptic learning rules actually differ significantly between wake and
sleep is crucial for inferring the computational role of the cortical slow oscillation. Such a
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8. Outlook

change seems plausible given the dramatic changes in the neuromodulator levels throughout
states of vigilance and the known dependence of plasticity mechanisms on neuromodulators.
This still has to be quantified systematically in experiments. Taking into account the conclu-
sions of this thesis it is important that these experiments are performed in naturally waking and
sleeping animals.

Regarding gist abstraction and the gaining of insight by a night of sleep, it is not clear which
structures participate in this process. In particular, the role of the hippocampus remains to be
elucidated. It might well be that gist abstraction is independent of the hippocampus or other
sub-cortical structures, and is a purely cortical process, linked to the slow oscillation.
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A. Network model

In the original model by Compte et al. (2003) 1024 pyramidal neurons (see paragraph A) and
256 interneurons (see Table A.1) are distributed equidistantly along a line of 5mm. The proba-
bility that two neurons, separated by a distance x, are connected is

P (x) = (
1√

2πσ2
) exp(−x2/2σ2) (A.1)

with a synaptic footprint of σ = 250µm for excitatory connections and σ = 125µm for
inhibitory connections. The equations governing the synapses can be found in Table A.2. Each
neuron makes 20 ± 5 connections to other neurons. In the simulations I used 256 pyramidal
neurons and 64 interneurons. The network length and synaptic footprint was linearly scaled to
preserve the properties of the original model. We applied periodic boundary conditions.

Regular spiking pyramidal neurons The gating variables have the form

dm

dt
= φ [αx(V )(1−m)− βm(V )m]

or

dm

dt
= φ [m∞(V )−m] /τm(V )

Somatic voltage:

CmAs
dVs

dt
= −As(IL + INa + IK + IA + IKS + IKNa)− Isyn,s − gsd(Vs − Vd) + Iext

Cm 1µF/cm2 As 0.015mm2

gsd (1.75± 0.1)µS Ad 0.035mm2

VL (−60.95± 0.3)mV gL (0.067± 0.0067)mS/cm2

gNa 50mS/cm2 VNa 55mV

φ 4 gK 10.5mS/cm2

VK −100mV gA 1mS/cm2

τhA 15ms gAR 0.0257mS/cm2

gNaP 0.0686mS/cm2 gCa 0.43mS/cm2

VCa 120mV gKCa 0.57mS/cm2

αCa 0.005µM/(nA ·ms) τCa 150ms

Rpump 0.018mM/ms [Na+]eq 9.5mM
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A. Network model

Dendritic voltage:

CmAd
dVd

dt
= −Ad(ICa + IKCa + INaP + IAR)− Isyn,d − gsd(Vd − Vs) + Iext

Leak current:

IL = gL(V − VL)

Spiking Na+ current:

INa = gNam
3
Na,∞hNa(V − VNa)

mNa,∞ = αmNa/(αmNa + βmNa)

αmNa = 0.1(V + 33)/[1− exp(−(V + 33)/10]

βmNa = 4 exp(−(V + 53.7)/12)

dhNa

dt
= φ [αhNa

(V )(1− hNa)− βhNa
(V )hNa]

αhNa
= 0.07 exp(−(V + 50)/10)

βhNa
= 1/[1 + exp(−(V + 20)/10)]

Spiking K+ current:

IK = gKh
4
K(V − VK)

dhK

dt
= φ [αhK(V )(1− hK)− βhK(V )hK]

αhK = 0.01(V + 34)/[1− exp(−(V + 34)/10)]

βhK = 0.125[exp(−(V + 44)/25)]

Fast inactivating current:

IA = gAmA,∞hA(V − VK)

mA,∞ = 1/[1 + exp(−(V + 50)/20)]

dhA

dt
= (hA,∞(V )− hA) /τhA

hA,∞ = 1/[exp(−(V + 80)/6)]

Non-inactivating K+-channel:

IKS = gKSmKS(V − VK)

gKS = 0.576mS/cm2

dmKS

dt
= (mKS,∞(V )−mKS) /τmKS

mKS,∞ = 1/[1 + exp(−(V + 34.5)/6.5]

τmKS = 8/[exp(−(V + 55)/30) + exp((V + 55)/30)]

Non-inactivating Na+ channel:

INaP = gNaPm
3
NaP,∞(V − VNa)

mNaP,∞ = 1/[1 + exp(−(V + 55.7)/7.7)]
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Hyperpolarization de-inactivated channel:

IAR = gARhAR,∞(V − VK)

hAR,∞ = 1/[1 + exp((V + 75)/4]

High-threshold Ca2+-channel:

ICa = gCam
2
Ca,∞(V − VCa)

mCa,∞ = 1/[1 + exp(−(V + 20)/9)]

Ca2+ dependent K+ channel:

IKCa = gKCa[Ca2+]/([Ca2+] +KD)(V − VK)

d[Ca2+]/dt = −αCaAdICa − [Ca2+]/τCa

Na+ dependent K+ channel:

IKNa = gKNaw∞([Na+])(V − VK)

gKNa = 1.33mS/cm2

w∞ = 0.37/[1 + (38.7/[Na+])3.5]

Na+ dynamics:

d[Na+]/dt = −αNa(AsINa +AdINaP)

αNa = 0.01mM/(nA ·ms)−Rpump{[Na+]3/([Na+]3 + 153)−
[Na+]3eq/([Na+]3eq + 153)}
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A. Network model

Table A.1.: Fast-spiking inhibitory interneurons

description equations parameters

somatic voltage CmAi
dVi
dt = −Ai(IL+INa+IK)−

Isyn,i + Iext

Ai = 0.02 mm2

gNa = 35 mS/cm2

leak current IL = gL(V − VL) gL = (0.1025± 0.0025)mS/cm2

VL = (−63.8± 0.15)mV

spiking INa = gNamNa,∞hNa(V − VNa) gNa = 35 mS/cm2

sodium current mNa,∞ = αmNa/(αmNa + βmNa) VNa = 55 mV

αmNa = 0.5(V + 35)/[1 −
exp(−(V + 35)/10)]

βmNa = 20 exp(−(V + 60)/18)
dhNa

dt = αhNa
(V )(1 − hNa) −

βhNa
(V )hNa

αhNa
= 0.35 exp(−(V + 58)/20)

βhNa
= 5/[1 + exp(−(V +

28)/10)]

slow IK = gKm
4
K(V − Vk) gK = 9 mS/cm2

potassium current dmK
dt = αmK(V )(1 − mK) −
βmK(V )mK

VK = −90mV

αmK = 0.05(V + 34)/[1 −
exp(−(V + 34)/10)]

βmK = 0.625 exp(−(V +44)/80)
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Table A.2.: Synapses

description equations parameters

AMPA synapses Isyn = gsyns(V − Vsyn) α = 3.48
ds
dt = αf(Vpre)− s/τ τ = 2ms

f(Vpre) = 1/ [1 + exp(−(V pre− 20)/2)] Vsyn = 0V

gAMPA
EE = 5.4nS

gAMPA
EI = 2.25nS

NMDA synapses ds
dt = αs(1− s)x− s/τs αs = 0.5
dx
dt = αxf(Vpre)− x/τx τs = 100ms

f(Vpre) = 1/ [1 + exp(−(V pre− 20)/2)] αx = 3.48

τx = 2ms

Vsyn = 0mV

gNMDA
EE = 0.9nS

gNMDA
EI = 0.5nS

GABA synapses Isyn = gsyns(V − Vsyn) α = 1
ds
dt = αf(Vpre)− s/τ τ = 10ms

f(Vpre) = 1/ [1 + exp(−(V pre− 20)/2)] Vsyn = −70mV

gIE = 4.15nS
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B. Cortex model

This table defines all constants used within the model, that are not described elsewhere.

Table B.1.: Parameters of cortex model

τe, τi 30 ms membrane rise time

Qmaxe 0.03 ms−1 maximal firing rate

Qmaxi 0.06 ms−1 maximal firing rate

θe, θi -58.5 mV firing threshold

σi 6 mV firing rate deviation

γe 0.07 ms−1 synaptic rate constant

γi 0.0586 ms−1 synaptic rate constant

Nee 120 connectivity e-e

Nei 72 connectivity e-i

Nie 90 connectivity i-e

Nii 90 connectivity i-i

Cm 1 µF/cm2 membrane capacity

gL 1 mS/cm2 channel conductivity

ELe, ELi -66,-64 mV reversal potential

EK -100 mV reversal potential

EAMPA 0 mV reversal potential

EGABA -70 mV reversal potential

αNa 2 mM/ mA ms sodium influx

τNa 1 ms sodium time constant

Rpump 0.09 mM ms−1 sodium pump capacity

Naeq 9.5 mM sodium resting state

φn 0.12 ms−1 background noise standard
deviation

The basic neural column described in Methods is given by the following set of equations:

τeV̇e = −IL − IAMPA(see)− IGABA(sie)− τeC−1
m IKNA,

τiV̇i = −IL − IAMPA(sei)− IGABA(sii),

s̈ee = γ2
e (NeeQe(Ve) + φn − see)− 2γeṡee,

s̈ie = γ2
i (NieQi(Vi) − sie)− 2γiṡie,

s̈ei = γ2
e

(
NeiQe(Ve) + φ′n − sei

)
− 2γeṡei,

s̈ii = γ2
i (NiiQi(Vi) − sii)− 2γiṡii,

[Ṅa] = (αNaQe(Ve)−Napump([Na]))/τNa.
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The currents are given by

IL = gL(Vk − EL),

IAMPA = gAMPAsek(Vk − EAMPA),

IGABA = gGABAsik(Vk − EGABA),

IKNa = gKNa
0.37

1 +
(

38.7
[Na]

)3.5 (Ve − EK).

The sodium pump is described by

Napump([Na]) = Rpump

(
[Na]3

[Na]3 + 3375
−

[Na]3eq
[Na]3eq + 3375

)
.
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C. Thalamocortical model

This table describes all symbols used within the model.

Table C.1.: Symbol description

Cm Membrane capacitance in the HH
model

Qmax
k Maximal firing rate of population

k

θk Firing threshold of population k
(half activation)

σk Default gain coefficient of the fir-
ing rate function of population k
(inverse neural gain)

τk Membrane time constant of popu-
lation k

γm Synaptic rate constant of synapse
type m

ν Axonal rate constant Nkl Connectivity constant from presy-
naptic population l to postsynaptic
population k

wX Input rate of synaptic channel of
type X

ḡX Conductivity of ion channel X

EX Nernst reversal potential of chan-
nel X

αNa Sodium influx through firing rate

τNa Time constant of sodium extrusion Rpump Strength of the sodium pump

Naeq Resting state sodium equilibrium αCa Calcium influx rate

τCa Calcium time constant Ca0 Calcium resting state concentra-
tion

kj Reaction velocity of h-current nP Number of calcium binding sites

ginc Conductivity scaling of h-current φ0 Mean background noise

φsd
C Standard deviation of cortical

background noise
φsd
T Standard deviation of thalamic

background noise
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Table C.2.: Parameters of thalamocortical model

Cm 1 µF/cm2

τp, τi 30 ms τt, τr 20 ms

Qmax
p 30·10−3 ms−1 Qmax

i 60·10−3 ms−1

Qmax
t , Qmax

r 400·10−3 ms−1 θ −58.5 mV

σp 4 mV σi, σt,σr 6 mV

γe 70·10−3 ms−1 γg 58.6·10−3 ms−1

γr 100·10−3 ms−1 ν 120·10−3 ms−1

Npp 120 Nip 72

Npi, Nii 90 Ntp, Nrp 2.6

Nrt 3 Ntr 5

Nrr 19 Npt, Nit 2.5

wAMPA,wGABA 1 ms ḡtT 3 mS/cm2

ḡrT 2.3 mS/cm2 ḡKNa 1.33 mS/cm2

EpL,EiL −64 mV EtL,ErL −70 mV

EK −100 mV ECa 120 mV

ECa −40 mV EAMPA 0 mV

EGABA −70 mV αNa 2 mM/mA ms

τNa 1.7 ms Rpump 0.09 mM ms−1

Naeq 9.5 mM αCa 51.8·10−6 mM/mA
ms

τCa 10 ms Ca0 2.4·10−4 mM

k2 4·10−4 ms−1 k3 1·10−1 ms−1

k4 1·10−3 ms−1 nP 4

ginc 2 φ0 0 ms−1

φsd
C 120·10−3 ms−1 φsd

T 10·10−3 ms−1
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C. Thalamocortical model

The complete mathematical description of the full thalamocortical model is

τpV̇p = −JpL − JAMPA(sep)− JGABA(sgp)− C−1
m τpIKNa,

τiV̇i = −JkL − JAMPA(sei)− JGABA(sgi),

τtV̇t = −J tL − JAMPA(set)− JGABA(srt)− C−1
m τt(I

t
LK − ItT − Ih),

τrV̇r = −JrL − JAMPA(ser)− JGABA(srr)− C−1
m τr(I

r
LK − IrT),

s̈ep = γ2
e (NppQp(Vp) +Nptφt + φn − sep)− 2γeṡep,

s̈ei = γ2
e

(
NipQp(Vp) +Nitφt + φ

′
n − sei

)
− 2γeṡei,

s̈et = γ2
e

(
Ntpφp + φ

′′
n − set

)
− 2γeṡet,

s̈er = γ2
e (NrtQt(Vt) +Nrpφp − ser)− 2γeṡer,

s̈gp = γ2
g (NpiQi(Vi) − sgp)− 2γg ṡgp,

s̈gi = γ2
g (NiiQi(Vi) − sgi)− 2γg ṡgi,

s̈rt = γ2
r (NtrQr(Vr) − sit)− 2γrṡrt,

s̈rr = γ2
r (NrrQr(Vr) − srr)− 2γrṡrr,

φ̈p = ν2 (Qp(Vp) − φp)− 2νφ̇p,

φ̈t = ν2 (Qt(Vt) − φt)− 2νφ̇t,

ḣtT = (ht∞ − htT)/τ th,

ḣrT = (hr∞ − hrT)/τ rh ,

ṁh1 = (mh
∞(1−mh2)−mh1)/τh

m − k3Phmh1 + k4mh2,

ṁh2 = k3Phmh1 − k4mh2,

[Ċa] = αCaI
t
T − ([Ca]− Ca0)/τCa,

[Ṅa] = (αNaQp(Vp)−Napump([Na]))/τNa.

(C.1)

The currents are given by the following equations:

JkL = (Vi − EkL),

JAMPA(sek) = wAMPAsek(Vk − EAMPA),

JGABA(sgk) = wGABAsgk(Vk − EGABA),

JGABA(srk) = wGABAsrk(Vk − EGABA),

IkLK = ḡLK(Vi − EkK),

ItT = ḡtTm
t
∞m

t
∞h

t(Vt − ECa),

IrT = ḡrTm
r
∞m

t
∞h

r(Vr − ECa),

Ih = ḡh(mh1 + gincmh2)(Vt − Eh),

IKNa = ḡKNa
0.37

1 +
(

38.7
[Na]

)3.5 (Vp − EK).

(C.2)
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The gating functions are

mt
∞ =

1

1 + exp(−(Vt + 59)/6.2))
,

mr
∞ =

1

1 + exp(−(Vr + 52)/7.4))
,

ht∞ =
1

1 + exp((Vt + 81)/4))
,

hr∞ =
1

1 + exp((Vr + 80)/5))
, (C.3)

τ th = (30.8 + (211.4 + exp((Vt + 115.2)/5))/(1 + exp((Vt + 86)/3.2)))/31.2,

τ rh = (85 + 1/(exp((Vr + 48)/4) + exp(−(Vr + 407)/50)))/31.2,

mh
∞ =

1

1 + exp((Vt + 75)/5.5))
,

τh
m = (20 + 1000/(exp((Vt + 71.5)/14.2) + exp(−(Vt + 89)/11.6))),

Ph = k1[Ca]nP /(k1[Ca]nP + k2).

The sodium pump is given by

Napump([Na]) = Rpump

(
[Na]3

[Na]3 + 3375
− [Na0]3

[Na0]3 + 3375

)
. (C.4)

Finally, the firing rate function obeys

Qk =
Qmax
k

1 + exp(−(Vk − θ)/σk)
. (C.5)
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D. Behavioral data
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