Analyse zur Häufigkeit und pränatalen Erkennbarkeit von Softmarkern und Herzfehlbildungen in Abhängigkeit vom BMI und Alter der Patientinnen

Inauguraldissertation

Zur Erlangung der Doktorwürde
der Universität zu Lübeck
- Aus der Sektion Medizin -

vorgelegt von

Anita Stepien
aus Beuten

Lübeck 2016
1. Berichterstatter: Priv.-Doz. Dr. med. Andreas Schröer
2. Berichterstatter: Prof. Dr. med. Wolfgang Göpel

- Promotionskommission der Sektion Medizin -
Inhaltsverzeichnis

Inhaltsverzeichnis ..III

Tabellen- und Abbildungsverzeichnis ..V

Abkürzungsverzeichnis ..VI

1. Einleitung ...1

1.1. Adipositas und Übergewicht ...1
 1.1.1. Epidemiologie der Adipositas in Deutschland ...1
 1.1.2. Adipositas und Schwangerschaft ..2
 1.1.3. Adipositas bei Frauen im gebärfähigen Alter – aktuelle Daten ...3

1.2. Schwangerschaftsvorsorge in Deutschland ...4
 1.2.1. Richtlinien der Schwangerschaftsvorsorge ..4
 1.2.2. Diagnostik kongenitaler Herzfehler ..5
 1.2.2.1. Pränatale fetale Echokardiographie ..5
 1.2.2.2. Der Vier-Kammer-Blick ..5
 1.2.3. Softmarker für chromosomale Aneuploidien ..7
 1.2.3.1. Definition von Softmarkern ...7
 1.2.3.2. Nackentransparenz ..7
 1.2.3.3. Weitere Softmarker im ersten und zweiten Trimenon ...8

1.3 Ursachen und Verbreitung kongenitaler Herzfehler ...10
 1.3.1. Epidemiologie kongenitaler Fehlbildungen in Deutschland ..10
 1.3.2. Herzentwicklung und kongenitale Herzfehler ...11

1.4 Charakterisierung kongenitaler Herzfehler ...13
 1.4.1. Azyanotische kongenitale Herzfehler ...13
 1.4.1.1. Ventrikelseptumdefekt ...13
 1.4.1.2. Atriumseptumdefekt ...14
 1.4.1.3. Persistierender Ductus arteriosus ..14
 1.4.2. Zyanotische kongenitale Herzfehler ...15
 1.4.2.1. Fallot’sche Tetralogie ...15
 1.4.2.2. Pulmonalstenosen und Trikuspidalstenose ...15
 1.4.2.3. Pulmonalklappen- und Trikuspidalklappenatresie ..16
 1.4.2.4. Double Outlet Right Ventricle ..16
 1.4.3. Weitere kongenitale Fehlbildungen des Herzens ...17
 1.4.3.1. Aortenisthmusstenose und Aortenstenose ..17
 1.4.3.2. Hypoplastisches Linksherzsyndrom ...17

2. Fragestellung ...18
3. Material und angewandte Methoden ... 19
 3.1. Patientinnenkollektiv .. 19
 3.2. Einteilung der Softmarker und Herzfehler .. 20
 3.3. Statistische Methoden .. 20
 3.3.1. Bivariate Kreuztabellen-Analyse ... 21
 3.3.2. Berechnung des Quotenverhältnisses ... 22
 3.3.3. Logistische Regression ... 23
4. Ergebnisse ... 25
 4.1. Charakterisierung des Patientinnenkollektives .. 25
 4.2. Häufigkeit von Softmarkern ... 25
 4.2.1. Zusammenhang zwischen Softmarkern und BMI 26
 4.3. Vergleich von pränatal vorgefundenen Softmarkern mit postnataler
 Outcome-Diagnose ... 29
 4.3.1. Softmarker vs. Outcome-Diagnose in BMI-Abhängigkeit 29
 4.3.2. Zusammenhang zwischen Softmarkern und maternalem Alter 32
 4.3.3. Softmarker vs. Outcome-Diagnose in Altersabhängigkeit 36
 4.4. Häufigkeit von Herzfehlbildungen ... 37
 4.4.1. Zusammenhang zwischen Herzfehlbildungen und BMI 37
 4.4.2. Zusammenhang zwischen Herzfehlbildungen und Alter 41
5. Diskussion ... 45
 5.1. Zusammenhang zwischen Softmarkern und Outcome-Diagnose 45
 5.2. Einfluss von Übergewicht und Alter auf die Häufigkeit von Softmarkern . 46
 5.3. Kongenitale Herzfehler bei Übergewicht der Schwangeren 47
 5.4. Kongenitale Herzfehler und maternales Alter .. 48
 5.5. Überlegungen ... 49
6. Zusammenfassung .. 50
7. Literaturverzeichnis .. 51
8. Veröffentlichungen .. 57
9. Danksagung .. 58
10. Lebenslauf .. 59
Täbellen- und Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Titel</th>
<th>Seitennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WHO-Klassifikation des BMIs</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Verbreitung von Übergewicht und Adipositas im Zeitraum von 1984 bis 2003</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Ausgewählte Studien zur Inzidenz und zum pränatalen Screening auf kongenitale Herzfehler</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Beispiel der verwendeten bivariaten Kreuztabellen-Analyse</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Übersicht der Beziehungsstärke basierend auf dem Cramers-V-Koeffizienten</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Häufigkeiten von Softmarkern in Abhängigkeit des BMI</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Signifikanzen der Korrelation zwischen Softmarkern und BMI</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Anzahl der Befunde an Softmarkern in BMI-Abhängigkeit</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Signifikanzen der Softmarken bei Normalgewicht und Adipositas</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>Sensitivität und Selektivität von Softmarken zur Vorhersage des postnatalen Outcomes</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>Übereinstimmung zwischen Softmarkern mit postnataler Outcome-Diagnose in Abhängigkeit des BMI</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Signifikanzen zwischen Softmarker und postnatalem Outcome in Abhängigkeit des BMI</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>Gesamthäufigkeiten von Softmarkern in Abhängigkeit des Alters</td>
<td>33</td>
</tr>
<tr>
<td>14</td>
<td>Signifikanzen der Korrelation zwischen Softmarkern und maternalem Alter</td>
<td>34</td>
</tr>
<tr>
<td>15</td>
<td>Anzahl der Befunde an Softmarkern in Alters-Abhängigkeit</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>Signifikanzen der Korrelation zwischen Softmarkern und maternalem Alter</td>
<td>35</td>
</tr>
<tr>
<td>17</td>
<td>Übereinstimmung zwischen Softmarkern mit postnataler Outcome-Diagnose in Abhängigkeit des maternalen Alters</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td>Signifikanzen zwischen Softmarker und postnatalem Outcome in Abhängigkeit des maternalen Alters</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>Häufigkeiten von Herzfehlern in den verschiedenen BMI-Gruppen</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>Signifikanzen der Korrelation zwischen Herzfehlbildungen und BMI</td>
<td>39</td>
</tr>
<tr>
<td>21</td>
<td>Anzahl der Herzfehler-Befunde in BMI-Abhängigkeit</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>Signifikanzen der Korrelation zwischen Herzfehler und Normalgewicht oder Adipositas</td>
<td>41</td>
</tr>
<tr>
<td>23</td>
<td>Häufigkeiten von Herzfehlern in Abhängigkeit des Alters</td>
<td>42</td>
</tr>
<tr>
<td>24</td>
<td>Signifikanzen der Korrelation zwischen Herzfehlbildungen und maternalem Alter</td>
<td>43</td>
</tr>
<tr>
<td>25</td>
<td>Anzahl der Herzfehler-Befunde in Alters-Abhängigkeit</td>
<td>44</td>
</tr>
<tr>
<td>26</td>
<td>Signifikanzen der Korrelation zwischen Herzfehler und maternalem Alter</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Titel</th>
<th>Seitennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anteil der Frauen mit Übergewicht bzw. Adipositas in der jeweiligen Altersgruppe</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Transvaginale Sonographie des Vier-Kammer-Blickes in der 11 + 0. SSW</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Farbdoppler-Echokardiographie des apikalen Vier-Kammer-Blickes</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Nackentransparenz bei Feten</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Schematische Darstellung des Herzens</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Berechnung des Quotenverhältnisses</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Übersicht der Alters- und BMI-Verteilung des Patientinnenkollektives</td>
<td>25</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff/Englischer Begriff</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>ACHD</td>
<td>Acyanotic congenital heart disease</td>
<td></td>
</tr>
<tr>
<td>APGAR</td>
<td>Atmung, Puls, Grundtonus, Aussehen, Reflexe</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>Aortenstenose</td>
<td></td>
</tr>
<tr>
<td>ASD</td>
<td>Atriumseptumdefekt</td>
<td></td>
</tr>
<tr>
<td>AV-Klappen</td>
<td>Atrioventrikular-Klappe</td>
<td></td>
</tr>
<tr>
<td>AVSD</td>
<td>Atrioventrikulärer Septumdefekt</td>
<td></td>
</tr>
<tr>
<td>B-Mode</td>
<td>brightness modulation</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass-Index</td>
<td></td>
</tr>
<tr>
<td>CCHD</td>
<td>Cyanotic congenital heart disease</td>
<td></td>
</tr>
<tr>
<td>CHD</td>
<td>Congenital heart defects</td>
<td></td>
</tr>
<tr>
<td>CoA</td>
<td>Koarktation der Aorta</td>
<td></td>
</tr>
<tr>
<td>CVS</td>
<td>Chorionzottenbiopsie</td>
<td></td>
</tr>
<tr>
<td>DEGUM</td>
<td>Deutsche Gesellschaft für Ultraschall in der Medizin</td>
<td></td>
</tr>
<tr>
<td>DEGS1</td>
<td>Studie zur Gesundheit Erwachsener in Deutschland – Welle 1</td>
<td></td>
</tr>
<tr>
<td>DORV</td>
<td>Double outlet right ventricle</td>
<td></td>
</tr>
<tr>
<td>HLHS</td>
<td>Hypoplastisches Linksherzsyndrom</td>
<td></td>
</tr>
<tr>
<td>HRHS</td>
<td>Hypoplastisches Rechtsherzsyndrom</td>
<td></td>
</tr>
<tr>
<td>ISTA</td>
<td>Aortenisthmusstenose</td>
<td></td>
</tr>
<tr>
<td>ISUOG</td>
<td>International Society of Ultrasound in Obstetrics and Gynecology</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Mitralseptum</td>
<td></td>
</tr>
<tr>
<td>NT</td>
<td>Nackentransparenz</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
<td></td>
</tr>
<tr>
<td>Abk.</td>
<td>Bedeutung</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>Pulmonalatresie</td>
<td></td>
</tr>
<tr>
<td>PAIVS</td>
<td>Pulmonale Atresie mit intaktem ventrikulären Septum</td>
<td></td>
</tr>
<tr>
<td>PDA</td>
<td>persistierender Ductus arteriosus</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>Pulmonalstenose</td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>Risk Ratio</td>
<td></td>
</tr>
<tr>
<td>RKI</td>
<td>Robert Koch Institut</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
<td></td>
</tr>
<tr>
<td>sog.</td>
<td>sogenannt</td>
<td></td>
</tr>
<tr>
<td>SSW</td>
<td>Schwangerschaftswoche</td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>Trikuspidalatresie</td>
<td></td>
</tr>
<tr>
<td>TAPVC</td>
<td>Totale Lungenvenenfehlmündung</td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>Trikuspidaldystrophie</td>
<td></td>
</tr>
<tr>
<td>TOF</td>
<td>Fallot'sche-Tetralogie</td>
<td></td>
</tr>
<tr>
<td>VSD</td>
<td>Ventrikelseptumdefekt</td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
<td></td>
</tr>
</tbody>
</table>
1. Einleitung

1.1. Adipositas und Übergewicht

1.1.1. Epidemiologie der Adipositas in Deutschland

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>BMI [kg/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untergewicht</td>
<td>16,00-18,49</td>
</tr>
<tr>
<td>Normalgewicht</td>
<td>18,50-24,99</td>
</tr>
<tr>
<td>Präadipositas</td>
<td>25,00-29,99</td>
</tr>
<tr>
<td>Adipositas Grad I</td>
<td>30,00-34,99</td>
</tr>
<tr>
<td>Adipositas Grad II</td>
<td>35,00-39,99</td>
</tr>
<tr>
<td>Adipositas Grad III</td>
<td>≥ 40,00</td>
</tr>
</tbody>
</table>

Die Prävalenz von Adipositas hat in Deutschland, wie in vielen anderen Ländern, in den letzten Jahrzehnten stark zugenommen (siehe Tabelle 2) [Gesundheitsberichterstattung des Bundes, 2009].

<table>
<thead>
<tr>
<th>BMI [kg/m²]</th>
<th>Beobachtungszeitpunkt</th>
<th>Differenz 1984 – 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 ≤ 30 [%]</td>
<td>32,0</td>
<td>32,1</td>
</tr>
<tr>
<td>> 30 [%]</td>
<td>16,2</td>
<td>17,5</td>
</tr>
</tbody>
</table>

Diese Entwicklung hat weitreichende Auswirkungen auf die generelle Gesundheit, da Adipositas die Entstehung vieler anderer Krankheiten und Beschwerden bedingt und deren Schweregrad verschlechtert. So kann ein gehäuftes Auftreten von kardiovaskulären Erkrankungen, aber auch ein gehäuftes Auftreten eines Diabetes mellitus Typ-2 (schon bei geringem Übergewicht) beobachtet werden [Berg et al., 2013].

1.1.2. Adipositas und Schwangerschaft

Ein weiterer wichtiger Aspekt der höheren Prävalenz von Adipositas bei jungen Menschen stellt das Problem der erhöhten Rate von Infertilität und Sterilität bei adipösen Frauen dar [Statistisches Bundesamt, 2006]. Eine große niederländische Studie hat gezeigt, dass sich Übergewicht auch auf die Erfolgsaussichten bei Maßnahmen der assistierten Reproduktion negativ auswirkt. Frauen mit Übergewicht und Adipositas haben demnach, im Vergleich zu Frauen mit Normalgewicht, eine um 33 % geringere Chance auf eine Geburt eines gesunden Kindes [Mewally et al., 2007].

Auf der anderen Seite bedeutet maternale Adipositas für eine bestehende Schwangerschaft eine signifikante Zunahme des Risikos für fetale Fehlbildungen und Schwangerschaftskomplikationen. So ist das Risiko für das Auftreten einer Gestationsdiabetes oder einer Präeklampsie und entsprechender Frühgeburtslichkeit deutlich erhöht [Torloni et al., 2009].

In klinischen Studien konnte darüber hinaus gezeigt werden, dass sich bei maternaler Adipositas häufiger fetale Fehlbildungen des zentralen Nervensystems sowie angeborene Herzfehler manifestieren [Stothard et al., 2009; Allan, 1996]. Gemäß der deutschen Mutterschaftsrichtlinien muss eine Schwangerschaft bei maternaler Adipositas daher als Risikoschwangerschaft eingestuft werden [Gemeinsamer Bundesausschuss, 2013].

Die Überwachung von adipösen Schwangeren stellt daher eine große Herausforderung für die pränatale Medizin dar. Diese Schwangerschaften sind deutlich häufiger mit Problemen
belastet und die routinemäßig vorgesehenen Ultraschalluntersuchungen des Feten bei adipösen Schwangeren stellen sowohl die Technik als auch die Erfahrung des Untersuchenden vor eine große Herausforderung. Klinische Studien der letzten Jahre haben belegt, dass z. B. die Aussagekraft einer Ultraschalluntersuchung ab einem klinisch signifikant erhöhten BMI geringer ist als bei normalgewichtigen Patientinnen [Dashe et al., 2009].

1.1.3. Adipositas bei Frauen im gebärfähigen Alter – aktuelle Daten

![Abbildung 1: Anteil der Frauen mit Übergewicht bzw. Adipositas in der jeweiligen Altersgruppe.](image-url)
1.2. Schwangerschaftsvorsorge in Deutschland

1.2.1. Richtlinien der Schwangerschaftsvorsorge

In Deutschland existiert eine gesetzlich geregelter Schwangerschaftsvorsorge. Diese schließt auch drei Ultraschall-Screening-Untersuchungen ein, bei der fetale Auffälligkeiten erkannt werden sollen [Gemeinsamer Bundesausschuss, 2013].

Zeitlich erfolgen die Untersuchungen in den Schwangerschaftswochen: 8+0 bis 11+6 (1. Screening); 18+0 bis 21+6 (2. Screening); 28+0 bis 31+6 (3. Screening). Dabei müssen bestimmte Merkmale erfasst werden. Besteht der Verdacht auf Entwicklungsstörungen oder Fehlbildungen, sind detaillierte sonographische Untersuchungen vorgesehen, um mögliche Fehlbildungen möglichst genau bestimmen zu können.

Gemäß den Richtlinien der DEGUM und der ISUOG wird bei Auffälligkeiten eine detaillierte feindiagnostische Beurteilung des Feten und der Fehlbildungen vorgenommen [Dt. Gesellschaft für Gynäkologie und Geburtshilfe].
1.2.2. Diagnostik kongenitaler Herzfehler

1.2.2.1 Pränatale fetale Echokardiographie

Die fetale Echokardiographie hat sich in den letzten zwei Jahrzehnten insbesondere durch eine zunehmende Verbesserung der Ultraschallgeräte und durch die gezielte Qualifizierung von Pränatalmedizinern sprunghaft weiterentwickelt. Sie ermöglicht die Untersuchung des fetalen Herzens bereits zum Ende des ersten Trimenons in der 12. SSW. So können schwerwiegende strukturelle Veränderungen bereits zu diesem Zeitpunkt zuverlässig erkannt werden. Da aber die Entwicklung des fetalen Herzens von den Blutflussverhältnissen abhängig ist, können manche fetale Herzfehlbildungen hingegen erst nach einer bestimmten Entwicklungsphase diagnostiziert werden. Daher bietet sich die 18. bis 22. SSW für eine echokardiographische Untersuchung in der Regel eher an [Donofrio et al., 2014].

1.2.2.2. Der Vier-Kammer-Blick

In einigen Ländern ist die Darstellung des Vier-Kammer-Blicks im Vorsorgescreening vorgesehen und wird bei allen Schwangeren angewandt [Eichhorn et al., 2006]. In diesen Ländern ist die Detektionsrate für Fehlbildungen am Herzen deutlich höher als in Ländern, die keine Einstellung des Vier-Kammer-Blicks im Screening vorsehen (20-48 % zu 8-11%) [Garne et al., 2005]. In Deutschland ist die Einstellung im Rahmen des erweiterten Organscreenings erst kürzlich (im Juli 2013) in die Schwangerschaftsvorsorge aufgenommen worden [Gemeinsamer Bundesausschuss, 2013].
Mehrere Studien zur Inzidenz und Erkennbarkeit von fetalen Herzfehlern konnten zeigen, dass die Detektionsrate sowohl von dem untersuchten Kollektiv als auch von der Erfahrung des Untersuchers abhängt (Tabelle 3).

<table>
<thead>
<tr>
<th>Studie</th>
<th>Inzidenz pro 1000</th>
<th>Risiko im Kollektiv</th>
<th>SSW</th>
<th>Erfahrung</th>
<th>Sensitivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tegnander et al., 2006</td>
<td>4,8</td>
<td>moderat</td>
<td>16-22</td>
<td>Grundlagen</td>
<td>39 %</td>
</tr>
<tr>
<td>Todros et al., 1997</td>
<td>3</td>
<td>niedrig</td>
<td>18-22</td>
<td>Spezialist</td>
<td>15 %</td>
</tr>
<tr>
<td>Stümpflen et al., 1996</td>
<td>7</td>
<td>hoch</td>
<td>18-28</td>
<td>Experte</td>
<td>88 %</td>
</tr>
<tr>
<td>Yagel et al., 1997</td>
<td>7,6</td>
<td>hoch</td>
<td>13-22</td>
<td>Experte</td>
<td>81 %</td>
</tr>
</tbody>
</table>

1.2.3. **Softmarker für chromosomale Aneuploidien**

1.2.3.1. **Definition von Softmarkern**

Unter sonographischen Softmarkern werden Ultraschallauffälligkeiten am Feten verstanden, die mit einem höheren Risiko für bestimmte übergeordnete, häufig genetische Erkrankungen (vor allem Aneuploidien) einhergehen [Becker et al., 1995]. Softmarker sind kein Beweis für das Vorliegen einer Erkrankung und entsprechen selber nicht einer Fehlbildung, deren Präsens erhöht lediglich das Risiko für eine bestimmte Erkrankung. Bekanntester Softmarker für das Vorliegen einer Trisomie 21 ist eine erhöhte Nackentransparenz im ersten Trimenon der Schwangerschaft [Bromley et al., 2002].

1.2.3.2. **Nackentransparenz**

1.2.3.3. Weitere Softmarker im ersten und zweiten Trimenon

Es ist eine Vielzahl von Softmarkern bekannt, für die ein erhöhtes Risiko für übergeordnete Erkrankungen nachgewiesen werden können. Von den folgenden Softmarkern sind der hypoplastische Nasenbeinknochen im ersten Trimenon von Relevanz, alle anderen erst im zweiten:
EINLEITUNG

a) Hypoplastischer Nasenbeinknochen: unterdurchschnittlich ausgeprägter Nasenbeinknochen und tief wirkender Nasensattel; Softmarker für Trisomie 21 und Cornelia-de-Lange-Syndrom [Cicero et al., 2001; Cetin et al., 2010].

b) Golfballphänomen (*White spots*): kleine, golfballförmige, echoreiche Areale in einer oder beiden Herzkammern nahe der Papillarmuskulatur; Softmarker für Trisomie 9, 21 und 13 [Bromley et al., 1995; Lehman et al., 1995], aber in neuerer Zeit umstritten [Rodriguez et al., 2013].

c) Kurze Röhrenknochen: Femur- und/oder Humeruslänge liegt unter der 5. in Bezug auf das Schwangerschaftsalter; Softmarker für Trisomie 21 und Turner-Syndrom [LaFollette et al., 1989; Bronshtein et al., 2003].

d) Echogener/hypoerechogener Darm: deutlich echodichte Darmschlingen im Ultraschall, d. h. als helle Strukturen darstellbar; Softmarker für Darm-obstruktion und Trisomie 21 [Scioscia et al., 1992; Nyberg et al., 1993].

e) Abnorme Kopfform: Anomalien wie z. B. Mikrognathie (Rückverlagerung des Unterkiefers) oder Makrozephalie (unüblich großer Kopf) gelten als Softmarker für verschiedene Trisomien und metabolische Störungen [Vinkestijn et al., 2001].

f) Holoprosencephalie: seltene Gehirnfehlbildung durch unvollständige Trennung des Prosencephalon in zwei Hemisphären; Softmarker für Trisomie 13 und 18 [McGahan et al., 1990; Tongsong et al., 1998].

g) Hydronephrose: Erweiterung des Nierenbeckens (gemessen im Anterior-Posterior-Durchmesser); beidseitige Hydronephrose gilt als Softmarker für Trisomie 21 [Thompson und Thilaganathan, 1998].

h) Ventrikulomegalie: Lateralventrikel direkt hinter dem Plexus choroideus übersteigt im zweiten Trimenon eine Breite von 8 mm; Softmarker für eine Vielzahl von Erkrankungen (u. a. Trisomie 18) [Goldstein et al., 2005; Gaglioti et al., 2005; Breeze et al., 2007].

i) Omphalozele: Verlagerung einiger Bauchorgane nach außen durch die Bauchwand des Fetus (physiologischer Nabelbruch); Softmarker u. a. für Trisomie 13 und 18 [Kanagawa et al., 2002].
1.3 Ursachen und Verbreitung kongenitaler Herzfehler

1.3.1. Epidemiologie kongenitaler Fehlbildungen in Deutschland

In Deutschland wurde die Säuglingssterblichkeit durch kongenitale Fehlbildungen in den letzten Jahrzehnten infolge des fortschreitenden medizinischen Fortschrittes bei der neonatologischen Versorgung deutlich reduziert und liegt bei 21 % [Sadler und Langman, 2008]; jedoch sind kongenitale Fehlbildungen die Hauptursache für Behinderungen im späteren Lebensalter [RKI, 2004].

Da eins von hundert Neugeborenen bei der Geburt einen Herzfehler aufweist, gehören kongenitale Herzfehler in Deutschland zu den häufigsten fetalen Fehlbildungen. Herzfehler sind zum überwiegenden Teil (95 %) angeboren und nur ca. 5 % der Herzerkrankungen im Säuglings- und Kindesalter gehören als überwiegend entzündliche Krankheitsbilder zur Gruppe der erworbenen Herzfehler [Lechat und Dolk, 1993; Dastgiri et al., 2002].

Die Ursachen kongenitaler Fehlbildungen können vielfältig sein. Studien haben gezeigt, dass etwa 7,5 % aller Anomalien monogen bedingt sind, bei ca. 6 % sind Chromosomenstörungen nachweisbar und bei 20 % handelt es sich um polygen-multifaktoriell bedingte Erkrankungen. Bei ca. 3 % kommen mütterliche Erkrankungen als fehlbildungsauslösend in Frage. Infektionen während der Schwangerschaft werden in ca. 2 % der Fälle beobachtet. Teratogene werden für 1,5 % verantwortlich gemacht. Bei über der Hälfte der Fälle kann jedoch keine Ursache für die fetalen Fehlbildungen erkannt werden [Tariverdian, 2007].
1.3.2. Herzentwicklung und kongenitale Herzfehler

Aus der Anlage der ersten Ursegmente bildet sich im Bereich des viszeralen Mesoderms die kardiogene Platte, aus der zwei Endokardstränge hervorgehen. Im Bereich der Kontaktstelle beider Stränge mit dem Embryo bildet sich ein gallertähnliches Bindegewebe aus dem dann der Myoepikardmantel entsteht.

Im Kanal zwischen Vorhof und Kammer entstehen dorsal und ventral die Endokardkissen. Diese wachsen aufeinander zu und vereinigen sich unter Trennung des canalis atroioventricularis in einen rechten und linken Teil.

Die funktionelle Ausbildung des Herzens ist schon zu einem sehr frühen Zeitpunkt weitestgehend abgeschlossen. Bis zur Geburt vollzieht sich neben dem Größenwachstum noch eine Veränderung der Volumenverhältnisse zugunsten des linken Ventrikels und die Fertigstellung der Herzklappen.

Der Verschluss dieser Shunts nach der Geburt ist essentiell für die Ausbildung eines Körperkreislaufes und eines Lungenkreislaufes. Gelingt diese Umstellung nicht oder nur unvollständig, kann dies für das Neugeborene gravierende Folgen haben und sich das Krankheitsbild des persistierenden fetalen Kreislaufes entwickeln. Herzfehler können dazu führen, dass die Shunts nach der Geburt offen bleiben und damit die Klinik verursachen.
1.4 Charakterisierung kongenitaler Herzfehler

Kongenitale Herzfehler können entsprechend ihrer Klinik nach der Geburt in zyanotische CHD (charakterisiert durch Rechts-Links-Shunt) und azyanotische ACHD (charakterisiert durch Links-Rechts-Shunt) eingeteilt werden [Varan et al., 1999].

1.4.1. Azyanotische kongenitale Herzfehler

1.4.1.1. Ventrikelseptumdefekt

Der Ventrikelseptumdefekt (VSD) ist der häufigste Herzfehler überhaupt (10 bis 30 % aller Herzfehler). Je nach Lage des Defektes unterscheidet man membranöse, rein muskuläre oder subarterielle Defekte. Je nach Ausprägung kommt es postpartal zu einem Links-Rechts-Shunt und der damit einhergehenden Klinik. Ein VSD tritt sehr häufig als Begleitvitium im Rahmen anderer Herzfehler auf und kommt nur in 30 % aller Fälle isoliert vor. Da in der embryonalen Phase die oberen und unteren Anteile der Scheidewand zwischen den beiden Ventrikeln aufeinander zu wachsen, kann das Zusammenwachsen deshalb leicht durch das Vorliegen anderer Herzfehlbildungen beeinträchtigt werden. Daher
sollte bei einem diagnostizierten VSD eine weitere intrakardiale Fehlbildung ausgeschlossen werden [Brockmeier und Hoppe, 2008].

1.4.1.2. Atriumseptumdefekt

1.4.1.3. Persistierender Ductus arteriosus

Bei einem persistierenden Ductus arteriosus (oder auch Ductus Botalli) (PDA) handelt es sich um eine postnatal fortbestehende Shuntverbindung zwischen Aorta und Truncus pulmonalis. Pränatal ist diese Verbindung physiologisch und der Ductus arteriosus verschließt sich normalerweise auf Grund der veränderten Widerstände postpartal funktional und obliteriert in den ersten Lebenswochen. Unterbleibt die Obliteration resultiert ein persistierender Links-Rechts-Shunt mit entsprechender Klinik [Brockmeier und Hoppe, 2008].
1.4.2. Zyanotische kongenitale Herzfehler

1.4.2.1. Fallot’sche Tetralogie

1.4.2.2. Pulmonalstenosen und Trikuspidalstenose

Mit einer Inzidenz von bis zu 10 % zählen isolierte Pulmonalstenosen (PS) zu den häufiger Herzfehlern. Eine PS ist eine Einengung der Verbindung zwischen rechtem Ventrikel und Pulmonalarterie. Somit liegt meist kein Rechts-Links-Shunt vor, sondern ein Blutrückstau durch eine Blockade des Lungenkreislaufs. In 25 bis 30 % der Fälle bestehen neben der PS weitere kardiale Fehlbildungen, wie der Atriumseptumdefekt (ASD) oder eine totale Pulmonalvenenfehlmündung [Hofbeck et al., 2007].
Ähnlich der PS, ist die Trikuspidalstenose (TS) eine Einengung zwischen rechtem Atrium und Ventrikel und wird fast immer von anderen kardialen Fehlbildungen begleitet (z. B. Mitralstenose, MS) [Lapp und Krakau, 2013]. Eine besondere und sehr seltene Form der TS ist die sog. Ebstein-Anomalie. Hierbei sind das septale und oft auch das posteriore Segel der Trikuspidalklappe missgebildet und zur Herzspitze hin verlagert [Ebstein, 1866; Wyman et al., 2012].

1.4.2.3. Pulmonalklappen- und Trikuspidalklappenatresie

1.4.2.4. Double Outlet Right Ventricle

Bei einem Double Outlet Right Ventricle (DORV) entspringen sowohl die Aorta als auch die Arteria pulmonalis dem rechten Ventrikel. Dadurch bedingt liegt immer auch ein Ventrikelseptumdefekt vor, um eine Verbindung vom linken zum rechten Ventrikel zu gewährleisten [Obler et al., 2008].
1.4.3. Weitere kongenitale Fehlbildungen des Herzens

1.4.3.1. Aortenisthmusstenose und Aortenstenose

Die Aortenisthmusstenose (ISTA) und Aortenstenose (AS) unterscheiden sich von den zyanotischen und azyanotischen Fehlbildungen dadurch, dass der Lungen- und Körperkreislauf postpartal physiologisch getrennt ist und es zu keiner Vermischung von sauerstoffreichem und -armen Blut kommt.

Bei der ISTA, die auch als Coarctatio aortae (CoA) bezeichnet wird, handelt es sich um eine Verengung der thorakalen Aorta nach dem Abgang der linken Arteria subclavia durch versprengtes Duktusgewebe in der Aortenwand. Sie kommt in ca. 7 % aller Fälle vor und ist häufig mit dem (Ulrich-)Turner-Syndrom (Monosomie X) assoziiert. Kennzeichnend sind eine Hypertonie der oberen Körperhälfte und eine Hypotonie der unteren Körperhälfte [Vogel und Bühlmeyer, 1992].

Die AS beschreibt eine Enge in unterschiedlichen Bereichen der Aorta. Die angeborene AS macht etwa 5 % aller Herzfehler aus, wobei hier die valvuläre AS (also die Aortenklappenstenose) die häufigste Form ist. Daneben gibt es noch die subvalvuläre (unterhalb der Aortenklappe) und seltener die supravalvuläre (oberhalb der Aortenklappe) AS. Assoziierte Anomalien sind bei einer AS eher selten, wobei die AS allerdings beim Williams-Beuren-Syndrom (WBS) charakteristisch auftritt [Morris, 1999].

1.4.3.2. Hypoplastisches Linksherzsyndrom

2. Fragestellung

Die Aussagekraft von pränatalen Ultraschalluntersuchungen ist oftmals aufgrund eingeschränkter Untersuchungsbedingungen eingeschränkt, so dass viele pränatal gestellte Ergebnisse nicht korrekt sind. In dieser Arbeit wurde deshalb systematisch der Zusammenhang zwischen Softmarkern und Outcome-Diagnose sowie die Häufigkeit von falsch-positiven und falsch-negativen Diagnosestellungen in der beschriebenen Patientinnenpopulation kritisch untersucht.

Vor dem Hintergrund der medizinisch relevanten kongenitalen Herzfehlbildungen und der in Zukunft weiter stark zunehmenden Bedeutung der Adipositas sollen folgende Fragestellungen beantwortet werden:

1. Gibt es relevante Diskrepanzen zwischen dem Auftreten von Softmarkern und den postnatalen Befunden und welchen Einfluss hat der BMI auf das Ausmaß einer möglichen Diskrepanz?

2. Wie sensitiv ist eine pränatale Ultraschalluntersuchung in Abhängigkeit vom BMI im Hinblick auf die Erkennung von kardialen Fehlbildungen und Softmarkern?

3. Welche Herzfehler kommen in bestimmten BMI- und Altersgruppen häufig vor?

4. Gibt es einen Zusammenhang zwischen Herzfehlbildungen und BMI bzw. Alter?
3. Material und angewandte Methoden

3.1. Patientinnenkollektiv

- Einlingsschwangerschaft mit Verdacht auf eine Herzfehlbildung des Ungeborenen
- mindestens eine erstmalige Ultraschalluntersuchung in der Pränatalabteilung im ersten oder zweiten Trimenon
- mindestens eine postpartale echokardiographische Nachuntersuchung des Neugeborenen.

Das Patientinnenkollektiv wurde zum einen in sechs BMI-Gruppen entsprechend der WHO-Klassifikation (siehe Tabelle 1) und zum anderen in vier Altersgruppen (≤ 20 Jahre; 21-30 Jahre; 31-40 Jahre; > 40 Jahre) eingeteilt.

Bei den postpartalen Untersuchungen handelt es sich um die U-Untersuchungen (U1-U9) durch einen Gynäkologen oder Kinderarzt oder – bei besonderer Indikation – um spezielle Untersuchungen durch einen Kinderkardiologen oder Humangenetiker.

3.2. Einteilung der Softmarker und Herzfehler

3.3. Statistische Methoden

Quantitative Größen wie Alter und BMI wurden in Korrelation zu den verschiedenen Anomalien und Softmarkern anhand von absoluten und relativen Häufigkeiten angegeben. Die Korrelation zwischen der Gesamtheit der Anomalien und der Softmarker einerseits und dem Alter oder BMI andererseits wurde als Quotenverhältnis (englisch odds ratio, OR) ermittelt. Für die Durchführung der statistischen Berechnungen wurde die Statistiksoftware SPSS 17 (SPSS Inc., an IBM Company, Chicago, IL, USA) eingesetzt.
3.3.1. Bivariate Kreuztabellen-Analyse

Zur Bestimmung der Signifikanz wurde eine bivariate Kreuztabellen-Analyse durchgeführt, wie in Tabelle 4 beispielhaft dargestellt ist.

Tabelle 4: Beispiel der verwendeten bivariaten Kreuztabellen-Analyse

<table>
<thead>
<tr>
<th>N (%)</th>
<th>Variable A¹ 1</th>
<th>Variable A¹ 2</th>
<th>Variable A¹ 3</th>
<th>Variable A¹ gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable B² 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable B² 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable B² 3</td>
<td>Hier 12 ZELLEN</td>
<td>Mit individuellen ZELLEN-Häufigkeiten und ZELLEN-Prozenten</td>
<td>Häufigkeiten für ZEILEN Prozente für ZEILEN</td>
<td></td>
</tr>
<tr>
<td>Variable B² 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable B² gesamt</td>
<td>Häufigkeiten für SPALTEN Prozente für SPALTEN</td>
<td>N (%) gesamt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Variable A: Quantitative Größe (Alter/BMI); ² Variable B: Qualitative Größe (Anomalie/Softmarker)

Bei der bivariaten Analyse geht es darum, die empirische Beziehung zweier Merkmale oder Variablen zueinander zu untersuchen und ein Zusammenhangsmaß zu bestimmen. Im Falle qualitativer Merkmale spricht man von Assoziationsmaßen und im Falle von quantitativen Merkmalen von Korrelationsmaßen.

Für jede Zeile (Anomalie/Softmarker) wurde berechnet, ob zwischen jeder Spalte (Alters- oder BMI-Gruppe) ein Zusammenhang mit der jeweiligen Anomalie bzw. dem jeweiligen Softmarker steht. Ist ein Zusammenhang signifikant (Fisher p < 0,05), so ist dies in der jeweils letzten Spalte gekennzeichnet. Zellen ohne Werte bedeuten, dass hier keine Fälle vorlagen und/oder keine Berechnung möglich war.

Die Signifikanz gibt an, ob der gezeigte Zusammenhang statistisch valide oder ein Zufallsprodukt der Daten ist. Der Grenzwert für ein valides Ergebnis liegt bei $p \leq 0.05$, d. h. Maßzahlen von 0.05 oder weniger deuten auf einen realen und keinen zufälligen Zusammenhang hin.

<table>
<thead>
<tr>
<th>Wert</th>
<th>0</th>
<th>bis 0,2</th>
<th>bis 0,4</th>
<th>bis 0,6</th>
<th>bis 0,8</th>
<th>bis 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärke</td>
<td>Keine</td>
<td>sehr schwach</td>
<td>schwach</td>
<td>mittel</td>
<td>stark</td>
<td>sehr stark</td>
</tr>
</tbody>
</table>

3.3.2. Berechnung des Quotenverhältnisses

Das Quotenverhältnis (Odds Ratio, OR) ist ein Assoziationsmaß und wird oftmals in der Epidemiologie und Medizin zur Bestimmung von Zusammenhängen zwischen Erkrankungen und Risikofaktoren benutzt. Es ist definiert als das Verhältnis aus der Wahrscheinlichkeit für das Eintreten eines Ereignisses und der entsprechenden Gegenwahrscheinlichkeit. Das Quotenverhältnis bzw. die OR gibt Auskunft über die Stärke eines Zusammenhangs zweier Merkmalen und lässt sich bei allen Studiendesigns anwenden, einschließlich Fall-Kontroll-Studien, Querschnitts- und Interventionsstudien. Die OR hat gegenüber dem relativen Risiko (Risk Ratio, RR) den Vorteil, dass keine Informationen zur kumulativen Inzidenz (Häufigkeit von Neuerkrankungen an einer Krankheit innerhalb einer bestimmten Bevölkerung und eines bestimmten Zeitraums) vorausgesetzt sind, wie es beispielsweise in der hier vorliegenden Arbeit der Fall ist.

Zur Berechnung der OR wird in der Regel der Vergleich zwischen Personen mit einem potentiellen Risikofaktor und Personen ohne diesen Risikofaktor für eine Erkrankung
angestellt. Die absoluten Häufigkeiten werden in einer 2x2-Kreuztabelle, wie in Abbildung 6 dargestellt, eingetragen. Aus dieser Kreuztabelle kann die OR direkt errechnet werden.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Die Berechnung der OR erfolgte mittels der Statistiksoftware SPSS 17. Hierbei wurde zum einen die einfache OR für die jeweilige Kreuztabelle berechnet, zum anderen wurde die adjustierte OR bestimmt (siehe unten).

3.3.3. Logistische Regression

Die Methode der binär logistischen Regression findet beim Quotenverhältnis (OR) Anwendung. Dies ist immer dann der Fall wenn - wie in der vorliegenden Arbeit - der Einfluss unabhängiger Risikofaktoren (hier „Alter“ oder „BMI“) auf ein dichotom ausgeprägtes Zielmerkmal, welches nur zwei Zustände annehmen kann (hier postnatal „gesund“ oder „nicht-gesund“), bestimmt werden soll. Hier wird die Wahrscheinlichkeit für

In einer weiteren statistischen Analyse wurde ein anderer Ansatz gewählt, um den Einfluss eines hohen Alters bzw. eines hohen BMI erfassen zu können. Dieser war die logistische Betrachtung der linearen, unabhängigen Einflussvariable „Alter“ bzw. „BMI“. Hierzu wurden die Patientinnen in die zwei Gruppen „ohne Risikofaktor“ und „mit Risikofaktor“ eingeteilt. Die Unterteilung fand für den Faktor „Alter“ entlang der Altersgrenze von 30 Jahren statt, d. h. die Patientinnen wurden entsprechend in < 30 Jahre („ohne Risikofaktor“) bzw. ≥ 30 Jahre („mit Risikofaktor“) unterteilt. In Bezug auf den Faktor „BMI“ wurde eine ähnliche Einteilung in < 30 kg/m² bzw. ≥ 30 kg/m² durchgeführt.

Die logistische Regression ermöglicht bei Vorliegen mehrerer Risikofaktoren die Analyse, um wie viel größer die Chance für das Auftreten einer Erkrankung in der Gruppe mit einem bestimmten Risikofaktor ist.
4. Ergebnisse

4.1. Charakterisierung des Patientinnenkollektives

Aus den Daten des Patientinnenkollektives wurde mittels statistischer Analyse versucht, die Häufigkeit und die pränataldiagnostische Zuverlässigkeit von Softmarkern und kongenitaler Herzfehlbildungen in Abhängigkeit vom BMI und dem Alter der Schwangeren abzuleiten. Zunächst wurden die grundlegenden Informationen bzgl. der Patientinnen erfasst, d. h. die Alters- und BMI-Verteilung - in Folge dargestellt (Abbildung 7).

![Abbildung 7: Übersicht der Alters- und BMI-Verteilung des Patientinnenkollektives.](image)

Der mittlere BMI im Kollektiv lag bei 24,97 kg/m² und lag damit noch knapp im Normalbereich. Das durchschnittliche Alter der Schwangeren betrug 31,1 Jahre.

4.2. Häufigkeit von Softmarkern

4.2.1. Zusammenhang zwischen Softmarkern und BMI

<table>
<thead>
<tr>
<th>Softmarker</th>
<th>18,5 - 24,9</th>
<th>25 - 29,9</th>
<th>30 - 34,9</th>
<th>35 - 39,9</th>
<th>≥ 40,00</th>
<th>Gesamtsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nackenödem</td>
<td>5 (50,0%)</td>
<td>48 (21,6%)</td>
<td>21 (28,0%)</td>
<td>7 (21,9%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Hydronephrose</td>
<td>0 (0,0%)</td>
<td>46 (25,0%)</td>
<td>17 (31,3%)</td>
<td>10 (16,7%)</td>
<td>1 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Omphalozele</td>
<td>0 (0,0%)</td>
<td>20 (10,9%)</td>
<td>10 (12,5%)</td>
<td>4 (16,7%)</td>
<td>1 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Darm</td>
<td>2 (20,0%)</td>
<td>16 (8,7%)</td>
<td>4 (3,1%)</td>
<td>1 (16,7%)</td>
<td>1 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Klumpfuß</td>
<td>2 (20,0%)</td>
<td>11 (6,0%)</td>
<td>7 (9,3%)</td>
<td>3 (9,4%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Papillarmuskel</td>
<td>1 (10,0%)</td>
<td>15 (8,2%)</td>
<td>4 (3,1%)</td>
<td>1 (0,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Holoproencephalus</td>
<td>0 (0,0%)</td>
<td>8 (4,3%)</td>
<td>7 (9,3%)</td>
<td>2 (6,3%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Nierenbecken</td>
<td>0 (0,0%)</td>
<td>11 (6,0%)</td>
<td>1 (1,3%)</td>
<td>2 (6,3%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>ASD</td>
<td>0 (0,0%)</td>
<td>4 (2,2%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>2 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mikrognathie</td>
<td>0 (0,0%)</td>
<td>2 (1,1%)</td>
<td>3 (4,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>TAPVC</td>
<td>0 (0,0%)</td>
<td>1 (1,1%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Ventrikulo-megalie</td>
<td>0 (0,0%)</td>
<td>1 (1,1%)</td>
<td>0 (0,0%)</td>
<td>1 (1,1%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Hyperecho-gener Darm</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>1 (1,1%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Kurzer Femur</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Nasenbein</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
<td>1 (3,1%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Softmarker gesamt</td>
<td>10</td>
<td>184</td>
<td>75</td>
<td>32</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

ERGBNISSE
Die Auswertung der Daten ergab, dass die Erkennbarkeit von Softmarkern, welche die Wahrscheinlichkeit des Vorliegens einer Chromosomenanomalie erhöhen, in keiner BMI-Gruppe signifikant häufiger oder seltener war (siehe Tabelle 7).

Die hier vorliegenden Daten lassen darauf schließen, dass das Risiko bei einem Kind einen der oben beschriebenen sonographischen Softmarker pränatal zu erkennen um 0,794 geringer ist, wenn die Mutter nicht adipös ist. Anders ausgedrückt erhöht sich die Wahrscheinlichkeit der Erkennbarkeit eines entsprechenden Softmarker um das 1,259-fache, wenn die Schwangere adipös ist. Entsprechend zeigen die adjustierten OR, dass die Wahrscheinlichkeit bei Adipositas einen Softmarker vorzufinden um das 1,271-fache (linear adjustierter BMI) bzw. um das 1,264-fache (logistisch adjustierter BMI) erhöht ist.
4.3. Vergleich von pränatal vorgefundenen Softmarkern mit postnataler Outcome-Diagnose

Die Daten des Patientinnenkollektives wurden im Hinblick auf die Sensitivität und Selektivität der durchgeführten Untersuchungen analysiert. Hierbei wurde das Auftreten eines Softmarkers während der Schwangerschaft mit dem postnatalen Outcome korreliert. Es ergaben sich vier mögliche Konstellationen, die in Tabelle 10 übersichtlich dargestellt sind.

<table>
<thead>
<tr>
<th>Softmarker</th>
<th>Fehlbildung postnatal diagnostiziert?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ja</td>
</tr>
<tr>
<td>Ja</td>
<td>Nein</td>
</tr>
<tr>
<td>Nein</td>
<td>falsch-negativ</td>
</tr>
<tr>
<td>Gesamt</td>
<td>N, %</td>
</tr>
</tbody>
</table>

4.3.1. Softmarker vs. Outcome-Diagnose in BMI-Abhängigkeit

Eine Übersicht der Ergebnisse der pränatal vorgefundenen Softmarker und der postnatalen Diagnose innerhalb der unterschiedlichen BMI-Gruppen ist in Tabelle 11 dargestellt.

Im Gesamtkollektiv bestehend aus allen Angaben zum BMI wurde, basierend auf dem Vorliegen von Softmarkern, bei 97,27 % (= 0,31 % + 96,96 %) der untersuchten Patientinnen eine richtige Diagnose während der Schwangerschaft gestellt (also die Summe aller richtig-positiven und richtig-negativen Diagnosen), 2,72 % (= 1,13 % + 1,59 %) wurden inkorrekt diagnostiziert (entsprechend die Summe aller falsch-positiven und falsch-negativen Diagnosen).
In der BMI-Gruppe < 18,5 kg/m² wurden bei 2,09 % der Patientinnen pränatal Softmarker vorgefunden, die auf eine Anomalie hindeuteten, welche sich postnatal jedoch nicht manifestiert hatte (falsch-positiv). In 0,21 % der Fälle innerhalb dieser Gruppe konnte eine Fehlbildung, die während der Schwangerschaft durch Softmarker angezeigt wurde, auch nach der Geburt festgestellt werden (richtig-positiv). In 94,77 % der Fälle wurden während der Schwangerschaft keine Softmarker gefunden und nach der Geburt übereinstimmend keine Anomalien diagnostiziert (richtig-negativ). Postnatal diagnostizierte Anomalien, die pränatal nicht durch Softmarker angezeigt wurden, traten in 2,93 % der Fälle auf (falsch-negativ).
In der BMI-Gruppe 18,5 - 24,9 kg/m² wurde bei 1,20 % der Patientinnen eine falsch-positive, bei 0,33 % eine richtig-positive Aussage getätigt. Richtig-negativ vorhergesagt wurde in 97,05 %, falsch-negativ in 1,41 % der Fälle.

Die Ergebnisse der Auswertung der BMI-Gruppe 25 - 29,9 kg/m² lagen in einer sehr ähnlichen Größenordnung. In 1,02 % der Fälle wurde keine richtige Aussage getroffen (falsch-positiv), während in 0,39 % der Fälle eine richtig-positive Vorhersage getroffen wurde. Richtig-negative Aussagen wurden in 96,78 %, falsch-negative Aussagen in 1,81 % der Fälle gestellt.

Betrachtet man die BMI-Gruppe 30 - 34,9 kg/m², wurde bei 1,13 % der Patientinnen eine falsche Aussage getroffen. Hingegen konnte bei 0,06 % der Patientinnen eine richtig-positive Vorhersage abgegeben werden. Bei Kindern mit manifestierten postnatalen Anomalien, wurde in 96,73 % der Fälle diese während der Schwangerschaft übersehen. Die richtig-negative Aussage lag bei 2,07 %

Innerhalb der BMI-Gruppe 35 - 39,9 kg/m² wurde ein falsch-positiver Befund in 0,32 % der Fälle erbracht, während man in 0,32 % der Fälle richtig-positiv vorhersagte. Bei 1,44 % der Fälle wurde eine Fehlbildung übersehen, jedoch wurde bei 97,93 % der Fälle eine richtig-negative Aussage getätigt.

In der Gruppe der sehr stark übergewichtigen Patientinnen (BMI > 39,9 kg/m²), wurde bei 0,31 % eine falsch-positive Vorhersage getroffen. Bei 99,07 % der Patientinnen konnte eine Fehlbildung richtigerweise ausgeschlossen werden, während bei 0,62 % der postnatal diagnostizierten Fehlbildungen diese pränatal nicht erkannt wurden. Die richtig-positive Aussage lag bei 0,00%.

ERGEBNISSE

Tabelle 12: Signifikanz zwischen Softmarker und postnatalem Outcome in Abhängigkeit des BMI

<table>
<thead>
<tr>
<th>BMI [kg/m²]</th>
<th>Chi²</th>
<th>p (Chi)</th>
<th>Fisher exakt</th>
<th>Cramver V</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 18,5</td>
<td>1,504</td>
<td>0,220</td>
<td>0,281</td>
<td>0,056</td>
<td>–</td>
</tr>
<tr>
<td>18,5-24,9</td>
<td>354,109</td>
<td>0,000</td>
<td>0,000</td>
<td>0,186</td>
<td>Ja</td>
</tr>
<tr>
<td>25-29,9</td>
<td>201,868</td>
<td>0,000</td>
<td>0,000</td>
<td>0,216</td>
<td>Ja</td>
</tr>
<tr>
<td>30-34,9</td>
<td>0,740</td>
<td>0,390</td>
<td>0,360</td>
<td>0,022</td>
<td>–</td>
</tr>
<tr>
<td>35-39,9</td>
<td>54,365</td>
<td>0,000</td>
<td>0,002</td>
<td>0,294</td>
<td>Ja</td>
</tr>
<tr>
<td>≥ 40,00</td>
<td>0,006</td>
<td>0,937</td>
<td>1,000</td>
<td>-0,004</td>
<td>–</td>
</tr>
<tr>
<td>Gesamt</td>
<td>28,675</td>
<td>0,018</td>
<td>---</td>
<td>0,023</td>
<td>Ja</td>
</tr>
</tbody>
</table>

4.3.2. Zusammenhang zwischen Softmarkern und maternalem Alter

<table>
<thead>
<tr>
<th>Softmarker</th>
<th>Alter [Jahre]</th>
<th>Gesamt-</th>
<th></th>
<th>summe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 20</td>
<td>21 - 30</td>
<td>31 - 40</td>
<td>> 40</td>
</tr>
<tr>
<td>Nackenödем</td>
<td>3 (33,3 %)</td>
<td>29 (22,1 %)</td>
<td>42 (28,0 %)</td>
<td>7 (43,8 %)</td>
</tr>
<tr>
<td>Hydronephrose</td>
<td>3 (33,3 %)</td>
<td>39 (29,0 %)</td>
<td>30 (20,0 %)</td>
<td>2 (12,5 %)</td>
</tr>
<tr>
<td>Omphalozele</td>
<td>1 (11,1 %)</td>
<td>12 (9,2 %)</td>
<td>21 (14,0 %)</td>
<td>1 (6,3 %)</td>
</tr>
<tr>
<td>Darm</td>
<td>0 (0,0 %)</td>
<td>8 (6,1 %)</td>
<td>16 (10,7 %)</td>
<td>0 (0,0 %)</td>
</tr>
<tr>
<td>Klumpfuß</td>
<td>2 (22,2 %)</td>
<td>10 (7,6 %)</td>
<td>11 (7,3 %)</td>
<td>0 (0,0 %)</td>
</tr>
<tr>
<td>Papillarmuskel</td>
<td>0 (0,0 %)</td>
<td>7 (5,3 %)</td>
<td>13 (8,7 %)</td>
<td>2 (12,5 %)</td>
</tr>
<tr>
<td>Holoprocæphalus</td>
<td>0 (0,0 %)</td>
<td>6 (4,6 %)</td>
<td>8 (4,7 %)</td>
<td>3 (18,8 %)</td>
</tr>
<tr>
<td>Nierenbecken</td>
<td>0 (0,0 %)</td>
<td>8 (6,1 %)</td>
<td>6 (4,0 %)</td>
<td>0 (0,0 %)</td>
</tr>
<tr>
<td>ASD</td>
<td>0 (0,0 %)</td>
<td>6 (4,6 %)</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
</tr>
<tr>
<td>Mikrognathie</td>
<td>0 (0,0 %)</td>
<td>5 (3,8 %)</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
</tr>
<tr>
<td>TAPVC</td>
<td>0 (0,0 %)</td>
<td>2 (1,5 %)</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
</tr>
<tr>
<td>Ventrikulomegalie</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
<td>2 (1,3 %)</td>
<td>0 (0,0 %)</td>
</tr>
<tr>
<td>Hyperechogener Darm</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
</tr>
<tr>
<td>Kurzer Femur</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
</tr>
<tr>
<td>Nasenbein</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
<td>0 (0,0 %)</td>
<td>1 (6,3 %)</td>
</tr>
<tr>
<td>Softmarker gesamt</td>
<td>9</td>
<td>132</td>
<td>151</td>
<td>16</td>
</tr>
</tbody>
</table>
Die statistische Auswertung der Verteilung von Softmarkern in den verschiedenen Alterskategorien ist nachfolgend in Tabelle 14 aufgeführt.

Tabelle 14: Signifikanzen der Korrelation zwischen Softmarkern und maternalem Alter

<table>
<thead>
<tr>
<th>Variable</th>
<th>Chi²</th>
<th>p (Chi)</th>
<th>Fisher exakt</th>
<th>Cramver V</th>
<th>Signifanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nackenödem</td>
<td>11,589</td>
<td>0,009</td>
<td>0,031</td>
<td>0,018</td>
<td>Ja</td>
</tr>
<tr>
<td>Hydronephrose</td>
<td>6,313</td>
<td>0,097</td>
<td>0,078</td>
<td>0,013</td>
<td>–</td>
</tr>
<tr>
<td>Omphalozele</td>
<td>0,318</td>
<td>0,957</td>
<td>0,909</td>
<td>0,003</td>
<td>–</td>
</tr>
<tr>
<td>Darm</td>
<td>2,732</td>
<td>0,435</td>
<td>0,706</td>
<td>0,009</td>
<td>–</td>
</tr>
<tr>
<td>Klumpfuß</td>
<td>1,740</td>
<td>0,628</td>
<td>0,561</td>
<td>0,007</td>
<td>–</td>
</tr>
<tr>
<td>Papillarmuskel</td>
<td>5,487</td>
<td>0,139</td>
<td>0,162</td>
<td>0,013</td>
<td>–</td>
</tr>
<tr>
<td>Holoproencephalus</td>
<td>18,404</td>
<td>0,000</td>
<td>0,022</td>
<td>0,023</td>
<td>Ja</td>
</tr>
<tr>
<td>Nierenbecken</td>
<td>3,531</td>
<td>0,317</td>
<td>0,443</td>
<td>0,010</td>
<td>–</td>
</tr>
<tr>
<td>ASD</td>
<td>9,743</td>
<td>0,021</td>
<td>0,026</td>
<td>0,017</td>
<td>Ja</td>
</tr>
<tr>
<td>Mikrognathie</td>
<td>8,119</td>
<td>0,044</td>
<td>0,056</td>
<td>0,015</td>
<td>–</td>
</tr>
<tr>
<td>TAPVC</td>
<td>3,247</td>
<td>0,355</td>
<td>0,278</td>
<td>0,010</td>
<td>–</td>
</tr>
<tr>
<td>Ventrikulomegalie</td>
<td>1,636</td>
<td>0,651</td>
<td>0,581</td>
<td>0,007</td>
<td>–</td>
</tr>
<tr>
<td>Hyperechogener Darm</td>
<td>0,818</td>
<td>0,845</td>
<td>1,000</td>
<td>0,005</td>
<td>–</td>
</tr>
<tr>
<td>Kurzer Femur</td>
<td>0,818</td>
<td>0,845</td>
<td>1,000</td>
<td>0,005</td>
<td>–</td>
</tr>
<tr>
<td>Nasenbein</td>
<td>37,477</td>
<td>0,000</td>
<td>0,026</td>
<td>0,033</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Daraus wird ersichtlich, dass eine Korrelation zwischen dem Alter der Patientinnen und der Erkennbarkeit der Softmarker Nackenödem, Holoprosencephalus, AS und Nasenbein vorliegt. Allerdings lässt die geringe Fallzahl für die beiden Softmarker ASD und Nasenbein keine vernünftige Aussage zu. Im Gegensatz dazu sind die Fallzahlen für die beiden Softmarker Nackenödem und Holoprosencephalus deutlich höher, so dass hier eine Assoziation mit einem Patientinnenalter > 40 gezeigt werden kann.

34
Tabelle 15: Anzahl der Befunde an Softmarkern in Alters-Abhängigkeit

<table>
<thead>
<tr>
<th>Alter-Kategorie</th>
<th>< 30</th>
<th>≥ 30</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>liegt nicht vor</td>
<td>14608</td>
<td>19873</td>
<td>34481</td>
</tr>
<tr>
<td>Zeilenhäufigkeit [%]</td>
<td>41,99</td>
<td>57,12</td>
<td>99,10</td>
</tr>
<tr>
<td>Spaltenhäufigkeit [%]</td>
<td>99,08</td>
<td>99,18</td>
<td>99,13</td>
</tr>
<tr>
<td>liegt vor</td>
<td>136</td>
<td>165</td>
<td>301</td>
</tr>
<tr>
<td>Softmarker</td>
<td>41,85</td>
<td>50,77</td>
<td>92,62</td>
</tr>
<tr>
<td>Spaltenhäufigkeit [%]</td>
<td>0,92</td>
<td>0,82</td>
<td>0,87</td>
</tr>
<tr>
<td>Total</td>
<td>14744</td>
<td>20038</td>
<td>34782</td>
</tr>
<tr>
<td>Zeilenhäufigkeit [%]</td>
<td>41,98</td>
<td>57,06</td>
<td>99,04</td>
</tr>
<tr>
<td>Spaltenhäufigkeit [%]</td>
<td>100,00</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Tabelle 16: Signifikanzen der Korrelation zwischen Softmarkern und maternalem Alter

<table>
<thead>
<tr>
<th>OR</th>
<th>Chi²</th>
<th>p (Chi)</th>
<th>95 % Konfidenzintervall</th>
<th>1 / OR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>unteres</td>
<td>oberes</td>
</tr>
<tr>
<td>einfach</td>
<td>0,892</td>
<td>0,097</td>
<td>0,325</td>
<td>0,710</td>
</tr>
<tr>
<td>justiert am BMI (linear)</td>
<td>0,883</td>
<td>1,140</td>
<td>0,285</td>
<td>0,702</td>
</tr>
<tr>
<td>justiert am BMI (logistisch)</td>
<td>0,885</td>
<td>1,110</td>
<td>0,293</td>
<td>0,704</td>
</tr>
</tbody>
</table>

Aus Tabelle 16 lässt sich ablesen, dass bei einer Schwangerschaft bis zum 30. Lebensjahr das Risiko bei dem ungeborenen Kind einen Softmarker zu finden um 0,892 geringer ist als mit > 30 Jahren. Oder alternativ: das Risiko pränatal einen Softmarker vorzufinden, ist um das 1,121-fache erhöht, wenn die Mutter ein Mindestalter von 30 Jahren erreicht hat.

Die am BMI justierten OR zeigen nur geringfügige Unterschiede zur einfachen OR auf. Die Wahrscheinlichkeit bei hohem Alter (> 30 Jahre) einen Softmarker zu erkennen, ist um das 1,133-fache (linear adjustierter BMI) bzw. um das 1,130-fache (logistisch adjustierter BMI) erhöht.
4.3.3. Softmarker vs. Outcome-Diagnose in Altersabhängigkeit

Eine Übersicht der identifizierten Softmarkern und der postnataler Diagnosen innerhalb der unterschiedlichen Altersgruppen ist in Tabelle 17 dargestellt. Die Auswertung der Daten des Gesamtkollektivs ergab, dass aufgrund von Softmarkern eine richtige Diagnose bei 97,23 % (= 0,31 % + 96,92 %) der untersuchten Patientinnen und eine falsche Diagnose bei 2,76 % (= 1,14 % + 1,62 %) getroffen wurde.

<table>
<thead>
<tr>
<th>Alter [Jahre]</th>
<th>Softmarker</th>
<th>Fehlbildung postnatal diagnostiziert?</th>
<th>Total (N, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nein (N, %)</td>
<td>Ja (N, %)</td>
</tr>
<tr>
<td>≤ 20</td>
<td>Nein</td>
<td>724 (97,44 %)</td>
<td>5 (0,67 %)</td>
</tr>
<tr>
<td></td>
<td>Ja</td>
<td>13 (1,75 %)</td>
<td>1 (0,13 %)</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>737 (99,19 %)</td>
<td>6 (0,81 %)</td>
</tr>
<tr>
<td>21 - 30</td>
<td>Nein</td>
<td>6451 (95,88 %)</td>
<td>86 (1,28 %)</td>
</tr>
<tr>
<td></td>
<td>Ja</td>
<td>166 (2,47 %)</td>
<td>25 (0,37 %)</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>6617 (98,32 %)</td>
<td>111 (1,67 %)</td>
</tr>
<tr>
<td>31 - 40</td>
<td>Nein</td>
<td>9298 (96,5 %)</td>
<td>135 (1,4 %)</td>
</tr>
<tr>
<td></td>
<td>Ja</td>
<td>143 (1,48 %)</td>
<td>60 (0,62 %)</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>9441 (98,69 %)</td>
<td>195 (1,31 %)</td>
</tr>
<tr>
<td>> 40</td>
<td>Nein</td>
<td>431 (95,35 %)</td>
<td>8 (1,77 %)</td>
</tr>
<tr>
<td></td>
<td>Ja</td>
<td>10 (2,21 %)</td>
<td>3 (0,66 %)</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>441 (97,57 %)</td>
<td>11 (2,43 %)</td>
</tr>
<tr>
<td>Total (N, %)</td>
<td>Nein</td>
<td>16904 (96,92 %)</td>
<td>234 (1,14 %)</td>
</tr>
<tr>
<td></td>
<td>Ja</td>
<td>332 (1,62 %)</td>
<td>89 (0,31 %)</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>17236 (98,55 %)</td>
<td>323 (1,45 %)</td>
</tr>
</tbody>
</table>

In der Altersgruppe ≤ 20 Jahre wurde bei 1,75 % der Patientinnen in der Schwangerschaft ein Softmarker gefunden, obwohl nach der Geburt keine Anomalie vorlag. In 0,13 % der Fälle innerhalb dieser Gruppe konnte eine Fehlbildung, die während der Schwangerschaft durch Softmarker angezeigt wurde auch nach der Geburt festgestellt werden. Richtig-negative Aussagen konnten für 97,44 % der postnatal gesunden Kinder gemacht werden. Falsch-negative Vorhersagen wurden bei 0,67 % der postnatal diagnostizierten
ERGEBNISSE

Fehlbildungen getroffen – diese Kinder sind mit einer Fehlbildung zur Welt gekommen, obwohl während der Schwangerschaft keine Softmarker vorgefunden wurden.

In der Altersgruppe 21-30 Jahren stellten sich 1,75 % der postnatal negativen Befunde als falsch-positiv heraus, 96,57 % als richtig-negativ. 0,37 % der postnatal positiven Befunde erwiesen sich richtig-positiv, 1,30 % falsch-negativ.

Die Ergebnisse der Auswertung bei Patientinnen der Altersgruppe 31-40 Jahren ähnelt den Resultaten der anderen Gruppen. So wurden 1,49 % der postnatal negativen Befunde pränatal als falsch-positiv bewertet, 97,20 % als richtig-negativ. 0,26 % der postnatal positiven Diagnosen waren richtig-positiv, 1,05 % falsch-negativ.

Postnatal negative Befunde der Gruppe > 40 Jahren waren in 2,21 % der Fälle falsch-positiv, 95,35 % richtig-negativ. 0,66 % der postnatal positiven Befunde waren richtig-positiv, 1,77 % hingegen falsch-negativ.

Bei der Auswertung dieser Daten zeigt sich, dass der Zusammenhang zwischen Softmarker und postnataler Diagnose in jeder Altersgruppe signifikant mit Ausnahme der Gruppe der ≤ 20 Jährigen ist (Tabelle 18). Auch hier muss der Zusammenhang aufgrund der Ergebnisse des Cramer-V-Test als sehr schwach eingestuft werden.

<table>
<thead>
<tr>
<th>Alter [Jahre]</th>
<th>Chi²</th>
<th>p (Chi)</th>
<th>Fisher exakt</th>
<th>Cramver V</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 20</td>
<td>7,150</td>
<td>0,007</td>
<td>0,108</td>
<td>0,098</td>
<td>–</td>
</tr>
<tr>
<td>21-30</td>
<td>256,790</td>
<td>0,000</td>
<td>0,000</td>
<td>0,197</td>
<td>Ja</td>
</tr>
<tr>
<td>31-40</td>
<td>237,602</td>
<td>0,000</td>
<td>0,000</td>
<td>0,158</td>
<td>Ja</td>
</tr>
<tr>
<td>> 40</td>
<td>24,023</td>
<td>0,000</td>
<td>0,003</td>
<td>0,231</td>
<td>Ja</td>
</tr>
<tr>
<td>Gesamt</td>
<td>12,691</td>
<td>0,177</td>
<td>---</td>
<td>0,016</td>
<td>Ja</td>
</tr>
</tbody>
</table>

4.4. Häufigkeit von Herzfehlbildungen

4.4.1. Zusammenhang zwischen Herzfehlbildungen und BMI

In Tabelle 19 sind die (absoluten und prozentualen) Häufigkeiten der verschiedenen Herzfehler in den einzelnen BMI-Gruppen aufgeführt. Dort sind neben den absoluten
Werten (also die Anzahl der Herzfehler) auch die prozentualen Angaben angegeben. Diese Prozentangaben gelten innerhalb der BMI-Gruppe,summieren sich also innerhalb einer Spalte auf.

<table>
<thead>
<tr>
<th>Tabelle 19: Häufigkeiten von Herzfehlern in den verschiedenen BMI-Gruppen</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
</tr>
<tr>
<td>< 18,5</td>
</tr>
<tr>
<td>VSD</td>
</tr>
<tr>
<td>ISTA</td>
</tr>
<tr>
<td>HLHS</td>
</tr>
<tr>
<td>TOF</td>
</tr>
<tr>
<td>PS</td>
</tr>
<tr>
<td>Aortenklappen- anomalien</td>
</tr>
<tr>
<td>PA</td>
</tr>
<tr>
<td>TA</td>
</tr>
<tr>
<td>DORV</td>
</tr>
<tr>
<td>PAIVS</td>
</tr>
<tr>
<td>AVSD</td>
</tr>
<tr>
<td>Ebstein- Anomalien</td>
</tr>
<tr>
<td>PDA</td>
</tr>
<tr>
<td>TD</td>
</tr>
<tr>
<td>TS</td>
</tr>
<tr>
<td>Herzfehler gesamt</td>
</tr>
</tbody>
</table>
Die Anzahl der Patientinnen mit einem BMI ≥ 35 im Kollektiv ist relativ gering. Die statistische Auswertung der dargestellten Daten ergibt im Falle von PS und AVSD eine signifikante Korrelation von steigendem BMI und der entsprechenden Herzfehler, d. h. je höher der BMI ist, desto wahrscheinlicher ist das Auftreten der genannten Fehlbildung (Tabelle 20).

Bei PS ist eine signifikante Zunahme in der Zahl der Fehlbildung in den BMI-Kategorien 35 - 39,9 kg/m² und > 39,9 kg/m² erkennbar. Die geringe Fallzahl bei AVSD erlaubt jedoch keine sinnvolle Interpretation.

Tabelle 20: Signifikanzen der Korrelation zwischen Herzfehlbildungen und BMI

<table>
<thead>
<tr>
<th>Herzfehler</th>
<th>Chi²</th>
<th>p (Chi)</th>
<th>Fisher exakt</th>
<th>Cramver V</th>
<th>Signifizanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>6,631</td>
<td>0,250</td>
<td>0,285</td>
<td>0,014</td>
<td>–</td>
</tr>
<tr>
<td>ISTA</td>
<td>4,973</td>
<td>0,419</td>
<td>0,508</td>
<td>0,012</td>
<td>–</td>
</tr>
<tr>
<td>HLHS</td>
<td>1,772</td>
<td>0,880</td>
<td>0,970</td>
<td>0,007</td>
<td>–</td>
</tr>
<tr>
<td>TOF</td>
<td>2,002</td>
<td>0,849</td>
<td>0,756</td>
<td>0,008</td>
<td>–</td>
</tr>
<tr>
<td>PS</td>
<td>12,884</td>
<td>0,024</td>
<td>0,015</td>
<td>0,019</td>
<td>Ja</td>
</tr>
<tr>
<td>Aortenklappen-anomalien</td>
<td>6,367</td>
<td>0,272</td>
<td>0,362</td>
<td>0,013</td>
<td>–</td>
</tr>
<tr>
<td>PA</td>
<td>3,499</td>
<td>0,623</td>
<td>0,571</td>
<td>0,010</td>
<td>–</td>
</tr>
<tr>
<td>TA</td>
<td>5,843</td>
<td>0,322</td>
<td>0,303</td>
<td>0,013</td>
<td>–</td>
</tr>
<tr>
<td>DORV</td>
<td>4,459</td>
<td>0,485</td>
<td>0,600</td>
<td>0,011</td>
<td>–</td>
</tr>
<tr>
<td>PAIVS</td>
<td>4,500</td>
<td>0,480</td>
<td>0,455</td>
<td>0,011</td>
<td>–</td>
</tr>
<tr>
<td>AVSD</td>
<td>21,880</td>
<td>0,001</td>
<td>0,015</td>
<td>0,025</td>
<td>Ja</td>
</tr>
<tr>
<td>Ebstein-Anomalien</td>
<td>1,437</td>
<td>0,920</td>
<td>1,000</td>
<td>0,006</td>
<td>–</td>
</tr>
<tr>
<td>PDA</td>
<td>0,719</td>
<td>0,982</td>
<td>1,000</td>
<td>0,005</td>
<td>–</td>
</tr>
<tr>
<td>TD</td>
<td>27,006</td>
<td>0,000</td>
<td>0,081</td>
<td>0,028</td>
<td>–</td>
</tr>
<tr>
<td>TS</td>
<td>3,065</td>
<td>0,690</td>
<td>0,418</td>
<td>0,009</td>
<td>–</td>
</tr>
</tbody>
</table>
Um zu prüfen, ob eine Adipositas häufiger mit dem Vorliegen eines Herzfehlers korreliert, wurde die Odd Ratio berechnet. Hierzu wurde das Patientinnenkollektiv in die zwei Kategorien „keine Adipositas“ (BMI < 30 kg/m²) und „Adipositas“ (BMI ≥ 30 kg/m²) eingeteilt.

Es sei an dieser Stelle darauf hingewiesen, dass bei der Analyse zur Odds Ratio alle erhobenen Befunde (bei BMI 35.118), unabhängig des in dieser Arbeit untersuchten Patientinnenkollektives - unterteilt in auffällig (liegt vor) und unauffällig (liegt nicht vor) - berücksichtigt wurden. Eine Übersicht aller vorgefundenen Anomalien in den beiden Kategorien „keine Adipositas“ (BMI < 30 kg/m²) und „Adipositas“ (BMI ≥ 30 kg/m²) ist nachfolgend in Tabelle 22 aufgeführt.

Tabelle 21: Anzahl der Herzfehler-Befunde in BMI-Abhängigkeit

<table>
<thead>
<tr>
<th>Herzfehler</th>
<th>Liegt nicht vor</th>
<th>≥ 30</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeilenhäufigkeit [%]</td>
<td>85,50</td>
<td>14,50</td>
<td>100,00</td>
</tr>
<tr>
<td>Spaltenhäufigkeit [%]</td>
<td>99,06</td>
<td>99,17</td>
<td>99,07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herzfehler</th>
<th>liegt vor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeilenhäufigkeit [%]</td>
<td>87,08</td>
<td>12,92</td>
<td>100,00</td>
</tr>
<tr>
<td>Spaltenhäufigkeit [%]</td>
<td>0,94</td>
<td>0,83</td>
<td>0,93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>Liegt nicht vor</th>
<th>≥ 30</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeilenhäufigkeit [%]</td>
<td>85,51</td>
<td>14,49</td>
<td>100,00</td>
</tr>
<tr>
<td>Spaltenhäufigkeit [%]</td>
<td>100,00</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Die Berechnungen ergaben eine OR von 0.875 (siehe Tabelle 22). Dies bedeutet, dass das Risiko ein Kind mit Herzanomalie zu gebären um 0.875 geringer ist, wenn die Mutter nicht adipös ist. Anders ausgedrückt erhöht sich die Wahrscheinlichkeit eines kongenitalen Herzfehlers um das 1,143-fache, wenn die Schwangere adipös ist.
Tabelle 22: Signifikanzen der Korrelation zwischen Herzfehler und Normalgewicht oder Adipositas

<table>
<thead>
<tr>
<th></th>
<th>OR</th>
<th>Chi²</th>
<th>p (Chi)</th>
<th>95 % Konfidenzintervall</th>
<th>1 / OR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unteres</td>
<td></td>
</tr>
<tr>
<td>einfach</td>
<td>0,875</td>
<td>0,650</td>
<td>0,421</td>
<td>0,632</td>
<td>1,143</td>
</tr>
<tr>
<td>justiert am Alter (linear)</td>
<td>0,839</td>
<td>1,110</td>
<td>0,293</td>
<td>0,604</td>
<td>1,192</td>
</tr>
<tr>
<td>justiert am Alter (logistisch)</td>
<td>0,841</td>
<td>1,070</td>
<td>0,302</td>
<td>0,606</td>
<td>1,189</td>
</tr>
</tbody>
</table>

Wie im Methodenteil erläutert, wurde eine justierte OR am Alter bestimmt, um den Effekt des Alters auf das Auftreten von Anomalien bei Betrachtung des BMI statistisch „herauszufiltern“. Dies wurde einerseits mit der linearen Variable des Patientinnenalters durchgeführt, andererseits mit der logistischen AltersVariable > 30 oder < 30 Jahre.

Die justierten OR zeigen nur einen geringen Unterschied zur einfachen Berechnung auf. Unter statistischer Vernachlässigung des Einflusses des maternalen Alters ist die Wahrscheinlichkeit bei Adipositas ein krankes Kind zu gebären um das 1,192-fache (linear adjustierter BMI) bzw. um das 1,189-fache (logistisch adjustierter BMI) erhöht.

4.4.2. Zusammenhang zwischen Herzfehlabildungen und Alter

In Tabelle 23 sind die Häufigkeiten der verschiedenen Herzfehler in den einzelnen Altersgruppen präsentiert. Entsprechend der vorherigen Daten zu den BMI-Gruppen sind in dieser Tabelle die absoluten Werte (also die Anzahl der Herzfehler) und die prozentualen Angaben bezogen auf die spezifische Altersgruppe angegeben.
Hierbei zeigt sich die Tendenz, dass ein Auftreten einer Herzfehllbildung mit zunehmendem Alter wahrscheinlicher ist. Ein signifikanter Zusammenhang zwischen dem Alter der Schwangeren und einer Erkrankung konnte nur für die Fälle TOF und PDA gefunden werden (siehe Tabelle 24).
Tabelle 24: Signifikanzen der Korrelation zwischen Herzfehlbildungen und maternalem Alter

<table>
<thead>
<tr>
<th>Herzfehler</th>
<th>Chi²</th>
<th>p (Chi)</th>
<th>Fisher exakt</th>
<th>Cramver V</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>3,671</td>
<td>0,299</td>
<td>0,250</td>
<td>0,010</td>
<td>–</td>
</tr>
<tr>
<td>Ista</td>
<td>1,428</td>
<td>0,699</td>
<td>0,722</td>
<td>0,006</td>
<td>–</td>
</tr>
<tr>
<td>HLHS</td>
<td>3,294</td>
<td>0,349</td>
<td>0,233</td>
<td>0,010</td>
<td>–</td>
</tr>
<tr>
<td>TOF</td>
<td>14,673</td>
<td>0,002</td>
<td>0,033</td>
<td>0,021</td>
<td>Ja</td>
</tr>
<tr>
<td>PS</td>
<td>2,958</td>
<td>0,398</td>
<td>0,308</td>
<td>0,009</td>
<td>–</td>
</tr>
<tr>
<td>Aortenklappen-anomalien</td>
<td>2,133</td>
<td>0,545</td>
<td>0,708</td>
<td>0,008</td>
<td>–</td>
</tr>
<tr>
<td>PA</td>
<td>2,865</td>
<td>0,413</td>
<td>0,337</td>
<td>0,009</td>
<td>–</td>
</tr>
<tr>
<td>TA</td>
<td>2,186</td>
<td>0,535</td>
<td>0,372</td>
<td>0,008</td>
<td>–</td>
</tr>
<tr>
<td>DORV</td>
<td>0,742</td>
<td>0,863</td>
<td>1,000</td>
<td>0,005</td>
<td>–</td>
</tr>
<tr>
<td>PAIVS</td>
<td>1,334</td>
<td>0,721</td>
<td>0,669</td>
<td>0,006</td>
<td>–</td>
</tr>
<tr>
<td>AVSD</td>
<td>1,636</td>
<td>0,651</td>
<td>0,581</td>
<td>0,007</td>
<td>–</td>
</tr>
<tr>
<td>Ebstein-Anomalien</td>
<td>0,221</td>
<td>0,974</td>
<td>1,000</td>
<td>0,003</td>
<td>–</td>
</tr>
<tr>
<td>PDA</td>
<td>37,477</td>
<td>0,000</td>
<td>0,026</td>
<td>0,033</td>
<td>Ja</td>
</tr>
<tr>
<td>TD</td>
<td>0,818</td>
<td>0,845</td>
<td>1,000</td>
<td>0,005</td>
<td>–</td>
</tr>
<tr>
<td>TS</td>
<td>1,624</td>
<td>0,654</td>
<td>0,450</td>
<td>0,007</td>
<td>–</td>
</tr>
</tbody>
</table>

Allerdings ist aufgrund der Tatsache, dass im gesamten Patientinnenkollektiv nur ein einziger Fall PDA auftrat, eine Interpretation nicht sinnvoll. Im Falle von TOF deuten die Ergebnisse darauf hin, dass bei Schwangeren über 40 Jahren diese Fehlbildung häufiger vorkommt, als bei den anderen Altersgruppen.

Tabelle 25: Anzahl der Herzfehler-Befunde in Alters-Abhängigkeit

<table>
<thead>
<tr>
<th>Altersgruppen [Jahre]</th>
<th>< 30</th>
<th>≥ 30</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herzfehler liegt nicht vor</td>
<td>14590</td>
<td>19869</td>
<td>34459</td>
</tr>
<tr>
<td>Herzfehler liegt vor</td>
<td>154</td>
<td>169</td>
<td>323</td>
</tr>
</tbody>
</table>

Zeilenhäufigkeit [%] | 41,93 | 57,11 | 99,04 |
Spaltenhäufigkeit [%] | 98,96 | 99,16 | 99,07 |

Tabelle 26: Signifikanzen der Korrelation zwischen Herzfehler und maternalem Alter

<table>
<thead>
<tr>
<th>OR</th>
<th>Chi²</th>
<th>p (Chi)</th>
<th>95 % Konfidenzintervall</th>
<th>1 / OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>einfach</td>
<td>0,806</td>
<td>3,730</td>
<td>0,053</td>
<td>0,647</td>
</tr>
<tr>
<td>justiert am BMI (linear)</td>
<td>0,813</td>
<td>3,470</td>
<td>0,063</td>
<td>0,653</td>
</tr>
<tr>
<td>justiert am BMI (logistisch)</td>
<td>0,802</td>
<td>3,930</td>
<td>0,047</td>
<td>0,644</td>
</tr>
</tbody>
</table>

Auch in diesem Fall zeigen die justierten OR nur minimal Effekte auf. Wenn der Einfluss des BMI statistisch herausgefiltert wird, dann ist die Wahrscheinlichkeit bei hohem Alter (> 30 Jahre) ein krankes Kind zu gebären um das 1,230-fache (linear adjustierter BMI) bzw. um das 1,247-fache (logistisch adjustierter BMI) erhöht.
5. Diskussion

5.1. Zusammenhang zwischen Softmarkern und Outcome-Diagnose

In dieser Arbeit wurden die Patientinnen in Gewichtsgruppen eingeteilt, wobei der BMI nach gängiger WHO-Klassifikation als Indikator für Übergewicht verwendet wurde. In allen BMI-Gruppen wurde eine Übereinstimmung zwischen der Präntaldiagnose anhand von Softmarkern und der Outcome-Diagnose von mehr als 97 % erzielt. Die Rate der falsch-negativen Diagnosen, also Fehlbildung, die nach der Geburt entdeckt wurden, obwohl während der Schwangerschaft keine Softmarker auftreten, lag bei ca. 1,6 %. Somit betrug die Sensitivität der sonographischen Untersuchungen 1 - 1,6 % = 98,4 %.

In dieser Arbeit wurde in der BMI-Gruppe ≥ 40 kg/m² einmal fälschlicherweise ein Softmarker beim Neugeborenen während der Schwangerschaft gefunden und in zwei Fällen übersehen. Das Ergebnis deckt sich mit verschiedenen Studien bezüglich der Sensitivität und Spezifität von Ultraschalluntersuchungen bei übergewichtigen Schwangeren [Dashe et al., 2009; Tabor et al., 2003].

5.2. Einfluss von Übergewicht und Alter auf die Häufigkeit von Softmarkern

Im hier untersuchten Patientinnenkollektiv konnte der Softmarker ASD bei einer Adipositas 2. oder 3. Grades (BMI von \(\geq 35\) kg/m\(^2\)) häufiger beobachtet werden. Es konnte ebenfalls gezeigt werden, dass das Risiko einer Softmarkermanifestation bei einer vorliegenden Adipositas (BMI \(\geq 30\) kg/m\(^2\)) um das 1,259-fache erhöht ist. Dies deckt sich mit dem bisherigen Stand des Wissens. Tsai et al. zeigte, dass vor allem die Entdeckungsrate von Softmarkern beim Ultraschallscreening vom mütterlichen Gewicht abhinge [Tsai et al., 2010]. Im Vorfeld dieser Studie wurde erwartet, dass die Entdeckungsrate mit zunehmendem BMI abnehmen würde, was sich aber nicht bewahrheitete. Eine Erklärung ist, dass diese Annahme auf einer zu geringen Screeningrate bei übergewichtigen Schwangeren begründet war.

Weiterhin konnte für das Auftreten von Softmarkern eine Abhängigkeit vom maternalem Alter gefunden werden. Ab einem Alter von mehr als 30 Jahren ist das Risiko um das 1,121-fache größer als bei einem geringeren Alter der Schwangeren. So traten bei über 40-jährigen die Softmarker Holoprosencephalus und Nackenödem vermehrt auf.
5.3. Kongenitale Herzfehler bei Übergewicht der Schwangeren

Die Auswertung der Patientinnendaten zeigte, dass mit steigendem Körpergewicht (ermittelt durch den BMI) die Wahrscheinlichkeit für ein Neugeborenes, eine kongenitale Herzfehlbildungen zu haben, nicht zunimmt. Es konnte kein signifikanter Unterschied im postnatalen fetalen Outcome zwischen adipösen und normalgewichtigen Patientinnen gefunden werden.

Dieses Ergebnis entspricht nicht den Erwartungen, da die Assoziation zwischen Übergewicht bzw. BMI und kongenitalen Herzfehlbildungen bereits vielfach untersucht wurde. Man fand in mehreren Studien eine signifikant höhere Wahrscheinlichkeit für das Auftreten von Herzfehlbildungen bei zunehmendem BMI [Stothard et al., 2009; Gilboa et al., 2010].

Ein Grund für das Ergebnis könnte die ungleiche Verteilung der Anzahl an Patientinnen in den unterschiedlichen BMI-Gruppen sein. Für die Analyse wurden einzelnen BMI-Gruppen zusammengefasst, so dass schließlich die Gruppe „Unter- und Normalgewicht“ (BMI ≤ 24,9 kg/m²) etwa 60 % aller Patientinnen umfasste, während für die Gruppe „Übergewicht und Adipositas Grad 1 bis 3“ (BMI > 25 kg/m²) nur ca. 40 % der Patientinnen verblieb. Somit lag keine gleichmäßige Verteilung vor, was somit die Auswertung beeinflusst haben könnte. Jedoch konnte auch bei Betrachtung der Inzidenz von Neugeborenen mit postpartal diagnostizierten kongenitalen Herzfehlbildungen innerhalb der einzelnen BMI-Gruppen kein Unterschied gefunden werden.

Weiterhin muss berücksichtigt werden, dass in dieser Studie keine weiteren Risikofaktoren erfasst wurden. Risikofaktoren für kongenitale Fehlbildungen wie Rauchen, Alkohol, Diabetes mellitus und geringes Bildungsniveau korrelieren zwar mit einem hohen BMI,
können in diesem Fall aber auch vermehrt in der BMI-Gruppe „Unter- und Normalgewicht“ eine Rolle gespielt haben. Außerdem wurde in der Analyse nicht die Verteilung des Alters der Patientinnen, was auch ein Risikofaktor darstellt, innerhalb der einzelnen BMI-Kategorien untersucht.

Schließlich lässt sich sagen, dass diese Studie keine signifikante Korrelation zwischen einzelnen BMI-Gruppen (ohne Berücksichtigung der Begleiterkrankungen, die mit einem hohen BMI einhergehen) und kongenitalen Herzfehльbildungen zeigen konnte. Dennoch konnte gezeigt werden, dass Schwangere mit Unter- oder Normalgewicht im Vergleich zu Schwangeren mit Übergewicht oder Adipositas ein verringertes Risiko haben, ein Kind mit Herzanomalien zu gebären.

5.4. Kongenitale Herzfehler und maternales Alter

Beim Vergleich zwischen unterschiedlichen Altersgruppen und bestimmten kongenitalen Herzfehльbildungen konnte eine Korrelation von Herzanomalien bei Säuglingen mit zunehmendem Alter der Mütter gezeigt werden. Hierbei wurde der größte Signifikanzwert für die Fallot’sche Tetralogie (TOF) gefunden, die vor allem mit einem maternalen Alter von > 40 Jahren assoziiert ist. Generell zeigte sich für die TOF bei ≤ 30-jährigen schwangeren Frauen ein leicht geringeres (0,806-faches) Risiko als bei > 30-jährigen Schwangeren.

Dieses Ergebnis stimmt mit den Erwartungen überein. Es ist allgemein bekannt, dass ein vermehrtes Auftreten fōtaler Anomalien, wie etwa Trisomie 21, mit einem hohen Alter der Mutter einhergeht. So wurde Anfang der 70er ein Alter von 37 Jahren als Grenzwert für Trisomie 21 eingeführt, wodurch etwa 5 % aller Schwangeren automatisch als Risikogruppe eingestuft wurden. Die Inzidenz für Kinder mit Trisomie 21 lag innerhalb dieser Risikogruppe bei ca. 30 % [Hook et al., 1983].

Laut einer Studie hängt die Inzidenz für Trisomie 21 auch von der SSW ab [Snijders et al., 1999]. In dieser Studie gaben Snijders et al. die spontane Abortrate für Trisomie 21 in der 12. bis 40. SSW mit 40 % und in der 16. bis 40. SSW mit 30 % an. Darüber hinaus wurde auch für die Inzidenz für die Trisomien 12 und 13 eine Abhängigkeit vom Alter der Schwangeren und der SSW gezeigt [Snijders et al., 1999].

Die Korrelation von zunehmendem maternalem Alter und erhöhtes Vorkommen kongenitaler Herzfehльbildungen lässt jedoch keine Aussage über (mono)kausale

5.5. Überlegungen

Zusammenfassend muss man sagen, dass die Ultraschalluntersuchung von vielen Faktoren abhängig ist – in geschulter Hand handelt es sich um ein Verfahren mit hoher diagnostischer Genauigkeit. Auch der psychologische Nutzen der Ultraschalluntersuchung ist als positiv hervorzuheben.

Dennoch ist die Qualität der Ultraschalluntersuchung in der Gynäkologie und Geburtshilfe mit durchschnittlichen Sensitivitätsschwankungen von 50 bis 90 % nicht zufriedenstellend. Die Sensitivität von Ultraschalluntersuchung liegt bei durchschnittlich 75 %, bei Risikogruppen aber bei 90 %. Die Spezifität liegt je nach Einrichtung bei 94 % bis 99,9 % [Levi et al., 1995; Ashe et al., 1996]. Eine qualitativ hochwertige apparative Ausstattung wie auch stetige Weiterbildungskurse könnten zu einer Steigerung der Sensitivität gerade außerhalb der Risikogruppen beitragen.

Da der Anteil übergewichtiger Schwangerer an der Gesamtbevölkerung stetig zunimmt, muss man davon ausgehen, dass in absehbarer Zukunft ca. 1/3 aller Schwangeren sonographisch nicht hinreichend evaluierbar werden [Ebbeling et al., 2002].

Vor diesem Hintergrund sollte man die Überlegung anstellen, ob man nicht generell alle übergewichtigen Patientinnen standardmäßig den weiterführenden Ultraschalluntersuchungen in besser ausgerüstete Pränatalzentren zuführen sollte, um dadurch eine bestmögliche Versorgung dieser Risikogruppe gewährleisten zu können.
6. Zusammenfassung

Einschlusskriterien waren eine Erst- und eine Einlingsschwangerschaft inklusive des Vorliegens eines Verdachtes auf eine kongenitale Herzfehlbildung sowie mindestens eine pränatale und eine postnatale Ultraschalluntersuchung des Kindes. Das Kollektiv wurde in BMI-Gruppen nach WHO-Klassifikation und unterschiedliche Altersgruppen unterteilt.

In Übereinstimmung mit dem Stand der Forschung konnte zudem auch ein Zusammenhang von kongenitalen Herzfehlern bei Neugeborenen mit zunehmenden Alter der Mütter gezeigt werden, insbesondere im Falle der Fallot’schen Tetralogie (TOF).

7. Literaturverzeichnis

17. Chao, R. The four-chamber view: four reasons why it seems to fail in screening for cardiac abnormalities and suggestions to improve detection rate. Ultrasound Obstet Gynecol.; 22: 3-10 (2003b)

51
26. Deutsche Gesellschaft für Gynäkologie und Geburtshilfe 2013

101. Universität zu Lübeck, Datenbank zur Pränataldiagnostik-Ultraschall 3D, Patientinnendaten anonymisiert, 2010
8. Veröffentlichungen

Veröffentlichte Abstracts

Schröer A., Stepien A., Kelling K., Weichert J. Overweight and obesity in pregnancy and the risk and prenatal recognisability of fetal soft markers for chromosomal aneuploidies: A review on 19,687 cases. (2011)
9. Danksagung

Die Dissertation wurde an der Klinik für Frauenheilkunde und Geburtshilfe in der Abteilung für Pränataldiagnostik der medizinischen Fakultät der Universität zu Lübeck durchgeführt.

Hiermit möchte ich allen danken, die am Zustandekommen dieser Arbeit beteiligt waren.

Ein weiterer besonderer Dank gilt Frau Ulrike Schulz, die mir durch ihr statistisches und mathematisches Wissen und ihrem Ideenreichtum stets zur Seite stand.

Mein Dank gilt ebenso meinen engsten Freunden, die mich seit meiner Schulzeit auf meinem Weg begleiten. Ihnen allen möchte ich für die Unterstützung während der Erstellung aber auch bei der Fertigstellung der Dissertation danken.
10. Lebenslauf

PERSÖNLICHE DATEN

Name: Anita Stepien
Wohnort: Bonn
Geboren: im September 1984
in: Beuten /Polen
deutsche Staatsangehörigkeit

BERUFSERFAHRUNG

seit 06/2016
Assistenzärztin Anästhesie
Heilig Geist Krankenhaus, Köln-Longerich

07/2015 – 05/2016
Assistenzärztin Anästhesie
Gemeinschaftskrankenhaus Bonn, Bonn

seit 02/2014
Notärztin im Rhein-Sieg-Kreis

06/2012 – 06/2015
Assistenzärztin Innere
St. Johannes Krankenhaus, Troisdorf-Sieglar

06/2007 – 05/2012
Nachtwache in der Ambulanz
St. Johannes Krankenhaus, Troisdorf-Sieglar

06/2006 – 09/2006
Wochenendaushilfskraft in der Ambulanz
St. Johannes Krankenhaus, Troisdorf-Sieglar

STUDIUM

03/2011 – 02/2012
Universität zu Bonn
Praktisches Jahr
Abschluss: 2. Staatsexamen

05/2008 – 02/2011
Universität zu Lübeck
Studium der Humanmedizin

Universität zu Pécs /Ungarn
Studium der Humanmedizin
Abschluss: 1. Staatsexamen

PRAKTIKA

Famulatur in der Allgemeinchirurgie
St. Johannes Krankenhauses in Troisdorf-Sieglar

02/2009 – 04/2009
Famulatur in der Vizeralchirurgie
St. Johannes Krankenhaus Troisdorf-Sieglar

Famulatur in der Inneren Abteilung
St. Johannes Krankenhaus Troisdorf-Sieglar
ZEITRAUM DER DISSERTATION

2008 bis 2010 Statistische Recherchen
2010 bis 2012 Verfassen der Dissertation
2012 bis 2013 Unterbrechung auf Grund beruflicher Tätigkeit
2013 bis 2014 Fertigstellung der Dissertation
2015 bis 2016 Korrektur der Dissertation

BESONDEREKENNTNISSE

Sprachen: Englisch gut in Wort und Schrift
Polnisch Muttersprache

IT: MS Word gute Kenntnisse
MS Excel gute Kenntnisse
MS Power Point gute Kenntnisse

Führerschein: Klasse B

Sonstiges: Humanitäre Hilfe (Humedica e.V.)

weitere Qualifikation: Wissenschaftliches Arbeiten und Lehrtätigkeit an der Universität zu Pécs –Institut für Anatomie und Histologie
Echokardiographie, Endoskopie, Sonographie
Dienst auf der Intensivstation
Fachkunde Strahlenschutz
Fachkunde Notfallmedizin /Rettungsdienst
Zusatzbezeichnung Notfallmedizin