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1. Introduction

The complexity of the human body has fascinated scientists for centuries. To study
it, the biology-based interdisciplinary field called ‘systems biology’ was introduced
(Kitano, 2002a, b). According to its main principle, in order to understand a
biological system, one can modulate it, monitor the response, and formulate a
mathematical model to describe those semantics. In system genetics, natural
variation in the whole population perturbs biological processes (Civelek and Lusis,
2014; Farber, 2012; Feltus, 2014). Thus, the ultimate goal of system genetics is to
understand the complexities of biological traits, by the identification of genes,
pathways and networks associated with human diseases (van der Sijde et al., 2014).
Genome-wide association studies (GWAS) have enabled the identification of genetic
polymorphisms (SNPs) that are correlated to disease phenotypes (Gregersen et al.,
2012). However, while data from GWAS studies may statistically determine single
gene assoclations, it is not sufficient to explain molecular mechanisms (Farber,

2012).

Thus, the development of adequate mouse models mimicking human diseases is
required (Kung and Huang, 2001). Previously, the generation of recombinant inbred

mouse strains was used as a powerful tool for mapping the genomic loci underlying



the complex traits (QTLs) (Gonzales and Palmer, 2014). However, this data requires
further fine mapping to eventually indicate the exact causal genes of deviant
phenotypes (Mott and Flint, 2002). To shorten this process and dissect the molecular
effects, gene expression data from inbred strains can be combined with genomic

variations to identify the genes that control the traits (eQTL) (Cookson et al., 2009).

The discovery of micro RNA (miRNA) introduced an additional level of complexity to
the molecular mechanisms leading to disease (Lee et al., 1993). This class of small
non-coding RNA molecules has been reported to control gene expression by diverse
mechanisms (Capuano et al., 2011; Dai et al., 2013; Paraboschi et al., 2011). Similar
to eQTL, the genomic loci controlling the miRNA expression can also be derived
using chip technology (Liu et al., 2012). An observed statistical association of
miRNA levels with mRNA levels is indicative of a mutual or joint genetic control.
We seek those genetic loci for which variations affect these statistical interactions.
Preferably, that locus is close (‘cis’) to the regions coding either of the two
interacting genes. This, in turn, can lead to the identification of possible molecular

pathways and help to unravel new therapeutic approaches.

Recently, additional classes of non-coding RNAs such as snoRNA, snRNA,
telomerase RNA etc. have been discovered to contribute to disease phenotypes
(Esteller, 2011). Therefore, to gain an overview of the complete gene network, the

integration of additional classes of non-coding RNA beyond miRNA is required.



However, the current computational algorithms cannot yet predict all the existing
classes of non-coding RNA. Hence, in this work, I sought to address the following
aims: 1) To find the possible interaction network of genes and miRNAs that play an
1mportant role in the pathogenesis of autoimmune skin disease, using experimental
Epidermolysis Bullosa Acquisita (EBA) as a model for autoimmune diseases. i1) To
develop software which can predict different classes of post-transcriptional RNAs (a
class of non-coding RNA) based on their sequences and structural properties using

machine learning algorithms.

1.1 Autoimmune diseases

One of the main functions of the immune system is to discriminate between self and
non-self antigens (Parkin and Cohen, 2001). Failure to differentiate between self
and foreign antigens can lead to a sustained immune response and development of
autoimmune diseases (ADs). More than 80 ADs have been identified, affecting
nearly 100 million people worldwide (Cooper et al., 2009; Cooper and Stroehla, 2003;
Jacobson et al., 1997). ADs are differentiated from other types of diseases on the
basis of of Witebsky’s postulates. According to these postulates ADs should fulfil at
least two or more of the following criteria: 1) a specific adaptive immune response
directed to an affected tissue or organ; 2) presence of auto-reactive T cells or auto-
antibodies (AAbs) in the affected organ or tissue; 3) induction of the disease in
healthy humans or animals by transfer of auto-reactive T cells or AAbs; 4) induction
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of the disease in animals by immunization with auto-antigen; 5) immune-
modulation and suppression of autoimmune response. Numerous risk factors have
been associated with ADs, however the complete pathoaetiology of these diseases
remains unknown (Rioux and Abbas, 2005). Nonetheless, it is clear that both genetic

and environmental factors play a critical role in the pathology of autoimmunity.

1.2 Autoimmune bullous diseases

Production of auto-antibodies (AAbs) directed against different structural proteins of
the skin and the mucous membranes lead to the development of organ-specific
autoimmune disorders in the skin called autoimmune bullous disease (AIBDs)
(Sticherling and Erfurt-Berge, 2012). AIBDs can be classified into four distinct
groups based on their clinical, histological and immunopathological criteria, 1i.e.
pemphigus and the group of pemphigoid diseases, and dermatitis herpetiformis
Duhring (Zillikens, 2008). In the group of pemphigus diseases, AAbs are directed
against desmosomal proteins, leading to a loss of adhesion between adjacent
epidermal keratinotcytes and intra-epithelial blister formation (Amagai et al., 1995).
In pemphigoid diseases, AAbs are formed against hemidesmosomal proteins,
resulting in the dysadhesion of basal keratinocytes to the underlying basement
membrane (BM) and formation of subepidermal blisters (Borradori and Sonnenberg,

1999).



1.3 Epidermolysis bullosa acquisita (EBA): an autoantibody-mediated

autoimmune skin disease

Epidermolysis bullosa acquisita (EBA) is a severe chronic inflammatory
subepidermal ABD which is characterized by the production of AAbs against type
VII collagen (Ludwig, 2013). Type VII collagen is a major component of anchoring
fibrils that is situated at the DEJ (dermal epidermal junction). Though some EBA
patient sera show antibody response to NC2 domain, but most patient’s IgGs
recognize epitopes mapped to the NC1 domain of type VII collagen (Csorba et al.,
2014). EBA can be classified into two main categories: the mechanobullous
(classical) and inflammatory forms. In the prior form, the blister appears on the
sites of friction followed by erosions, scarring, and milia formation (Niedermeier et
al., 2007). Mucosal lesions are also seen in this form. The inflammatory type of EBA,
accounting for 2/3 of EBA cases, is associated with widespread vesiculobullous

eruptions and characterized by neutrophilic infiltration (Jonkman et al., 2000).

1.4 Role of miRNA in autoimmune diseases

The discovery of microRNA, a class of small endogenous non-coding molecules
ranging from 18-24 nt, brought a new level of complexity into understanding the
mechanisms underlying various biological processes (Lee et al., 1993). The
involvement of these small non-coding elements in the control of gene expression

has been thoroughly defined in cell cycle, metabolism, immunity, and cancer studies
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(Abu-Hijleh et al., 1997; Calin and Croce, 2006; Rottiers and Naar, 2012; Wang and
Blelloch, 2011). They can regulate multiple pathways by binding to the 3' UTR
region of the DNA transcript, thereby leading to changes in target gene expression

levels (Gommans and Berezikov, 2012).

Approximately half of miRNAs are coded by intergenic regions in the genome
(Issabekova et al., 2012). Many miRNAs are located within introns present in the
genes (Lin et al., 2006). They are thought to have their own enhancers and
promoters and are transcribed by RNA polymerase II (Kurihara and Watanabe,
2010). However, it remains unclear whether they are produced as by-products of
protein-coding gene transcription or whether they have their own machinery (Kim et
al., 2009). Recent studies in murine and human fibroblasts in liver tissues have
revealed that regulation of miRNA can either be controlled from their genomic
location or from other regions in the genome (Kim et al., 2009). While,
advancements have been achieved in the general understanding of regulatory
mechanisms for the expression of miRNA in various tissues, very little is known

about their own regulation in the skin.

In vivo studies suggest that a lack of enzymes such as Dgcr8 and Dicer contributes
to miRNA processing in the skin, causing severe phenotypes (Krill et al., 2013;
Wang et al., 2007). They are also found to have important regulatory functions in

the morphogenesis and homeostasis of the skin (Schneider, 2012). Differentially



expressed miRNAs are associated with different physiological and pathological skin
processes such as melanoma, Sézary syndrome, psoriasis and atopic dermatitis
(Ballabio et al., 2010; Bonazzi et al., 2012; Ichihara et al., 2011; Sonkoly et al.,

2010).

1.5 Genes in autoimmune diseases

The development of high-throughput technologies led to the identification of
multiple genes that are associated with autoimmunity (Richard-Miceli and Criswell,
2012). As expected, the HLA locus has been confirmed as one of the dominant
regions in the genome, which is thought to contribute to autoimmune diseases
(Eastmond, 1994; Kollaee et al., 2012; Trachtenberg et al., 2000). Apart from the
HLA locus, scientists have also identified non-HLA related genes, including
interleukins, that play an important role in the induction of autoimmune diseases
(Beebe et al., 2002; Geng et al., 2012; Tsokos and Fleming, 2004; Wang et al., 2010;
Yao et al., 2014). Other genes such as RGS1, LPP, and MYO9B, etc. have been found
to be associated with celiac disease (Dubois et al., 2010). NOD and TNF-alpha genes
have been associated with Crohn’s disease and diabetes (Koulmanda et al., 2012;
Lala et al., 2003). Transcriptional factors such as STAT4 have been connected to the
pathophysiology of Sjogren syndrome and lupus erythematosus (Gestermann et al.,
2010; Namjou et al., 2009). These genes have been shown to be involved in multiple
pathways where the cytokine-cytokine pathways and chemokine pathways have
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been the major focus (Blanco et al., 2008; Carlson et al., 2008). To study their
molecular mechanisms and putative pathways mouse models have been
implemented. Data generated from these studies have been deposited in common
databases, from where they can be derived to further study the underlying

molecular mechanisms using experimental and computational methods (Beck et al.,

2014; Welter et al., 2014).

1.6 Gene networks

The availability of the aforementioned databases allows researchers to describe
putative hypothetical networks between genes and their interactions on different
cellular levels across tissues. These networks are called gene regulatory networks
(van Someren et al., 2002). They provide systematic molecular mechanisms that
underlie various biological processes (Karlebach and Shamir, 2008). Moreover,
based on the number of interacting partners, one can further determine the causal
genes and the drivers that influence genes downstream (Studham et al., 2014).
Similar studies have been implicated in cancer studies (Delfino and Rodriguez-Zas,
2013; Emmert-Streib et al., 2014). The identified networks are based on the
Bayesian network approach, information theory, correlation and partial correlation
(Johansson et al., 2011; Reverter and Chan, 2008; Schmitt et al., 2004; Zou and

Conzen, 2005). These methods use expression profiles in combination with available



knowledge to drive putative hypothetical networks that can be subsequently studied

In experimental set-ups.

1.6.1 Gene and protein interaction database

A protein-protein interaction (PPI) database includes a wide range of information
about cell-cell interaction, metabolism, development and biological processes across
various phenotypes (Ooi et al., 2010). The major objective of these databases is to
provide abstract knowledge about mechanical pathways. Therefore they are
considered to be an important part of systems genetics (Xenarios and Eisenberg,
2001). Based on these databases one can derive functional knowledge of unknown
proteins in a cell (Pattin and Moore, 2009). They can also be used to determine their
molecular targets and identify new potential drugs (Fuentes et al., 2009). The major
source of information for these databases has been derived from data generated in
two-hybrid system, mass spectrometry, phage display, and protein chip technology
(Beckmann et al., 2005; Bruckner et al., 2009; Gstaiger and Aebersold, 2009; Nariai
et al., 2004). Well known databases include BIOGRID, MINT, and STRING. (Chatr-
Aryamontri et al., 2013; von Mering et al., 2003; Zanzoni et al., 2002). Databases
such as STRING predict gene and protein interactions based on data mining
algorithms that derives information from publicly available scientific journals
(Franceschini et al., 2013). The score for each protein or gene interaction depends

upon the validity of the interactions in the experimental set ups and the number of



times it has reappeared in various texts (Zhang et al., 2010). These databases also

use algorithms that can verify the same information across various species.

Furthermore, they have added statistical methods for the functional enrichment of
given interaction network. Apart from text based databases for protein-protein
interactions (PPI), computational scientists have also designed databases which
contain PPI information from protein structures, as found in the DOMINE database
(Raghavachari et al., 2008). This database contains information about domain
interactions derived from a protein structure database, the Protein data bank (PDB)
(Berman et al., 2000). Furthermore, it also predicts domain interactions based on
eight different algorithms. The protein and gene interaction information serves as
an important base for removing the falsely identified interactions that are predicted
by statistical methods. Some of the commercial databases and software combine all
this information into one meta-database such as IPA (Kramer et al., 2014). The IPA
software can be used for various purposes and it is composed of many different
databases including BIOGRID, MINT and its own independent dataset of protein
interaction networks (Chatr-Aryamontri et al., 2013; Zanzoni et al., 2002). It also
contains tools for the functional enrichment of different networks. The database can

assist in identifying a novel network for a specific phenotype.
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1.6.2 Ab intio prediction of gene networks

In addition to the aforementioned databases, various statistical methods can be used
to generate gene networks. Gene expression profiles can be deduced using high-
throughput chip-based technologies. Subsequently, statistical methods are used to
cluster these profiles and generate putative networks (Eisen et al., 1998). Methods
for generating such hypotheses include ‘clustering’ and ‘information theory’ based
approaches. These approaches have been implemented in R packages such as
WGCNA and c3net (Altay and Emmert-Streib, 2011; Langfelder and Horvath, 2008).
WGCNA (weighted gene co-expression network analysis) is one of the most
commonly used cluster based methods. In brief, the genes are grouped into small
clusters using their co-expression profiles. This i1s done through hierarchal
clustering and dynamic cut-tree algorithms (Langfelder et al., 2008). The algorithm
uses a scale-free topology to identify the average interaction of each gene. Then, the
first principle component from each cluster is correlated to the phenotypic score. The
cluster showing a significant correlation to phenotype is considered to contain genes
and pathways required for the variation in the phenotype. Despite the high success
and importance of such algorithms, the interaction among the genes within a cluster
was based upon hypothetical scores generated by algorithm-based topological
overlap methods. Therefore, the involvement of additional algorithms for further
identifying relationships between genes can remove some false positives. The use of

information theory and regression-based methods has been helpful in identifying the
11



networks in a small subset of genes. Some of the well-known statistical methods
such as c3net and PLS regression have shown their utility in constructing gene
networks and discovering causal genes. C3net infers the direct physical network of
genes from expression data using information theory. It helps in identifying the
causal network for a set of genes. PLS regression is based on partial least square
regression for generating putative hypotheses for interaction (Pihur and Datta,
2008). Applying all these methods together can generate a putative gene network,
which could be referred to as a mechanical pathway for a phenotype. The
interactome produced by these methods can be confirmed by the database, and novel

interaction can be identified.

1.7 QTL and expression QTL

Mouse models serve as an important source for understating how genes control
various molecular phenotypes. Using mouse models and system genetics, diseases
have been investigated for genetic loci contributing to quantitative traits (QTL)
(Broman, 2001). The QTLs which represent a region of the chromosome are further
fine mapped to identify the possible causal genes contributing to variation in traits
(Gonzales and Palmer, 2014). The techniques have been applied across various
species such as yeast, mouse, and plants (Liti and Louis, 2012; Young, 1996).
Recently, due to the availability of deep sequencing technology and chip-based
technology, the traits not only include molecular phenotypes and disease score but

12



the expression of individual genes. Therefore, quantitative trait loci which can
regulate the expression of the genes are termed expression QTL or eQTL (Nica and
Dermitzakis, 2013). Expression QTL is primarily used to identify the transcriptional
activity of genes. The identification of the eQTL for a specific molecular phenotype
not only reveals the causal gene marker, but also sheds light on various mechanisms
involved in the generation of the phenotype (Li et al., 2014). eQTL data can be
combined with the co-expression data generated from the same cohort to provide
vital knowledge about the putative mechanistic pathways contributing to the
phenotype (Grieve et al., 2008). For example, various mechanism in multiple tissues
leading to abnormal phenotype have been studied using eQTL analysis (Flutre et

al., 2013).

1.8. Prediction of ncRNA

There are many different types of RNA with multiple functions in the cell. Some
RNA molecules contribute to the translation of genetic information into proteins and
the regulation of genes. Others function as enzymes by catalysing biological
reactions. While the non-coding regions in the genome were first believed to be
senseless sequences, they have been shown to code for RNA families that play
important roles in the eukaryotic cell. These non-coding RNAs (ncRNAs) include
types of RNA that do not code for protein, but are involved in many regulatory
processes and can be divided into a tremendous variety of highly plethoric and

13



versatile families that are essential for cellular function (Carninci et al., 2005).
Other than their general function, they are also found to be associated with different
phenotypes of diseases (Esteller, 2011). Hence, they form a vast and to a large
extent unexplored reservoir of potentially valuable medical biomarkers (Beck et al.,
2011; Kim and Reitmair, 2013). In order to identify these RNA-based biomarkers,
modern techniques such as next-generation-sequencing and microarray-technologies
are employed (Bompfunewerer et al., 2005; Jung et al., 2010). These techniques
provide an immense amount of data and offer ample opportunities to identify novel
classes of non-coding RNA. However, the experimental analysis of new sequences is
time-consuming and complex, indicating the need to find alternative approaches for
their analysis. Promising and auspicious approaches are given by in-silico methods.
Due to phylogenetic relationships, sequences of non-coding RNA show similarities
regarding their properties. They can be divided into subclasses based on their
conserved properties, meaning sequence conservation and structural conservation
(Lu et al., 2011). Computational methods, such as classification tools, offer a fast
and reliable way to analyse and classify sequences by exploiting conserved

properties among the sequences (Artzi et al., 2008).

Various classification systems have been developed to predict different subsets of
RNA, using machine-learning and phylogenetic approaches (Hertel and Stadler,
2006; Lagesen et al., 2007; Laslett and Canback, 2004; Lowe and Eddy, 1999). So

far, tRNAs can be detected reliably using tRNAScan-SE (Lowe and Eddy, 1997).
14



Furthermore, various approaches have been established to detect miRNA (Yoon and
De Micheli, 2005) and other small RNA subsets. Recently, snoReport was
introduced, which i1s designed to recognize small nucleolar RNA (snoRNA) from the
genome without using any target information (Hertel et al., 2008). Most of these
systems achieve a satisfying accuracy. However, not every RNA family can be
predicted. For example, to this point, there is no tool for the prediction of small
nuclear RNA (snRNA), Ribonuclease P (RNase P), Ribonuclease MRP (RNase MRP),
Y RNA and telomerase RNA. Facing the continuing increase in the number of
human RNAs in databases such as Rfam (Griffiths-Jones et al., 2003) , it is
necessary to extend the current possibilities of RNA prediction. SnRNA), RNase P,
RNase MRP, Y RNA and telomerase RNA have the common characteristic, besides
snoRNA, they are involved in post-transcriptional modification or DNA replication
in eukaryotes (Kiss, 2001; Lustig, 1999; Pannucci et al., 1999; Perreault et al., 2007;

Thore et al., 2003).

1.8.1 Support vector machine and random forest

Various methods have been developed for solving classification problems.
Computational algorithms such as random forest and support vector machines have
been the primary choice of researchers (Byvatov and Schneider, 2003; Sun, 2010;
Ziegler Andreas, 2014). These algorithms are based on the concept that labeled

training data is first used to develop a classification model. Afterwards, the
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classifier is used for classifying novel data. A classification system requires two
kinds of input. The first is the description of the object, i.e. features or values by
which the object can be described. These features are used to train the classifier and
create a model. The second is the group label of each object. Classification analysis,
then finds the mapping function that can feature the class labels. Different methods
used for formulating the classifier aims in essence at minimizing the error

probability of the training set. One such method is support vector machines (SVM).

As compared to other algorithms, SVMs have an outstanding track record for
classifying biological data (Statnikov and Aliferis, 2007). Although many important
mathematical models present in SVM were used in machine learning from the
1960s, they were officially proposed by Vladimir Vapnik and his co-workers in 1992
(Boser, 1992). Since then, it has been widely used in classification of biological data
(Naul, 2009; Yang, 2004). One of the best-known biological applications of SVM 1is
the molecular classification of microarray gene expression data (Mukherjee, 2003),
where it has shown statistical and clinical relevance for a variety of tumour types:
Leukaemia (Golub et al., 1999), Lymphoma (Shipp et al., 2002), Brain cancer
(Pomeroy et al.,, 2002), Lung cancer (Bhattacharjee et al., 2001) and the
classification of multiple primary tumour (Ramaswamy et al., 2001). Additionally, it
1s used for recognition of translation initiation sites in DNA, protein fold recognition,
protein-protein interaction, protein secondary structure prediction, protein

localization, etc. (Bock and Gough, 2001; Ding and Dubchak, 2001; Hua and Sun,
16



2001; Zien et al., 2000). Detailed implementation of SVM for this work is provided in
the method section 3.9.3. An important aspect of SVMs is the ‘features’ used to
classify the label of the object. Multiple numbers of irrelevant features can lead to
‘over-fitting” describing noise or random error, resulting in a false positive model.
Therefore, feature selection is a crucial process when designing a classifier. Methods
such as PCA, PLS and random forest etc. are employed for feature selection in many
studies (Le Cao et al., 2011; Menze et al., 2009; Mishra et al., 2011). In addition to
their importance in modeling classifiers, these methods have been used for the
identification of causal genes from gene expression profiling (Chen and Ishwaran,
2012). One of the most used algorithms is random forest. Random forest is an
ensemble learning method for classification and regression that was developed by
Leo Breiman in 2001 (Breiman, 2001). In the last decade, the algorithm has shown
excellent performance where the number the variables are much larger than the
number of observations. Furthermore, it can efficiently deal with complex
interaction structures and highly correlated variables and return measures of
variable importance (Boulesteix, 2012). The algorithm has been used in multiple
biological application such as data mining (Ziegler Andreas, 2014), classification of
microarray data (Cutler and Stevens, 2006), GWAS data (Botta et al., 2014; Schwarz
et al., 2010), etc. In brief, the algorithm draws several bootstrap samples from the
training sets and aggregates many binary decision trees. The samples are drawn

uniformly with repetitions. In the algorithm, the dataset is divided based on
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randomly selected features and the best split is calculated. The process is repeated
several times until the best split for the dataset is observed. The trees are
aggregated and the best features for the splits are calculated through the majority of
votes. The out-of-bag (OOB) error rate is calculated for variable selection. In this,
data in the training sample are fixed and all bootstrap samples not having this class
are considered (data out of the bag). Then the majority of the votes only among these
samples are determined and compared to the real class to get the prediction error
(cross-validation). To evaluate the variable importance, the procedure 1is
permutated. The larger the error becomes upon permutation of values assigned to a
single attribute, the more important the variable is considered to be. Therefore, this
approach helps in the selection of variables which can be used for classification
problems in biological systems. Additional details of random forest and

implementation of algorithm in this work are provided in the Method section 3.9.3.

1.9. Structure of the thesis

The thesis is divided into three major parts. The first part describes the eQTL
mapping and networks derived from the miRNA expression profiling. Methods and
protocols for the analysis are described in sections 3.4, 3.5, 3.6.1, 3.7 and 3.8. The
results of the analysis are presented in section 4.1. The second part of the thesis
describes the eQTL mapping and networks derived from gene expression profiling.
The methods and protocols implemented for the second part are identical to the first

18



part apart from the thresholds for generation of de novo gene networks, which are
described in section 3.6.2. The results of the second part are presented in section 4.2.
The application of databases in prediction of gene networks has been published in
the journal Exp. Dermatol (Gupta et al., 2013). This part of the thesis also consists
of meta-networks of genes and miRNAs. These results are described in section 5.3.
The hub genes (protein-coding genes and miRNAs) and the network are under
experimental validation. The third part of the thesis describes a bioinformatics tool
for predicting post-transcriptional non-coding RNA, ptRNApred. The methods and
protocols for this work are provided in section 3.9 and results are presented in
section 4.4. The work described in the fourth section has been published in NAR

(Nucleic Acid Research) (Gupta et al., 2014).
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2. Aims of the thesis

The primary aim of the work is to develop an analytical workflow to understand
gene networks involved in the pathogenesis of skin autoimmune blistering diseases
such as EBA. Therefore, this work proposes the integration of novel genetic data
generated in the lab (SNPs) with multiple molecular and clinical phenotypes. This is
achieved by statistically associating miRNAs and gene expression profiles with
SNPs and by further integrating co-expression analysis to identify gene-gene and
gene-miRNA networks. Additionally, gene networks need to be verified using
multiple publicly available genes and protein interaction databases. The
identification of novel putative gene networks would provide novel gene candidates
(hub genes in gene networks) and suggest molecular mechanisms for experimental

intervention.

Recently, it has been identified that, in addition to miRNAs, other classes of non-
coding RNAs known as post-transcriptional RNAs may also play an important role
in the mechanisms of different clinical and molecular phenotype. Therefore, the
second aim of the work is to develop a bioinformatics tool to differentiate between
non-post-transcriptional RNA and post-transcriptional RNA and to identify
subclasses of post-transcriptional RNA, which includes snoRNA, snRNA, telomerase

RNA, Y RNA, RNase P and RNase MRP. The identification of novel non-coding RNA
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can further facilitate the understanding of the molecular mechanisms behind

clinical phenotypes.
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3. Materials and methods

To present the complete context of this thesis and for scientific reproducibility,
sections 3.1 to 3.3 describe the work performed by the institute’s technicians that
generated the data on which this thesis is based. The thesis work itself is described

1n sections 3.4 and after.

3.1 Generation of a four way advanced inter-cross line

An advanced inter-cross line (AIL) was generated by inter-crossing parental strains
(MRL/Mpd, NZM2410/J, BXD2/Tyd, CAST/EiJ) that were purchased from the
Jackson laboratory (Maine, USA). Briefly, these strains were intercrossed at an
equal strain and sex distribution to generate a genetically diverse mouse line. 50
breeding pairs from each generation (from F1-G4) were maintained to keep an equal
distribution of parental alleles. Males and female offspring were separated into
distinct cages after weaning. The genetic diversity between mice was observed by
different morphological-phenotypic traits such as weight, coat color and tail length.
The animals were held under specific pathogen-free conditions in a 12-hour
light/dark cycle with food and water ad libitum. All animals in this study were
taken from the fourth generation of AIL. All animal experiments were approved by

the state of Schleswig-Holstein, Germany.
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3.2 Experimental EBA and observation protocol

Active EBA was induced by the immunization of 300 mice with murine collagen 7
(mCol7¢c-GST). In brief, 60pg of mCol7¢c-GST were emulsified in 60pl of adjuvant
(TiterMax, Alexix, Lorrach, Germany) and injected subcutaneously into the footpads
of mice. Following immunization mice were assessed for the EBA phenotype. The
extent of disease was determined by the percentage of affected body surface area
every 4th week for a period of 12 weeks. The observed scores were later classified
into ‘Low’ (0>x<5), ‘Moderate’ (5>x315) and ‘Severe’ EBA (x>15) categories, where x
1s the percentage of surface, body area affected by erosions, lesions and alopecia. At
the end of week 12, the mice were sacrificed and, ear and skin samples were
obtained for further analysis. Overall, in this study, 300 mice were immunized with
mcol7C-GST protein. Ear skin samples were snap-frozen at -80°C for subsequent

processing.

3.2.1 Generation of recombinant peptides

The immunodominant mcol7c epitope of the murine NC1 domain (aa 757-967) was
fused to the GST tag and expressed in prokaryotic systems. The recombinant
protein  (mcol7c-GST) was further purified wusing glutathione-affinity

chromatography as described before (Ludwig et al., 2012).
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3.3 Extraction of genomic DNA for genotypic analysis

Genomic DNA was isolated from tail clippings and incubated in 500ul 50mM NaOH
at 95°C for 1 hour. The reaction was neutralized by the posterior addition of 50 ul
1M Tris- HCI (pH 8.0). The DNA was further processed with the DNeasy Blood &
Tissue Kit according to the manufacturer's instructions. The extracted DNA was
quantified using Nanodrop and normalized to 50ng/pl in TE buffer (10 mM Tris;

1mM EDTA; pH= 8). Agarose gel electrophoresis was performed for quality control.

3.4 Generation of microarray data (miRNAs/genes) and bioinformatics

analysis

To monitor gene expression in the skin samples derived from the AIL population,
total RNA was extracted and hybridized to the Affymetrix miRNA 2.0 Array
according to the manufacturer’s protocol (Chalaris et al., 2010). The raw data was
pre-processed using the R ‘affy’ package and normalized using RMA (Robust Multi-
array analysis) to generate normalized expression levels across the samples (n =100)

(Gautier et al., 2004).

For gene expression profiling, total RNA was hybridized to the Affymetrix Mouse
Gene 1.0 ST Array. The raw data was processed using the ‘oligo’ R package. The
RMA method incorporated in the R package was used for normalization of the probe

intensities for 200 samples (Carvalho and Irizarry, 2010). For gene expression
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profiling, the low intensity probes were omitted to avoid putative false positive
signals and lower the barrier for the correction of multiple testing, i.e. these were
filtered out using the median-based method as implemented in the function
‘expressionBasedfilter’ from the R DCGL package (Liu et al., 2010). Additionally,
genes which were not showing significant variations (p-value < 0.05) across the
samples were also filtered using the function ‘varianceBasedfilter’ of the same
package. This function reduces the data to the most variable genes which are

presumably critical for the phenotype.

3.5 Software for expression QTL analysis

In an expression QTL analysis, one describes the association of gene expression
levels with a sequence variation (SNP) across individuals. The term differs from
QTL analysis because the association is performed for genome-wide gene expression
levels rather than a clinical phenotype. The analysis finds its edge, as it can identify
causal genes, regulating the expression of other critical genes for a specific
phenotype. Such analyses can be used to construct statistical networks, which in
turn may yield vital information about various biological mechanisms underlying

the molecular phenotypes.

To perform eQTL analysis, two software packages were used, i.e. HAPPY and
EMMA (Kang et al., 2008; Mott et al., 2000). HAPPY first computes haplotype

probabilities for all samples across all SNPs, without taking into account the
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relationship between different individuals. Thereafter, it determines the association
between the haplotype probabilities and the respective quantitative trait. Unlike
HAPPY, EMMA uses mixed modeling to find associations between genotype and
quantitative traits and integrates the kinship matrix in the analysis, which
represents the degree of relatedness between individuals to correct for biases in the
population structure between cases and controls. Thus, the combination of the two
approaches can be used to perform eQTL mapping while filtering out false positive

eQTL reported due to bias in the family structure of the cohort (Iancu et al., 2012).

3.5.1 HAPPY

HAPPY is an R package wrapping the initial C implementation (Mott et al., 2000) to
calculate the haplotype probability for each sample and each marker on the basis of
the haplotype distributions among the founder strains. The probability is calculated
for all the genotypes by taking two consecutive SNPs into account using a hidden
Markov model. Once the probabilities have been calculated, linear regression is
performed between the calculated genotype probabilities and quantitative traits. To
determine the threshold that is ensuring the statistical significance, the
performance on permuted phenotype assignments is evaluated, i.e. the analysis is
repeated 1000 times after a respective shuffling. The software needs to be provided
with two files: () a marker file, containing information about the fraction of alleles

for each SNP across the founder genotypes and (i1) a pedigree file, containing the
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phenotype and genotype for all the samples. The input from the pedigree and
marker files allows the calculation of likelihood for each SNP and each sample
derived from a particular founder strain. Subsequently, for every SNP, statistical
significance is computed by an ANOVA between the null hypothesis (covariates
contribute to the phenotype alone) and alternate hypothesis (the genotype is added
as an additional factor to the null model) to find an association between the
phenotype and genotype probabilities of the founder strain using an additive

Gaussian model. The null model is formulated as:
y=X+e¢e
and the alternative hypothesis
y=X+f+e
yis an X 1 vector of observed phenotypes (miRNA/mRNA expression levels), X is
a vector of fixed effects such as sex (0 = male, 1 = female), [ 1is a n X q matrix for
founder haplotype probabilities across strains, e is residual error, n number of

samples and q 1s number of founder strains.

3.5.2 EMMA

EMMA, like HAPPY, is implemented in R. Its distinguishing feature is revisiting
disease associations under the consideration of random effects (Kang et al., 2008).
The association is performed for each marker, not by haplotype group. Unlike

HAPPY, EMMA does not require founder genotype information but derives the
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relationship among individuals by a kinship matrix. The genotypes are coded 0O
(homozygous dominant), 0.5 (heterozygous) and 1 (homozygous recessive). The
matrix 1s decomposed using spectral decomposition. Spectral decomposition is a
factorization of the matrix in canonical form whereby the matrix is represented in
the form of eigengene values and eigengene vectors. The associations between each
marker and quantitative trait are performed using linear mixed modelling. The
decomposed kinship matrix was used as a random effect. The use of the kinship
matrix while performing association captures variability due to the same family.
Therefore, the only variation in the genotype which affects the quantitative traits is
accessed. The association is calculated using a linear mixed model which is

described by equation:
y=Xf+Zh+e

where y is a vector of phenotypes, fis a vector of fixed marker effects (i.e., single
SNP), his a vector of polygenic effects caused by relatedness, e is vector of residual

effects, and X and Z are incidence matrices relating y to 5 and y to h, respectively. It is
assumed h~N(0, 2K76) and e~N(0, I?¢), whereKis an allele-sharing matrix i.e.
kinship matrix calculated from the SNP data,“Gis the genetic variance,lis an

identity matrix, and Z¢ is the residual variance (Lorenz et al., 2010).
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3.5.3 Implementation of software for expression QTL mapping

Both software tools, HAPPY and EMMA were applied. Primary eQTL analysis was
performed using HAPPY for both miRNA and mRNA expression levels. The miRNA
and mRNA expression levels of mice (609 probes and 34000 probes) were considered
as quantitative traits and linkage analysis was performed using an additive
Gaussian model with 1200 SNPs across the whole genome. 1000 permutations were
performed for each quantitative trait to detect if the associations are random or false
positives. A significance threshold of a = 0.05 (95th percentile) was defined as the
cut-off for detecting true positive association for eQTL. Additionally, HAPPY
provides a routine to determine combined SNP effects, i.e. epistasis, which was
applied for miRNAs. The function “epistasis” from the HAPPY R package was used
to evaluate SNP-SNP interactions (Civelek and Lusis, 2014). The interaction model
for epistasis is calculated similarly to the additive model in HAPPY; the alternate
hypothesis consists of an additional interaction term between the haplotype
probabilities for two interacting SNPs. To access the statistical significance, p-
values between the null and alternate hypothesis are calculated using ANOVA. All
the p-values were corrected for multiple testing using the Bonferroni correction

method.

EMMA, the R package for mixed modelling, was used to filter the eQTL which could

be possibly obtained due to a family effect. We defined the confidence interval of the
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given eQTL based on a -log p-value drop of 1.5. An eQTL was said to be cis-
regulating when the probe was mapped within 15 cM on the same chromosome as

its genomic location (Su et al., 2011). Otherwise it is referred to as trans-regulating.

To visualize the eQTL results we used the software Circos (Krzywinski et al., 2009).
Circos uses a circular ideogram layout that facilitates the display of relationships
between pairs of positions by the use of ribbons, which encode the position, size, and
orientation of related genomic elements. Circos is open source software written in
the programming language Perl and takes GFF (General feature format)-styled data
as input. It is capable of displaying data as scatter- or line-plots, histograms, heat

maps, tiles, connectors, or plain text.

3.6 Ab initio gene and microRNA network prediction

As described in section 1.6.2, in addition to eQTL mapping, we implemented various
statistical methods to predict gene interaction networks from gene and miRNA
expression profiles. These methods include; Ab initio methods such as WGCNA,
c3net, PLS, etc. and database-driven methods such as STRING, IPA, etc. The
various parameters and implementation of the algorithm for interaction networks in

the current work 1s described below.
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3.6.1 MicroRNAs

For Ab initio prediction, the genes were first clustered together based on their co-
expression profiles across different samples. The standard WGCNA procedure was
used for cluster or module detection (Langfelder and Horvath, 2008). For miRNA we
considered 97 samples, where 3 samples were excluded as these were not phenotype
for EBA. A weighted adjacency matrix of pair-wise connection strengths (correlation
coefficients of gene expression levels) was constructed using the soft threshold
approach with a scale-free topological power f = 7 (miRNA). A scale free topology is
a network whose degree of distribution follows a power law. For each probe, the
connectivity was defined as the sum of all connection strengths with all others.
Probes were aggregated into modules by hierarchical clustering and refined using
the dynamic cut-tree algorithm (Langfelder et al., 2008). The Pearson correlation
coefficient was determined for each phenotype-module pair. The representative
module expression profiles, or module eigengene values, are the first principal
component of the gene expression profiles within a module. The correlation between
the module eigengene and the sample trait of interest yields the eigengene
significance, as assessed by a correlation test. The modules were assigned by
different colors where grey was assigned to traits that could not be clustered in any
other module. To determine the important pathways involved in the important
cluster we used the online miSystems tool (Lu et al., 2012). Additionally, causal

networks of the miRNA expression profiles were generated using the c3net R
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package that uses the maximum mutual information value to calculate gene

networks based on expression profiles (Altay and Emmert-Streib, 2011).

3.6.2 Genes

To detect the modules of gene expression profiles, we utilized a similar approach to
that described in section 3.6.1 with a modified threshold for scale-free topology 1i.e.
the power of f was 6. Additionally, PLS regression was used to filter out false
positive interaction among the genes in each module (Pihur and Datta, 2008). In
brief, the PLS regression method measures associations between each pair of genes
under the influence of all other genes present in the dataset. Thus, it assigns a
weight or numerical measurement for each edge/interaction for every pair of genes.
The statistical significance of these edges is calculated using an empirical Bayes

technique which uses an fdr to assess significance (Efron, 2004).

For pathway and gene ontology the DAVID online software was used (Huang et al.,
2007). This software is based on the modified Fisher exact test. The software
performs gene ontology for the group of genes based on metabolic pathways, cellular
component and biological function. In brief, the software has a pre-defined database
in which various set of genes are assigned to ontology terms such as metabolic
pathways: chemokine pathway, cancer pathway etc., and cellular compartment:
mitochondria, nucleus, etc., and biological processes, etc. A list of genes is provided

in the software by the user. Thereafter, the software calculates how many genes are
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found for a specific ontology term. The significance of the ontology term for these
genes 1s calculated using the modified Fisher exact test. The p-values obtained for

each ontology term are corrected for multiple testing using Bonferroni corrections.

3.6.3 MicroRNA gene target prediction

Multiple approaches were applied to predict the gene targets for miRNAs. Since it 1s
expected that miRNA down-regulates the gene expression, we calculated the
Pearson correlation coefficient between all the miRNAs (609) and all the
differentially expressed genes (1065) in the EBA disease phenotype. The p-values
were corrected for multiple testing using Bonferroni’s correction. The genes and
miRNAs showing significant negative correlation (adjusted p-value < 0.05) were
considered for further analysis. The miRNAs which passed the above described
threshold were queried in database for their known and predicted gene targets. To
retrieve gene targets we used the miRWalk database (Dweep et al., 2011). miRWalk
is a publicly available database, which features predicted as well as experimentally
validated microRNA (miRNA)-target interaction pairs. It can predict all miRNA
binding sites for all the genes of three mammalian genomes (human, mouse, and
rat). Furthermore, it allows miRNA-gene target prediction comparison between ten
different databases (Dweep et al., 2014). It also hosts experimentally validated data

derived from cell lines, diseases, miRNA processing proteins, etc.
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3.7 Visualization of interaction networks

There are various tools for visualization of gene-networks. In this work, the two
most popular tools, Cytoscape and Visant were used. These tools are designed on the
Java platform, rendering those OS independent. Cytoscape is one of the most widely
used piece of software for visualization of gene networks in the scientific community
(Shannon et al., 2003). It is open source software which also provides additional
plug-ins for different kinds of analysis such as hierarchical clustering, data mining
for protein-protein interaction network, etc. Moreover, the software supports wide
range of data structures coming from different platforms such as expression
profiling data, Chip-seq data, etc. Finally, it can be used as a meta-base for different
PPI databases. Despite its advantages, the major drawback of the software is that it
is memory inefficient. Hence, it is unable to handle large amounts of data. To
overcome this difficulty, other software like Visant can be used that can handle
large amounts of data (Hu et al., 2013). The input format of Visant is XML and text
format. The tools can color code the different interactions derived from different
resources and algorithms, e.g. co-expression analysis, text mining, etc. It also offers
various tools such as spring embedded relaxing, circular diagrams etc. for clear

visualization of the interaction networks.
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3.8 Network databases (STRING and IPA)

To detect physical and biochemical interactions among the interacting genes in the
networks we refer to curated gene and protein interaction databases. As discussed
before, there are many protein-protein interaction databases available. One of the
most popular is STRING (von Mering et al., 2003). Its data is obtained from both in-
silico and experimental set-ups. Accepted techniques in STRING databases include
neighbourhood genes, gene fusion, co-expression, co-occurrence, and text mining. To
the degree that it is known, the database also annotates the biological function for
each interaction such as activation, inhibition, or catalysis, etc. Each interaction
offers a confidence score to reflect the scientific evidence supporting it.
Subsequently, interactions are colour coded for visualization. Additionally, the
database can be used to provide gene ontology terms for a given network. The

output can be exported as a text file to support further local investigations.

Another commonly used tool to study protein and gene interaction is the Ingenuity
Pathway Assistant (IPA). With IPA the export of data to a text file is not supported,
but the software provides additional information such as causality, classes of
molecules, promoters, motifs etc. in a given network(Kramer et al., 2014) : It not
only searches for direct interactions, but also provides evidence for indirect
interactions. Furthermore, the software also offers to select the organisms from

which the user can derive information (e.g. human and mouse) and overlap them in
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their own networks. In analogy to the STRING companion STICH (Kuhn et al.,
2014) and IPA can also suggest drugs for gene targets in a network. Users can
design their own networks and can generate publication-quality images. Altogether,
both STRING and IPA provide ample resources for verifying and discovering new

mechanisms.

3.9 Prediction of ncRNA tools

Accurate prediction of function of non-coding RNA (ncRNA) remains a challenge for
researchers, as their importance in various mechanisms leading to abnormal
phenotypes has been revealed in the last decade. With advancements in sequencing
technology, new classes and subclasses of non-coding RNA based on their
functionality have been added to existing databases such Rfam (Burge et al., 2013).
The prediction of novel sequences discovered by scientists largely depends upon
querying against these databases by sequence similarity, e.g. with tools such as
BLAST (Altschul et al., 1990). Non-coding RNA sequences that lack such similarity
remain unclassified, which would require expensive and uncertain, and hence risky
wet-lab experiments to determine their function. One can computationally speed up
the process in a cost and time-effective manner by additionally integrating different
properties such as secondary structure to the sequence similarity algorithms. To
develop such software, a machine-learning method is used to predict a specific group
of post-transcriptional non-coding RNA in eukaryotes which outperforms existing
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methods (Gupta et al., 2014). A two-layer classification system was developed
comprising a first layer as a binary classifier to discriminate post-transcriptional
non-coding RNA from other classes of non-coding RNA and a multi-class classifier to

further distinguish within the subclasses.

3.9.1 Dataset

The NONCODE database is the collection of all non-coding RNAs (except tRNAs
and rRNAs) where all the sequences of non-coding RNAs are manually curated
(more than 80% experimentally verified) (Liu et al., 2005). We obtained 2,040
sequences of ncRNA from the NONCODE database, including 268 sequences of
RNase P, 14 sequences of RNase MRP, 1,443 sequences of snoRNA (1,430 + 13
scaRNA), 46 sequences of telomerase RNA, 14 sequences of Y RNA and 255
sequences of snRNA (Table 1). These sequences were used as both a dataset for the
multi-class classifier and as a positive set for our binary classifier. The negative set
was made up of sequences of tRNA, 5s ribosomal RNA and miRNA that were
derived from the Rfam database (Burge et al., 2013). Since our classifier focuses on
the eukaryotic system, our selections of miRNA-sequences were restricted to
sequences from the species Homo sapiens, Mus musculus and Drosophila
melanogaster. The redundancy of the sequences within a set of sequences was
removed using CD-Hit (Li and Godzik, 2006) at a 0.9 threshold for the positive set

and at 0.8 for the negative set of sequences. CD-Hit is a clustering program that was
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originally designed to identify non-redundant sequences in the amino acid sequence
database. It clusters the sequence database into subgroups, providing a
representative longest nucleotide sequence for each group. While training machine-
learning algorithm, redundant sequences in a dataset can lead to over-fitting of the
classifier, hence resulting in biasness towards specific classes. Therefore, it is
essential to train the classifier with non-redundant sequences for reduced false
positives and optimized results. We used approximately 2/3 of the sequences for

training and /3 for testing the classifiers. A detailed list of the sequences is provided

online at http://www.ptrnapred.org/ and in Table 1.

Table 1 : Total number of test and training sequences.

Training Testing

Non coding RNA
sequences  sequences

RNase P 178 90
RNase MRP 9 5
SnoRNA + scaRNA 978 +9 452 +4
telomerase RNA 29 17
Y RNA 9 5
SNRNA 170 85

3.9.2 Features for classification

Feature selection and training of classifier were performed using two sets of input
parameters: The first set was based on the primary sequence and the second set

considered the secondary structure which was predicted with RNAfold (Ding, 2006).
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Primary sequence properties were mainly derived from dinucleotide properties
employing DiProGB (Friedel et al., 2009), using a sliding window approach (window
size: 2 nucleotides). Some of the properties in DiProGB are highly correlated to each
other. The use of highly correlating features for classification would not only be
redundant, but would overfit the classifier. In order to determine which of the
features that we derived from DiProGB were correlating, we determined the
Pearson correlation coefficients among all possible di-nucleotide properties. Two
features were considered as strongly correlated when the absolute coefficient of the
Pearson correlation was > 0.9. As an example, the di-nucleotide property ‘stacking
energy’ was highly correlated with the property ‘melting temperature’. Whenever
two features were strongly correlated, one of them was randomly discarded. In our
example, we used ‘stacking energy’ as an input feature and discarded ‘melting
temperature’ from consideration as a feature for classification. A table of the
selected di-nucleotide properties as well as their di-nucleotide values is provided in

the supplement (Supplement Table 1).

The secondary structures of every sequence were calculated via RNAfold (Ding,
2006), RNAfold is an algorithm implemented in the Vienna RNA package which
predicts secondary structures of nucleotide sequences using thermodynamic
measures of nucleotides and base pairing probabilities which is often well conserved
in evolution (Lorenz et al., 2011). The software produces various additional

descriptions of nucleotide sequences such as minimum free energy, enthalpy etc.,
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which are hidden at the primary sequence level. The parsing of features derived

from RNAfold output was automated using self-developed Perl scripts.

52 different properties were derived from the secondary structure, e.g. the number
of loops, the number of bulges, the number of hairpins or the frequency of

nucleotides involved in substructures (Supplement Section 1).

Additionally, we included 32 triplet element properties employed by miPred, a
triplet SVM for the classification of miRNA (Jiang et al., 2007). MiPred considers
the middle nucleotide among the triplet elements, resulting in 32 (4 X 8) possible

combinations, which are denoted as ‘U((C, ‘A((., etc.

Altogether, ptRNApred uses 91 features for classification. A detailed description of
the feature selection is provided in the supplement (Supplement Table 2 and

Supplementary Section S1).

3.9.3 Classification system

For classifying different classes of post transcriptional non coding RNA, we
compared the outcome of two different algorithms i.e. random forest and support
vector machines. First, we employed a random forest (Breiman, 2001) as a
sophisticated classification method. Random forests operate by constructing a
multitude of classification and regression trees at training time and suggest the
class supported most frequently by individual trees. Secondly, we employed support

Vector Machines (SVM) (Berwick, 2002), which are supervised learning models with
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associated learning algorithms that analyze data and recognize patterns, and used

for classification and regression.

3.9.4 Implementation of support vector machines and random forest on the post

transcriptional non coding RNA dataset

Support vector machines are supervised learning algorithms which are used for
classification and regression analysis (Boser, 1992). The algorithms are used for
pattern and data analysis (Byvatov and Schneider, 2003). To build a SVM classifier,
the reference data was divided into a training set and testing set. In support vector
machines, support vectors are the data points that lie nearest to margins or the
decision surface. The decision surface that differentiates between the different
classes with maximum margins is a hyper plane (Berwick, 2002). A SVM model
postulates data points in the feature space so that differentiation between different
classes can be attained with maximum margins. For nonlinear classification, SVMs
can use kernel functions that implicitly map feature vectors into a higher-
dimensional feature space. Kernels are functions that return inner products
between all pairs of data points without computing its coordinates in high
dimensional feature space. In this work, we used the standard radial basis function
kernel, (RBF) from the LibSVM package to train the SVM model (Kaminski and

Strumaillo, 1997).
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To optimize RBF kernel for training SVM model, users must specify some
parameters. LibSVM provides a python script to optimize the grid parameters C and
gamma (y) (Chang CC, 2001,2007). C stands for cost function, i.e. penalty for the
misclassification in the training set and y defines influence of each training vector

on the model.

To decide optimal choice of parameters for C and y, LibSVM obtains cross-validation
(CV) accuracy using a grid search (Chang CC, 2001,2007). Regarding our binary
classifier, the highest CV accuracy was achieved when C was set to 32768 and y was
set to 0.008 (Figure 20a). These parameters were used to train the whole training

set and generate the final model.

For multi-class classification, under a given (C, y), LibSVM can use one-against-one,
one against all and sparse methods to obtain the CV accuracy. Hence, the parameter
selection tool suggests the same (C, y) for all k (k-1)/2 decision functions. Chen et al.
discuss issues of using the same or different parameters for the k(k-1)/2 two-class
problems (Chen et al., 2008). We obtained best CV accuracy for our dataset using

sparse method for the multi-class classification where C=4 and y=0.5 (Figure 20b).

The random forests method as an ensemble learning method is a collection of
classification and regression trees algorithms to acquire better predictive
performance than a single tree (Breiman, 2001; Opitz D., 1999). In random forest, a

decision tree is a decision making information system, which recursively splits cases
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from controls with an improving accuracy, thus forming a tree structure. In random
forest, multiple decision trees are constructed using bootstrap samples from the
training data set. While 2/3 of the samples are randomly selected to construct a tree,
1/3 samples are left out which are called out of bag (OOB) data (Breiman L., 1996).
The left out samples are put down the constructed tree to get a classification. The
process is repeated for each tree and majority vote is returned as classification of the
whole forest. The proportion of time that a class for a sample is not equal to the true
assigned class is averaged over all samples and called an OOB error estimate
(Breiman L., 1996b). The feature importance can be calculated by permutation
where randomly shuffled values are assigned to each sample and thereby trees are
constructed. This estimates the mean decrease in accuracy of that particular
predictor variable which has been permuted. Thus, the importance of the predictor
variables can be ranked by their mean decrease in accuracy. Another way of
assessing variable importance is by the Gini-index criterion (Breiman L., 1984).
When a split of a node is made on a variable, the Gini impurity criterion for the two
descendent nodes is below the same of the parent node is calculated. The Gini
importance for a variable is the sum for all splits based on that variable across all
the trees. One of the most useful tools in random forest is proximities calculation. It
is determined by examining the terminal node membership of the data (Chen and
Ishwaran, 2012). If two cases occupy the same terminal node, then proximity is

increased by one. At the end, the proximities are normalized by dividing by the
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number of trees. In this work the R package ‘Boruta’ was used to train random
forests for classification and to perform feature selection (Fortino et al., 2014; Miron
B, 2010). The R package Boruta, is a feature selection algorithm wrapped around
the random forest classification algorithm to find all relevant features. It iteratively
removes the irrelevant features which are determined by a statistical test. The
function ‘Boruta’ in the R package was used to construct 10,000 trees. Variable
importance was determined using function ‘getImpRf where node impurity was

measured by the Gini - index criterion. The other parameters were kept as default.

3.9.5 Work flow and output of ptRNApred

The web server implementation takes sequences in a FASTA-format, which can be
either uploaded as a file or pasted into the text box. By checking “Post-
Transcriptional RNA”, an inbuilt Perl script calculates input vectors for the pre-
trained model to predict whether or not the input sequence belongs to the group of
post-transcriptional RNA. Additionally checking “RNA family”, the server also

predicts the RNA subclass.

Altogether, the output includes the prediction for ptRNA as well as the classification
of the RNA class within the ptRNA (Gupta et al., 2014). Additionally, it displays the
minimum free energy using RNAfold (Ding, 2006) as well as the secondary

structure, using VARNA (Darty et al., 2009). The output can be downloaded directly.
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4. Results

Combining mRNA expression data, genotype data and phenotype data from the
experimentally crossed population of mouse have achieved success in the
1dentification of the causal genes for various complex phenotypes. Despite its
success, the understanding of systems biology for occurrence of such phenotypes still
resides in its early stages, as many other classes of small RNA, such as miRNA, are
involved in complex traits. Here, our study concentrates upon understanding
complex traits by evaluating miRNA and mRNA expression levels using an
integrative genomics approach. To apprehend such an inference, we crossed four
mouse strains for three generations (G4 stage) and induced EBA. We collected skin
tissue for the study. For statistical accuracy and generality in the population, the
mice were selected randomly from the gene pool. We chose 100 samples for miRNA

profiling and 200 samples for mRNA profiling.

4.1 MicroRNA expression profiling

4.1.1 Expression QTL mapping

A total of 100 mice were used from the fourth generation of the AIL to study the
variability occurring in miRNA expression due to genetic heterogeneity. A full
genome-wide scan was conducted to find genetic loci associated with miRNAs.
Hence, here the miRNA expression levels were treated as a quantitative trait, i.e.
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eQTL. At significant thresholds derived from the genome-wide permutation test (a <
0.05), 42 eQTL for 38 miRNAs were mapped. This corresponds to 6.83% of a total
amount of murine miRNA present in the Affymetrix chip (miRNA 2.0 Array) (Figure
1 and Table 2). The highest -log p-value of 6.57 corresponds to miR-298 on
chromosome 9 at a confidence interval of 68-100 Mb, explaining 20.76% of the
phenotypic variance. The peak SNP (rs3700596) associated within this genomic
region was found near the Ube2cbp gene, an ubiquitin-conjugating enzyme E2C
binding protein (~1 kb from peak SNP). In this study we could observe only trans-
eQTL, 1i.e. regulate miRNAs that are regulated from other loci than their own
transcriptional site. Only one miRNA miR-486 (-log p-value = 4.10, rs13479880) was
mapped on the same chromosome of its transcriptional site (Chr 8, ~89 Mb),

suggesting a possible cis-eQTL..
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Figure 1: Manhattan plot showing the eQTL for miRNA. The black line represents the genome
wide significant threshold (a < 0.05).
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Table 2 : Significant miRNA eQTL at genome wide significance (a < 0.05)

AffylID PEAK SNP Chr Pos(Mb) Cl -log p-value a
miR-322_st rs6386920 1 54.1525 51.4554-58.4393 4.797697778 0.02
miR-431_st rs6386920 1 54.1525 51.4554-59.7799 5.231417376 0.006
miR-26a_st rs6265423 2 47.02 28.1446-51.3211 4.376166299 0.021
miR-291a-3p_st CEL.2_50605053 2 50.5005 28.1446-59.8562 4.546953451 0.018
miR-423-3p_st rs6265423 2 47.02 33.85-51.3211 4.948513523 0.015
miR-671-5p_st rs13476472 2 45.5486 33.85-50.5005 5.838570402 0.004
miR-23b_st rs6250599 2 48.5289 44.2572-51.3211 4.335454904 0.022
miR-409-5p_st rs13476874 2 159.495 135.954-162.978 4.175101842 0.035
miR-409-5p_st rs13477083 3 43.3298 27.5001-45.4009 4.215972522 0.033
miR-546_st rs13477126 3 56.4461 52.8217-58.2937 4.493016911 0.029
miR-200a-star_st rs3671119 3 126.116 117.357-131.302 4.688008826 0.011
miR-339-5p_st rs3660863 4 7.12733 3.64972-19.5083 4.878132165 0.003
miR-465c-5p_st rs13477873 4 101.103 82.8343-118.065 4.472478928 0.01
miR-295_st rs3663950 4 135.285 129.391-141.126 4.209508065 0.04
miR-878-3p_st rs13478002 4 136.23 135.285-141.126 5.110152979 0.01
miR-742_st rs3673049 5 90.1166 87.521-96.6196 4.765858909 0.035
miR-379_st rs6208251 6 104.839 98.3634-116.707 4.024954772 0.034
miR-154_st rs13479063 6 136.34 133.918-142.369 4.309450382 0.032
miR-425-star_st rs3663988 7 146.505 140.19-146.505 4.342220512 0.035
miR-486_st rs13479880 8 89.2709 72.486-95.0537 4.108040959 0.033
miR-487b_st rs6257357 8 88.0714 77.6509-90.1831 4.81779528 0.019
miR-501-3p_st rs13479880 8 89.2709 81.6926-95.0537 4.205948891 0.03
miR-130b_st rs6413270 9 37.749 36.7545-44.4448 4.222559895 0.032
miR-298_st rs3700596 9 86.1986 85.0493-90.5779 6.573678024 0.001
miR-466¢-3p_st rs3712394 10 17.6633 14.1231-24.2073 4.569565941 0.03
miR-466¢-3p_st rs13480563 10 27.8549 24.2073-38.6853 4.591526295 0.029
miR-126-5p_st rs6374078 10 60.568 30.7258-65.9068 4.177297455 0.031
miR-681_st rs13481076 11 66.5323 40.1175-71.2932 4.055742697 0.043
miR-20a-star_st rs3712881 11 120.929 112.095-120.929 4.160612966 0.03
miR-203_st mCV22351241 12 60.0416 55.0208-72.5617 3.838027866 0.039
miR-542-3p_st CEL.12_84750094 12 91.3972 79.7044-103.767 4.735149963 0.023
miR-341_st gnf13.079.671 13 80.5444 69.4679-88.2773 5.260091403 0.008
miR-449b_st rs13482231 14 67.5971 50.848-72.2967 4.485232377 0.019
miR-7a_st CEL.15_4222769 15 4.34915 3.22903-9.71766 4.941341377 0.044
miR-7a_st rs13482455 15 16.6609 14.813-24.5234 5.73214998 0.022
miR-337-3p_st rs13482549 15 45.4745 38.4141-53.8672 4.298224443 0.029
miR-673-5p_st rs13482549 15 45.4745 38.9557-56.6379 4.592339382 0.014
miR-136_st rs13482914 17 20.9827 16.5395-27.5883 4.679083445 0.026
miR-466b-5p_st rs13483212 18 12.2691 0-20.9827 4.48515896 0.016
miR-493_st rs6211533 19 57.0668 50.2034-60.1574 4.98913787 0.004
miR-26a_st gnfX.023.543 X 36.2528 0-49.3187 4.718906745 0.01
miR-466e-5p_st rs13483712 X 9.12938 0-33.548 4.013512497 0.05
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The presence of only trans-eQTL indicates that other, possibly tissue-specific, genes
contribute to the regulation of the miRNA expression. Previous studies suggest that
genes encoding for various classes of argonaute and helicases play a major role in
the regulation of miRNAs (Beitzinger and Meister, 2011; Chu and Rana, 2006). In
line with this notion, the coordinates of all helicases and other genes involved in the
biogenesis of miRNA pathways were obtained from the databases and mapped to the
identified eQTL (Jankowsky et al., 2011). Helicases such as Ddx39, Ddx49, CD97
and Upfl were mapped within the confidence interval of miR-486, miR-487b and
miR-501 on chromosome 8. Furthermore, four helicases 1.e., Ddx50, Asce3, Ddx21
and DNA2, were mapped within a confidence interval of eQTL observed for miR-
126. Several genes including Polr3f, Polr2a, Polr3g and Polr2a that were previously
shown to play an important role in transcriptional machinery were also mapped to
the eQTL for miR-409, miR-681, miR-34 and miR-449. Other genes such as 1in28a
and its homolog 1in28b, which have been shown to modulate let-7a, were mapped
within eQTL for miR-290 on chromosome 4 and miR-126 on chromosome 10, further

inferring a possible expansion of 1in28 to modulate other miRNAs.

Some miRNA eQTL were confined to specific locations in the genome, hence
indicating eQTL hotspots. On chromosome 2, five miRNAs (miR-26a, mir-291a, miR-
423, miR-671 and miR-23b) were mapped between 28-51 Mb (Figure 2). Three
nearby SNPs (rs6250599 ~48.5 Mb, rs6265423 ~47 Mb and rs13476472 ~45Mb)

showed a significant association (-log p-value > 4) with all five miRNAs mapped to
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this region. A lincRNA 1700019E08Rik was located near SNP rs13476472 (~3Kb).
As for another two SNPs, the nearest gene to rs6265423 was mapped 6.8kb apart,
coding for the snRNA U7.39-201, while the nearest coding gene for SNP rs6250599
was a pseudogene Gm13489-001(~13kb upstream). We further investigated the five
co-regulated miRNAs in chromosome 2 to identify the possible common molecular
functions or pathways. The analysis suggested that these miRNAs are associated
with mucin type o-glycan biosynthesis (p-value = 6.27e-11) and glycosphingolipid

biosynthesis - lacto and neolacto series (p-values < 0.01).

Similarly, on chromosome 8 we identified eQTL for miRNAs (miR-486, miR487b and
miR-501) within a confidence interval of 72-95 Mb. Two genes, Gm1068 and
DNAJA2 were located near peak SNPs (rs13479880 and rs6257357). Pathway
ontology analysis suggests that these three miRNAs are involved in the B-cell

receptor pathway (p-values < 0.05) and endocytosis pathway (p-values < 0.05).

In our analysis, we found several miRNAs were regulated by more than one locus in
the genome, i.e. multi-locus genetic loci. For example miR-7a showed significant
association with two loci present on chromosome 15 (3-9 Mb, CEL.15_4222769 and
14-24 Mb, rs13482455). Similarly, miR-466-3c was regulated by two nearby loci on
chromosome 10 (14-24 Mb, rs3712394 and 24-38, rs13480563). In contrast, miR-26a
was mapped to two different loci on chromosomes 2 and X (28-51 Mb, rs6265423 and

0-49Mb, gnfX.023.543). Multi-locus control of miRNAs and regulation by trans-
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eQTL infers complex machinery for the regulation of miRNAs. Therefore we
investigated the epistatic control of miRNAs to derive other interacting loci that can

possibly play a vital role in the regulation of miRNAs.
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Figure 2: eQTL hot spots on chromosome 2. Position on x axis represents the coordinates in
million base pairs on chromosome 2. The y axis is —log p-value. The overlapping peaks on y axis
represents eQTL hot spot between 28-51 Mb. miR-181, miR-30b* and miR-874 are suggestive eQTL

with significant genome-wide (a = 0.1) threshold after permutation.
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4.1.2 Epistasis in miRNA

Multi-locus control of miRNAs and regulation by trans-eQTL shows that miRNA
expression is regulated by complex machinery. We investigated an epistatic control
of miRNA expression, aiming to identify interacting loci that might play a role in the
regulation of miRNAs. Therefore, we analysed the epistasis between each SNP pair
for all the miRNAs for which we found a significant eQTL in the single locus
association studies. As a result, we identified 200 SNP pairs for 8 miRNAs below the

significance level (Bonferroni adjusted p-value < 0.05) (Figure 3).
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Figure 3: Epistasis in miRNA eQTL. The circular plot shows the chromosomes in its
circumference. Each line between the chromosomes represents SNP pair interaction above the
significance level (adjusted p-value < 0.05). Each interaction is color coded for different miRNAs. The

boxes adjacent to the chromosomal band show eQTL for miRNAs mapped for single locus scans.

The highest -log p-values of 10.38 were found between the SNP pairs rs13480360
(Chr 10, ~67 Mb, nearest gene: AK139516) and rs3689658 (Chr 2, ~ 85 Mb, nearest
gene: Olfr1006) for miR-7a (Table 3). In total, we found 119 SNP pairs for miRNA
miR-7a. The hub locus (i.e. SNP with the maximal number of interactions) for miR-
7a was observed on chromosome 16 (rs3680665 ~84 Mb, nearest gene: AK04263).

The same SNP (rs3680665) also showed a high number of interactions (n=39) for
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miR-542 and with additional SNP (rs4200124, nearest gene: Gbel) present nearby.
For miR-742, we observed 47 SNP pairs with SNP rs3657112 (~ 148 Mb, nearest
gene: Snoral7) on chromosome 3 showing the highest number of interactions (40
SNP pairs). The same SNP, ie. rs3657112, also showed interactions with
chromosome 9 loci 67-72 Mb for miR-295. We also found multiple SNPs on
chromosome 2 (13-17 Mb) interacting with SNPs on chromosome 1(3-11 Mb) for
miR-501. Two miRNAs (miR-136 and miR-337) had only one significant SNP pair:
for miR-136 the interaction was found between SNPs rs37113033 (Chr 19, ~5Mb,
nearest gene: Slc29a2) and rs13459176 (Chr 15, ~3 Mb, nearest gene: Seppl), while
miR-337 had SNP pair rs3693942 (Chr 13, ~55 Mb, nearest gene: UncbA) and

rs3663950 (chr4, ~135Mb, nearest gene: I122ra) (Table 2).
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Table 3 Epistasis in miRNA. The table includes only the interacting SNPs for highest interacting —log 10 p-value for each miRNAs.

Top interacting SNP 1

Top interacting SNP 2

miRNA I. p-value (log)
SNP ID Chr  Pos(Mb) Ref Genes p-value (log) SNP ID Chr  pos(Mb) Refseq Genes p-value (log)

miR-7a rs13480630 10 67.29 0.89 rs3689658 2 85.52 Olfr1006 1.12 104

miR-136 rs3713033 19 5.03 Slc29a2 0.073 rs13459176 15 3.23 Ccdc152, Seppl 1.56 7.2

miR-154 rs3708073 8 124.28  Gm20388,Jph3 0.3 rs8246404 2 136.7 Mkks 0.57 7.67

miR-295 rs13480271 9 72.68 RP23-461P14 0.018 rs3657112 3 148.03 0.32 8.064
miR-337-3p rs3693942 13 55.05 Uncba 0.026 rs3663950 4 135.29 1122ral 0.2 7.17
miR-501-3p CZECH-2_15618849 2 15.5 Gm13364 1.33 rs3716083 1 9.01 Sntgl 0.72 8.46
miR-542-3p rs4200124 16 70.7 1.12 rs3718776 5 150.4 Wdr95 0.14 8.5

miR-742 rs3657112 3 148.028 0.35 CEL.1_49993068 1 49.68 0.33 9.16
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In order to verify interacting genes from our analysis, we investigated the epistatic
control of miR-501-3p. Using Ingenuity Pathway Analysis (IPA), we searched for all
the interacting genes for interacting loci present on chromosome 1 and 2 8. We
found three interacting gene pairs: Commd3 with Cops5, Cacnb2 with Vopipl and
Commd3-Bmil with Rblcc. Interestingly, Cops5 in the Nfkb1l pathway, possibly

regulates miR-501 via Tp53 (Figure 4).
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Figure 4 : Interaction network accessed via IPA software for epistasis of miR-501. The
graph depicts the interacting genes identified from epistasis scan of miRNA miR-501 in chromosome
1 and chromosome 2. The graph shows all known gene interactions between the two loci .Genes
colored in yellow are located on chromosome 2, while genes colored in green are encoded from

chromosome 1. The red line shows the possible pathway for the regulation of miR-501.
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4.1.3 Genetic overlap of ASBD QTL (EBA) and expression QTL (miRNAS)

A genetic variation leading to a clinical phenotype with an effect penetrating to a
clinical phenotype by means of inflicting miRNA levels should map to the same
chromosomal region. Such consensus QTL indicate clinical relevance over intrinsic
differences of the parental strains. Previously, genetic loci for EBA an autoimmune
skin blistering disease were studied using the same cohort of mice for AIL (Ludwig
et al., 2012). We found 4 eQTL for miRNAs mapped to QTLs for EBA (Figure 6). The
eQTL for miR130b (Chr 9: 36-44 Mb, -log p-value = 4.42), miR-542-3p (Chr 12: 79-
103Mb, -log p-value = 4.73) and miR-449b (Chr 14: 50-72 Mb, -log p-value = 4.49)
were mapped on the QTLs for disease onset on chromosome 9, 12 and 14.
Additionally, we mapped eQTL for miR-493 (50-60 Mb, -log p-value = 4.98) to the
QTLs for both disease severity and onset on chromosome 19. Therefore, all onset
QTLs in the previous study were mapped on miRNA eQTL, while one miRNA eQTL
mapped on the QTL for severity of disease, inferring a role of miRNAs in the

induction of disease (Figure 5).

MiRNAs eQTL overlapping with QTL of clinical phenotypes have been described in
various other autoimmune diseases. For example, miR-130b has been reported in
plasma of rheumatoid arthritis patients in previous studies (Murata et al., 2013).
Moreover, studies have shown over-expression of miR-542-3p in other autoimmune

diseases such as multiple sclerosis. The over-expression of miRNAs, for example
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miR-449b over-expression, leads to a reduction of NOTCH1 signalling in celiac
patients (Capuano et al., 2011). In addition, in some cases of multiple sclerosis
another miRNA, miR-493, was found to be significantly up-regulated (Paraboschi et
al., 2011). The data indicate that miRNA eQTL which overlapped with ASBD QTL
has been explained in different autoimmune disorders. Thereby, to gain more

insight for the role of miRNA in autoimmune disease, we looked into expression

levels of miRNAs.
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Figure 5 : Overlapping QTL for EBA disease and miRNA eQTL. The circular plot shows all the
eQTL for miRNAs (green) and QTL for EBA (red). It also presents the eQTL hot spots (dark green)

and EBA QTL for onset (red) and severity (dark red). Each circular band represents a chromosome on

which QTL and eQTL are mapped. The region within the chromosome which has either red or dark

red and green or dark green bands is overlapping eQTL with EBA QTL.

4.1.4 Expression and co-expression of miRNAs in ASBD (EBA)

To deduce differentially expressed miRNAs, we divided the G4 mouse cohort into

two groups: EBA diseased and non diseased mice, irrespective of their severity score.

We found 2 miRNAs, miR-379 (adjusted p-value = 0.044) and miR-223 (adjusted p-
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value = 0.044) to be significantly differentially expressed between the two groups.
Both miRNAs (miR-223 and miR-379) were up-regulated in the diseased mouse
cohort. The up-regulation of both miRNAs has been previously described in the
context of other autoimmune diseases. While miR-223 was shown to be over-
expressed in peripheral CD4+* T-lymphocytes from RA patients (Fulci et al., 2010),
miR-379 has been highly up-regulated in splenocytes in lupus (Dai et al., 2013).
Moreover, eQTL for miR-379 (-log p-value = 4.7, 98-116 Mb) was also mapped to

chromosome 6 with a peak at ~104 Mb (rs6208251, nearest gene: Cntn6).
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Figure 6 : Box-plots showing differentially expressed miRNAs. The box-plots show the most
differentially expressed miRNAs miR-223 and miR-379 for the disease phenotype EBA. The plots in
blue color show the expression of miRNAs in mice that did not have disease while mice with

inflammation are shown in red color.
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Dividing the cohort of mice into diseased and non-diseased has its drawbacks, as the
severity of the disease observed in individual mice differs depending upon the
genetic architecture present in them. Therefore, we performed a co-expression
analysis, with expression levels of miRNAs (assuming the co-expressed miRNA are
part of the same pathway) in correlation with quantitative scores for severity and
onset week of the disease. For this purpose, we used the WGCNA approach which
clusters miRNA into modules and associates them with different phenotypic scores,
including EBA severity and onset. We identified 11 clusters in our analysis
(Supplement Figure 1). Out of the 11 co-expressed modules, only the ‘black’ module,
consisting of 23 miRNAs, was significantly associated with the severity of EBA (p=
0.28, p-value = 0.005). Additionally, it was also significant for the onset of EBA (p =
0.29, p-value = 0.005). Due to the fact that the ‘black’ module is marginally more
strongly correlated to the onset of the disease than the maximum score, one can
speculate that miRNAs from this module are involved in the onset rather than the
severity of the disease. This corresponds to previous observations of overlapping
miRNA eQTL with EBA onset QTL. The pathways associated with the ‘black’
module were, for example, the MAPK signalling pathway, cytokine-cytokine receptor
pathway and focal adhesion pathway (p-value < 0.01). All these pathways have been

previously described in different autoimmune disorders.

Individual correlation of miRNA expression levels with disease severity showed that

24 miRNAs were significant (p-value < 0.05) (Table 2), with miR-223 showing the
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strongest association (p = 0.4, p-value = 4.93e-05). Another miRNA which was highly
correlated with EBA was miR-21 (p = 0.36, p-value = 0.00036). An association of
miR-21 with the disease phenotype has been previously demonstrated in multiple
autoimmune disorders, such as typel diabetes, multiple sclerosis, systemic lupus
erythematosus, systemic sclerosis, and psoriasis (Kumarswamy et al., 2011).
Furthermore, investigations of the co-expressed module showed that the miRNAs
were also co-regulated, i.e. there were overlapping genetic loci among co-expressed
miRNAs. We observed that miRNAs in a given locus were either clustered within
the same module or showed a stronger inter-module membership for a specific
module, even if they were assigned to different modules. As an example, miR-322
and miR-431, which were mapped to chromosome 1 (51-59 Mb), are clustered in the
‘red’ module. In eQTL hot spots such as chromosome 2 (28-51 Mb), miR-423-3p and
miR-23b are clustered in the ‘yellow’ module. Even though other miRNAs in this
locus were assigned to a different module, they also show significance for the ‘yellow’
module. Examples are given by miR-671-5p (p-value = 1.22e-12), miR-26a (p-value =
2.65e-19) and miR-291a-3p (p-value = 3.53e-02). In line with this observation, for the
eQTL mapped to chromosome 8, two miRNAs (miR-501-3p and miR-486) were
clustered with the brown’ module while miR-487 was assigned to the ‘red’ module,
but had a significant module membership with the brown module as well (p-value =

0.004). The results suggest that certain miRNAs might not only be co-expressed, but
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also co-regulated by the same locus, further implying that genomic loci might be

controlling the pathways of miRNAs.
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Figure 7 : Module-trait relationships between clusters of miRNAs with EBA severity and
onset. The graph is a representation of co-expression analyses of miRNAs. The clusters of miRNAs
are called modules; the colors are coded on the y-axis. The disease phenotypes (traits), EBA onset and
EBA severity are represented on the x-axis. Blocks represent the correlation of modules with
phenotypes using a Pearson correlation coefficient. The correlation range is color coded, with red
indicating a positive correlation and blue showing negative correlation. ‘p-values’ of the correlation

coefficient are given in brackets below the correlation coefficients.
4.1.5 Causal miRNA network in skin

Recent advancements in the statistical models for defining gene networks from
varying gene expression profiling have allowed understanding of putative pathways

involved in various phenotypes. Therefore, to understand possible miRNA networks
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in the skin, we employed the c3net algorithm, using their expression levels in the
skin. The largest interconnected network consisted of 168 miRNAs (Figure 8). The
hub node miRNA let-7¢c was connected to 21 other miRNA. In this network, 8
miRNA were significantly correlated with the onset of EBA, while 5 miRNA were
associated with its severity. The pathway ontology terms for networks suggest an
association with the Neurotrophin (p-value < 0.0001) and Notch signalling pathway

(p-value = 0.0059).

The second largest subnetwork of miRNA consisted of 101 miRNAs (Figure 8). The
subnetwork consists of 8 miRNAs for onset, 3 miRNAs for severity and 4 miRNAs
significantly correlating with both phenotypes. The pathway associated with this
network was the Fc epsilon RI signalling pathway (p-value = 0.0099). This
subnetwork is important because it consists of miRNAs that are differentially
expressed in diseased and non-diseased mice, such as miR-379 and miR-223. Fc
receptors have been described to play an important role in skin diseases like EBA
(Sesarman et al., 2008). Another pathway which was found to be significantly
associated with the subnetwork was a regulation of the actin cytoskeleton pathway
(p-value = 0.0468), further providing additional evidence for network authenticity,

as expression levels are derived from skin tissue.
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Figure 8 : Causal network for miRNA generated using c3net algorithm. The figure shows

interactions of different miRNAs indicating the role of let7c as a hub.

4.2 Gene expression profiling

The Affymetrix chip consists of ~34000 probes coding for most of the genes across
the genome. The probes were first checked for low expression in the skin tissue,
leaving only 17,778 probes above median intensities. In addition, the probes were
also checked for their variance (p-value < 0.05) across samples, thereby leaving
15,179 probes. The intersection of both expression and variance-based filtration, i.e.
7,043 probes, were used in further analysis. Amongst them, almost 2,000 probes

were used as controls in the chip, i.e. for technical reason in the Affymetrix chip,
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leaving only 5,043 probes consisting of 4,073 genes. The tools and software for the

filtration of probes are described in the Material and method (section 3.4).

4.2.1 Differentially expressed and co-expressed genes in EBA

In order to find differentially expressed genes, we divided the samples into two sets,
non-EBA samples (max score = 0) and EBA samples (max score > 0). Out of the 200
samples we used 190 samples (122 controls, 68 EBA mice) for performing
differential expression analysis, as phenotype information was not available for the
other 10 samples. We found 1,039 mRNA probes out of 5,054 probes to be
significantly (adjusted p-value < 0.05, Bonferroni corrected) differentially expressed
for the EBA and non-EBA mice samples. 425 probes were down-regulated and 613
probes were up-regulated for disease (EBA) phenotype (Table 4 and Supplement

Table 3).
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Table 4: Top 20 differentially expressed gene between EBA and non EBA mice. ID stands for
Affymetrix ID, Gene name stands for official gene symbol, positive log FC show up-regulation and
negative log FC shows down-regulation. The adjusted p-values are p-value after correction for

multiple testing using Bonferroni correction method.

Adjusted
ID Gene Name log FC p-value p-value
10380419 Collal 1.092457892 1.71E-11 2.97E-07
10529457 Cpz 0.476105771 1.83E-11 2.97E-07
10595211 Coll2al 0.937846131 3.26E-11 2.97E-07
10346015 Col3al 0.986338829 3.42E-11 2.97E-07
10531724 Plac8 1.014783794 1.21E-10 8.43E-07
10583056 Mmpl2 0.831790171 2.46E-10 1.20E-06
10536220 Colla2 0.933247962 2.64E-10 1.20E-06
10460782 Gpha2 -0.588016109 2.77E-10 1.20E-06
10560919 Atpla3 0.485810749 3.51E-10 1.36E-06
10560685 Bcl3 0.577733423 7.41E-10 2.58E-06
10354309 Col5a2 0.496367606 1.15E-09 3.39E-06
10546450 Adamts9 0.501134973 1.17E-09 3.39E-06
10556082  Ppfibp2 -0.28734775 1.29E-09 3.44E-06
10379636  Slfn4 1.289214032 1.60E-09 3.96E-06
10572949  Nr3c2 -0.319316147 1.90E-09 4.41E-06
10367400 Mmpl9 0.798947908 2.12E-09 4.62E-06
10352143  Kif26b 0.383798765 2.39E-09 4.75E-06
10557895  Itgax 0.490973272 2.46E-09 4.75E-06
10403743  Inhba 0.618346825 3.67E-09 6.63E-06

Gene ontology for the up-regulated genes suggested that these genes are involved in
pathways such as the chemokine signalling pathway (p-value = 1.1e-6), leukocyte
trans-endothelial migration (p-value = 3.3e-6), Fc gamma R-mediated phagocytosis
(p-value = 3.3e-6) and cytokine-cytokine receptor interaction (p-value = 7.2e-6). A

more detailed list of pathways is given in Table 5.
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Table 5: Pathways ontology for the up-regulated genes. P-values are calculated using fisher

exact test and adjusted using Bonferroni’s correction.

adjusted p-

KEGG PATHWAY p-value  value

Chemokine signaling pathway 8.6e-9 1.1e-6
Leukocyte trans-endothelial migration 5.1e-8 3.3e-6
Fc gamma R-mediated phagocytosis 7.6e-8 3.3e-6
Cytokine-cytokine receptor interaction 2.2e-7 7.2e-6
ECM-receptor interaction 1.6e-6 4.2e-5
Jak-STAT signaling pathway 2.5e-6 5.6e-5
Focal adhesion 3.6e-5 6.7e-4
Natural killer cell mediated cytotoxicity 3.7e-5 6.0e-4
Regulation of actin cytoskeleton 6.2e-3 8.7e-2
Pathways in cancer 8.7e-2 7.0e-1

Next, we constructed gene co-expression network of differentially expressed genes.
Next, we constructed a gene co-expression network of differentially expressed genes.
We applied hierarchical clustering to cluster gene profiles and a dynamic cut-tree
method (WGCNA) to cut and combine the branches to further define a co-expressed
group (modules) from 1,039 gene expression levels. The method is unbiased and does
not use any prior biological information about the genes. We found 12 modules and
assigned them into different colours with grey for the genes that could not be

clustered in any of the other modules (Figure 9).
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Figure 9: The figure shows dendrogram of different mRNA clustered together. Modules

names are derived from their colors.

The module expression levels were abstracted by standardizing gene expression
profiles to the first principal component, defined as the ‘module eigengene’. The
module eigengene can define a weighted average expression of the genes within a
given module. To find disease-related modules, we correlated module eigenvalues to

the disease score for EBA severity and onset (week) (Figure 10).
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Figure 10 : The figure shows different modules by colors on y axis (vertically left) and its
correlation with EBA max score (left) and week of EBA onset (right) on x axis (bottom).

The right vertical bar displays the color range for Pearson correlation coefficient ranging from -1 to 1.

We found that 8 modules were significantly positively correlated, while 4 were

significantly negatively correlated with EBA disease severity scores (p-value < 0.05).

The ‘turquoise’ module was found to be the most significant amongst them all (p =

0.58, p-value = le-18), containing 178 genes. Gene ontology terms associated with

this module were immune response (p-value = 1.8e-10), cell activation (p-value

1.2e-8), response to wounding (p-value = 2.1e-8), leukocyte activation (p-value
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2.2e-7), and inflammatory response (p-value = 2.2e-6). Moreover the module also
contains some important pathways such as inflammatory response (p-value = 1.1e-5)

and cytokine-cytokine receptor interaction (p-value = 2.5e-5).

The second module which showed a significant positive relationship with EBA
disease was the ‘black’ module. The correlation coefficient of this module with the
disease was 0.52 with p-value = 2e-14. The module corresponds to biological
functions similar to the turquoise module with cell activation (p-value = 1.59e-08)
and immune response (p-value = 1.78e-08). Similar to the ‘turquoise’ module, the
‘black’ module also shows that genes in this module are involved in the cytokine-

cytokine receptor interaction pathway (p-value = 7.44e-07).

The ‘green yellow’ module produced by the clustering method consisted of 16

Affymetrix probes coding for Hmncl genes verifying our clustering threshold.

We found 3 down-regulated modules in our dataset, with grey being the group of un-
clustered genes. The cluster with the smallest p-value for negative correlation was
the ‘green’ module (p = -0.35, p-value = 7e-10). The GO terms predict that the genes
clustered in this module are associated with the cellular process (p-value = 6.62e-05)
and metabolic process (p-value = 9.89e-05). This was expected, as the up-regulation
of disease would result in the degradation of cell growth and other metabolic
functions in cells. Other modules, such as the ‘purple’ module also showed a

significant negative correlation with EBA (p = -0.32, p-value = 9e-07). This module is
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associated with biological processes, such as the steroid hormone-mediated
signalling pathway (p-value = 1.68e-05) and hormone-mediated signalling pathway

(p-value = 6.56e-05).

The ‘blue’ module (p = -0.32, p-value = 9e-05) included 165 probes and was found to
be associated with muscle structure development (p-value = 2.55e-14). Since EBA is
a blistering disease, the down-regulation of the myosin binds ATP pathway (p-value

= 4.27e-12) might lead to degradation of the skin.

4.2.2 Expression QTL mapping

To find a gene’s eQTL we picked thresholds (a = 0.05, p-value (genome-wide) < 0.05)
across the genome. To further remove false positives, an additional threshold cut-off
was set (a= 0.01, p-value (point-wise) < 0.01). Therefore, -log p-value cut-off > 4.36
(Figure 11). We found 424 eQTL for 260 mRNA expression levels (Affymetrix probes)
associated with 251 genes from 1,039 differentially expressed genes (Table 6 and
Supplement Table 4). The highest —log p-value of 9.8 was observed for Scgb2b2 on
chromosome 7, which was cis-regulated with phenotypic variance of 21.92. We found

that 83/260 genes were cis-regulated while 177/260 were trans-regulated.
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Figure 11 : Manhattan plot for 424 mRNA. The black line across the plot shows significant

threshold of —log p-value (4.36) and upper threshold —log p-value (9.8).

Table 6: eQTL with -log p-value > 8.5. The table shows most significant eQTL. In table Probe
ID is Affymetrix probe ID, Peak SNP is SNP with highest —log p-value, and CI is confidence interval

for eQTL.
Peak

Probe ID Peak SNP Chr  (SNP) -log10(p-value) C.l Length QTL (Mb) Gene Name
10552090 rs3719311 7 35 9.8 0-60 21.92 Scgb2b2
10592336 rs13480173 9 46 9.75 18-61  21.81 Spal7

135-
10510482 rs3688566 4 141 9.39 156 21.14 Clstnl
10423471 CEL.15_36490596 15 36 9.18 3-61 20.74 Ctnnd2

128-
10517250 UT_4 132.137715 4 133 9.13 135 20.64 Extl1

142-
10528159 rs3658783 6 144 9.01 149 20.43 Gm10482
10379646 rs13481127 11 83 8.89 71-109 20.19 Slfn3

135-
10386495 rs3688566 4 141 8.67 156 19.78 Tom1l2

135-
10587880 rs13478002 4 136 8.61 142 19.66 Pcolce2
10392207 rs13481161 11 92 8.59 88-110 19.62 Tex2
10528159 rs4222295 1 39 8.56 13-79 19.56 Gm10482
10400510 gnf12.077.067 12 80 8.54 47-108 19.51 Clecl4a
10605328 gnfX.084.751 X 98 8.45 10-135 19.35 Fam3a /// Fam3a
10572693 rs13479880 89 8.34 48-105 19.14 Jak3 //l InsI3
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Similar to the miRNA protocol, we found eQTL hot spots for mRNA expression

levels. We found eQTL hot spots on chromosome 6, 1, 4 and 11.

On chromosome 6, the eQTL hot spot was found to be between 134-149 Mb. The
locus was found to control 85 eQTL for 72 genes, in which 84/85 were trans-
regulated and 1 eQTL for gene Akr1b8 was cis-regulated. Previous reports suggest
that experimental autoimmune myocarditis is regulated by chromosome 6 from 130-
149 Mb (Guler et al., 2005). The overlap of the eQTL hot spot with a similar
autoimmune disease suggests that the hot spot could be regulating multiple
autoimmune diseases. The highest -log p-value 7.64 was observed for gene Krt7 with
a phenotypic variance of 17.76, which was trans-regulated. The gene ontology terms
indicate that genes regulated by loci are involved in the actin filament-based process
(p-value = 1.9e-1) and regulation of actin cytoskeleton pathways (p-value = 6.0e-1). It
was also observed that 61 genes were clustered in the ‘brown’ module, while 10 were

clustered in the ‘magenta’ module in co-expression analysis.

On chromosome 1, the eQTL hot spot was found between 23-69 Mb. The locus was
observed to regulate 42 eQTL for 39 genes in which 41/42 was trans-regulated and 1
eQTL for gene Aox4 was cis-regulated. The highest -log p-value of 8.56 was observed

for Gm14082 with phenotypic variance of 19.56, which was trans-regulated. The
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gene ontology terms suggest that the associated genes are involved in leukocyte
activation (p-value = 4.5e-1) and cell activation (p-value = 3.7e-1). 32 genes were

clustered in the ‘brown’ module and 5 in the ‘turquoise’ module.

On chromosome 4, the eQTL hot spot was mapped between 128-156 Mb. The loci
was found to be regulating 57 eQTL for 52 genes; 55 eQTL were trans-regulated and
2 eQTL for genes Extll and Clstnl were cis-regulated. The highest —log p-value
(9.39) in this hot spot was observed for cis-regulated Clstnl gene with a phenotypic
variance of 21.14. The gene ontology terms show that these genes are associated
with processes such as glucose metabolic process (p-value = 8e-1) and glycolysis/
gluconeogenesis pathway (p-value = 4.4e-1). 21 of these genes were clustered in the
‘ereen’ module, 15 in the ‘blue’ module and 11 in the ‘purple’ module. The data
suggest that the hot spot could possibly be the master regulator for the down-

regulation of genes.

On chromosome 11, the eQTL hot spot was detected at 87-103 Mb. The loci was
found to regulate 21 eQTL for 18 genes, in which 20/21 were trans-regulated and 1
eQTL for gene Tex2 was cis-eQTL. The highest —log p-value 6.75 was observed for
the trans-regulated gene Thrap3 with a phenotypic variance of 19.62. The gene
ontology terms suggest that the genes regulated by this locus are involved in
molecular functions such as ion binding (p-value = 1.1e-1) and calcium ion binding

(p-value = 1.7e-1). We observed 18 genes that were clustered in the ‘brown’ module.
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Although eQTL studies provide a broad understanding of the genetic regulation of
different genes, since array-based technology is prone to detecting false positive
signals, the outcome cannot be trusted. Therefore, identification of accurate eQTL
analysis needs additional justification. In our study we found that gene Stat3, a
well-known gene for immunity, is regulated by chromosome 1 (33—-44 Mb),
chromosome 6 (104-116 Mb) and chromosome 6 (136-147 Mb). We found all three
loci controlling Stat3 had ‘Stat3 transcription binding sites’, thus appropriately

confirming the reliability of this study.

We observed that genes regulated by the same eQTL hot spot regions were also co-
expressed. Therefore, we took all the SNPs that regulate at least 5 genes and at —log

P score >= 3.75 (a = 0.1) and redefined the hot spots (Figure 12).
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The analysis suggested that the co-expressed modules were controlled by specific

loci. For example, in chromosome 13, an eQTL hot spot was detected at a confidence

interval of 41-44 cM. The eQTL hot spot controls 28 probes (14 genes) for which gene

ontology term suggests its involvement in immune system process (p-value = 5.5e-1).

Most of the genes controlled by this locus are found in a co-expressed group (‘yellow’

module). When these genes were queried to the STRING database for known

interaction data, we found that most of these genes are connected to each other
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(Figure 13). This infers that genes that are co-expressed could be co-regulated by the
same genetic locus. For this reason, we included the genetic data to find protein

Interactions among the genes in the co-expressed group.

Clec7a

Gadd4sb

P

Figure 13 : STRING layout for eQTL hot spot. Layout depicts interaction between the genes that

were controlled by eQTL hot spot in chromosome 13 in the yellow module.
4.2.3 Combining protein interaction networks with eQTL

To generate gene interaction networks, we took all the genes which were present
within the co-expressed groups (modules). We combined the genetic data into the
module by including eQTL information, considering two genes to be interacting only
if they are controlled by the same SNP or other SNPs which are 10cM apart from

each other. In this case, we considered all the SNPs that correspond to —log p-value
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>3.75 (log point P < 0.001 and a = 0.1 genome-wide). Adding SNP information to the

co-expressed module decreases the false positive edges in a given module.

Furthermore, to determine the known interactions, we used known interactions
from the STRING database. To identify new interactions which are not yet reported
in the database, we used the DOMINE database for interacting protein-domains.
Additionally, we used the PLS algorithm to determine statistically significant
interactions. The details are provided in Material and methods (sections 3.6.2 and

3.8)
Black module

In the black module, 29 co-expressed-genetic interactions were confirmed by
different methods. From 29 interactions, 11 interactions were found from the
database and 19 interactions were predicted using domain interaction information
(Figure 14). The interaction between Rab31- Arpclb was confirmed by both
methods. Based on the degree of connectivity (edges >= 5) we found two hub gene
candidates, i.e. Mlkl and controlling the network. Additionally, using the domain
Iinteraction approach, we found MIlkl and Arhgap25 as hub genes controlling the
major part of the network. MIkI’s role in multiple autoimmune diseases has been
previously described (Zhao et al., 2012). As for Arhgap25, the gene showed 5

interactions. The interacting genes are associated with skeletal muscles and have
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been shown to be important in various diseases (Katoh, 2004). The genes in this

module are regulated by locus in chromosomes 1 and 6.
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Figure 14 : Network of genes in black module. The red lines display the interaction information
from STRING database. The blue lines display predicted interaction using domain interaction

information. Red circle defines hub genes.

Turquoise module

In this module, 31 interactions were verified by database and domain interaction.
Out of 31 interactions, 24 interactions were validated by domain interaction and 11
were found in the database (Figure 15). 4 interactions, Ralb-Nfkb2, Nfkb2-Nfkbiz,
Nfkb2-Cebpb and Cebpb-Ptk2b, were confirmed by both methods. In this module,
Ptk2b was suggestive as a hub gene with 10 interactions with other genes. The gene

1s involved in the MAP kinase pathway (Lev et al., 1995). The gene is up-regulated
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in disease and connected to Nfkb2, which is another suggestive hub gene (edges = 7).
NfKb2 plays an important role in immune deficiency diseases (O'Sullivan et al.,
2007). Similarly, we also found the Nfkbiz gene as a possible hub candidate (edges =
6), which 1s also suggested to be associated with multiple autoimmune diseases
(Okuma et al., 2013). Another suggestive hub gene candidate was Pard3b (edges =
5). The gene was down regulated in the module with respect to EBA (p = -0.26, p-
value = 0.0002). Down-regulation of this gene leads to down-regulation of the actin
cytoskeleton pathway (Lucas et al., 2013). This gene has been described as crucial in
the context of autoimmune diseases (Below et al., 2011). The co-expressed genes

were regulated by two loci on chromosomes 1 and 6.
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Figure 15 : Network of genes in turquoise module. The red lines display the interaction
information from STRING database. The blue lines display predicted interaction using domain

interaction information. Red circle defines hub genes.

Yellow module

86 co-expressed genetic interactions were identified by different methods in this
module. 37 interactions were validated by domain interaction, 41 by the database
and 17 by the PLSR algorithm. 11 interactions were validated by both domain
interaction and the database (Figure 16). As stated before, the module is regulated
by a locus on chromosome 13. Since it is a highly interconnected module, we defined
the threshold for hub genes as edges >=10. Under the defined criteria, we found 4
hub genes Sykb (16 interactions), Ccrl2 and Sell (12 interactions) and Trem3 (11

interactions). Sykb and Ccrl2 are well-established therapeutic targets for various
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autoimmune diseases (Wong et al., 2004; Zabel et al., 2008). Sell (L- Selectin) gene is
important for immune response and a possible regulator for primary immune cells

(Marschner et al., 1999). Trems are well known targets for the immunological

disease (Colonna, 2003).

Baspl

Pglyrpl
E— O

Figure 16 : Network for genes of yellow module. The red lines display the interaction
information from STRING database. The green lines display predicted interaction using domain
interaction information. Dark blue line represents PLSR based interaction. Red circle defines hub

genes.
Red module
In this module, there are 78 interactions, out of which 65 interactions were

validated by domain interaction and 13 were found in the database (Supplement
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Figure 2). The hub genes characterizing this module are Pxdn, Notch (edges = 13)
and CD93 (edges= 11). Notch is a known target for autoimmune diseases (Ma et al.,
2010). Various drugs have been suggested for targeting Notch protein, which have
proved to be effective in controlling autoimmune disease (Ma et al., 2010). Cd93 has
been recently discovered to be associated with various autoimmune diseases
(Greenlee-Wacker et al., 2012). We found a novel potential drug target such as Pxdn

in this module. Chromosomes 11 and 15 are associated with this module.

Green module

We verified 17 co-expressed gene interactions, 16 were verified by domain
interaction (Figure 17). Arhgef and Rgnef interaction was verified by both domain
interactions and the database. Additionally, we found that Zfp652 was interacting
with genes such as Rrp7a, Ptpn21, Crim, Serhl, Rgnef, Etv3 and Lmo7. The gene
Zfp652 is significantly down-regulated in EBA (p = -0.30, p-value = 2.4e-05). The

module is controlled by two loci on chromosomes 4 (primarily) and 5.
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Figure 17 : Network for genes of green module. The red lines display the interaction
information from STRING database. The blue lines display predicted interaction using domain

interaction information.

Purple module

12 genetic interactions in this module were validated by various methods. In brief, 9
were validated by domain interaction and 6 were found in the database (Figure 18).
3 were predicted by both methods. The genes Thra, Nr1d1 and Rorc were the most
important genes and have 5 edges each. It was found that Nr1d1, a nuclear receptor,

is involved in the regulation of the cytokine pathway (Gibbs et al., 2012) (Figure 16).
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Figure 18 : Network for genes of purple module. The red lines display the interaction
information from STRING database. The blue lines display predicted interaction using domain

interaction information.

4.3 MicroRNA — Gene target prediction

MiRNAs are known to regulate gene expression levels. Briefly, a gene promoter
binds to the mRNA via 3-8 nucleotides, making a perfect Watson-Crick pairing and
regulating its transcription. This binding region is called a seed region, and is highly
conserved across species. Using sequence complementarity between miRNAs and
gene promoters and in addition to experiments such as reporter assay, many
databases contain predicted and experimentally verified gene targets for different
miRNAs such as miRanda, PICTAR, TARGETSCAN, etc. (John et al., 2004; Krek et
al., 2005; Lewis et al., 2005). Additionally, many software programs follow the same
principle and also include thermodynamic properties of the miRNA-gene promoter

structure such as RNAhybrid, mirWALK, etc. (Issabekova et al., 2012) (Dweep et al.,
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2011). Therefore, in this work, we used a combination of such databases and
software to search for known targets and predict new miRNA targets respectively.

The details are provided in Material and methods (section 3.6.3).

It has been recently demonstrated that miRNA eQTL could be accurately identified
if their target gene eQTL information is added. This approach also decreases the
false positive eQTL for miRNA (Su et al., 2011) , thus suggesting that gene targets
for different miRNAs could possibly be regulated by the same locus. Conversely, the
genetic information can be further used to predict possible accurate targets for

diseases like EBA in which the role of miRNAs is still largely unknown.

First, we used the Pearson correlation coefficient measure to calculate the
correlation between all the miRNAs which are significantly correlated with EBA
score and the differentially expressed genes (i.e. 1,065 genes x 30 miRNAs). We
found that a total of 16,128 miRNA-gene pairs were negatively correlated (p < 0).
After correcting for multiple testing using Bonferroni corrections, 3,941 pairs of
miRNA-genes were selected (p < 0, p-value < 0.05). To further narrow down our list,
we applied an additional filter criterion. According to this criterion, miRNA-gene
pairs were selected only if they show association with SNPs that are less than 10 cM
apart. As a result, we could further discard many pairs, reducing our list to 249

miRNA-gene pairs.
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In parallel, we downloaded all the gene targets for 30 miRNAs from databases. In
order to find new targets, we used RNA hybrid software with ‘mfe’ (minimum free
energy) <= -0.25. This software uses the secondary structure properties of the
miRNA-gene duplex to predict gene targets. Additionally, we used tools such as
miRwalk, RNA 22 and Targetscan to find complementary sequences between the
seed region of miRNA and 3'UTR region of the gene. We allowed only 2 mismatches
between the target 3'UTR region and seed region of miRNA. Overall, we identified
471 pairs between miRNA and genes from our dataset of 3,941 pairs of miRNA-

genes.

The intersection between negatively correlated and genetically controlled miRNA-
gene pairs and the output of the software and databases narrowed down our list to

76 miRNA-gene pairs.

We found miR-1195 (1 target), miR-1224 (8 targets), miR-1272 (2 targets), miR-134
(12 targets), miR-183 (6 targets), miR-21 (8 targets), miR-214 (10 targets), miR-223
(1 target), miR-23a (3 targets), miR-27a (1 target), miR-379 (18 targets), and miR-

467g (6 targets) to be important miRNA (Figure 19).

As we stated before, we observed multiple mRNA expression levels regulated by
eQTL hot spot in chromosome 6. The eQTL observed for miR-379 maps to the hot
spot in chromosome 6. One of the targeted genes, Pcbdl, shares the same eQTL

region 97-112 Mb with —log p-value of 5.56 and a phenotype variance of 13.53.
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MiR-134 was found to be targeting 12 genes, including Bcl2 (also a gene target of
miR-127), Drp2 (also a gene target of miR-218) and Oxtr (also a gene target of miR-
379). Moreover, it has been previously reported that miR-134 down-regulates
translation in different autoimmune diseases such as multiple sclerosis (Ma et al.,
2014). Gene targets like Bcl2 gene were found to be hub gene in the previously

described ‘purple’ module (Results, section 4.2.3).

MiR-214 targets 10 genes, out of which it shares 3 genes (Rab11fip4, Gm12824 and
Atpbs) also targeted by miR-379 and 1 by miR-1195. miRNA is well-known for its
over-expression in cancer (Penna et al., 2014). We found miRNA to be positively
correlated (up-regulated) in EBA (p = 0.25, p-value = 0.0145). We found miRNA to be
positively correlated (up-regulated) in EBA (p = 0.25, p-value = 0.0145). MiR-21 and
miR-1224 both had 8 targets each. miR-21 is a well-established miRNA known for
its regulation in different autoimmune diseases (Xu et al., 2013). In inflammation it

1s up-regulated and controls the interleukin pathway (Guinea-Viniegra et al., 2014).
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Figure 19 : miRNA - gene module interactions. The figure displays miRNA as black and other

colors represent genes coming from different clusters (modules).

4.4 Prediction of non-coding RNA

Our results suggest that there are additional potent classes of non-coding RNA that
can regulate miRNAs such as snoRNA, snRNA and linc RNA, etc. The
understanding of these mechanisms, such as the regulation of coding transcripts by
novel classes of non-coding transcript, remains elusive. Given the rapid advances in
sequencing technology, it is now possible to detect new and unknown RNA
molecules. Such molecules can influence transcription, translation, and epigenetic

modification in genes that regulate the immune system. Hence, we set out to design
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a predictor that can classify one of the subclasses of non-coding RNA known as post-

transcriptional RNAs, i.e. ptRNApred (Gupta et al., 2014).

First, a binary classifier was created. This classifier distinguishes sequences of
ptRNA and non-ptRNA in a binary classification. In the second step, a multi-class
classifier separates 6 classes of post-transcriptional RNA (snRNA, snoRNA, RNase
P, RNase MRP, Y RNA or telomerase RNA). The accuracy of 5-fold cross-validation
for binary was 93% within the training set (Figure 20a). The number of sequences
present in the training and testing set is provided in Table 1. The multi-class

classifier yields a 5-fold cross-validation accuracy of 87% (Figure 20b).

While testing the classifiers with the test set of sequences, the binary classifier had
an accuracy of 93%, with a sensitivity of 91%, a specificity of 94%, and an overall

precision of 90%. The multi-class classifier had an accuracy of 91% (Table 7).
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Figure 20 : C and y determination and 5 fold cross validation using LibSVM. The figure
shows graphs for different values of parameters C (a trade-off for misclassification) and y (inverse
width of RBF kernel) on a logarithmic X and Y axis. The ranges of the axes describe the different
values that were tested, searching the optimal C and y values in the grid space. The different colors
in the diagram display the different accuracies obtained while optimizing C and y values. We chose
the C and y values according to the green graphs, respectively, representing the C and y value with
the highest accuracy. A C and y determination and 5 fold cross validation of the two-class SVM. The
green graph represents the optimal values for C and gamma. In this case, the highest 5 fold cross
validation accuracy (92.89%) is achieved when C=32768 and y=0.008. b C and y determination and 5
fold cross validation of the multi-class SVM. The green graph represents the optimal values for C and
gamma. In this case, the highest 5 fold cross validation accuracy (86.69%) is achieved when C=4 and

vy=0.5.
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The fact that the accuracy of the test set is higher than the 5-fold cross-validation
accuracy in the training set suggests that an increase in the number of sequences
leads to a more accurate prediction. Consequently, we observed an increase of the
accuracy of the multi-class classification when adding more sequences to the

training set.

Table 7: The results of multiclass classifier are presented in a confusion matrix. As a result,
implementation of Random Forest yields an overall accuracy of 82%. In comparison, our multi-class

classifier developed using LibSVM yields an accuracy of 91%.

Predicted class
RNase MRP RNAse P SnoRNA SnRNA telomerase RNA YRNA  Accuracy
RNase MRP 3 2 1 0 0 0 50
RNAse P 0 100 6 0 3 0 91,7
SnoRNA 0 11 1123 75 1 0 92,8
@ SNRNA 0 4 194 713 2 0 78,1
§ telomerase RNA |0 4 4 2 8 0 44,4
§ YRNA 0 0 10 1 0 0 0
82

4.4.1 Validation of the method

In order to validate our tool, we compared it to existing tools. We found snoReport
(Hertel et al., 2008) is an advanced tool for prediction of snoRNA. It predicts orphan
snoRNA without using target information, thus making it similar to our approach.

To compare both tools, we derived snoRNA sequences from a mouse genome from
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Ensembl (Flicek et al., 2013) and used them as an independent set. In total, we used
an input of 1,603 sequences of snoRNA. As a result, snoReport identified 733

sequences correctly while our classifier could identify 1,589 sequences correctly.

Furthermore, we abstracted a human dataset with 1,641 sequences of snoRNA from
Ensembl. While snoReport identified 852 of the snoRNA sequences correctly, our

tool identified 1,611 sequences (Table 8).

In order to analyse the low sensitivity of snoReport, we inspected the sequences that
1t failed to classify. We found that snoReport was not able to detect a major snoRNA-
subclass, snoU13. SnoU13 was identified in 1989 (Tyc and Steitz, 1989) . It has been
well-characterized in 35 species by both functional assay and prediction. It is
involved in the nucleolytic cleavage at the 3' end of 18S rRNA, where it works as a

trans-acting factor (Cavaille et al., 1996).

SnoReport was unable to assign any of 245 snoU13-sequences in a human cohort to
snoRNA. Our tool ptRNApred, however, identified all of them correctly. Current
approaches to identifying different RNA families rely heavily on their secondary
structure conservation. Consequently, these approaches are accurate as long as the
RNA families show high secondary structure conservation. However, as soon as a
RNA family lacks a conserved secondary structure, it will be misclassified. This can
explain why snoReport failed to identify snoU13: snoU13 does not form any

secondary structure conservation, as it forms a loop.
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Table 8: Comparison between snoReport and ptRNApred. A murine and a human dataset of
snoRNA was abstracted from Ensembl (49) and performance of ptRNApred was compared to
snoReport, as a well-established tool for snoRNA prediction. ptRNApred achieved higher sensitivity
than snoReport (99% vs. 46% on the murine and 98% vs. 52% on the human set of sequences).
Regarding snoU13, a member of the snoRNAs, there is even larger difference in the sensitivity (100%

vs. 0%).

Number of sequences Number of sequences identified

. Total number of identified by snoReport o
Organism RNA class sequencesl (% of total number of bﬁﬂi’:f&[iﬂ (feﬁiteost)a I
sequences) q
Mus musculus snoRNA 1,603 737(46%) 1589(99%)
H. sapiens SnoRNA 1,641 852(52%) 1611(98%)
snoU132 2452 0(0%)2 245(100%)2

4.4.2 Validation of the algorithm

As mentioned in Materials and methods (section 3.9.4), we compared the algorithm
implemented in our tool to a random forest classification. The implementation of
random forest yielded an overall accuracy of 82%. In comparison, our multi-class

classifier developed using LibSVM yielded an accuracy of 91%.

4.4.3 Validation of the feature number

As mentioned in Materials and methods (section 3.9.2), a general concern for all
machine-learning approaches is that one has too many features, i.e. that one trains
on features that are not relevant, referred to as over-fitting. This limitation was
excluded by the above-mentioned cross-validation test. On the other hand, too few

features would lead to loss of (overall) accuracy. In order to confirm that using fewer
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features would lead to loss of accuracy, we selected the 78 most discriminating
features based on random forest prediction, using the R package ‘Boruta’. When
using these 78 features instead of 91 features, the 5-fold cross-validation accuracy

decreased from 92.89 to 74.46% (Figure 21).

Best log2{(C) = 8.8 log2{(ganna) = -9.8 accuracy = 74,4573% 74

73.5
C =1.8 ganna = 0,001953125 73
72,9
L) 1] L) L) L) 72
71.5
i 1-1e 71
- - _8
=3 - _6
log2{ganna)
b= - _4
=3 - _2
- - 8
-2 ] 2 4 6 8
log2{C)}

Figure 21: C and y determination and 5 fold cross validation when using 78 instead of 91
features. The green graph represents the optimal values for C and gamma. In this case, the highest

5 fold cross validation accuracy (74.46%) is achieved when C=1 and y=0.002.
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4.4.4 Variable importance

Classification features have an individual impact on the differentiation of RNA
classes. To determine the importance of each of the 91 features for classifying
ptRNA, an F-score was calculated for each feature, using LibSVM. F-scores can be
interpreted as a weighted average of precision and recall, where an F-score reaches
its best value at 1 and worst score at 0. Supplement Table 2 depicts the F-score

corresponding to every feature.

Additionally, even though the random forest method was not implemented in
ptRNApred, it provided useful information on variable importance. One of the
measures of variable importance in random forest is the mean decrease in accuracy,
calculated using the out-of-bag sample. The difference between the prediction
accuracy on the untouched out-of-bag sample and that on the out-of-bag sample
permuted on one predictor variable is averaged over all trees in the forest and
normalized by the standard error. This gives the mean decrease in the accuracy of
that particular predictor variable which has been permuted. Thus, the importance of
the predictor variables can be ranked by their mean decrease in accuracy. Table 8

depicts the Gini index corresponding to every feature.

Interestingly, comparing the 25 most discriminated feature variables according to
the F-score and Gini index (Table 9), dinucleotide properties achieve high ranks: 9 of

the 10 most discriminative features according to the F-score are composed of

99



dinucleotide properties. Furthermore, all of the 15 dinucleotide properties can be
found among the 25 most discriminative properties. According to the Gini index, 12
properties can be found among the 25 most discriminative properties, whereas only
3 of them can be found among the top 10, further indicating the importance of the

secondary structure.

Table 9: Table of top 25 properties ranked by their importance for discrimination among

ptRNA according to F-score and Gini-Index.

Rank of importance for discrimination Property ranked by F-score Property ranked by Gini-Index

1 Keto_content value_in_3rd_rnafold

2 Guanine_content Shift

3 GC_content Adenine_content

4 Hydrophilicity U...

5 Roll number_of_U_in_first_complementary_strand
6 Slide value_MFE_RNAfold

7 U... value_line_number_4(second value)
8 Entropy_2 G...

9 Rise Stacking_energy

10 Twist ((C

11 Entropy_1 G(((

12 Stacking_energy Twist

13 Cytosine_content Roll

14 number_of_U_hairpin Hydrophilicity

15 Adenine_content U..(

16 G_in_buldges value_line_no_3 RNAfold

17 number_of buldges_in_sec_struc Entropy_2

18 Tilt number_of AU

19 A_in_buldges Tilt

20 Shift Rise

21 number_of_A_pyramidine Entropy_1

22 C(( Slide

23 ( value_line_number_4

24 (.. Guanine_content

25 value_in_3rd_rnafold value_line_no_3 RNAfold(second value)
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4.4.5 Performance on a non-eukaryotic system

Even though ptRNApred is designed to primarily predict eukaryotic sequences,
ptRNApred was tested for performance on RNase P sequences, using 329 RNase P
sequences from the Ribonuclease P Database (Brown, 1999). RNAse P has not only
been described in eukaryotic systems (Jarrous and Reiner, 2007), but rather
distributes among different organisms (Pannucci et al., 1999). Interestingly, our tool

predicted the RNase P sequences with an accuracy of 97.3%.

4.4.6 Performance on mRNA

Over the last few years, several tools have been developed to distinguish coding from
non-coding RNA (Badger and Olsen, 1999; Gaspar et al., 2013; Liu et al., 2006). Our
aim was to develop a novel tool that can differentiate between subclasses of non-
coding RNAs instead of distinguishing coding from non-coding RNAs. Nevertheless,
ptRNApred was tested for performance on mRNA. Therefore, ptRNApred was
challenged by 10,000 mRNA randomly downloaded sequences from Ensembl.
Surprisingly, only 15 of the sequences were misclassified as ptRNA. Therefore, the

accuracy of separating out mRNA is 99.85%.
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5. Discussion

5.1 Candidate gene for regulation of miRNA

Small non-coding RNAs such as miRNAs are reported to contribute to the onset and
severity of a vast array of diseases as well as to the defense against them
(Baumjohann and Ansel, 2013). Thus, miRNAs function as tissue-specific key
regulators, affecting some of the major pathways towards an aggravation of disease
severity when aberrantly expressed (Liu and Kohane, 2009). Accordingly, it is not
surprising to now see miRNAs discussed as potential therapeutic targets (De Guire

et al., 2013; Schmidt, 2014).

However, the underlying mechanisms of such dysregulated miRNA expression
patterns are not well-characterized. Multiple studies have shown that gene
expression alterations across tissues are genetically derived (Liu and Kohane, 2009).
Thus, it is plausible that not only the regulation of gene expression, but also the
expression of miRNAs, is genetically controlled. In this study, we explore the
diversity of miRNAs in inflamed skin tissue and genetic loci that control variations
in miRNA expression levels across a mouse cohort (Gupta et al., submitted BMC
genomics, May 2015). We provide evidence that miRNA levels in skin tissue are not
genetically controlled on the transcriptional level but rather on the post-

transcriptional level mediated by different regulatory factors encoded by the
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genome. Furthermore, we found that some of the miRNA eQTL are restricted to one
particular locus (e.g. chromosome 2, 8 and 15, Results section 4.1.1) in the genome
(eQTL hot spots). Deeper investigation revealed that these miRNAs are under multi-

locus and/or epistatic control.

Interestingly, eQTL hot spots were predominantly found in non-protein-coding
genomic regions. Hence, it is tempting to speculate that miRNA expression might
not necessarily be solely controlled by protein-coding RNA, but rather by non-coding
RNA, which would impose an additional level of post-transcriptional regulation.
This in turn leads to the tempting hypothesis that non-coding RNAs at least in part
regulate miRNA expression. Such a scenario is supported by the fact that some non-
coding RNAs have been shown to bind to miRNAs at the functional level, as
demonstrated by an interaction of linc-MD1 with miR-133 and miR-135 (Cesana et
al., 2011). Here, linc-MD1 works as a sponge and traps these miRNAs preventing
them from binding to the canonical targets. Moreover, a recent study even shows an

interaction network between IncRNAs and miRNAs (Cesana et al., 2011).

Based on our observation of an overlap between QTL controlling miRNA expression
and those affecting the autoimmune blistering skin disease EBA, we conclude that
there are interconnected pathways that simultaneously regulate both disease
development and miRNA expression. This might explain the findings of earlier

studies that show a clear correlation between aberrant miRNA expression and
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autoiommune diseases (Ma et al., 2014; Marcet et al., 2011; Murata et al., 2013;
Otaegui et al., 2009). Accordingly, initiation and/or progression of the disease do not
primarily appear to be caused by aberrant miRNA expression. Quite to the contrary,
aberrant miRNA expression could be a consequence of the disease which in turn
would lead to a downward spiral. Hence, miRNAs could provide a large and
unexplored reservoir of potential biomarkers for EBA and related cutaneous
autoimmune skin blistering diseases, and an interesting target for therapeutic

intervention.

Recently, microbiome QTL from skin samples of the same murine cohort have been
1dentified (Srinivas et al., 2013). The QTLs observed for the microbiome also overlap
with miRNA eQTL. For instance, a QTL for bacteroidales on chromosome 2 (132-152
Mb) was found to overlap with eQTL for miR-409-5p (135-152) with —log p-value of
4.17. An eQTL for mir-449b (50-70 Mb) on chromosome 14, as discussed before
overlaps with QTL for EBA onset and also overlaps with QTL for Nisseria (56-69
Mb). On chromosome 18, we found an overlap for Prevotella (0-12 Mb) and miR-466-
5p (0-20 Mb) with —log p-value of 4.49. On chromosome X, a QTL for streptococcus
(9-34 Mb) and clostridiales (9-36 Mb) overlaps with an eQTL for miR-26a (0-36 Mb).
However, limited information is available about the cause or effect of the observed
statistical associations between miRNA and microbiome. But our results provide

first directions for further investigation.
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Overall, this study sets a complex framework of gene-gene and miRNA-gene-
Iinteraction, which eventually leads to disease development and progression.
Furthermore, it gives evidence that miRNAs are important drivers of cutaneous
autoimmune diseases. Moreover, the study strongly implies there is yet another, so
far largely unexplored, level of regulatory networks, possibly instrumental non-
coding RNAs to affect miRNA expression. In this sense, the aberrant miRNA
expression would indeed be one the responsible elements for the disease progression,

however, the driving force behind it might be a different one.

5.2 Regulating QTL for gene-expression

Expression QTL (eQTL) have proven a major source for information to dissect the
effects from multiple genes influencing the behavior of the phenotype (Cookson et
al., 2009). In autoimmune diseases like EBA they could contribute to the
Iinterpretation of molecular pathways known to contribute to the pathogenesis of the
disease. Using a network approach from eQTL studies and in combination with prior
knowledge from databases, we can predict possible mechanisms shaping both the
onset and severity of the disease. Based on the network analysis, we were also able
to determine possible hub gene candidates, which are now due to be experimentally
confirmed. These new candidate genes provide new potential targets for therapeutic
intervention in autoimmune diseases. Our results show that we were able to identify
existing pathways that contribute to the pathophysiology in autoimmune diseases
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including the cytokine-cytokine pathway, Notch signaling pathway, MAP kinase
pathway, etc. Moreover, the study also provides putative interactions between genes
on the basis of their control from the same chromosomal loci (Breitling et al., 2008).
Such hot spots are likely to be explained by transcriptional factors to be further
modelled by the transcriptional factor binding sites and regulatory RNAs, etc.
However, any such immediate effects may also affect the downstream pathways. For
example, in the hot spot region present on chromosome 6, a cis-regulated gene
Akr1b8 was identified. Akr1b8 (aldo-keto reductase family 1, member B8) has been
shown to be important in the pathogenesis of the autoimmune form of diabetes
(Thessen Hedreul et al., 2013), and in an EAE (autoimmune encephalomyelitis)
mouse model. Drugs such as furosemide increase the level of aldo-keto reductase
(Lee et al., 2007). The drug has been previously shown to induce autoimmune skin

blistering diseases such as bullous pemphigoid (Lee and Downham, 2006).

On chromosome 4, the gene Clstnl was found to be cis-regulated. Mutations in
Clstnl have been associated with Alzheimer disease (Vagnoni et al.,, 2012).
Chemicals like 4-hydroxytamoxifen have been shown to decrease the level of Clstnl
(Scafoglio et al., 2006). Another cis-regulating gene in the same loci was Extl
(exostosin glycosyltransferase 1). The gene regulates the production of exostosin 1
and is involved in forming heparan sulfate complex, which i1s required for the
formation of blood vessels and blood clotting (Simmons et al., 1999). A genetic study

of psoriasis suggests Extl to be one of the candidate markers for this disease
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(Alshobaili et al., 2010). On chromosome 11, Tex2 was a cis-regulated gene. Tex2 is
expressed in the testis and is responsible for phospholipid binding. Its expression
has been also found in the skin and other tissues (Lee and Hong, 2006). Although
the role of the gene has not yet been associated with autoimmune diseases, it could

be an important marker for further investigation.

Since we performed co-expression analysis in combination with eQTL analysis, we
were able to determine genes that may underlie the disease phenotype (EBA). The
module or group of genes following the same pathway led us to identify the hub
candidate genes, which could be investigated in the future. For example, Mlkl was a
candidate hub gene the ‘black’ module. The gene has mixed lineage kinase like the
domain and prognostic bio-marker in pancreatic adenocarcinoma (Colbert et al.,
2013). The gene causes necrotic membrane disruption upon phosphorylation. The
gene 1s also required for Tnf-induced necroptosis (Cai et al., 2014). Tnf-alpha has
been the key marker for many autoimmune diseases. In addition, the gene has been
found to be very important in other chronic inflammatory diseases such as

inflammatory bowel disease (Bradley, 2008).

Moreover, we found 4 hub genes in the ‘yellow’ module, i.e. Sykb, Trem3, Sell and
Ccrl2. All four genes are known to play critical roles in autoimmune diseases in both
humans and mice. A closer analysis shows that these genes are connected to each

other via IL1, IL5 and Tyrobp (Figure 22). The 6 genes present in this pathway are
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known for their function in leukocytes, cell movement of phagocytes and
inflammatory response. A Syk inhibitor such as R406 is a known therapy for

treating patients with autoiommune and allergic inflammatory diseases (Lhermusier

et al., 2011).
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Figure 22: IPA generated pathway for yellow module hub genes. The hub genes are colored in
yellow. Gene such as Tyrobp, 114 and I15 are signifies intermediate genes connecting hub genes. The
dotted arrow show indirect interaction and plain arrows show direct interaction. The above gene

symbol is for mouse identifiers.

Known genes such as Notch3 were also captured in our analysis. The gene was one
of the hub genes in the ‘red’ module together with Pxdn and Cd93. The Notch
signalling pathway is known for T-cell development and activation (Dongre et al.,
2014). Many researchers have reported this pathway to be critical for the

establishment of autoimmune disorders (Ma et al., 2010). However, very little is
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known about the interaction of the hub genes in this module. From the database, we
determined that Notch3 interacts with Pxdn with Hex1 and Nuerogl and CD93 via
the Igflr and Esrl gene. Pharmacological inhibitors such as gamma-secretase
inhibitor and Dapt are known to suppress the Notch signalling pathway in

autoimmune diseases like SLE (Jiao et al., 2014).

Thereby, understanding different gene networks provides a unique opportunity to
study various new mechanisms in silico and identify candidate genes for the disease.
Furthermore, our system genetics approach can easily be employed for any disease
model. In addition to protein-coding genes, we used a similar approach to address

the role of miRNAs in the pathogenesis of autoimmune disease.

5.3 miRNA-targets in EBA

MiRNAs and their targets have been one of the major focuses of the scientific
community in search of new therapeutic approaches. In this work we were able to
not only find the direct target of the miRNAs, but also to determine the group of co-
expressed genes regulated by them. Using statistical genetics, we removed the false
positive genes identified by various target prediction tools. One of the most
important miRNAs identified by this approach was miR-379. Although it has not
been thoroughly studied in autoimmune disease, its regulation of genes that are
important in autoimmune disease makes it an interesting candidate for further

investigation. The genes targets of miR-379 were found to be involved in diseases
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such as cancer (p-value = 2.73e-02) and epithelial neoplasmia (p-value = 5.9e-03)
(Argef10, Atpss, Clmn, Etv5, Ldlrad3, Prx, Rab11fip4 and Tmem184a). The ontology
terms for the set of genes targeted by miR-379 suggest a potential role in functions
such as organism injury and abnormalities (p-value = 4.73e-02). Moreover, the
interactions between Tmeml184a and Pcbdl in mouse and Argefl0 and Prx in
humans have been validated by curated databases. Much of the information about
the gene targets regulated by miR-379 is not known, and hence it needs further
interrogation. Another miRNA that was identified from our analysis is miR-134. The
gene ontology terms suggest that genes targets of this miRNA are responsible for
organism injury and abnormalities (p-value = 1.48e-08) and cellular assembly and
organization (p-value = 2.9e-08). The key molecule targeted by miR-134 is Bcl2,
which is also targeted by miR-127. Interestingly, the genes also interact with other
gene targets of miR-134 (Figure 23). For example, Bcl2 interacts with Oxtr via Prkz,
Carnsl1 via the Myc gene, Dabl via Cavl and Enpp5 via Creb. Other gene targets of
the miRNA such as Dabl were also found to be interacting with targets such as
Abca8 and Enpp5. The interactions amongst the targeted genes suggest the possible

regulation of molecular pathways by miRNAs in autoimmune disease.
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Figure 23: Gene target of miR-134 pathway generated by IPA software. The gene identifiers

represented in the interaction network are for species mouse.

5.4 ptRNA-prediction tool

For the aims of this thesis we crafted a novel user-friendly tool that employs
discriminative properties to (1) distinguish what we here call ‘post-transcriptional
RNA’ from other classes of ncRNA, and (i1) discriminate between the different types

of post-transcriptional RNA (Gupta et al., 2014).

An advantage of the tool is its high accuracy. This is based on its working principle:
More than 90 features that are derived from the primary sequence and secondary
structure are used to define properties for characterization and differentiation
between the subclasses. Analysing the most discriminating feature variables
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according to F-score and Gini index, the most important features are not only based
on the secondary structure, but even more importantly on dinucleotide properties.
This might be due to the fact that many nucleic acid properties such as nucleic acid
stability, for example, seem to depend primarily on the identity of nearest-neighbour
nucleotides (SantaLucia, 1998). Furthermore, the corresponding nearest-neighbour
model is also the basis for RNA secondary structure prediction by free-energy
minimization (Mathews and Turner, 2006). It has long been known that
thermodynamic, but also conformational, nucleotide properties may be of functional
relevance. It has been shown, for example, that promoter locations can be predicted
adopting dinucleotide stiffness parameters derived from molecular dynamic

simulations (Goni et al., 2007). Our tool shows the value of these properties.

Recently, a major effort has been focused on the characterization of snoRNA.
However, there has been no classifier that could predict snRNA, RNase P or RNase
MRP, even though these subclasses have conserved secondary structures. The
1dentification of those RNA classes has as yet been dependent on sequence
alignment. This technique frequently leads to misidentification, especially if the

particular homologous sequence is not present in any database.

Furthermore, ptRNApred can be used to elucidate unknown relations and

derivations of RNA classes. Based on the assumption that evolutionary close RNA
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families have similar sequence properties, one can speculate that tools like

ptRNApred will falsely arrange evolutionary close RNA families in the same group.

A deficiency of this tool is that its accuracy is dependent on the amount of published
ptRNA sequences. Some classes of post-transcriptional RNA, for example Y RNA, at
to this point rarely available in the NONCODE database, making it hard to define
discriminative sequence properties. In the current era of high-throughput next-
generation sequencing, where a large amount of genomic data is generated each day,
post-transcriptional RNA sequences that will be added to the database in the future
can be used to increase training and test sets, setting a basis to improve the
classifier. On the other hand, the discovery of new candidates for post-
transcriptional RNA requires a method that can classify them rapidly and reliably.
Our tool offers a solution to this problem. In addition, facing the huge amount of
new sequences that are found in NGS or RNA-Seq data (Morin et al., 2008), it is
important to include such algorithms into NGS pipelines. For such purposes, we

provide a standalone version.

We implemented our method as a web-based server for free public use. The
transparent and user-friendly design makes it possible for everyone to understand
and employ the tool. Data and scripts for the development of the tool can be
downloaded, allowing anyone to acquire the working principles and improve

ptRNApred.
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Collectively, our tool offers a fast and reliable way to analyse DNA sequences and
outperforms the existing classifiers. Furthermore, the tool provides comprehensive
annotations. Therefore, ptRNApred introduces different opportunities for identifying

and classifying new and un-annotated RNA sequences.
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6. Conclusions

This work presents the first description of the genetic control of microRNAs
(miRNA) expression in the murine skin. With a systems genetics approach, many
key regulators and potential biomarkers for autoimmune skin blistering diseases
were revealed. These were found both among protein-coding transcripts and the

regulatory non-coding RNA.

The introduced predictor ‘ptRNApred’ in broadest the best performing classifier for
prediction of post transcriptional non coding RNA. Focusing on features in sequence
and structures, it depends less on current knowledge and thus facilitates the
analyses to migrate from biased hybridization-based analyses to the whole-

transcriptome RNA-Seq technology.

115



7. Summary

This work describes the role of miRNA and genes with their interactions in
autoimmune skin blistering disease, and newly developed software to identify non-
coding RNAs. In this work, first evidence for the genetic regulation of miRNA and
protein-coding gene expression in skin is provided. In brief, 42 eQTL for 38
cutaneous miRNAs have been identified. Four of these miRNA i.e. eQTL for
miR130b (Chr 9: 36-44 Mb, -log p-value = 4.42), miR-542-3p (Chr 12: 79-103Mb, -log
p-value = 4.73) and miR-449b (Chr 14: 50-72 Mb, -log p-value = 4.49) were mapped
on the QTLs for EBA (an autoimmune skin blistering disease) disease onset on
chromosome 9, 12 and 14. Additionally, eQTL for miR-493 (50-60 Mb, -log p-value =
4.98) was mapped on EBA QTLs for both disease severity and onset on chromosome
19 suggesting common genetic regulation between EBA disease and miRNAs.
Thereafter, the data is integrated using systems genetics approach (weighted gene
co-expression networks) to define plausible miRNA pathways involved in disease
phenotype. Specifically, miRNAs such as miR-379, miR-223 and miR-21 were
speculated to play important role in the pathogenesis of EBA. Moreover, based on
the overlap of eQTL and stronger correlation with onset week of EBA, it is
speculated that miRNAs play crucial role in onset of EBA rather than severity of the

EBA.
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To further investigate, the role of protein coding genes in the EBA disease
phenotype, eQTL for gene expression were also studied. First, 1,039 genes were
1dentified differentially expressed between EBA and healthy skin. Further, to
investigate molecular pathways in EBA, we found 8 differentially co-expressed gene
modules were significantly positively correlated, while 4 were significantly
negatively correlated with EBA disease severity scores (p-value < 0.05).
Additionally, 424 eQTL for 260 mRNA expression levels (Affymetrix probes)
associated with 251 genes from differentially expressed genes. It was observed
83/260 genes were cis-regulated i.e. regulated by its own transcription site, while
177/260 were trans-regulated. We found four eQTL hot spots (genetic loci regulating
expression of more than 20 genes) for gene expression on chromosome 6, 1, 4 and 11.
Combining eQTL, co-expression and manually curated interaction database such as
STRING and DOMINE database we derived hypothetical gene network for EBA
disease phenotype. Genes such as Syk, Notchl, Trem3 and etc. were identified as
potential regulators (hub genes) in disease network. Among the gene such as Syk
and Notchl which have been already described many autoimmune diseases; new
biomarkers such as Mlkl, Ptk2b, and Sell were suggested by the statistical analysis

contributing to skin blistering diseases phenotype.

Since the data for miRNA and gene expression was derived from the same cohort of
advance inter-cross line, it was possible to define miRNA gene targets in EBA.

Therefore we defined miRNA genes target using negative correlation between
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miRNA and gene, prediction using database and overlap of eQTL between miRNA
and gene. Using the described criteria, miRNA targets genes such as Pcbd1 and Bcl2
for miR-379 and miR-134 are suggested in the study for the pathogenesis of skin

blistering disease.

Many non-coding classes of RNA other than miRNA which are known as post
transcriptional RNA have been described in last decade. These post transcriptional
RNA includes snoRNA, snRNA, telomerase RNA and etc. Though regulations of
these RNA are poorly understood, but they affect various disease phenotypes.
Therefore, it is important to identify them in order to understand the pathogenesis
of disease. A self-developed software “ptRNApred” categorizes post-transcriptional
non-coding RNA employing a machine learning algorithm. It distinguishes multiple
sub-classes such as miRNA, snoRNA, snRNA as possible regulators of disease and
prepares the analyses on non-coding RNA interference with genes to be repeated on
whole transcriptome data derived with RNAseq data and various sequencing
technologies. Moreover, it surpasses the sensitivity and specificity of the existing
tool such as snoReport software designed to predict snoReport, a sub class of post

transcriptional RNA.

The work finds its importance as it is first step to understand the complete

pathways of genes, miRNA and other non-coding RNA in pathogenesis of an
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autoimmune disease of the skin. As such, it will guide respective investigations in

autoimmune diseases also for tissues that are less easily accessible.
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8. Zusammenfassung

Diese Dissertation beschreibt die Rolle von miRNA und Genen, sowie deren
Interaktionen in blasenbildenden Autoimmunerkrankungen in einer Kohorte von
AIL Mausen!. Des Weiteren wird eine neu entwickelte Software zur Identifikation
von nicht-kodierender RNA beschrieben. Diese Arbeit liefert erste Hinweise auf die
genetische Regulation von miRNA und Protein-kodierenden Genen in der Haut. Es
wurden 42 eQTLZ zu 38 kutan-exprimierten miRNAs identifiziert. Drei dieser
miRNAs, genauer, die eQTL fiir miR-130b (Chr 9: 36-44 Mb, -log p-Wert = 4.42),
miR-542-3p (Chr 12: 79-103Mb, -log p-Wert = 4.73) und miR-449b (Chr 14: 50-72
Mb, -log p-Wert = 4.49) tuberlagerten sich mit drei QTL, welche mit dem
Krankheitsbeginn der EBA (Epidermolysis bullosa acquisita, eine blasenbildende
Autoimmunerkrankung) assoziiert sind und entsprechend ebenfalls auf den
Chromosomen 9, 12 und 14 liegen. Zusétzlich wurde eine Uberschneidung des eQTL
fir miR-493 (Chr:19 50-60 Mb, -log p-Wert = 4.98) mit einem QTL entdeckt, welcher
mit dem Schweregrad und Beginn der EBA assoziiert ist und ebenfalls auf
Chromosome 19 liegt. Zusammengenommen deuten die Ergebnisse auf eine
gemeinsame genetische Regulation der vier identifizierten miRNAs und den
Pathomechanismen der EBA hin. Die gewonnenen Daten wurden darauffolgend
nach einem systemgenetischen Ansatz (gewichtete Genkoexpressionsnetzwerke)
integriert, um plausible miRNA Signalwege zu definieren, welche an der
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Auspragung des Krankheitsbildes der EBA beteiligt sind. Insbesondere bei den
miRNAs miR-379, miR-223 und miR-21 kann iiber eine wichtige Rolle in der
Pathogenese der EBA spekuliert werden. Die gefundenen Uberschneidungen
zwischen miRNA eQTL und den QTL fir EBA, sowie eine starke Korrelation der
eQTL mit dem Krankheitsbeginn der EBA lassen auf eine bedeutende Rolle der
miRNAs bei der Induktion der EBA schlieBen und weniger auf eine Korrelation mit

dem Schweregrad der Erkrankung.

Um zusatzlich auch die Rolle von Protein-kodierenden Genen im Krankheitsbild der
EBA genauer zu uberprifen wurden eQTL fiir Genexpression untersuchen.
Zunichst wurde die Genexpression in gesunder Haut mit der Genexpression in
Haut mit EBA Laésionen verglichen, wobei 1039 differentiell exprimierte Gene
1dentifiziert wurden. Um die zugrundeliegenden molekularen Signalwege fiur die
EBA zu identifizieren wurden differenziell koexprimierte Genmodule untersucht,
von denen 8 signifikant positiv und 4 signifikant negativ mit dem Schweregrad der
EBA korrelierten (p-Wert < 0.05). Zusatzlich konnten 424 eQTL, welche mit den
Expressionsniveaus (Affymetrix Gensonden) von 260 mRNAs korrelierten, mit 251
der in EBA differenziell exprimierten Gene assoziiert werden. 83 der 260 Gene
waren cis-reguliert3, wohingegen 177 der 260 Gene als trans-reguliert identifiziert
wurden. Es wurden vier eQTL Hotspots (genetische Loci, welche die Expression von
mehr als 20 Gene regulieren) entdeckt, welche an der Genexpression auf den

Chromosomen 1, 4, 6, und 11 beteiligt sind. Durch die Kombination von eQTL
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Positionen, Koexpressionsdaten von Genen und der Verwendung von manuell
kuratierter Interaktionsdatenbanken, wie die STRING und DOMINE Datenbanken,
konnte ein hypothetisches Gennetzwerk fiir das Krankheitsbild der EBA erstellt
werden. Gene wie Syk, Notchl, Trem3 und weitere Gene wurden als potentielle
Regulatoren (Hub-Gene) im Gennetzwerk fiir die Erkrankung identifiziert. Neben
Genen wie Syk und Notchl, deren Bedeutung schon fiir diverse
Autoimmunerkrankungen beschrieben wurden, konnten durch Anwendung von

statistischen Analysen neue Biomarker, wie MIkI, Ptk2b, und Sell, vorgeschlagen

werden, die Einfluss auf die  Auspridgung von  blasenbildenden

Autoimmunerkrankungen haben kénnten.

Die Datensitze zu miRNA und Genexpression wurden in der selben Kohorte von
AIL Mausen generiert, wodurch es moglich war Gene zu identifizieren die im
Kontext des Krankheitsbildes der EBA durch miRNA beeinflusst wurden. Um die
Interaktionspartner von miRNA und dem entsprechenden Zielgen zu definieren
wurde nach negativen Korrelationen zwischen miRNA und Genexpression gesucht.
Weiterhin wurden Vorhersagen mit Online-Datenbanken erstellt und die
Uberlappung von eQTL zwischen miRNA und Gensequenzen bestimmt. Mit den
genannten Kriterien wurden fir die miRNAs miR-379 und miR-134 die
entsprechenden Zielgene Pcbdl und Bcl2 vorhergesagt, welche Einfluss auf die

Pathogenese von blasenbilden Autoimmunerkrankungen haben kénnten.
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Im Laufe der letzten 10 Jahre wurden, neben miRNAs, viele neue Klassen von
nicht-kodierender RNA definiert und werden allgemein als posttranskriptionelle
RNA beschrieben. Diese posttranskriptionellen RNAs beinhalten unter anderem
snoRNA, snRNA und die RNA-Komponente der Telomerase (Telomerase RNA
component; TERC). Obwohl iiber die Regulation dieser RNA Varianten nur wenig
bekannt 1ist, gibt es viele Hinweise darauf, dass sie die Pathogenese
verschiedendster Erkrankungen beeinflussen. Eine, wihrend dieser Dissertation
eigens entwickelte, Software namens "ptRNApred" kategorisiert
posttranskriptionelle nicht-kodierende RNA mittels eines Algorithmus aus dem
Bereich des maschinellen Lernens. Die Software wurde programmiert um
verschiedene Unterklasse von RNAs, wie etwa miRNA, snoRNA, snRNA und mehr,
zu unterscheiden. Die Vorhersage von nicht-kodierenden RNAs ermoglicht eine
darauffolgende Untersuchung von Genexpressionsinterferenz durch nicht-
kodierenden RNAs und kann durch Transkriptionsdaten, generiert aus RNA
Sequenzierungen und anderen Sequenziertechnologien, erweitert und validiert
werden. Weiterhin sind Sensitivitat und Spezifitdt dieser Software hoéher, als in
anderen vorhandenen Programmen, wie etwa der Software "snoReport", welche

lediglich zur Vorhersage von snoRNA dient.

123



Diese  Dissertation  tragt zum = Verstdndnis der  Pathogenese von
Autoimmunerkrankungen der Haut bei und ist ein erster Schritt zur Identifikation
der vollstdndigen Signalwege und Wechselwirkungen, tiber die Gene mit miRNA
und andere nicht-kodierenden RNAs interagieren und die Auspriagung von
Erkrankungen beeinflussen. Die Untersuchungen in dieser Dissertation kénnen

richtungsweisend auch fiir anderen Autoimmunerkrankungen angewendet werden.

124



9. References

Abu-Hijleh, G., Reid, O., and Scothorne, R.J. (1997). Cell death in the developing chick knee joint: I.
Spatial and temporal patterns. Clin Anat 10, 183-200.

Alshobaili, H.A., Shahzad, M., Al-Marshood, A., Khalil, A., Settin, A., and Barrimah, I. (2010). Genetic
background of psoriasis. Int J Health Sci (Qassim) 4, 23-29.

Altay, G., and Emmert-Streib, F. (2011). Structural influence of gene networks on their inference: analysis
of C3NET. Biol Direct 6, 31.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search
tool. J Mol Biol 215, 403-410.

Amagai, M., Hashimoto, T., Green, K.J., Shimizu, N., and Nishikawa, T. (1995). Antigen-specific
immunoadsorption of pathogenic autoantibodies in pemphigus foliaceus. J Invest Dermatol 104, 895-
901.

Artzi, S., Kiezun, A., and Shomron, N. (2008). miRNAminer: a tool for homologous microRNA gene search.
BMC Bioinformatics 9, 39.

Badger, J.H., and Olsen, G.J. (1999). CRITICA: coding region identification tool invoking comparative
analysis. Mol Biol Evol 16, 512-524.

Ballabio, E., Mitchell, T., van Kester, M.S., Taylor, S., Dunlop, H.M., Chi, J., Tosi, I., Vermeer, M.H.,
Tramonti, D., Saunders, N.J.,, et al. (2010). MicroRNA expression in Sezary syndrome: identification,
function, and diagnostic potential. Blood 116, 1105-1113.

Baumjohann, D., and Ansel, K.M. (2013). MicroRNA-mediated regulation of T helper cell differentiation
and plasticity. Nat Rev Immunol 13, 666-678.

Beck, D., Ayers, S., Wen, J., Brandl, M.B., Pham, T.D., Webb, P., Chang, C.C., and Zhou, X. (2011).
Integrative analysis of next generation sequencing for small non-coding RNAs and transcriptional
regulation in Myelodysplastic Syndromes. BMC Med Genomics 4, 19.

Beck, T., Hastings, R.K., Gollapudi, S., Free, R.C., and Brookes, A.J. (2014). GWAS Central: a
comprehensive resource for the comparison and interrogation of genome-wide association studies. Eur J
Hum Genet 22, 949-952.

Beckmann, C., Brittnacher, M., Ernst, R., Mayer-Hamblett, N., Miller, S.I., and Burns, J.L. (2005). Use of
phage display to identify potential Pseudomonas aeruginosa gene products relevant to early cystic
fibrosis airway infections. Infect Immun 73, 444-452.

Beebe, A.M., Cua, D.J., and de Waal Malefyt, R. (2002). The role of interleukin-10 in autoimmune disease:
systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Cytokine Growth Factor Rev 13, 403-
412.

Beitzinger, M., and Meister, G. (2011). Experimental identification of microRNA targets by
immunoprecipitation of Argonaute protein complexes. Methods Mol Biol 732, 153-167.

Below, J.E., Gamazon, E.R., Morrison, J.V., Konkashbaev, A., Pluzhnikov, A., McKeigue, P.M., Parra, E.J.,
Elbein, S.C., Hallman, D.M., Nicolae, D.L,, et al. (2011). Genome-wide association and meta-analysis in
populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and
enrichment for expression quantitative trait loci in top signals. Diabetologia 54, 2047-2055.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne,
P.E. (2000). The Protein Data Bank. Nucleic Acids Res 28, 235-242.

125



Berwick, R. (2002). An Idiot's guide to Support vector machines (SVMs).

Bhattacharjee, A., Richards, W.G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C., Beheshti, J., Bueno, R,,
Gillette, M., et al. (2001). Classification of human lung carcinomas by mRNA expression profiling reveals
distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A 98, 13790-13795.

Blanco, P., Palucka, A.K., Pascual, V., and Banchereau, J. (2008). Dendritic cells and cytokines in human
inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19, 41-52.

Bock, J.R., and Gough, D.A. (2001). Predicting protein--protein interactions from primary structure.
Bioinformatics 17, 455-460.

Bompfunewerer, A.F., Flamm, C., Fried, C., Fritzsch, G., Hofacker, I.L., Lehmann, J., Missal, K., Mosig, A.,
Muller, B., Prohaska, S.J., et al. (2005). Evolutionary patterns of non-coding RNAs. Theory Biosci 123, 301-
369.

Bonazzi, V.F., Stark, M.S., and Hayward, N.K. (2012). MicroRNA regulation of melanoma progression.
Melanoma Res 22, 101-113.

Borradori, L., and Sonnenberg, A. (1999). Structure and function of hemidesmosomes: more than simple
adhesion complexes. J Invest Dermatol 112, 411-418.

Boser, B., Guyon, |., Vapnik,V (1992). A training algorithm for optimal margin classifiers. Proceedings of
the Fifth Annual Work-shop on Computational Learning Theory,.

Botta, V., Louppe, G., Geurts, P., and Wehenkel, L. (2014). Exploiting SNP correlations within random
forest for genome-wide association studies. PLoS One 9, €93379.

Boulesteix, A., Janitza S, Konig, I. (2012). Overview of random forest methodology and practical guidance
with emphasis on computational biology and bioinformatics. Wiley Int Rev Data Min and Knowl Disc 2,
493-507.

Bradley, J.R. (2008). TNF-mediated inflammatory disease. J Pathol 214, 149-160.

Breiman, L. (2001). Random Forests. Machine Learning 45, 5-32.

Breiman L. (1996). Bagging Predictors. Machine Learning 26, 123-140.

Breiman L. (1996b). Out-of-bag estimation. Technical report, Department of Statistics: University of
California, Berkeley.

Breiman L., F.J.H., Olshen R.A. and Stone C.J. (1984). Classification and Regression Trees. Belmont,
California.

Breitling, R., Li, Y., Tesson, B.M., Fu, J., Wu, C., Wiltshire, T., Gerrits, A., Bystrykh, L.V., de Haan, G., Su,
A.l, et al. (2008). Genetical genomics: spotlight on QTL hotspots. PLoS Genet 4, e1000232.

Broman, K.W. (2001). Review of statistical methods for QTL mapping in experimental crosses. Lab Anim
(NY) 30, 44-52.

Brown, J.W. (1999). The Ribonuclease P Database. Nucleic Acids Res 27, 314.

Bruckner, A., Polge, C., Lentze, N., Auerbach, D., and Schlattner, U. (2009). Yeast two-hybrid, a powerful
tool for systems biology. Int J Mol Sci 10, 2763-2788.

Burge, S.W., Daub, J., Eberhardt, R., Tate, J., Barquist, L., Nawrocki, E.P., Eddy, S.R., Gardner, P.P., and
Bateman, A. (2013). Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41, D226-232.

Byvatov, E., and Schneider, G. (2003). Support vector machine applications in bioinformatics. Appl
Bioinformatics 2, 67-77.

Cai, Z., litkaew, S., Zhao, J., Chiang, H.C., Choksi, S., Liu, J., Ward, Y., Wu, L.G., and Liu, Z.G. (2014). Plasma
membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell
Biol 16, 55-65.

Calin, G.A., and Croce, C.M. (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6, 857-866.

126



Capuano, M,, laffaldano, L., Tinto, N., Montanaro, D., Capobianco, V., Izzo, V., Tucci, F., Troncone, G.,
Greco, L., and Sacchetti, L. (2011). MicroRNA-449a overexpression, reduced NOTCH1 signals and scarce
goblet cells characterize the small intestine of celiac patients. PLoS One 6, €29094.

Carlson, T., Kroenke, M., Rao, P., Lane, T.E., and Segal, B. (2008). The Th17-ELR+ CXC chemokine pathway
is essential for the development of central nervous system autoimmune disease. J Exp Med 205, 811-
823.

Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N., Oyama, R., Ravasi, T., Lenhard,
B., Wells, C., et al. (2005). The transcriptional landscape of the mammalian genome. Science 309, 1559-
1563.

Carvalho, B.S., and Irizarry, R.A. (2010). A framework for oligonucleotide microarray preprocessing.
Bioinformatics 26, 2363-2367.

Cavaille, J., Hadjiolov, A.A., and Bachellerie, J.P. (1996). Processing of mammalian rRNA precursors at the
3' end of 18S rRNA. Identification of cis-acting signals suggests the involvement of U13 small nucleolar
RNA. Eur J Biochem 242, 206-213.

Cesana, M., Cacchiarelli, D., Legnini, ., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A., and
Bozzoni, I. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing
endogenous RNA. Cell 147, 358-369.

Chalaris, A., Adam, N., Sina, C., Rosenstiel, P., Lehmann-Koch, J., Schirmacher, P., Hartmann, D., Cichy, J.,
Gavrilova, 0., Schreiber, S., et al. (2010). Critical role of the disintegrin metalloprotease ADAM17 for
intestinal inflammation and regeneration in mice. J Exp Med 207, 1617-1624.

Chang CC, L.C. (2001,2007). LIBSVM: a library for supportvector machines.

Chatr-Aryamontri, A., Breitkreutz, B.J., Heinicke, S., Boucher, L., Winter, A., Stark, C., Nixon, J., Ramage,
L., Kolas, N., O'Donnell, L., et al. (2013). The BioGRID interaction database: 2013 update. Nucleic Acids
Res 41, D816-823.

Chen, S.H., Sun, J., Dimitrov, L., Turner, A.R., Adams, T.S., Meyers, D.A., Chang, B.L., Zheng, S.L.,
Gronberg, H., Xu, J., et al. (2008). A support vector machine approach for detecting gene-gene
interaction. Genet Epidemiol 32, 152-167.

Chen, X., and Ishwaran, H. (2012). Random forests for genomic data analysis. Genomics 99, 323-329.
Chu, C.Y., and Rana, T.M. (2006). Translation repression in human cells by microRNA-induced gene
silencing requires RCK/p54. PLoS Biol 4, e210.

Civelek, M., and Lusis, A.J. (2014). Systems genetics approaches to understand complex traits. Nat Rev
Genet 15, 34-48.

Colbert, L.E., Fisher, S.B., Hardy, C.W., Hall, W.A., Saka, B., Shelton, J.W., Petrova, A.V., Warren, M.D.,
Pantazides, B.G., Gandhi, K., et al. (2013). Pronecrotic mixed lineage kinase domain-like protein
expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma.
Cancer 119, 3148-3155.

Colonna, M. (2003). TREMs in the immune system and beyond. Nat Rev Immunol 3, 445-453.

Cookson, W., Liang, L., Abecasis, G., Moffatt, M., and Lathrop, M. (2009). Mapping complex disease traits
with global gene expression. Nat Rev Genet 10, 184-194.

Cooper, G.S., Bynum, M.L., and Somers, E.C. (2009). Recent insights in the epidemiology of autoimmune
diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun 33,
197-207.

Cooper, G.S., and Stroehla, B.C. (2003). The epidemiology of autoimmune diseases. Autoimmun Rev 2,
119-125.

127



Csorba, K., Chiriac, M.T., Florea, F., Ghinia, M.G., Licarete, E., Rados, A., Sas, A., Vuta, V., and Sitaru, C.
(2014). Blister-inducing antibodies target multiple epitopes on collagen VIl in mice. J Cell Mol Med 18,
1727-1739.

Cutler, A., and Stevens, J.R. (2006). Random forests for microarrays. Methods Enzymol 411, 422-432.
Dai, R., McReynolds, S., Leroith, T., Heid, B., Liang, Z., and Ahmed, S.A. (2013). Sex differences in the
expression of lupus-associated miRNAs in splenocytes from lupus-prone NZB/WF1 mice. Biol Sex Differ 4,
19.

Darty, K., Denise, A., and Ponty, Y. (2009). VARNA: Interactive drawing and editing of the RNA secondary
structure. Bioinformatics 25, 1974-1975.

De Guire, V., Robitaille, R., Tetreault, N., Guerin, R., Menard, C., Bambace, N., and Sapieha, P. (2013).
Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human
diseases: promises and challenges. Clin Biochem 46, 846-860.

Delfino, K.R., and Rodriguez-Zas, S.L. (2013). Transcription factor-microRNA-target gene networks
associated with ovarian cancer survival and recurrence. PLoS One 8, e58608.

Ding, C.H., and Dubchak, I. (2001). Multi-class protein fold recognition using support vector machines
and neural networks. Bioinformatics 17, 349-358.

Ding, Y. (2006). Statistical and Bayesian approaches to RNA secondary structure prediction. RNA 12, 323-
331.

Dongre, A., Surampudi, L., Lawlor, R.G., Faug, A.H., Miele, L., Golde, T.E., Minter, L.M., and Osborne, B.A.
(2014). Non-Canonical Notch Signaling Drives Activation and Differentiation of Peripheral CD4(+) T Cells.
Front Immunol 5, 54.

Dubois, P.C., Trynka, G., Franke, L., Hunt, K.A., Romanos, J., Curtotti, A., Zhernakova, A., Heap, G.A.,
Adany, R., Aromaa, A., et al. (2010). Multiple common variants for celiac disease influencing immune
gene expression. Nat Genet 42, 295-302.

Dweep, H., Gretz, N., and Sticht, C. (2014). miRWalk database for miRNA-target interactions. Methods
Mol Biol 1182, 289-305.

Dweep, H., Sticht, C., Pandey, P., and Gretz, N. (2011). miRWalk--database: prediction of possible miRNA
binding sites by "walking" the genes of three genomes. J Biomed Inform 44, 839-847.

Eastmond, C.J. (1994). Psoriatic arthritis. Genetics and HLA antigens. Baillieres Clin Rheumatol 8, 263-
276.

Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis JOURNAL
OF THE AMERICAN STATISTICAL ASSOCIATION 99, 96-104.

Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-
wide expression patterns. Proc Natl Acad Sci U S A 95, 14863-14868.

Emmert-Streib, F., de Matos Simoes, R., Mullan, P., Haibe-Kains, B., and Dehmer, M. (2014). The gene
regulatory network for breast cancer: integrated regulatory landscape of cancer hallmarks. Front Genet
5, 15.

Esteller, M. (2011). Non-coding RNAs in human disease. Nat Rev Genet 12, 861-874.

Farber, C.R. (2012). Systems genetics: a novel approach to dissect the genetic basis of osteoporosis. Curr
Osteoporos Rep 10, 228-235.

Feltus, F.A. (2014). Systems genetics: a paradigm to improve discovery of candidate genes and
mechanisms underlying complex traits. Plant Sci 223, 45-48.

Flicek, P., Ahmed, I., Amode, M.R., Barrell, D., Beal, K., Brent, S., Carvalho-Silva, D., Clapham, P., Coates,
G., Fairley, S., et al. (2013). Ensembl 2013. Nucleic Acids Res 41, D48-55.

128



Flutre, T., Wen, X., Pritchard, J., and Stephens, M. (2013). A statistical framework for joint eQTL analysis
in multiple tissues. PLoS Genet 9, e1003486.

Fortino, V., Kinaret, P., Fyhrquist, N., Alenius, H., and Greco, D. (2014). A robust and accurate method for
feature selection and prioritization from multi-class OMICs data. PLoS One 9, e107801.

Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A,, Lin, J., Minguez, P., Bork,
P., von Mering, C., et al. (2013). STRING v9.1: protein-protein interaction networks, with increased
coverage and integration. Nucleic Acids Res 41, D808-815.

Friedel, M., Nikolajewa, S., Suhnel, J., and Wilhelm, T. (2009). DiProGB: the dinucleotide properties
genome browser. Bioinformatics 25, 2603-2604.

Fuentes, G., Oyarzabal, J., and Rojas, A.M. (2009). Databases of protein-protein interactions and their use
in drug discovery. Curr Opin Drug Discov Devel 12, 358-366.

Fulci, V., Scappucci, G., Sebastiani, G.D., Giannitti, C., Franceschini, D., Meloni, F., Colombo, T., Citarella,
F., Barnaba, V., Minisola, G., et al. (2010). miR-223 is overexpressed in T-lymphocytes of patients
affected by rheumatoid arthritis. Hum Immunol 71, 206-211.

Gaspar, P., Moura, G., Santos, M.A., and Oliveira, J.L. (2013). mRNA secondary structure optimization
using a correlated stem-loop prediction. Nucleic Acids Res 41, e73.

Gautier, L., Cope, L., Bolstad, B.M., and Irizarry, R.A. (2004). affy--analysis of Affymetrix GeneChip data at
the probe level. Bioinformatics 20, 307-315.

Geng, X., Zhang, R,, Yang, G., Jiang, W., and Xu, C. (2012). Interleukin-2 and autoimmune disease
occurrence and therapy. Eur Rev Med Pharmacol Sci 16, 1462-1467.

Gestermann, N., Mekinian, A., Comets, E., Loiseau, P., Puechal, X., Hachulla, E., Gottenberg, J.E.,
Mariette, X., and Miceli-Richard, C. (2010). STAT4 is a confirmed genetic risk factor for Sjogren's
syndrome and could be involved in type 1 interferon pathway signaling. Genes Immun 11, 432-438.
Gibbs, J.E., Blaikley, J., Beesley, S., Matthews, L., Simpson, K.D., Boyce, S.H., Farrow, S.N., Else, K.J., Singh,
D., Ray, D.W.,, et al. (2012). The nuclear receptor REV-ERBalpha mediates circadian regulation of innate
immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A 109, 582-587.
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L.,
Downing, J.R., Caligiuri, M.A., et al. (1999). Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science 286, 531-537.

Gommans, W.M., and Berezikov, E. (2012). Controlling miRNA regulation in disease. Methods Mol Biol
822, 1-18.

Goni, J.R., Perez, A., Torrents, D., and Orozco, M. (2007). Determining promoter location based on DNA
structure first-principles calculations. Genome Biol 8, R263.

Gonzales, N.M., and Palmer, A.A. (2014). Fine-mapping QTLs in advanced intercross lines and other
outbred populations. Mamm Genome 25, 271-292.

Greenlee-Wacker, M.C., Galvan, M.D., and Bohlson, S.S. (2012). CD93: recent advances and implications
in disease. Curr Drug Targets 13, 411-420.

Gregersen, P.K., Diamond, B., and Plenge, R.M. (2012). GWAS implicates a role for quantitative immune
traits and threshold effects in risk for human autoimmune disorders. Curr Opin Immunol 24, 538-543.
Grieve, I.C., Dickens, N.J., Pravenec, M., Kren, V., Hubner, N., Cook, S.A., Aitman, T.J., Petretto, E., and
Mangion, J. (2008). Genome-wide co-expression analysis in multiple tissues. PLoS One 3, e4033.
Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., and Eddy, S.R. (2003). Rfam: an RNA family
database. Nucleic Acids Res 31, 439-441.

129



Gstaiger, M., and Aebersold, R. (2009). Applying mass spectrometry-based proteomics to genetics,
genomics and network biology. Nat Rev Genet 10, 617-627.

Guinea-Viniegra, J., Jimenez, M., Schonthaler, H.B., Navarro, R., Delgado, Y., Concha-Garzon, M.J.,
Tschachler, E., Obad, S., Dauden, E., and Wagner, E.F. (2014). Targeting miR-21 to treat psoriasis. Sci
Transl Med 6, 225re221.

Guler, M.L., Ligons, D.L., Wang, Y., Bianco, M., Broman, K.W., and Rose, N.R. (2005). Two autoimmune
diabetes loci influencing T cell apoptosis control susceptibility to experimental autoimmune myocarditis.
JImmunol 174, 2167-2173.

Gupta, Y., Moller, S., Zillikens, D., Boehncke, W.H., Ibrahim, S.M., and Ludwig, R.J. (2013). Genetic control
of psoriasis is relatively distinct from that of metabolic syndrome and coronary artery disease. Exp
Dermatol 22, 552-553.

Gupta, Y., Witte, M., Moller, S., Ludwig, R.J., Restle, T., Zillikens, D., and lbrahim, S.M. (2014). ptRNApred:
computational identification and classification of post-transcriptional RNA. Nucleic Acids Res 42, e167.
Hertel, J., Hofacker, I.L., and Stadler, P.F. (2008). SnoReport: computational identification of snoRNAs
with unknown targets. Bioinformatics 24, 158-164.

Hertel, J., and Stadler, P.F. (2006). Hairpins in a Haystack: recognizing microRNA precursors in
comparative genomics data. Bioinformatics 22, e197-202.

Hu, Z., Chang, Y.C., Wang, Y., Huang, C.L,, Liu, Y., Tian, F., Granger, B., and Delisi, C. (2013). VisANT 4.0:
Integrative network platform to connect genes, drugs, diseases and therapies. Nucleic Acids Res 41,
W225-231.

Hua, S., and Sun, Z. (2001). A novel method of protein secondary structure prediction with high segment
overlap measure: support vector machine approach. J Mol Biol 308, 397-407.

Huang, D.W., Sherman, B.T., Tan, Q., Collins, J.R., Alvord, W.G., Roayaei, J., Stephens, R., Baseler, M.W.,
Lane, H.C., and Lempicki, R.A. (2007). The DAVID Gene Functional Classification Tool: a novel biological
module-centric algorithm to functionally analyze large gene lists. Genome Biol 8, R183.

lancu, 0.D., Darakjian, P., Kawane, S., Bottomly, D., Hitzemann, R., and McWeeney, S. (2012). Detection
of expression quantitative trait Loci in complex mouse crosses: impact and alleviation of data quality and
complex population substructure. Front Genet 3, 157.

Ichihara, A, Jinnin, M., Yamane, K., Fujisawa, A., Sakai, K., Masuguchi, S., Fukushima, S., Maruo, K., and
Ihn, H. (2011). microRNA-mediated keratinocyte hyperproliferation in psoriasis vulgaris. Br J Dermatol
165, 1003-1010.

Issabekova, A., Berillo, O., Regnier, M., and Anatoly, I. (2012). Interactions of intergenic microRNAs with
mRNAs of genes involved in carcinogenesis. Bioinformation 8, 513-518.

Jacobson, D.L., Gange, S.J., Rose, N.R., and Graham, N.M. (1997). Epidemiology and estimated population
burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 84, 223-243.
Jankowsky, A., Guenther, U.P., and Jankowsky, E. (2011). The RNA helicase database. Nucleic Acids Res
39, D338-341.

Jarrous, N., and Reiner, R. (2007). Human RNase P: a tRNA-processing enzyme and transcription factor.
Nucleic Acids Res 35, 3519-3524.

liang, P., Wu, H., Wang, W., Ma, W., Sun, X., and Lu, Z. (2007). MiPred: classification of real and pseudo
microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res
35, W339-344.

130



Jiao, Z., Wang, W., Hua, S., Liu, M., Wang, H., Wang, X., Chen, Y., Xu, H., and Lu, L. (2014). Blockade of
Notch signaling ameliorates murine collagen-induced arthritis via suppressing Thl and Th17 cell
responses. Am J Pathol 184, 1085-1093.

Johansson, A,, Loset, M., Mundal, S.B., Johnson, M.P., Freed, K.A., Fenstad, M.H., Moses, E.K., Austgulen,
R., and Blangero, J. (2011). Partial correlation network analyses to detect altered gene interactions in
human disease: using preeclampsia as a model. Hum Genet 129, 25-34.

John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. (2004). Human MicroRNA targets.
PLoS Biol 2, e363.

Jonkman, M.F., Schuur, J., Dijk, F., Heeres, K., de Jong, M.C., van der Meer, J.B., Yancey, K.B., and Pas,
H.H. (2000). Inflammatory variant of epidermolysis bullosa acquisita with IgG autoantibodies against type
VIl collagen and laminin alpha3. Arch Dermatol 136, 227-231.

Jung, C.H., Hansen, M.A., Makunin, L.V., Korbie, D.J., and Mattick, J.S. (2010). Identification of novel non-
coding RNAs using profiles of short sequence reads from next generation sequencing data. BMC
Genomics 11, 77.

Kaminski, W., and Strumillo, P. (1997). Kernel orthonormalization in radial basis function neural
networks. IEEE Trans Neural Netw 8, 1177-1183.

Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A., Heckerman, D., Daly, M.J., and Eskin, E. (2008). Efficient
control of population structure in model organism association mapping. Genetics 178, 1709-1723.
Karlebach, G., and Shamir, R. (2008). Modelling and analysis of gene regulatory networks. Nat Rev Mol
Cell Biol 9, 770-780.

Katoh, M. (2004). Identification and characterization of ARHGAP24 and ARHGAP25 genes in silico. Int J
Mol Med 14, 333-338.

Kim, T., and Reitmair, A. (2013). Non-Coding RNAs: Functional Aspects and Diagnostic Utility in Oncology.
Int J Mol Sci 14, 4934-4968.

Kim, V.N., Han, J., and Siomi, M.C. (2009). Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10,
126-139.

Kiss, T. (2001). Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20,
3617-3622.

Kitano, H. (2002a). Computational systems biology. Nature 420, 206-210.

Kitano, H. (2002b). Systems biology: a brief overview. Science 295, 1662-1664.

Kollaee, A., Ghaffarpor, M., Ghlichnia, H.A., Ghaffari, S.H., and Zamani, M. (2012). The influence of the
HLA-DRB1 and HLA-DQB1 allele heterogeneity on disease risk and severity in Iranian patients with
multiple sclerosis. Int J Immunogenet 39, 414-422.

Koulmanda, M., Bhasin, M., Awdeh, Z., Qipo, A., Fan, Z., Hanidziar, D., Putheti, P., Shi, H., Csizuadia, E.,
Libermann, T.A,, et al. (2012). The role of TNF-alpha in mice with type 1- and 2- diabetes. PLoS One 7,
e33254.

Kramer, A., Green, J., Pollard, J., Jr., and Tugendreich, S. (2014). Causal analysis approaches in Ingenuity
Pathway Analysis. Bioinformatics 30, 523-530.

Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I.,
Gunsalus, K.C., Stoffel, M., et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37, 495-
500.

Krill, K.T., Gurdziel, K., Heaton, J.H., Simon, D.P., and Hammer, G.D. (2013). Dicer deficiency reveals
microRNAs predicted to control gene expression in the developing adrenal cortex. Mol Endocrinol 27,
754-768.

131



Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., and Marra, M.A.
(2009). Circos: an information aesthetic for comparative genomics. Genome Res 19, 1639-1645.

Kuhn, M., Szklarczyk, D., Pletscher-Frankild, S., Blicher, T.H., von Mering, C., Jensen, L.J., and Bork, P.
(2014). STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res 42, D401-
407.

Kumarswamy, R., Volkmann, ., and Thum, T. (2011). Regulation and function of miRNA-21 in health and
disease. RNA Biol 8, 706-713.

Kung, H.F., and Huang, J.D. (2001). [The mouse model and human disease]. Zhongguo Yi Xue Ke Xue Yuan
Xue Bao 23, 2-7.

Kurihara, Y., and Watanabe, Y. (2010). Processing of miRNA precursors. Methods Mol Biol 592, 231-241.
Lagesen, K., Hallin, P., Rodland, E.A., Staerfeldt, H.H., Rognes, T., and Ussery, D.W. (2007). RNAmmer:
consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35, 3100-3108.

Lala, S., Ogura, Y., Osborne, C., Hor, S.Y., Bromfield, A., Davies, S., Ogunbiyi, O., Nunez, G., and Keshav, S.
(2003). Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125, 47-57.
Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics 9, 559.

Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a hierarchical cluster tree: the
Dynamic Tree Cut package for R. Bioinformatics 24, 719-720.

Laslett, D., and Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in
nucleotide sequences. Nucleic Acids Res 32, 11-16.

Le Cao, K.A., Boitard, S., and Besse, P. (2011). Sparse PLS discriminant analysis: biologically relevant
feature selection and graphical displays for multiclass problems. BMC Bioinformatics 12, 253.

Lee, H.W., Kim, W.Y., Song, H.K., Yang, C.W., Han, K.H., Kwon, H.M., and Kim, J. (2007). Sequential
expression of NKCC2, TonEBP, aldose reductase, and urea transporter-A in developing mouse kidney. Am
J Physiol Renal Physiol 292, F269-277.

Lee, I., and Hong, W. (2006). Diverse membrane-associated proteins contain a novel SMP domain. FASEB
1 20, 202-206.

Lee, J.J., and Downham, T.F., 2nd (2006). Furosemide-induced bullous pemphigoid: case report and
review of literature. J Drugs Dermatol 5, 562-564.

Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small
RNAs with antisense complementarity to lin-14. Cell 75, 843-854.

Lev, S., Moreno, H., Martinez, R., Canoll, P., Peles, E., Musacchio, J.M., Plowman, G.D., Rudy, B., and
Schlessinger, J. (1995). Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel
and MAP kinase functions. Nature 376, 737-745.

Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines,
indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.

Lhermusier, T., van Rottem, J., Garcia, C., Xuereb, J.M., Ragab, A., Martin, V., Gratacap, M.P., Sie, P., and
Payrastre, B. (2011). The Syk-kinase inhibitor R406 impairs platelet activation and monocyte tissue factor
expression triggered by heparin-PF4 complex directed antibodies. ] Thromb Haemost 9, 2067-2076.

Li, Q., Stram, A., Chen, C,, Kar, S., Gayther, S., Pharoah, P., Haiman, C., Stranger, B., Kraft, P., and
Freedman, M.L. (2014). Expression QTL-based analyses reveal candidate causal genes and loci across five
tumor types. Hum Mol Genet 23, 5294-5302.

Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or
nucleotide sequences. Bioinformatics 22, 1658-1659.

132



Lin, S.L., Miller, J.D., and Ying, S.Y. (2006). Intronic microRNA (miRNA). J Biomed Biotechnol 2006, 26818.
Liti, G., and Louis, E.J. (2012). Advances in quantitative trait analysis in yeast. PLoS Genet 8, €1002912.
Liu, B.H., Yu, H., Tu, K., Li, C., Li, Y.X., and Li, Y.Y. (2010). DCGL: an R package for identifying differentially
coexpressed genes and links from gene expression microarray data. Bioinformatics 26, 2637-2638.

Liu, C., Bai, B., Skogerbo, G., Cai, L., Deng, W., Zhang, Y., Bu, D., Zhao, Y., and Chen, R. (2005). NONCODE:
an integrated knowledge database of non-coding RNAs. Nucleic Acids Res 33, D112-115.

Liu, C., Zhang, F., Li, T., Lu, M., Wang, L., Yue, W., and Zhang, D. (2012). MirSNP, a database of
polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs.
BMC Genomics 13, 661.

Liu, H., and Kohane, 1.S. (2009). Tissue and process specific miccoRNA-mRNA co-expression in
mammalian development and malignancy. PLoS One 4, e5436.

Liu, J., Gough, J., and Rost, B. (2006). Distinguishing protein-coding from non-coding RNAs through
support vector machines. PLoS Genet 2, e29.

Lorenz, A.J., Hamblin, M.T., and Jannink, J.L. (2010). Performance of single nucleotide polymorphisms
versus haplotypes for genome-wide association analysis in barley. PLoS One 5, e14079.

Lorenz, R., Bernhart, S.H., Honer Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., and Hofacker, I.L.
(2011). ViennaRNA Package 2.0. Algorithms Mol Biol 6, 26.

Lowe, T.M., and Eddy, S.R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes
in genomic sequence. Nucleic Acids Res 25, 955-964.

Lowe, T.M., and Eddy, S.R. (1999). A computational screen for methylation guide snoRNAs in yeast.
Science 283, 1168-1171.

Lu, T.P., Lee, C.Y., Tsai, M.H., Chiu, Y.C., Hsiao, C.K., Lai, L.C., and Chuang, E.Y. (2012). miRSystem: an
integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One 7,
e42390.

Lu, Z.J., Yip, K.Y., Wang, G., Shou, C., Hillier, L.W., Khurana, E., Agarwal, A., Auerbach, R., Rozowsky, J.,
Cheng, C., et al. (2011). Prediction and characterization of noncoding RNAs in C. elegans by integrating
conservation, secondary structure, and high-throughput sequencing and array data. Genome Res 21,
276-285.

Lucas, E.P., Khanal, I., Gaspar, P., Fletcher, G.C., Polesello, C., Tapon, N., and Thompson, B.J. (2013). The
Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells. J
Cell Biol 201, 875-885.

Ludwig, R.J. (2013). Clinical presentation, pathogenesis, diagnosis, and treatment of epidermolysis
bullosa acquisita. ISRN Dermatol 2013, 812029.

Ludwig, R.J., Muller, S., Marques, A., Recke, A., Schmidt, E., Zillikens, D., Moller, S., and Ibrahim, S.M.
(2012). Identification of quantitative trait loci in experimental epidermolysis bullosa acquisita. J Invest
Dermatol 132, 1409-1415.

Lustig, A.J. (1999). Crisis intervention: the role of telomerase. Proc Natl Acad Sci U S A 96, 3339-3341.
Ma, D., Zhu, Y., Ji, C., and Hou, M. (2010). Targeting the Notch signaling pathway in autoimmune
diseases. Expert Opin Ther Targets 14, 553-565.

Ma, X., Zhou, J., Zhong, Y., Jiang, L., Mu, P., Li, Y., Singh, N., Nagarkatti, M., and Nagarkatti, P. (2014).
Expression, Regulation and Function of MicroRNAs in Multiple Sclerosis. Int J Med Sci 11, 810-818.
Marcet, B., Chevalier, B., Luxardi, G., Coraux, C., Zaragosi, L.E., Cibois, M., Robbe-Sermesant, K., Jolly, T.,
Cardinaud, B., Moreilhon, C., et al. (2011). Control of vertebrate multiciliogenesis by miR-449 through
direct repression of the Delta/Notch pathway. Nat Cell Biol 13, 693-699.

133



Marschner, S., Freiberg, B.A., Kupfer, A., Hunig, T., and Finkel, T.H. (1999). Ligation of the CD4 receptor
induces activation-independent down-regulation of L-selectin. Proc Natl Acad Sci U S A 96, 9763-9768.
Mathews, D.H., and Turner, D.H. (2006). Prediction of RNA secondary structure by free energy
minimization. Curr Opin Struct Biol 16, 270-278.

Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., and Hamprecht, F.A.
(2009). A comparison of random forest and its Gini importance with standard chemometric methods for
the feature selection and classification of spectral data. BMC Bioinformatics 10, 213.

Miron B, K., Witold R, Rudnicki (2010). Feature Selection with the Boruta Package. Journal of Statistical
Software 36.

Mishra, D., Dash, R., Rath, A.K., and Acharya, M. (2011). Feature selection in gene expression data using
principal component analysis and rough set theory. Adv Exp Med Biol 696, 91-100.

Morin, R., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T., McDonald, H., Varhol, R., Jones, S.,
and Marra, M. (2008). Profiling the Hela S3 transcriptome using randomly primed cDNA and massively
parallel short-read sequencing. Biotechniques 45, 81-94.

Mott, R., and Flint, J. (2002). Simultaneous detection and fine mapping of quantitative trait loci in mice
using heterogeneous stocks. Genetics 160, 1609-1618.

Mott, R., Talbot, C.J., Turri, M.G., Collins, A.C., and Flint, J. (2000). A method for fine mapping
guantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A 97, 12649-12654.

Mukherjee, S. (2003). Understanding And Using Microarray Analysis Techniques : A Practical Guide
(Boston, MA Kluwer Academic Publishers).

Murata, K., Furu, M., Yoshitomi, H., Ishikawa, M., Shibuya, H., Hashimoto, M., Imura, Y., Fujii, T., Ito, H.,
Mimori, T., et al. (2013). Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma
biomarkers for rheumatoid arthritis. PLoS One 8, e69118.

Namjou, B., Sestak, A.L., Armstrong, D.L., Zidovetzki, R., Kelly, J.A., Jacob, N., Ciobanu, V., Kaufman, K.M.,
Ojwang, J.0., Ziegler, J., et al. (2009). High-density genotyping of STAT4 reveals multiple haplotypic
associations with systemic lupus erythematosus in different racial groups. Arthritis Rheum 60, 1085-
1095.

Nariai, N., Kim, S., Imoto, S., and Miyano, S. (2004). Using protein-protein interactions for refining gene
networks estimated from microarray data by Bayesian networks. Pac Symp Biocomput, 336-347.

Naul, B. (2009). A review of Support Vector Machines in Computational Biology. Protein Similarities and
Homologies.

Nica, A.C., and Dermitzakis, E.T. (2013). Expression quantitative trait loci: present and future. Philos
Trans R Soc Lond B Biol Sci 368, 20120362.

Niedermeier, A., Eming, R., Pfutze, M., Neumann, C.R., Happel, C., Reich, K., and Hertl, M. (2007). Clinical
response of severe mechanobullous epidermolysis bullosa acquisita to combined treatment with
immunoadsorption and rituximab (anti-CD20 monoclonal antibodies). Arch Dermatol 143, 192-198.
O'Sullivan, B., Thompson, A., and Thomas, R. (2007). NF-kappa B as a therapeutic target in autoimmune
disease. Expert Opin Ther Targets 11, 111-122.

Okuma, A., Hoshino, K., Ohba, T., Fukushi, S., Aiba, S., Akira, S., Ono, M., Kaisho, T., and Muta, T. (2013).
Enhanced apoptosis by disruption of the STAT3-lkappaB-zeta signaling pathway in epithelial cells induces
Sjogren's syndrome-like autoimmune disease. Immunity 38, 450-460.

Ooi, H.S., Schneider, G., Chan, Y.L,, Lim, T.T., Eisenhaber, B., and Eisenhaber, F. (2010). Databases of
protein-protein interactions and complexes. Methods Mol Biol 609, 145-159.

134



Opitz D., M.R. (1999). Popular ensemble methods: An empirical study. Journal of Artificial Intelligence
Research, 169-198.

Otaegui, D., Baranzini, S.E., Armananzas, R., Calvo, B., Munoz-Culla, M., Khankhanian, P., Inza, I., Lozano,
J.A., Castillo-Trivino, T., Asensio, A., et al. (2009). Differential micro RNA expression in PBMC from
multiple sclerosis patients. PLoS One 4, e6309.

Pannucci, J.A., Haas, E.S., Hall, T.A., Harris, J.K., and Brown, J.W. (1999). RNase P RNAs from some
Archaea are catalytically active. Proc Natl Acad Sci U S A 96, 7803-7808.

Paraboschi, E.M., Solda, G., Gemmati, D., Orioli, E., Zeri, G., Benedetti, M.D., Salviati, A., Barizzone, N.,
Leone, M., Duga, S., et al. (2011). Genetic association and altered gene expression of mir-155 in multiple
sclerosis patients. Int J Mol Sci 12, 8695-8712.

Parkin, J., and Cohen, B. (2001). An overview of the immune system. Lancet 357, 1777-1789.

Pattin, K.A., and Moore, J.H. (2009). Role for protein-protein interaction databases in human genetics.
Expert Rev Proteomics 6, 647-659.

Penna, E., Orso, F., and Taverna, D. (2014). miR-214 as a Key Hub that Controls Cancer Networks: Small
Player, Multiple Functions. J Invest Dermatol.

Perreault, J., Perreault, J.P., and Boire, G. (2007). Ro-associated Y RNAs in metazoans: evolution and
diversification. Mol Biol Evol 24, 1678-1689.

Pihur, V., and Datta, S. (2008). Reconstruction of genetic association networks from microarray data: a
partial least squares approach. Bioinformatics 24, 561-568.

Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.Y.,
Goumnerova, L.C., Black, P.M,, Lau, C., et al. (2002). Prediction of central nervous system embryonal
tumour outcome based on gene expression. Nature 415, 436-442.

Raghavachari, B., Tasneem, A., Przytycka, T.M., and Jothi, R. (2008). DOMINE: a database of protein
domain interactions. Nucleic Acids Res 36, D656-661.

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.H., Angelo, M., Ladd, C., Reich, M.,
Latulippe, E., Mesirov, J.P., et al. (2001). Multiclass cancer diagnosis using tumor gene expression
signatures. Proc Natl Acad Sci U S A 98, 15149-15154.

Reverter, A., and Chan, E.K. (2008). Combining partial correlation and an information theory approach to
the reversed engineering of gene co-expression networks. Bioinformatics 24, 2491-2497.
Richard-Miceli, C., and Criswell, L.A. (2012). Emerging patterns of genetic overlap across autoimmune
disorders. Genome Med 4, 6.

Rioux, J.D., and Abbas, A.K. (2005). Paths to understanding the genetic basis of autoimmune disease.
Nature 435, 584-589.

Rottiers, V., and Naar, A.M. (2012). MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell
Biol 13, 239-250.

Santalucia, J., Jr. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor
thermodynamics. Proc Natl Acad Sci U S A 95, 1460-1465.

Scafoglio, C., Ambrosino, C., Cicatiello, L., Altucci, L., Ardovino, M., Bontempo, P., Medici, N., Molinari,
A.M., Nebbioso, A., Facchiano, A,, et al. (2006). Comparative gene expression profiling reveals partially
overlapping but distinct genomic actions of different antiestrogens in human breast cancer cells. J Cell
Biochem 98, 1163-1184.

Schmidt, M.F. (2014). Drug target miRNAs: chances and challenges. Trends Biotechnol.

Schmitt, W.A,, Jr., Raab, R.M., and Stephanopoulos, G. (2004). Elucidation of gene interaction networks
through time-lagged correlation analysis of transcriptional data. Genome Res 14, 1654-1663.

135



Schneider, M.R. (2012). MicroRNAs as novel players in skin development, homeostasis and disease. Br J
Dermatol 166, 22-28.

Schwarz, D.F., Konig, |.R., and Ziegler, A. (2010). On safari to Random Jungle: a fast implementation of
Random Forests for high-dimensional data. Bioinformatics 26, 1752-1758.

Sesarman, A., Sitaru, A.G., Olaru, F., Zillikens, D., and Sitaru, C. (2008). Neonatal Fc receptor deficiency
protects from tissue injury in experimental epidermolysis bullosa acquisita. ] Mol Med (Berl) 86, 951-959.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and
Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction
networks. Genome Res 13, 2498-2504.

Shipp, M.A., Ross, K.N., Tamayo, P., Weng, A.P., Kutok, J.L., Aguiar, R.C., Gaasenbeek, M., Angelo, M.,
Reich, M., Pinkus, G.S., et al. (2002). Diffuse large B-cell lymphoma outcome prediction by gene-
expression profiling and supervised machine learning. Nat Med 8, 68-74.

Simmons, A.D., Musy, M.M., Lopes, C.S., Hwang, L.Y., Yang, Y.P., and Lovett, M. (1999). A direct
interaction between EXT proteins and glycosyltransferases is defective in hereditary multiple exostoses.
Hum Mol Genet 8, 2155-2164.

Sonkoly, E., Janson, P., Majuri, M.L., Savinko, T., Fyhrquist, N., Eidsmo, L., Xu, N., Meisgen, F., Wei, T.,
Bradley, M., et al. (2010). MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-
cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin
Immunol 126, 581-589 e581-520.

Srinivas, G., Moller, S., Wang, J., Kunzel, S., Zillikens, D., Baines, J.F., and Ibrahim, S.M. (2013). Genome-
wide mapping of gene-microbiota interactions in susceptibility to autoimmune skin blistering. Nat
Commun 4, 2462.

Statnikov, A., and Aliferis, C.F. (2007). Are random forests better than support vector machines for
microarray-based cancer classification? AMIA Annu Symp Proc, 686-690.

Sticherling, M., and Erfurt-Berge, C. (2012). Autoimmune blistering diseases of the skin. Autoimmun Rev
11, 226-230.

Studham, M.E., Tjarnberg, A., Nordling, T.E., Nelander, S., and Sonnhammer, E.L. (2014). Functional
association networks as priors for gene regulatory network inference. Bioinformatics 30, i130-138.

Su, W.L., Kleinhanz, R.R., and Schadt, E.E. (2011). Characterizing the role of miRNAs within gene
regulatory networks using integrative genomics techniques. Mol Syst Biol 7, 490.

Sun, Y.V. (2010). Multigenic modeling of complex disease by random forests. Adv Genet 72, 73-99.
Thessen Hedreul, M., Moller, S., Stridh, P., Gupta, Y., Gillett, A., Daniel Beyeen, A., Ockinger, J., Flytzani,
S., Diez, M., Olsson, T., et al. (2013). Combining genetic mapping with genome-wide expression in
experimental autoimmune encephalomyelitis highlights a gene network enriched for T cell functions and
candidate genes regulating autoimmunity. Hum Mol Genet 22, 4952-4966.

Thore, S., Mayer, C., Sauter, C., Weeks, S., and Suck, D. (2003). Crystal structures of the Pyrococcus abyssi
Sm core and its complex with RNA. Common features of RNA binding in archaea and eukarya. J Biol
Chem 278, 1239-1247.

Trachtenberg, E.A., Yang, H., Hayes, E., Vinson, M., Lin, C., Targan, S.R., Tyan, D., Erlich, H., and Rotter, J.I.
(2000). HLA class Il haplotype associations with inflammatory bowel disease in Jewish (Ashkenazi) and
non-Jewish caucasian populations. Hum Immunol 61, 326-333.

Tsokos, G.C., and Fleming, S.D. (2004). Autoimmunity, complement activation, tissue injury and
reciprocal effects. Curr Dir Autoimmun 7, 149-164.

136



Tyc, K., and Steitz, J.A. (1989). U3, U8 and U13 comprise a new class of mammalian snRNPs localized in
the cell nucleolus. EMBO J 8, 3113-3119.

Vagnoni, A., Perkinton, M.S., Gray, E.H., Francis, P.T., Noble, W., and Miller, C.C. (2012). Calsyntenin-1
mediates axonal transport of the amyloid precursor protein and regulates Abeta production. Hum Mol
Genet 21, 2845-2854.

van der Sijde, M.R., Ng, A., and Fu, J. (2014). Systems genetics: From GWAS to disease pathways. Biochim
Biophys Acta 1842, 1903-1909.

van Someren, E.P., Wessels, L.F., Backer, E., and Reinders, M.J. (2002). Genetic network modeling.
Pharmacogenomics 3, 507-525.

von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel, B. (2003). STRING: a database of
predicted functional associations between proteins. Nucleic Acids Res 31, 258-261.

Wang, K., Li, M., and Hakonarson, H. (2010). Analysing biological pathways in genome-wide association
studies. Nat Rev Genet 11, 843-854.

Wang, Y., and Blelloch, R. (2011). Cell cycle regulation by microRNAs in stem cells. Results Probl Cell
Differ 53, 459-472.

Wang, Y., Medvid, R., Melton, C., Jaenisch, R., and Blelloch, R. (2007). DGCRS is essential for microRNA
biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39, 380-385.

Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H., Klemm, A., Flicek, P., Manolio, T.,
Hindorff, L., et al. (2014). The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic
Acids Res 42, D1001-1006.

Wong, B.R., Grossbard, E.B., Payan, D.G., and Masuda, E.S. (2004). Targeting Syk as a treatment for
allergic and autoimmune disorders. Expert Opin Investig Drugs 13, 743-762.

Xenarios, |., and Eisenberg, D. (2001). Protein interaction databases. Curr Opin Biotechnol 12, 334-339.
Xu, W.D., Pan, H.F,, Li, J.H., and Ye, D.Q. (2013). MicroRNA-21 with therapeutic potential in autoimmune
diseases. Expert Opin Ther Targets 17, 659-665.

Yang, Z.R. (2004). Biological applications of support vector machines. Brief Bioinform 5, 328-338.

Yao, X., Huang, J., Zhong, H., Shen, N., Faggioni, R., Fung, M., and Yao, Y. (2014). Targeting interleukin-6
in inflammatory autoimmune diseases and cancers. Pharmacol Ther 141, 125-139.

Yoon, S., and De Micheli, G. (2005). Prediction and Analysis of Human microRNA Regulatory Modules.
Conf Proc IEEE Eng Med Biol Soc 5, 4799-4802.

Young, N.D. (1996). QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34,
479-501.

Zabel, B.A., Nakae, S., Zuniga, L., Kim, J.Y., Ohyama, T., Alt, C., Pan, J., Suto, H., Soler, D., Allen, S.J., et al.
(2008). Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction
of IgE-mediated passive cutaneous anaphylaxis. J Exp Med 205, 2207-2220.

Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G., Helmer-Citterich, M., and Cesareni, G.
(2002). MINT: a Molecular INTeraction database. FEBS Lett 513, 135-140.

Zhang, S.W., Li, Y.J., Xia, L., and Pan, Q. (2010). PPLook: an automated data mining tool for protein-
protein interaction. BMC Bioinformatics 11, 326.

Zhao, J., Jitkaew, S., Cai, Z., Choksi, S., Li, Q., Luo, J., and Liu, Z.G. (2012). Mixed lineage kinase domain-
like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl
Acad Sci U S A 109, 5322-5327.

Ziegler Andreas, K.I.R. (2014). Mining data with random forests: current options for real-world
applications. WIREs Data Mining Knowl Discov, 8.

137



Zien, A, Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T., and Muller, K.R. (2000). Engineering support
vector machine kernels that recognize translation initiation sites. Bioinformatics 16, 799-807.

Zillikens, D. (2008). Diagnosis of autoimmune bullous skin diseases. Clin Lab 54, 491-503.

Zou, M., and Conzen, S.D. (2005). A new dynamic Bayesian network (DBN) approach for identifying gene
regulatory networks from time course microarray data. Bioinformatics 21, 71-79.

138



10. Appendix

10.1 List of abbreviations

AAbs Autoimmune antibodies

ABDs Autoimmune bullous disease

AIL Advanced intercross line

Biogrid Biological general repository for interaction datasets
BM Basement membrane

cDNA Complementary DNA

Chr Chromosome

()% Cross-validation

DEJ Dermal-epidermal junction

DNA Deoxyribonucleic acid

DOMINE Database of protein-domain interactions
EBA Epidermolysis bullosa acquisita
EMMA Efficient mixed-model association
eQTL Expression quantitative trait loci
G4 Generation 4

GST Glutathione S-transferase

GWAS Genome-wide association studies
HLA Human leukocyte antigen

IPA Ingenuity pathway analysis
LibSVM Library of support vector machines
MINT Molecular interaction database
miRNA Micro RNA

MS Multiple sclerosis

ncRNA Non-coding ribonucleic acid

OOB Out of bag

PCA Principle component analysis

PDB Protein data bank

PLS Partial least squares

PPIs Protein-protein interactions

ptRNApred Post transcriptional RNA prediction

QTL Quantitative trait loci
RA Rheumatoid arthritis
RBF Radial basis function kernel
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RMA
RNA
MRP
RNase P
SLE
snoRNA
SNP
snRNA
STRING
SVM
tRNAs
WGCNA

Robust multi-array analysis
Ribonucleic acid

Ribonuclease MRP
Ribonuclease P

Systemic lupus erythematosus
Small nucleolar RNA

Single nucleotide polymorphism
Small nuclear RNA

Search tool for the retrieval of interacting genes
Support vector machines
Transfer RNA

Weighted gene co-expression network analysis
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Figure 11 : Manhattan plot for 424 mRNA. The black line across the plot shows

significant threshold of —log p-value (4.36) and upper threshold —log p-value (9.8). 75

Figure 12 : eQTL hot spots at —log P score >= 3.75. The red blocks represent the hot
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Figure 13 : STRING layout for eQTL hot spot. Layout depicts interaction between
the genes that were controlled by eQTL hot spot in chromosome 13 in the yellow
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Figure 14 : Network of genes in black module. The red lines display the interaction
information from STRING database. The blue lines display predicted interaction
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Figure 15 : Network of genes in turquoise module. The red lines display the
interaction information from STRING database. The blue lines display predicted

interaction using domain interaction information. Red circle defines hub genes..... 84
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information from STRING databaee. The blue lines display predicted interaction
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interaction. Red circle defines hub genes.........cccoooovvviieeiiiiiiiiiiiiiieieeeeeeeee, 85

Figure 17 : Network for genes of green module. The red lines display the interaction
information from STRING database. The blue lines display predicted interaction
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Figure 18 : Network for genes of purple module. The red lines display the interaction
information from STRING database. The blue lines display predicted interaction
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Figure 19 : miRNA — gene module interactions. The figure displays miRNA as black
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Figure 20 : C and y determination and 5 fold cross validation using LibSVM. The
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13. Supplements

Section S1: Features for classification.

Feature selection and SVM training was performed using two sets of input
parameters: The first set is based on the primary sequence and the second set
considers the secondary structure which i1s predicted with RNAfold. All training

steps were automated by a Perl script.

Set 1: Dinucleotide properties

Each sequence was divided into its dinucleotides, using the sliding window approach
(window size: 2 nucleotides). In total, 16 different dinucleotides are possible: AA, AT,
AC, AG, TA, TT, TC, TG, CA, CT, CC, CG, GA, GT, GC and GG. Each of the 16
dinucleotides can be assigned distinct properties, including thermodynamic features
(e.g. stacking energy, free energy), structural features (e.g. twist, roll) and sequences
based features. These features have been described in previous experimental or
computational work. The dinucleotide property database (DiProDB) contains
information on dinucleotides and a collection of more than 100 published
dinucleotide property sets. In order to determine whether different ptRNA-
subclasses can be distinguished via specific dinucleotide properties, 125 dinucleotide

properties were abstracted from DiProDB and individually correlated with every
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ptRNA-subclass. Properties were clustered and a representative property was

selected from each of the 16 resulting clusters (Supplement Table 1).

Set 2. Secondary structure properties

Secondary structures of every sequence were calculated by RNAfold, accessing the
Vienna RNA Package. RNAfold provides structures according to different

parameters. Various properties were derived from the RNAfold output:

a. The Minimum free energy (MFE) structure

The MFE structure of a RNA sequence is a secondary structure that contributes a
minimum of free energy. For MFE structure prediction, RNAfold uses a loop-based
energy model and the dynamic programming algorithm introduced. As RNA
secondary structure can be uniquely decomposed into loops and external bases, the
loop-based energy model treats the free energy of an RNA secondary structure as
the sum of the contributing free energies of the loops contained in the secondary
structure. According to the chosen energy parameter set and a given temperature
(defaults to 37 °C) a secondary structure with minimal free energy is computed. The
minimum free energy was selected as property in our SVM. Additional features were
deducted from the MFE structure, which is denoted by brackets ‘(‘or’)’ and dots .’
Brackets indicate paired nucleotides, whereas dots represent unpaired nucleotides.
The left bracket ‘(‘means the paired nucleotide is located near the 5-end and can be
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paired with another nucleotide at the 3'-end, which 1s indicated as a right bracket °)’.
In our script, we do not distinguish these two situations and use ‘C for both
situations. Brackets and dots were counted within each sequence, yielding two

additional properties.

Different features were selected combining secondary structure and primary
sequence. In this context, the number of bulges and hairpins were counted, as well
as the four nucleotides A, G, C and U in every bulge and every hairpin, yielding ten
additional properties. Furthermore, purine and pyrimidine contents were examined
and the number of mismatches was determined. Additionally, paired bases were
considered alongside, counting AU, CG and GU pairs. All in all, this section of

sequence examination yields 18 properties.

Further information was gained for every three adjacent nucleotides, which we call
triplet elements for the convenience of the discussion. Eight additional properties
were given by counting of the eight possible triplet element compositions ‘((C, ‘((.,
‘L5000 and (¢ within every sequence.

The nucleotide composition of the triplet elements was not regarded and the

compositions were counted using the sliding window approach.

32 further triplet element properties were derived from miPred, a triplet SVM for
the classification of miRNA. MiPred considers the middle nucleotide among the

triplet elements, resulting in 32 (4 X 8) possible combinations, which are denoted as
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‘U, ‘A((’, etc. The number of appearance of each triplet element is counted for

each hairpin to produce the 32-dimensional feature vector and used as input

features for SVM.

b. The ensemble free energy

RNAfold provides an ensemble structure, considering probabilities of the presence of
certain base pairs. Bases with a strong preference (more than 2/3) to pair upstream
(with a partner further 3'), pair downstream or not pair are represented by the usual
symbols '(,")' or '.'. Additional symbols '{'} or '' reflect bases with a weaker
preference and thus are a weaker version of the above respectively. '|' represents a
base that is mostly paired but has pairing partners both upstream and downstream.
In this case open and closed brackets do not need to match up. This pseudo bracket
notation is followed by the ensemble free energy. The numbers of '{, '}’ and ',' as well

as the ensemble free energy were taken as features for our SVM.

c. The centroid structure

RNAfold further provides a centroid structure that is given by its secondary
structure with minimal base pair distance to all other secondary structures in the
Boltzmann ensemble (5). The values of the centroid structure’s free energy as well

as its distance to the ensemble were taken as features for our SVM.
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d. The maximum expected accuracy (MEA) structure

RNAfold further outputs a MEA structure, in which each base pair (1,)) gets a score
2*gamma®*p_1ij and the score of an unpaired base is given by the probability of not
forming a pair. Subsequently, the expected accuracy is computed from the pair
probabilities. The MEA as well as the MEA structure’s free energy serve as

additional features for our SVM.

e. The frequency of the MFE representative in the complete ensemble of

secondary structures and the ensemble diversity

Two additional features are given by the frequency of the MFE representative in the

complete ensemble of secondary structures and the ensemble diversity.

Supplement Table 1: Table of selected dinucleotide properties. The table shows the
dinucleotide properties selected as vectors for the SVM. 15 distinct properties (left column), ranging
from the shift score to the entropy, are assigned to thel6 possible dinucleotides: AA, AT, AC, AG, TA,
TT, TC, TG, CA, CT, CC, CG, GA, GT, GC and GG. All information was derived from DiProGB (1).
Further information is provided in Section S1.

Property Name |[AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

Shift* -0.08 0.23 -0.04 -0.06 0.11 -0.01 0.3 -0.04 0.07 0.07 -0.01 0.23 -0.02 0.07 0.11 -0.08
Hydrophilicity?  [0.023 0.083 0.035 0.09 0.118 0.349 0.193 0.378 0.048 0.146 0.065 0.16 0.112 0.359 0.224 0.389
GC_content® [0 1 1 0o 1 2 2 1 1 2 2 1 0 1 1 0
Keto_content* |0 0 0 1 0 0 1 1 1 1 2 2 1 1 1 2
Adenine_content®2 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
gsuanine_content

Cytosine_content
7 0 1 0 0 1 2 1 1 0 1 0 0 0 1 0 0

Slide’ -1.27 -1.43 -15 -1.36 -146 -1.78 -1.89 -15 -1.7 -1.39 -1.78 -143 -145 -1.7 -146 -1.27
Rise’ 3.18 3.24 33 324 309 332 33 33 338 322 332 324 326 338 3.09 318
Tiltt -0.8 08 05 11 1 03 -01 05 13 O 03 08 -02 13 1 -0.8
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Roll*

Twist!
Stacking_energy8
Entropy_lg
Entropy_2'°

7 48 85 71 99 87 121 85 94 61 121 48 107 94 99 7
31 32 30 33 31 32 27 30 32 35 32 32 32 32 31 31
-13.7 -13.8 -14 -154 -144 -11.1 -156 -14 -142 -169 -11.1 -13.8 -16 -14.2 -14.4 -13.7
-18.4 -26.2 -19.2 -15.5 -27.8 -29.7 -19.4 -19.2 -35.5 -34.9 -29.7 -26.2 -22.6 -26.2 -19.2 -18.4
-19  -29.5 -27.1 -26.7 -26.9 -32.7 -26.7 -27.1 -325 -36.9 -32.7 -29.5 -20.5 -32.5 -26.9 -19

1. Perez, A. The relative flexibility of B-DNA and A-RNA duplexes: database

analysis. Nucleic Acids Res. 32, 61446151 (2004).

2. Weber, A. L. & Lacey, J. C., Jr. Genetic code correlations: amino acids and their

anticodon nucleotides. J. Mol. Evol. 11, 199-210 (1978).

(U}

N

ot

»

3

0]

9

. Friedel, M. Each C or G counts +1.

. Friedel, M. G and T (U) counts +1.

. Friedel, M. Each A counts +1.

. Friedel, M. Each G counts +1.

. Friedel, M. Each C counts +1.

. Encyclopedia of Life Sciences. (John Wiley & Sons, Ltd, 2001).

. Freier, S. M. et al. Improved free-energy parameters for predictions of RNA

duplex stability. Proc. Natl. Acad. Sci. U. S. A. 83, 9373-9377 (1986).

10. Xia, T. et al. Thermodynamic parameters for an expanded nearest-neighbor

model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry

(Mosc.) 37, 14719-14735 (1998).
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Supplement Table 2: Gini index for feature selection. The table provides Gini-index for each

features which relates to the importance of each feature to differentiate between classes of non-

coding RNAs.
Property number Property description F-Score  Gini-Index
1 Adenine_content’ 0,064268 2,41E-44
2 Cytosine_content® 0,083006 6,03E-15
3 Entropy_1* 0,088785 4,34E-19
4 Entropy_2" 0,09256 5,93E-21
5 GC_content* 0,106083 5,43E-11
6 Guanine_content® 0,12987 2,75E-18
7 Hydrophilicity* 0,098519 4,37E-23
8 Keto_content 0,131688 4,12E-16
9 Rise’ 0,091877 8,37E-20
10 Roll* 0,098188 6,50E-26
11 Shift! 0,057281 5,62E-49
12 Slide* 0,09489  4,93E-19
13 Stacking_energy* 0,088663 1,80E-30
14 Tilt* 0,060113 6,03E-20
15 Twist* 0,090472 3,98E-27
16 value_in_3rd_rnafold? 0,039964 2,48E-51
17 count_star_bracket_{* 0,032699 0,002720791
18 count_comma_in_rnafold® 0,032914 0,000482739
19 value_line_no_3_RNAfold? 0,037566 2,54E-21
20 value_line_no_3_RNAfold(second value)® 0,034666 7,25E-18
21 value_line_number_4* 0,037892 1,68E-18
22 value_line_number_4(second value)® 0,034268 6,11E-32
23 frequency_of mfe_structure_in_ensemble” 0,035204 1,12E-16
24 ensemble diversity® 0,039227 1,21E-11
25 value_MFE_RNAfold? 0,038989 1,18E-34
26 Number_of loops? 0,03857 1,12E-12
27 (G 0,032912 3,18E-29
28 (2 0,037534 7,90E-11
29 (.2 0,039972 3,42E-07
30 2 0,029854 7,49E-10
31 (? 0,038714 4,07E-11
32 (? 0,040519 0,000102735
33 (.2 0,023965 0,996225164

159



34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

(¢

A
A((*
AC
A2
AL
A2
A.(?

u((
u(*
U@
u(.?
u.((®
U.(.2
U..(2

G((®

G((*

G(.¢

G(.2

G.((*

G.(.2

G.(°

G..7

c((

c((?

C(.e

C(.2

c.((*

C.(.?

c.(?

c.2
number_of AU?
number_of CG?
number_of GU?
number_of_mistatches_in_sec_struc?
number_of_buldges_in_sec_struc?

A_in_buldges?
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0,031401
0,003259
0,003767
0,00501

0,014225
0,001732
0,001482
0,015074
0,029134
0,003228
0,00721

0,00737

0,010258
0,002741
0,000326
0,017021
0,093364
0,021702
0,024863
0,005776
0,010109
0,003169
0,001119
0,010458
0,006942
0,044132
0,009389
0,001738
0,002454
0,016575
0,000654
0,006828
0,019666
0,018431
0,008113
0,005051
0,036243
0,06064

0,059369

0,003872273
5,34E-15
1,49E-06
0,037528552
2,74E-05
4,20E-06
0,119541752
2,38E-12
5,04E-12
1,41E-09
2,26E-05
0,000196773
4,59E-09
0,00024243
0,996205638
1,90E-21
3,83E-43
3,72E-27
0,000494941
3,58E-08
6,84E-14
0,000144641
0,403681085
2,26E-06
1,12E-30
4,38E-07
2,98E-09
0,98836726
1,76E-08
0,017213739
0,000405832
0,003771578
2,19E-12
1,55E-20
1,63E-10
4,01E-09
1,48E-12
4,57E-09
2,94E-13



73 G_in_buldges® 0,064056 0,168681863

74 C_in_buldges® 0,037917 2,02E-05

75 U_in_buldges® 0,035724 1,48E-09

76 length_of_hairpin® 0,029 4,29E-12

7 number_of _sub_sec_structure? 0,025913 1,59E-11

78 number_of_A_hairpin? 0,026994 8,85E-09

79 number_of G_hairpin® 0,010075 0,021895501
80 number_of_C_hairpin® 0,027103 0,006452735
81 number_of U_hairpin® 0,066878 1,63E-12

82 number_of A_purine? 0,021688 6,41E-07

83 number_of A_pyramidine® 0,055579 1,70E-14

84 number_of_A_in_first_complementary_strand2 0,002319 1,32E-16

85 number_of G_in_first_complementary_strand® 0,005858 4,21E-14

86 number_of _C_in_first_complementary_strand? 0,001151 1,07E-07

87 number_of _U_in_first_complementary_strand? 0,004656 1,13E-34

88 number_of A_in_second_complementary_strand® 0,003052 2,39E-14

89 number_of G_in_second_complementary_strand® 0,003099 0,00106611
90 number_of C_in_second _complementary strand® 0,012551 2,20E-08

91 number_of U_in_second_complementary_strand® 0,035877 9,40E-16

Supplement Table 3: List of differentially expressed genes in EBA and non EBA mouse.

ID Gene Name logFC p-value Adjusted p-value
10380419 Collal 1.092457892 1.71E-11 2.97E-07
10529457 Cpz 0.476105771 1.83E-11 2.97E-07
10595211 Coll2al 0.937846131 3.26E-11 2.97E-07
10346015 Col3al 0.986338829 3.42E-11 2.97E-07
10531724  Plac8 1.014783794 1.21E-10 8.43E-07
10583056 Mmpl2 0.831790171 2.46E-10 1.20E-06
10536220 Colla2 0.933247962 2.64E-10 1.20E-06
10460782 Gpha2 -0.588016109 2.77E-10 1.20E-06
10560919 Atpla3 0.485810749 3.51E-10 1.36E-06
10560685 Bcl3 0.577733423 7.41E-10 2.58E-06
10354309 Col5a2 0.496367606 1.15E-09 3.39E-06
10546450 Adamts9 0.501134973 1.17E-09 3.39E-06
10556082  Ppfibp2 -0.28734775 1.29E-09 3.44E-06
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10379636
10572949
10367400
10352143
10557895
10403743
10578045
10523128
10400126
10513739
10478633
10393449
10470462
10360040
10351182
10494262
10407286
10534202
10466735
10570434
10461558
10368277
10421309
10490923
10518147
10541614
10413726
10351551
10426425
10598976
10364262
10546454
10518300
10504775
10601729
10436100
10392815
10546434
10425053

Slfn4
Nr3c2
Mmp19
Kif26b
Itgax
Inhba
Nrgl
Ppbp
Lrrn3

Tnc

Mmp9
Socs3
Col5al
Fcgr3
Sele

Ctsk
BC067074 /// LOC101055997
Ncfl
Fam189a2
Ifitm1 /// Gm7676
Slc15a3
Rps12 /I// Snora33
Slc39a14
Car2

Pdpn
Clec4d
Tnncl
Adamts4
Pdzrn4
Timpl
Itgh2
Adamts9
Tnfrsflb
Coll5al
Drp2
Retnlg
AF251705
Adamts9
Ncf4

1.289214032
-0.319316147
0.798947908
0.383798765
0.490973272
0.618346825
0.58092562
0.790749348
-0.240696539
1.169230251
1.123929228
0.639354861
0.323101365
0.693844879
0.640160808
0.919182273
-0.276250362
0.450832781
-0.361487314
1.051091959
0.912327937
0.502620387
0.401603199
0.897349277
0.706520792
1.334967414
-0.706765141
0.497613129
-0.326182757
0.794947804
0.753250668
0.411697522
0.546329087
0.408820674
-0.481376088
1.483732955
0.44425203
0.319294623
0.564342209
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1.60E-09
1.90E-09
2.12E-09
2.39E-09
2.46E-09
3.67E-09
3.82E-09
4.69E-09
5.18E-09
5.81E-09
5.92E-09
6.96E-09
7.78E-09
8.33E-09
1.03E-08
1.07E-08
1.22E-08
1.30E-08
1.33E-08
1.51E-08
1.51E-08
1.52E-08
1.56E-08
1.73E-08
1.74E-08
1.86E-08
1.86E-08
1.98E-08
2.00E-08
2.15E-08
2.18E-08
2.21E-08
2.26E-08
2.32E-08
2.39E-08
2.56E-08
2.85E-08
2.93E-08
3.01E-08

3.96E-06
4.41E-06
4.62E-06
4.75E-06
4.75E-06
6.63E-06
6.63E-06
7.77E-06
8.18E-06
8.57E-06
8.57E-06
9.68E-06
1.04E-05
1.07E-05
1.28E-05
1.28E-05
1.41E-05
1.45E-05
1.45E-05
1.51E-05
1.51E-05
1.51E-05
1.51E-05
1.59E-05
1.59E-05
1.62E-05
1.62E-05
1.65E-05
1.65E-05
1.71E-05
1.71E-05
1.71E-05
1.71E-05
1.72E-05
1.73E-05
1.81E-05
1.98E-05
2.00E-05
2.00E-05



10505489
10387909
10551009
10375307
10498024
10472050
10460585
10432767
10432852
10396831
10490159
10469786
10420362
10553042
10391066
10398665
10347291
10406334
10525256
10547664
10567580
10558769
10358408
10350516
10503098
10499861
10435501
10481627
10350742
10392484
10347335
10477717
10439936
10568668
10427895
10461721
10499902
10389222
10554599

Pappa
Chrne
Ciqtnf2
Slc7all
Tnfaip6
Fosl1
Gmb5478
Krtl
Arg2
Pmepal
111f9
Gjb2
Rasip1 //l Izumol
Krtl7
Tnfaip2
Cxcr2
Mctpl
Tmem116
Clecde
1gsf6
Ifitm1
Rgs1
Ptgs2
Lyn /ll Lyn /Il Gm11787
S100a9
Stfal
Len2
Rnasel
Abca8b
Sicllal
Procr
Nfkbiz
Adam12
Baspl
Mpegl
Sprr4
Cclé
AdamtsI3

0.41352215
-0.466539878
0.441853258
0.274185976
1.288478178
0.778311584
0.492664814
0.508658887
1.0092609
0.965296433
0.399646146
1.070296747
0.783128927
0.368560716
0.695176974
0.650135568
1.344378458
0.552234795
-0.263637327
1.481126891
0.715295729
0.912770287
0.552416512
1.264735585
0.741080309
1.623253128
1.148132173
1.041958733
0.51575754
-0.397645889
0.586758934
0.421396828
0.402627223
0.37473823
0.377187144
0.895559695
0.512118605
0.727703084
-0.370355486
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3.06E-08
3.18E-08
3.58E-08
3.93E-08
4.01E-08
4.04E-08
4.08E-08
4.08E-08
4.13E-08
5.10E-08
5.30E-08
5.33E-08
5.45E-08
5.46E-08
5.53E-08
5.56E-08
5.56E-08
5.59E-08
5.95E-08
6.09E-08
6.13E-08
6.34E-08
6.39E-08
6.91E-08
6.92E-08
7.35E-08
7.41E-08
7.52E-08
7.81E-08
8.20E-08
8.25E-08
8.39E-08
8.53E-08
8.59E-08
8.70E-08
9.49E-08
9.62E-08
1.01E-07
1.01E-07

2.00E-05
2.05E-05
2.26E-05
2.35E-05
2.35E-05
2.35E-05
2.35E-05
2.35E-05
2.35E-05
2.77E-05
2.77E-05
2.77E-05
2.77E-05
2.77E-05
2.77E-05
2.77E-05
2.77E-05
2.77E-05
2.91E-05
2.92E-05
2.92E-05
2.96E-05
2.96E-05
3.12E-05
3.12E-05
3.26E-05
3.26E-05
3.27E-05
3.35E-05
3.45E-05
3.45E-05
3.47E-05
3.47E-05
3.47E-05
3.48E-05
3.75E-05
3.76E-05
3.82E-05
3.82E-05



10384458
10496727
10601834
10351206
10572693
10391061
10579872
10354432
10472538
10519717
10364361
10537146
10374236
10425066
10435565
10581813
10499899
10351197
10412123
10464529
10591884
10582997
10579636
10376778
10395520
10539244
10445753
10585555
10352928
10463070
10398326
10585286
10534935
10519140
10545921
10405216
10487597
10489107
10475517

Plek
Ddahl
Gprasp2
Selp
Jak3 /Il InsI3
Krt16
Myolb
Dhrs9
Sema3a
Icosl
Akrlb8
Uppl
Csf2rb
Hcls1
Mkl
Sprrla
Sell
Tcirgl
Glb1lI2
Casp4
Cyp4f18
Mfap4
Immp2I
Tacrl
Trem3
Pstpipl
Rp1l
Entpdl
Meg3
Arhgap20
Pilrb1
Mmp23
Mxd1
Syk

I11b
Samhd1l

AA467197 /Il Mirl47

1.093469683
0.515135084
-0.269879367
0.840694083
0.244932151
1.424727578
0.382223174
0.463945082
0.686685774
0.414908406
0.242111932
0.572195382
0.728124576
0.727245204
0.526324484
0.34156443
0.945940891
0.871802891
0.742054083
0.310796341
-0.246828369
0.666068612
0.833030258
0.680017715
-0.179472549
0.352472014
1.008970487
0.280956985
-0.302908271
0.83436244
0.54241179
-0.297809586
0.478488714
0.350933281
0.555461741
0.52223161
1.660901165
0.569661024
0.56866572
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1.01E-07
1.03E-07
1.03E-07
1.12E-07
1.15E-07
1.17E-07
1.20E-07
1.34E-07
1.40E-07
1.42E-07
1.43E-07
1.44E-07
1.46E-07
1.46E-07
1.49E-07
1.54E-07
1.54E-07
1.56E-07
1.61E-07
1.65E-07
1.68E-07
1.68E-07
1.74E-07
1.74E-07
1.76E-07
1.78E-07
1.85E-07
1.98E-07
1.99E-07
2.01E-07
2.02E-07
2.03E-07
2.03E-07
2.04E-07
2.08E-07
2.10E-07
2.11E-07
2.15E-07
2.26E-07

3.82E-05
3.82E-05
3.82E-05
4.11E-05
4.17E-05
4.19E-05
4.26E-05
4.72E-05
4.84E-05
4.84E-05
4.84E-05
4.84E-05
4.84E-05
4.84E-05
4.89E-05
4.97E-05
4.97E-05
4.98E-05
5.10E-05
5.16E-05
5.18E-05
5.18E-05
5.26E-05
5.26E-05
5.27E-05
5.27E-05
5.46E-05
5.67E-05
5.67E-05
5.67E-05
5.67E-05
5.67E-05
5.67E-05
5.67E-05
5.73E-05
5.73E-05
5.73E-05
5.78E-05
5.95E-05



10603551
10601385
10389759
10416837
10499904
10493831
10419034
10370721
10371846
10527158
10575799
10557326
10351525
10410931
10564938
10511779
10451953
10560862
10578264
10508392
10517488
10515803
10427369
10551883
10476321
10538100
10530145
10553261
10550906
10476301
10425092
10397346
10597648
10545045
10521667
10432780
10459866
10535174
10433114

Cybb
TIr13
Ankfnl
Irgl

Ivl
S100a8
2610528A11Rik
Sbno2
Apafl
Fscnl
Plcg2
ll4ra
Mpz
Vcan
Fes
Atp6v0d2
Lrgl
Pinlyp
Msrl
Rnf19b
Ephb2
Wdr65
Pdelb
Tyrobp
Prnd
Repinl
TIrl
Kencl
Plaur
Smox
Cyth4
Fos
Myd88
Fam13a
Bstl
Krt6a
Slicl4al
Tmem184a
Itgab

0.77594813
0.955615482
-0.26774664
1.381808438
0.488833309
1.680062139
0.857401658
0.422520702
0.258320034
0.411573415
0.268749357
0.455492588
-0.675290888
0.776732878
0.266985694
0.628719695
0.776695891
0.521015713
0.591858532
0.456960455
0.227161244
-0.337186502
0.244701591
0.852729487
0.378948304
-0.189593542
0.529042667
-0.318324135
0.86584396
0.555777919
0.497007822
0.655477724
0.397992988
-0.307047666
0.543602269
1.019134925
0.44709575
-0.382185982
0.44596887
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2.27E-07
2.28E-07
2.28E-07
2.30E-07
2.33E-07
2.40E-07
2.47E-07
2.57E-07
2.58E-07
2.75E-07
2.86E-07
2.94E-07
3.02E-07
3.25E-07
3.27E-07
3.28E-07
3.29E-07
3.30E-07
3.31E-07
3.32E-07
3.33E-07
3.42E-07
3.42E-07
3.42E-07
3.44E-07
3.45E-07
3.47E-07
3.53E-07
3.59E-07
3.63E-07
3.71E-07
3.77E-07
3.77E-07
3.94E-07
3.96E-07
3.97E-07
4.10E-07
4.13E-07
4.21E-07

5.95E-05
5.95E-05
5.95E-05
5.95E-05
6.00E-05
6.12E-05
6.26E-05
6.45E-05
6.45E-05
6.83E-05
7.06E-05
7.16E-05
7.30E-05
7.60E-05
7.60E-05
7.60E-05
7.60E-05
7.60E-05
7.60E-05
7.60E-05
7.60E-05
7.63E-05
7.63E-05
7.63E-05
7.63E-05
7.63E-05
7.63E-05
7.71E-05
7.79E-05
7.84E-05
7.95E-05
7.99E-05
7.99E-05
8.27E-05
8.27E-05
8.27E-05
8.43E-05
8.45E-05
8.56E-05



10346611
10606714
10494271
10367919
10474836
10563597
10490150
10471844
10364375
10416800
10534667
10597323
10592084
10583044
10569877
10518069
10545479
10406676
10397112
10439292
10379630
10548375
10404904
10452485
10447951
10598004
10570068
10375751
10592251
10466210
10416437
10510700
10529979
10595979
10473809
10499891
10427796
10366293
10551891

Gm973
Gla

Ctss
Stx11
Ivd

Saa3
Zbpl
Nek6
Cstb
Lmo7
Serpinel
Arpp21
St3gal4
Mmp13
1810033B17Rik
Efhd2
Tmsb10
Lhfpl2
Papln

BC100530 /// BC117090 /// Stfal

Slfn2
Clec7a
Rbm24
Rab31
Thbs2
Ccerl
Col4a2
Adamts2
Pknox2
Ms4a6d
Lepl
Gpr153
Ppargcla
Mras
Sfpil
Sprrlb
Npr3
Csrp2
Nfkbid

-0.285836062
0.546680978
0.722132714
0.62448849
-0.264061185
1.191171188
0.341564603
0.324868451
0.477464027
-0.31727954
0.495286179
-0.267902143
0.331406025
1.026985255
0.576723994
0.386988715
0.498617093
0.350053392
-0.28666379
1.480561659
0.57522639
0.957893555
-0.431987316
0.42381586
0.626875226
1.010350929
0.313926631
0.550193292
-0.304538831
0.836294497
0.90749695
0.264052593
-0.538258494
-0.215022996
0.669549808
1.30595022
-0.389921778
0.299241174
0.578488679
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4.24E-07
4.27E-07
4.30E-07
4.39E-07
4.46E-07
4.56E-07
4.60E-07
4.69E-07
4.83E-07
4.83E-07
5.05E-07
5.08E-07
5.11E-07
5.25E-07
5.26E-07
5.27E-07
5.37E-07
5.46E-07
5.72E-07
5.80E-07
5.90E-07
6.22E-07
6.26E-07
6.27E-07
6.28E-07
6.36E-07
6.48E-07
6.53E-07
6.54E-07
6.55E-07
6.72E-07
6.87E-07
7.04E-07
7.25E-07
7.26E-07
7.35E-07
7.37E-07
7.52E-07
7.54E-07

8.57E-05
8.58E-05
8.59E-05
8.71E-05
8.80E-05
8.96E-05
8.97E-05
9.10E-05
9.28E-05
9.28E-05
9.65E-05
9.65E-05
9.65E-05
9.79E-05
9.79E-05
9.79E-05
9.91E-05
9.99E-05
0.000104157
0.000104985
0.000106213
0.000110765
0.000110765
0.000110765
0.000110765
0.000111614
0.000112773
0.000112773
0.000112773
0.000112773
0.000115145
0.000117104
0.000119309
0.000121859
0.000121859
0.000122603
0.000122603
0.00012284
0.00012284



10451974
10561453
10550509
10443527
10498992
10439299
10358978
10586242
10456400
10508772
10490061
10360028
10536483
10363082
10353844
10381809
10486833
10588037
10406270
10432439
10477250
10392845
10520452
10588043
10557862
10357472
10360070
10440393
10349427
10601980
10430302
10341410
10423836
10476395
10488378
10358601
10370210
10435497
10428943

Sema6b
Zfp36
Pglyrpl
Pim1
TIr2
Stfa3
ler5
Dennd4a
Tubb6
Far
Bcasl
Fcgr2b
Tes
Lilrb4
Neurl3
ltgh3
ElI3 /// Serinc4
Rbp1l
Glrx
FmnI3
Hck
Cd300If
116

Rbp2
Iltgam
Cxcrd
Fcerlg
Samsnl
Mum1l1
Csf2rb2
Cthrcl
Bmp2
Thbd
Hmcnl
Col6al
Stfa2l1

Gsdmc

0.27567543
0.592168812
0.746003328
0.433785336
0.535686132
1.186464483
0.374736347
0.390417842
0.378083995
0.440983486
-0.246233761
0.688726241
0.345269751
1.016299643
0.437939191
0.311387399
-0.274251245
0.27269474
0.63873625
0.263223368
0.526098613
0.551957954
0.687497684
0.585566606
0.751058423
0.480166181
0.845083798
0.775266199
0.600079588
-0.196462789
0.591250201
0.402946827
0.394464835
-0.354070876
0.370060904
0.346905061
0.358702043
1.278896745
0.982036011
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7.55E-07
7.57E-07
7.60E-07
7.63E-07
7.66E-07
7.67E-07
7.91E-07
7.93E-07
7.96E-07
8.06E-07
8.45E-07
8.48E-07
9.06E-07
9.22E-07
9.29E-07
9.30E-07
9.44E-07
9.59E-07
9.72E-07
1.01E-06
1.01E-06
1.01E-06
1.02E-06
1.02E-06
1.03E-06
1.05E-06
1.06E-06
1.06E-06
1.06E-06
1.06E-06
1.08E-06
1.11E-06
1.12E-06
1.12E-06
1.12E-06
1.14E-06
1.15E-06
1.16E-06
1.19E-06

0.00012284
0.00012284
0.00012284
0.00012284
0.00012284
0.00012284
0.000125777
0.000125777
0.000125777
0.000126831
0.000132154
0.000132154
0.00014
0.000141843
0.00014185
0.00014185
0.000143314
0.000144911
0.000146236
0.000150271
0.000150271
0.000150271
0.000150271
0.000150929
0.000151157
0.000152433
0.000152433
0.000152433
0.000152433
0.000152433
0.000154065
0.000157634
0.000158217
0.000158217
0.000158217
0.000159578
0.000160684
0.000161968
0.000165098



10462281
10415991
10352152
10572897
10574276
10582303
10426894
10517274
10566132
10541246
10467139
10432774
10504402
10358666
10509901
10354247
10576973
10425031
10358545
10370180
10566583
10534303
10534585
10358543
10378857
10357952
10435345
10457022
10591988
10398364
10445758
10370037
10566358
10523156
10358599
10404686
10453717
10421361
10425078

Vidir
Zfp395
Kif26b
Hmox1
Gpro7
Cyba
Mettl7a3 /// Mettl7a2
Sepnl /// Sepnl
Rhog
l117ra
Lipa

Krt6b
Tmem8b
Hmcnl
Mfap2
Fhi2
Col4al
Apol6
Hmcnl
Col6a2
Gm8995
Lat2
Sh2b2
Hmcnl
Coro6
Ppplri2b
Mylk

Mbp
Adamts15
DQ267102
Treml4
Mmp11
Trim30a
Cxcl2
Hmcnl
Bmp6
Bmpl
Mpst

-0.351968359
-0.199781401
0.236103175
0.5935614
0.334181052
0.584486374
-0.210126586
0.403418265
0.413281473
0.316525269
0.481396021
1.372516593
-0.19910478
0.472639164
0.439632891
0.314896127
0.320312964
-0.297230743
0.518657431
0.360547168
0.601523166
0.21558713
0.237122588
0.341857399
-0.44282884
-0.209878708
0.249587661
-0.263651595
0.366745746
0.482444924
0.829440123
0.309401328
0.620674259
1.55383049
0.343090259
-0.206104134
0.326316532
0.291148686
-0.182442095

168

1.20E-06
1.24E-06
1.26E-06
1.27E-06
1.27E-06
1.31E-06
1.38E-06
1.39E-06
1.41E-06
1.41E-06
1.44E-06
1.46E-06
1.48E-06
1.51E-06
1.53E-06
1.55E-06
1.56E-06
1.57E-06
1.58E-06
1.59E-06
1.60E-06
1.60E-06
1.62E-06
1.64E-06
1.65E-06
1.66E-06
1.67E-06
1.68E-06
1.69E-06
1.72E-06
1.73E-06
1.74E-06
1.75E-06
1.80E-06
1.82E-06
1.82E-06
1.83E-06
1.84E-06
1.86E-06

0.000166197
0.000170058
0.000172098
0.000172545
0.000172545
0.00017784

0.000186337
0.000186464
0.000188036
0.000188036
0.000190869
0.00019298

0.000195259
0.000198214
0.000200566
0.000201178
0.000202405
0.000202814
0.000202814
0.000203538
0.000204005
0.000204096
0.000205628
0.000207236
0.000207236
0.000207954
0.000209131
0.000209586
0.000209978
0.000212621
0.000212939
0.000212939
0.000213629
0.000219033
0.000219465
0.000219465
0.000219839
0.000220347
0.000221583



10416215
10394770
10396079
10377804
10552516
10490212
10416181
10432661
10586252
10565152
10586250
10586227
10600836
10546432
10412260
10382106
10596718
10430372
10586254
10351603
10515399
10424370
10448124
10358605
10363070
10543058
10365729
10384423
10529515
10497372
10478415
10505073
10481101
10344506
10593050
10557111
10400510
10420114
10511923

LoxI2
Odcl
Klhdc1
Arrb2
Klk6
Ctsz
Stcl
Galnté
Dennd4a
Homer2
Dennd4a
Dennd4a
Msn
Adamts9
Fst

Milrl
Slc38a3
Rac2
Dennd4a
Arhgap30
Plk3
Tribl
Fprl
Hmcnl
Gp49a
DIx5
Cdk17
Cobl
Sorcs2
Gmb5150
Wisp2
Zfp462
Snora43 //l Snhg7
1110ra
Scnnlg
Clecl4a
Tgml
Pm20d2

0.482660336
0.370351644
-0.25708649
0.293136155
0.725410549
0.384028874
0.521451081
0.351225826
0.48383767
-0.341610229
0.516656903
0.505726331
0.429556858
0.359930339
0.293649257
0.441019956
-0.384090589
0.531974823
0.412231235
0.274207641
0.703783383
0.418556797
0.860338087
0.298323858
1.106310152
-0.264342935
0.267055516
-0.265438443
0.24986189
0.767893041
0.348272312
-0.249638599
0.242028593
-0.44297024
0.436389691
-0.213739458
0.436059106
0.502074872
-0.186049458
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1.87E-06
1.87E-06
1.90E-06
1.96E-06
1.96E-06
2.09E-06
2.10E-06
2.13E-06
2.14E-06
2.14E-06
2.15E-06
2.16E-06
2.18E-06
2.18E-06
2.24E-06
2.35E-06
2.38E-06
2.40E-06
2.43E-06
2.47E-06
2.48E-06
2.48E-06
2.51E-06
2.53E-06
2.61E-06
2.64E-06
2.70E-06
2.73E-06
2.74E-06
2.75E-06
2.80E-06
2.82E-06
2.87E-06
2.90E-06
2.92E-06
3.00E-06
3.04E-06
3.04E-06
3.04E-06

0.000222051
0.000222051
0.000224743
0.000230667
0.000230667
0.000244474
0.000245071
0.000246566
0.000246597
0.000246597
0.000246739
0.000246908
0.000247878
0.000247878
0.000253359
0.000264762
0.000267233
0.000267884
0.000271065
0.000273225
0.000273225
0.000273225
0.000276412
0.000276916
0.0002852
0.000287694
0.000293333
0.000295429
0.000295429
0.000295429
0.000299776
0.000300378
0.000305473
0.000307723
0.00030876
0.00031587
0.000316108
0.000316108
0.000316108



10370946
10420198
10413492
10430358
10370259
10507671
10418053
10487645
10586240
10574166
10357944
10349118
10358589
10373515
10392808
10511416
10397351
10567108
10437687
10348244
10473058
10485405
10435704
10383194
10574220
10469695
10449284
10506254
10372410
10508465
10582162
10379511
10435641
10473367
10351509
10376513
10505623
10537742
10523182

Mob3a
Ripk3
Lrtm1
Clqtnf6
Coll8al
Guca2a
Kcnmal
Cpxm1l
Dennd4a
Cpne2
Ppplri2b
Serpinb12
Hmcnl
Suox
Cd3oold
Tox
Jdp2
Sox6
Litaf
Inpp5d
Osbpl6
Cd44
Cd8so
Rnf213
Cx3cl1
Apbblip
Duspl
Raver2
Gliprl
Marcksl1
Cotll
Ccl2
Fstll
Slc43al
Fcgrd
NIrp3
Lurap1l
Clenl
Areg

0.195071747
0.238158472
-0.307351155
0.256004133
0.255230855
-0.452441088
-0.386438602
0.571597388
0.494109458
0.194427339
-0.252748584
0.668048169
0.287180049
-0.32065768
0.646402513
-0.195443949
0.332632758
-0.280460288
0.402022173
0.404033612
-0.306323168
0.530300016
0.580587843
0.170254299
-0.1625985
0.361329358
0.637180143
-0.16941291
0.617154076
0.566593044
0.328355583
0.437954636
0.680332933
-0.242499319
0.555657604
0.87626806
0.234357606
-0.326404281
0.341812605
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3.05E-06
3.10E-06
3.17E-06
3.20E-06
3.20E-06
3.22E-06
3.33E-06
3.34E-06
3.39E-06
3.41E-06
3.42E-06
3.43E-06
3.47E-06
3.49E-06
3.51E-06
3.52E-06
3.53E-06
3.54E-06
3.63E-06
3.64E-06
3.66E-06
3.67E-06
3.70E-06
3.70E-06
3.76E-06
3.80E-06
3.81E-06
3.82E-06
3.84E-06
3.84E-06
3.90E-06
3.94E-06
3.97E-06
3.98E-06
3.98E-06
3.98E-06
4.00E-06
4.05E-06
4.07E-06

0.000316108
0.000320808
0.000326926
0.000328461
0.000328461
0.000329647
0.000338351
0.000338351
0.000342677
0.000342677
0.000342677
0.000342677
0.000345253
0.00034651

0.000347163
0.000347338
0.000347805
0.000347942
0.00035552

0.00035583

0.000356427
0.000356563
0.000356997
0.000356997
0.000362071
0.000364405
0.000364405
0.000364549
0.000364549
0.000364549
0.000369122
0.000371778
0.000371977
0.000371977
0.000371977
0.000371977
0.000372785
0.000376365
0.000377586



10583100
10521678
10569485
10481164
10373912
10584674
10358573
10363455
10547621
10379633
10395103
10386965
10379535
10493925
10401296
10358549
10446253
10364593
10358928
10580282
10444890
10354588
10357950
10603492
10409876
10594540
10350149
10351679
10583669
10447006
10550574
10517165
10441718

10571653
10525397
10420957
10383799
10557591
10554204

Mmp8
Cd38
Tnfrsf26
Slc2a6
Osm
Mcam
Hmcnl
Pcbdl
Apobecl
Slfnl
Pxdn
Arhgap44
Ccl8

Hrnr /Il Flg
Slc8a3
Hmcnl
Vavl
Cnn2
Cacnale
Junb

ler3
Stk17b
Ppplri2b
Porcn
Ctla2a
Plekho2
Tnnil
Cds4
AB124611
Vit

Dmpk
Cd52
Park2 /Il Park2

Actgl /// Gm12715 /Il Actg-psl /Il

Gm8399
Arpc3 //l Arpc3
Ptk2b

Ten2 /i Ten2
Itgal

Agbll

0.836923476
0.341964963
0.357808588
0.357104026
0.815474635
0.394477803
0.302881795
-0.31484185
0.379825716
0.619137657
0.441316311
-0.261517788
0.879642306
0.705181886
-0.293765554
0.434635933
0.436125578
0.478393476
-0.249944922
0.472504078
0.58332504
0.602321129
-0.281116507
0.187713164
0.514458519
0.377123539
-0.42698613
0.500239348
0.432030187
-0.184990512
-0.320090968
0.711656196
-0.191825241

0.398473725
0.413489976
0.268588884
0.455536526
0.387010815
-0.592771813
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4.21E-06
4.22E-06
4.27E-06
4.28E-06
4.33E-06
4.39E-06
4.43E-06
4.59E-06
4.66E-06
4.86E-06
4.89E-06
4.93E-06
4.95E-06
4.96E-06
5.00E-06
5.16E-06
5.17E-06
5.21E-06
5.28E-06
5.29E-06
5.29E-06
5.33E-06
5.37E-06
5.40E-06
5.44E-06
5.48E-06
5.52E-06
5.55E-06
5.58E-06
5.70E-06
5.70E-06
5.79E-06
5.80E-06

5.94E-06
5.96E-06
5.99E-06
6.02E-06
6.06E-06
6.15E-06

0.000388788
0.000388788
0.000392325
0.000392325
0.000396509
0.000400629
0.000403537
0.000416368
0.00042068
0.000436164
0.000438242
0.000440522
0.000440678
0.000440678
0.000443645
0.000454815
0.000455007
0.000457184
0.000460901
0.000460901
0.000460901
0.00046288
0.000465623
0.000466894
0.000469005
0.000471509
0.00047351
0.000475323
0.000476926
0.0004844
0.0004844
0.000489281
0.000489722

0.000499651
0.000500333
0.000501335
0.000503255
0.000504875
0.000510549



10439442
10409118
10519747
10590631
10501063
10358224
10463599
10510509
10541605
10544913
10492091
10526277
10569504
10547641
10521205
10523451
10403584
10523120
10351099
10485013
10451580
10344981
10475866
10546010
10489891
10344725
10521984
10411668
10543572
10363901
10358660
10541587
10545760
10445412
10531887
10379321
10440926
10369290
10490972

Plala
Wnk2
Sema3e
Ccr2
Cd53
Ptprc
Nfkb2
Gpr157
Clec4n
Crhr2
Smad9
Mixipl
Tnfrsf23
Slc2a3
Sh3bp2
Anxa3
Nid1
Cxcl5
Tnfsf18
1110051M20Rik /// 1110051M20Rik
Bysl
Pi15
Bcl2l11
Arhgap25
B4galt5
Adhfel
G6pd2
Ocln
Impdhl
EtvS
Hmcnl
Clec4a2
Paip2b
Nfkbie
Slc10a6
Rab11fip4
Dnajc28
Ddit4
Trim55

0.290741175
-0.274361804
-0.297592089
0.461912688
1.042565773
0.637881818
0.229332455
-0.169242496
0.728064034
-0.323849905
-0.22708658
-0.313925481
0.30891062
0.596649759
0.19696392
0.347677573
0.563005425
0.646686641
-0.331427391
-0.20820284
0.171755948
0.459669145
0.365236948
0.277263824
0.356811819
-0.305199638
0.208075723
-0.240747616
0.176035708
-0.232348177
0.540531141
0.389778952
-0.140527322
0.374317811
0.224850308
-0.242456696
-0.232747696
0.265368588
-0.317025402
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6.15E-06
6.17E-06
6.23E-06
6.26E-06
6.34E-06
6.38E-06
6.40E-06
6.46E-06
6.68E-06
6.72E-06
6.75E-06
6.88E-06
6.94E-06
6.94E-06
6.98E-06
7.02E-06
7.17E-06
7.21E-06
7.27E-06
7.29E-06
7.53E-06
7.60E-06
7.61E-06
7.71E-06
7.72E-06
8.04E-06
8.04E-06
8.05E-06
8.12E-06
8.13E-06
8.16E-06
8.32E-06
8.35E-06
8.45E-06
8.51E-06
8.56E-06
8.60E-06
8.74E-06
8.78E-06

0.000510549
0.000510875
0.000514469
0.000515952
0.000520711
0.000522775
0.00052376

0.00052711

0.000544043
0.000545657
0.000546687
0.000554984
0.000557403
0.000557403
0.000559213
0.000559431
0.00057018

0.000572292
0.00057547

0.000576038
0.000589882
0.000593157
0.000593157
0.000599073
0.000599073
0.00061783

0.00061783

0.00061783

0.000619891
0.000619891
0.000620407
0.000631628
0.000632566
0.000638418
0.000641906
0.00064351

0.000644491
0.00065302

0.000654566



10527441
10515771
10488382
10494174
10376096
10531560
10400357
10540085
10508069
10358656
10371332
10607012
10358658

10497364
10591494
10493633
10569656
10463670
10593668
10507477
10600144
10380956
10519578
10357965
10415396
10554789
10554945
10419934
10592266
10501164
10420846
10358637
10424584
10422760
10445293
10460385
10360248
10380403
10511333

Arpclb // Gm5637
Tiel

Cd9a3

Sema6c

Acsl6

Antxr2

Bazla /// LOC100048557
Fbin2

Ftl1 /I Mir692-1
Hmcenl

Aldh1I2

Col4a6

Hmcnl

Sirpbla I
LOC100038947

Slpr5
Tpm3

Sirpblb "

Tpcn2
Sfxn2
DmxI2
F8a
Gsdma3
Abcb4
Lgr6
Nfatc4
Ctsc //l Ctsc
Prcp
Myh7
Slc37a2
Csfl
Fzd3
Hmcnl
Dennd3
Fyb
Pla2g7
Clcfl
Atpla4d
Lrrc59
Plagl

0.325592211
0.322140898
0.62005639
-0.223399711
-0.248854995
0.490579384
0.258672531
0.491457728
0.44907503
0.488107118
0.212971218
-0.264025747
0.47385586

0.648983635
-0.204022521
-0.314389203
0.164687168
-0.160920917
0.329138942
0.585994099
-0.150790958
0.250626638
-0.299114587
-0.374891246
0.253696042
0.662108988
0.407947223
-0.552055885
0.308998144
0.323343081
-0.287805343
0.356924603
0.315093878
0.46405481
0.52447263
0.204773463
-0.27102708
0.236478209
-0.247747704

173

8.79E-06
8.95E-06
8.96E-06
8.97E-06
9.02E-06
9.15E-06
9.28E-06
9.38E-06
9.49E-06
9.53E-06
9.54E-06
9.55E-06
9.58E-06

9.64E-06
9.90E-06
9.93E-06
9.96E-06
1.00E-05
1.01E-05
1.01E-05
1.01E-05
1.02E-05
1.02E-05
1.02E-05
1.02E-05
1.04E-05
1.04E-05
1.05E-05
1.06E-05
1.06E-05
1.07E-05
1.08E-05
1.09E-05
1.10E-05
1.11E-05
1.11E-05
1.14E-05
1.15E-05
1.17E-05

0.000654566
0.000663311
0.000663311
0.000663311
0.000665313
0.000673448
0.000680325
0.000686644
0.000689939
0.000690394
0.000690394
0.000690394
0.000691203

0.000693559
0.000711331
0.000711358
0.000712598
0.000716892
0.000717025
0.000717352
0.000718615
0.000718615
0.000719521
0.000721106
0.000721106
0.000727234
0.000728022
0.000734693
0.000736195
0.000738504
0.000739252
0.000747894
0.000748788
0.000755483
0.000760366
0.000761521
0.000780468
0.00078677

0.000800273



10461636
10428809
10379736
10374560
10525542
10597279
10519951
10417212
10538082
10589602
10373740
10411680
10418921
10595768
10448743
10390691
10382316
10360270
10598013
10468893
10544732
10385036
10523190

10497358
10494781
10528480
10380976
10464642
10464560
10476021
10556509
10430201
10540935
10391870
10495967
10478890
10519983
10544932
10500276

Gm10212
Klhi38

1100001G20Rik

Zrsrl
Bcl7a
Ccrl2
Gsap
Itgbll
Atp6v0e2
MylI3
Pik3ip1
Marveld2
Sncg
Pls1
Fahd1
Nrid1
Kcnj16
Atpla2
Ccr5
Csf2ra
Skap2
Fgf18
Parml1

Sirpblb
Sirpbla

1gsf3
Gsdma
Carnsl
Aldh3b1
Sirpa
Sponl
Myh9
Cand2

7

LOC100038947

Map3k14 /// 1700028N14Rik

Tifa
Cebpb
Fgl2

Inmt

BC028528

m

0.394067803
-0.446000016
0.320396779
-0.191964509
-0.151133306
0.72136536
0.353924456
0.520838417
-0.213262936
-0.379728818
-0.204243595
-0.227393031
-0.300834693
-0.227441854
-0.186106766
-0.384094862
-0.253683226
-0.547963768
0.466419008
0.243451665
0.264980436
-0.275314185
0.299820054

0.73771508
0.18031277
0.240297763
0.415495928
-0.508583956
0.261188735
0.355711438
0.320141508
0.302808673
-0.238834729
0.157616082
0.24677101
0.361418058
0.588334524
-0.464597165
0.364261747

174

1.18E-05
1.19E-05
1.20E-05
1.20E-05
1.21E-05
1.21E-05
1.25E-05
1.27E-05
1.28E-05
1.32E-05
1.34E-05
1.35E-05
1.35E-05
1.36E-05
1.37E-05
1.38E-05
1.38E-05
1.40E-05
1.41E-05
1.42E-05
1.43E-05
1.44E-05
1.44E-05

1.44E-05
1.46E-05
1.46E-05
1.46E-05
1.48E-05
1.49E-05
1.49E-05
1.49E-05
1.50E-05
1.53E-05
1.55E-05
1.56E-05
1.58E-05
1.59E-05
1.59E-05
1.60E-05

0.000801377
0.000806093
0.000809262
0.000811936
0.000811936
0.000816524
0.000840582
0.000849897
0.000852651
0.000881421
0.000893503
0.000893503
0.000893503
0.000899765
0.000906238
0.000909144
0.000910628
0.000917701
0.000922637
0.000930215
0.000932384
0.000932384
0.000932409

0.000933334
0.00094102

0.00094102

0.00094102

0.000947891
0.000948008
0.000948008
0.000948008
0.000954409
0.000975268
0.000984248
0.000984573
0.000998678
0.001000427
0.001003563
0.001006753



10385656

10563295
10559547
10368144
10570606
10404702
10562192
10501555
10485151
10585048
10520862
10379646
10423471
10346191
10467470
10532628
10580139
10509514
10415319
10392796
10358559
10602977
10518686
10489878
10568282
10413381
10593713
10522217
10391025
10605571
10572146
10496605
10353460
10401473
10390090
10554900
10575363
10362701
10367224

Zfp2 Il Zfp2

Ftl1 /// Mir692-1 /// LOC101056386
/I LOC100862446 /[l Gm20746

Tnntl
Tnfaip3
Defb14
Gent2
Fxyd5
Amyl
Mapk8ip1
Cadml
Fosl2
SIfn3
Ctnnd2
Statl
Aldh18al
Myo18b
Zswim4
Sh2d5
Irf9
Cd300Ib
Hmcnl
Scml2
Pik3cd
Ptgis
Bcl7c
Asb14
Cib2
Limchl
Krtl5
Gyk
Atp6vi1b2 /// Atp6vlb2
Ccbl2
Keng5
Aldh6al
Sgca
Dlg2
Zfp612
Ddo
Stat2

-0.177827641

0.431220788
-0.585892373
0.358746645
0.596638613
0.303653006
0.527859468
-0.318165045
-0.152727086
-0.223755568
0.313199336
0.454816046
-0.191023732
0.278378281
0.18123087
-0.511962212
0.256617435
0.225289568
0.201216006
0.357868097
0.343859455
-0.215639696
0.189473837
-0.31870243
-0.156132458
-0.414923589
-0.196745208
-0.360612432
-0.492350314
0.494195778
0.366500403
-0.222438163
-0.328272445
-0.328147045
-0.430710538
-0.162248269
-0.17010693
-0.207595588
0.175278246

175

1.63E-05

1.63E-05
1.64E-05
1.65E-05
1.65E-05
1.66E-05
1.68E-05
1.68E-05
1.68E-05
1.73E-05
1.74E-05
1.75E-05
1.78E-05
1.83E-05
1.84E-05
1.84E-05
1.85E-05
1.86E-05
1.87E-05
1.87E-05
1.91E-05
1.92E-05
1.92E-05
1.93E-05
1.94E-05
1.95E-05
1.95E-05
1.97E-05
1.98E-05
1.99E-05
1.99E-05
2.00E-05
2.01E-05
2.01E-05
2.04E-05
2.04E-05
2.05E-05
2.07E-05
2.07E-05

0.001019601

0.001021776
0.001023895
0.00102512

0.00102512

0.00102512

0.00103621

0.00103621

0.00103621

0.00106266

0.001069613
0.001073317
0.001083605
0.001110897
0.001114966
0.001115521
0.001116407
0.001116407
0.00111747

0.001117748
0.001139112
0.001140394
0.001142702
0.001145206
0.001146189
0.001151805
0.001152907
0.001160498
0.001166055
0.001166055
0.001166055
0.001168346
0.00117307

0.001174149
0.001184873
0.001184873
0.001187574
0.001193873
0.001195378



10351224
10422059
10462035
10402473
10473312
10546430
10415052
10439296
10500469
10458731
10484472
10525343
10518570
10458906
10526559
10533844
10555174
10607361
10469856
10415980
10351491
10495976

10473240
10431962
10424731
10470388
10357946
10474526
10571514
10592847
10493235
10445774
10552090
10573583
10514779
10461587
10380761
10434778
10506433

F5
Kctd12 /// Mir5130
Ldhb
Cimn
Fam171b
Adamts9
Mmp14
Stfa2
Pde4dip
Mcc
Smtnll
Myl2

Pgd

Ppic
Ache
Rilpl2
Lrrc32
Gm4750 /Il Gm8464
Wdr85
Fbxo16
OlfmI2b

Pitx2

Enol I Gm5506
LOC101056352 /// Gm4735

Endou
Gsdmd
Cacfdl
Ppplri2b
Lpcat4
Gm6180
Myl6
Paqré
B430306N03Rik
Scgb2b2
Man2b1
Prkaa2
Ms4ada
Socs7
Rtp4
Dabl

i

0.378173074
0.23217724
-0.377757424
-0.279413056
-0.390113595
0.270024774
0.380232514
0.626158797
-0.456811256
-0.205191563
-0.317880722
-0.63590777
0.316084384
0.357682262
-0.325346118
0.379852529
0.3798279
0.235184362
-0.126923499
-0.180510349
0.419520215
-0.206066314

0.350874685
0.392433959
0.197437058
-0.164925031
-0.324053845
0.16320546
0.295010549
0.232978461
-0.201568285
0.35705353
-0.476005048
0.282476158
-0.375418423
0.812420426
-0.152177013
0.393680172
-0.251797815

176

2.09E-05
2.11E-05
2.20E-05
2.20E-05
2.20E-05
2.21E-05
2.24E-05
2.24E-05
2.24E-05
2.26E-05
2.27E-05
2.27E-05
2.27E-05
2.29E-05
2.33E-05
2.33E-05
2.34E-05
2.38E-05
2.39E-05
2.40E-05
2.41E-05
2.41E-05

2.42E-05
2.42E-05
2.44E-05
2.44E-05
2.45E-05
2.45E-05
2.50E-05
2.53E-05
2.56E-05
2.56E-05
2.57E-05
2.59E-05
2.64E-05
2.65E-05
2.66E-05
2.68E-05
2.69E-05

0.001199902
0.00120603

0.001249492
0.001249492
0.001249492
0.001249754
0.001259499
0.001259499
0.001259499
0.001267967
0.001269218
0.001269218
0.001269218
0.001275847
0.001294423
0.00129568

0.001297054
0.001318989
0.001320578
0.001322164
0.001322164
0.001322164

0.001325941
0.001326257
0.001328996
0.001328996
0.001330775
0.001330775
0.001353301
0.001367905
0.001379252
0.001379252
0.001380049
0.001388353
0.00141066

0.00141558

0.00141558

0.001427859
0.001427859



10570855
10539739
10579347
10502830
10494023
10463282
10534889
10517287
10569385
10584883
10425781
10359948
10495562
10548552
10513666
10435504
10464999
10357158
10503134
10577315
10364950
10523175
10494332
10505187
10463476
10568873
10398267
10582378
10426557
10598178
10407797
10338479
10486697
10509204
10520574
10579313
10487605
10366528
10403871

Plat
Asprvl
Ifi30
Nexn
Rorc
Entpd7
Agfg2
Manlcl
Ascl2
Fxyd6
Serhl
Uapl
Lrrc39
Klra2
Akna
Gmb5416
Cst6
Ralb
Sdcbp
Angpt2
Gadd45b
Ereg
Ugcg
Kazaldl
Adam8
Evi
Piezol
Pfkm
Displ
Prl2c4 /11 Pri2c2 /Il Pri2c3
Tgm7
Tcea3
Agbl5
Sshp4
F830045P16Rik
Best3
Aoah

0.328504878
0.61546138
0.370301366
-0.564622088
-0.303595828
0.162810313
-0.149340081
0.242332308
-0.21845359
-0.349663299
-0.141496645
0.217112622
-0.353758759
0.429060919
0.221071475
0.70395993
0.451224693
0.188507944
0.368011036
0.268991921
0.554983993
0.345581091
0.225897411
0.422661648
-0.281483053
0.525514957
0.136094981
0.181270685
-0.545371481
-0.284941517
0.481542956
-0.423537668
-0.408318121
-0.298597966
-0.122139163
0.14740258
-0.380347334
-0.241813562
0.31999844

177

2.71E-05
2.71E-05
2.72E-05
2.75E-05
2.76E-05
2.77E-05
2.77E-05
2.77E-05
2.81E-05
2.83E-05
2.84E-05
2.85E-05
2.88E-05
2.88E-05
2.92E-05
2.95E-05
2.97E-05
2.98E-05
3.02E-05
3.02E-05
3.03E-05
3.04E-05
3.09E-05
3.11E-05
3.16E-05
3.23E-05
3.23E-05
3.26E-05
3.33E-05
3.35E-05
3.35E-05
3.39E-05
3.46E-05
3.47E-05
3.47E-05
3.50E-05
3.50E-05
3.50E-05
3.52E-05

0.001437652
0.001437652
0.001439167
0.001455141
0.001455306
0.001455306
0.001455306
0.001455972
0.001468923
0.001474986
0.001478572
0.001482477
0.001493974
0.001496117
0.001510381
0.001524125
0.00153323

0.001533942
0.001549526
0.001549526
0.001555568
0.001557755
0.001578402
0.001587138
0.001608701
0.001630683
0.001630683
0.001642768
0.001675838
0.00167994

0.00167994

0.001699498
0.001728859
0.001728863
0.001729747
0.001737049
0.001737049
0.001737049
0.001743089



10552760
10355278
10581645
10506274
10443470
10390175
10462005
10526693
10452815
10507273
10432756
10606102
10601178
10362372
10426467
10389786
10438904
10384064
10428336
10460616
10577517
10393754
10519196
10524621
10588836
10541260
10558150
10387180
10545672
10583163
10459075
10465844
10488195
10513957
10557285
10368356
10419015
10439249
10553299

Pnkp
Erbb4
Marveld3
Dnajc6
Rab44
Ngfr
Tmem2
Zcwpwl
Xdh
Pik3r3

Gmb5414 /[l Gm5476

Phkal
Itgb1bp2
9330159F19Rik
Tmem117
HIf

Lrrc15
Camk2b
Cfll
Slc25al15
Actgl
Vwal
Oasl2
Gmppb
Cecr2
Htral
Ndell /// Ndell
Mthfd2
Trpc6
Myoz3
Asrgll
Rrbp1
Ptprd
Lemtl
Akap7
Cdhrl
Parp14

0.157031292
-0.259093113
-0.159052568
-0.198634519
0.222571344
-0.15207976
0.186415823
-0.211096245
0.367955077
0.250914756
0.219047893
-0.31912242
-0.280114103
-0.400082235
-0.193719137
-0.33523888
0.511157019
-0.330405151
0.246073525
0.310063178
-0.116538546
0.391725975
0.166608289
0.373881017
0.18915958
-0.303994459
0.425937954
0.309613368
0.211508177
0.273564506
-0.280978523
-0.161276931
0.214500237
-0.187381701
-0.174574337
-0.238120387
0.234195006
0.270104283
0.39666405

178

3.55E-05
3.58E-05
3.60E-05
3.62E-05
3.64E-05
3.65E-05
3.72E-05
3.79E-05
3.82E-05
3.83E-05
3.84E-05
3.84E-05
3.85E-05
3.96E-05
3.97E-05
3.99E-05
3.99E-05
3.99E-05
4.00E-05
4.05E-05
4.22E-05
4.26E-05
4.26E-05
4.28E-05
4.30E-05
4.35E-05
4.39E-05
4.41E-05
4.41E-05
4.43E-05
4.44E-05
4.47E-05
4.48E-05
4.50E-05
4.54E-05
4.57E-05
4.72E-05
4.74E-05
4.74E-05

0.001757431
0.001765525
0.00177566

0.001781389
0.001788066
0.00179096

0.001822065
0.001849959
0.001860461
0.001860461
0.001861081
0.001861081
0.001862097
0.001910433
0.001913261
0.001913662
0.001913662
0.001913662
0.001913662
0.001937606
0.002011634
0.002022454
0.002022454
0.002025947
0.002032215
0.002050959
0.002065688
0.002071992
0.002071992
0.002076896
0.002082256
0.002093257
0.002094881
0.002101442
0.002115855
0.002127724
0.002188566
0.002189261
0.002189261



10339140
10553477
10365983
10358635
10356084
10383556
10470564
10377018
10392364
10449775
10476740
10409486
10565910
10484195
10517364
10468909
10490838
10491300
10419578
10402268
10419854
10586591
10350199
10606016
10357043
10433403
10407792
10345869
10483163
10392936
10394778
10585699
10608715
10349782
10532626
10343861
10443120
10372648
10543939

Ano5
Lum
Hmcenl
Irs1
Fn3krp
Ralgds
Myh3
Cacngl
Notch3
Slc24a3
Pdlim7
Plekhbl
Ttn
Ncmap
Displ
Fabp5
Skil
Ndrg2
Lgmn
Slc7a8
Carl2
Cacnals
112rg
Bcl2
Rbfox1
Gpr137b-ps /// Gprl37b
Tmem182
Grb14
Nt5c
Hpcall

Nuak2
Myo18b
Ggnbp1l
Lyz2
Fam180a

-0.188882656
-0.405786753
0.779895956
0.283281308
-0.320011553
-0.15073472
0.232693017
-0.626783054
-0.316510372
0.190068291
-0.3238715
0.228845898
-0.270100215
-0.481634681
-0.242245887
-0.150068912
0.727402911
0.244074966
-0.514722861
0.507982549
0.366750317
0.441322749
-0.524211376
0.578662909
-0.219001755
-0.413279362
0.474291278
-0.607094509
-0.311438799
0.192142686
0.202937216
0.64868113
-0.319042392
0.210713805
-0.410208554
-0.380800417
-0.227665055
0.752293225
-0.170595231

179

4.87E-05
4.98E-05
5.02E-05
5.06E-05
5.07E-05
5.07E-05
5.09E-05
5.16E-05
5.16E-05
5.18E-05
5.23E-05
5.23E-05
5.23E-05
5.28E-05
5.28E-05
5.29E-05
5.30E-05
5.30E-05
5.31E-05
5.39E-05
5.44E-05
5.51E-05
5.51E-05
5.51E-05
5.58E-05
5.60E-05
5.60E-05
5.61E-05
5.72E-05
5.72E-05
5.82E-05
5.83E-05
5.87E-05
5.88E-05
5.91E-05
5.97E-05
6.02E-05
6.06E-05
6.08E-05

0.002240246
0.002278985
0.002292652
0.00230079

0.002300917
0.002300917
0.002303752
0.002325433
0.002325433
0.00232648

0.002341829
0.002341829
0.002341829
0.002353786
0.002353786
0.002353786
0.002353786
0.002353786
0.002355501
0.002384159
0.002399743
0.00241579

0.00241579

0.00241579

0.002442259
0.002442268
0.002442268
0.002442268
0.002477753
0.002477753
0.002516875
0.002516875
0.002528613
0.002529097
0.002538047
0.002554517
0.002573857
0.002587634
0.002589853



10346838
10503448
10361906
10587818
10383756
10532584
10461614
10448202
10589886
10489391
10585860
10582337
10427471
10572747
10436809
10370522
10439289
10368495
10517213
10409866
10602692
10440300
10551185
10351131
10357553
10340624
10362422
10532339
10456836
10583312
10387372
10457707
10606333
10506424
10349876
10596925
10587616
10362959
10414527

Pard3b
Mmpl6
1122ra2
Plscr4
Myo18b
Ms4a6c

4930520004Rik

Ada
Adpgk
Piezol
Osmr
Tpm4
Evalc
Caspl4
BC117090
Rspo3
Cnksrl
Ctla2b
Rragb
Tgfbl
Myoc
1124
Trdn
Pxmp2
St8sia5
Tafld
Kdm6b
Dscl
Fndc3cl
Actgl
Plekha6
Ndufaf3
Prss35
Popdc3
Pnp2 /Il Pnp

-0.185418021
0.217376219
-0.300411851
-0.223285779
0.388597838
-0.273078059
0.68648215
0.358965595
-0.214896625
0.187573001
0.189197674
0.241581204
0.337068982
0.320622792
-0.130964207
0.539779613
0.518459516
-0.270808799
-0.25721141
0.316863642
-0.16936181
0.267014201
0.267871523
-0.694197686
0.357210037
-0.396739756
-0.862179088
-0.214063265
-0.236287679
0.335553136
0.256750951
0.622406854
-0.237251638
0.3687786
-0.179954065
-0.117727161
0.395864916
-0.252818325
0.183720079

180

6.12E-05
6.14E-05
6.19E-05
6.35E-05
6.36E-05
6.39E-05
6.47E-05
6.51E-05
6.56E-05
6.63E-05
6.65E-05
6.65E-05
6.77E-05
6.89E-05
6.99E-05
7.00E-05
7.07E-05
7.09E-05
7.09E-05
7.11E-05
7.23E-05
7.42E-05
7.44E-05
7.46E-05
7.49E-05
7.50E-05
7.54E-05
7.65E-05
7.65E-05
7.70E-05
7.72E-05
7.82E-05
7.83E-05
7.84E-05
7.86E-05
7.87E-05
7.93E-05
7.94E-05
7.98E-05

0.002601794
0.002607624
0.00262262

0.002687868
0.002687868
0.00269602

0.002721766
0.00273313

0.002750734
0.002778061
0.002778061
0.002778061
0.002823672
0.002870133
0.002903559
0.002904353
0.002925872
0.002927482
0.002927482
0.002929508
0.002974692
0.003038439
0.003040692
0.003048036
0.003056727
0.003058264
0.003064686
0.003095746
0.003095746
0.003108038
0.003113921
0.00314273

0.003142799
0.003142799
0.003147907
0.003147907
0.003163174
0.003164002
0.003176745



10605815
10550482
10536697
10425601
10607467
10506714
10378649
10581378
10364559
10534085
10504902
10472933
10371627
10432619
10532578
10517250
10592289
10579307
10341686
10411395
10358664
10352661
10564211
10607189
10520706
10605338
10596680
10522009
10563050
10359644
10392152
10483809
10546829
10445338
10605256
10383233
10467425
10518812
10401997

Asb12
1gfl3
Asb15
Tef

Satl
Lrp8
Slc43a2
Psmb10
Arid3a
Phkgl
Murc
Scrn3
Mybpcl
Pou6fl
Myo18b
Extl1
Ccdc15
Kxd1 /// Uba52
Arhgef28
Hmcnl
Ptpn14
Snurf /// Snrpn
Amot
Trim54
G6pdx
Sema3b
Pgm1l
Prr12
Mettl11b
Scnda
Nfe2l2
Oxtr
Enpp5
Flna
Rnf213
Sorbs1
Camtal

Ptpn21

-0.590591349
0.298002122
-0.280125846
-0.246182668
0.328079682
0.155813978
0.223077737
0.150214992
0.148015381
-0.380412198
-0.356789215
-0.257726473
-0.643084525
-0.1531049
-0.323538891
-0.283274989
-0.158771755
-0.127622631
0.266562899
-0.244074614
0.508587313
-0.272809883
-0.280637997
-0.303255021
-0.290722223
0.311753201
-0.158950101
0.213025426
-0.180466129
-0.197927273
-0.406041313
0.373660514
-0.230296624
-0.269068231
0.333304095
0.196717666
-0.219647535
-0.218521631
-0.209723424

181

8.02E-05
8.06E-05
8.07E-05
8.08E-05
8.11E-05
8.15E-05
8.15E-05
8.24E-05
8.37E-05
8.45E-05
8.45E-05
8.54E-05
8.57E-05
8.74E-05
8.89E-05
8.92E-05
8.95E-05
8.99E-05
9.02E-05
9.03E-05
9.06E-05
9.11E-05
9.27E-05
9.30E-05
9.47E-05
9.50E-05
9.54E-05
9.55E-05
9.69E-05
9.73E-05
9.79E-05
9.84E-05
9.92E-05
9.94E-05
9.95E-05
9.99E-05
0.000101116
0.000101181
0.000103667

0.003189823
0.003194112
0.003194112
0.003194572
0.003203991
0.003213915
0.003213915
0.003234608
0.003284679
0.003301976
0.003301976
0.003330796
0.003340064
0.003399149
0.003443336
0.00344376

0.00345212

0.003462059
0.003464967
0.003464967
0.003472874
0.003487504
0.003534766
0.003541867
0.003594564
0.003599503
0.00360683

0.003608647
0.003653187
0.003663045
0.003683981
0.003698987
0.003714655
0.003715776
0.003715776
0.003725954
0.00376556

0.00376556

0.00385217



10586244
10424392
10434133
10362462
10403352
10381211
10442584
10459496
10391301
10392601
10351298
10434860
10396730
10386262
10379731
10461028
10418950
10577824
10385118
10346260
10492341
10374035
10375167
10455212
10404402
10588203
10554819
10532586
10347218
10494085
10365627
10450116
10461856
10583318
10507101
10388185
10583316
10358585
10404783

Dennd4a
9930014A18Rik
Dgcr6

Trdn

KIf6

Naglu

Rpl3l

Cchel

Stat3 /// Stat3
Abcab
Gpr161

Ostn

Obscn
Widc18

Trptl

Ldb3

Letm2

Dock2
Osgepll
Arhgef26
Xbpl
Fam196b
0610009020Rik
Foxgl

Ky

Me3

Myo18b
Selenbp2
Sycp3

Slc39a7 /Il Gm20427

Gnal4
Tafld
Trabd2b
Smtnl2
Tafld
Hmcnl

Ednl

0.543013262
-0.182346673
-0.12411165
-0.601586085
0.328786686
0.156903857
-0.480902936
0.238081286
0.255982825
-0.233061706
-0.150027484
-0.308442216
-0.143391359
-0.381301377
0.22123651
-0.135012262
-0.483919789
-0.128772234
0.396543744
-0.199062895
-0.181127657
0.298010801
-0.228015293
-0.144911203
-0.228128339
-0.324097762
-0.192307009
-0.384652156
0.48973462
-0.19445157
-0.190469805
0.127339136
-0.224132043
0.336990995
-0.260058672
-0.271007143
0.504188572
0.236944884
0.242010383

182

0.000104062
0.000105545
0.000106147
0.000106975
0.00010716

0.000107247
0.000107303
0.000108796
0.000109009
0.000109621
0.000110212
0.000115035
0.000115999
0.000116467
0.000117236
0.000117573
0.000117611
0.000118114
0.000118189
0.000120067
0.00012075

0.000121339
0.000122172
0.000123055
0.000123294
0.000123916
0.000124594
0.000124598
0.00012568

0.000126697
0.000126999
0.000127004
0.000127629
0.000128231
0.000128868
0.000130028
0.000130266
0.00013076

0.000130926

0.00385217
0.003902923
0.003920909
0.003942768
0.003942768
0.003942768
0.003942768
0.003984983
0.003988594
0.004006753
0.004024135
0.004187047
0.004217704
0.004230306
0.004240843
0.004240843
0.004240843
0.004252843
0.004252843
0.004311478
0.004331555
0.0043482
0.004373537
0.004387073
0.004391093
0.00440871
0.00441942
0.00441942
0.004451254
0.00448014
0.004481898
0.004481898
0.004490256
0.004506876
0.004520119
0.004556238
0.004559963
0.004572665
0.004573848



10396652
10573427
10475144
10357948
10604076
10600372
10378555
10362432
10435043
10400984
10525553
10366938
10363856
10458999
10439357
10492021
10398388
10572419
10500100
10428983
10496748
10375065
10532574
10386238
10583090
10359793
10554839
10418842
10549097
10384780
10493903
10497381
10435019

10559919
10552469
10353192
10499095
10458875
10515994

Hspa2
G430095P16Rik
Ganc /l// Capn3
Ppplri2b
Snora69
B230340J04Rik
Smyd4

Trdn

Tm4sf19
Tmem30b
Stac3
2310015B20Rik /// 2310015B20Rik
Fbn2

Fbxo40

Postn

Mir380

Ell

Tnfaip8I2
Fam49b

Syde2
Sh3pxd2b
Myo18b

Obscn

Mmp10

Dusp27

Picalm
3425401B19Rik
Ldhb
6820445E23Rik
Lce3d

Cyp7bl

Smcol

2810047C21Rik1 /Il zfp772 [l
Gm20482 /[ Gm3912

Klk13
Eyal
Fam160al
Dtwd?2
Smap2

-0.174475363
-0.157550872
-0.22402144
-0.243155534
0.312068779
-0.209915894
-0.114135984
-0.563758079
0.326138675
-0.216697584
-0.20370552
-0.331087502
-0.256059053
0.291630035
-0.255149616
0.481625703
0.274714449
0.19090879
0.19179743
0.306990132
-0.162706251
0.198111137
-0.347836911
-0.42885953
0.277569321
-0.254251463
0.36474787
-0.534474199
-0.365184624
-0.172054823
0.368732065
0.447265242
-0.302661597

-0.285436581
0.488111425
-0.297521217
-0.178102256
-0.126524974
0.187751071

183

0.000131506
0.000132492
0.000132798
0.000133245
0.000134217
0.000136244
0.000136638
0.000137719
0.000142387
0.000143588
0.0001439
0.000143947
0.000144166
0.000144663
0.000146934
0.000147175
0.000149808
0.000149896
0.000150823
0.000151439
0.000151641
0.00015403
0.000154445
0.000155339
0.000156865
0.000158043
0.000158802
0.000159678
0.000159921
0.000160802
0.000161341
0.000161378
0.000163747

0.000163983
0.000166599
0.000168211
0.000168483
0.000174862
0.000177272

0.004580371
0.004596234
0.00459766

0.004603981
0.004620924
0.004670465
0.00467936

0.004711719
0.004847559
0.004867313
0.004867313
0.004867313
0.004869993
0.004877276
0.00494425

0.004944436
0.00500037

0.00500037

0.005016843
0.00503224

0.00503224

0.005091014
0.005098313
0.005122952
0.005153723
0.00518263

0.005197712
0.005209615
0.005209615
0.005228707
0.005237616
0.005237616
0.005289814

0.005292525
0.005371953
0.005407579
0.005407642
0.005581439
0.00565317



10359867
10380887
10369301
10447591
10594988
10357954
10438575
10349968
10369715
10469571
10495539
10546624
10362420
10338923
10376868
10392221
10477813
10408543
10450699
10488060
10552919
10530371
10374529
10454254
10461979
10599487
10360001
10525932
10580649
10476728
10418016
10517401
10478594
10572485
10501302
10346448
10545372
10485388
10464391

Lrrc52
Tcap
Chst3
Ftl1
Mapk6
Ppplri2b
Ehhadh
Chi3l1
Mypn
Otudl
Extl2
Lmod3
Trdn
Trpv2
Pecaml
Mylk4
Gm7030 /// Gm11127
Jagl
Hrc
Yipf7
Wdpcp
Dtna
Aldhlal
Sash3
Tmem132c
Cesle
Dtd1
Dusp13
Grhi3
Ctsa
Rab3a
Sypl2
Aox4
Atoh8
Ldlrad3
Emx2

-0.234786854
-0.51125758
-0.17764962
0.35556077
0.235309939
-0.241748452
-0.198429278
0.588713819
-0.524846195
-0.246890298
-0.131534104
-0.442361175
-0.685369073
0.449712849
0.235352302
0.456832147
-0.179024667
-0.757933472
0.290010139
0.277988232
-0.357410432
-0.308150408
-0.12640172
-0.262528095
-0.331646183
0.186383214
0.199065184
0.146717672
-0.251721455
-0.107191296
-0.235340045
0.269993296
0.273026329
-0.138457148
-0.312300593
0.694386123
-0.178241629
-0.273403283
-0.238933966

184

0.000179604
0.000181466
0.00018168

0.00018221

0.000182905
0.000183458
0.000184087
0.00018571

0.000186464
0.000188604
0.000188704
0.00019086

0.000192068
0.000194524
0.000199272
0.000201381
0.000204782
0.000204828
0.000205943
0.000206048
0.000206051
0.000208313
0.000210558
0.000210576
0.000212356
0.000214333
0.000218183
0.000219805
0.000221879
0.000222338
0.000223753
0.000224534
0.000229204
0.000229626
0.00022963

0.000232717
0.000236979
0.000237732
0.000241803

0.005706613
0.005735865
0.005735865
0.005742177
0.005748689
0.005760609
0.00577514

0.00581556

0.005833911
0.00588809

0.00588809

0.005934061
0.005960959
0.006015714
0.006146127
0.006189209
0.006278494
0.006278494
0.006290086
0.006290086
0.006290086
0.006335047
0.006375966
0.006375966
0.00641312

0.006461597
0.006560597
0.006597934
0.006646109
0.006651008
0.006681828
0.006693659
0.006798936
0.006798936
0.006798936
0.006861094
0.006933821
0.006950003
0.007038817



10449545
10551365
10491106
10438854
10431210
10398390
10345492
10498371
10553140
10587880
10546349
10593413
10569017
10477206
10490304
10474520
10594183
10402575
10405729
10577858
10555681
10345482
10508953
10450484
10588509
10559837
10582376
10497001
10529402
10487945
10338491
10379650
10504692
10605811
10532580
10555460
10463517
10565193
10426891

Prx

Pld1

Atpl3a4

Wnt7b

Mir323

Cnnm3

P2ry12
Tmem143
Pcolce2

Xpc
2310030G06Rik
Ifitm3

Mylk2

Sycp2

Tdh /// Gm13929
Senp8

Degs2

Bag4

Stim1

Cnnm4

Trim63

Aifl

Pcbp4
Vmn2r29 /// Vmn2r46 /// Gm3912
Piezol

Cryz

Tnip2

Gpcpdl

Tmodl
Amerl
Myo18b
Stard10
Pprcl
Hdgfrp3
Mettl7al

-0.1668789
-0.136308231
0.175502157
0.308874111
-0.152120926
0.250881631
-0.114911212
0.217231267
-0.142545734
-0.378394483
-0.189391043
-0.138222473
0.529663669
-0.489405713
0.287157741
0.370017055
-0.159882008
0.264763411
0.179543335
-0.172460594
-0.238597073
-0.115000997
-0.298293418
0.220357832
-0.156805156
-0.339220545
0.258186228
-0.115343471
0.129273117
0.340103078
-0.253990562
0.365820492
-0.466422777
-0.138673658
-0.225666609
-0.183123973
0.185131946
-0.192244326
-0.231174648

185

0.000243222
0.000244203
0.000247573
0.000250705
0.000255369
0.000261302
0.000265224
0.000267917
0.000274665
0.000279928
0.000284295
0.000289631
0.000293198
0.000296924
0.000298751
0.000300631
0.000303325
0.000304929
0.000308004
0.000309036
0.000309524
0.000314927
0.000316391
0.000322098
0.000323188
0.000323371
0.000326738
0.000331062
0.000339779
0.000345344
0.000347742
0.000348614
0.000353867
0.000355628
0.000357483
0.000362667
0.000366917
0.000367845
0.00037374

0.007062992
0.007085544
0.007171375
0.007238288
0.007355473
0.007486135
0.007575469
0.007602292
0.007749678
0.007866049
0.007937435
0.008066955
0.008140224
0.008210882
0.008241729
0.008280445
0.008341423
0.008369313
0.008416844
0.008437169
0.008438484
0.008536711
0.008558564
0.008674974
0.008674974
0.008674974
0.008749941
0.008831698
0.009002075
0.009073447
0.009122643
0.009138637
0.009241492
0.009273527
0.009307957
0.009400669
0.009482223
0.009483285
0.009601777



10563766
10496405
10359307
10376564
10396112
10392687
10377148
10589909
10435697
10466606
10468974
10501963
10462697
10459455
10390507
10417700
10575095
10385776
10449807
10441339
10596117
10538087
10456254
10592336
10375537
10503023
10494043
10490502
10512156
10431659
10357072
10419073
10395672
10400967
10493108
10508436
10496796
10447224
10515861

Tnn

Med9

Atp5s
BC006965
Myh8
C130032M10RIK
Popdc2

Anxal

Cdnf

Ugt8a

Alpk2

Fbxo47

Has3

Tcf7

Ephx3
AB630089NO7Rik
Cep63

Lrrc61

Nedd4l

Spal7

Mgatl /// Mgatl
Cth

Tdrkh

Tcfl5

Aqp3

Kif2la
Serpinb3a
Tspanl4
Ap4sl

Six1

Crabp2

Sync

Ssx2ip
Dync2li1
4930538K18Rik /// AU022252

-0.312659862
-0.27993514
0.263910388
-0.115347469
-0.1476935
-0.158147342
-0.227759757
-0.167787502
-0.256124191
0.402785827
-0.163890456
-0.235392247
-0.169416867
-0.306377994
-0.188760011
0.199831667
0.225939
-0.140639583
0.423823474
0.26260589
-0.184242537
-0.170199182
-0.243780073
-0.173513292
0.129538553
-0.195854152
-0.160962661
0.157133683
0.37211728
-0.306798022
0.635663232
0.177554747
-0.124105841
-0.302654049
0.300340904
-0.251769063
-0.153392547
-0.138993913
-0.14979231
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0.000376736
0.000377168
0.000377931
0.000382567
0.000383931
0.000385531
0.000388852
0.000391983
0.000398032
0.000400947
0.000405777
0.000408282
0.000411978
0.000412843
0.000414794
0.000440204
0.00044496

0.000445647
0.000445995
0.000446229
0.000452323
0.000456026
0.000459201
0.00046378

0.00046784

0.000474947
0.000492682
0.000494447
0.000497162
0.000500545
0.000509696
0.000516798
0.000556006
0.000578048
0.000580087
0.000584524
0.000602156
0.000613325
0.000627681

0.009656447
0.009656447
0.00966017
0.009742148
0.009755507
0.009760409
0.009823044
0.009880598
0.009989593
0.010026551
0.010131923
0.010173397
0.010250799
0.010257636
0.010284045
0.010722835
0.010793599
0.010801464
0.010801464
0.010801464
0.010911
0.010992687
0.011038617
0.011107063
0.011192094
0.011307633
0.011665959
0.011691823
0.011742313
0.011803897
0.011962889
0.012105063
0.012799195
0.013245194
0.013272215
0.013349567
0.013671423
0.013883711
0.014098016



10554367
10424543
10568436
10590821
10433373
10588786
10432682
10342466
10422962
10513362
10409414
10601569
10389680
10526514
10381006
10607841
10339611
10341641
10570483
10548871
10398360
10477854
10407209
10433433
10604508
10591947
10605328
10387983
10411532
10585428
10453887
10607317
10607300
10476969
10445006
10480842
10561025

10497349
10406417

Mesp2

Wispl

Fgfr2
9230110C19Rik
Sec14l5

Uba7 //l Gm20661 /// Cdhr4

Krt80
Nadk2
Susdl
Rab24
Pcdh11x
Msi2
Cldn15
Thra

Tceanc

Arhgefl0

Smco3

Rian

Epb4.111 /// Epb4.111
Slc38a9

Mettl22 /I Mettl22
Frmd7

Acad8

Fam3a /// Fam3a
Gm12318

Mccc2

Dnajas4

Cablesl

Tsr2

Gm10437

Pygb

Gm6623
Tmem141

Cnfn

LOC100038947 /I
Sirpbla

Actgl

Sirpblb

m

-0.158631725
0.198064937
-0.309787942
-0.176959322
-0.139601206
0.128155703
-0.252409628
0.177381233
-0.142786488
0.190832196
0.162186139
-0.221814757
-0.158245749
0.166232999
-0.217682313
-0.147283632
-0.269631169
0.235142131
-0.19684312
-0.183548484
0.300862713
-0.105022622
-0.15785544
-0.179786082
-0.163580614
-0.133125121
-0.134880267
0.172514019
-0.153243573
-0.179520124
-0.189012919
-0.150716358
-0.275093048
-0.195687804
0.142237152
-0.130294392
0.36661943

0.342661229
0.400587083
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0.000629895
0.000639314
0.000642768
0.000645817
0.000646863
0.000655047
0.000655763
0.00065707
0.000672108
0.000690437
0.000692141
0.000708901
0.000744432
0.000762028
0.000764838
0.000784447
0.000788971
0.000801117
0.00080748
0.000814196
0.000848004
0.000910136
0.00091239
0.0009192
0.000938235
0.000950114
0.000968703
0.00097513
0.000985715
0.00104103
0.001142528
0.001183886
0.001253654
0.001454207
0.001476155
0.001537491
0.001547351

0.001572556
0.001606362

0.014125901
0.014300238
0.014359006
0.01439012
0.014394968
0.014534112
0.014534112
0.014538346
0.014786364
0.015094082
0.015110591
0.015354759
0.015865388
0.016190766
0.016232565
0.016495694
0.016547434
0.01671478
0.016827331
0.0169267
0.017474091
0.018318659
0.018353401
0.018453016
0.01874313
0.018897004
0.019219251
0.019302689
0.019435448
0.020212902
0.021630871
0.022208239
0.023056628
0.025590942
0.025810431
0.026575436
0.026692766

0.027060416
0.027398015



10503399

0.166729266

0.001715133

0.028626392

10537712  Gstkl -0.238704334 0.001723502 0.028747086
10374455 Spred2 -0.212127785 0.001756039 0.029149906
10408975 Kif13a -0.185845405 0.001883616 0.030566987
10553967 Pcské -0.1691985 0.001970468 0.031491251
10392207 Tex2 -0.195162434 0.002102469 0.032981645
10380560  Zfp652 -0.188964657 0.002306811 0.03499495

10592926 Tmem25 -0.148622247 0.002363763 0.035615263
10510482 Clstnl -0.182139796 0.002836685 0.040778813
10452030 Plin3 -0.110975266 0.002856798 0.040916515
10386495 Tomll2 -0.135420812 0.003589772 0.048103492

Supplement Table 4: The table shows the most significant eQTL. In table column Probe ID is
the Affymetrix probe ID, Peak SNP is the SNP with the highest —log p-value, and CI is the confidence

interval defined by a drop by 1.5 of the —log P score.

Peak Length
Probe ID Peak SNP Chr (SNP)  P(log) C.l. QTL (Mb) Gene Name
10552090 rs3719311 7 35 9.8 0-60 21.92 Scgb2b2
10592336 rs13480173 9 46 9.75 18-61 21.81 Spal7
10510482 rs3688566 4 141 9.39 135-156 21.14 Clstnl
10423471 CEL.15 36490596 15 36 9.18 3-61 20.74 Ctnnd2
10517250 UT_4_132.137715 4 133 9.13 128-135 20.64 Extl1
10528159 rs3658783 6 144 9.01 142-149 20.43 Gm10482
10379646 rs13481127 11 83 8.89 71-109 20.19 SIfn3
10386495 rs3688566 4 141 8.67 135-156 19.78 Tom1I2
10587880 rs13478002 4 136 8.61 135-142 19.66 Pcolce2
10392207 rs13481161 11 92 8.59 88-110 19.62 Tex2
10528159 rs4222295 1 39 8.56 13-79 19.56 Gm10482
10400510 gnfl12.077.067 12 80 8.54 47-108 19.51 Clecl4a
10605328 gnfX.084.751 X 98 8.45 10-135 19.35 Fam3a /// Fam3a
10572693  rs13479880 8 89 8.34 48-105 19.14 Jak3 /// Insl3
10427471 rs3658783 6 144 8.15 136-149 18.77 Osmr
10488060 rs6329892 6 142 8.12 136-147 18.7 Jagl
10553967 rs13478002 4 136 8.12 128-156 18.72 Pcsk6
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10559919
10445338
10387983
10411395
10391301
10452030
10446986
10391066
10572146
10605256
10527732
10368277
10381006
10445338
10386495
10456254
10407792
10577824
10582997
10604508
10384780
10474836
10572747
10360248
10449807
10346838
10346448
10526514
10538087
10396112
10488060
10412260
10395672
10349876
10412260
10430201
10452815
10486858
10582997

CEL.7_122752866
rs3693494
rs3658783
gnf13.093.328
rs6329892
rs3023025
rs13478002
rs6265387
rs3672808
rs6329892
rs13478002
rs13476689
rs13478002
CEL.2_135876979
rs3023251
rs13478002
rs13481689
mCV24845756
rs13478952
rs3023025
rs3723990
1s6228179
rs13479071
rs3707910
rs6386362
rs6404446
rs6386920
rs3673363
rs13478732
rs13481514
rs13478971
rs6386362
rs13481408
16228473
rs13481161
rs13479071
rs13483103
rs3023025
rs3672808

N BN R OO O M B O

[N
[N

13

12

11
12

11

17

142
30
144
93
142
143
136
147
140
142
136
107
136
136
21
136
11
22
106
143
27
123
138
174
107
21
54
36
45
71
111
107
41
129
92
138
75
143
140

8.07
8.02
7.87
7.79
7.7

7.68
7.66
7.64
7.63
7.6

7.55
7.55
7.49
7.46
7.4

7.39
7.36
7.26
7.23
7.21
7.19
7.17
7.15
7.13
7.13
7.11
7.05
6.99
6.92
6.9

6.89
6.87
6.87
6.78
6.75
6.7

6.69
6.64
6.63

135-147
21-55
140-149
74-117
136-147
135-155
128-156
136-149
136-147
136-147
135-147
91-130
135-147
87-175
12-65
135-143
0-26
8-46
104-112
135-156
12-38
116-130
135-144
164-178
90-114
13-44
33-98
28-83
45-51
54-77
110-116
105-112
10-80
114-137
90-103
135-149
63-87
135-156
134-149
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18.61
18.52
18.22
18.07
17.88
17.84
17.81
17.76
17.74
17.69
17.59
17.59
17.48
17.41
17.29
17.27
17.21
17.02
16.96
16.91
16.88
16.84
16.79
16.75
16.75
16.71
16.59
16.47
16.32
16.3

16.28
16.22
16.22
16.04
15.99
15.87
15.86
15.75
15.73

2810047C21Rik1 /I
Gm20482 /// Gm3912

Zfp772

Enpp5
Gm12318
Arhgef28

Stat3 /// Stat3
Plin3

Criml

Krtl7

Atp6v1b2 /// Atp6vlib2
Flna

Fry

Rps12 /// Snora33
Thra

Enpp5

Tom1l2

Nedd4
Gprl37b-ps //l Gprl37b
Letm2

Casp4

Frmd7
6820445E23Rik
Ivd

Tpm4

Atplad

Ephx3

Pard3b

Aox4

Cldn15

Lrrc61

Atp5s

Jagl

Fst

Ap4sl

Plekha6

Fst

Myh9

Xdh

Mfaplb

Casp4

m



10439936 rs13475827 1 41 6.63 33-43 15.75 Nfkbiz

10419073 rs13482193 14 56 6.58 40-72 15.64 Tspanl4
10587880 rs6181382 6 81 6.55 59-94 15.58 Pcolce2
10521984  rs6400804 15 57 6.55 43-68 15.58 G6pd2
10408975 rs3688566 4 141 6.54 135-156 15.55 Kif13a
10441339 rs4211364 16 81 6.54 77-85 15.56 AB30089NO7Rik
10450699 rs3702604 17 41 6.54 33-42 15.56 Gm7030 /// Gm11127
10544732 rs3683997 1 36 6.54 23-69 15.56 Skap?2
10466606 rs3672808 6 140 6.52 135-148 15.52 Anxal
10346838 gnf01.075.385 1 78 6.51 63-81 155 Pard3b
10505073 rs13477676 4 45 6.51 40-55 15.5 Zfp462
10415319 rs13482193 14 56 6.49 42-70 15.46 Irf9

10375065 rs6329892 6 142 6.48 135-149 15.44 Sh3pxd2b
10525256 rs13478451 5 109 6.48 97-135 15.44 Tmem116
10525397 rs3658783 6 144 6.47 135-149 15.42 Arpc3 /ll Arpc3
10352320 rs13478002 4 136 6.47 135-142 15.41 Tmem63a
10487945 rs6329892 6 142 6.46 135-147 15.39 Gpcpdl
10505073 rs13477774 4 73 6.45 62-83 15.37 Zfp462
10485388 rs13478002 4 136 6.44 135-141 15.36 Ldlrad3
10346448 rs3718160 16 7 6.42 69-81 15.31 Aox4
10585860 rs4222295 1 39 6.42 34-43 15.31 Adpgk
10393754 rs3672808 6 140 6.39 135-147 15.26 Actgl
10386965 rs13481071 11 65 6.37 61-67 15.22 Arhgap44
10555681 rs3023025 4 143 6.35 141-154 15.16 Stim1
10360248 rs13476273 1 184 6.34 183-191 15.15 Atplad
10568873  rs3683997 1 36 6.33 31-43 15.12 Adam38
10596925 rs13480421 9 112 6.31 102-113 15.08 Ndufaf3
10583316 rs6386362 11 107 6.31 103-114 15.09 Tafld
10384780 rs6329892 6 142 6.29 135-147 15.05 6820445E23Rik
10466606 rs3683997 1 36 6.28 33-43 15.03 Anxal
10445338 rs3662820 17 13 6.28 0-18 15.02 Enpp5
10352143 rs13478971 6 111 6.27 104-117 15.01 Kif26b
10449807 rs4201998 16 73 6.27 69-81 15.01 Ephx3
10485405 rs6329892 6 142 6.26 135-149 14.98 Cd44
10583316 rs3672808 6 140 6.26 135-148 14.99 Tafld
10406417 rs6329892 6 142 6.25 136-148 14.96 Actgl
10545372  rs3698446 11 105 6.24 88-114 14.95 Atoh8
10364375 rs3658783 6 144 6.23 138-149 14.93 Cstb
10392936 rs3658783 6 144 6.23 138-149 14.92 Nt5c
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10515861
10370721
10575799
10398390
10476969
10583318
10346448
10507671
10389680
10515994
10400984
10370721
10346191
10427471
10558150
10400126
10546829
10373740
10469856
10607300
10521205
10491300
10467425
10575799
10373740
10483809
10559837
10352143
10541246
10543939
10548871
10583316
10569017
10364593
10526514
10452815
10352143
10432619
10546829

rs6355837
rs4222295
rs13475827
rs6215373
rs13478002
rs13476689
rs13481161
rs13477959
rs13478002
rs6208251
rs13481514
rs3658783
rs3672808
rs13478971
rs13479071
rs13481408
rs3658927
rs6181382
gnf02.035.469
rs13481161
rs3700706
rs3658783
rs3023025
rs6377872
rs3719217
rs3658783
rs3023025
rs13481173
1s4222295
rs4211364
rs13479071
rs6341620
rs6329892
rs3672808
rs6355445
rs3658783
rs13479071
rs6285067
rs13476810

N A O R R A

N

o O O o o O O

129
39
41
45
136
107
92
124
136
105
71
144
140
111
138
4
121
81
34
92
33
144
143
125
95
144
143
96
39
81
138
37
142
140
70
144
138
95
142

6.22
6.21
6.19
6.18
6.17
6.16
6.15
6.14
6.12
6.12
6.11
6.1

6.09
6.07
6.06
6.05
6.04
6.04
6.03
5.98
5.98
5.97
5.97
5.96
5.95
5.93
5.93
5.93
5.92
591
5.9

5.9

5.89
5.89
5.88
5.87
5.87
5.87
5.86

128-135
33-43
34-44
31-51
128-156
100-114
88-99
118-128
135-147
104-111
51-82
134-149
134-148
104-117
135-147
41-45
116-130
61-94
16-51
90-100
21-46
136-149
141-151
92-130
90-101
136-147
141-154
90-100
33-43
71-86
131-149
29-45
134-147
134-148
63-79
138-149
136-144
92-103
136-152
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14.91
14.89
14.84
14.83
14.79
14.77
14.75
14.74
14.69
14.71
14.68
14.65
14.63
14.59
14.58
14.55
14.53
14.52
14.51
14.42
14.4

14.38
14.39
14.36
14.35
14.31
14.3

14.3

14.28
14.26
14.24
14.25
14.22
14.21
14.21
14.18
14.18
14.18
14.16

4930538K18Rik /// AU022252
Sbno2
Plcg2
Mir323
Pygb
Tafld
Aox4
Gucaz2a
Msi2
Smap?2
Tmem30b
Sbno2
Statl
Osmr
Htral
Lrrn3
Oxtr
Pik3ip1
Wdr85
Gm10437
Sh3bp2
Skil
Sorbs1
Plcg2
Pik3ip1
Nfe2l2
Vmn2r29 /// Vmn2r46 /[ Gm3912
Kif26b
117ra
Fam180a
Smco3
Tafld
Ifitm3
Cnn2
Cldn15
Xdh
Kif26b
Pou6fl
Oxtr



10394770
10515861
10362959
10392207
10412260
10452030
10492021
10392207
10537712
10432852
10374035
10488060
10464999
10392936
10468974
10383233
10394770
10462140
10360248
10441339
10583316
10526514
10604076
10460616
10463517

10473240

10455595
10554789
10370522
10591988
10368356
10447951
10607300
10447951
10400126
10384423
10596117
10404702

rs6329892
rs6381371
rs3716113
rs3723990
rs3658783
rs13477749
rs6329892
rs6199956
rs3023025
rs3672808
rs13481161
rs13481161
rs13475919
rs4222295
rs3088801
rs3699056
rs13478952
rs13478068
CEL.X_77780392
rs3671849
rs13478971
CEL.5_93945748
rs3711088
rs6329892
rs3658783

rs13479071

rs3672808
rs6329892
rs6386362
rs4200124
rs3679120
rs6329892
rs3688566
rs13478971
rs3089800
rs3023251
rs3658783
rs3683997

10
11

= ©
[N

o O o o o N X »~ O

11
16
10

12
11

142
116
42
27
144
66
142
51
143
140
92
92
73
39
25
114
106
155
83
163
111
97
148
142
144

138

140
142
107
71
23
142
141
111
30
21
144
36

5.85
5.84
5.83
5.83
5.82
5.82
5.8

5.79
5.78
5.78
5.78
5.77
5.75
5.75
5.75
5.74
5.74
5.73
5.73
5.72
5.72
571
5.7

5.69
5.68

5.68

5.66
5.64
5.63
5.62
5.62
5.61
5.61
5.61
5.61
5.61
5.6

5.6

135-147
106-121
31-64
18-31
136-149
62-106
135-147
41-67
141-151
136-149
90-96
90-99
65-79
25-60
12-29
109-116
104-114
151-156
82-99
151-170
104-118
97-100
140-149
135-148
136-149

135-148

135-147
135-147
100-114
66-77
14-66
134-147
136-154
105-114
17-39
15-30
135-149
31-46

192

14.14
14.13
14.1
14.09
14.07
14.08
14.03
14

14

14
13.98
13.97
13.93
13.92
13.93
13.9
13.91
13.88
13.89
13.86
13.87
13.84
13.82
13.8
13.78

13.78

13.74
13.69
13.68
13.65
13.65
13.64
13.63
13.65
13.64
13.65
13.62
13.62

Odcl
4930538K18Rik /// AU022252
Popdc3
Tex2
Fst
Plin3
Postn
Tex2
Gstkl
Krtl
Xbpl
Jagl
Cst6
Nt5c
Cdnf
Rnf213
Odc1l
Dock8
Atplad
AB30089NO7Rik
Tafld
Cldn15
Snora69
Cfl1
Pprcl

Enol /// Gm5506 /// LOC101056352 ///
Gm4735

Enol /// Gm5506 /// LOC101056352 ///
Gm4735

Ctsc //l Ctsc
Caspl4
Adamts15
Akap7
Thbs2
Gm10437
Thbs2
Lrrn3

Cob
Cep63
Gent2



10380403
10504402
10586591
10363455
10464999
10592926
10423471
10357946
10564211
10374035
10487945
10521205
10374035
10463517
10582378
10392936
10419578
10488060
10391301
10607300
10554839
10490838
10583669
10425781
10409414
10565193
10469581
10559837
10432852
10528159

10559919
10538087
10541260
10480842
10554789
10352143
10580649
10456254
10490773

rs6329892
rs6181382
rs3700706
rs4138572
rs13481161
rs13479071
rs3667334
rs3023025
rs3023025
rs6329892
rs13478971
rs3711088
rs6370458
rs6316774
rs6268443
rs13481161
rs3023025
rs6386362
1s4222295
rs13480854
rs6329892
rs4201998
rs6174757
rs13478089
rs13475827
rs3688566
rs13478002
rs13482170
rs3683997
rs13481161

rs3720897
rs6330932
rs13478971
rs3658783
rs3711357
rs6386362
rs13482193
rs13478089
rs3672808

11
11
14

142
81
33
98
92
138
83
143
143
142
111
148
109
97
95
92
143
107
39

142
73
68
154
41
141
136
49
36
92

25
37
111
144
61
107
56
154
140

5.59
5.57
5.57
5.56
5.55
5.53
5.53
5.52
5.52
5.5

5.5

5.49
5.48
5.47
5.47
5.47
5.46
5.46
5.45
5.45
5.44
5.44
5.44
5.43
5.43
5.42
5.42
5.42
5.42
5.4

5.4

5.39
5.38
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Supplement Figure 1: Cluster dendrogram of miRNAs. The tree-structure shows group of genes

hierarchically clustered together. Colors indicate to the module to which genes is assigned to.
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Supplement Figure 2: Network of Red module. Green lines display predicted interaction using
domain interaction information and predicted interactions. Red circles define candidate hub genes for

the red module.
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Supplement Figure 3: Heatmap of differentially expressed genes in EBA. The figure shows
the genes cluster on the x-axis and samples cluster on the y axis. The genes up-regulated are

presented in red while down regulated are presented in green.
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