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Zusammenfassung 
 

Motorisches Lernen ist eine fundamentale Fertigkeit für unser tägliches Leben. Diese Art des 

Lernens kann unterschiedliche Formen annehmen, wie zum Beispiel das Lernen einer 

bestimmten Sequenz von Tastenantworten bis hin zu komplexen Bewegungen, die beispielweise 

beim Tennisspiel erforderlich sind. In dieser Dissertation untersuche ich die neuronalen 

Grundlagen von motorischem Sequenzlernen unter Verwendung von Daten aus funktioneller 

Magnetresonanztomographie (fMRT) und Elektroenzephalographie (EEG).  Das erste Kapitel 

gibt eine allgemeine Einführung in die neuronalen Grundlagen des motorischen Lernens, die in 

elektrophysiologischen und Bildgebungsstudien gewonnen wurden. Diese Forschungsergebnisse 

resultierten in einem Modell für motorisches Lernen, welches ein Netzwerk verschiedener 

Gehirnregionen beschreibt, die für unterschiedliche Lernphasen zuständig sind. Nicht geklärt ist, 

wie diese einzelnen Regionen miteinander interagieren. Das Ziel dieser Arbeit ist es sich dieser 

Fragestellung mithilfe des seriellen Reaktionszeit-Tests (serial reaction time task; SRTT) zu 

nähern. Zwei Aspekte von Netzwerkinteraktionen wurden untersucht: der gegenseitige Einfluss 

von Hirnregionen während motorischen Lernens und die Natur dieser Interaktionen in Form von 

Oszillationen. Der erste Aspekt wurde untersucht, indem mathematische Modelle von Daten 

fMRT erstellt wurden (Kapitel 2 und Kapitel 3). Um den zweiten Aspekt zu ergründen, wurde 

oszillatorische Kopplung (oscillatory coupling) in EEG Daten als Maß für Kommunikation 

zwischen kortikalen Regionen verwendet (Kapitel 4). 

In den fMRT Studien wurden kausale Interaktionen in dem kortiko-striato-cerebellaren Lernen 

Modell untersucht. Ergebnisse der ersten Studie (Kapitel 2) zeigten, dass die motorische 

Komponente von implizitem motorischem Sequenzlernen (MSL) durch kortiko-cerebelläre und 

nicht durch das kortiko-striatale Netzwerk moduliert wurde. Insbesondere wurde die Verbindung 
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zwischen dem primären motorischen Kortex (M1) und dem Cerebellum während des Lernens 

bilateral negativ moduliert, was möglicherweise in einer Deaktivierung des Cerebellums im 

Verlauf des Lernprozesses resultierte. In der zweiten Studie (Kapitel 3) wurden diese Ergebnisse 

repliziert und im Weiteren konnten eine spezifische Verbindung vom Cerebellum zum Putamen 

gefunden werden, die während der langsamen Lernphase negativ moduliert wurde. Diese 

Resultate betonen die Bedeutung der Verbindung des Cerebellums mit einerseits kortikalen und 

andererseits subkortikalen Strukturen während impliziten MSL. Die dritten Studie (Kapitel 4) 

zeigte, das Oszillationen im Theta, Alpha und Gamma Frequenzband in implizitem 

visuomotorischen Sequenzlernen involviert sind. Alpha Oszillationen waren über parietalen 

Arealen während der frühen Phase des Lernen erhöht und nahmen später ab. Die Kppplung 

zwischen der Alpha-Phase und der Amplitude von Gamma (alpha/gamma phase amplitude 

coupling, PAC) zeigte während des Lernens eine Reduktion über parietalen und prämotorischen 

Arealen. Dies legt nahe, dass die alpha-gamma PAC für visuo-motorische Integration 

entscheidend ist und diese im Verlauf des Lernens der visuo-motorischen Sequenz abnimmt. 

Schließlich werden in Kapitel 5 die Resultate dieser Studien in Bezug auf Modelle und 

kommende Entwicklungen in der Erforschung von Netzwerkinteraktionen während motorischen 

Lernens diskutiert.   
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Abstract 
 

Motor learning is profoundly important for our daily life. This type of learning ranges from 

tapping fingers in a sequence to learning complex series of movements needed for example to 

precisely hit a tennis ball. In this thesis, I investigated the neural underpinnings of motor 

sequence learning using fMRI and EEG studies. The first chapter gives an overview on the 

neural correlates of motor learning which have been thoroughly investigated using animals, 

patients, imaging and electrophysiological studies. These efforts resulted in a motor learning 

model which describes a specific network of brain regions which are involved in the different 

learning stages. However, questions regarding the nature of the interactions in this network 

remain unanswered. The aim of this thesis is to address these questions by tapping into the neural 

correlates of implicit motor sequence learning (MSL) using the serial reaction time task (SRTT). 

Two aspects of network interactions were addressed: influence of brain regions involved in 

motor learning on each other and the nature of these interactions as expressed by oscillatory 

measures. The first aspect was addressed using mathematical modelling of functional magnetic 

resonance imaging (fMRI) data (Chapter 2 and Chapter 3). The second aspect was addressed by 

assessing oscillatory coupling measures from Electroencephalography (EEG) data as a measure 

of long-range communication between cortical regions (Chapter 4).  

In the fMRI studies, causal interactions within a cortico-striato-cerebellar model were 

investigated. Results from the first study (Chapter 2) showed that the motor component of 

implicit MSL modulated the cortico-cerebellar and not the cortico-striatal loop. Specifically, 

learning negatively modulated the connection from M1 to cerebellum bilaterally, probably 

resulting in cerebellar deactivation as learning progresses. In the second study (Chapter 3), these 

results were replicated and a specific connection from cerebellum to putamen was found to be 
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negatively modulated by learning during the slow phase. Together, these results demonstrate the 

importance of cerebellum connection to cortical and subcortical structures to implicit MSL. The 

third study (Chapter 4) showed that oscillations in the theta (4-8Hz), alpha (8-12Hz) and gamma 

(30-49Hz) frequency bands are involved in implicit visuomotor sequence learning. Alpha 

oscillations over parietal areas were increased during the early learning phase and decreased later 

on. Alpha phase to low-gamma amplitude coupling (alpha/gamma PAC) was shown to decrease 

during learning over both parietal and motor areas suggesting that alpha/gamma PAC is 

important for visuo-motor integration. Finally, in Chapter 5 the results of these studies are 

discussed together with implications on models of motor learning and future perspectives of 

research on network interactions during motor learning. 
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Chapter 1 

Introduction 

1.1.  General outline of the thesis and research aims 

The extent to which motor learning plays a role in our life can be appreciated when viewing a 

small child develop. From the first goal-directed movements through crawling, sitting, standing 

and walking, each of the steps follow numerous trials and errors. Eventually children develop 

enough motor skills to function in dependently of their parents but motor learning never stops.  

For this reason and others, neural correlates of motor learning have attracted much attention in 

the cognitive neuroscientific community (Dayan and Cohen, 2011). First highlighted in patients 

with movement disorders such as Parkinson’s disease, Spino-cerebellar ataxia and Huntington’s 

disease, clinical studies provided first clues to the loci of motor learning in the brain (Doyon et 

al., 1997; Jackson et al., 1995; Knopman and Nissen, 1991; Pascual-Leone et al., 1993). 

Followed up by transcranial magnetic stimulation (TMS) studies (Muellbacher et al., 2002) and 

animal models (Matsuzaka et al., 2007; Miyachi et al., 1997), plastic and dynamic changes over 

primary motor cortex and striatum were associated with the different phases of motor learning. 

Later on, numerous imaging studies (Hardwick et al., 2013) aimed to clarify which regions of the 

brain participate and contribute to motor learning. This line of evidence has pushed forward 

theoretical models of motor learning implicating several cortical and subcortical brain regions 

which together contribute to learning processes as well as motor memory encoding and 

consolidation (Doyon et al., 2003; Hikosaka et al., 2002). However, questions regarding the 

nature of the interactions between those brain regions remained largely unanswered.  
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In the experiments of this thesis, I sought to answer some of these questions with a very well 

established paradigm used to investigate implicit motor sequence learning: the serial reaction 

time task (Nissen and Bullemer, 1987). Using the excellent spatial resolution of fMRI I tried to 

understand the causal interactions (Friston et al., 2003) in a specific motor cortical-basal ganglia-

cerebellar network during the acquisition (Study 1 and 2) and consolidation (Study 2) of motor 

memory. Next, I attempted to tap into specific oscillatory mechanisms, namely phase amplitude 

coupling (Canolty and Knight, 2010), as means of integrating local computation across large-

scale networks while participants implicitly learned a visuomotor sequence (Study 3).  

The following introduction is comprised of two parts: the first is a methodological evaluation of 

connectivity in brain networks which serves as the basis for my choice of “Dynamic causal 

modelling” (Friston et al., 2003) as a method for investigating causal interactions in studies 1 and 

2. The second part is an overview of concepts and current knowledge on the neural correlates of 

learning and memory with special focus on implicit motor sequence learning.  

1.2.  Modelling of causal connectivity 

Traditionally, cognitive neuroimaging studies adopted the modular view of brain function, in 

which each brain region plays a specific functional role for cognitive processes such as 

perception, cognition and action. Recently, there has been a shift to a functional integration view 

stressing that complex cognitive processes may involve spatially segregated, yet interacting brain 

regions. This has led researchers to explore connectivity between brain regions which were 

shown by means of functional neuroimaging to be implicated in different cognitive processes. 

The term connectivity may refer to different aspects of brain network organization.  
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The following distinctions have been made:   

1. Structural connectivity refers to measures of white matter architecture or axonal 

connections between neurons and neural populations. Non-invasive techniques for tracing 

fibers of axonal connections make use of diffusion weighted imaging methods to identify 

tracts between brain regions. 

2. Functional connectivity refers to statistical, non-mechanistic dependencies between 

signals from different brain regions. Usually inferred based on measures of correlations, 

this type of connectivity does not rely on any model of statistical dependencies among 

brain regions.  

3. Effective connectivity refers to causal, directed connections between signals from 

different brain regions which explicitly depend on a certain statistical model. This implies 

that inferences in effective connectivity rely on model comparison and optimization.  

In this section, I will discuss typical methods for assessing connectivity: psychophysiological 

interactions, granger causality and dynamic causal modeling. These methods are commonly used 

in EEG and fMRI studies to explore connectivity in the context of specific experimental 

manipulations.  

Psychophysiological interactions (PPI) tests whether correlations in activity between two given 

brain regions differ based on certain experimental manipulations – hence in a psychological 

context. 

Granger Causality (GCA) tests whether a signal extracted from a certain region X “granger 

causes” a signal from another region Y. This is true only if X contains information that will help 

predict the future of Y better than only the information stored in Y itself.  



4 

 

Dynamic causal modeling (DCM) is a relatively new framework, which attempts to fit a 

mathematical model of differential equations to the underlying dynamic connections between 

neural populations. Thereafter Bayesian methods are used to compare models and assess 

probability of connectivity parameters.  

1.2.1. Psychophysiological interactions 

Psychophysiological interactions (PPI) (Friston et al., 1997), describe the relationship between 

activity in two (or more) brain regions under a specific experimental context in fMRI studies. It 

relies on a linear regression model between a signal from a seed region and other voxels in the 

brain during a particular context of a behavioral task. The following statistical model is therefore 

used: 

 𝐱𝑖 = 𝐱𝑘 × 𝐠𝑝 ∙ 𝛽𝑖 + [𝐱𝑘𝐠𝑝𝑮] ∙ 𝛽𝐺 + 𝒆𝑗 (1) 

Where x represents the activity in a specific region, g the experimental context, and 𝛽 is the 

parameter estimate. Multiplying these elements results in the interaction between physiological 

activity in region k and an experimental parameter g. G is a matrix whose columns contain effect 

of no interest and e is an additive error-term.  

An interaction means that the contribution of the seed region to other brain regions expressed as 

the slope of the regression model is specifically dependent on a certain experimental context and 

changes when this context is no longer present in the task. Notably, this type of interaction does 

not predict the directionality of influence of one brain region to another (as opposed to other 

measures of effective connectivity such as DCM and GCA). In addition, a major caveat in PPI 

analysis is that it describes the interactions using the BOLD signal measured with a lag of ~6 

(sec) while the experimental manipulation is measured in real-time. A proper 
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psychophysiological interaction should occur on the neuronal level and thus require the 

hemodynamic activity to be deconvolved in order to achieve the underlying neural signal 

(Gitelman et al., 2003). This step, which is critical for PPI analysis (as well as standard GLM 

analyses) might be tricky as the HRF shape is not exactly known and might cause spurious 

deconvolution results (O'Reilly et al., 2012).  

1.2.2. Granger Causality 

Granger causality (GCA) was first introduced in the field of economics (Granger, 1969) and 

thereafter been widely applied to neuroimaging and neurophysiological data as it provides a 

relatively simple framework in which causality measures could be estimated given stationary 

(i.e. mean and variance which do not change in time)
 
stochastic time series. The idea behind 

GCA is straight forward: given two time series X and Y, if we are able to predict the future of X 

more successfully by incorporating the information from the past of Y compared to incorporating 

only the information of the past of X then we can conclude that Y “granger causes” X. 

Commonly implemented as linear vector autoregressive models, GCA can be formulated as 

follows: 

 

𝐱𝑡 = ∑𝐀𝑗𝐱𝑡−𝑗 + 𝛆𝑡

𝑝

𝑗=1

 

(2) 

 

𝐱𝑡 = ∑𝐀𝑗
′𝐱𝑡−𝑗 + ∑𝐀𝑗

′𝐲𝑡−𝑗

𝑝

𝑗=1

+𝛆𝑡
′

𝑝

𝑗=1

 

(3) 

 
ℱ𝑌→𝑋 = ln

var(εt)

var(εt
′)

 
(4) 

Where p represents the order of the autoregressive model, equation (2) is the restricted model 

(depending only on the past of x), equation (3) is the unrestricted model (depending also on the 
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past of y) and equation (4) is the definition of granger causality based on the variance of the 

residuals ε (also referred to as “prediction errors”). This means that if the residual of the 

unrestricted model is smaller than the residual of the restricted model then the model improved 

its prediction by including Y. Importantly, GCA methodology assumes that the time series are 

wide-sense-stationary which is almost never the case with neurophysiological data. Differencing 

the data or analyzing GCA in short time-windows (Ding et al., 2000) could provide a solution to 

this problem. GCA has been mostly applied to electrophysiological data recorded using 

EEG/MEG either at the sensor level or at the source level following appropriate source 

reconstruction techniques. However, attempts to apply GCA to fMRI time series data have been 

widely criticized given the slow dynamics of the BOLD signal and regional variations in 

hemodynamic latency (David et al., 2008). Some recent work however showed that GCA could 

be robust to hemodynamic variations but not when performing down sampling and in the 

presence of measurement noise (Deshpande et al., 2010; Seth et al., 2013). 

1.2.3. Dynamic causal modelling  

Dynamic causal modelling (DCM; Friston et al., 2003) is an input-state-output framework which 

uses differential equations and Bayesian inference to describe the dynamics of interacting brain 

sources using neurophysiological signals. Importantly, unlike PPI and GCA described above, 

DCM is regarded as a hypothesis-driven approach which allows testing specific competing 

models in terms of statistical evidence and connectivity parameters. An interacting network 

modeled using DCM requires an input which will in turn elicit a state change that will produce 

the observed output. Here, the input is the experimental manipulation; the output is the measured 

signal: electrophysiological in case of LFP/EEG measurements or a hemodynamic response in 

case of fMRI; and the state is the regional specific neuronal activity which changes in time.  
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In this thesis I used DCM for fMRI data measured in Study (1) and Study (2). The following 

section will therefore focus on mathematical models underlying DCM for fMRI (but see (David 

et al., 2006) for the theory and foundations of DCM for EEG/MEG).  

Generative models 

Neurodynamics are described by a deterministic bilinear differential so-called “evolution” 

equation: 

 𝑑𝒛

𝑑𝒕
= (𝑨 + ∑𝒖𝑖𝑩

(𝑖)

𝑚

𝑖=1

)𝒛 + 𝑪𝒖 
(5) 

Where Z is the time dependent regional specific neural activity, A represents the endogenous 

connections in the absence of input, B represents the modulatory effects (i.e. the influence of the 

input on the connection), and C the extrinsic (non-state-dependent) additive effects on regional 

neuronal activity. A, B and C are specified based on the assumptions (hypotheses) on the model 

structure.       

The hidden state Z is then mapped to the experimental measure, here the BOLD signal. The 

neurodynamics described above give rise to changes in BOLD fMRI activity. These changes 

have been described previously by the balloon model (Buxton et al., 1998). In short, regional 

neuronal activity causes increase in vasodilatory signal which is subject to auto-regulatory 

feedback. Inflow responds to this feedback and in turn causes changes in blood volume and 

deoxyhemoglobin content. The predicted BOLD signal is a nonlinear function of volume and 

deoxyhemoglobin (Stephan et al., 2007). This procedure results in a modelled BOLD response 

which is estimated using a Bayesian scheme.  
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Model evidence 

The Bayesian scheme estimates two very important quantities: the model evidence 

𝑝(𝑦|𝑚) which is the probability of obtaining observed data y given model m and the posterior 

estimates of the model parameters 𝑝(𝜃|𝑚) given model m, where 𝜃 = {𝐴, 𝐵, 𝐶}. According to 

the Bayes Theorem one could describe the model evidence as follows: 

 
𝑝(𝑦|𝑚) = ∫𝑝(𝑦|𝜃,𝑚)𝑝(𝜃|𝑚)𝑑𝜃 

(6) 

As equation (6) is not straight forward to compute, it is approximated using variational free 

energy (Friston et al., 2007). This is done by iteratively updating the posterior moments of the 

parameters through a gradient ascent on a free-energy bound F on the log evidence: 

 log 𝑝(𝑦|𝑚) = 𝐹(𝑚) + 𝐾𝐿(𝑞(𝜃|𝑦,𝑚)||𝑝((𝜃|𝑦,𝑚)) (7) 

 𝐹(𝑚) = log 𝑝(𝑦|𝑚) − 𝐾𝐿(𝑞(𝜃|𝑦,𝑚)||𝑝((𝜃|𝑦,𝑚)) (8) 

Where KL is the Kullback-Leibler divergence between the approximated posterior density q and 

the true posterior p. This quantity is always positive or zero when the densities are identical. 

Importantly, F contains two opposing requirements of a good model: First, if the log likelihood is 

high, the data fits well to the model. Second, the second term in equation (8) ensures that 

complexity of the model (more parameters used) is penalizing the evidence such that simpler 

models would be advantageous.   

The model evidence is then used for comparing different competing hypotheses using Bayesian 

model selection (BMS; Rigoux et al., 2014; Stephan et al., 2009). In neuroimaging data this 

procedure entails comparison between models across a group of subjects. If one assumes fixed 
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effects (for a random effects treatment please refer to Stephan et al. (2009)) across subjects (all 

subjects use the same model) then the Bayes factor could be used to compare between two 

models: 

 

Post-hoc Bayesian model selection 

The DCM framework as described above requires that each hypothesized model is estimated and 

fitted for the purpose of model comparison using BMS. This approach is challenging when 

dealing with large-scale networks or when a-priori knowledge about the network connectivity 

patterns is limited. Such circumstances will require more free parameters to be added to the 

model space which will increase the computational time exponentially. A possible solution to 

this challenge was suggested by Friston and Penny (Friston and Penny, 2011). This paper 

describes a framework in which only one “full” model is fitted and estimated. Subsequently, 

model evidence for all reduced nested models could be post-hoc approximated from the full 

model. A full model in this case could be a fully connected network and the nested models would 

be models with a sparser connectivity pattern. Importantly, connectivity parameters for all 

reduced models could be estimated from the posterior density over the parameters of the full 

model. 

The post-hoc approach allows searching over very large model spaces using a greedy search 

scheme as follows: a subset of parameters with the least evidence is identified and a search is 

 
𝐵𝐹𝑖𝑗 =

𝑝(𝑌|𝑚 = 𝑖)

𝑝(𝑌|𝑚 = 𝑗)
 

(9) 
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conducted across all reduced models within that subset. Redundant parameters are removed and 

the search continues until all parameters in the full model have been searched through.     

While the original “post-hoc” BMS publication referred to a specific stochastic DCM 

implementation (Li et al., 2011), a more recent study  (Rosa et al., 2012) showed that the “post-

hoc” approach could also be applied to bilinear deterministic DCMs. In addition the authors 

compared the results achieved with this approach to results of the traditional DCM approach in 

which each model is estimated separately, and found that both in synthetic and real fMRI data 

similar results could be achieved both for model evidence and parameter estimates.   

DCM limitations and critique 

Since the publication of the seminal DCM paper (Friston et al., 2003) DCM framework has been 

used quite extensively for analyzing effective connectivity mostly in fMRI studies (as for 1.2015 

the seminal DCM paper was cited 1970 time). Recently, some methodological concerns have 

been raised (Daunizeau et al., 2011; Friston et al., 2013; Lohmann et al., 2012) which are crucial 

for the correct interpretation and generalization of DCM results.  

(1) DCM network. While measures of functional connectivity allow whole brain 

investigations, DCM is limited to a pre-specified number of regions which might be only 

a small part of a more complex network. Therefore interactions within the network 

described by DCM might only underlie complex interactions with other brain regions as 

well.  

(2) Statistical inference. It is not possible to falsify models using DCM. The Bayesian 

framework allows testing a large set of relatively equally probable models. The winning 

model then represents the most plausible model out of this specific set of models but can 

be actually false by itself. 
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(3) Model space combinatorial explosion. The number of possible models for a DCM 

analysis has been first raised by Lohmann and colleagues (Lohmann et al., 2012) and 

subsequently debated in later work (Friston et al., 2013; Lohmann et al., 2013). In short, 

in search for a “true” model, the number of possible arrangements of the user-defined 

parameter space (i.e. A, B, and C matrices) can be extremely large up to a combinatorial 

explosion. For example a 3-node network with 3 experimental conditions will require 

272 million potential models. The argument against this critique is that DCM framework 

is motivated for scientific questions in which competing hypotheses are compared 

against each other. This means two things: there is no “true” model but a model which 

can explain the results observed better, and second, a-priori knowledge on network 

connectivity is explicitly implied while constructing the model space.  

1.2.4. Summary 

This section reviewed three commonly used methods for assessing connectivity in fMRI data. 

While each method comes with advantages and disadvantages, it is quite clear that for hypothesis 

driven questions DCM allows to most directly investigate underlying effective connectivity 

patterns compared to GCA and PPI. Importantly, this kind of scientific questions should be 

motivated by literature (including animal models) and should thus provide a clear specification 

of model space.  

1.3.  Learning and memory 

1.3.1. Implicit learning and non-declarative memory 

Memory is often classified along the time dimension into short-term memory and long-term 

memory. Short-term memory transiently maintains current information and has limited capacity. 
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A concept which was developed in order to extend on short-term memory in terms of the mental 

processes involved is working memory. A classical model subdivides working memory into 

three systems: verbal, visuo-spatial, and executive control which is the system that coordinates 

the former two by monitoring, manipulating and updating stored information (Baddeley, 1992). 

The storage of information for long periods of time (days, months or years) is referred to as long-

term memory which is commonly divided into declarative and non-declarative memories. 

Declarative memory is defined as a memory for events (episodic) and facts (semantic) whereas 

non-declarative memory is directly linked to the process in which it was acquired, i.e. implicit 

learning, a learning process without conscious awareness. There are several different types of 

implicit learning mechanisms such as priming, classical conditioning, non-associative learning 

(habituation, sensitization) and procedural learning. Procedural learning is characterized by 

incremental improvement in accuracy and speed of motor behavior which is achieved through 

repetition.  

Procedural learning 

Procedural learning involves learning of cognitive and motor skills, for example, learning to ride 

a bike or to tie a shoe. We are not really able to describe how exactly we learned these skills but 

most of us are able to do them. Interestingly, this type of learning is not affected by anterograde 

amnesia such as the one of the famous H.M, whose bilateral hippocampi were resected in an 

attempt to control his severe epileptic seizures. H.M was able to perform a difficult motor 

learning task, namely, mirror tracing and showed normal learning curve over days, despite not 

remembering having done that task the previous days.  

Several experimental paradigms are used for testing procedural learning. For example, in an 

artificial grammar task (Reber, 1967), the subject is requested to memorize a set of letter strings. 
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Once this is done, the subject is informed that the strings follow a certain rule and are asked to 

classify new strings as grammatical (i.e. following the rule) or not. Evidently, participants are 

more accurate than chance in this task even though they are not able to verbalize a specific rule. 

A very popular paradigm to study the nature of procedural memory is sequence-learning. The 

sequence may be a series of light flashes or tones which correspond to a specific button press.  

One example of sequence-learning is the number reduction task (Rose et al., 2002). Here, 

participants learn to respond to a series of numbers based on explicit rules. In addition, an 

abstract hidden structure is implemented such that irrespective of the stimulus-response 

associations in a given trial, the response pattern follows a specific pattern.  

The serial reaction time task (Nissen and Bullemer, 1987) is a standard experimental paradigm to 

test implicit motor sequence learning (MSL). Here, participants are asked to respond to a series 

of visual stimuli on the screen by pressing the spatially corresponding buttons on a button-pad. 

Unbeknownst to the participants, the stimuli on the screen follow a specific sequence which 

correspondingly requires a sequence of button presses. With time participants become faster in 

performing the sequence compared to completely random button presses which indicates that 

they have indeed learned the sequence pattern. However, when asked about it, participants do not 

seem to recollect any kind of pattern in the stimuli presented to them. Importantly, although 

viewed as a motor learning task, the SRTT may not only involve the motor domain (Robertson, 

2007). Participants may adopt different strategies as either the sequence of the visual cues could 

be learned (perceptual component) or the sequence of the button presses (motor component) or a 

combination of both. If the sequence is practiced enough times though, studies show that 

participants may gain explicit knowledge (Doyon et al., 1996).  
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Other forms of motor learning exist as well, for example, visuomotor adaptation (Galea et al., 

2011). Here, participants learn a certain movement trajectory by moving a cursor to a target on 

the screen. Next, a transformation is imposed unexpectedly forcing the participants to adapt to a 

new target location. This type of motor learning as well as learning of sequential finger tapping,  

whether implicit or explicit (Karni et al., 1995), is sometimes referred to in the literature as 

skilled behavior (Dayan and Cohen, 2011).   

Phases of motor skill learning 

Motor skills are initially acquired very fast but learning later slows down, nearing asymptotic 

performance. Following a series of behavioral and fMRI studies of sequential finger tapping, 

Karni and colleagues (Karni et al., 1998) suggested that motor skill acquisition could be 

subdivided into several stages: fast stage, slow stage and an intermediate offline stage. In the 

early, fast stage which is highly dependent on the task at hand may take minutes (for the SRTT) 

or even months (for piano playing), rapid improvement in performance can be observed on a 

relatively short period of time. In the late, slow stage small behavioral increments are still 

observed but over a much longer time window. During the offline stage, although no further 

practicing of the motor skill is taken place, participants may still show improvements in 

performance. This process is called memory consolidation (Robertson et al., 2004a) and might be 

sleep-dependent in explicit MSL (Debas et al., 2010; Fischer et al., 2002; Wagner et al., 2004; 

Walker et al., 2002). For procedural learning and implicit MSL however, consolidation might not 

be specifically related to sleep (Meier and Cock, 2014; Nemeth et al., 2010; Robertson et al., 

2004b; Song et al., 2007).  
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1.3.2. Neuroanatomical substrates of motor skill learning 

The neural substrates of motor skill learning have been studied in both healthy humans and 

patients using imaging techniques (PET, fMRI) and electrophysiological recordings (EEG, 

MEG) as well as in rodents and non-human primates using invasive recordings of local field 

potentials. Findings in humans show involvement of basal ganglia structures including striatum 

and thalamus as well as motor cortical areas, parietal cortex, dorsolateral prefrontal cortex and 

cerebellum (for meta-analysis see Hardwick et al., 2013). Differences in regional activity and 

involvement of those regions greatly depend on the learning stage, whether the task was learned 

implicitly or explicitly and the type of skill to be learned. Recently, studies using diffusion 

imaging methods showed white matter changes related to the acquisition of motor skill (Scholz 

et al., 2009; Schulz et al., 2014; Sisti et al., 2012; Steele et al., 2012) which suggests that motor 

learning influences white matter architecture in humans.  

Neural correlates of implicit vs. explicit MSL 

Based on studies of amnesic patients such as H.M, medial temporal lobe (MTL) structures which 

include the hippocampus were mainly implicated with explicit learning processes resulting in 

declarative memory (Squire and Zola-Morgan, 1991). Early research on MSL has therefore 

distinguished neuroanatomical substrates of implicit and explicit learning mechanisms with 

findings being largely inconsistent (Doyon et al., 1996; Grafton et al., 1995; Hazeltine et al., 

1997; Honda et al., 1998; Rauch et al., 1995). In the SRTT, explicit awareness is usually 

measured by simply asking the participants whether they were aware of an underlying sequence 

or by performing different sequence generation tasks. In later studies researchers used more 

sophisticated approaches in order to appropriately disentangle implicit and explicit learning 

mechanisms (e.g. in Fletcher et al., 2005). A consistent finding was striatal involvement in 
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implicit sequence learning in the SRTT (Albouy et al., 2008; Badgaiyan et al., 2007; Destrebecqz 

et al., 2005; Karabanov et al., 2010; Rose et al., 2011; Schendan et al., 2003). A recent Meta-

analysis study corroborated these findings and showed that when comparing 17 explicit vs. 15 

implicit versions of the SRTT, caudate nucleus activity was more consistent with implicit SRTT 

with no other brain regions showing this effect (Hardwick et al., 2013).  

Neural correlates of slow and “offline” MSL 

In the SRTT, improvement in performance mainly occurs in short time scales (minutes to hours) 

however additional smaller “offline” improvement may occur in longer time scales of days to 

weeks (Press et al., 2005). Early imaging (Karni et al., 1995; Karni et al., 1998) and TMS 

(Muellbacher et al., 2002; Pascual-Leone et al., 1995; Robertson et al., 2005) studies on the 

neural effects of “offline” explicit MSL showed involvement of M1 in consolidation of motor 

memories. Investigating whole-brain changes following consolidation, reduced activity over 

striatum and cerebellum were found after one month practice of a sequential finger tapping task 

(Lehericy et al., 2005). Early recruitment of striatum and hippocampus in an implicit MSL task 

predicted “offline” improvement in performance (Albouy et al., 2008). A recent meta-analysis 

study of motor skill acquisition across different time scales revealed consistent decreases for 

MSL over days or weeks, over dorsolateral prefrontal cortex (DLPFC), PMC and preSMA along 

with superior and inferior parietal lobule whereas increases for those studies were observed over 

M1, putamen and globus pallidus pars interna (Lohse et al., 2014). 

A central question regarding “offline” consolidation processes is whether sleep modulates the 

ability to consolidate motor memories (Stickgold et al., 2001). Walker and colleagues showed 

differences between sleep- or awake-consolidation in an explicit MSL task with increased 

activity after sleep in M1, hippocampus, medial frontal lobe and cerebellum (Walker et al., 
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2005). On the other side, Fischer and colleagues found reduced activity over M1, PMC and 

prefrontal areas following a night’s sleep compared to sleep-deprivation (Fischer et al., 2005). 

Importantly, studies show that consolidation of implicit motor sequence memories are not 

necessarily sleep-dependent and could also occur without sleep (Robertson et al., 2004b; Song et 

al., 2007).  

The cortic-striato-cerebellar model of MSL 

Theoretical models suggest that distinct cortico-striatal and cortico-cerebellar loops (Doyon and 

Benali, 2005; Doyon et al., 2003; Hikosaka et al., 2002) mediate the different phases of motor 

skill learning. The model by Doyon and colleagues (2005) suggests that striatum, cerebellum, 

parietal cortex and motor cortical regions are mediating the fast learning stage. During slow 

learning and retention however, the model differentiates motor sequence learning and motor 

adaptation in terms of the brain structures involved. Specifically, the authors suggest that 

striatum is involved in MSL and cerebellum in motor adaptation. Hikosaka and colleagues 

(2002) on the other hand, suggest a model in which learning of spatial sequence and learning of 

motor sequence are differentiated. During the fast learning stage, the movements to be executed 

are represented by a cortical loop of prefrontal, parietal and motor cortex. When learning is 

established, the motor sequence is represented by motor territories of basal ganglia and 

cerebellum together with the motor cortex. Penhune & Steele (2012) recently suggested that M1, 

basal ganglia and the cerebellum may engage in parallel interacting processes which underlie 

MSL. In this section I will therefore focus on these main components and provide the evidence 

for their involvement in MSL.  
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Primary motor cortex 

The primary motor cortex (M1; BA4), located at the anterior wall of the central sulcus and 

extending to the precentral gyrus, is known to be important for movement initiation. As revealed 

by early studies, M1 is organized as a motor map containing somatotopic representations: 

specific sites over M1 correspond to movement of specific body parts (Kandel et al., 2013). M1 

has somatotopically organized reciprocal connections with supplementary motor area (SMA), 

dorsal premotor cortex (PMC) and ventral PMC. Sensory information input to M1 is received 

from the primary somatosensory cortex and parietal cortex and serves to guide motor acts.  The 

output of M1 is sent through the pyramidal tract to motor neurons controlling muscles on the 

contralateral side (Porter, 1985). 

Studies in monkeys showed that neuronal populations in M1 code for specific movement 

direction (Georgopoulos et al., 1983; Moran and Schwartz, 1999) and movement kinetics 

(Evarts, 1968; Kalaska et al., 1989). M1 also plays a major role in online movement control, as 

many neurons over M1 receive sensory input about the body’s current state which is used to 

adjust the output signal of specific movement related neuronal populations in M1 (Hoffman and 

Strick, 1995; Nudo and Milliken, 1996). Studies in animals showed that when M1 or paths 

connecting M1 to sensorimotor areas were lesioned, the animals were either paralyzed or 

experienced severe loss of motor function of the corresponding limb (Pavlides et al., 1993; 

Sakamoto et al., 1989). This was evident as well in patients with lesions to M1 after stroke which 

lost the ability to move the contralateral side of the body.  

Single-neuron recordings from M1 in monkeys provide evidence for the importance of M1 to 

motor skill learning. In a force field task, recordings from single neurons over M1 showed 

specific learning-related plasticity (Kirov et al., 2015) and in a MSL task, differential activation 
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over M1 was observed for sequence compared to random blocks (Matsuzaka et al., 2007). In 

humans, M1 modulation due to motor skill learning was first described using TMS. Dynamic 

changes in motor cortical output were observed using TMS over the course of 5-days practice of 

a motor sequence (Pascual-Leone et al., 1995). Repetitive TMS over M1 was shown to disrupt 

the retention of behavioral improvement (Muellbacher et al., 2002) and was specific to the 

“offline” learning phase over the day but not overnight (Robertson et al., 2005). The same effect 

was observed using theta burst stimulation over M1 in a probabilistic SRTT (Wilkinson et al., 

2010). On the other hand, studies using anodal transcranial direct current stimulation (tDCS) on 

M1 show a positive effect on skill acquisition in the “offline” phase (Galea et al., 2011; Reis et 

al., 2009; Schambra et al., 2011; Sehm et al., 2013) and specifically on consolidation in an 

implicit MSL task (Kang and Paik, 2011). Using Magnetic resonance spectroscopy, Kim and 

colleagues (2014) showed that these effects are mediated by significant reduction in GABA 

concentration over M1 which were correlated with behavioral parameters of motor learning and 

memory in a force adaptation task.   

Imaging studies using PET and fMRI in healthy participants performing sequential finger 

tapping tasks showed increased activity over M1 in the fast and slow learning stages further 

establishing its role in the learning process (Jenkins et al., 1994; Karni et al., 1995; Seitz et al., 

1990). In a SRTT, Honda and colleagues showed specific increase in activity over M1 during 

implicit MSL which was not evident when subjects gained explicit knowledge of the sequence 

(Honda et al., 1998). Later fMRI studies employing variants of the SRTT (Aznarez-Sanado et al., 

2013; Bapi et al., 2006; Rose et al., 2011) corroborated these results establishing the fundamental 

role that M1 plays in implicit MSL.  
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Researchers have suggested that M1 is the site of storage of skilled sequential knowledge 

(Penhune and Steele, 2012) and internal representations of movements (Karni et al., 1995; 

Matsuzaka et al., 2007) as well as long-term consolidation (Robertson et al., 2005).  

Basal ganglia 

The basal ganglia are a set of subcortical structures: striatum, globus pallidus, substantia nigra, 

and subthalamic nucleus. The striatum, separated into putamen and caudate nucleus, receives 

projections from cerebral cortex, brain stem and thalamus and as such serves as the main input 

structure to the basal ganglia. Electrophysiological studies in animals showed that the basal 

ganglia serve as an important link within the cortico-basal ganglia-thalamo-cortical circuit which 

guides a wide range of motor behaviors (Alexander et al., 1990; Alexander et al., 1986). 

Originating from pre- and post-central sensorimotor cortical areas, neurons project onto putamen 

in somatotopical manner. Basal ganglia output is then conveyed to several thalamic nuclei and 

then, closing the loop, to motor cortex, SMA and PMC (Alexander et al., 1986). Within the basal 

ganglia, the processing can take place in two paths: the direct monosynaptic path through the 

internal segment of the globus pallidus and pars reticularis of the substantia nigra, or the indirect 

polysynamptic path through the external part of the globus pallidus, subthalamic nucleus and 

internal part of the globus pallidus. The direct pathway results in removal of inhibition from 

thalamo-cortical neurons which excite the motor cortical areas whereas the result of the indirect 

pathway is increased inhibition of thalamo-cortical neurons which inhibits the motor cortical 

areas.  

While M1 lesions impose direct effects on motor control and response selection, lesions in the 

basal ganglia could cause indirect interference with coordinated movements. For example, in 

Huntington’s disease (HD) striatal changes occur in inhibitory neurons forming the indirect 
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pathway. These changes will cause reduced output from the basal ganglia and thus greater 

excitation of thalamic neurons which will in turn excite the motor cortex. In Parkinson’s disease 

(PD), dopaminergic neurons atrophy in the substantia nigra pars compacta and thus cause the 

output along the direct pathway to decrease which will increase the inhibitory effect on the 

thalamus. Along with other effects on the indirect pathway the net result would be reduced 

excitation of the motor cortex due to excessive thalamic inhibition.  

The importance of basal ganglia, and more specifically the striatum, for motor sequence learning 

was first uncovered using a series of studies in patients with movement disorders as described 

above. Performance of PD (Doyon et al., 1997; Jackson et al., 1995; Pascual-Leone et al., 1993) 

and HD (Knopman and Nissen, 1991) patients in the SRTT was tested against healthy aged 

matched controls. Mild to severe impairments in learning were found in the patients group which 

led researchers to hypothesize that striatal structures are crucial for the learning process. These 

studies have paved the way to lesions studies in primates which showed that striatum was 

essential for learning behavior (Matsumoto et al., 1999; Miyachi et al., 1997). 

Electrophysiological recordings in primates and in behaving rats showed that patterns of 

neuronal activity in the striatum are specific to the stage of learning and may differ between 

associative and sensorimotor areas of the striatum (Miyachi et al., 2002; Thorn et al., 2010; 

Thorn and Graybiel, 2014; Yin et al., 2009). In healthy humans, fMRI and PET studies supported 

the significant involvement of putamen (Doyon et al., 2002; Jenkins et al., 1994; Rauch et al., 

1997; Seitz et al., 1990; Toni et al., 1998) and caudate nucleus (Rauch et al., 1997; Toni et al., 

1998) in both the early and the late phase of MSL. SRTT studies in PD patients showed learning-

related deficits providing further evidence for the importance of striatum to MSL (Doyon et al., 

1997; Jackson et al., 1995; Pascual-Leone et al., 1993). However, these findings were not always 
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consistent (Seidler et al., 2007; Smith et al., 2001), probably due to strong variability in the 

disease progression (Muslimovic et al., 2007; Stephan et al., 2011) and type of medication taken 

(Kwak et al., 2010, 2012) as well as variability in task demands.  

The evidence above has led researchers to hypothesize that the role of striatum in motor 

sequence learning is to create probabilistic associations between subgroups of movements within 

a sequence through reward-based mechanisms (Graybiel, 1998, 2008). Penhune and Steele 

(2012) suggested that these associations develop with practice and the extent to which striatum is 

involved depends on the degree to which reward-based mechanisms are required.  

Cerebellum 

The cerebellum, positioned atop of the spinal cord, is around one-ninth of the neocortex volume 

but contains more than half of the neurons in the central nervous system. It has been long 

presumed that the cerebellum contributes primarily to planning and execution of movement 

(Stein and Glickstein, 1992) but recent evidence from neuroanatomical, imaging and behavioral 

studies has shown that cerebellar functions extend beyond the sensorimotor domain (Buckner, 

2013; Ramnani, 2006). Efferent connections from cerebellum to contralateral cerebral cortex 

relay through a polysynaptic channel that projects to deep cerebellar nuclei through the thalamus. 

In turn, afferent connections to the cerebellum come from cortical areas through the brain stem 

(specifically, the pontine nuclei). Connections between the cerebellum and non-motor areas of 

the cerebrum, such as the prefrontal cortex, were first discovered in monkeys using an advanced 

transneuronal tracing technique which makes use of viruses to map such polysynaptic circuits 

(Bostan et al., 2013; Middleton and Strick, 1994). This evidence revealed an anatomical 

substrate for cerebellar contribution to cognition. Behavioral studies in patients with localized 

cerebellar lesions due to stroke or with specific cerebellar atrophy, further established the 
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contribution of cerebellum to cognitive functions. In a study by Schmahmann and Sherman 

(1998) cerebellar patients performed neuropsychological tests which revealed impairments in 

executive functions, visuospatial cognition, language, and social behavior. Evidence from a 

resting state fMRI study using functional connectivity measures showed that distinct regions of 

the cerebellum were communicating with cerebral premotor, association and limbic networks, 

supporting the contribution of cerebellum to functionality of these regions (Buckner et al., 2011). 

A topographic organization of higher order functions in the cerebellum was created using a meta-

analysis study of 526 neuroimaging studies reporting cerebellar activations (Bernard and Seidler, 

2013). The authors found that sensorimotor tasks activated the anterior lobe (lobule V) and 

lobule VI whereas language and verbal working memory were activating lobule VI and crus I, 

and executive functions activated lobule VI, crus I and lobule VIIB.  

Theoretical models suggested (separately) by Marr (1969) and Albus (1971) predicted that the 

cerebellum is involved in motor skill learning due to the special regular organization of 

cerebellar microcircuit architecture. The model focused on long-term depression of the synapses 

from parallel fibers to Purkinje cells which contribute to eye-limb coordination and error-

correction. With movement succession the parallel fiber input is increasingly suppressed which 

results in the climbing-fiber error signal to disappear. On the system level, error-based learning 

studies (Floyer-Lea and Matthews, 2005; Lehericy et al., 2005) and MSL studies (Grafton et al., 

2002; Jenkins et al., 1994; Toni et al., 1998) showed that cerebellar activation decayed as 

learning progresses which may relate to the physiological model of the cerebellum as suggested 

above. It has been suggested that cerebellum’s role in motor learning is to continuously adjust 

internal models in order to create a rapid and accurate representation of the complex movement 

(Ito, 2008; Ramnani, 2006).  
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To sum, evidence from electrophysiological studies in animal as well as imaging studies in 

humans show the specific involvement of M1 (together with PMC and SMA), striatum and 

cerebellum in motor learning. This line of evidence has led researchers to hypothesize a cortical-

striatal-cerebellar network which is modulated as motor skill learning progresses with time 

(Doyon and Benali, 2005; Hikosaka et al., 2002; Penhune and Steele, 2012). Questions still 

remain though as to the nature of specific interactions between these brain regions which could 

shed light on the role each play within the network for the purpose of motor learning. In the 

following chapter I will review connectivity studies in motor skill learning. 

Connectivity in MSL networks 

As discussed in greater detail in section 1 of this chapter, exploring connectivity between 

different brain regions has become a standard practice in cognitive neuroimaging as the focus has 

shifted from a modular view on brain function to a functional integration perspective. 

Importantly, three different types of connectivity should be differentiated: structural, functional 

and effective connectivity. Structural connectivity refers to white matter architecture, functional 

connectivity to simple correlated activity between brain regions and effective connectivity to 

causal, directed interactions between brain regions.  

Although implicated in numerous studies and suggested by several theoretical models, only 

recently, attempts have been made to characterize interactions between brain regions involved in 

MSL. In an elegant study using twin-coil TMS, a conditioning pulse applied to the cerebellum 

resulted in facilitation of contralateral M1 during learning in the SRTT (Torriero et al., 2011). A 

PPI analysis of SRTT revealed differential fronto-thalamic interactions associated with explicit 

vs. implicit MSL (Fletcher et al., 2005). Findings from explicit MSL tasks provided evidence for 

dynamic connectivity changes between motor and premotor regions which in turn affect 
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subcortical brain regions. For example, using coherence maps, increased connectivity was 

observed between a seed over left M1/S1 and premotor areas as well as parietal cortex, when 

comparing early to late learning stages of a novel sequence (Sun et al., 2007). A network of M1, 

PMC, parietal cortex and cerebellum was activated in an explicit MSL task which employed 

tensor independent component analysis approach for investigating whole-brain connectivity 

(Tamas Kincses et al., 2008). When motor performance becomes automatic, connectivity 

between M1 and cerebellum increases (Steele and Penhune, 2010) as well as between 

cerebellum, preSMA, putamen and cingulate motor area (Wu et al., 2008). On the other hand, 

Coynel and colleagues (2010) observed reduced functional integration as performance became 

automatic in a network comprising premotor areas, parietal cortex, basal ganglia and cerebellum. 

Effects of “offline” consolidation after sleep show increased functional integration in a network 

of premotor, putamen, parietal cortex and basal ganglia (Debas et al., 2014) in addition to 

specific striatal-hippocampal connections which were modulated by performance (Albouy et al., 

2013). Finally, changes in resting-state functional connectivity were observed between dentate 

cerebellum, thalamus and basal ganglia shortly after implicit learning in the SRTT whereas 

following consolidation, enhanced connectivity was found between medial temporal lobe 

structures (Sami et al., 2014).  

Recent studies show that learning of sequential motor tasks may also affect white matter integrity 

between motor cortical areas and subcortical regions such as basal ganglia and cerebellum. Using 

diffusion tensor imaging, structural integrity in the dentate-thalamo-cortical tract was correlated 

with early consolidation of the sequence, specifically with DLPFC (Schulz et al., 2014). 

Similarly, Bennet and colleagues showed sequence-specific learning effects on fractional 
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anisotropy values in a tract connecting a seed over DLPFC with caudate nucleus and in a later 

learning phase with hippocampus (Bennett et al., 2011).  

To summarize, there is ample evidence for the involvement of motor cortical networks as well as 

basal ganglia and cerebellum in both early and late stages of MSL. However, specific influences 

of learning on causal interactions within these networks remain unclear. This is important 

because when attempting to specify a role for each of the brain regions in motor learning, one 

should explore the influence of learning on the directed interactions within this network.  

1.3.3. The role of neural oscillations in learning and memory 

One of the key markers of brain activity are coherent rhythmic fluctuations of activity within 

neuronal populations. In humans, neural oscillations are usually measured at the scalp using 

electroencephalography (EEG) but other methods to measure neural oscillations in patient 

populations exist (such as: electrocorticography or using deep brain stimulation electrodes). 

These oscillations which occur at different rhythms serve as a signature for the neural network 

properties and relate to different cognitive processes (Ward, 2003). Early studies have shown 

that increased oscillatory power at the theta (4-8 Hz) frequency band underlies long-term 

memory and memory encoding (Klimesch, 1999). Theta oscillations measured in hippocampus 

and surrounding structures in rodents were shown to be tightly related to spatial as well as 

episodic memory (Buzsaki, 2005). In humans, theta oscillations were shown to be modulated by 

working memory (Roux and Uhlhaas, 2014) over hippocampus (Tesche and Karhu, 2000) and 

other cortical sites (Moran et al., 2010; Raghavachari et al., 2001). Oscillations in alpha and in 

beta (13-30Hz) frequency range on the other hand, reduce in power during long-term memory 

processes (Hanslmayr et al., 2012) with the underlying function still under debate. Finally, 

gamma (>30Hz) frequency oscillations were shown as well to be related to successful memory 
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formation in humans (Osipova et al., 2006; Sederberg et al., 2007). It is therefore clear that one 

cannot simply pinpoint one specific frequency band which underlies memory processes in 

humans but probably interactions between oscillations in different frequency bands such as those 

discussed in section  0 serve a role in formation and maintenance of memory. 

Much less is known about the relevance of oscillatory activity for visuomotor sequence learning. 

In a study which addressed this question, participants learned a visual sequence while high-

density EEG was recorded (Moisello et al., 2013). Significant changes in alpha and theta power 

were observed during sequence performance over frontal and posterior regions. In a work from 

the same group, subjects learned to adapt to a visuomotor rotation (Perfetti et al., 2011). 

Increased gamma power was evident over right parietal region during initial learning while theta 

power increased in the same region during late learning stages. In another study, increased 

gamma band coherence was observed over caudal SMA around stimulus onset when rhesus 

monkeys produced visually guided series of movements (Lee, 2003). Thus it seems that 

oscillations in theta, alpha and gamma range may increase during visuomotor sequence learning, 

probably depending on the learning stage.  

Cross-frequency coupling 

Flexible and effective communication between neuronal populations is essential for cognitive 

behavior. Recently, theoretical models and empirical evidence have suggested that this 

communication is supported through cross-frequency coupling and particularly phase-based 

coupling mechanisms. Phase means the momentary deflection of an oscillation. These 

mechanisms entail: cross-electrodes phase coupling (Fries, 2005), cross-frequency phase 

coupling (Varela et al., 2001) and phase-amplitude coupling (Canolty and Knight, 2010).   
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Phase coherence takes place when the instantaneous phase of an oscillation from brain area A 

correlates to the instantaneous phase of an oscillation from brain area B (Lachaux et al., 1999). 

Phase coherence is based on the idea that the phase of an oscillation relates to time windows of 

increased excitability and thereby facilitated communication (Fries, 2005). Theta phase coupling 

has been shown to relate to working memory (Sarnthein et al., 1998; Sauseng et al., 2004; 

Serrien et al., 2004) as well as long-term memory processes (Sato and Yamaguchi, 2007; 

Summerfield and Mangels, 2005; Weiss and Rappelsberger, 2000). However, evidence also exist 

for alpha (Crespo-Garcia et al., 2013; Palva et al., 2010) and gamma (Gruber et al., 2001; Palva 

et al., 2010) phase coupling involvement  in relation to working memory and long-term memory. 

The phase of an oscillation may also be coupled to the phase of an oscillation of a different 

frequency band in a process termed cross-frequency phase coupling. This type of 

synchronization, specifically between theta and gamma oscillations, has been also observed in 

the context of working memory (Sauseng et al., 2009; Schack et al., 2005). For phases to be 

coupled between different frequencies, highly coordinated activity should exist between neuronal 

populations such that a few cycles of the high frequency oscillation would match with one cycle 

of the slow oscillation. Therefore, cross-frequency phase coupling may serve as a mechanism for 

precise and specific communication between brain regions (Fell and Axmacher, 2011).    

Phase-amplitude coupling (PAC) is the process in which the phase of a slow oscillation 

modulates the amplitude of a high-frequency oscillation. PAC has been hypothesized to serve as 

a mechanism in which local computation (in the form of gamma oscillations) communicate 

information over large-scale, global networks using slow oscillations such as theta and alpha 

(Canolty and Knight, 2010). Both in animal and human models, PAC was shown to underlie 

complex cognitive processes associated with decision making (Cohen et al., 2009; Tort et al., 
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2008; van Wingerden et al., 2014), reward (Lee and Jeong, 2013), and cognitive control 

(Dürschmid et al., 2014) as well as motor dysfunction in patients with PD (de Hemptinne et al., 

2013; de Hemptinne et al., 2015; Shimamoto et al., 2013). Recently, PAC has also been shown to 

mediate between different brain regions such as the thalamo-cortical connection 

(Malekmohammadi et al., 2015; Roux et al., 2013). Methods to assess PAC largely vary across 

studies (Penny et al., 2008; Tort et al., 2010) and thus may confound the results reported (Aru et 

al., 2015). Despite this caveat, PAC is considered to be a key mechanism for the coordination of 

neural dynamics.  

Regarding learning and memory processes, most evidence exists for theta phase to gamma 

amplitude coupling. In rats, increased theta/gamma PAC was observed over the hippocampus 

and was correlated with performance accuracy in an associative learning task (Tort et al., 2009). 

In monkeys, theta/gamma PAC in the PFC (prefrontal cortex) was evident when items were 

stored in short-term memory (Siegel et al., 2009). In a task requiring working memory, 

theta/gamma PAC was also evident over medial PFC in a rodent study (Li et al., 2012). In 

humans, theta/gamma PAC was evident during working memory operations over different 

cortical regions (Canolty et al., 2006) as well as medial temporal lobe (Mormann et al., 2005) 

and hippocampus (Axmacher et al., 2010). Friese and colleagues (2012) showed that successful 

encoding of items into long-term memory was associated with increase in theta/gamma PAC 

over fronto-parietal network. Recent evidence from intracranial recordings in 56 patients 

revealed theta/gamma PAC associated with formation of new episodic memories in the 

hippocampus (Lega et al., 2014). Similar results were obtained in a MEG study of context-

dependent memory: changes in theta/gamma PAC were evident during successful encoding and 

were sensitive to the encoding-retrieval overlap (Staudigl and Hanslmayr, 2013).  
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To sum, oscillations in various frequency bands were shown to be involved in memory processes 

(Hanslmayr and Staudigl, 2014). Evidence for oscillatory markers in visuomotor learning point 

to involvement of theta, alpha and gamma oscillations (Lee, 2003; Moisello et al., 2013; Perfetti 

et al., 2011) however, much less is known regarding implicit sequence learning. Cross frequency 

coupling mechanisms such as phase coherence, cross-frequency phase coupling and phase 

amplitude coupling, are suggested to facilitate long-range communication in the brain. Previous 

studies showed that phase amplitude coupling underlies various cognitive processes including 

learning and memory. It is therefore plausible that PAC provides a mechanism of communication 

between brain regions involved in motor sequence learning.   

1.4. Research aims 

In the series of experiments described in this thesis I aimed to address questions regarding the 

communication between different brain regions during motor sequence learning using the SRTT. 

For both fMRI studies (Chapter 2 and Chapter 3) I used dynamic causal modelling to delineate 

the causal interactions within the cortico-striato-cerebellar network. In Study 1 (Chapter 2) 

different dynamic causal models of M1-putamen-cerebellum network were compared and 

analyzed. Study 2 (Chapter 3) aimed at answering how these causal interactions change between 

early learning and after the sequence was consolidated after a night’s sleep. Here a broader 

network of M1-PMC-SMA-putamen-cerebellum was investigated in order to answer questions 

regarding the role of premotor area in motor learning and consolidation. Finally, the EEG study 

(Chapter 4) enabled tapping into neural mechanisms that allow long-range communication, 

namely phase amplitude coupling of neural oscillations.  
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Chapter 2 

Delineating the cortico-striatal-cerebellar network in implicit motor sequence 

learning 
1
 

2.1. Introduction 

In our daily life we constantly acquire and retain motor skills that are crucial for basic as well as 

more complex motor behaviors. Motor sequence learning (MSL) is especially important for tasks 

such as typing or playing a musical instrument and is defined as the gradual increase in 

performance through repetition of a serial pattern (Willingham, 1998). Motor sequences can be 

learned explicitly, while subjects are aware of a sequence in the task, or implicitly, i.e. without a 

conscious recollection of a sequence. A well-established method for studying implicit MSL is the 

serial reaction time task (SRTT) in which subjects learn a sequential pattern of finger presses. 

Abundant evidence from animal and human work identified wide-spread neural circuits which 

are involved in the early stage of MSL in which rapid improvement in performance is observed. 

These include cortical (dorsolateral prefrontal cortex (dLPFC), motor and pre-motor regions, 

parietal cortex) and subcortical regions such as striatum and cerebellum (see recent review 

(Dayan and Cohen, 2011)). Theoretical models (Doyon et al., 2003; Hikosaka et al., 2002) and 

experimental evidence (Doyon et al., 2002; Jenkins et al., 1994; Jueptner et al., 1997; Seitz et al., 

1990) stress the relevance of cortico-striatal and cortico-cerebellar circuits which work in parallel 

in order to mediate MSL. Previous studies have shown that different brain networks are involved 

in implicit and explicit MSL with striatal involvement being more pronounced in implicit MSL 

(Destrebecqz et al., 2005; Karabanov et al., 2010). Here, we aimed to study the dynamical 

                                                           
1
 This chapter corresponds largely to: Tzvi, Elinor, Thomas F. Münte, and Ulrike M. Krämer. "Delineating the 

cortico-striatal-cerebellar network in implicit motor sequence learning." NeuroImage 94 (2014): 222-230.  
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interactions within cortico-striatal and cortico-cerebellar circuits and their specific contributions 

to implicit acquisition of a motor sequence using dynamic causal modeling (DCM) on fMRI data 

of the SRTT. 

2.1.1. Cortico-striatal-cerebellar networks during motor learning 

MSL can be divided into two phases: an early learning stage characterized by rapid improvement 

in performance and a late phase in which further gains in performance occur over several 

practice sessions (Karni et al., 1998). The early stage of MSL in a SRTT usually lasts minutes 

(Karni et al., 1995) and modulates activity in a distributed brain network. Several studies showed 

that activity in cortical areas such as motor and parietal cortex as well as the cerebellum 

decreases as learning progresses, whereas the striatum was shown to be more active in the late 

learning stage (Lehericy et al., 2005; Seidler et al., 2005; Steele and Penhune, 2010). Based on 

human and animal studies, an influential model (Doyon et al., 2003; Hikosaka et al., 2002) 

suggests that a cortico-cerebellar network is recruited during the early phase of MSL while 

adjustments of movement kinematics to the sensory inputs are required. Once motor learning is 

established in the late learning phase, the activity is shifted to a cortico-striatal circuit when 

performance is more automatic. In a recent review, Penhune and Steele (2012) propose that the 

role of the striatum is to learn predictive associations between the individual movements in the 

sequence. The role of the cerebellum is suggested to create an optimal internal model, whereas 

the function of M1 is retention of the motor memory. Other regions as supplementary motor 

areas (SMA) and premotor cortex are also implicated in MSL (see e.g. (Hardwick et al., 2013)), 

but based on the outlined theoretical models, we focused on connectivity between M1, 

cerebellum and striatum in the present study. In the following we detail the experimental 

evidence pointing to the importance of each of these regions for MSL. 
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The role of the cerebellum in motor learning has recently been reviewed in an ALE meta-

analysis by Bernard and Seidler (2013). Importantly, activation of the anterior cerebellum was 

found early in the task when the motor memory of the sequence is established. This activity 

decreased as learning progressed (Grafton et al., 2002; Jenkins et al., 1994; Toni et al., 1998). 

Although one study reported cerebellum activity to be related to performance improvement 

rather than sequence learning per se (Seidler et al., 2002), others showed that cerebellum is 

involved in the early stage of motor sequence learning and that this involvement depends on 

stimulus-response (S-R) mapping demands (Bo et al., 2011; Spencer and Ivry, 2009). Some 

studies hypothesized that the role of the cerebellum in motor learning is to form internal models 

of action (for review see (Wolpert et al., 1998)), whereas others attributed cerebellar activity to 

the generation of prediction errors (Ohyama et al., 2003).  

The striatum is thought to play a critical role in encoding motor programs and has consistently 

been shown to be involved in motor learning (for reviews see (Doyon et al., 2009; Penhune and 

Steele, 2012)). In contrast to the cerebellum, the striatum increases in activity as learning 

progresses, suggesting that it is involved in storage and retention of the learned sequence. 

However, this increase might be more specific to sensorimotor regions of the putamen while 

more associative regions are actually decreasing in activity as learning progresses (Lehericy et 

al., 2005). Supporting the significant role of striatum in MSL, patients with striatal dysfunction 

(e.g., Parkinson’s disease) showed deficiency in acquiring new motor sequences (Doyon et al., 

1997; Jackson et al., 1995; Laforce and Doyon, 2001). Evidence from animal work points to both 

striatonigral (known as the direct pathway) and striatopallidal circuits (indirect pathway) which 

were specifically activated while mice were learning a new sequence of movements (Jin and 

Costa, 2010; Jin et al., 2014). Specifically, distinct subsets of neurons encoded the initiation or 
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termination of sequences whereas other neurons were active or suppressed during the whole 

period of sequence execution. These findings indicate that basal ganglia circuits are responsible 

not only for movement sequence initiation or termination but also for concatenation of individual 

movements into action chunks.  

The final key brain structure involved in MSL is M1, the main motor cortical output. Apart from 

many imaging studies showing involvement of M1 in MSL (e.g: (Karni et al., 1995; Muellbacher 

et al., 2002)), it has been shown that stimulation of M1 using TMS (Muellbacher et al., 2002) or 

inhibitory TBS (Wilkinson et al., 2010) disrupted the early stage of motor consolidation, whereas 

tDCS (transcranial direct-current stimulation) of M1 facilitated motor skill learning (Nitsche et 

al., 2003; Schambra et al., 2011) and enhanced consolidation and long-term retention (Galea et 

al., 2011; Reis et al., 2009). On the other hand, tDCS of lateral or medial prefrontal as well as 

premotor cortex did not cause changes in performance (Nitsche et al., 2003). Moreover, single-

neuron recordings in monkeys provided evidence for differential activation of M1 neurons in 

random and sequence blocks after extensive motor training, pointing to M1 as storage site for 

motor memory  (Matsuzaka et al., 2007). 

2.1.2. Connectivity analyses of MSL and the present study 

With the current study, we set out to characterize the dynamic interactions between M1, 

cerebellum and striatum during implicit MSL. A few studies have examined the dynamic 

interactions between these brain regions using connectivity analyses. For example, a study 

employing structural equation modeling (SEM) showed that connection from cerebellum to M1 

was weakened with time whereas connection from striatum to M1 was strengthened (Ma et al., 

2010). In a study using tensor independent component analysis (tICA) (Tamas Kincses et al., 
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2008), an M1-premotor-parietal-cerebellar network showed significantly higher mean activity 

during explicit sequence learning in comparison to random material.  

Here, we used DCM to study cortico-striatal and cortico-cerebellar connectivity. In contrast to 

methods of functional connectivity analysis, DCM allows to infer on the directionality of 

connections and thus determine whether learning influences forward, backward or reciprocal 

connectivity. Moreover, using DCM we could compare models in which learning modulates 

cortico-cerebellar and/or cortico-striatal connections. DCM has been proven useful to 

characterize specific connectivity changes within cortical motor networks related to uni- vs 

bimanual motor actions (Grefkes et al., 2008a), to detect altered cortical connectivity after 

subcortical strokes correlating with motor deficits (Grefkes et al., 2008b) and to delineate 

performance-related changes in effective connectivity within cortico-striato-cerebellar motor 

networks (Pool et al., 2013).   

We predicted negative modulatory effects in M1-cerebellar connectivity as cerebellum becomes 

less activated during learning and decreased functional connectivity was observed in a wider 

network including M1 and cerebellum (Tamas Kincses et al., 2008). In addition, we predicted 

positive modulatory effects of learning on connectivity between M1 and putamen as suggested 

by the model of Doyon and colleagues (Doyon et al., 2003).  

2.2 Materials and Methods 

2.2.1 Subjects 

25 healthy subjects (15 women, age: 20-32) participated in the study after giving informed 

consent. Participants were right handed and had normal or corrected to normal vision with no 

reported color vision deficiency. All 25 subjects were included in the behavioral analysis. In two 

subjects we found brain tissue abnormalities (as assessed by a neuroradiologist) which prevented 
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us from further using their functional imaging data. For the purpose of group analysis using 

statistical parametric mapping (SPM) and the general linear model (GLM), we had to exclude an 

additional subject due to failed normalization to the template brain image. 22 subjects were 

therefore included in this analysis. In five additional subjects, we could not extract time-series 

for the effective connectivity analysis (see below for further explanation), therefore 17 subjects 

(10 women, age: 20-32) were finally analyzed using DCM. The study was approved by the 

Ethics Committee of the University of Lübeck.  

2.2.2 The SRTT and implicit MSL 

The SRTT is a commonly used method to study implicit motor sequence learning (Nissen and 

Bullemer, 1987). In this task, subjects are asked to respond with a key press to a visual cue that 

changes in each trial. Embedded within the task and usually unknown to the subject is a pattern 

of visual cues which will produce sequential key presses. Subjects who implicitly learn the 

sequence become faster in the sequential trials in comparison to trials with random visual cues.  

It is debated (Robertson, 2007) whether the motor and perceptual domains can be distinguished 

in the classical SRTT, i.e., whether RT changes are due to participants’ learning of the sequence 

of button presses (motor learning) or rather due to their acquisition of  the visual sequence 

(perceptual learning). Here, we implemented a SRTT with a trial-by-trial remapping of the 

visuo-motor response (Rose et al., 2011). By de-correlating the motor from the perceptual 

domain, observed learning effects can be attributed to the motor domain only. 

2.2.3 Experimental paradigm 

Subjects performed the SRTT in the magnetic resonance imaging (MRI) scanner. In each trial, 

six randomly ordered colored squares (red, yellow, black, blue, magenta, and green) were 
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presented around the center of a white colored screen through MR-compatible goggles. An 

additional target square in one of these six colors was presented in the middle of the screen (see 

Fig. 2.1A). Subjects were instructed to respond to the target square by pressing on the 

corresponding key on MR-compatible keypads, one for each hand. Each of the four sessions in 

the experiment contained six blocks: three blocks of sequence material (SEQ) and three blocks of 

random material (RND) in an alternating order (See Fig. 2.1B). Fifteen seconds breaks were 

introduced in between the blocks during which participants were instructed to fixate on a black 

cross in the center of the screen. In each block there were 36 targets to which the participants had 

to respond. There were three repetitions of a hidden 12-element sequence (5-4-1-4-2-6-3-6-1-3-

5-2) in SEQ blocks or 36 randomly assigned targets in RND blocks. The random material was 

generated using MATLAB (Natick, MA) such that elements were not repeated. Visual stimuli 

were presented until the onset of button press or the onset of the next trial. Inter-stimulus interval 

was kept at 1.5s in order to avoid explicit awareness of the underlying sequence (Destrebecqz 

and Cleeremans, 2001). We used Presentation® software (Version 16.3, www.neurobs.com) to 

present stimuli and to synchronize the stimulus presentation and the MR functional sequences. 

Immediately after performing the SRTT in the scanner, subjects were asked (outside of the 

scanner) whether they had noticed any regularity in the task they just performed. Subjects were 

then informed about the hidden sequence and performed in a completion task in order to assess 

possible explicit awareness. In this task, the exact same stimulus of the main task was presented 

(see above). The 12-element sequence was repeated 15 times. In each repetition two regular trials 

were substituted by completion trials. In a completion trial, the target square was replaced by a 

question mark and subjects had to press a button corresponding to one of the six colored squares 

which they believed should be the current target square color. Each position in the sequence 

http://www.neurobs.com/
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except the beginning and the end of the sequence was therefore tested three times producing 30 

completion trials. After guessing, subjects were asked whether they were sure of their choice and 

gave YES/NO answer. We thus differentiated between a correct response and a correct assured 

response.  

 

Figure 2.1. A Serial reaction time task (adapted from Rose et al., 2011). In each trial, 6 squares arranged around the center were 

assigned a random color. A target square in the middle of the screen was assigned a color corresponding to one of the 6 colors. 

During sequence blocks the color of the target square always corresponded to a specific button press as part of the 12-element 

sequence. During random blocks the color of the target square was chosen randomly. B Experimental design for a single session 

contained three blocks of sequence elements and three blocks of random elements. In each block there were 36 targets to which 

the participant had to respond: three repetitions of a hidden 12-element sequence (5-4-1-4-2-6-3-6-1-3-5-2) in Sequence blocks 

(marked with ‘S’) or 36 randomly assigned targets in Random blocks (marked with ‘R’). C Behavioral performance in the SRTT. 

Normalized reaction times (by mean reaction time of each subject across task conditions) are presented for each condition. Error 

bars are standard errors of the normalized reaction times. Significant differences between conditions are marked with an asterisk.  

2.2.4 Imaging 

MR protocol was carried out with a 3T Philips Achieva head-scanner in the Department of 

Neuroradiology, University of Lübeck. Functional MRI data (T2*) was collected using blood 

oxygen level dependent (BOLD) contrast in 4 sessions each with 284 volumes. Gradient-echo 

EPI sequence was used with the following specifications: repetition time TR = 1466ms, echo 



39 

 

time TE = 28ms, flip angle = 90°, matrix size 64x64mm, FOV = 192x192mm with a whole brain 

coverage, 31 axial ascending slices of 3mm thickness and 1mm gap; In-plane resolution of 

3x3mm; SENSE factor of R = 2. Subsequently, a high resolution T1-weighted structural image 

was acquired with FOV = 240x240mm; matrix size 240x240mm; 180 sagittal slices of 1mm 

thickness.  

2.2.5 Behavioral analysis 

For the SRTT, we computed reaction times (RTs) for both the SEQ and RND conditions with the 

difference being our measure of implicit sequence learning. To assess statistical significance, we 

used a repeated measure ANOVA with factors condition (SEQ, RND) and session (sessions 1-4) 

and subsequent t-tests to determine whether there were significant differences between the 

conditions for each session. We also compared the median error rate between both task 

conditions for each session using the Wilcoxon signed-rank test. Both wrong button presses and 

missing responses were regarded as errors. 

For the completion task, we evaluated the median number of correct responses and correct 

assured responses. 

2.2.6 Pre-processing and statistical analysis 

Preprocessing of fMRI data was done using SPM8 software package 

(http://www.fil.ion.ucl.ac.uk/spm/)  and comprised slice timing correction, realignment to correct 

for head motion artifacts, co-registration to T
1
 structural image, segmentation, normalization to 

Montreal Neurological Institute (MNI) template brain image, smoothing with a Gaussian kernel 

of 8mm full width half maximum and resampling of functional images to 3x3x3 mm. In one 

subject, normalization of functional images to standard space failed. As normalization is a 

crucial step for specifying regions of interest for our DCM analysis, this subject was excluded 

http://www.fil.ion.ucl.ac.uk/spm/
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from further analysis. Imaging data from 22 subjects was subsequently modeled using the 

general linear model (GLM) in a block design manner. Linear regressors were obtained for each 

of the experimental conditions (SEQ and RND) and each session in each subject. Statistical 

parametric maps (SPMs) were generated by convolving a box function with duration of one 

block with a hemodynamic response function. Movement related parameters from the 

realignment process were included in the GLM as regressors of no-interest to account for 

variance caused by head motion. 

2.2.7 Dynamic causal modeling 

Dynamic causal modeling (DCM) (Friston et al., 2003) allows inferring on the “hidden” neural 

states from measured brain data using predefined models. This method estimates the posterior 

moments of connectivity parameters as well as selecting, using Bayesian model selection (BMS), 

a “winning” model out of a candidate set of equally plausible models. In DCM for fMRI (as 

implemented in SPM8 version DCM12), a bilinear forward model is used to describe the 

neuronal dynamics of a system of distributed brain regions, each represented by a single state 

variable. Regional- and time-dependent changes in activity  
dx⃗ 

dt
  could be then constructed as a 

system of differential equations: 

(1)     
dx⃗ 

dt
= (A + ∑ujB

(j)

m

j=1

) x⃗ + Cu⃗  

Here, x⃗  is the state vector and u⃗  is the input vector to the system. A matrix represents the 

endogenous (context independent) connections, B represents  the modulatory (context 

dependent) connections, and C is the influence of direct inputs to the system. Together with a 

biophysically motivated hemodynamic model, an estimated BOLD signal is modeled using 

Bayesian methods and subsequently compared to the acquired data. Bayesian model estimation 
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procedure results in two quantities: model evidence, which is the probability of the data given the 

model, and a posterior distribution over model parameters. Approximation of the model evidence 

is done using a variational Bayes (VB) approach in which the posterior estimates of the 

parameters are updated iteratively through a gradient ascent on the free-energy bound. 

Subsequently, model comparison using BMS is achieved using this free-energy approximation 

which is a tight lower-bound on the log-model evidence (Friston et al., 2007).  

2.2.8 Time series extraction 

We aimed at investigating the causal interactions between primary motor cortex (M1), putamen 

(Pu) and cerebellum (CB) as suggested by theoretical models of motor learning (Doyon et al., 

2009; Hikosaka et al., 2002). We therefore used six regions of interest (ROIs; three in each 

hemisphere) to extract time series from significant voxels (see Table 2.1) in task>baseline 

contrast (both SEQ and RND conditions) in order to account for both learning and non-learning 

related changes in the BOLD signal. Based on results of a recent motor learning meta-analysis 

(Hardwick et al., 2013) we selected the coordinates of the sphere center for each ROI (see Table 

2.1). For each individual subject, the sphere center of each ROI was moved to the closest 

suprathreshold voxel which was always kept within 10mm of the original sphere center. Using 

the xjview toolbox (http://www.alivelearn.net/xjview) and AAL brain atlas we verified that 

sphere centers for all subjects were within the regions of interest. For left and right M1, sphere 

centers were kept within BA4. Significant voxels were chosen based on a strict p-level threshold 

(p<0.001 for M1 and Pu and p=0.05 FWE corrected for CB) in order to specifically capture the 

effects driven by the motor task (for a similar approach see (Grefkes et al., 2008a; Pool et al., 

2013)) and to prevent noise from entering the model as this would affect model estimation. 

Using a singular value decomposition procedure implemented in SPM8, we computed the first 

http://www.alivelearn.net/xjview
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eigenvariate across all suprathreshold voxels within 4mm (Pu) or 6mm (M1 and CB) radius from 

the sphere center for each subject in each session. Time series were then adjusted for the effects 

of interest and sharp improbable temporal artifacts were smoothed by an iterative procedure 

implementing a 6-point cubic-spline interpolation. Temporal artifact smoothing was done in 

order to achieve a more robust measure for model fitting in the subsequent DCM analysis. Time 

series in bilateral Pu in 5 subjects could not be obtained because of no suprathreshold voxels in 

those ROIs, so these subjects were excluded from further analyses. 

 

Table 2.1: Regions of interest for the DCM analysis 

Region MNI-coordinates p-level Sphere Radius (mm) 

lM1 -38,-24,58 0.001  6 

rM1 40,-20,54  0.001  6 

lPu -24,4,4  0.001  4 

rPu 26,0,2  0.001  4 

lCB -20,-52,-22 0.05 FWE 6 

rCB 10,-58,-20 0.05 FWE 6 

 

2.2.9 DCM specification 

FMRI data from 17 subjects was used for the DCM analysis. Input vector �⃗�  was constructed as a 

stick function of the single events of stimulus presentation. In the first step, we determined the 

optimal intrinsic connections in our data set by constructing 8 models with reciprocal 

(bidirectional) connections within all ROIs in each hemisphere, and task inputs either to CB (4 

models) or Pu (4 models) (see Fig. 2.2). M1 was not tested to be an input region as it is known to 
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be the main cortical output. We assumed that during a bi-manual motor task, connectivity 

patterns are symmetric for both hemispheres and therefore examined the connections between 

hemispheres by systematically reducing them in the models (see Fig. 2.2). We chose to test 

models with bilateral connections between brain regions for intrinsic connectivity based on 

results from a DCM study of bi-manual motor task (Grefkes et al., 2008a). For this analysis we 

did not include any modulatory parameters (B=0). After inverting and estimating the models, we 

used fixed-effects (FFX) BMS to find the optimal model for intrinsic connections. Following 

guidelines for DCM analyses (Stephan et al., 2010), we chose FFX analysis since we assume that 

the optimal model of intrinsic connections driven by a visuo-motor task is consistent across 

subjects. 

In the second step, we used the optimal model of intrinsic connections and tested 22 models 

which varied across three main factors that represented our main research questions: 

2. Which modulatory input can best explain the data: task performance or motor sequence 

learning?  

This model comparison procedure addresses whether the connectivity between M1, CB 

and Pu can be explained by motor performance in the task (taking both the RND and 

SEQ conditions) or specifically by learning during the SEQ condition only. 

3. Which circuitry is modulated,  

the cortico-striatal, cortico-cerebellar or both?  

4. Which directional connections are modulated, 

backward (cortical to subcortical), forward (subcortical to cortical) or reciprocal 

(backward and forward) connections? 
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Figure 2.2. Eight models of intrinsic connections during a motor task were compared using Bayesian Model selection. Models 

were kept symmetric between hemispheres. Along the rows, connections across regions of interest (ROIs) are gradually removed. 

Along the columns, CB and Pu are tested for the motor task input. Dotted arrows are task inputs. The winning model is marked 

with a green frame.  

 

Model comparison 

We then performed RFX BMS to compare the 22 models. RFX analysis computes the likelihood 

of a specific model to generate the data of a randomly chosen subject and therefore outliers have 

little impact on the result (Stephan et al., 2009). This analysis was chosen here since it is 

plausible that networks for implementing MSL are not consistent across subjects. RFX BMS was 

implemented using Gibbs sampling (in our study we used a total of 2e6 samples) which 

randomly draws model probabilities based on the posterior distribution (Penny et al., 2010).  
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In some cases, RFX BMS might give spurious results as it depends on the model space. This 

means that adding or subtracting even one model can reverse the ranking of the best models 

(Penny et al., 2010). In order to address this issue we performed RFX family level inference as 

implemented in SPM8 (‘spm_compare_families.m’ version 5007). Bayesian model averaging 

within each family produces a more stable result (Penny et al., 2010). Based on the factors which 

were varied across models (detailed above), we obtained three families for comparisons: 

 Family 1 contains two types of models: models in which the motor task modulates 

connectivity and models in which learning modulates the connectivity. 

 Family 2 contains three types of models: models in which putamen-M1 (pu-M1) 

connection is modulated, models in which Cerebellar-M1 (CB-M1) connection is 

modulated and models in which putamen-M1 and CB-M1 connections are modulated. 

 Family 3 contains three types of models: models in which the forward architecture (from 

subcortical to cortical) is modulated, models in which the backward architecture (from 

cortical to subcortical) is modulated and models in which reciprocal connections are 

modulated. 

Parameter estimates in the winning model 

After selecting the “winning model” out of the candidate set of 22 models with modulatory 

connections, we evaluated the significance of intrinsic connections as well as the significance of 

the modulatory effects across subjects. Using a Wilcoxon signed rank test (p<0.05, Bonferroni 

corrected for multiple comparisons), we tested across subjects how likely the effect of interest is 

different than zero. This analysis provided a statistical estimate for the consistency of our 

findings across subjects. For the intrinsic connections this procedure was done across sessions, 

whereas the significance of modulatory connections was evaluated in each session separately in 
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order to examine session-dependent changes. We report the strength of the connections in Hz 

across subjects (mean±SE) and the corresponding p-value. 

In addition we performed correlation analysis of parameter estimates of each subject in each 

session with normalized RTs.  

2.3  Results 

2.3.1 Behavioral results 

Response times and errors 

Behavioral results are based on data of all 25 subjects. RTs differed significantly between task 

conditions and across sessions. An ANOVA with the factors condition and session showed a 

decrease in RTs with sessions (F3,72 = 15.9, p<0.0001) and faster responses in sequence relative 

to random blocks (F1,24 = 24.89, p<0.0001). When comparing RTs for the different sessions 

separately, we did not observe significant differences in the first session (t24 = .47, p = .64), but 

in sessions 2 – 4 (all p < .05). However, the interaction session x condition was not significant 

(F3,72 = 2.78, p = .28). Data analyses were done on non-normalized data. Presented in Figure 

2.1C are normalized RTs, which were calculated for each subject by dividing the RTs in each 

condition and each session by the mean RT of the subject across all trials.  

The error rate was very low (1.66%±0.25%) and no differences between task conditions were 

found (p = .97). This result is comparable to previous findings with this paradigm (Rose et al., 

2011). When comparing session 1 with sessions 2 (p = .032) or with session 4 (p = .032), we 

found that subjects committed less errors indicating that subjects improved in task performance 

with time.  
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Assessment of implicit learning 

When asked whether they noticed anything in the task, subjects did not report any awareness of a 

regular structure. One subject reported that the task involved learning but could not specify 

whether it was the order of the colors or the locations that needed to be learned.  

In the completion task, we found that the median rate of correct responses was 16.7% (range: 

10%-36.7%, chance level: 20%). Median rate of correct assured responses was 3.3% (range: 0%-

13.3%). These results show that participants did not gain explicit knowledge of the sequence. 

2.3.2 DCM analysis 

Bayesian model selection 

When testing for the optimal model of intrinsic connections (with no modulatory effects on 

connections) we found that model 7 (Fig. 2.2) in which task inputs were to the CB bilaterally and 

reciprocal connections existed within hemisphere but not across hemispheres, was the most 

probable. Based on this model, we tested modulatory effects of both the learning condition (SEQ 

blocks) and task condition (both SEQ and RND blocks). Using RFX BMS on all sessions, we 

found that in the winning model (see Fig. 2.3B) with the largest exceedance probability (p_ex = 

0.33), learning modulated backward connections from M1 to CB bilaterally. In the next most 

probable model (p_ex = 0.18), learning modulated the forward connection from Pu to M1 

bilaterally (see Fig. 2.3A). When comparing this model to the winning model using the fixed 

effects BMS procedure, a relative log-evidence of 16.6 corresponding to a Bayes factor (BF) of 

𝑒16.6 = 1.6 ∙ 107 was obtained, which is considered to be a very strong difference for one model 

over another (Kass and Raftery, 1995). 
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Using RFX family level inference, we could then corroborate the results of the BMS procedure 

on each individual model. We observed that models, in which learning modulated the different 

connections, had a higher exceedance probability (p_ex = 0.91) in comparison to models, in 

which the motor task was modulating the connections (p_ex = 0.09) (see Fig. 2.3C). This result 

demonstrates that dynamic network interactions between the regions of interest are modulated 

specifically by learning and not by motor performance in the task. Family level inference on the 

directionality of the connections showed that models with backward connections were superior 

to models with forward or reciprocal connections. Finally, models that included CB-M1 

connections were superior in comparison to Pu-M1 connections or to both CB-M1 and Pu-M1 

connections (see Fig. 2.3C). 

Model parameters  

Endogenous connectivity parameters (fixed connections strengths) in the winning model across 

sessions were positive and significant across subjects for the connections from CB to M1 and 

from CB to Pu bilaterally (see Table 2.2). An additional relatively weak positive connection from 

rM1 to rPu was as well significant across subjects.  

For each session separately, we then investigated how learning modulated the connectivity from 

M1 to CB as suggested by the winning model. We observed that during the first and fourth 

session there were no significant modulatory effects. During the second session, bilateral 

connections from M1 to CB were significantly negatively modulated by learning (rM1 to lCB: p 

= 0.0036; lM1 to rCB: p = 0.0026). During the third session, only the modulatory effect on the 

connection between lM1 and rCB was significant (p = 0.0006 and see Figure 2.3D). Note that the 

intrinsic connections from M1 to CB were very close to zero across sessions in most subjects 

(see Table 2.2). 
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Figure 2.3. Bayesian model selection results. A Exceedance probability in 22 models compared using RFX BMS. B The winning 

model architecture. Learning is modulating the connections from M1 to CB bilaterally. C RFX family-wise inference. Family 1 

compares models in which the motor task (MT) modulates connectivity to models in which the learning condition modulates the 

connectivity (LRN). Family 2 contains three types of models: models in which the putamen-M1 (pu-M1) connection is 

modulated, models in which the cerebellum-M1 (CB-M1) connection is modulated and models in which both the putamen-M1 

connection and the CB-M1 connection are modulated. Family 3 contains three types of models: models with forward architecture 

(FWD - from subcortical to cortical), models with backward architecture (BWD-from cortical to subcortical) and parallel (Pa) or 

bi-directional connectivity. D Posterior moments of connectivity parameters (mean±SE). Significant parameters are indicated 

with asterisks (* p<0.05, ** p<0.05, Bonferroni corrected). 

 

We were not able to analyze differences in connectivity parameters between “good learners” 

(defined as performing above chance level in the completion task) and “bad learners” due to low 
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sample size (only five “good-learners” were analyzed using DCM). In addition, we found no 

significant correlations between behavioral performance in the task and the parameter estimates.  

 

Table 2.2: Posterior estimates of intrinsic connections in the winning model (mean±SE) 

Connections Strength (Hz) p-value 

rPu -> rM1 -0.157±0.061 0.0312* 

rPu -> lCB -0.115±0.066 0.4631 

lPu -> lM1 -0.217±0.097 0.0217* 

lPu -> rCB -0.207±0.127 0.7583 

rM1 -> rPu 0.050±0.015 0.0007** 

rM1 -> lCB -0.004±0.024 0.9434 

lM1 -> lPu 0.013±0.011 0.2097 

lM1 -> rCB -0.004±0.032 0.4925 

rCB ->lPu 0.246±0.045 0.0006** 

rCB ->lM1 0.357±0.088 0.0003** 

lCB -> rPu 0.209±0.037 0.0006** 

lCB -> rM1 0.381±0.061 0.0003** 

 

Starred values are significant (*p<0.05, **p<0.05, Bonferroni corrected) 

 

2.4. Discussion 

We used DCM (Friston et al., 2003) to study dynamic network interactions within the cortico-

striatal-cerebellar loop during implicit motor sequence learning. Behavioral effects indicated that 

subjects were able to learn the 12-element sequence without explicit awareness of the sequence. 

Using BMS across a set of hypothesized models, we found that in the most probable model, 

causal connections from M1 to cerebellum bilaterally were negatively modulated by learning. 
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This might be the cause of the decreased activity in cerebellum as learning progresses. 

Importantly, using family level inference we could show that models in which connections 

between M1 and putamen were modulated by learning were inferior to models in which 

connections between M1 and cerebellum were modulated by learning. This finding suggests that 

the cortico-cerebellar loop, as proposed by theoretical models of motor sequence learning 

(Doyon et al., 2003; Hikosaka et al., 2002) plays a distinctive role in implicit MSL. 

2.4.1. Behavioral effects of motor learning 

In order to assess the specific effects of the motor component in motor sequence learning, we 

employed an experimental design in which random presentation of colored stimuli prevent 

perceptual sequence learning (Rose et al., 2011). Learning related effects were addressed by 

comparing RTs during the 12-element sequence blocks to the random stimuli blocks. 

Performance differed significantly between task conditions from the second session onwards. In 

addition, RTs in both conditions significantly decreased during the experiment pointing to a 

general improvement in task performance. While improved performance in the sequence material 

was expected based on a previous study employing this paradigm (Rose et al., 2011), we found 

no interaction effect between session and condition. The behavioral results indicate that subjects 

did not reach the learning asymptote and thus might have remained in the early stage of implicit 

motor sequence learning. It might be that the quick succession between sequence and random 

blocks prevented early-on consolidation of the sequence. However, our design was similar to the 

work by Rose et al. (2011) in this regard, which did show an interaction between condition and 

session. The lack of explicit awareness of an underlying sequence was successfully achieved in 

all subjects by taking a short inter-trial interval (Destrebecqz and Cleeremans, 2001) and 

randomizing the colors in each trial. 
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2.4.2 Effective connectivity 

We constructed dynamic causal models (DCMs) to test whether and how interactions within the 

cortico-striatal-cerebellar loop are modulated by motor sequence learning based on the 

hypothesized main role of this loop in theoretical models of motor learning (Doyon et al., 2003; 

Hikosaka et al., 2002). To our knowledge, effective connectivity changes within this network 

related specifically to learning and not motor performance per se have not been investigated 

previously. Using BMS procedures, we were able to show that changes in causal connections 

within this network could be best explained by models which included modulation through 

learning. In order to ensure the stability of our results we conducted the analysis in two steps: 

comparing all inverted models using RFX BMS procedure and subsequently using RFX family 

level inference (Penny et al., 2010) to corroborate the results of the first step. We showed with 

high confidence (very strong BF in comparison to the next most probable model) that learning-

related modulation of bilateral M1 to cerebellum connections is more probable than modulation 

of putamen-M1 connectivity. We suggest that since subjects did not reach the learning asymptote 

and thus did not enter the late learning stage, the cortico-cerebellar network might dominate over 

the cortico-striatal loop. 

Intrinsic connections within the cortico-striatal-cerebellar network, representing the underlying 

connectivity patterns without task-related modulation (context independent connection strength) 

were significantly positive for causal connections from cerebellum to both putamen and M1. 

These might represent the positive feed-forward connections related to the task input to the 

network. We found that modulatory effects on the connections from M1 to cerebellum bilaterally 

were significantly negative across subjects in session 2, when reaction times started to differ 

between sequence and random material. Compared to a close to zero intrinsic connection 
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strength from M1 to cerebellum, this result represents a strong inhibitory effect. In session 3 this 

inhibitory effect, causing a decrease in activity in cerebellum as learning progresses, was even 

strengthened but only for the left M1-right cerebellar connection.  

2.4.3 Role of cerebellum in MSL 

The cerebellum ROI in the present study was located in the area of lobules V/VI in the anterior 

part of the cerebellum. The anterior cerebellum is known to be polysynaptically connected to 

cortical motor areas via deep cerebellar nuclei and the thalamus, whereas the posterior 

cerebellum is connected primarily to prefrontal and association cortex (Bernard and Seidler, 

2013; Buckner et al., 2011; Schmahmann and Pandya, 1997). Moreover, the anterior cerebellum 

shows topographically organized somatomotor representations with the current cerebellum ROI 

corresponding to the hand area which is strongly connected to the hand area in M1 (Buckner et 

al., 2011). Importantly, a few studies have recently investigated the relationship between the 

structural quality of the cerebello-thalamo-cortical pathway and behavioral performance in motor 

sequence learning tasks (Carbon et al., 2011; Schulz et al., 2014). In a study by Schulz and 

colleagues (2014), the relationship between learning gains in a rhythmic MSL task and white 

matter (WM) structural quality of the dentato-thalamo-cortical tract was assessed by means of 

diffusion tensor imaging and probabilistic tractography. The authors report significant 

correlation between behavioral improvement during early consolidation of the temporal sequence 

and WM structural quality of a tract connecting the dentate nucleus of the cerebellum and the 

right DLPFC. This finding stresses the significant contribution of cerebellar-cortical connectivity 

particularly to movement timing. Notably, the authors investigated also tracts connecting the 

dentate nucleus of the cerebellum to either left or right M1 or PMC, however no significant 

correlations between these tracts and any of the behavioral parameters in the MSL task were 
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found. How the effective connectivity between these regions relates to anatomical connections 

remains to be studied therefore.  

A decrease of cerebellar activity with motor learning has been observed in several studies 

(Grafton et al., 2002; Jenkins et al., 1994; Toni et al., 1998) and was hypothesized to be related 

to the computation of prediction errors which takes place during the early stage of learning but 

less when the motor sequence is already established (Doyon et al., 2009). A decreased BOLD 

signal after learning might reflect long-term depression of synaptic connections within cerebellar 

circuits which has been hypothesized previously as learning mechanism in the cerebellum 

(Albus, 1971; Ito, 1982; Marr, 1969). Our results suggest that the cause for this decrease in 

cerebellar activity is M1. In the MSL model, cerebellum receives motor task input which is then 

communicated to M1 and reciprocally communicates back to cerebellum. In the winning model, 

this backward communication is modulated by implicit acquisition of a motor sequence. Based 

on this network model, we would predict that impairing M1 or cerebellum will disrupt this 

reciprocal connection and will cause behavioral deficits in MSL. This is exactly what is observed 

in studies impairing M1 using stimulation techniques (Muellbacher et al., 2002; Wilkinson et al., 

2010) and in a procedural learning study stimulating cerebellum using TMS (Torriero et al., 

2004). 

Supporting our hypothesis of the cerebellum’s role in MSL, cerebellar lesion patients showed 

consistently impaired or absent learning when tested with the SRTT (Doyon et al., 1997; Gomez-

Beldarrain et al., 1998; Molinari et al., 1997; Pascual-Leone et al., 1993; Shin and Ivry, 2003). 

However, a study of patients with cerebellar degeneration attributed performance deficits to 

impaired working memory and representation of S-R mappings rather than to motor sequence 

learning per se (Spencer and Ivry, 2009). Interestingly, Bo and colleagues (Bo et al., 2011) have 
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investigated this assumption with a group of healthy subjects using a learning paradigm with 

both symbolic and spatial representation of a sequence. The authors showed that the left 

cerebellum was recruited specifically in the symbolic condition and that activity of this region 

was correlated with the learning magnitude. They concluded that cerebellar contribution to motor 

learning is to maintain relevant S-R mappings. Data from patients with chronic cerebellar lesions 

after stroke (Dirnberger et al., 2013) pointed to stronger impairment in perceptual than motor 

sequence learning. In the current task, working memory demands were rather low but 

performance was still depended on the transformation of the representation in stimulus space to 

response space. Cerebellar degeneration as in the ataxic patients in Spencer et al. (2009) affects 

the cerebellum globally which makes it difficult to relate performance deficits to specific 

cerebellar substructures. Measuring task-related effective connectivity in ataxic patients might be 

promising to specifically relate behavioral impairments to altered cortico-cerebellar networks.  

2.4.4 Limitations 

Some limitations of this study should be mentioned. Researchers have argued that when 

disentangling task performance and motor learning per se, cerebellar contribution might be 

limited to improvement in performance rather than learning (Seidler et al., 2002). Together with 

evidence pointing to specific cerebellar contribution to maintaining S-R mappings, one could 

question whether the modulation of connectivity from M1 to cerebellum is in fact specific to 

motor learning. Similarly to other studies that use the SRTT to study motor sequence learning, 

we were not able to disentangle these processes with our paradigm, which remains to be 

addressed in future studies. In addition, motivated by specific theoretical models of motor 

learning as well as many imaging studies employing SRTT to study motor sequence learning, we 

examined a very specific set of models comprising a limited number of brain regions. The 
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“winning” model we found is the best out of this candidate set of models and might not be the 

best when investigating effective connectivity in a data-driven approach in which thousands of 

models are specified or more brain regions are included. The approach we took in this study 

however allows us to answer specific questions about causal interactions between key nodes in 

the motor learning network as suggested by previous theoretical and empirical work. Moreover, 

we qualitatively showed that improved performance in sequence material during the second 

session was related to significant negative modulatory effects on the connection from M1 to 

cerebellum. However, quantitatively we did not find any correlation between performance in the 

task and the parameters obtained from the modeling procedure. In addition, due to the low 

sample size we were not able to compare differences in connectivity parameters between “good 

leaners” and “bad learners”. Future studies could address this question by analyzing a larger 

sample of subjects or by incorporating behavioral parameters directly into the models and thus 

address the relationship between connectivity parameters and behavioral effects. 

2.4.5 Conclusions 

Using DCM, we demonstrated that implicit motor sequence learning modulates the effective 

connectivity between M1 and cerebellum bilaterally such that M1 exhibits an inhibitory effect on 

cerebellum, causing it to decrease in activity as learning progresses. We hypothesize that this is 

related to reduced prediction error processing in the cerebellum when subjects have successfully 

learned a new motor sequence. Interpretation of these results on the molecular level should be 

considered speculative, however, as inhibition mechanisms expressed by the BOLD signal are 

less clear. Future electrophysiological studies could specifically address this hypothesis using 

recordings from M1 and cerebellum in animals or in humans (for example in ECoG studies). In 

addition, studies of effective connectivity of the cortico-cerebellar network during early motor 
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learning after cerebellar damage or temporary lesions (induced through e.g. TMS or tDCS) as 

well as studies in populations showing motor learning deficiencies (such as older adults) would 

greatly benefit our understanding of cerebellar contribution to implicit motor sequence learning.  
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Chapter 3 

Striatal-cerebellar networks mediate consolidation in a motor sequence 

learning task: an fMRI study using dynamic causal modelling 
2
 

3.1. Introduction 

Acquiring and retaining novel motor skills plays a fundamental role in human behavior. During 

the process of motor learning, a labile motor memory is formed, probably already after a few 

practice trials, and then stabilizes into a robust representation through consolidation (McGaugh, 

2000). Consolidation, which can be dependent on sleep, is reflected in performance improvement 

without any further practice (Diekelmann and Born, 2010). Studies investigating the neural 

correlates of motor memory consolidation have revealed inconclusive findings and to date little 

is known about changes in network interactions mediating motor memory consolidation. It is 

hypothesized that consolidation requires the synaptic reorganization of the neural networks 

involved in encoding of motor memories (Dudai, 2004). A theoretical model by Doyon and 

colleagues (Doyon et al., 2003) suggests that encoding, consolidation and retention phases in 

motor learning are based on distinct cortico-striatal-cerebellar networks. In previous work (Tzvi 

et al., 2014), we showed that the encoding stage of implicit motor sequence learning (MSL) is 

mediated by a specific M1-cerebellum loop which was negatively modulated by learning. Here 

we extend this finding by investigating how this cortico-striatal-cerebellar network is altered 

after consolidation in the slow learning phase. To this end, we used dynamic causal modelling 

(DCM) of fMRI data from specific brain regions within this network (primary motor cortex 

(M1), premotor cortex (PMC), supplementary motor area (SMA), putamen and cerebellum) to 

                                                           
2
 This chapter corresponds largely to: Tzvi, Elinor, et al. "Striatal–cerebellar networks mediate consolidation in a 

motor sequence learning task: An fMRI study using dynamic causal modelling."NeuroImage 122 (2015): 52-64. The 

author contributed to the analysis of the data and writing of the manuscript. 
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investigate changes in causal connectivity patterns between these regions while participants 

performed the serial reaction time task (Nissen and Bullemer, 1987) before and after sleep.  

3.1.1. Phases of motor learning 

Motor learning has been suggested to pass through three distinct phases: an early phase in which 

significant gains in performance are observed in a short time window, a late phase when further 

smaller gains can be observed over an extended time frame and an intermediate “offline” phase 

in which consolidation of the initial motor memory occurs (Doyon et al., 2009; Robertson et al., 

2004a). Consolidation is reflected by improved performance after this “offline” phase despite no 

further practice of the sequence.  

Changes in memory representations during sleep have been suggested to significantly contribute 

to learning and memory consolidation (for review see (Diekelmann and Born, 2010)). In the 

motor learning domain, abundant evidence points to sleep-specific enhancement in performance 

in an explicit MSL task (Fischer et al., 2002; Korman et al., 2007; Walker et al., 2002; Walker et 

al., 2003). In case of implicit sequence learning however, sleep might not be the main factor 

influencing consolidation. A study by Robertson and colleagues, for instance showed that 

participants who were unaware of a regularity in the task showed similar improvement in 

performance after time had passed regardless of whether they had slept during that time or not 

(Robertson et al., 2004b). In the present study, we investigated the neural network effects of 

offline consolidation of implicit motor sequence memories after a sleep period. As all 

participants slept between recording sessions, the results remain silent as to whether the effects 

are specific to sleep. 
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3.1.2 Neural correlates of motor learning and consolidation  

Previous studies have shown that multiple cortical and subcortical brain regions are activated 

during MSL (for review see (Dayan and Cohen, 2011)). A meta-analysis (Hardwick et al., 2013) 

of 70 motor learning tasks identified a wide-spread network of brain regions including M1, 

primary somatosensory cortex (S1), SMA, dorsal PMC, superior parietal lobule, thalamus, 

putamen and cerebellum. Theoretical models (Doyon et al., 2003; Hikosaka et al., 2002) suggest 

that a distinct cortico-cerebellar-striatal network is mediating the different phases in MSL. The 

neural signature of motor memory consolidation is however less clear and results are 

inconsistent. Whereas in one study involving an explicitly known sequence of motor movements 

(Fischer et al., 2005), activity in right PMC and M1 was decreased when comparing post-sleep to 

pre-sleep sessions, another study with a similar design (Walker et al., 2005) reported increased 

activity after sleep in right M1 but also in left cerebellum, medial prefrontal cortex, hippocampus 

and striatum. Increased activity in the striatum after sleep was reported by another explicit MSL 

study (Debas et al., 2010) suggesting that the striatum plays a crucial role in consolidation of the 

motor memory during sleep. Supporting this notion, an implicit oculomotor sequence learning 

study found striatal and hippocampal activity during training to be predictive of performance 

gain after sleep (Albouy et al., 2008). Steele and colleagues (Steele and Penhune, 2010) 

investigated offline consolidation effects on explicit motor sequence learning and found that 

increased activity in left M1 correlated with improved performance after the offline phase. 

Altogether these results show that M1 and PMC as well as striatum and cerebellum might have 

crucial roles in the consolidation of motor memory, no previous study has thus far investigated 

causal interactions between these structures with respect to consolidation.  
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3.1.3 Connectivity studies of motor learning 

Functional connectivity studies of motor learning in humans have mainly focused either on the 

early fast stage of MSL (Sun et al., 2007; Tamas Kincses et al., 2008) or the prolonged effects of 

slow-learning over days or weeks of practice (Coynel et al., 2010; Ma et al., 2010; Steele and 

Penhune, 2010). These studies showed evidence for increased connectivity within the cortico-

striato-cerebellar network (Ma et al., 2010; Steele and Penhune, 2010), however decreased 

connectivity has also been reported (Coynel et al., 2010). Two recent studies investigated 

connectivity during encoding and after consolidation of an explicit motor sequence (Albouy et 

al., 2013; Debas et al., 2014). Albouy and colleagues (2013) used a seed in caudate nucleus to 

investigate whole brain functional connectivity with the striatum. In addition to connectivity with 

the hippocampus, the authors also found that connectivity with several cortical areas and the 

cerebellum was correlated with gain in performance after consolidation during sleep. Debas and 

colleagues (2014) investigated the offline consolidation effects during sleep compared to an 

equivalent wake period using a measure of functional integration. The authors found evidence 

for a significant increase in functional integration in the cortico-striatal network following sleep 

compared to the wake condition and a similar tendency, however not significant, in the motor 

network suggesting a stronger sleep-specific involvement of these networks in the slow learning 

stage.    

Other studies investigated network reorganization during motor memory consolidation in the 

offline phase using resting-state (RS) functional connectivity (Albert et al., 2009; Sami and 

Miall, 2013; Sami et al., 2014; Vahdat et al., 2011). In one such study (Sami et al., 2014), BOLD 

fMRI at RS was measured at three time points after learning a SRTT under implicit or explicit 

conditions. Enhanced connectivity between dentate cerebellum, thalamus and basal ganglia was 
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observed shortly after implicit learning (30 min) whereas 6 hours later, presumably after 

consolidation, enhanced connectivity was found between medial temporal lobe structures. When 

contrasting implicit vs. explicit learning after consolidation, a network containing bilateral 

premotor cortex as well as bilateral superior and inferior parietal lobule was found to be more 

engaged in implicit learning.  

In addition to functional connectivity studies, analyses of effectivity connectivity can provide 

further insight in the interactions within the cortico-striatal-cerebellar network during the 

different phases of motor learning. Dynamic causal modelling (DCM) as one method for 

effective connectivity analyses was used in several studies to delineate causal connections within 

this network during motor actions in healthy participants (Grefkes et al., 2008a; Pool et al., 2013) 

and in the cortico-cortical network in patients after stroke (Grefkes et al., 2008b; Grefkes et al., 

2010; Rehme et al., 2011). In previous work (Tzvi et al., 2014), we used DCM to investigate the 

specific effects of encoding during the early stage of implicit MSL on the cortico-striatal-

cerebellar network. We found that the cortico-cerebellar loop was more dominant compared to 

the cortico-striatal loop and that learning negatively modulated the connection from M1 to 

cerebellum. Of note, these results are in-line with previous findings of a PET study (Penhune and 

Doyon, 2005) in which inter-regional correlation analysis during early learning showed that 

increase in blood-flow over cerebellum correlated with a decrease of blood flow in M1.   

3.1.4 Current study 

Here, we extended this work and investigated how causal interactions within this specific 

cortico-striato-cerebellar network change after motor memory consolidation during sleep. In 

contrast to our previous study, here we used a paradigm in which learning can occur in both the 

motor and the perceptual domain. Therefore, we expected a more extensive network to be 
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modulated by learning reflecting both learning components. An additional difference to our 

previous study is that here participants performed the SRTT with their non-dominant left hand. 

Previous studies have shown that motor learning with the non-dominant left hand can give rise to 

activity in both the “performing” right hemisphere but also the dominant left hemisphere 

(Fischer et al., 2005; Grafton et al., 2002; Lehericy et al., 2005; Orban et al., 2010). Hence, we 

expected that modulation of connections by learning would be evident in either hemisphere. 

Moreover, compared to our previous work, we sought to include additional cortical regions, 

namely bilateral PMC and SMA, in addition to M1, striatum and cerebellum, as those regions 

were shown to be involved in motor learning as well (Hardwick et al., 2013). This allowed us to 

investigate also potential cortico-cortical connectivity changes due to motor learning. These 

changes posed the methodological challenge of specifying and estimating hundreds of models. 

Due to recent advancements in DCM methodology, i.e., post-hoc Bayesian model selection 

(Friston and Penny, 2011; Rosa et al., 2012) we were able to approach this problem.  

We hypothesized that causal connectivity patterns in the cortico-striatal-cerebellar network, 

which play a crucial role in the encoding phase of MSL, are altered when comparing pre- to post-

sleep MSL sessions as a consequence of motor memory consolidation. Based on our previous 

results, we expected the connectivity from M1 to cerebellum to be negatively modulated in the 

early pre-sleep learning session. In the post-sleep session we expected to find a modulation of 

connectivity between cortical areas and the striatum as suggested by evidence of the studies 

detailed above.   
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3.2 Materials and methods 

3.2.1 Participants 

Thirty-one healthy participants (17 men; mean age: 24.9 standard-deviation: 1.8 years) took part 

in this study. All participants were right-handed (assessed using a handedness questionnaire 

(Oldfield, 1971)), were not taking any medication, were neurologically and mentally healthy 

(self-report) and had no history of sleep disorders. Musicians and professional-typists were not 

included in this study. Participants were not allowed to ingest alcohol or caffeine throughout the 

experiment. Participants were recruited from the University community and gave written 

informed consent to take part in the study. The study was approved by the Ethics committee of 

the University of Kiel and performed according to the Declaration of Helsinki. 

Four participants gained explicit knowledge of the sequence already in the pre-sleep session and 

were therefore excluded from any further analysis. In the post-sleep session, despite awareness 

of potential regularity in the stimuli, only six additional participants were explicitly aware of the 

specific sequence. We therefore excluded those participants from the behavioral analysis, 

resulting in 21 participants who remained implicit of the specific sequence throughout the 

experiment. For the fMRI analysis of the pre-sleep session, we included the six participants who 

gained explicit knowledge only in the post-sleep session. However, coregistration failed due to 

suboptimal image quality in four participants in the pre-sleep session, resulting in 23 participants 

for this fMRI analysis. In the post-sleep session, two participants had to be excluded due to 

coregistration problems resulting in 19 participants for this fMRI analysis.  

3.2.2 Experimental paradigm 

Participants completed a modified version of the serial reaction time task (Nissen and Bullemer, 

1987) in the evening and again in the morning after sleep. Throughout the task, four grey stimuli 
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were presented in a horizontal array on a screen, with each stimulus associated to one of the four 

fingers of the left hand. Whenever one of the four stimuli turned blue, participants were 

instructed to press the corresponding button on an MRI-compatible keypad as precise and as 

quickly as possible. Button presses were recorded using E-Prime 2.0 (Psychology Software 

Tools, Inc., 2002). Unbeknownst to the participants, stimuli were presented in either a random 

order or as a 12-items-sequence (“2-4-1-2-3-1-4-2-1-3-4-3”). Random stimuli were created such 

that items were not repeated. The task consisted of 6 blocks with 96 trials each. Each block 

contained 4 repetitions of the 12-element sequence (i.e. 48 trials) as well as 24 randomly 

presented stimuli before the sequence material and right after (see Figure 3.1). The inter-stimulus 

interval was 800 ms. A 28 s break was introduced between the blocks. Prior to the first SRTT 

session (in the evening), participants performed a test run with 96 randomly presented stimuli to 

familiarize with the task. 

3.2.3 Procedure 

Participants performed the SRTT in the evening at 7:00 p.m. while fMRI was recorded (Figure 

3.1). Immediately afterwards, participants were asked to recall the hidden sequence using the 

“free recall task” (FRT). Subsequently participants were sent to sleep at home. In the next 

morning at 7:00 a.m. participants completed the FRT again before performing the SRTT re-test 

in the fMRI. Thereafter explicit sequence knowledge was measured for a third time using the 

FRT. Before the adaptation night and before the two SRTT sessions in the evening and in the 

morning, participants completed standardized questionnaires acquiring wakefulness (Stanford 

Sleepiness Scale, SSS; Hoddes et al., 1972) and subjective activation, concentration and mood 

using a standard adjective check list (Janke and Debus, 1978).  
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Figure 3.1. Experimental design. A Participants completed the initial SRTT training in the evening (7 p.m.) and approximately 

12 hours later the SRTT re-test (7 a.m.), both consisting of 6 blocks with 96 trails each. „„Free recall“ was measured after initial 

training of the SRTT as well as before and after the SRTT re-test B Each block of the SRTT training and re-test consisted of 24 

random trails, followed by 48 sequential trials (i.e. 4 x the 12-items-sequence) and 24 random trials. 

 

3.2.4 Assessment of explicit awareness 

Explicit knowledge of the hidden sequence was assessed using the FRT. In the FRT, participants 

were required to recall the hidden 12-element sequence as precisely as possible. The sequence 

recalled by the participants was then compared to the actual hidden sequence. The number of 

correctly recalled consecutive items of the hidden sequence was then used as a measure of 

explicit awareness.  

The FRT performance was measured at three time points: (1) in the evening directly after the 

first SRTT session (all participants who acquired explicit knowledge after this initial training 

were excluded from further analysis), (2) in the morning before the second SRTT session to 
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investigate implicit-explicit conversion during sleep without further practice of the SRTT and (3) 

in the morning after the second SRTT session. It should be mentioned here that the FRT informs 

the participants about the hidden sequence such that they are explicitly aware of a rule in the 

second SRTT session.  

We used Monte Carlo simulations and an in-house “R” script (version 2.130; R Foundation for 

Statistical Computing, 2011, Vienna, Austria, http://www.R-project.org) in order to define a 

threshold in which the number of correctly recalled consecutive items would suggest that the 

subject gained explicit knowledge of the sequence (and not by mere chance). Chance level was 

assessed as follows: 10,000 sequences of 12 items each were randomly generated using the 

program Visual Studio Version 6.0 (Microsoft, Redmond, WA, USA). The sequences contained 

the numbers 1 to 4 without repetitions. All 10,000 randomly generated sequences were then 

compared to the hidden sequence. In 94% of the 10,000 randomly generated sequences, 5 and 

less than 5 consecutive correct items of the sequence were found. Therefore any randomly 

generated 12-items sequence has a chance of less than 6% to attain 6 or more consecutive correct 

hits. Consequently, six and more consecutive correct items of the sequence were considered as 

“above chance level” and as “explicit awareness”. Participants who gained explicit knowledge 

according to this criterion already after the pre-sleep SRTT session or in the post-sleep session 

were excluded from further analyses.  

3.2.5 Imaging 

MR protocol was carried out with a 3T Philips Achieva whole-body scanner (Philips Achieva, 

Philips, Best, Netherlands) and a standard 8-channel SENSE head coil in the department of 

neurology of the university Kiel. Functional MRI data (T2*) was collected using blood oxygen 

level dependent (BOLD) contrast in two sessions (pre- and post-sleep) each with 250 volumes. 

http://www.r-project.org/
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Gradient-echo EPI sequence was used with the following specifications: repetition time 

TR=2400ms, echo time TE=36.8ms, flip angle = 90°, matrix size 64 x 64mm, FOV = 216 x 

118.5 x 216mm, 36 transversal ascending slices of 3mm thickness and 10% gap and in-plane 

resolution of 3.375 x 3.375mm. Subsequently, a high resolution T1-weighted structural image 

was acquired with TR=8.12ms, TE=3.73ms, flip angle=8°, FOV = 240 x 240 x 160mm; matrix 

size 240x240mm; 160 sagittal slices of 1mm thickness. 

3.2.6 Behavioral analysis 

In the SRTT, we computed reaction times for both the SEQ and RND conditions with the 

difference being our measure of implicit sequence learning. To assess statistical significance, we 

used a repeated measure ANOVA with three factors: condition (SEQ, RND), blocks (1-6), and 

session (pre- and post-sleep). We also compared the median error rate between both task 

conditions for each session using the Wilcoxon signed-rank test. Wrong button presses and 

missing responses were regarded as errors.  

3.2.7 Pre-processing and statistical analysis 

Preprocessing of fMRI data in both pre-sleep and post-sleep sessions was done using SPM8 

software package (http://www.fil.ion.ucl.ac.uk/spm/) and consisted of: slice timing correction, 

realignment to correct for head motion artifacts, co-registration to T1 structural image, 

segmentation, normalization to Montreal Neurological Institute (MNI) template brain image, 

smoothing with a Gaussian kernel of 8mm full width half maximum and resampling of 

functional images to 3x3x3 mm. Coregistration failed in four participants in the pre-sleep session 

and in two participants in the post-sleep session. These participants were excluded from further 

analyses in the respective sessions.  
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Imaging data was subsequently modeled using the general linear model (GLM) in a block design 

manner. We used separate GLM analyses for each session. Imaging data of 23 participants was 

used for the pre-sleep analysis and of 19 participants for the post-sleep analysis. For the analysis 

of sleep-related motor memory consolidation (changes from pre- to post-session) we included 17 

participants. Linear regressors were obtained for each of the experimental conditions (SEQ and 

RND) and each block in each subject. Statistical parametric maps (SPMs) were generated by 

convolving a box function with duration of either 24 random trials for RND condition or 48 

sequence trials for SEQ condition, with a hemodynamic response function. Movement related 

parameters from the realignment process were included in the GLM as regressors of no-interest 

to account for variance caused by head motion.  

3.2.8 Dynamic causal modelling  

Dynamic causal modelling (DCM) (Friston et al., 2003) is a well-established method for 

estimating and comparing models of brain connectivity. DCM allows inferring on the causal 

coupling parameters between brain regions influenced by experimental conditions. We employed 

a deterministic bilinear model in which a system of differential equations is used to describe the 

neuronal dynamics of the motor learning network: 

𝑑𝑥 

𝑑𝑡
= (𝐴 + ∑𝑢𝑗𝐵

(𝑗)

𝑚

𝑗=1

)𝑥 + 𝐶�⃗�  

Here, 𝑥  is the state vector and �⃗�  is the input vector to the system. 𝐴 matrix represents the 

endogenous (context independent) connections, 𝐵 represents the modulatory (context dependent) 

connections, and 𝐶 is the influence of direct inputs to the system. Together with the Balloon 

model for the hemodynamic response function, the above system of equations is inverted and 

compared to the observed data using Bayesian methods. The model evidence, which is the 
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probability of the data given the model, is approximated using variational Bayes (VB) approach 

in which the posterior estimates of the parameters are updated iteratively through a gradient 

ascent on the free-energy bound (Friston et al., 2007). 

3.2.9 Post-hoc Bayesian model selection 

In the conventional DCM analysis procedure, a small set of hypothesized models is defined and 

compared using Bayesian model selection (BMS) procedures to issue an optimal model. This 

procedure requires individual fitting and estimation of each of the models using the procedures 

described above. If the model space is quite large (>16 free-parameters) this estimation 

procedure will require significant amount of computational time. Recently, a novel method for 

estimation and selection of an optimal dynamic causal model was introduced by Friston and 

colleagues (Friston and Penny, 2011; Rosa et al., 2012). Here, only one full model is estimated 

and fitted to the data. This full model contains all connectivity parameters which are a-priori 

hypothesized to be modulated by a specific task input. Using the posterior density of the full 

model, this “post-hoc” BMS procedure systematically “removes” model parameters by using a 

greedy-search scheme resulting in an optimal model and its posterior estimates. This procedure 

allows to explore a very large number of models as only one full model is estimated.  

A recently published study which made use of this “post-hoc” BMS procedure (Hillebrandt et al., 

2013) specified the endogenous connections (matrix A) and the inputs (matrix C) of the full 

model which will be used for the “post-hoc” BMS procedure based on specific a-priori 

knowledge. Here we performed an initial BMS analysis in order to identify both the optimal 

structure and the best driving node (see similar approach in (Seghier et al., 2010)). We therefore 

performed the DCM analysis as a three-step procedure. First, the structure and the input node/s 

were determined by systematically comparing models with task input and without modulatory 
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connections (similar approach as in (Tzvi et al., 2014)). Using family level inference the optimal 

model for endogenous connections was determined. In the second step we used this model to 

specify and estimate a full model with modulatory effects on connections which could be 

possibly modulated by learning. Third, using “post-hoc” BMS the full estimated model was 

optimized and a winning model was chosen with its optimal connectivity patterns (see Figure 3.3 

for a visualization of the analysis scheme).  

3.2.10 Time series extraction 

We aimed at investigating the causal interactions between primary motor cortex (M1), 

supplementary motor area (SMA), premotor cortex (PMC), putamen (Pu) and cerebellum (CB). 

We therefore used ten regions of interest (ROIs) to extract time series from significant voxels 

(see Table 3.1) in task>baseline contrast in order to account for both learning and non-learning 

related changes in the BOLD signal.  

Table 3.1: Regions of interest for the DCM analysis 

Region MNI-coordinates p-level Sphere Radius (mm) 

lM1 -38,-24,58 0.001 6 

rM1 40,-20,54  0.001 6 

lSMA 0, -2,56  0.001 4 

rSMA 2,8,52  0.001 4 

lPu -24,4,4  0.05 4 

rPu 26,0,2  0.05 4 

lCB -20,-52,-22 0.001 6 

rCB 10,-58,-20 0.001 6 
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Coordinates of the sphere center for M1, SMA, CB, and Pu ROIs (see Table 3.1) were selected 

based on meta-analysis of motor learning (Hardwick et al., 2013). For each individual subject, 

the sphere center of each ROI was moved to the closest supra-threshold voxel within the 

boundaries of the functional ROI as assessed by xjview toolbox 

(http://www.alivelearn.net/xjview) and AAL brain atlas. The PMC sphere center was always 

kept over BA6 and middle frontal gyrus and sufficiently apart (>10 voxels in each direction) 

from the M1 sphere center. This procedure verified that sphere centers in all ROIs were kept 

approximately consistent across participants. The coordinates of PMC were selected to be the 

individual local maxima of each subject in the contrast task>baseline. Significant voxels were 

chosen based on a p-level threshold of p<0.001 for M1, SMA, PMC and CB and p<0.05 for Pu 

(activity in putamen was less pronounced on the single subject level). Using a singular value 

decomposition procedure implemented in SPM8, we computed the first eigenvariate across all 

suprathreshold voxels within 4mm (Pu, SMA) or 6mm (M1, PMC and CB) radius from the 

sphere center for each subject in each session. Time series were then adjusted to effects of 

interest contrast (mean-corrected) and sharp improbable temporal artifacts were smoothed by an 

iterative procedure implementing a 6-point cubic-spline interpolation (see previous use of this 

method in (Tzvi et al., 2014). Using these criteria, we could not obtain time series in four 

participants for the pre-sleep session and in one subject for the post-sleep session so these 

participants were excluded from further analyses in the respective sessions. This resulted in 19 

participants for the pre-sleep session and 18 for the post-sleep session.  

3.2.11 DCM specification 

DCMs were specified for each of the experimental sessions (pre- and post-sleep) separately 

using DCM12 routines as implemented in SPM8. Input vector �⃗�  was constructed as a stick 
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function of the single events of stimulus presentation. An overview of the modelling process is 

described in Figure 3.3. In the first step, we determined the optimal endogenous connections in 

our data-set by constructing 22 models with reciprocal (bidirectional) connections within all 

ROIs in each hemisphere. For simplicity, we assumed symmetric connectivity patterns within 

each hemisphere and therefore examined models with different between-hemispheres 

connections by systematically reducing them in the models (see Figure 3.4). Based on previous 

studies, we used RFX BMS to test whether task inputs were to CB (Tzvi et al., 2014) or to 

premotor and supplementary motor areas (Pool et al., 2013) and whether this input was unilateral 

or bilateral. Accordingly, models were specified whether task input was to bilateral CB (6 

models), bilateral premotor and supplementary motor areas (PMC and SMA; 6 models), left CB 

(5 models) or right PMC and SMA (5 models). Only five models were defined for the 

aforementioned unilateral input since model 6 (see Figure 3.4) does not allow interhemispheric 

connections which means that no signals could be predicted for the left hemisphere if unilateral 

input is specified. For this analysis we did not include any modulatory parameters (B=0). In 

order to account for spurious results of RFX BMS, we performed family level inference using 

SPM8 (‘spm_compare_families.m’ version 5007) using Gibbs sampling with a total of 2e6 

samples (Penny et al., 2010). The following families were compared: 

 Input Family: contains 4 types of models based on the different inputs 

 Structure family: contains 6 types of models based on connectivity patterns across 

hemispheres (see Figure 3.4) 

In the second step, we used the optimal model of endogenous connections to specify and 

estimate a reliable full model which was used for the subsequent “post-hoc” BMS procedure. For 

the full model we assumed that all within hemisphere connections could be modulated by motor 
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learning. Modulations of self-connections within each ROI were not allowed for simplicity (see 

similar approach in Hillebrandt et al., 2013). In the third step, we performed the “post-hoc” BMS 

procedure (as implemented in SPM8 version 4307) and obtained the winning model for 

modulatory effects for each subject in each session.  

In order to test whether this optimal model is specifically describing connectivity patterns 

evoked by motor learning and not by task performance, we created and estimated two test 

models based on the modulatory connections in the winning model of the “post-hoc” BMS 

procedure (see Figure 3.3). In Model 1 the connections were modulated by motor task 

performance (SEQ and RND conditions) and in model 2 (as in the winning model) the 

connections were modulated by learning (SEQ condition). We then used RFX BMS to compare 

which of the two models is best describing the data.   

3.2.12 Parameter estimates  

In each session we evaluated the connectivity parameters of each subject using an RFX non-

Bayesian statistical approach. We evaluated the endogenous connectivity parameters from the 

“winning” models obtained in the first analysis step, and the modulatory connectivity parameters 

from the optimal model obtained in the second analysis step. Using a Wilcoxon signed rank test 

(p<0.05, Bonferroni corrected for multiple comparisons), we tested across participants how 

likely the effect of interest is different than zero. We report the strength of the connections in Hz 

across participants (mean±SE) and the corresponding p-value. Importantly, pre- and post-sleep 

sessions resulted in different intrinsic models (see Results section). It was therefore not possible 

to quantitatively compare connectivity parameters before and after sleep, but only qualitatively. 
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Finally, we performed correlation analysis of parameter estimates of each subject in each session 

with normalized RTs in order to relate behavioral learning effects and neural connectivity 

parameters.  

3.3. Results 

3.3.1 Assessment of explicit awareness 

Explicit knowledge of the hidden sequence was assessed using the FRT. Using a Monte-carlo 

simulation we established that six and more consecutive correct items of the sequence were 

considered as “above chance level” and as “explicit awareness”. Four participants gained explicit 

knowledge of the sequence according to this criterion already in the pre-sleep session and were 

therefore excluded from any further analysis. In the post-sleep session, six additional participants 

were explicitly aware of the specific sequence. We therefore excluded those participants from the 

behavioral analysis, resulting in 21 participants who remained implicit of the specific sequence 

throughout the experiment. 

3.3.2 Behavioral results 

We first tested whether participants learned the sequence in the pre-sleep session. For this 

purpose, we performed repeated measures ANOVA with factors condition and block on data 

from the 21 participants who remained implicit throughout the experiment according to our 

assessment of awareness (see section  3.2.4 - assessment of explicit awareness). We found a main 

effect of condition: (F1,20 = 19.22, p < 0.001) which indicates that participants were faster when 

performing the sequence compared to random performance. A significant condition x block 

interaction (F5,100 = 2.33, p = 0.048) reflected improved learning of the sequence with time in the 
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pre-sleep session. No main effect of block was observed (F5,100  = 2.01, p = 0.08) suggesting that 

unspecific task improvements were not found during the pre-sleep session.  

Next, we tested whether further learning improvements were evident in the post-sleep session 

using a similar ANOVA with factors condition and block. Here as well we found a main effect of 

condition (F1,20 = 55.97, p < 0.001) indicating that participants performed faster during sequence 

blocks compared to random blocks, as well as a significant interaction (F5,100  = 3.27, p = 0.009) 

which mainly reflected the slowing down during random blocks performance rather than 

speeding up during sequence blocks (see Figure 3.2A). A main effect of block (F5,100 = 3.77, p = 

0.004) was also evident which might be driven by the slower reaction times during random 

blocks.   

In order to specifically test whether participants consolidated the sequence during the off-line 

phase, we tested the differences between the block preceding sleep (pre-sleep: block 6) and the 

block performed just after sleep (post-sleep: block 1) using a repeated measures ANOVA with 

factors condition and sleep (pre-sleep: block 6, post-sleep: block 1). We found main effects of 

condition (F1,20 = 20.06, p < 0.001) and of sleep (F1,20 = 6.52, p = 0.02). Although the sleep effect 

for the sequence condition (t20=3.88, p<0.001) was nominally larger than for the random 

condition (t20=3.15, p=0.005), the interaction was not significant (F1,20 = 1.10, p = 0.31).  

Error rates were generally very low (1.95%±0.77), but significantly higher during random blocks 

(2.78%) compared to sequence blocks (1.77%) in the post-sleep session (p<0.001) but not in the 

pre-sleep session (random: 3.1%, sequence: 2.55%; p=0.15) (see Figure 3.2B). This reflects that 

the motor sequence was consolidated and implemented in the post-sleep session such that fewer 

errors were made during sequence material. 
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Figure 3.2. Behavioral performance in the serial reaction time task. Error bars represent standard errors of the mean (SEM). A 

Reaction times are plotted for the sequence condition (in grey) and for the random condition (in black) across blocks, before and 

after sleep. B Error rates are plotted across each session for each of the conditions (Sequence: gray, Random: black). A 

significant difference between sequence and random is observed in the post-sleep session. 

 

3.3.3 Dynamic causal modelling 

Bayesian model selection 

As explained in the methods section, we followed the same analysis procedure for both pre- and 

post-sleep sessions (see Figure 3.3 for an overview): 

1. We compared 22 models in order to identify the optimal model for endogenous 

connections driven by a motor task input using standard RFX BMS and RFX family wise 

inference. 

2. Based on the winning model, we defined and estimated the full model for the “post-hoc” 

BMS procedure. 

3. The modulatory effects found in the winning model were then re-evaluated by creating 

and estimating two test models according to the modulatory connections in the winning 

model of the “post-hoc” BMS procedure. 
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Figure 3.3. Analysis scheme. In the first step, the endogenous connections driven by the motor task are identified using random 

effects Bayesian models selection employing 22 models. In the second step, using the optimal model from the first step a learning 

model is estimated and hundreds of models are compared using the post-hoc BMS procedure. Finally, the optimal model of the 

previous step is compared to an identical model with task modulation to test the specificity of learning-related connectivity 

modulations.   

 

Pre-sleep 

We found that model 9 which is based on structure-model 3 with inputs to right premotor areas 

had the largest exceedance probability (p_ex = 0.145) compared to the next best model (p_ex = 

0.096) which was as well based on structure-model 3 however with input to left cerebellum. 

Family level inference results showed that left CB input-family had a slightly higher exceedance 

probability than right premotor input-family (p_ex = 0.498 and p_ex = 0.482 respectively). 

When comparing structure families, structure-family 3 had the highest exceedance probability 

(p_ex = 0.698) with structure-family 4 being the next most probable structure family (p_ex = 

0.232). Family level inference has been shown to produce more robust and reliable results 
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(Penny et al., 2010), so we proceeded with defining and estimating the full model based on 

structure-family 3 with input to left CB. We compared 256 models using the “post-hoc” BMS 

procedure. The winning model (see Figure 3.4C) had an exceedance probability of p_ex = 0.068 

(see Figure 3.5E). 

 

Figure 3.4. Six models for task-driven intrinsic connections. Dotted lines stand for inter-hemispheric connections, dashed lines 

stand for homolog brain regions connections, and full lines stand for within hemisphere connections. In all models – all within 

hemisphere connections between all nodes were kept for all the models. Connections are systematically removed from Model 1 

to Model 6. Model 1: all 10 nodes are connected to each other. Model 2: only cortical between hemisphere connections are kept. 

Model 3: only homolog connections are kept. Model 4: only cortical homolog connections are kept. Model 5: only M1 homolog 

connections are kept. Model 6: no connections between hemispheres. 

 

In order to assess whether modulations in the winning model were specific to learning, we 

compared two test models (test model 1: task modulation; test model 2: learning modulation) 
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using RFX BMS (See analysis scheme in Figure 3.3). Test model 2 had higher exceedance 

probability (p_ex = 0.76) in comparison to test model 1 (p_ex = 0.24). This result indicates that 

connectivity patterns observed in the winning model were indeed reflecting learning-related 

causal effects.  

Post-sleep 

We found that model 10 which is based on structure-model 4 with inputs to right premotor areas 

had the largest exceedance probability (p_ex = 0.41 and see Figure 3.5B). Model 21 which is 

also based on the structure-model 4, but with inputs to left CB, had a slightly lower exceedance 

probability (p_ex = 0.39). Family level inference showed that right premotor family had higher 

exceedance probability (p_ex = 0.71) than left CB input-family (p_ex = 0.27). When comparing 

structure families, we observed that indeed there was a shift in the post-sleep session to structure-

family 4 (p_ex = 0.83). The next most probable family was structure-family 5 (p_ex = 0.10).   

We proceeded with defining and estimating the full model based on structure-family 4 with input 

to right premotor areas. We compared 256 models using the “post-hoc” BMS procedure. The 

winning model (see Figure 3.5D) had an exceedance probability of p_ex = 0.31 (See Figure 

3.5F).  

We compared the two test models using RFX BMS and found that test model 1 in which 

connections were modulated by the motor task had a higher exceedance probability (p_ex = 

0.94) in comparison to test model 2 (p_ex = 0.06) in which the connections were modulated by 

learning. This comparison shows that in the post-sleep session, activity in the motor network was 

no longer driven by learning but was more dominated by task performance.  
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Figure 3.5. Results of Bayesian model selection in pre- and post-sleep sessions. A-D Optimal models. Input to the models are 

marked with a dotted arrow. PMC- premotor cortex; SMA- supplementary motor area; M1- primary motor cortex; Pu- putamen; 

CB- cerebellum. A Pre-sleep optimal model for endogenous connections. Note that all homolog brain regions are connected and 

the input is to left cerebellum. B Post-sleep model for endogenous connections. Note that only cortical homologs are connected 

(right and left cerebellum and putamen are not connected) and input is to right premotor and SMA. C-D optimal model for 

learning-related modulatory effects. E-F Exceedance probability measures for the compared models in the post-hoc Bayesian 

model selection procedure. 
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To summarize our initial BMS analysis, we found different models for the input node/s and the 

endogenous connections in pre- and post-sleep sessions. Before sleep, input to left cerebellum 

and connections between all homolog brain areas were found to be optimal, whereas after sleep a 

model with an input to both right SMA and PMC and connections between only cortical 

homolog brain areas was optimal. We proceeded with our analysis procedure using these models.  

Connectivity parameters in the winning models 

Endogenous connections 

In general we found that most of the endogenous connections which showed consistency across 

participants were positive indicating active information transfer from the respective input nodes 

(pre-sleep: lCB; post-sleep: rSMA, rPMC) to the network during task performance. Connections 

in the post-sleep session were markedly sparser compared to the pre-sleep session (see Table 

3.2). 

In addition, during pre-sleep, both left and right cerebellar nodes had positive forward 

connections to other nodes in the network, whereas in the post-sleep session, lCB had positive 

forward connections to rPu and rM1 and rCB had no forward connections at all. For both pre- 

and post-sleep sessions, we found a negative connection from lM1 to rM1 (Session: mean±SEM; 

pre-sleep: -0.239±0.064; post-sleep: -0.201±0.046) indicating interhemispheric inhibition from 

the dominant left M1 onto the “performing” right M1. During the pre-sleep session, we found an 

additional negative connection from lPMC to rPMC (-0.163±0.048) which was no longer 

significantly consistent across participants in the post-sleep session (-0.071±0.034). Other 

bilateral connections between the same regions from the dominant left hemisphere on the 

“performing” right hemisphere were not consistent across participants in either session (see 

Table 3.2). Additionally, we found consistent positive bilateral connections between homolog 
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brain regions from right to left hemisphere in the pre-sleep session (see Table 3.2) suggesting 

that information transfer from right to left is important for the early stage of motor learning with 

the non-dominant hand. In the post-sleep session, only positive connections from rPMC to lPMC 

and from rSMA to lSMA (see Table 3.2) were found to be consistent across participants. This 

might indicate that during the slow learning phase, the involvement of the dominant hemisphere 

was reduced.  

Table 3.2: Posterior estimates of significant endogenous connections (A parameters) in the winning 

models in either pre- or post-sleep (mean±SE). 

 

Connection  Pre-Sleep    Post-Sleep 

   Strength (Hz)  p-Value  Strength (Hz)  p-Value 

rPu -> lPu  0.134±0.049  0.007*   

lPu -> lPMC  -0.070±0.060  0.968  -0.169±0.045  0.002* 

rM1 -> rPu  0.046±0.016  0.002*  0.004±0.019  0.327 

rM1 -> lM1  0.079±0.020  0.0006**  0.051±0.028  0.058 

rM1 -> rPMC  0.086±0.041  0.008*  0.017±0.028  0.048 

rM1 -> rSMA  0.119±0.050  0.005*  -0.015±0.051  0.214 

lM1 -> rM1  -0.239±0.064  0.005*  -0.201±0.046  0.001* 

rCB -> lPu  0.118±0.049  0.006*  0.065±0.029  0.025 

rCB -> lM1  0.102±0.039  0.006*  -0.016±0.017  0.446 

rCB -> lPMC  0.316±0.065  0.0001**  -0.080±0.026  0.014 

rCB -> lSMA  0.266±0.063  0.0004**  -0.108±0.052  0.031 

lCB -> rPu  0.194±0.049  0.006*  0.084±0.023  0.002* 

lCB -> rM1  0.446±0.089  0.0001**  0.054±0.019  0.004* 

lCB -> rCB  0.396±0.070  0.0003**   

lCB -> rPMC  0.430±0.068  0.0001**  0.026±0.018  0.048 

lCB -> rSMA  0.356±0.072  0.0005**  0.046±0.023  0.048 

rPMC -> rM1  0.051±0.024  0.053  0.308±0.047  0.0002** 

rPMC -> lCB  0.031±0.020  0.049  0.131±0.077  0.003* 

rPMC -> lPMC  0.256±0.053  0.0001**  0.524±0.080  0.0002** 

rPMC -> rSMA  0.137±0.040  0.0005**  0.190±0.035  0.0003** 
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lPMC -> lPu  0.035±0.013  0.006*  0.037±0.029  0.133 

lPMC -> lM1  0.051±0.023  0.011  0.098±0.016  0.0002** 

lPMC -> rCB  -0.008±0.024  0.445  0.131±0.039  0.003* 

lPMC -> rPMC  -0.163±0.048  0.001*  -0.071±0.034  0.039 

lPMC -> lSMA  0.065±0.028  0.010  0.206±0.047  0.0003** 

rSMA -> rPu  -0.029±0.023  0.970  0.089±0.017  0.0002** 

rSMA -> rM1  -0.004±0.025  0.629  0.219±0.028  0.0002** 

rSMA -> lCB  -0.030±0.034  0.421  0.258±0.071  0.0002** 

rSMA -> rPMC  -0.004±0.017  0.398  0.146±0.021  0.0002** 

rSMA -> lSMA  0.211±0.039  0.0001**  0.365±0.045  0.0002** 

------------------------------------------------------------------------------------------------------------------------------------------------------------

* p<0.01; **p<0.05, Bonferonni corrected 

 

Modulatory connections 

Pre-sleep 

The modulated connections in the optimal model are detailed in Table 3.3 and depicted in Figure 

3.5C. Similarly to our previous study, we observed a negative modulatory effect by motor 

learning on the connection from lM1 to rCB. This effect however, was not consistent across 

participants (p = 0.18). Additional negatively modulated connections were found from rPMC to 

lCB, lM1 to lPu, rPu to lCB and bidirectional connection between lPu and rCB. Consistent 

negative modulatory effects across participants were observed only on the connections between 

bilateral Pu to CB (see Table 3.3). We found no correlation between performance measures and 

modulation parameters. 
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Table 3.3: Posterior estimates of modulatory connections (B parameters) in the winning models 

(mean±SE) 

Connection pre-sleep    post-sleep 

Strength (Hz) p-Value  Strength (Hz) p-Value 

rPu -> lCB -0.08±0.03 0.016* 

rPu->rPMC     -0.01±0.10 0.50 

lPu -> rCB -0.14±0.08 0.007** 

lM1 -> lPu -0.02±0.10 0.40 

lM1 -> rCB -0.09±0.09 0.18 

rCB-> lPu -0.04±0.11 0.15 

lCB->rPu      -0.30±0.07 0.0006** 

rPMC-> lCB -0.05±0.09 0.20 

------------------------------------------------------------------------------------------------------------------------------------------------------------

*p<0.05; **p<0.05 Bonferroni corrected 

 

Post-sleep 

In this session we found that modulation by motor task performance had higher exceedance 

probability than modulation by motor learning. The winning model (see Figure 3.5D) had 

negative modulatory effects of both SEQ and RND conditions on connections from rPu to rPMC 

and from lCB to rPu.  

When testing for consistent effects across participants, we found that only during SEQ condition, 

the connection from lCB to rPu was consistently negatively modulated across participants (-
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0.15±0.05; p = 0.008. RND: -0.06±0.05; p=0.35). The connection from rPu to rPMC was neither 

for the RND nor for SEQ condition consistently modulated across participants (p=0.058 and 

p=0.711 respectively). We found no correlation between performance measures and modulation 

parameters. 

 

3.4 Discussion 

We investigated the effects of implicit motor memory consolidation on effective connectivity in 

a specific cortico-striatal-cerebellar network. Dynamic causal modelling allowed us to 

investigate dynamic changes in causal patterns of connectivity in this network due to motor 

learning and consolidation. Participants performed the motor sequence significantly faster in the 

post-sleep session compared to the pre-sleep session and made less errors during post-sleep 

sequence relative to random blocks, indicating that they had consolidated the motor memory 

during sleep. In addition, reactions times of the post-sleep session suggested that no additional 

learning took place in this session.  

DCM analysis revealed both general changes of the network as well as learning-specific changes. 

First, in terms of endogenous connections, we found differences in inter-hemispheric 

connections between pre- and post-sleep sessions as well as differences in the input node(s). 

Second, learning-related effects were assessed using post-hoc BMS analysis comparing hundreds 

of models. We found that pre-sleep learning modulated connectivity in several cortical-

subcortical connections, whereas during the post-sleep session, modulatory effects were 

restricted and could not be attributed specifically to learning. The “loss” of a learning-related 

network in the post-sleep session might be directly related to the absence of behavioral effects of 
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learning in this session. During the pre-sleep session, implicit learners showed learning-related 

negative modulation of connections from bilateral putamen to cerebellum and, less consistently, 

from left M1 to cerebellum. Although the winning model was not specific to learning during the 

post-sleep session, we found that the connection from left cerebellum to right putamen was only 

consistently negatively modulated by the sequence condition in all participants. In contrast to our 

previous study in which we investigated changes due to ”pure” motor learning, the network 

changes observed here might reflect effects of additional perceptual learning. We conclude that 

together with other cortico-subcortical connections, putamen to cerebellar connectivity might be 

important for the encoding phase of a sequence whereas cerebellar to putamen connectivity 

could underlie the slow learning phase.  

3.4.1 Changes in endogenous connections across sessions 

We used random-effects Bayesian model selection combined with family level inference (Penny 

et al., 2010) to identify the optimal intrinsic network driven by the motor task and the input 

nodes to this network. This process uses the model evidence to reduce the susceptibility of the 

post-hoc Bayesian model selection procedure to falsely identify connections which are initially 

less probable (Stephan et al., 2010). There are two noteworthy differences between the two 

sessions in terms of endogenous connections, one being the different input node(s) and the other 

being different connectivity patterns of homolog brain areas. The input node(s) to the model play 

an important role as changes in activity due to general task performance propagate to the other 

nodes in the network through the input. Thus, it serves as a “gate” for the task-related signal 

changes. The pre-sleep session was characterized by driving input to cerebellum whereas in the 

post-sleep session, inputs were to premotor and supplementary motor regions. This suggests that 

the cerebellum serves as an input node when correct stimulus-response associations are to be 
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learned compared to when these are already automatized (Wolpert et al., 1998). In addition, 

during the pre-sleep session, both left and right cerebellar nodes had positive forward 

connections to putamen as well as motor cortical regions, whereas the post-sleep session had 

markedly sparser connections with no positive forward connections from right cerebellum to any 

other region. This connectivity pattern further strengthens the argument that the cerebellum is 

more important during the early learning phase (Bernard and Seidler, 2013). The cerebellum was 

identified as an input node in our previous study as well, in which we investigated the early 

learning phase (Tzvi et al., 2014). Input to the SMA and premotor areas in the post-sleep session 

might indicate that the task performance has been automatized such that continuous updating of 

the internal model by the cerebellum is no longer needed.  

The second noteworthy difference was in connectivity patterns between homolog brain regions. 

In the pre-sleep session we found consistent positive connections between all cortical and 

subcortical homolog brain regions, whereas in the post-sleep session, connections were only 

found between homolog cortical areas. Pool and colleagues showed, similarly to our results, 

motor-related changes in connections between all homolog brain regions (premotor cortex, 

SMA, putamen and cerebellum), except for M1 (Pool et al., 2013). Moreover, we found 

significant positive connections from right (“performing”) SMA and PMC to the left dominant 

SMA and PMC in both sessions, but between other brain regions (M1, cerebellum and putamen) 

only before sleep. This finding might indicate that interhemispheric transfer between M1, 

cerebellum and putamen is important for establishing the correct stimulus-response associations 

when the task demands are initially encoded whereas interhemispheric transfer between SMA 

and PMC are probably important for maintaining the stimulus-response representation for 

accurate performance. In a previous DCM study investigating causal connectivity patterns 
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between bilateral M1, PMC and SMA during whole hand closing movements, similar results 

were evident for PMC but not for M1 and SMA (Grefkes et al., 2008a). A positive connection 

from rPMC to lPMC was also observed in a stimulus response compatibility task (Cieslik et al., 

2011), and during a simple left hand fist closure task (Pool et al., 2013), further strengthening the 

importance of this causal connection over PMC to general motor task demands. When 

participants performed a finger tapping task with the left hand, a positive connection was 

observed from rSMA to lSMA similarly to our results (Gao et al., 2014). We also found 

significant negative connections from lM1 to rM1 in both sessions (Grefkes et al., 2008a; Pool et 

al., 2013), however the observed negative connection from lPMC to rPMC in the pre-sleep 

session was not evident in previous DCM studies of the motor network (Cieslik et al., 2011; 

Grefkes et al., 2008a; Pool et al., 2013), suggesting that this connection might be specific for 

motor sequence learning demands. Future studies investigating dynamical interactions between 

cortical and subcortical regions during tasks with different stimulus-response mappings could 

shed more light on these important interhemispheric connections.  

3.4.2 Modulatory effects of learning in the early phase 

We developed a procedure based on recent advancements in DCM methodology in order to 

investigate causal information flow in brain networks involved in acquisition, consolidation and 

late learning phases of MSL. This “post-hoc” BMS procedure (Friston and Penny, 2011; Rosa et 

al., 2012), allowed us to approach the effective connectivity analysis with fewer a-priori 

assumptions (e.g. existence of certain connections or specific connections to be modulated) and a 

more distributed network (10 nodes). Using this protocol we identified several connections 

which were specifically modulated by learning in the pre-sleep session including connections 
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between bilateral putamen to cerebellum as well as connections from left M1 to right cerebellum 

and from right premotor cortex to left cerebellum.  

The finding of left M1 to cerebellum connectivity replicates results of our previous study (Tzvi 

et al., 2014) using a bimanual SRTT. There, we found negative modulatory effects of learning on 

the connections from bilateral M1 to CB which corresponded to the effects found in the PET 

study by Penhune and Doyon (2005). Specifically, the connection from left M1 to right 

cerebellum was consistent across participants in all sessions. In the present study however, this 

connection was not consistently negative across participants. This inconsistent finding might be 

related to different learning strategies employed across participants in the SRTT paradigm we 

used here. If the connection from M1 to cerebellum represents the motor component of learning 

as suggested by our previous work, it will be less relevant in participants who performed in the 

current task by means of perceptual learning. 

We also found that connections from bilateral putamen to cerebellum were negatively modulated 

by early learning, which we had not observed previously. However, we previously only 

compared models with learning-related modulations of the cortico-cerebellar network and 

modulations of the cortico-striatal network, which was based on theoretical considerations 

(Doyon et al., 2003). Hence, striatal-cerebellar connectivity was not directly investigated in the 

last study.  

It might also be that the observed modulation of the connection from putamen to cerebellum 

reflects the perceptual learning in the task. This hypothesis is in accordance with the suggested 

role of putamen within the cortico-striatal-cerebellar network (Penhune and Steele, 2012) to 

(implicitly) form predictive associations between the stimuli and responses or between chunks of 

the sequence. Supporting evidence for this hypothesis is found in a study which directly 
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compared the perceptual and motor component in a MSL task and found that activity in putamen 

was increased in the perceptual component compared to the motor component during early 

learning (Bapi et al., 2006). In another study investigating the dissociation between the two 

components in the SRTT (Rose et al., 2011), bilateral putamen was found to be involved in both 

the perceptual and the motor components, the authors however did not directly compare putamen 

activity for the two representations. It is important to mention that in the work presented here, we 

did not attempt to study the effects of motor and perceptual learning separately, therefore the 

interpretations above remain speculative. Further investigations focusing specifically on the 

perceptual learning component of the SRTT are needed in order to address the changes in 

connectivity patterns between cerebellum and putamen in the course of MSL.  

3.4.3 Modulatory effects of learning in the late phase 

In the post-sleep session, modulatory effects identified by the “post-hoc” BMS procedure were 

unspecific to learning. This means that the connections in the model are modulated by general 

demands of the visuo-motor task rather than by sequence learning per se. Perhaps during the 

slow learning phase, as the motor memory is already consolidated, the computational efforts 

required to implement the learned motor sequence are reduced compared to the efforts needed 

for performing the task. In accordance with this finding, our participants did not show any 

further decrease in RTs in the post-sleep session. In addition, compared to the extended network 

of connections modulated by learning in the pre-sleep session, after sleep we found only two 

connections which were modulated by task performance. This result suggests that a general 

pruning of the network is taking place in the slow learning phase. Interestingly, when 

investigating condition-specific effects in the winning model, we found a negative modulation of 

the connection from the left cerebellum to the right putamen which was consistent across 



92 

 

participants only for the sequence condition. Thus, it seems that during the slow learning phase, 

the connection from cerebellum to putamen is weakened by additional practice, and this effect is 

more robust for sequence material.  

This observation as well as the general pruning of the network after sleep is in accordance with a 

study showing decrease in the overall connectivity of the cortico-striatal-cerebellar network with 

extended practice over 4 weeks (Coynel et al., 2010). It also agrees with a resting-state network 

analysis which showed recruitment of the cortico-basal ganglia-thalamic-cerebellar network 

directly after motor learning but not in resting-state measured after 6 hours (Sami et al., 2014).  

How might these changes in cerebellar-striatal connectivity come about? Direct anatomical 

connections between cerebellar and striatal circuits were previously thought to relay mainly 

through the cerebral cortex (Bostan et al., 2013). Only recently, studies using retrograde tracing 

demonstrated dense anatomical inter-connections between the striatum and the cerebellum 

(Bostan et al., 2010; Hoshi et al., 2005). Importantly, cerebellar projections were also found to 

non-motor (associative) regions of the putamen and the caudate nucleus (Hoshi et al., 2005). 

These findings led researchers to hypothesize that reciprocal connections between striatum and 

cerebellum may have a functional role in non-motor functions and specifically in learning 

(Bostan et al., 2013). Here, we took the first steps in showing that bilateral connections from 

putamen to cerebellum are relevant for the acquisition phase of a sequence whereas left 

cerebellum to right putamen connectivity is mediating the slow learning phase of the motor 

sequence.  

3.4.4 Methodological considerations 

We found that pre- and post-sleep sessions indeed differed in their optimal endogenous 

connectivity patterns and input nodes, preventing us from quantitatively comparing the 
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connectivity parameters across sessions. This is an interesting methodological finding since some 

DCM studies model several different sessions or several different groups assuming the same 

intrinsic network pattern and/or input node/s (see for example: (Cardenas-Morales et al., 2013; 

Eickhoff et al., 2008; Grefkes et al., 2010)). Although this is necessary for a quantitative 

comparison of groups or sessions, the present results show that caution should be taken when 

making such assumptions. 

3.4.5 Limitations  

There are a few limitations to be mentioned. First, as motor memory consolidation has been 

shown to involve hippocampal-striatal networks (Albouy et al., 2013) it would have been 

interesting to include hippocampal ROIs in the DCM analysis. We were however not able to 

obtain signals from more than half of the participants from the hippocampus based on the criteria 

set above (see Methods section) and therefore could not include the hippocampus in this 

analysis. This might be related to acquisition parameters which were not optimized for such 

small subcortical structures. Future fMRI studies might be able to specifically target the basal 

ganglia and hippocampus in order to investigate these connections. Second, the comparisons 

between pre- and post-sleep session with regard to network analysis are mainly qualitative 

comparisons. We were not able to quantitatively compare the different sessions as the optimal 

intrinsic models differed between pre- and post-sleep sessions. Third, we performed an 

assessment of awareness of the sequence material after both the pre- and post-sleep session. This 

was done to identify those participants who had already gained explicit knowledge of the 

sequence after the first session or after sleeping. Although this is a critical issue when 

investigating the effects of implicit motor sequence learning, it might be that due to this 

assessment participants became aware of a potential regularity and thus might have changed their 
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learning strategy. Importantly, only six participants indeed gained explicit knowledge of the 

sequence after the post-sleep session and those participants were therefore excluded from our 

analysis.       

3.4.6 Conclusions 

Motor sequence learning has been repeatedly shown to involve several cortical and subcortical 

structures in both the early and the late phase in which consolidation of motor memory takes 

place. Using recent advancements in DCM methodology, we were able to address some more 

specific questions about this wide-spread network and the changes it undergoes after 

consolidation of a motor memory. We found general pruning of the cortico-striatal-cerebellar 

network after consolidation of a motor sequence. Importantly, connectivity between bilateral 

putamen to cerebellum was found to be modulated by learning in the pre-sleep session whereas 

slow learning in the post-sleep session showed sequence-specific modulation of a connection 

from left cerebellum to right putamen. These results provide a deeper understanding of the brain 

networks involved in motor memory formation and automatization and might provide a basis for 

future explorations of striatal-cerebellar networks in the context of learning and memory.   
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Chapter 4 

Reduced α-γlow phase amplitude coupling over right parietal cortex underlies 

implicit visuomotor sequence learning 
3
  

4.1.  Introduction  

Visuomotor sequence learning is essential for daily behavior such as when typing visually 

presented text or playing an instrument by reading scores. Extensive fMRI work has revealed a 

wide-spread network including motor and premotor cortex, parietal regions as well as the basal 

ganglia and cerebellum which are engaged in different stages of motor learning (reviewed in 

Dayan and Cohen, 2011; meta-analysis by Hardwick et al., 2013). Less is known, however, 

about the temporal dynamics of neural activity in this network during motor memory formation. 

Electrophysiological studies in humans and animals point to a critical role of oscillatory activity 

and cross-frequency interactions for both motor control and memory functions (Axmacher et al., 

2010; Canolty et al., 2006; Dürschmid et al., 2014; Friese et al., 2012; Tort et al., 2009; Tort et 

al., 2008; Tzvi et al., under review). Here, we linked these two lines of research by investigating 

the cortical oscillatory dynamics during motor memory formation in humans. Specifically, we 

studied the role of theta and alpha oscillations and phase-amplitude coupling between lower 

frequencies (theta, alpha) and gamma activity for visuomotor sequence learning using EEG in a 

large group of participants.   

4.1.1 Implicit visuomotor sequence learning in the serial reaction time task 

We used the serial reaction time task (Nissen and Bullemer, 1987) - an extensively applied 

method for studying implicit visuomotor sequence learning. Embedded within this task are two 

                                                           
3
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learning components: implicit learning of a hidden regularity in the stimulus- and response-

sequence and explicit learning of visuomotor associations between a cue and a specific response 

(Robertson, 2007). Both of these learning components affect behavioral performance and may be 

driven by different neural mechanisms (Schwarb and Schumacher, 2009). A recent meta-analysis 

investigating 24 movement-controlled imaging studies employing the SRTT found a network of 

bilateral dorsal premotor cortex, left thalamus and right cerebellum which were activated during 

visuomotor sequence learning (Hardwick et al., 2013). Due to the direct link between cue and 

response in this task, different learning strategies may be implemented: learning the stimulus 

sequence or learning the sequence of responses. Results from a recent study implementing a 

SRTT variant in which these components could be distinguished showed that whereas the motor 

learning component activated the cortico-striato-cerebellar network, perceptual learning involved 

only bilateral hippocampus (Rose et al., 2011).         

4.1.2 Learning, memory and neural oscillations 

Extensive evidence exists for the importance of neural oscillations in learning and memory, 

starting with the characteristic theta rhythm of place cells in the hippocampus (Buzsaki, 2002). 

For example, both theta and gamma power were found to be increased for later remembered 

pictorial items during encoding and for recognized items during retrieval in human participants 

(Osipova et al., 2006). In a visual recognition memory task, increased gamma-band 

synchronization was evident in the hippocampus of macaque monkeys during successful 

encoding (Jutras et al., 2009). In local field potentials (LFP) recorded from the medial temporal 

lobe in monkeys, both beta and gamma power were differentially modulated by familiar vs. new 

stimuli in an associative learning study (Hargreaves et al., 2012).  
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Although oscillatory activity is prevalent in the motor system with its characteristic beta and 

alpha (or mu) rhythms (Pfurtscheller and Lopes da Silva, 1999), little is known about the role of 

oscillatory activity for visuomotor sequence learning. In a high-density EEG study of visuo-

motor adaptation, increased gamma (>30 Hz) power over right parietal areas was found during 

the initial learning stage (Perfetti et al., 2011). In another study, while rhesus monkeys learned a 

series of visually guided hand movements (Lee, 2003), coherent gamma activity was observed 

between neurons recorded in supplementary motor area (SMA) around stimulus onset. Together, 

this line of evidence suggests that oscillations may play an important role in motor sequence 

learning. 

4.1.3 Phase amplitude coupling in learning and memory 

Whereas above-mentioned work focused on amplitude changes in particular frequency bands, 

interactions between frequency bands, so-called cross-frequency coupling, have been suggested 

to be similarly relevant for various cognitive processes including learning and memory (Canolty 

and Knight, 2010; Fell and Axmacher, 2011). Phase amplitude coupling (PAC) is one form of 

cross-frequency coupling in which presumably local neural activity expressed as high-frequency 

amplitude is gated by the timing (phase representation) of a wide-spread slow oscillation. PAC 

over different brain structures has been shown to underlie cognitive processes such as associative 

learning (Tort et al., 2009), attention (Szczepanski et al., 2014), and decision making (Tort et al., 

2008), and was evident in simple visual tasks (Voytek et al., 2010) and altered in movement 

disorders (de Hemptinne et al., 2013). Specifically, theta-gamma PAC has been previously 

shown to underlie working memory and long-term memory processes (Lisman and Jensen, 

2013). Recent studies in patients with electrodes implanted in the hippocampus found specific 

coupling between the phase of slow oscillations in the delta (<4 Hz) and theta (4-8 Hz) frequency 



98 

 

bands and gamma amplitude during successful encoding (Axmacher et al., 2010; Lega et al., 

2014). An MEG study investigating effects of context-dependent episodic memory corroborated 

theses results in the hippocampus as well as provided evidence for theta-gamma and beta-gamma 

PAC over parietal areas during successful memory retrieval (Staudigl and Hanslmayr, 2013). 

Finally, Friese and colleages found increased theta phase to gamma amplitude coupling between 

frontal and parietal areas for items to be encoded which were represented by posterior gamma 

activity (Friese et al., 2012). This line of evidence has led researchers to hypothesize that PAC 

reflects memory encoding and retrieval processes (Hanslmayr and Staudigl, 2014).   

In the context of motor learning, PAC has previously been investigated using intracranial 

recordings. In one such study, different sensori-motor tasks were used to investigate learning-

related theta-high-gamma PAC over motor cortical areas. Increased theta-gamma PAC was 

observed over time for early learning, whereas late learning showed consistent theta-gamma 

PAC decrease (Dürschmid et al., 2014). Several studies in animals and humans examined PAC 

related to simple motor behavior. A study in rats showed distinct patterns of theta-gamma PAC 

over both sensorimotor cortex and striatum during motor behavior whereas during rest, gamma 

amplitude was coupled preferentially to the delta (<5 Hz) phase (von Nicolai et al., 2014). In 

humans, beta-gamma PAC was evident over sensorimotor cortex during fixation and abolished 

when patients initiated movement (Miller et al., 2012). Alpha-gamma PAC on the other hand 

was strongest when patients were waiting to execute a movement and was abolished when the 

movement was initiated (Yanagisawa et al., 2012). Similarly, increased alpha-gamma PAC over 

sensorimotor cortex was observed during response inhibition compared to movement in a 

Go/Nogo task (Tzvi et al., under review). This line of evidence suggests that PAC mechanisms 

underlie both motor and possibly memory functions required for visuomotor sequence learning.  
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In the present study, we investigated oscillatory activity and PAC over cortical regions known to 

be involved in motor sequence learning, namely premotor, motor and parietal cortex. As 

increased theta-gamma PAC has been observed in both short and long-term memory tasks, we 

hypothesized that learning-related cortical areas will exhibit increased theta-gamma PAC during 

learning. Alpha-gamma PAC on the other hand has been shown to decrease in motor areas 

during motor movement vs. rest. We therefore expected reduced alpha-gamma PAC during 

learning.   

4.2. Materials and Methods  

4.2.1 Subjects 

In total, 109 participants (mean age: 22 years, range 18-31; 54 male) participated in the study 

after giving informed consent. The data was collected as part of a bigger project studying the 

effects of sleep on hemisphere-specific effects on motor sequence learning. Because of that, half 

of the participants performed the task with their right side (stimuli on the right and responding 

hand right; RS: N=54) and half with their left side (LS: N=55). ERP results with respect to 

gaining explicit knowledge of the motor sequence were recently published by Verleger and 

colleagues (2015). For the present analyses, we did not have any specific hypotheses with respect 

to hemisphere differences but nevertheless tested for possible hemisphere effects (see below for 

details). All subjects were right handed, had normal or corrected to normal vision with no color 

deficiency. The study was approved by the Ethics Committee of the University of Lübeck and 

was performed in accordance with the Declaration of Helsinki. 

We excluded 6 participants due to explicit knowledge of the sequence (see section  4.2.4 for 

details). For the EEG data analysis, additional 30 participants were excluded due to artifacts in 

the analyzed electrodes and due to lack of sufficient trials in one of the experimental conditions 
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for the purpose of phase-amplitude coupling analysis (see section  0). This resulted in a total 

sample of 73 participants (37 women) for the analyses presented here.   

4.2.2 Experimental paradigm 

Participants performed a modified version of the standard serial reaction time task (SRTT) as 

shown in Fig. 4.1A. Visual stimuli were presented on a 17” Monitor (Samsung SyncMaster 757 

DFX, 100 Hz, 1024 x 768 Pixel). Index to little fingers of the responding hand rested at the four 

active keys of a custom-made keyboard which contained sets of four keys for each hand. The 

four keys to be used with one hand were placed about 3 cm from each other in arc-shaped 

ergonomic arrangement. The keyboard was placed on an adjustable board in front of the 

participant. Half of the participants performed with their left hand (n = 37 of the analyzed 

sample; LS group) and half performed with their right hand (n = 36; RS group). In each trial, a 

colored circle (blue or red or yellow or green) was presented on one side of the screen, always 

left of fixation for the LS group and always right for the RS group. The stimulus side thus 

corresponded to the side of the response hand for each participant. Responses had to be made by 

pressing the correspondingly colored key on the keyboard as quickly as possible: Blue with the 

index finger, red with the middle finger, yellow with the ring finger, and green with the little 

finger.  

In each trial (for the trial timing see Fig. 4.1B), first a fixation cross was presented for 400 ms. 

Next, the colored visual cue appeared for 200 ms. Its diameter was 1° and its center was located 

4.5° laterally from the center of the white screen at horizontal midline. A dark-grey circle of 

same size was presented at the other side of the screen symmetrically to the color circle, in order 

to facilitate fixation at the center by having sudden onsets at either side. When a correct response 

was given, there was renewed presentation of the fixation cross for 200 ms and a thickening of 
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the cross (from 0.7 mm to 2.8 mm line width) for 200 ms, signaling a correct response, and the 

next trial began. Unbeknownst to the subjects, a hidden, second order predictive (Curran, 1997) 

12-element sequence of stimuli and, therefore, button presses was introduced in parts of the 

experiment (Fig. 4.1C). These parts are referred to as sequence trials. In the other parts, there 

was no particular order of buttons to be pressed (hence, no order of colors). These parts are 

referred to as random trials. 

 

Figure 4.1. The serial reaction time task. A In the right side (RS) group, visual stimuli are presented to the right of a fixation 

cross. Subjects are requested to perform with the right hand. In the left side (LS) group, visual stimuli are presented to the left of 

a fixation cross. Subjects are requested to perform with the left hand. B Single trial timeline. Upon presentation of the visual 

stimuli, subjects were requested to respond with a corresponding button press. Feedback was given for correct responses. C 

Experimental design. Each of the three task sessions contained blocks of sequence trials sandwiched by blocks of random trials.  

 

4.2.3 Procedure  

The task was divided into three sessions (Cohen et al., 2005): “Test1”, “Training” and “Test2”, 

each containing a block of sequence trials “sandwiched” between two blocks of random trials 

(Fig. 4.1D). There were self-terminated breaks in between the three sessions. In each of the task 
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sessions (both “Test” and “Training”), random blocks contained 100 random trials divided into 

50 trials preceding the sequence block and 50 trials following the sequence block. Sequence 

blocks in the “Test” sessions contained 180 trials corresponding to 15 repetitions of the 12-

element sequence. The sequence block in the “Training” session contained 300 trials 

corresponding to 25 repetitions of the 12-element sequence. In total 960 stimuli were presented 

to the subjects.  

4.2.4 Behavioral analysis 

Reaction times 

Reaction times (RTs) were computed in each session for each condition. For the random 

condition, we averaged the RTs across trials from both the sequence-preceding random block 

and the sequence-following random block. We excluded trials in which the subjects made an 

initial error as well as trials in which RTs were either longer than 3000 ms or deviated by more 

than 2.7 standard deviations (SD) from their average response time (corresponding to p<0.01). In 

order to assess implicit learning, we compared the average RTs in each of the conditions (SEQ, 

RND) and each of the three sessions using a 2 x 3 mixed effects ANOVA with the between-

subject factor Group (LS vs. RS).  

Error-rates 

Trials were counted as correct when the correct key was pressed as the first response 150-

3000 ms after stimulus onset. All other trials were counted as errors. Some subjects made 

premature responses, i.e. responded before the stimulus appeared. These responses were not 

taken into account for the analyses of error rates. Error rates were submitted to the same 

ANOVA as response times.  



103 

 

Assessment of explicit awareness 

To have a homogeneous sample, the few participants who demonstrated full explicit knowledge 

about the sequence were excluded from analysis. Explicit knowledge was assessed after a second 

SRTT session that took place 12 hours after the SRTT session reported here. Participants were 

asked to write on paper any regular sequence they had noted. We excluded those participants 

who remembered 10-12 elements. 

4.2.5 Electrophysiological recordings 

Eye-tracker  

Fixation was controlled by means of an infra-red remote eye tracker (Eyegaze Analysis System, 

Interactive Minds, Dresden, Germany) placed below the computer screen. When the eye-tracker 

noted at the onset of any trial that participants deviated from fixation by more than 1.4°, a large 

red exclamation mark was presented at screen center for 2 s, attracting gaze back to the center. 

Then the trial was restarted. 

EEG recordings 

EEG was recorded with Ag/AgCl electrodes (Easycap, www.easycap.de) from 26 scalp sites, 

including 4 midline positions (Fz, FCz, Cz, Pz) and 11 pairs of symmetric left and right sites (F7, 

F8; F3, F4; FC3, FC4; T7, T8; C3, C4; CP5, CP6, CP1, CP2; P7, P8; P3, P4; PO7, PO8; O1, 

O2). Additional electrodes were placed at the nose-tip for off-line reference and at Fpz as 

connection to ground. On-line reference was Fz. For artifact control, electrooculogram (EOG) 

was recorded, both vertically (vEOG) from above vs. below the right eye, and horizontally 

(hEOG) from positions next to the left and right tails of the eyes. Data were amplified from DC 

to 250 Hz by a BrainAmp MR plus and stored at 500 Hz per channel. 

http://www.easycap/


104 

 

4.2.6 EEG data analysis 

Pre-processing 

Pre-processing and all subsequent analyses were performed using in-house Matlab (The 

Mathworks®, Natick, MA) scripts and the EEGLAB toolbox (Delorme and Makeig, 2004). Data 

were re-referenced to the nose electrode and segmented into epochs of -1 s to 4 s with regard to 

stimulus onset. This procedure was done in order to avoid high-frequency edge artifacts when 

performing artifact rejection. A high-pass filter (Fcutoff=0.5 Hz) was applied to the signals to 

remove slow drifts as well as a 200
th

 order notch filter (Fcutoff = 48-52 Hz) for removing power 

line noise. Based on an independent component analysis (ICA), we visually identified 

components related to eye blink artifacts and removed them (Delorme and Makeig, 2004). 

Additional artifacts were removed using a simple threshold (-70 µV, +70 µV) on the filtered 

data. As trial duration was shorter than 5 s, we additionally rejected overlapping epochs. In a 

substantial number of subjects, F7, F8, T7, T8, P7, P8, PO7, PO8, O1 and O2 electrodes were 

contaminated with noise (mostly from muscular activity). As these electrode locations were not 

relevant for our analysis, they were excluded resulting in N=16 total electrodes analyzed (Fz, 

FCz, Cz, Pz, F3, F4, FC3, FC4, C3, C4, CP5, CP6, CP1, CP2, P3, P4).  

In order to increase the spatial resolution in our EEG data, we performed a current density 

transformation using the current source density toolbox for Matlab (Kayser and Tenke, 2006a, 

b). This method effectively reduces the effects of volume conduction by estimating a spatial 

Laplace transformation which provides topographical selectivity. Please note that after the 

transform, the units of the data were rescaled to µV/cm
2
. 
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Spectral power analysis 

In order to evaluate general changes in spectral power for the different task conditions, we first 

extracted the frequency bands of interest, i.e., θ (4-8 Hz), α (8-13 Hz) and γlow (30-48 Hz), using 

a band pass filter with sharp-edge finite impulse response (FIR) filters (500
th

 order). Phase and 

amplitude representations were obtained using the Hilbert transform. Power estimates were 

calculated as the square of the amplitude, averaged within the 5 s time-window. For each of the 

experimental sessions (Test1, Training, Test2) and for each condition (Sequence, Random), we 

averaged the power of each frequency band across all corresponding epochs. In each electrode 

we performed a 2x2x3 mixed effects ANOVA accounting for spectral changes due to practice 

(the three sessions) and to learning (Sequence and Random) with the between-subject factor 

Group (LS vs. RS). We did not have any specific hypothesis regarding the effects of 

performance side on the learning-related effects on power. Differences were considered 

significant if p<0.05, FDR corrected for the number of electrodes.  

Analysis of phase-amplitude coupling 

Phase amplitude coupling (PAC) analysis was performed for all electrodes using the modulation 

index (MI; Tort et al., 2010) and in-house MATLAB scripts. In each of the 5 s epochs, α and θ 

oscillations were binned by their phase (6 bins, ∆𝜑 =
𝜋

3
 ) and the amplitude envelope of γlow 

was averaged within each phase bin. Each bin was then averaged across the number of 

oscillations identified in the 5 s epoch and across all epochs for each condition (Sequence, 

Random) and each session (Test1, Training, Test2). Subsequently, the averaged values were 

normalized across all bins resulting in a “phase-amplitude plot”.  
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The divergence of the resulting phase-amplitude plot from a uniform distribution was calculated 

using the Kullback-Leibler distance and the Shannon entropy as follows: 

MI =
log(N) + ∑ P(j)log [P(j)]N

j=1

log (N)
 

P(j) is the amplitude for a given bin j; N is the number of bins (in our case N=6) and log(N) 

represents the entropy of a uniform distribution.  

In order to evaluate the influence of the number of epochs on the MI, we performed an analysis 

in which MI was calculated in real data (electrode Cz in one subject; 113 epochs) for different 

numbers of epochs (5 to 50 in steps of 5). This analysis was repeated 100 times for each number 

of epochs after shuffling the epoch order. We then calculated the mean MI across the 100 

permutations for each epoch number. We found that the mean MI reaches a plateau when the 

number of epochs exceeds 20 and therefore used this threshold for our analysis: We excluded 

subjects who had less than 20 epochs for a given condition or session. As we did not observe any 

effects of the group factor (RS vs. LS) on performance and power (see results section), we did 

not consider the group factor for the PAC analyses. Log transformed MIs in each condition and 

session were thus statistically analyzed using the 2x3 random-effects ANOVA to identify 

learning related PAC changes.  

High MI values across individual subjects and conditions reflect non-random distributions of 

amplitude values across phase bins. However, different subjects could still show coupling of γ 

amplitude to different phases of the α/θ oscillation. In order to only consider PACs that were 

consistent across subjects, we calculated the mean phase-amplitude plot across subjects for each 

condition and each session. Using a two-sample t-test we evaluated the difference between the 

bin with lowest amplitude value and the bin with the highest amplitude value. We considered 
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significant within-electrode PAC differences with p<0.05, FDR corrected for the number of 

electrodes for the main effect of condition and p<0.05, FDR corrected for the number of 

electrodes for the comparison between the bins.  

Analysis of transition blocks 

In the standard analysis of SRTT, learning-related effects are assessed by comparing the 

sequence condition to the random condition. Since the participants are unaware of the changes in 

task conditions, it is plausible that when sequence trials stop and random trials begin, participants 

still attempt to implement the sequence, even though the sequence material is no longer present. 

This should result in more performance errors and slower RTs in this transition phase. We 

performed an additional analysis of these “transition” effects to study whether the differences we 

observed between sequence blocks and random blocks exist as well between transition and 

random blocks. As a first step, in each session we computed the RTs and accuracy for the 

random sub-block which followed the sequence block separately from the random sub-block 

preceding the next sequence block. The sub-block directly following the sequence trials will be 

referred to as “transition” block, whereas the sub-block preceding the sequence trials will be 

referred to as “random” block. As this analysis dramatically reduces the amount of trials in the 

random condition, we had to exclude many of the participants who did not have enough trials in 

a given session (criteria for exclusion outlined in section  0). For this analysis, we pooled over LS 

and RS performers, resulting in a total of 26 participants after exclusion. Next we performed 

behavioral as well as PAC analyses with the conditions of interest using a 2 x 2 rmANOVA with 

factors block (random and transition) and session (1 to 2, 2 to 3). 
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4.3. Results 

4.3.1 Behavioral data 

We performed mixed effects ANOVA on reaction times (RTs) with condition and session as 

within-subject factors and side of stimuli and responses as between-subject factor to investigate 

the effects of learning. We found no significant main effects or interactions with the group factor 

(all p>0.4) suggesting that learning effects were not dependent on performing the task left or 

right. Participants performed the sequence blocks significantly faster than the random blocks 

(F1,71=70.9, p<0.001) and showed a general speeding across sessions (F2,142=60.0, p<0.001). The 

interaction between condition and session was not significant (F2,142=1.6, p=0.2). In Figure 4.2A, 

we plot the normalized reaction times across all participants.  

The error-rate was generally low (8.0% ±5.6%). Participants made significantly more errors in 

the random blocks compared to the sequence blocks (F1,72=9.0, p=0.004) with no significant 

differences between sessions (F2,144=1.9, p=0.16) and no condition x session interaction 

(F2,144=1.0, p=0.36). Figure 4.2B presents the error rates across all participants. 

 

Figure 4.4. Behavioral analysis. A Normalized reaction times in random and sequence blocks across sessions. B Error-rates in 

random and sequence blocks across sessions.  
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4.3.2 Learning related α-, θ- and γlow -power changes  

We investigated the effects of learning-related power changes in θ, α and γlow frequency bands in 

each electrode. We performed a mixed effects ANOVA with condition and session as within-

subject factors and side of performance as between-subject factor in each electrode for each of 

the frequency bands. We found condition x session x performance side interactions in theta 

power over CP5 (p = 0.04), and in alpha power over Fz (p = 0.04), but these interactions did not 

survive correction for multiple comparisons. Otherwise, there was no evidence for the effect of 

performance side on learning-related power changes in any of the frequency bands.   

Across conditions, α power was strongest over parieto-occipital areas. Condition x session 

interaction effects in α power were wide-spread (see Figure 4.3A). As can be observed in Figure 

4.3A (bottom row), α-power was increased in sequence relative to random blocks during Test1, 

but was decreased relative to random blocks during Test2. As can be observed from the maps in 

Figure 4.3A, the effects yielded significance at most electrodes but were strongest over parieto-

occipital areas. Based on previous studies of motor sequence learning showing alpha power 

decrease over sensorimotor areas (Andres et al., 1999; Houweling et al., 2008; Hummel et al., 

2003; Pollok et al., 2014; Zhuang et al., 1998), we further investigated the effects of learning on 

alpha power in electrodes: C3, Cz and C4 (data not shown). During Test1, alpha power increased 

significantly in sequence blocks compared to random blocks over Cz (t1,72=2.9, p=0.005). In 

accordance with previous reports, in Test2, alpha power significantly decreased in sequence 

blocks compared to random blocks over C4 (t1,72=2.4, p=0.018). No significant differences were 

observed over C3.  
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Figure 4.3. Power effects in alpha, theta and gamma band. Black dots are electrodes which were included in the analysis. 

Electrodes marked with a black square showed interaction effects (p<0.05, FDR corrected) in plots A and B and significant 

condition differences in plot C. Units for all plots are (µV/cm²)². A In both sequence (SEQ) and random (RND) alpha power is 

increased over posterior parietal areas compared with other regions. Learning (SEQ-RND) is associated with alpha power 

increase in the first session over parietal areas and alpha power decrease in the later learning stage. B Theta power increase over 

frontal areas is observed for both SEQ and RND. Learning-related increase is evident in the first session over parietal areas. C 

Learning-related low-gamma power changes.   
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Across conditions, θ power was strongest over frontocentral sites. Significant θ power interaction 

effects (condition x session) were found over parietal areas (see Figure 4.3B). In these 

electrodes, θ power was increased for sequence vs. random in Test1. No main effects of 

condition were found for θ band. For γlow power no such interaction was evident, but a 

significant increase during sequence compared to random trials was evident over left centro-

parietal areas (Figure 4.3C). 

4.3.3 Phase amplitude coupling 

We assessed α-γlow and θ-γlow phase amplitude coupling using the modulation index (MI; Tort et 

al., 2010) and tested for PAC differences in task conditions and across sessions using a 2x3 

ANOVA on log transformed MI values. In addition, we evaluated the consistency of the α/θ 

phase which γlow amplitude is coupled to by using a paired t-test (see methods section for 

detailed description). Using both measures, we considered differences significant with a 

threshold of p<0.05, FDR corrected for the number of electrodes.  

α-γlow PAC was smaller in SEQ than in RND in several frontocentral and centroparietal 

electrodes: CP2 (F1,72=17.8; p<0.001), FC3 (F1,72=7.4; p=0.008), FC4 (F1,72=13.1; p<0.001), and 

P4 (F1,72=8.4; p=0.005) (see topographical plot in Figure 4.4A; electrodes marked with a square). 

The averaged MI at these electrodes presented in Figure 4.4A (bar plots) is showing the 

generally reduced coupling values in sequence trials. Although this difference over frontal 

electrodes seemed to be more pronounced for the “training” session, condition x block 

interaction was not significant (for FC3 and FC4: p>0.1). Importantly, the distribution of γlow 

amplitude values across α phase bins averaged across all participants (Figure 4.4B) demonstrates 

a consistent relationship between low frequency phase and high frequency amplitude. In both 

sequence and random trials, γlow amplitude was strongest at the trough of the α cycle.  
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Figure 4.4. Alpha-low gamma phase amplitude coupling results. A The topographical plot shows the electrodes that had 

significant condition differences in alpha-low gamma PAC. The bar plots show the average MI (modulation index) across the 

task (error bars are SEMs across subjects) for the electrodes marked with a black arrow. B phase-amplitude plots for alpha-low 

gamma coupling in electrodes CP2 and FC3. The curve represents the alpha oscillation to which the low gamma amplitude is 

coupled to.  

 

We found no signifcant difference in θ-γlow PAC between conditions or sessions as well as no 

interaction effects. In addition, we tested for correlation of α-γlow and θ-γlow PAC with reaction 

times and with error-rates, however no signifcant correlation was found.  



113 

 

4.3.4 Analysis of transition blocks 

Transition blocks (i.e., random blocks directly following sequence blocks) were compared to the 

following random blocks using a 2x2 ANOVA with factors: block (transition, random) and 

session (1 to 2, 2 to 3). This analysis was done in a subsample of 26 participants (16 RS and 10 

LS) who had enough artefact-free trials in the transition phase.   

The RT analysis revealed a significant main effect of block (F1,25=12.1, p=0.002) but no 

significant interaction (F1,25=0.0) reflecting slower RTs in the transition phase compared to the 

following random phase (Figure 4.5A). In addition, error-rates (6.4% ±4.3%; Figure 4.5B) were 

marginally larger in transition than in random blocks (F1,25=3.3, p=0.08). Together, these results 

indicate that a behavioral transition took place in which subjects might have still attempted to 

implement the sequence, although sequence material was not present.  

The same ANOVA was conducted on α-γlow and θ-γlow PAC values from random and transition 

blocks in each session, separately for each electrode. α-γlow PAC was reduced in the transition 

phase compared to the following random phase, reflected by a main effect of Block at electrode 

CP2 (F1,25=5.6;  p=0.03; see Figure 4.5C). Although the difference in the second transition was 

nominally smaller, the interaction of block and session was not significant (F1,25=2.4; p=0.14). 

Significant α-γlow PAC interaction effects were, however, observed at electrodes FC3 (F1,25=11.2; 

p=0.003) and C3 (F1,25=4.3; p=0.048) (see topographical plot in Figure 4.5C; electrodes marked 

with a circle). In FC3, α-γlow was reduced in the transition phase in Test1 relative to the 

following random phase in Training (t25=2.81, p=0.01) but not when comparing the transition 

block in Training to random block in Test2 (t25=-0.27, p=0.79) (Figure 4.5C, upper bar plot). In 

C3 (data not shown), no significant differences were observed between the transition and the 

random phases (p>0.2 for all post-hoc t-tests). We tested for a relationship of the phase-coupling 
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effects at CP2, FC3 and C3 with the behavioral transition effect by correlating the MI differences 

with the error rate difference, but the correlations were not significant.  

 

 

Figure 4.5. Transition analysis results. A Reaction times for the different conditions across sessions. B Percentage error rate for 

the different conditions across sessions. C Topographical plot shows the electrodes that showed significant condition differences 

in alpha-low gamma PAC (black square) or interaction effects (black circle). D phase-amplitude plots for alpha-low gamma 

coupling in each of the electrodes marked with a black arrow. The black curve represents the alpha oscillation to which the low 

gamma amplitude is coupled to. 
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4.4.  Discussion 

We investigated oscillatory markers of implicit visuomotor sequence learning in EEG-data of a 

large sample of subjects who performed the serial reaction time task (Nissen and Bullemer, 

1987). We found a significant learning-related alpha-power increase early on in the task as well 

as a significant learning-related alpha-power decrease in a later session of the task. Moreover, 

alpha/low-gamma PAC was decreased in sequence blocks over right parietal cortex and over 

bilateral frontal cortex. Further analyses of the transition phase from sequence to random blocks, 

in which subjects still implicitly tried to implement the learned motor sequence leading to 

increased error rates, revealed the same effect: Transition relative to random blocks showed 

reduced alpha/low-gamma PAC over right parietal cortex and left frontal cortex. Together, these 

results suggest that implicitly learning and implementing a learned motor sequence leads to a 

reduction of alpha/low-gamma PAC in frontal and parietal cortex.    

4.4.1 Behavioral effects of implicit visuomotor sequence learning 

Analysis of reaction times revealed a significant difference between sequence and random 

blocks, indicating learning of the sequence. There was also a general reduction in reaction times 

with session which points to practice effects of the motor task itself. We found no significant 

condition x block interactions, suggesting that participants had adapted to the sequence regularity 

during the first block already and did not further gain with time. Error rates were low and were 

significantly higher for random blocks compared to sequence blocks. These results suggest that 

subjects were implicitly trying to implement the sequence during the random phase. In particular, 

we analyzed behavioral differences between regular random blocks and random blocks directly 

following sequence blocks (so called “transition” blocks) for which we hypothesized that 
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subjects were still attempting to implement the sequence. Indeed, subjects were slower and 

tended to commit more errors in the transition compared to the random block.  

4.4.2 Alpha power changes as learning progresses 

We found a learning-related alpha power increase over posterior parietal areas in the first 

learning session. In the later session, on the other hand, this effect was reversed and alpha power 

decreased over this region during sequence blocks. This condition difference was widely 

distributed with a maximum over occipito-parietal areas. Alpha power modulations over 

occipito-parietal regions have been previously linked to visuospatial attention mechanisms (Foxe 

et al., 1998; Worden et al., 2000). It is therefore probable that alpha power effects observed in 

this study are related to different attentional demands required for the sequence relative to the 

random material. Increased occipital alpha power is usually considered to be a sign of relative 

deactivation or inhibition of visual areas. For instance, Jensen and Mazaheri (Jensen and 

Mazaheri, 2010) suggested that increased alpha power over occipito-parietal areas during the 

delay period in WM tasks represents alpha-gated inhibition of task-irrelevant regions. In the 

context of our study, a relative alpha power increase in sequence compared to random blocks 

might reflect higher attentional demands required for the random trials in the first learning 

session, when S-R attentional demands are highest. Later on, when S-R associations have been 

established this effect decreases. This however does not explain the reversed pattern towards the 

end of the task in which alpha decreased over occipito-parietal areas. Others reported decreased 

alpha power over right occipito-parietal areas while learning a visual sequence (Moisello et al., 

2013), which might be related to the later effects we observed here. This remains speculative, 

however, but could be addressed with a purely motor SRTT variant which does not entail a 

visual sequence (Tzvi et al., 2014). 
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In accordance with previous findings (Andres et al., 1999; Houweling et al., 2008; Hummel et 

al., 2003; Pollok et al., 2014; Zhuang et al., 1998), we found alpha-power decrease over right 

sensorimotor cortex associated with motor sequence learning in the late-learning stage. In 

addition, alpha-power increased during the early learning phase over Cz. Together with imaging 

studies showing learning-related increases over sensorimotor areas, these results indicate that 

oscillations at alpha frequency band play an important role in mediating learning over 

sensorimotor areas.     

4.4.3 Theta and gamma-power effects during learning 

In the theta band, we found an early learning-related power increase in electrodes over parietal 

areas which vanished in later learning sessions. Gamma power effects were evident over left 

centro-parietal areas. In a visuo-motor learning task, Perfetti and colleagues (2011) found an 

early gamma power increase over right centro-parietal electrodes during both planning and 

execution of the motor movements. At the same time, increased gamma phase coherence was 

evident between right and left centro-parietal electrodes. The authors suggest that these effects 

reflect attentional mechanisms in the learning task which promote information integration over 

parietal areas underlying formation of an internal model. Increased gamma power during motor 

sequence learning was also shown for the internal globus pallidus in dystonia patients prior to 

motor movement (Herrojo Ruiz et al., 2014). Together this line of evidence suggests that gamma 

plays an important role in forming an internal representation of a complex movement over 

parietal areas, possibly in interaction with the basal ganglia.  

It has to be kept in mind though that our analysis approach in contrast to previous work focused 

on sustained power differences in contrast to transient stimulus- or response-related effects. It 
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might be thus that analyses of stimulus-related transient effects on theta, alpha or gamma power 

might have revealed a different picture.  

4.4.4 Reduced alpha/low-gamma PAC in motor learning 

We found a decrease in alpha/low-gamma PAC during learning over right parietal cortex and 

over bilateral fronto-central areas. PAC analysis further revealed that throughout the task, the 

trough of the alpha oscillation was driving the increase in low-gamma amplitude. This finding is 

conistent with previous reports of PAC between alpha and gamma (Tzvi et al., under review; 

Voytek et al., 2010; Yanagisawa et al., 2012) as well as between theta and gamma (Canolty et 

al., 2006; Dürschmid et al., 2014; Tort et al., 2008; van der Meij et al., 2012) and beta and 

gamma (de Hemptinne et al., 2013). In addition, we compared alpha/low-gamma PAC in regular 

random blocks to random blocks directly following sequence blocks (so called “transition” 

blocks) for which we hypothesized that participants were still attempting to implement the 

sequence. We found a significant alpha/low-gamma PAC decrease at the same right centro-

parietal electrode during transition blocks compared to random blocks and over left frontal 

cortex during the first transition compared to the next random block.  

Localizing EEG effects is generally difficult, but based on neuroimaging studies on motor 

sequence learning (for meta analysis see Hardwick et al., 2013) it seems likely that the right 

parietal PAC effect reflects processes arising from right superior parietal lobule (SPL) whereas 

the contralateral fronto-central effect might arise from dorsal premotor cortex (dPMC). In an 

fMRI study using the SRTT, increased activity over SPL was observed when comparing random 

vs. regular sequences (Gheysen et al., 2010). In addition, a recent meta-analysis of motor skill 

learning tasks over short (hours) and long (days) time scales showed that activity over bilateral 

SPL decreases with time when a skill is learned in short time scale (Lohse et al., 2014). Other 
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SRTT studies have shown learning-related involvement of right SPL when the task was 

performed either with the left or with the right hand (Aznarez-Sanado et al., 2013; Grafton et al., 

2002). Anatomical studies in monkeys have shown that visual inputs are translated to motor 

output through specific projections from SPL to premotor areas  (Johnson et al., 1996; Johnson et 

al., 1993; Wise et al., 1997). Thus, SPL might serve to integrate the visual input from occipital 

cortex to form an internal representation of the task (Caminiti et al., 1996; Desmurget et al., 

1999). This information will then be forwarded to dPMC to create the appropriate motor 

response. As visuomotor sequence learning advances during the task, participants learn the 

sequence and therefore depend less on the integration of visual information to select the specific 

motor response. In our study, this might have happened already quite early in the task as 

participants were already faster in the first sequence block. Thus, the observed alpha/low-gamma 

PAC decrease over frontal and parietal areas during the regular sequence might represent a 

decrease in perceptually guided response selection.   

An alternative explanation for these alpha/low-gamma PAC effects is that increased 

alpha/gamma PAC might reflect a “default mode”. Neural processing demands over the frontal-

parietal network required for learning might thus be achieved by disengaging gamma activity 

from the phasic alpha. This suggestion is in-line with the "desynchronization hypothesis“ 

recently suggested by Hanslmayr and colleagues (2012). They hypothesize that information 

encoding into memory systems benefits from oscillatory desynchronization as it increases the 

entropy, i.e., the richness of the information. Although the authors refer to desynchronization as 

the decrease of low-frequency oscillatory power, the same principle might be applicable for 

phase-amplitude coupling mechanisms. Supporting this hypothesis, Osipova and colleagues 

(2008) found that during eyes-closed resting state, alpha/low-gamma PAC is evident over 
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occipito-parietal regions. This "default mode“ alpha/gamma PAC might not be limited to the 

parietal cortex only. Roux and colleagues (2013) showed that gamma amplitude over posterior 

parietal cortex was coupled to alpha phase of thalamic sources during closed-eyes resting state. 

And finally, in an ECoG study alpha/high-gamma PAC was evident over sensorimotor areas 

when patients were waiting to execute a movement (Yanagisawa et al., 2012). Together, this line 

of evidence suggests that alpha-gamma PAC may serve as a “default mode” and is reduced 

during cognitive processes or learning.  

In sum, we offer two alternative explanations for the learning-related alpha/gamma PAC effects 

in this study. The one assumes that these effects stem from communication between SPL and 

dPMC for the successful implementation of the sequence. When learning progresses and is less 

dependent on visual information, the integration between SPL and dPMC is reduced and thus 

alpha/low-gamma PAC is reduced. Future studies could shed more light on this process by 

investigating alpha/gamma PAC in more complex motor learning tasks in which visuomotor 

integration is not as simple as in the SRTT (e.g. Houweling et al., 2008). The alternative 

explanation we provide is that increased alpha/gamma PAC effects reflect the “default mode” 

which is reduced during sequence learning. However, the control condition with higher 

alpha/gamma PAC was in our case the random block which was in fact more difficult as 

suggested by slower RTs and higher error rates. We therefore suggest that this alternative 

explanation could be addressed in future studies implementing the SRTT with an additional 

simple sequence condition (Steele and Penhune, 2010). Based on the second explanation, we 

hypothesize that alpha/gamma PAC would increase in the simple sequence condition compared 

to the novel sequence condition.  
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4.4.5 Conclusions 

In a large group of participants, we showed that implicit visuomotor sequence learning results in 

specific changes in alpha power over posterior parietal area and a reduction of alpha/low-gamma 

PAC over right parietal and bilateral frontal cortex. This lateralization was independent of side of 

stimulation and responding. We suggest that reduced alpha/low-gamma PAC in frontal and 

parietal regions reflects a shift away from visually guided motor selection towards 

implementation of the learned motor sequence. The latter might rely on striatal-cerebellar-

cortical interactions (Tzvi et al., 2014; Tzvi et al., 2015) not observable with EEG. The results 

presented in this work provide important insights into oscillatory mechanisms guiding implicit 

motor sequence learning and give further evidence for the importance of cross-frequency 

coupling in cognitive tasks.  
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Chapter 5 

General Discussion 

In the introduction, I gave a detailed description of the recent literature on the neural correlates 

of motor learning and memory and specifically motor sequence learning. This included studies in 

patients with movement disorders, stimulation studies using tDCS and TMS, imaging studies and 

electrophysiological studies in primates and rodents. This cross-methodological literature review 

suggested that several cortical and subcortical regions are involved in the acquisition and 

maintenance of motor memory representations following implicit MSL. In addition, I provided a 

methodological review and comparison between common approaches to assess causality in 

neurophysiological data as this is a common source of debates in the neuroscientific community 

(Daunizeau et al., 2011; Friston et al., 2013; Lohmann et al., 2012; Lohmann et al., 2013). In this 

thesis, I performed three studies which investigated neural networks underlying implicit MSL 

using both fMRI and EEG. The two fMRI studies attempted to delineate the cortico-striatal-

cerebellar network using DCM during early learning (Studies 1 and 2) and after consolidation 

(Study 2). The focus of the EEG study (Study 3) was on specific interactions between neural 

oscillations, so-called PAC, as a measure for brain network interactions during early learning. In 

the next paragraphs I will shortly summarize the results of these three studies and discuss the 

behavioral aspects as well as the underlying neural correlates of implicit learning.  

5.1. Implicit learning in the serial reaction time task  

Across all studies outlined in this thesis, we employed the SRTT using a 12-element hidden 

sequence. The differences between the studies in terms of design and learning outcome are 

summarized in Table 5.1. In Study 2 we used the standard SRTT and in Studies 1 and 3 we used 
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a modified version of the SRTT which included colored stimuli. While in all studies learning of 

the hidden sequence was evident reflected in significant differences in reactions times (RT) 

between conditions (Sequence vs. Random), only in Study 2 did the RT show an interaction 

effect between condition and block indicating that sequence performance improved with time. In 

Study 1, our interpretation was that subjects did not reach the learning asymptote and therefore 

RT gains across time were not evident. In Study 3 however, it was more likely that subjects had 

already reached the behavioral asymptote in the first learning block and therefore additional 

gains were not observed later in the task. There are several reasons why we think implicit 

learning of the sequence in Study 1 was more difficult than implicit learning of the sequence in 

Study 3. First, in Study 1 we used a design (Rose et al., 2011) that dissociates the stimulus-

response (S-R) association in each trial which enabled us to specifically target the motor 

component of implicit MSL. In Study 3 on the other hand, participants first learned specific S-R 

associations and therefore learning entailed probably both perceptual and motor components. 

Previous studies investigating the importance of S-R rules and response selection showed that 

these are critical for sequence learning (Schwarb and Schumacher, 2012). Therefore, sequence 

learning in Study 3 was probably easier than sequence learning in Study 1, where S-R rules were 

continuously changed. Second, in Study 1 the hidden sequence was structured such that no 

higher order prediction could be made (Reed and Johnson, 1994). This means that the target 

position on a given trial could not be predicted from the target position of the previous trial. For 

Study 3 no such control on the hidden sequence was performed and might be one reason why 

subjects learned the sequence faster compared to study 1. Finally, in Study 3 we implemented a 

design with slow alterations between sequence and random blocks such that the sequence was 

repeating many times uninterrupted by random material. This continuous exposure to the hidden 
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sequence could assist in faster forming of sequence representation in long-term memory. In 

Study 1 on the other hand, sequence and random blocks were altered more rapidly. This could be 

another reason for the fast learning effects observed in Study 3 compared to slow learning effects 

in Study 1.  

Table 5.1: Comparison between study designs 

 Response Stimuli Implicit learning Explicit 

learners 

Second-order 

Associations 

SEQ/RND 

Alterations 

Study 1 Two hands 

6 fingers 

Colored 

No S-R 

No condition x 

Block interaction 

0 NO Fast 

SEQ: 3 rep 

Study 2 Left hand 

4 fingers 

No Color 

S-R 

Condition x Block 

interaction 

10/31 NO Fast 

SEQ: 4 rep 

Study 3 One hand 

4 fingers 

Color 

S-R 

No condition x 

Block interaction 

6/109 YES Slow 

SEQ: 25 rep 

 

 In terms of gaining explicit knowledge of the sequence, we found that in Study 2 explicit 

knowledge was gained by 10 out of 31 participants, whereas in Study 1, none of the participants 

gained explicit knowledge and in Study 3 only 6 out of 109 subjects gained explicit knowledge. 

This discrepancy might be mainly due to the different methods used for assessing explicit 

knowledge, all of which are legitimate and common in experiments employing the SRTT 

(Robertson, 2007).  

5.2. Summary of the results: fMRI 

We used dynamic causal modelling to investigate causal interactions within the motor cortical-

striatal-cerebellar network in the two fMRI studies described in this thesis. In the first study, we 
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used three regions of interest in each hemisphere: M1, putamen and cerebellum. We found that 

learning negatively modulated the connections from M1 to contralateral cerebellum. We showed 

that this effect was specific for implicit learning of the hidden sequence but not for explicit 

learning of the motor task. In the second study, we sought to expand on these results and 

investigated causal interactions within a broader network, with additional regions of interest in 

premotor cortex and supplementary motor area. This approach posed the methodological 

challenge of computing and estimating causal interactions between 10 regions of interest. For 

this purpose, we used an advanced approach which is referred to as post-hoc DCM (Friston and 

Penny, 2011; Rosa et al., 2012). In terms of the driving input to the model, we found that in 

Study 1 input was to bilateral cerebellum whereas in Study 2, input was to the left cerebellum. 

As subjects performed the task with both hands in Study 1 and with the left hand in Study 2, this 

suggests that the performing hand directly effects the signal propagation from ipsilateral 

cerebellum to cortical and subcortical areas during performance of a motor task. 

Similarly to Study 1, we found a negative modulation from left M1 to right cerebellum in Study 

2, however less consistent. If M1 stores the representation of movements during sequence 

learning (Karni et al., 1995; Matsuzaka et al., 2007) and cerebellum continuously adjust an 

internal model of the sequence (Ito, 2008; Ramnani, 2006), then the connection from M1 to 

cerebellum might drive the formation of an internal model in the cerebellum. When learning 

continues, it is probable that this connection is diminished as it is no longer needed. As discussed 

in Chapter 3, the inconsistent modulation across subjects may arise from different strategies for 

implementing sequence learning in Study 2. If the negative modulation of the connection from 

M1 to cerebellum represents the motor component of learning, it is probable that in Study 2, in 



126 

 

which either or both motor and perceptual sequence learning could underlie performance 

improvement, this connection would not be consistent.  

In Study 2, we also found a negative modulation of connections from bilateral putamen to 

cerebellum. Theses connections from putamen to cerebellum were not directly investigated in 

Study 1 as the main focus was on comparing cortico-striatal vs. cortico-cerebellar connections. 

Importantly, in Study 2, we could also investigate the network changes following consolidation. 

We found that a connection from left cerebellum to right putamen was negatively modulated 

specifically for the sequence condition, after learning was already established. Only recently 

have direct anatomical connections between striatum and cerebellum been discovered (Bostan 

and Strick, 2010), paving the road to research on striatal-cerebellar connectivity in the context of 

cognitive tasks. Connections between the cerebellum and basal ganglia were investigated as well 

in an fMRI study investigating learning of a finger-tapping task over 4 weeks of training (Ma et 

al., 2010). In accordance with our results, the authors reported that after learning was established, 

a negative modulation of the connection from cerebellum to putamen was observed. In addition, 

they reported a positive modulation of the connection from cerebellum to putamen before 

training started. If putamen (as part of a bigger striatal network) creates associations between 

subgroups of movements (Graybiel, 1998, 2008)  and cerebellum continuously adjusts an 

internal model of the sequence (Ito, 2008; Ramnani, 2006), then the connection from cerebellum 

to putamen may underlie the initial grouping of movements into a sequence representation. 

When the sequence is already consolidated, this connection is diminished.  

Clearly both interpretations proposed here for the roles which M1, putamen and cerebellum play 

in motor learning are only speculative. Future studies employing effective connectivity measures 
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are needed to provide additional evidence for the suggested role of causal interactions in the 

cortico-striato-cerebellar network in learning and cognition.  

5.3. Summary of the results: EEG 

The results from Study 3 showed involvement of theta, alpha and gamma oscillations in implicit 

MSL. We observed a wide-spread alpha power increase during early learning, which decreased 

when the sequence was already established. This effect was strongest over occipito-parietal areas 

and may reflect different attentional demands in the task. Most importantly, we found a 

consistent decrease in alpha/gamma phase amplitude coupling over right parietal cortex and 

bilateral fronto-central areas, possibly originating from right superior parietal lobule (SPL) and 

dorsal premotor cortex (dPMC) respectively. We offered two interpretations for these results. 

First, alpha/gamma PAC over right SPL and dPMC might reflect the integration between these 

regions for the purpose of creating the appropriate stimulus-response association in the task. 

Therefore when alpha-gamma PAC is reduced during learning, this integration is no longer 

needed and resources are focused on learning and implementing the hidden sequence. The 

alternative explanation relies on a recent hypothesis suggested by Hanslmayr and colleagues 

(2012) which states that information encoding into memory relies on oscillatory 

desynchronization. Thus, alpha/gamma PAC over learning-related brain regions might reflect a 

“default mode” which decreases during learning. However, as alpha/gamma PAC in the control 

condition in this study was higher than sequence it is hard to draw such a conclusion making the 

first interpretation more likely.  
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5.4.  Implications for models of motor learning 

As outlined in the introduction, the model of motor learning by Doyon and colleagues (Doyon 

and Benali, 2005) and by Hikosaka and colleagues (Hikosaka et al., 2002) suggests that striatum, 

cerebellum, and motor cortical regions mediate the fast learning stage. Questions regarding the 

nature of those interactions remained however unanswered. Study 1 showed that the fast stage of 

motor sequence learning is mediated by a cortico-cerebellar loop and more specifically by a 

negative causal interaction from M1 to cerebellum bilaterally. These results were supported by a 

similar finding in Study 2. Moreover, Study 2 provides evidence for striatal-cerebellar network 

involvement in the slow learning stage. This finding, which is in line with the Hikosaka model, 

contradicts the Doyon model which suggested the involvement of striatum and not cerebellum in 

the slow stage of motor sequence learning. Study 3 expands on both models and offers a 

plausible mechanism for cortical interactions underlying the fast learning stage. Phase amplitude 

coupling, which was previously shown to be involved in learning and memory, was modulated 

over parietal and premotor regions, structures which were suggested by both models of motor 

sequence learning.  

5.5. Outlook 

How do the results of the fMRI and EEG studies fit together? In all studies, we found a reduction 

in connectivity or estimates of connectivity (PAC) as learning progresses. Both fMRI studies 

showed reduction in causal connections between M1, cerebellum and putamen whereas in the 

EEG study, reduced alpha/gamma PAC was evident over parietal and fronto-central areas. It is 

not possible to specifically localize the sources of EEG oscillations but interactions within 

cortico-striato-cerebellar network could possibly leave traces on oscillatory activity measured on 

the surface of the brain. A possible way to investigate whether the cerebellum affects cortical 
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oscillations as suggested here would be to measure alpha/gamma PAC using EEG while 

participants perform in the serial reaction time task before and after applying tDCS to the 

cerebellum. We expect that anodal stimulation to the cerebellum which has previously been 

shown to improve motor adaptation (Galea et al., 2011) and implicit motor sequence learning 

(Ferrucci et al., 2013) would elicit reduced alpha/gamma PAC compared to sham stimulation 

reflecting increased learning. In addition, while we restricted our dynamic causal models to 

include only M1 and premotor areas for the cortical regions of interest, imaging studies support 

our finding from the EEG study that parietal areas are as well implicated in motor learning 

(Hardwick et al., 2013). Future studies could target the interactions between parietal cortex and 

cortical motor areas as well as striatum and cerebellum in order to understand the role of parietal 

cortex in implicit MSL.   
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