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Institut für Theoretische Informatik





Aus dem Institut für Theoretische Informatik
der Universität zu Lübeck
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aus der Technisch-Naturwissenschaftlichen Fakultät

Vorgelegt von

Bodo Manthey
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ABSTRACT

In the first part of this thesis, we are concerned with the approximability of
restricted cycle covers. A cycle cover of a graph is a set of cycles such that every
vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the
length of every cycle is in the set L ⊆ N. A special case of L-cycle covers are
k-cycle covers for k ∈ N, where the length of each cycle must be at least k. The
weight of a cycle cover of an edge-weighted graph is the sum of the weights of its
edges.

We come close to settling the complexity and approximability of computing
L-cycle covers. On the one hand, we show that for almost all L, computing L-
cycle covers of maximum weight in directed and undirected graphs is APX-hard
and NP-hard. Most of our hardness results hold even if the edge weights are
restricted to zero and one. On the other hand, we show that the problem of
computing L-cycle covers of maximum weight can be approximated with factor
2.5 for undirected graphs and with factor 3 in the case of directed graphs. Finally,
we show that 4-cycle covers of maximum weight in graphs with edge weights zero
and one can be computed in polynomial time.

As a by-product, we prove that the problem of computing minimum vertex
covers in λ-regular graphs is APX-complete for every λ ≥ 3.

In the second part of this thesis, we are concerned with binary search trees,
one of the most fundamental data structures. While the height of such a tree may
be linear in the worst case, the average height with respect to the uniform distri-
bution is only logarithmic. The exact value is one of the best studied problems
in average-case complexity.

We investigate what happens in between these two cases by analysing the
smoothed height of binary search trees: Randomly perturb a given (adversarial)
sequence and then take the expected height of the binary search tree generated
by the resulting sequence. As perturbation models, we consider partial permuta-
tions, partial alterations, and partial deletions.

On the one hand, we prove tight lower and upper bounds of roughly Θ(
√

n) for
the expected height of binary search trees under partial permutations and partial
alterations. This means that worst-case instances are rare and disappear under

xi



ABSTRACT xii

slight perturbations. On the other hand, we examine how much a perturbation
can increase the height of a binary search tree, i.e. how much worse well-balanced
instances can become. We show that under all three perturbation models, the
height can increase exponentially.



CHAPTER

ONE

Introduction

1.1 Restricted Cycle Covers

The travelling salesman problem (TSP) is one of the most well-known combi-
natorial optimisation problem; in fact, there are books devoted solely to the
TSP [50, 63]. An instance of the TSP is a complete graph with edge weights,
and the aim is to find a minimum or maximum weight cycle that visits every
vertex exactly once. Such a cycle is called a Hamiltonian cycle. The TSP has a
variety of applications, ranging from routing problems and computational biol-
ogy [73], where general edge weights are used, to code optimisation and frequency
assignment problems [46, 93], where the TSP is restricted to two different edge
weights.

Because the TSP is NP-hard [47, ND22+23], we cannot hope to always find
an optimal cycle efficiently. For practical purposes, however, it is often sufficient
to obtain a cycle that is close to optimal. In such cases, we require approxima-
tion algorithms, i.e. polynomial-time algorithms that compute such near-optimal
cycles.

The problem of computing cycle covers is a relaxation of the TSP: A cycle
cover of a graph is a spanning subgraph consisting solely of cycles such that every
vertex is part of exactly one cycle. Thus, a solution to the TSP is a cycle cover
consisting of a single cycle. In analogy to the TSP, the weight of a cycle cover in
an edge weighted graph is the sum of the weights of its edges.

In contrast to the TSP, cycle covers of maximum weight can be computed
efficiently. This fact is exploited in approximation algorithms for the TSP; the
computation of cycle covers forms the basis for the currently best known ap-
proximation algorithms for the maximum TSP [26], maximum asymmetric TSP
(ATSP) [58], metric minimum ATSP [58], metric maximum TSP [25], metric
maximum ATSP [19], maximum ATSP with weights zero and one, minimum
ATSP with weights one and two [14], minimum TSP with strengthened triangle

1



1. INTRODUCTION 2

inequality [23], and minimum ATSP with strengthened triangle inequality [17,24].
Furthermore, the currently best known approximation algorithm for the shortest
common superstring problem in computational biology also relies on computing
cycle covers [90]. These algorithms usually start by computing an initial cycle
cover and then join the cycles to obtain a Hamiltonian cycle. This technique is
called subtour patching [49].

Short cycles in a cycle cover limit the approximation ratios achieved by such
algorithms. In general, the longer the cycles in the initial cover are, the better
the approximation ratio. Thus, we are interested in computing cycle covers that
do not contain short cycles. Moreover, there are approximation algorithms that
behave particularly well if the cycle covers that are computed do not contain
cycles of odd length [17]. Finally, some so-called vehicle routing problems (see
e.g. Hassin and Rubinstein [54]) require vertices to be covered with cycles of
bounded length.

Therefore, we consider restricted cycle covers, where cycles of certain lengths
are ruled out a priori: Let L ⊆ N, then an L-cycle cover is a cycle cover in which
the length of each cycle is in L. For directed graphs, we assume L ⊆ {2, 3, 4, . . .},
while L ⊆ {3, 4, 5, . . .} in the case of undirected graphs. A special case of L-cycle
covers are k-cycle covers, which are defined to be {k, k+1, k+2, . . .}-cycle covers:
the length of every cycle must be at least k.

To fathom the possibility of designing approximation algorithms based on
computing cycle covers, we aim to characterise the sets L for which L-cycle covers
of maximum weight can efficiently be computed.

If, for a given L, computing L-cycle covers is NP-hard, there may still be good
approximation algorithms based on L-cycle covers: Suppose that efficient com-
putability of L-cycle covers of maximum weight provides a factor r approximation
algorithm for some optimisation problem. Then a polynomial-time approxima-
tion scheme (PTAS, see Section 2.4) for computing L-cycle covers of maximum
weight would usually yield a factor r + ε approximation algorithm for arbitrarily
small ε > 0 for this maximisation problem, which is only slightly worse than
approximation ratio r. Thus, APX-hardness results are of special importance for
L-cycle cover problems since they rule out the possibility of designing approxi-
mation algorithms that are based on polynomial-time approximation schemes for
L-cycle covers of maximum weight.

Beyond being a basic tool for approximation algorithms, cycle covers are inter-
esting in their own right: Matching theory and graph factorisation are important
topics in graph theory. The classical matching problem is the problem of finding
one-factors, i.e. spanning subgraphs in which every vertex is incident to exactly
one edge. Cycle covers of undirected graphs are also known as two-factors since
every vertex is incident to exactly two edges in a cycle cover.

There are various extensions of matchings and factorisations: An f -factor
or degree factor is a spanning subgraph in which the degree of every vertex v
is f(v) ∈ N. Given a set H of graphs, an H-factor or component factor is
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a partition of a graph into components each of which is isomorphic to some
graph in H. A considerable amount of research has been done on graph factors,
both on structural properties of graph factors (cf. Lovász and Plummer [64] and
Schrijver [85]) and on the complexity of finding graph factors (cf. Hell [55],
Kirkpatrick and Hell [60], and Schrijver [85]). In particular, the complexity of
finding restricted two-factors, i.e. L-cycle covers in undirected graphs, has been
investigated, and Hell, Kirkpatrick, Kratochv́ıl, and Kŕız [56] showed that finding
L-cycle covers in undirected graphs is NP-hard for almost all L. However, almost
nothing is known so far about the complexity of finding directed L-cycle covers.

In the first part of this thesis, we are concerned with the complexity of finding
restricted cycle covers of maximum weight.

On the one hand, we prove that for almost all L, the problem of computing
L-cycle covers of maximum weight is APX-hard and thus cannot be approximated
arbitrarily well unless P = NP. More precisely: For undirected graphs, computing
L-cycle covers of maximum weight is APX-hard for all L with L 6⊇ {5, 6, 7, . . .},
even if we allow only zero and one as edge weights. If we additionally allow two as
an edge weight, the problem becomes APX-hard for all L with L 6⊇ {4, 5, 6, . . .}.
For directed graphs, we show a dichotomy: Computing L-cycle covers of max-
imum weight is APX-hard if L 6= {2} and L 6= {2, 3, 4, . . .} and solvable in
polynomial time otherwise. This holds even if we only allow zero and one as edge
weights.

On the other hand, we devise polynomial-time approximation algorithms for
L-cycle covers that achieve approximation ratios of 2.5 and 3 for undirected and
directed graphs, respectively. These algorithms work uniformly for all L, although
most sets L are not recursive, and hence testing whether a graph possesses an
L-cycle cover is not recursive either. Finally, we show that 4-cycle covers of
maximum weight in graphs with edge weights zero and one can be computed in
polynomial time.

While we have settled the complexity for directed graphs, the complexity
of five undirected cycle cover problems remains open: finding 5-cycle covers in
graphs and computing 5-cycle covers of maximum weight in complete graphs with
edge weights zero and one, the same two problems for {3, 5, 6, 7, . . .}-cycle covers,
and computing 4-cycle covers of maximum weight in graphs with general edge
weights.

1.2 Smoothed Analysis of Binary Search Trees

In the first part of this thesis, we deal with worst-case complexity: the complex-
ity of a problem is measured by means of its most difficult instances. Worst-case
complexity has two major advantages: it is often easy to analyse, and if the
worst-case complexity is low, then the problem considered is easy or the algo-
rithm considered behaves well, no matter which instances actually occur in the
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application at hand.
A drawback of worst-case analysis is that it is utterly pessimistic: worst-case

instances are often specially constructed to show that some algorithm performs
poorly, but they rarely occur in practice. A challenge in algorithmics is the
analysis of algorithms that are known to work well in practice but whose worst-
case performance is bad.

Average-case analysis was introduced to provide a less pessimistic measure,
and indeed many practical algorithms perform much better on random inputs.
The results obtained, however, may not match the algorithm’s real-world perfor-
mance: The instances encountered in applications often bear little resemblance
to the random inputs that dominate the average-case analysis.

To explain the discrepancy between the average-case and worst-case behaviour
of the simplex algorithm, Spielman and Teng introduced the notion of smoothed
analysis [86,89]. Smoothed analysis interpolates between average-case and worst-
case analysis: Instead of taking the worst-case instance or, as in average-case
analysis, choosing an instance completely at random, we analyse the complexity
of (worst-case) objects subject to slight random perturbations, i.e. the expected
complexity in a small neighbourhood of (worst-case) instances. Smoothed analy-
sis takes into account the fact that a typical instance is not necessarily a random
instance and that worst-case instances are usually artificial and rarely occur in
practice.

Let C be some complexity measure. The worst-case complexity is maxx C(x),
and the average-case complexity is Ex∼∆C(x), where E denotes expectation with
respect to a probability distribution ∆ (typically the uniform distribution). The
smoothed complexity is defined as maxx Ey∼∆(x,p)C(y). Here, x is chosen by an
adversary, and y is randomly chosen according to some probability distribution
∆(x, p) that depends on x and a parameter p. The distribution ∆(x, p) should
favour instances in the vicinity of x. This means that ∆(x, p) should put almost all
of its weight on the neighbourhood of x, where “neighbourhood” has to be defined
appropriately depending on the problem considered. The smoothing parameter
p denotes how strongly x is perturbed, i.e. we can view it as a parameter for
the size of the neighbourhood of x. Intuitively, for p = 0, smoothed complexity
becomes worst-case complexity, while for large p, the perturbation overwhelms
the original instance and smoothed complexity becomes average-case complexity.

Smoothed complexity can be interpreted as follows: If the smoothed complex-
ity of an algorithm is low, then we must be unlucky to accidentally hit an instance
on which our algorithm behaves poorly, even if the worst-case complexity of our
algorithm is bad. In this situation, worst-case instances are isolated events.

For continuous problems, Gaussian perturbations seem to be a natural pertur-
bation model: they are concentrated around their mean, and the probability that
a perturbed number deviates from its unperturbed counterpart by distance d de-
creases exponentially in d. Thus, such probability distributions favour instances
in the neighbourhood of the adversarial instance. The smoothed complexity of
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continuous problems seems to be well understood. There are, however, only few
results for the smoothed analysis of discrete problems. For such problems, even
the term “neighbourhood” is often not well defined. Thus, special care is needed
when defining perturbation models for discrete problems. Perturbation models
should reflect “natural” perturbations, and the probability distribution for an
instance x should be concentrated around x, particularly for small values of the
smoothing parameter p.

In the first part of this thesis, we consider the complexity, and particularly the
approximability, of optimisation problems. Analysing approximation properties
of optimisation problems yields a finer classification of the worst-case complexity
of these problems. Classifying optimisation problems based on approximabil-
ity reflects the worst-case complexity of optimisation problems realistically since
approximate solutions often suffice in practical applications. The smoothed com-
plexity of NP optimisation problems, which classifies optimisation problems based
on typical instances instead of worst-case instances, was studied by Beier, Röglin,
and Vöcking [12,79]. For a large class of optimization problems, they proved that
a problem has polynomial smoothed complexity if and only if it has a randomised
pseudo-polynomial-time algorithm.

In the second part of this thesis, we will conduct a smoothed analysis of an
ordering problem: We will examine the smoothed height of binary search trees.

The binary search tree is one of the most fundamental data structures and is
used as a building block for many advanced data structures. The main criterion
for the “quality” of a binary search tree is its height, i.e. the length of the longest
path from the root to a leaf. A search tree containing n elements is considered
efficient if its height is O(log n). If the height of a tree is Ω(nδ), particularly for
δ close to 1, then this tree is inefficient in the sense that the advantage of search
trees over lists vanishes.

Unfortunately, in the worst case, the height is equal to the number of ele-
ments, namely for totally unbalanced trees generated by an ordered sequence of
elements. On the other hand, if a binary search tree is chosen at random, then
the expected height is only logarithmic in the number of elements (more details
will be discussed in Section 6.2). Thus, there is a huge discrepancy between the
worst-case and the average-case behaviour of binary search trees.

We will analyse what happens in between: An adversarial sequence is per-
turbed randomly, and then the height of the binary search tree generated by the
sequence thus obtained is measured. Thus, our instances are neither adversarial
nor completely random. As perturbation models, we consider partial permu-
tations, partial alterations, and partial deletions. For all three, we show tight
lower and upper bounds: Under partial permutations and partial alterations, the
smoothed height is roughly Θ(

√
n), while under partial deletions, the smoothed

height is Θ(n) (n is the number of elements in the unperturbed sequence). As a
by-product, we also obtain tight bounds for the smoothed number of left-to-right
maxima, i.e. the number of new maxima seen when scanning a sequence from left
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to right, thus improving a result by Banderier et al. [10].
In smoothed analysis, one analyses how fragile worst-case instances are. We

suggest examining also the dual property: Given a good (or best case) instance,
how much can the complexity increase if the instance is perturbed slightly? In
other words, how stable are best-case instances under perturbations? For binary
search trees, we show that there are best-case instances that are indeed not
stable, i.e. there are sequences that yield trees of logarithmic height, but slightly
perturbing these sequences yields trees of polynomial height.

1.3 Outline

The first part of this thesis deals with cycle covers. Chapter 2 contains general
preliminaries that are also used in the second part. It then introduces cycle covers
and reviews the complexity theory of combinatorial optimisation problems. We
also give a summary of our results in this chapter. We then prove that in general,
restricted cycle covers of maximum weight are hard to approximate (Chapter 3).
In Chapter 4, we present (approximation) algorithms for restricted cycle covers.
The first part ends with a summary and some remarks regarding the problems
that remain open (Chapter 5). Some of the APX-hardness results for cycle covers
have already been published as joint work with Markus Bläser [15, 16, 20]. All
three papers contain inapproximability results and algorithms. In this thesis,
I include only the inapproximability results, which were proved mainly by me,
while Markus Bläser mainly developed the algorithms. Most of the results of
the first part were presented at the 3rd Workshop on Approximation and Online
Algorithms [65].

In the second part, we are concerned with smoothed analysis of binary search
trees. In Chapter 6, we review previous results on smoothed analysis and binary
search trees, introduce some notation, and state our results. Then, we introduce
the perturbation models (Chapter 7). We prove tight bounds for the height of
binary search trees and for the number of left-to-right maxima under all three
models in Chapter 8. Chapter 9 deals with the stability of perturbations. The
second part concludes with some conjectures and an outlook on future research
(Chapter 10). Most of the results of the second part will be presented at the 16th
Annual International Symposium on Algorithms and Computation [66].



Part I

The Approximability of
Restricted Cycle Covers
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CHAPTER

TWO

Cycle Covers and Combinatorial Optimisation

2.1 General Preliminaries

We denote by N = {0, 1, 2, . . .}, Z = {. . . ,−1, 0, 1, . . .}, and R the set of nat-
ural numbers, integers, and real numbers, respectively. For n ∈ N, we define
[n] = {1, 2, . . . , n}. Furthermore, let [n − 1

2
] = {1

2
, 3

2
, . . . , n − 1

2
}. For a, b ∈ R,

[a, b] denotes the closed interval {x ∈ R | a ≤ x ≤ b}, while [a, b) denotes the
half-open interval {x ∈ R | a ≤ x < b}.

Let M be a set, then P(M) denotes the power set of M . If M is a finite set,
then |M | denotes the cardinality of M .

We denote probabilities by P and expectations by E.

The logarithms to base e and 2 are ln and log, respectively, while exp denotes
the exponential function to base e. The twice iterated logarithm log ◦ log is
abbreviated by llog.

For a function f : N → N, we denote by

O(f) = {g : N → N | ∃c, n0 ∈ N ∀n ≥ n0 : g(n) ≤ cf(n)}

the set of functions that grow asymptotically at most as fast as f . Conversely,
Ω(f) = {g : N → N | f ∈ O(g)} is the set of functions that grow at least
as fast as f . The set Θ(f) = O(f) ∩ Ω(f) contains all functions that grow
asymptotically as fast as f . Finally, we denote the set of functions that grow
slower than f by o(f) = O(f) \Θ(f) and the set of functions that grow faster
than f by ω(f) = Ω(f) \Θ(f).

We denote by P the class of decision problems that are deterministically de-
cidable in polynomial time. The class NP contains all decision problems that
are nondeterministically decidable in polynomial time. For more on complexity
theory, we refer to Papadimitriou [69].

9



2. CYCLE COVERS AND COMBINATORIAL OPTIMISATION 10

2.2 Graphs and Cycles

In this section, we introduce some graph theoretical notations used in the subse-
quent chapters. For more on graph theory, see for instance Jungnickel [57].

Let V be any finite set. Then U(V ) = {{u, v} | u, v ∈ V, u 6= v} denotes
the set of undirected edges that connect elements in V and D(V ) = {(u, v) |
u, v ∈ V, u 6= v} denotes the set of directed edges that connect elements in V .
A graph G = (V, E) consists of a finite set V of vertices and a set E of edges.
If E ⊆ U(V ), then we call G an undirected graph, if E ⊆ D(V ), we call G a
directed graph. Graphs are simple by definition; E is a set, not a multiset, and
there are no edges connecting a vertex to itself. Thus, multiple edges or loops
are not allowed.

The graphs (V, U(V )) and (V, D(V )) are called the undirected and directed
complete graph on |V | vertices, respectively.

Undirected Graphs. Let G = (V, E) be an undirected graph. We say that an
edge e = {u, v} ∈ E is incident to its endpoints u and v. Two vertices u and v
are adjacent in G if {u, v} ∈ E. Two edges e and f are adjacent if e ∩ f 6= ∅.
The degree degG(v) of a vertex v ∈ V in G is the number of edges in E that are
incident to v. If it is clear from the edge set which graph we are talking about, we
write degE(v) instead of degG(v). A graph G is called λ-regular if degG(v) = λ
for all vertices v ∈ V .

We say that G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E∩U(V ′).
The graph G′ is an induced subgraph of G if E ′ = E ∩ U(V ′).

A matching of G is a subset M ⊆ E of edges such that no vertex in G is
incident to more than one edge in M , i.e. degM(v) ≤ 1 for all v ∈ V .

A path in G is a sequence P = (x0, x1, . . . , xk) of pairwise distinct vertices
such that ei = {xi−1, xi} ∈ E for all i ∈ [k]. We also think of P as a sequence of
edges (e1, . . . , ek). The length of a path P is the number of edges it consists of.
A single vertex is a path of length zero.

A cycle of length k in G is sequence (x1, x2, . . . , xk, x1) of vertices, where
x1, . . . , xk are pairwise distinct vertices and {x1, x2}, {x2, x3}, . . . , {xk, x1} ∈ E
are pairwise distinct edges. We do not consider a single vertex as a cycle. Since
we do not allow multiple edges, the shortest possible cycles in undirected graphs
have length three. A Hamiltonian cycle of G is a cycle that contains all vertices
of G.

A subgraph C = (V, E ′) of G is called a cycle cover of G if C consists solely of
cycles and every vertex of V is part of exactly one cycle. Another characterisation
is that C is a cycle cover of G if degC(v) = 2 for all v ∈ V , i.e. C is a two-regular
spanning subgraph of G. Due to this characterisation, cycle covers of undirected
graphs are also called two-factors. Figure 2.2.1 shows an example of a cycle cover.
We usually consider cycle covers as sets of edges, i.e. we consider C to be identical
to E ′.
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(a) An undirected graph. (b) A cycle cover (solid edges) of the graph.

Figure 2.2.1: An example of a cycle cover of an undirected graph.

Let U = {3, 4, 5, . . .} and L ⊆ U . A cycle cover C is called an L-cycle cover
if the length of every cycle in C belongs to L. A special case of L-cycle covers are
k-cycle covers for k ∈ U : C is a k-cycle cover if every cycle has a length of at
least k. Thus, a k-cycle cover is just a {k, k + 1, . . .}-cycle cover. For undirected
graphs, the terms cycle cover, 3-cycle cover, and U -cycle cover are equivalent; all
three denote cycle covers without restrictions on the lengths of the cycles. We
set L = U \L if we are concerned with undirected graphs (this will be clear from
the context), i.e. the set L contains all forbidden cycle lengths.

Directed Graphs. Let G = (V, E) be a directed graph. We say that an
edge e = (u, v) is incident to vertices u and v, which are also called endpoints
of e, and u and v are adjacent. Two edges (u, v) and (w, x) are adjacent if
{u, v} ∩ {w, x} 6= ∅. The edge e = (u, v) is an outgoing edge of u and an
incoming edge of v. The degree degG(v) of a vertex v in G is the number of
edges in E that are incident to v. The out-degree outdegG(v) of v is the number
of outgoing edges of v, the in-degree indegG(v) is the number of incoming edges
of v. We sometimes write degE(v), indegE(v), and outdegE(v) instead of degG(v),
indegG(v), and outdegG(v) if the graph considered is clear from its edge set.

The terms subgraph and induced subgraph are defined as for undirected
graphs, except that U(V ′) is replaced by D(V ′). A matching of G is a set
M ⊆ E of pairwise non-adjacent edges, i.e. degM(v) ≤ 1 for all v ∈ V .

A path in G is a sequence P = (x0, x1, . . . , xk) of pairwise distinct vertices
such that ei = (xi−1, xi) ∈ E for all i ∈ [k]. We also think of P as a sequence of
edges (e1, . . . , ek). The length of a path P is the number of edges it consists of.
A single vertex is a path of length zero.

A cycle of length k in G is sequence (x1, x2, . . . , xk, x1) of vertices, where
x1, . . . , xk are pairwise distinct and (x1, x2), (x2, x3), . . . , (xk, x1) ∈ E are pairwise
distinct edges. We do not consider a single vertex as a cycle. Thus, the shortest
possible cycles in directed graphs have length two. A Hamiltonian cycle of G
is a cycle that contains all vertices of G.

A subgraph C = (V, E ′) of G is called a cycle cover of G if C consists solely
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(a) A directed graph. (b) A cycle cover (solid edges) of the graph.

Figure 2.2.2: An example of a cycle cover of a directed graph.

of cycles and every vertex is part of exactly one cycle. We can alternatively say
that C is a cycle cover if indeg(v) = outdeg(v) = 1 for all v ∈ V . Again, we will
often consider C to be identical to E ′. Figure 2.2.2 shows an example of a cycle
cover of a directed graph.

Let D = {2, 3, 4, . . .} and L ⊆ D. A cycle cover C is called an L-cycle
cover if the length of every cycle in C belongs to L. Again, a k-cycle cover is a
{k, k+1, . . .}-cycle cover. For directed graphs, the three terms cycle cover, 2-cycle
cover, and D-cycle cover are equivalent. If we are concerned with cycle covers of
directed graphs, we define the set of forbidden cycle lengths as L = D \ L.

Edge Weighted Graphs. Let G = (V, E) be a (directed or undirected) graph
and let w : E → N be an edge weight function. For any subset F ⊆ E of the
edges of G, we define the weight of F as

w(F ) =
∑
e∈F

w(e) .

We define the following terms for undirected graphs. The definitions can be
transferred to directed graphs in a straightforward manner. Let X ⊆ V be a
subset of the vertices of G. Then E ∩ U(X) is the set of internal edges of X,
i.e. internal edges of X have both endpoints in X. We denote by wX(F ) the sum
of the weights of all internal edges of X in F , i.e. wX(F ) = w(F ∩ U(X)). The
external edges at X are all edges with exactly one endpoint in X.

Let G′ = (V ′, E ′) be a subgraph of G. We define w(G′) = w(E ′) and wX(G′) =
wX(F ).

2.3 Problem Definitions

In this section, we formally define the optimisation and decision problems that
we will consider in the subsequent chapters.

For any L ⊆ U , L-UCC is the following decision problem:
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L-UCC:
Instance: An undirected graph G = (V, E).
Question: Does G contain an L-cycle cover?

L-DCC is analogously defined for directed graphs, except that we have L ⊆ D:

L-DCC:
Instance: A directed graph G = (V, E).
Question: Does G contain an L-cycle cover?

In addition to the decision problems defined above, we consider the optimi-
sation problems Max-L-UCC for L ⊆ U and Max-L-DCC for L ⊆ D:

Max-L-UCC:
Instance: An undirected complete graph G = (V, U(V )) with

edge weight function w : U(V ) → {0, 1}.
Solution: An L-cycle cover C of G.
Goal: Maximise w(C).

Max-L-DCC:
Instance: A directed complete graph G = (V, D(V )) with

edge weight function w : D(V ) → {0, 1}.
Solution: An L-cycle cover C of G.
Goal: Maximise w(C).

Max-L-UCC can be viewed as a generalisation of L-UCC: For an undirected
graph G = (V, E), let G′ = (V, U(V )) and set w(e) = 1 for e ∈ E and w(e) = 0
for e /∈ E. Then G contains an L-cycle cover if and only of G′ contains an L-cycle
cover of weight |V |. In the same sense, Max-L-DCC generalises L-DCC.

More generally, we can allow arbitrary natural numbers as edge weights in-
stead of only zero and one. Max-W-L-UCC and Max-W-L-DCC are defined like
Max-L-UCC and Max-L-DCC, respectively, except that the edge weight function
maps to N instead of {0, 1}:

Max-W-L-UCC:
Instance: G = (V, U(V )), w : U(V ) → N.
Solution, Goal: As for Max-L-UCC.

Max-W-L-DCC:
Instance: G = (V, D(V )), w : D(V ) → N.
Solution, Goal: As for Max-L-DCC.

Let us now define some additional problems, namely the vertex cover and
λ-dimensional matching problem, which will be needed for the hardness results
presented in Chapter 3.
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Let H = (X, F ) be an undirected graph. A vertex cover of H is a subset
X̃ ⊆ X of the vertices of H such that every edge in F is incident to at least one
vertex in X̃, i.e. a ∩ X̃ 6= ∅ for all edges a ∈ F .

Min-Vertex-Cover is the following optimisation problem:

Min-Vertex-Cover:
Instance: An undirected graph H = (X, F ).

Solution: A vertex cover X̃ ⊆ X of H.

Goal: Minimise |X̃|.

For λ ∈ N, Min-Vertex-Cover(λ) is defined like Min-Vertex-Cover, except that
only λ-regular graphs are instances of Min-Vertex-Cover(λ):

Min-Vertex-Cover(λ):
Instance: A λ-regular graph H = (X, F ).
Solution, Goal: As for Min-Vertex-Cover.

For λ ∈ N, the λ-dimensional matching problem is the following decision
problem:

λ-DM:
Instance: A finite set X and a collection F of subsets of X

with |a| = λ for all a ∈ F .

Question: Does a subset F̃ ⊆ F exist such that for every x ∈ X there

is exactly one a ∈ F̃ with x ∈ a?

In the next section, we introduce the complexity of optimisation problems. As
an accompanying example, we consider the travelling salesman problem (TSP).
An instance of the TSP is a complete graph G = (V, E) together with an edge
weight function w : E → N. The aim is to find a Hamiltonian cycle that minimises
the sum of the edge weights in the cycle. If E = U(V ), we speak of the symmetric
TSP, denoted by Min-TSP; if E = D(V ), then we speak of the asymmetric TSP,
denoted by Min-ATSP.

If we demand that the edge weight function to fulfil the triangle inequal-
ity, i.e. w({u, v}) ≤ w({u, x}) + w({x, v}) and w(u, v) ≤ w(u, x) + w(x, v) for
all u, x, v ∈ V in the case of Min-TSP and Min-ATSP, respectively, we obtain
Min-∆TSP and Min-∆ATSP. An even more restricted version of Min-∆TSP
is Min-Euc-TSP, where the vertices are points in the Euclidean plane and the
edge weight of {u, v} is the Euclidean distance between u and v.

2.4 Complexity of Optimisation Problems

2.4.1 Optimisation Problems

In this part of the thesis, we are concerned with optimisation problems. For a
more thorough treatment of the complexity of optimisation problems, we refer to
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Ausiello et al. [9].

Definition 2.4.1. An optimisation problem Π is characterised by a four-tuple
(I, sol, m, goal):

1. I is a set of instances of Π.

2. For every instance x ∈ I, sol(x) denotes the set of feasible solutions for x.

3. Let x ∈ I and y ∈ sol(x), then m(x, y) is the measure of y with respect to
x. (We assume that m(x, y) is always a non-negative rational number.)

4. Π is either a maximisation or a minimisation problem, as indicated by
goal ∈ {min, max}.

We denote by m?(x) = goaly∈sol(x)m(x, y) the value of an optimum solution of x.
An optimum solution of x is a solution y ∈ sol(x) with m(x, y) = m?(x).

An important class of optimisation problems is the class of NP optimisation
problems. In the following definition, we identify instances x and solutions y with
an appropriate encoding of x and y, respectively. The lengths of these encodings
are denoted by |x| and |y|. The exact manner in which this encoding is carried
out (for instance an adjacency matrix or adjacency lists in the case of x being a
graph) is not important.

Definition 2.4.2. An optimisation problem Π = (I, sol, m, goal) is an NP op-
timisation problem if

1. the set of instances is deterministically recognisable in polynomial time, i.e.
I ∈ P,

2. there exists a polynomial p such that for all x ∈ I and y ∈ sol(x), |y| ≤
p(|x|) and the question whether y ∈ sol(x) can be decided deterministically
in time polynomial in |x|, and

3. for all x ∈ I and y ∈ sol(x), m(x, y) can be evaluated deterministically in
time polynomial in |x|.

An optimisation problem is a P optimisation problem if, on input x, an
optimum solution can be computed in time polynomial in |x|.

NPO denotes the class of all NP optimisation problems. PO denotes the class
of all P optimisation problems.

The budget problem ΠB associated with an optimisation problem Π is
given as follows: Let Π be a minimisation problem. An instance of ΠB is an
instance x ∈ I and number k. The question is whether there is a solution y whose
measure m(x, y) does not exceed k. In case of Π being a maximisation problem,
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the question is whether there is a solution y whose measure is at least k. To be
more formally: For minimisation problems, ΠB = {(x, k) | x ∈ I ∧ m?(x) ≤ k},
and for maximisation problems, ΠB = {(x, k) | x ∈ I ∧ m?(x) ≥ k}. From the
definition, we immediately obtain that ΠB ∈ NP for all Π ∈ NPO.

Strictly speaking, NP-hardness is only defined for decision problems and not
for optimisation problems. However, we call an optimisation problem Π NP-hard
if the corresponding budget problem ΠB is NP-hard.

Example 2.4.3. Min-Vertex-Cover, Min-Vertex-Cover(λ), and all variants of
the TSP introduced in the previous section are examples of NP optimisation prob-
lems.

Max-L-UCC, Max-L-DCC, Max-W-L-UCC, and Max-W-L-DCC are NP op-
timisation problems if {1λ | λ ∈ L} ∈ P, i.e. if L allows efficient membership
testing. If {1λ | λ ∈ L} /∈ P, then it is impossible to decide in polynomial time if
a cycle cover is an L-cycle cover, thus Item 2 of Definition 2.4.2 is violated.

2.4.2 Approximation Algorithms

If an optimisation problem Π is hard, for instance because the budget problem ΠB

is NP-hard, but we want to obtain an acceptable solution, we require approximate
solutions. For detailed information about approximation algorithms, we refer to
Vazirani [92].

Definition 2.4.4. Let Π = (I, sol, m, goal) be an optimisation problem. Let x ∈ I
be any instance of Π and y ∈ sol(x) be a feasible solution of x. The performance
ratio of y is defined as

R(x, y) = max

{
m(x, y)

m?(x)
,

m?(x)

m(x, y)

}
.

For maximisation problems, we have R(x, y) = m?(x)/m(x, y), while for
minimisation problems, R(x, y) = m(x, y)/m?(x). Thus, R(x, y) ≥ 1 with
R(x, y) = 1 if and only if y is an optimum solution of x. The notion of per-
formance ratio leads immediately to approximation algorithms.

Definition 2.4.5. Let Π(I, sol, m, goal) be an optimisation problem and α ≥ 1.
A polynomial-time algorithm A is an approximation algorithm with ap-
proximation ratio α for Π if, for every instance x ∈ I with sol(x) 6= ∅, A
computes a solution A(x) ∈ sol(x) such that R(x,A(x)) ≤ α.

More generally, we can consider functions f : I → [1,∞) instead of α: A is
an approximation algorithm that achieves approximation ratio f if R(x,A(x)) ≤
f(x) for all x ∈ I with sol(x) 6= ∅. Usually, f depends on the size of the instance x.

A polynomial-time approximation scheme (or PTAS for short) is a fam-
ily of approximation algorithms such that for every ε > 0, there is an algorithm
that achieves approximation ratio 1 + ε.
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The optimisation problems in NPO are divided into several subclasses accord-
ing to their approximation properties. Let us define the two most important
classes.

Definition 2.4.6. The class APX ⊆ NPO contains all NP optimisation problems
that admit a factor α approximation for some constant α.

The class PTAS ⊆ APX contains all NP optimisation problems that admit a
polynomial-time approximation scheme.

From the definitions, we immediately obtain

PO ⊆ PTAS ⊆ APX ⊆ NPO

with PO = NPO if and only if P = NP. Provided that P 6= NP, all three inclusions
are strict (cf. Ausiello et al. [9]).

Example 2.4.7. Min-TSP and Min-ATSP cannot be approximated at all [81].
There exists a factor 0.842 · log n approximation for Min-∆ATSP where n is

the number of vertices [58]. It is unknown whether Min-∆ATSP ∈ APX.
Christofides’ algorithm is a factor 3/2 approximation for Min-∆TSP [27] (cf.

Vazirani [92, Sect. 3.2.2]), thus Min-∆TSP ∈ APX.
Min-Euc-TSP is in PTAS, i.e. it can be approximated arbitrarily well [6].

All variants of the TSP mentioned above are NP-complete due to the NP-
completeness of the Euclidean TSP [68] (cf. Garey and Johnson [47, ND22+23]).
Thus, although the budget problems share the same complexity, their approxi-
mation properties differ greatly.

So far, we are able to prove that a certain optimisation problem is, say, in
APX by presenting an approximation algorithm. But we cannot achieve good
inapproximability results: Proving an optimisation problem to be NP-hard does
not rule out the possibility of good approximation algorithms. One exception
is Min-TSP, where the inapproximability can be proved by reduction from the
Hamiltonian circuit problem [81] (cf. Vazirani [92, Theorem 3.6]), which is NP-
complete [59] (cf. Garey and Johnson [47, GT37]).

2.4.3 Reductions and Inapproximability

Strong inapproximability results were made possible by the PCP theorem (PCP
stands for probabilistically checkable proofs), which is an alternative character-
isation of NP proved by Arora et al. [7, 8]. Using the PCP theorem, Arora et
al. showed that several optimisation problems do not belong to PTAS unless
P = NP. The inapproximability of several other optimisation problems followed
via reductions. For instance, Min-∆TSP is not in PTAS unless P= NP [71].

To date, several different kinds of reductions between optimisation problems
have been proposed for showing inapproximability [31]. We present only AP- and
L-reductions, which we need for our hardness results.
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Definition 2.4.8 (Crescenzi et al. [32]). Let Π = (I, sol, m, goal) and Π′ =
(I ′, sol′, m′, goal′) be two optimisation problems. Then Π AP-reduces to Π′,
denoted by Π ≤AP Π′, if there exist two functions fAP and gAP and a constant
αAP ≥ 1 such that the following properties hold for every fixed rational number
r > 1:

1. For every instance x ∈ I of Π, fAP(x, r) = x′ ∈ I ′ is an instance of Π′. If
sol(x) 6= ∅, then sol′(x′) 6= ∅.

2. For all y′ ∈ sol′(x′), we have y = gAP(x, y′, r) ∈ sol(x).

3. The functions fAP and gAP are computable in time polynomial in |x|.

4. For every x ∈ I and y′ ∈ sol(x′),

R′(x′, y′) ≤ r implies R(x, y) ≤ 1 + αAP · (r − 1) .

(R′ denotes the approximation ratio with respect to Π′.)

The classes APX and PTAS are closed under AP-reductions: Assume that Π
AP-reduces to Π′. Then Π′ ∈ APX implies Π ∈ APX, and Π′ ∈ PTAS implies
Π ∈ PTAS [9, Lemma 8.1].

Definition 2.4.9 (Papadimitriou and Yannakakis [70]). Let Π and Π′ be
two optimisation problems. Then Π L-reduces to Π′, denoted by Π ≤L Π′, if
there exist functions fL and gL and constants αL, βL > 0 such that the following
conditions hold for every instance x ∈ I of Π:

1. The function fL produces an instance x′ = fL(x) ∈ I ′ of Π′ with

m′?(x′) ≤ αL ·m?(x) .

If sol(x) 6= ∅, then sol′(x′) 6= ∅.

2. For all solutions y′ ∈ sol′(x′), the function gL produces a solution y =
gL(x, y′) ∈ sol(x) of Π with

|m(x, y)−m?(x)| ≤ βL · |m′(x′, y′)−m′?(x′)| .

Furthermore, |y′| ≤ p(|x|) for some polynomial p.

3. The functions fL and gL are computable in polynomial time.

The class PTAS is closed under L-reductions, but it is open whether APX is
closed under L-reductions. Crescenzi et al. [32] conjectured that this is not the
case.

Completeness in APX is defined via AP-reductions [9, Sect. 8.4]: An optimi-
sation problem Π is APX-hard if Π′ ≤AP Π for all Π′ ∈ APX. If additionally
Π ∈ APX, then Π is APX-complete. Finding a PTAS for any APX-hard problem
would immediately prove P= NP.
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Example 2.4.10. Min-∆TSP is APX-complete, even if the edge weights are re-
stricted to be one or two [71] (cf. Ausiello et al. [9, ND33]).

L-reductions are useful for proving the existence of AP-reductions: Let Π and
Π′ be two NP optimisation problems with Π ∈ APX. Then Π ≤L Π′ implies
Π ≤AP Π′ [9, Lemma 8.2]. All APX-hardness results of this work are obtained
via reduction from Min-Vertex-Cover(λ), which actually is APX-complete (cf.
Ausiello et al. [9, GT1]). We reduce also to problems not in NPO. Therefore,
for the sake of completeness, we show in Appendix A.1 that the requirement
Π′ ∈ NPO is not needed.

2.5 Existing Results for Cycle Covers

Before taking a closer look at existing results for cycle covers, let us briefly
mention some known results for λ-DM and Min-Vertex-Cover. 3-DM and the
budget problem Min-Vertex-CoverB are NP-complete [59] (cf. Garey and John-
son [47, GT1+SP1]). Generalising the NP-completeness of 3-DM to λ-DM for
λ ≥ 3 is straightforward. Min-Vertex-Cover(λ) is also NP-hard for λ ≥ 3 [48].
Min-Vertex-Cover and Min-Vertex-Cover(3) are APX-complete [4,70] (cf. Ausiello
et al. [9, GT1]).

2.5.1 Cycle Covers in Undirected Graphs

U -UCC and Max-U -UCC can be solved in polynomial time by Tutte’s reduction
to the classical matching problem [91], which in turn can be solved in poly-
nomial time by Edmond’s algorithm [43]. Max-W-U -UCC can also be solved
in polynomial time by Tutte’s reduction [42]. The currently best algorithms
for U -UCC and Max-U -UCC achieve a running time of O(n2.5), where n is
the number of vertices [3, Chap. 12]. This result was recently improved by
Mucha and Sankowski [67], who presented a randomised algorithm with a run-
ning time of O(nω), where ω < 2.38 is the matrix multiplication exponent [28].
Max-W-U -UCC can be solved in time O(n3). There are several deterministic
algorithms that achieve this time bounds. We refer to Ahuja et al. [3, Chap. 12]
for a survey of matching algorithms.

Hartvigsen presented a polynomial-time algorithm for computing a maximum-
cardinality triangle-free two-matching [51]. His algorithm can be used to de-
cide 4-UCC in polynomial time. Furthermore, it can be used to approximate
Max-4-UCC within an additive error of one according to Bläser [13]. As far as
we are aware, it has not been proved that Max-4-UCC is exactly solvable in
polynomial time, even though there are approximation algorithms that require
an efficient algorithm for Max-4-UCC [18, 20, 71]. We prove that Max-4-UCC
is indeed solvable in polynomial time by exploiting Hartvigsen’s algorithm (Sec-
tion 4.2).
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Max-W-k-UCC admits an easy factor 3/2 approximation for all k: Compute
a cycle cover of maximum weight, break the lightest edge of each cycle (thus,
at least two thirds of the weight remain), and join the paths obtained into a
Hamiltonian cycle, which is sufficiently long provided that the graph contains at
least k vertices (otherwise, the graph does not contain any k-cycle cover at all).
Unfortunately, such a simple algorithm does not work for Max-W-L-UCC with
general L. For the problem of computing k-cycle covers of minimum weight in
graphs with edge weights one and two, there exists a factor 7/6 approximation
algorithm for all k [20]. Hassin and Rubinstein [53] devised a randomised ap-
proximation algorithm for Max-W-{3}-UCC that achieves approximation ratio
169/89 + ε for every fixed ε > 0.

Cornuéjols and Pulleyblank presented a proof due to Papadimitriou that
k-UCC is NP-complete for k ≥ 6 [30]. Vornberger proved that Max-W-5-UCC
and Max-W-{4}-UCC are NP-complete [94]. Hell et al. [56] proved that L-UCC
is NP-hard for L 6⊆ {3, 4}.

Although the complexity of finding restricted cycle covers in undirected graphs
is well understood, almost nothing is known about their approximability.

For most L, L-UCC, Max-L-UCC, and Max-W-L-UCC are not even recur-
sive since there are uncountably many L but only countably many recursive
functions. Consequently, for most L, L-UCC is not in NP and Max-L-UCC and
Max-W-L-UCC are not in NPO. This does not matter for hardness results but
may cause problems if one wants to design approximation algorithms that are
based on computing L-cycle covers. However, it turns out that this does not
affect our approximation algorithms, as we show in Section 4.1.

2.5.2 Cycle Covers in Directed Graphs

D-DCC and Max-D-DCC can be solved in polynomial time by reduction to the
matching problem in bipartite graphs, which can be solved deterministically in
time O(n2.5) [3, Chap. 12] or with a randomised algorithm in time O(nω) [67].
Max-W-D-DCC, also known as the assignment problem, can be solved in polyno-
mial time using the Hungarian method [62] for computing perfect matchings of
maximum weight in bipartite graphs. The fastest algorithms to date need time
O(n3) [3, Chap. 12].

The reduction of Max-D-DCC or Max-W-D-DCC to matching in bipartite
graphs is as follows: Consider a directed complete graph G = (V, D(V )) with
edge weights w : D(V ) → N. Let V ′ = {v′ | v ∈ V }. We construct a bipartite
graph G′ with vertex set V ∪ V ′. For any u, v ∈ V with u 6= v, we add an
edge (u, v′) of weight w(u, v) to G′. Now, we have a one-to-one correspondence
between cycle covers C of G and perfect matchings M of G′: For all u, v ∈ V ,
(u, v) ∈ C if and only if (u, v′) ∈ M . The weight of C is equal to the weight of
M , and C is a cycle cover if and only if M is a perfect matching.
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For all k ≥ 3, k-DCC is NP-complete [47, GT13]. (This follows also from the
results of Section 3.3.4.)

Similar to the factor 3/2 approximation algorithm for undirected k-cycle cov-
ers, Max-W-k-DCC has an easy factor 2 approximation algorithm for all k: Com-
pute a cycle cover of maximum weight, break the lightest edge of every cycle (thus,
at least half of the weight remains), and join the paths obtained into a Hamilto-
nian cycle. Again, this simple algorithm does not work for Max-W-L-DCC with
general L. There is a factor 4/3 approximation algorithm for Max-W-3-DCC [19]
and a factor 3/2 approximation algorithm for Max-k-DCC for k ≥ 3 [16].

As in the case of cycle covers in undirected graphs, for most L, L-DCC,
Max-L-DCC, and Max-W-L-DCC are not recursive.

While the complexity of finding k-cycle covers in directed graphs is settled,
almost nothing, neither positive nor negative, is known about the approximability
of k-cycle covers and the complexity and approximability of L-cycle covers in
general.

2.6 New Results

We almost settle the complexity and approximability of restricted cycle covers
for both undirected and directed graphs. Table 2.6.1 summarises the results for
the complexity of L-cycle covers. A more detailed description of our results is
given in the following two sections.

Only the complexity of the following five problems remains open: 5-UCC,
{4}-UCC, Max-5-UCC, Max-{4}-UCC, and Max-W-4-UCC. In Chapter 5, we
will take a closer look at these five problems.

2.6.1 Hardness Results

We prove that Max-L-UCC is APX-hard for all L with L 6⊆ {3, 4} (Theo-
rem 3.3.11), i.e. if at least one length greater than or equal to five is forbidden.
We further extend this hardness result for general edge weights: Max-W-L-UCC
is APX-hard for all L with L 6⊆ {3}, even if we allow only zero, one, and two as
edge weights (Theorems 3.2.7, 3.2.9, and 3.3.11).

We show a dichotomy for cycle covers of directed graphs: For all L with
L 6= {2} and L 6= D, L-DCC is NP-hard (Theorem 3.3.17), and Max-L-DCC and
Max-W-L-DCC are APX-hard (Theorem 3.3.16), while it is known that all three
problems are solvable in polynomial time if L = {2} or L = D.

If computing L-cycle covers of maximum weight in (directed or undirected)
graphs with edge weights zero and one is APX-hard, then this carries over to
arbitrary non-trivial weight functions, i.e. weight functions the range of which
contains at least two different values a and b: Assume a < b, then we map
weight zero to weight a and weight one to weight b. Moreover, the hardness
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L-UCC Max-L-UCC Max-W-L-UCC

L = ∅ in P in PO in PO

L = {3} in P in PO

L = {4} APX-complete

L = {3, 4} APX-complete

L 6⊆ {3, 4} NP-hard APX-hard APX-hard
(a) Undirected cycle covers.

L-DCC Max-L-DCC Max-W-L-DCC

L ∈ {{2}, D} in P in PO in PO
L /∈ {{2}, D} NP-hard APX-hard APX-hard

(b) Directed cycle covers.

Table 2.6.1: The complexity of computing L-cycle covers.

holds also for the problem of computing L-cycle covers of minimum weight. This
particularly includes computing L-cycle covers of minimum weight in graphs with
edge weights one and two.

To show the hardness results for directed cycle covers, we prove that certain
kinds of graphs, so-called L-clamps, exist for non-empty L ⊆ D if and only if
L 6= D (Theorem 3.3.13). This graph-theoretical result might be of independent
interest.

As a by-product, we prove that Min-Vertex-Cover(λ) is APX-complete for all
λ ≥ 3 (Theorem 3.4.1). We need this result for the APX-hardness proofs in

Section 3.3, and as far as we are aware, it is unproved so far. ?

2.6.2 Algorithms

We present a polynomial-time approximation algorithm for Max-W-L-UCC that
works for all L ⊆ U and achieves an approximation ratio of 2.5 (Section 4.1.1). For
Max-W-L-DCC, we devise a polynomial-time factor 3 approximation algorithm
that works for all L ⊆ D (Section 4.1.2). Both algorithms work for arbitrary L,
even if L is not a recursively enumerable set.

Although most of our hardness results for undirected cycle covers are for
Max-L-UCC, where only zero and one are allowed as edge weights, these approx-
imation algorithms work for arbitrary edge weights.

Finally, we show that Max-4-UCC is indeed solvable in polynomial time by
exploiting Hartvigsen’s algorithm [51] for finding maximum-cardinality triangle-
free two-matchings (Section 4.2).



CHAPTER

THREE

Approximation Hardness

In this chapter, we prove that Max-L-UCC, Max-W-L-UCC, and Max-L-DCC
are APX-hard for almost all L. Furthermore, we prove the NP-hardness of L-DCC
for almost all L. Finally, we show that Min-Vertex-Cover(λ) is APX-complete for
all λ ≥ 3.

While the NP-hardness is proved via a standard many-one reduction [47], the
APX-hardness results are obtained by constructing L-reductions. For the APX-
hardness of the cycle cover problems, we L-reduce from Min-Vertex-Cover(λ).
In the next section, we outline such an L-reduction; to actually construct an
L-reduction, it then essentially suffices to instantiate three lemmas, stated as
Generic Lemmas 3.1.1 to 3.1.3 below.

3.1 Outline of an L-Reduction

Starting from a λ-regular graph H = (X, F ) on n vertices as an instance of
Min-Vertex-Cover(λ), we have to construct a complete graph G (directed or undi-
rected) together with an appropriate edge weight function w in polynomial time
as an instance of Π.

To construct an L-reduction, we need to be able to instantiate the following
three generic lemmas for a certain constant γ and a certain definition of the term
legal cycle cover.

Generic Lemma 3.1.1. Given a vertex cover X̃ of H, there is an L-cycle cover
C̃ of G with weight w(C̃) = γn− |X̃|.

Generic Lemma 3.1.2. Given an arbitrary L-cycle cover C, we can construct
a legal L-cycle cover C̃ with w(C̃) ≥ w(C) in polynomial time.

Generic Lemma 3.1.3. Given a legal L-cycle cover C̃ of weight w(C̃) = γn− ñ,
we can construct a vertex cover X̃ of H with |X̃| = ñ.

23
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Instantiating and proving these three generic lemmas yields an L-reduction.

Lemma 3.1.4. If the three generic lemmas above hold, Min-Vertex-Cover(λ)
L-reduces to Π.

Proof. Let opt(H) denote the size of a minimum vertex cover of H and let opt(G)
denote the weight of a maximum-weight L-cycle cover of G. Since H is λ-regular,
every vertex can cover at most λ edges. Thus, opt(H) ≥ n/λ. Any L-cycle cover
of maximum weight can be transformed into a legal L-cycle cover without losing
weight (Generic Lemma 3.1.2). From such a legal L-cycle cover of weight γn− ñ,
we can obtain a vertex cover of size ñ (Generic Lemma 3.1.3). Thus, opt(G) ≤ γn
and we obtain

opt(G) ≤ γn ≤ λγ · opt(H) .

Now let C be an arbitrary L-cycle cover of G, C̃ be a legal L-cycle obtained
from C, and X̃ ⊆ X be the vertex cover obtained from C̃. Then∣∣|X̃| − opt(H)

∣∣ =
∣∣w(C̃)︸ ︷︷ ︸
γn−|X̃|

− opt(G)︸ ︷︷ ︸
γn−opt(H)

∣∣ ≤ ∣∣w(C)− opt(G)
∣∣ .

Thus, we obtain an L-reduction with αL = λγ and βL = 1: The function fL maps
H to G and w, while the function gL maps an arbitrary L-cycle cover C to a
vertex cover X̃ according to Generic Lemmas 3.1.2 and 3.1.3.

3.2 A Generic Reduction for L-Cycle Covers

In this section, we present a generic reduction from Min-Vertex-Cover(3) to
Max-L-UCC or Max-W-L-UCC. To instantiate the reduction for a certain L,
we use a small graph, which we call a gadget, the specific structure of which de-
pends on L. Such a gadget together with the generic reduction is an L-reduction
from Min-Vertex-Cover(3) to Max-L-UCC or Max-W-L-UCC. The aim is to
prove the APX-hardness of Max-W-{4}-UCC and Max-W-5-UCC. We also briefly
show how to prove the APX-completeness of Max-k-UCC for all k ≥ 6 using the
generic reduction, although this also follows from the results of Section 3.3.2.

3.2.1 The Generic Reduction

Let H = (X, F ) be a cubic graph with vertex set X and edge set F as an instance
of Min-Vertex-Cover(3). Let n = |X| and m = |F | = 3n/2. We construct an
undirected complete graph G with edge weight function w as a generic instance
of Max-L-UCC or Max-W-L-UCC.

For each edge a = {x, y} ∈ F , we construct a subgraph Fa of G called the
gadget of a. We consider Fa as set of vertices, thus wFa(C) for a subset C of
the edges of G is well defined. This gadget contains four distinguished vertices
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the three junctions of x. The dashed edge has weight zero.
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are not shown.

Figure 3.2.1: The construction for a vertex x ∈ X incident to a, b, c ∈ F .

xin
a , xout

a , yin
a , and yout

a . These four vertices are used to connect Fa to the rest of
the graph. What such a gadget looks like depends on L.

If all edges in such a gadget have weight zero or one, we obtain an instance
of Max-L-UCC since all edges between different gadgets will have weight zero or
one. Otherwise, we have an instance of Max-W-L-UCC. Examples of gadgets
will be given in Sections 3.2.2 and 3.2.3.

Let a, b, c ∈ F be the three edges incident to vertex x ∈ X (the order is
arbitrary). Then we assign weight one to the edges connecting xout

a to xin
b and

xout
b to xin

c and weight zero to the edge connecting xout
c to xin

a . We call the three
edges {xout

a , xin
b }, {xout

b , xin
c }, and {xout

c , xin
a } the junctions of x. We say that

{xout
a , xin

b } and {xout
c , xin

a } are the junctions of x at Fa. An example is shown in
Figure 3.2.1.

We call an edge illegal if it connects two different gadgets but is not a junc-
tion. Thus, an illegal edge is an external edge at two different gadgets. All illegal
edges have weight zero, i.e. there are no edges of weight one that connect two
different gadgets except for the junctions. The weights of the internal edges of
the gadgets depend on the gadget, which in turn depends on L.

The following terms are defined for arbitrary subsets C of the edges of G and
so in particular for L-cycle covers. We say that C legally connects Fa if

• C contains no illegal edges incident to Fa,

• C contains exactly two or four junctions at Fa, and

• if C contains exactly two junctions at Fa, then these belong to the same
vertex x ∈ a.

We call C legal if C legally connects all gadgets.

Lemma 3.2.1. Let C̃ be an arbitrary legal subset of the edges of G. Then for all
x ∈ X, either all junctions of x are in C̃ or no junction of x is in C̃.
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Proof. Assume that there is an x ∈ X such that neither none nor all junctions of
x are in C̃. Then there is an edge a ∈ F with x ∈ a such that only one junction
of x at Fa is in C̃. Thus, C̃ does not legally connect Fa.

From a legal subset C̃ of the edges of G, we obtain a subset X̃ ⊆ X of the
vertices of H as follows: If all junctions of x are in C̃, then x ∈ X̃, otherwise
x /∈ X̃. The set X̃ turns out to be a vertex cover of H.

Lemma 3.2.2. Let C̃ be a legal subset of the edges of G. Then the set

X̃ = {x | the junctions of x are in C̃}

obtained from C̃ is a vertex cover of H.

Proof. Consider an arbitrary edge a = {x, y} ∈ F . Either two or four junctions
at Fa are in C̃. Assume without loss of generality that C̃ contains x’s junctions at
Fa. Then all of x’s junctions are in C̃ by Lemma 3.2.1, which implies x ∈ X̃.

Let us now define the requirements the gadgets must fulfil. In the following,
let C be an arbitrary L-cycle cover of G and a = {x, y} ∈ F be an arbitrary edge
of H.

R0: There exists a fixed number s ∈ N, which we call the gadget parameter,
that depends only on the gadget. The role of the gadget parameter will
become clear in the subsequent requirements.

R1: wFa(C) ≤ s− 1.

R2: If C contains 2α external edges at Fa, then wFa(C) ≤ s− α.

R3: If C contains exactly one junction of x at Fa and exactly one junction of y
at Fa, then wFa(C) ≤ s− 2. (In this case, C does not legally connect Fa.)

R4: Let C ′ be an arbitrary subset of the edges of G that legally connects Fa.
Assume that there are 2α junctions (α ∈ {1, 2}) at Fa in C ′.

Then there exists a C ′′ with the following properties:

• C ′′ differs from C ′ only in Fa’s internal edges and

• wFa(C
′′) = s− α.

Thus, given C ′, C ′′ can be obtained by locally modifying C ′ within Fa. We
call the process of obtaining C ′′ from C ′ rearranging C′ in Fa.

R5: Let C ′ be a legal subset of the edges of G. Then there exists a subset C̃ of
edges obtained by rearranging all gadgets as described in R4 such that C̃
is an L-cycle cover.
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We show the existence of such gadgets in the subsequent sections when instanti-
ating the generic reduction of this section to actually prove APX-hardness results.
In the following, let us assume that a gadget for Max-L-UCC or Max-W-L-UCC
exists. A consequence of the requirements above is the following lemma, which
instantiates Generic Lemma 3.1.1 with γ = (3/2) · s.

Lemma 3.2.3. Let X̃ ⊆ X be a vertex cover of size ñ of H. Then there exists a
legal L-cycle cover C̃ with w(C̃) = ms− ñ.

Proof. We construct C̃ as follows: If x ∈ X̃, then we add all junctions of x to C̃.
Otherwise, no junction of x is added to C̃. C̃ does not contain any other external
edges at any gadget. So far, C̃ is legal. The internal edges of the gadgets are
chosen according to R5. Thus, C̃ is an L-cycle cover.

To calculate w(C̃), assume for the moment that all junctions have weight
one. The weight of a junction at Fa and at Fb is split among Fa and Fb. If
wFa(C̃) = s− 1, then there are two junctions in C̃ at Fa according to R4. Thus,
Fa gets additional weight one from these two junctions, i.e. weight 1/2 from each
junction. If wFa(C̃) = s − 2, then there are four junctions in C̃ at Fa according
to R4. Thus, Fa gets additional weight two from these four junctions. Overall,
the weight of C̃ with the weight of all junctions set to one is ms. We have to
subtract the number of weight zero junctions in C̃ from this weight. There are ñ
junctions of weight zero in C̃, which proves the lemma.

Moreover, the requirements assert that connecting the gadgets legally is never
worse than connecting them illegally. To put it another way, given an arbitrary
L-cycle cover we can compute a legal L-cycle cover without losing any weight.
This will be proved in the next lemma, which instantiates Generic Lemma 3.1.2.

Lemma 3.2.4. Given an arbitrary L-cycle cover C, we can compute a legal L-
cycle cover C̃ with w(C̃) ≥ w(C) in polynomial time.

Proof. We proceed as follows to construct a legal L-cycle cover C̃ from an arbi-
trary L-cycle cover C:

1. Let C ′ be C with all illegal edges removed.

2. For all x ∈ X in arbitrary order: If at least one junction of x is in C, then
put all junctions of x into C ′.

3. For all a ∈ F in arbitrary order: If there is no junction at Fa in C ′, then
choose one vertex x ∈ a arbitrarily and add all junctions of x to C ′.

4. Rearrange all gadgets in C ′ according to R5. Call the subset of G’s edges
obtained in this way C̃.
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The running time of the algorithm is obviously polynomial. We have to prove
the following: C̃ is a legal L-cycle cover, and w(C̃) ≥ w(C).

Let us start by proving that C̃ is indeed a legal L-cycle cover. C̃ does not
contain any illegal edge due to Step 1. If one junction of x is in C̃, then all
junctions of x are in C̃ due to Step 2. There is no gadget that is not incident
with any junction due to Step 3. Finally, C̃ is an L-cycle cover due to R5 since
all gadgets are rearranged in Step 4.

Now we turn to proving w(C̃) ≥ w(C). All illegal edges have weight zero,
and we do not remove any junction. Thus, no weight is lost by removing external
edges at any gadget. The internal edges of the gadgets remain to be considered.

Let a = {x, y} ∈ F be an arbitrary edge of H. If wFa(C) ≤ wFa(C̃), then
nothing has to be shown. What remains to be considered are gadgets Fa with
wFa(C) > wFa(C̃). We have wFa(C̃) ≥ s− 2 according to R4 and wFa(C) ≤ s− 1
according to R1. Thus, wFa(C) = wFa(C̃) + 1 for all Fa with wFa(C) > wFa(C̃).
We will now prove that for all such gadgets, there is a junction of weight one in
C̃ that is not in C and can thus compensate for the loss of weight.

If wFa(C) > wFa(C̃), then according to R3, the junctions at Fa in C belong
to the same vertex (there are zero, one, or two junctions at Fa in C), and all four
junctions at Fa are in C̃ according to R2 and R4. Thus, during the execution of
the algorithm there is a moment at which at least one of, say, y’s junctions at Fa

is in C ′, and the junctions of x are added in the next step. We say that a vertex
x compensates Fa if

1. C̃ contains x’s junctions,

2. no junction of x at Fa is in C, and

3. at the moment at which x’s junctions are added, C ′ already contains at
least one junction of y at Fa.

Thus, every gadget Fa with wFa(C) > wFa(C̃) is compensated by some vertex x.
It remains to be shown that the number of gadgets that are compensated by

some vertex is at most the number of weight one junctions added to C ′. To prove
this, let a, b, c ∈ F be the three edges incident to x ∈ X. We distinguish three
cases:

Case 1: C contains two or three junctions of x. Then x does not compensate any
gadget since at all three gadgets Fa, Fb, and Fc there is at least one junction
of x in C.

Case 2: C contains exactly one junction of x. Assume that this junction connects
Fb to Fc. Then x does not compensate Fb and Fc. Thus, at most one gadget
is compensated by x.

Since two junctions of x are added to C ′, at least one of them has weight
one.
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Case 3: C does not contain any junction of x. Then the junctions of x are
added during Step 3. Thus, there is at least one gadget of Fa, Fb, Fc, say Fa,
such that there is no junction at all in C ′ at Fa before adding x’s junctions.
According to the third condition for compensation given above, x does not
compensate Fa. This implies that at most two gadgets are compensated by x.

All three junctions of x are added to C ′ by the algorithm, and two of them
have weight one each.

The lemma is proved since we have proved that C̃ is a legal L-cycle cover and
w(C̃) ≥ w(C).

As the last ingredient, we need the following lemma, which instantiates Ge-
neric Lemma 3.1.3.

Lemma 3.2.5. Let C̃ be the L-cycle cover constructed according to Lemma 3.2.4.
Choose ñ such that w(C̃) = ms− ñ. Let X̃ ⊆ X be the subset of vertices obtained
from C̃. Then |X̃| = ñ.

Proof. The proof is similar to the proof of Lemma 3.2.3. We set the weight of
all junctions to one. With respect to the modified edge weights, the weight of
C̃ is ms according to the requirements. Thus, ñ is the number of weight zero
junctions in C̃, which is just |X̃|.

Since all three generic lemmas have been instantiated, we obtain the following
lemma via Lemma 3.1.4 as the main result of this section.

Lemma 3.2.6. Assume that a gadget as described exists for L ⊆ U .
Then the reduction presented is an L-reduction from Min-Vertex-Cover(3) to

Max-W-L-UCC. If the gadget contains only edges of weight zero or one, then the
reduction is an L-reduction from Min-Vertex-Cover(3) to Max-L-UCC.

3.2.2 Max-W-5-UCC and Max-W-{4}-UCC

The gadget for Max-W-5-UCC is shown in Figure 3.2.2. Let G be the graph
constructed via the reduction presented in Section 3.2.1 with the gadget of this
section. Let C be an arbitrary L-cycle cover of G and a = {x, y} ∈ F . We have
to prove that all requirements are fulfilled.

R0: The gadget parameter of the gadget for Max-W-5-UCC is s = 6.

R1: Since the gadget consists of only four vertices, every 5-cycle cover contains
at most three of its internal edges. Otherwise, we would have a cycle of
length four, which is forbidden. With three internal edges, we can achieve
at most weight 5 = s − 1 by taking the two edges of weight two and one
edge of weight one.
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Figure 3.2.2: The edge gadget Fa for an edge a = {x, y} that is used to prove
the APX-completeness of Max-W-5-UCC. Bold edges are internal edges of weight
two, solid edges are internal edges of weight one, internal edges of weight zero
are not shown. The dashed and dotted edges are the junctions of x and y,
respectively, at Fa.

(a) x ∈ X̃. (b) y ∈ X̃. (c) x, y ∈ X̃.

Figure 3.2.3: Traversals of the gadget for Max-W-5-UCC that achieve maximum
weight.

R2: If C contains 2α external edges at Fa, then it contains 4−α internal edges
of Fa. At most two of them have weight two, which implies the upper bound
of 6− α = s− α.

R3: In every 5-cycle cover that contains exactly one junction of x and one
junction of y at Fa, there can be at most two edges of weight two or one
edge of weight two and two edges of weight one, which implies wFa(C) ≤ 4.

R4: We can traverse the gadget as shown in Figure 3.2.3.

R5: Assume that all gadgets are traversed in C̃ in one of the ways shown in
Figure 3.2.3. We have to show that all cycles in C̃ have a length of at
least five. Obviously, no cycle traverses only one gadget. Assume that a
cycle traverses only two gadgets Fa and Fb. Then these two gadgets are
connected via two junctions. These two junctions cannot belong to the
same vertex x since H is cubic: For all a, b ∈ F and x ∈ X, there is at most
one junction of x connecting Fa to Fb by construction. If they belong to
different vertices x, y ∈ X, then a = b = {x, y}. This cannot happen since
H is assumed to be simple. Thus, every cycle runs through at least three
gadgets.

If a cycle traverses a gadget, then it contains at least two vertices of this
gadget. Hence, every cycle has length at least six, which is long enough.

The gadget together with Lemma 3.2.6 yields the following result.
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Theorem 3.2.7. Max-W-5-UCC is APX-hard, even if the edge weights are re-
stricted to be zero, one, or two.

Although the status of Max-5-UCC is still open, allowing only one additional
edge weight of two already yields an APX-complete problem.

Vornberger [94] used edge weights one, two, and infinity to prove the NP-
hardness of computing 5-cycle covers of minimum weight. When seeking min-
imum weight cycle covers, edges of infinite weight can be considered as non-
existent. To convert his proof into a proof for the NP-hardness of Max-W-5-UCC,
there are two possibilities: Either we replace edges of weight infinity by weight
zero, weight two by weight n + 1, and weight one by weight n + 2, where n is
the number of vertices in the graph. Or we consider the graph as being not
complete, replace weight two by weight zero, weight one by weight one, and omit
edges of weight infinity. Thus, the following corollary is slightly stronger than
Vornberger’s result since it holds for complete graphs with edge weights from a
fixed set.

Corollary 3.2.8. The budget problem Max-W-5-UCCB is NP-hard, even if the
edge weights are restricted to be zero, one, or two.

The generic reduction together with the gadget used for Max-W-5-UCC works
also for Max-W-{4}-UCC. The gadget only requires that cycles of length four are
forbidden since otherwise R1 is not satisfied. Thus, all requirements are fulfilled
for Max-W-{4}-UCC in exactly the same way as for Max-W-5-UCC. In addition
to the APX-hardness of Max-W-{4}-UCC, the reduction also slightly strengthens
Vornberger’s NP-hardness result for Max-W-{4}-UCC (more precisely, the NP-
completeness of its budget problem Max-W-{4}-UCCB) in the same sense as
Corollary 3.2.8.

Theorem 3.2.9. Max-W-{4}-UCC is APX-hard, even if the edge weights are
restricted to be zero, one, or two.

Corollary 3.2.10. The budget problem Max-W-{4}-UCCB is NP-hard, even if
the edge weights are restricted to be zero, one, or two.

3.2.3 Max-k-UCC for k ≥ 6

For the sake of completeness, we describe gadgets that can be used for proving
the APX-hardness of Max-k-UCC for k ≥ 6. Since these hardness results can also
be obtained via the uniform reduction presented in the next section, we omit the
proofs. Figure 3.2.4 depicts the gadget used for Max-6-UCC while Figure 3.2.5
shows how to traverse it. Its gadget parameter is s = 7.

For all k ≥ 7, the gadget used to prove the APX-hardness of Max-k-UCC is
shown in Figure 3.2.6. The gadget merely consists of a cycle of length k − 1 =
4 +
⌊

k−5
2

⌋
+
⌈

k−5
2

⌉
, its gadget parameter is s = k− 1. Since k ≥ 7, bk−5

2
c ≥ 1, i.e.
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Figure 3.2.4: The edge gadget Fa for an edge a = {x, y} ∈ F that is used to prove
the APX-completeness of Max-6-UCC. The solid edges are the internal edges of
the gadget that have weight one, internal edges of weight zero are not shown.
The dashed and dotted edges are the junctions of x and y, respectively, at Fa.

(a) x ∈ X̃ (b) y ∈ X̃

(c) x, y ∈ X̃ (d) x, y ∈ X̃

Figure 3.2.5: Traversals of the gadget for Max-6-UCC that achieve maximum
weight.

there is at least one vertex between xin
a and yin

a and at least one vertex between
xout

a and yout
a . Figure 3.2.7 shows how to traverse such a gadget. Overall, we

obtain the following result.

Theorem 3.2.11. Max-k-UCC is APX-complete for all k ≥ 6.

3.3 A Uniform Reduction for L-Cycle Covers

3.3.1 Clamps

To begin this section, we define so-called clamps, which were introduced by Hell
et al. [56]. Clamps are crucial for the uniform hardness proof presented later on
in this section.

Let K = (V, E) be an undirected graph, let u, v ∈ V be two vertices of K,
and let L ⊆ U . We denote by K−u and K−v the subgraphs of K induced by
V \ {u} and V \ {v}. Moreover, K−u−v denotes the subgraph of G induced by
V \{u, v}. Finally, for k ∈ N, Kk is the following graph: Let y1, . . . , yk be vertices
with yi /∈ V , add edges {u, y1}, {yi, yi+1} for 1 ≤ i ≤ k − 1, and {yk, v}. For
k = 0, we directly connect u to v.
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Figure 3.2.6: The edge gadget for Max-k-UCC, k ≥ 7.

(a) x ∈ X̃ (b) y ∈ X̃

(c) x, y ∈ X̃

Figure 3.2.7: Traversals of the gadget for Max-k-UCC that achieve maximum
weight.

Definition 3.3.1 (Hell et al. [56]). Let K = (V, E) be an undirected graph,
u, v ∈ V , and L ⊆ U . We call K an L-clamp with connectors u and v if the
following properties hold:

1. Both K−u and K−v contain an L-cycle cover.

2. Neither K nor K−u−v nor Kk for any k ∈ N contains an L-cycle cover.

Hell et al. [56] proved that L-UCC is NP-hard for all L with L 6⊆ {3, 4}. L-
clamps are crucial to their proof. They proved the following result which we will
exploit for our reduction.

Lemma 3.3.2 (Hell et al. [56]). Let L ⊆ U be non-empty. Then there exists
an L-clamp if and only if L 6⊆ {3, 4}.

In this and the following section, we are concerned with undirected graphs.
In Section 3.3.3, we will extend the notion of L-clamps to directed graphs and
prove that directed L-clamps exist for all non-empty sets L ⊆ D with L 6= D.

Figure 3.3.1 shows an example of an L-clamp for finite L. For other L-clamps,
we refer to Hell et al. [56].
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︸ ︷︷ ︸

Λ−3 vertices

v

u

Figure 3.3.1: An L-clamp for finite L with max(L) = Λ.

If there exists an L-clamp for some L, then we can assume that the connectors
u and v both have degree two since we can remove all edges that are not used in
the L-cycle covers of K−v and K−u.

For our purpose, consider any non-empty set L ⊆ {3, 4, 5, . . .} with L 6⊆ {3, 4}.
We fix one L-clamp K with connectors u, v ∈ V arbitrarily and refer to it in the
following as the L-clamp, although there exists more than one L-clamp. Let σ
be the number of vertices of K.

We are concerned with edge-weighted graphs. Therefore, we transfer the
notion of clamps to graphs with edge weights zero and one in the obvious way:
Let G be an undirected complete graph with vertex set V and edge weights zero
and one and let K be an L-clamp. Let U ⊆ V . We say that U is an L-clamp
with connectors u, v ∈ U if the subgraph of G induced by U restricted to the
edges of weight one is isomorphic to K with u and v mapped to connectors of K.

Let C be a cycle cover of G. For any V ′ ⊆ V , we say that V ′ is isolated in
C if there is no edge in C connecting V ′ to V \ V ′.

Let U be a clamp with connectors u and v in G. We say that U absorbs u
and U expels v if U \ {v} is isolated in C. We call U healthy in C if U either
absorbs u and expels v or absorbs v and expels u and wU(C) = σ − 1.

Let us prove some properties of L-clamps in edge-weighted graphs. In partic-
ular, we will prove that σ − 1 is the maximum weight that an L-cycle cover can
achieve within an L-clamp. Thus, healthy clamps achieve maximum weight.

Lemma 3.3.3. Let G be an undirected graph with vertex set V and edge weights
zero and one, and let U ⊆ V be an L-clamp with connectors u and v in G. Let
C be an arbitrary L-cycle cover of G and |U | = σ. Then the following properties
hold:

1. wU(C) ≤ σ − 1.

2. If there are 2α external edges at U in C, then wU(C) ≤ σ − α.

3. Assume that U absorbs u. Then there exists an L-cycle cover C̃ that differs
from C only in the internal edges of U and has wU(C̃) = σ − 1.

The same holds if U absorbs v.
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4. Assume that there is one external edge at U in C that is incident to u and
one external edge at U in C that is incident to v. Then wU(C) ≤ σ − 2.

Proof. If wU(C) = σ was true, then U would contain an L-cycle cover consisting
solely of weight one edges since |U | = σ. This would contradict U being an
L-clamp.

The second claim follows immediately from |U | = σ.
Since U is an L-clamp, U \ {u} and U \ {v} both contain an L-cycle cover

consisting solely of weight one edges. Since there are σ − 1 edges in U \ {u} and
U \ {v}, the third claim follows.

The fourth claim remains to be proved. Both u and v are incident to an
external edge in C. Thus, if there is any further external edge at U in C, we have
at least four external edges and thus wU(C) ≤ σ − 2. So assume that there are
only two external edges at U in C, one incident to u and the other incident to
v. Thus, u and v are on the same cycle in C. Let k be the number of vertices
of this cycle that are not in U . We have σ − 1 internal edges of U in C. If all
of them weigh one, then this contradicts the fact that Kk does not contain an
L-cycle cover, where K is the L-clamp.

3.3.2 L-Cycle Covers in Undirected Graphs

Let L ⊆ U be non-empty with L 6⊆ {3, 4}. Thus, L-clamps exist and we fix
one as in the previous section. Let σ be the number of vertices in the L-clamp.
Let λ = min(L). (This choice is arbitrary. We could choose any number in
L.) We will reduce Min-Vertex-Cover(λ) to Max-L-UCC. Min-Vertex-Cover(λ)
is APX-complete since λ ≥ 3 (see Section 3.4).

Let H = (X, F ) be an instance of Min-Vertex-Cover(λ) with n = |X| vertices
and m = λn/2 = |F | edges. Our instance G for Max-L-UCC consists of λ
subgraphs G1, . . . , Gλ, each containing 2σm vertices. We start by describing G1.
Then we state the differences between G1 and G2, . . . , Gλ and say to which edges
between these graphs we assign weight one.

Let a = {x, y} ∈ F be any edge of H. We construct an edge gadget Fa

for a that consists of two L-clamps X1
a and Y 1

a and one additional vertex t1a as
shown in Figure 3.3.2. The connectors of X1

a are x1
a and z1

a while the connectors
of Y 1

a are y1
a and z1

a, i.e. X1
a and Y 1

a share the connector z1
a. Let p1

a and q1
a be

the two unique vertices in Y 1
a that share a weight one edge with z1

a. (The choice
of Y 1

a is arbitrary, we could choose the corresponding vertices in X1
a as well.)

We assign weight one to both {p1
a, t

1
a} and {q1

a, t
1
a}. Thus, the vertex t1a can also

serve as a connector for Y 1
a . We extend the notions of absorbing and expelling

appropriately: Y 1
a absorbs t1a and expels both y1

a and z1
a if (Y 1

a ∪ {t1a}) \ {y1
a, z

1
a}

is isolated. If Y 1
a absorbs y1

a or z1
a, then Y 1

a expels t1a.
Now let x ∈ X be any vertex of H and let a1, . . . , aλ ∈ F be the λ edges

that are incident to x. We connect the vertices x1
a1

, . . . , x1
aλ

to form a path
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y1

a

q1

a

x1

a

z1

a

p1

a

X1

a
Y 1

a

t1
a

Figure 3.3.2: The edge gadget for a = {x, y} that consists of two L-clamps. The
vertex z1

a is the only vertex that belongs to both clamps X1
a and Y 1

a .

by assigning weight one to the edges {x1
aη

, x1
aη+1

} for η ∈ [λ − 1]. Together

with edge {x1
aλ

, x1
a1
}, these edges form a cycle of length λ ∈ L, but note that

w({x1
aλ

, x1
a1
}) = 0. These λ edges are called the junctions of x. The junctions

at Fa for some a = {x, y} ∈ F are the junctions of x and y that are incident
to Fa. Overall, the graph G1 consists of 2σm vertices since every edge gadget
consists of 2σ vertices.

The graphs G2, . . . , Gλ are almost exact copies of G1. The graph Gξ, ξ ∈
{2, . . . , λ} has clamps Xξ

a and Y ξ
a and vertices xξ

a, y
ξ
a, z

ξ
a, t

ξ
a, p

ξ
a, q

ξ
a for each edge

a = {x, y} ∈ F , just as above. The edge weights are also identical with the single
exception that the edge {xξ

aλ
, xξ

a1
} also has weight one. Note that we only use the

term “gadget” for the subgraphs of G1 defined above although almost the same
subgraphs occur in G2, . . . , Gλ as well. Similarly, the term “junction” refers only
to an edge in G1 as defined above. The copies in G2, . . . , Gλ of a junction in G1

are not called junctions.
Finally, we describe how to connect G1, . . . , Gλ with each other. For every

edge a ∈ F , there are λ vertices t1a, . . . , t
λ
a. These are connected to form a cy-

cle consisting solely of weight one edges, i.e. we assign weight one to all edges
{tξa, tξ+1

a } for ξ ∈ [λ − 1] and to {tλa, t1a}. Figure 3.3.3 shows an example of the
whole construction from the viewpoint of a single vertex.

As in the previous section, we call edges that are not junctions but connect
two different gadgets illegal. Edges with both vertices in the same gadget are
again called internal edges. In addition to junctions, illegal edges, and internal
edges, we have a fourth kind of edges: The t-edges of Fa for a ∈ F are the two
edges {t1a, t2a} and {t1a, tλa}. The t-edges are not illegal. All other edges connecting
G1 to Gξ for ξ 6= 1 are illegal.

Let C be any subset of the edges of the graph G thus constructed, and let
a = {x, y} ∈ F be an arbitrary edge of H. We say that C legally connects Fa

if the following properties are fulfilled:

• C contains no illegal edges incident to Fa and exactly two or four junctions
at Fa.

• If C contains exactly two junctions at Fa, then these belong to the same
vertex and there are two t-edges at Fa in C.
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Figure 3.3.3: The construction for a vertex x ∈ X incident to edges a, b, c ∈ F
for λ = 3 (Figure 3.2.1(a) on page 25 shows the corresponding graph). The dark
grey areas are the edge gadgets Fa, Fb, and Fc. Their copies in G2 and G3 are
light grey. The cycles connecting the t-vertices are dotted. The cycles connecting
the x-vertices are solid, except for the edge {x1

c , x
1
a}, which has weight zero and

is dashed. The vertices z1
a, . . . , z

3
c are not shown for legibility.

• If C contains four junctions at Fa, then these are the only external edges
in C incident to Fa. In particular, C does not contain t-edges at Fa.

We call C legal if C legally connects all gadgets.
In analogy to Lemma 3.2.1 in the previous section, we have the following

lemma. The proof is identical to the proof of Lemma 3.2.1 and is therefore
omitted.

Lemma 3.3.4. Let C̃ be an arbitrary legal subset of the edges of G. Then for all
x ∈ X, either all junctions of x are in C̃ or no junction at all of x is in C̃.

Thus, from a legal L-cycle cover C̃, we obtain the subset X̃ containing all
vertices whose junctions are in C̃. Again, the set X̃ obtained from a legal subset
C̃ is a vertex cover of H. We omit the proof of the following lemma as well and
refer to the proof of Lemma 3.2.2.

Lemma 3.3.5. Let C̃ be a legal subset of the edges of G. Then the set

X̃ = {x | the junctions of x are in C̃}

obtained from C̃ is a vertex cover of H.

We only considered G1 when defining the terms “legally connected” and “le-
gal”. This is because in G1, we lose weight one for putting x into the vertex
cover since the junction {x1

aλ
, x1

a1
} weighs zero. The other λ − 1 copies of the

construction are only needed for the following reason: If, for some edge a, the
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vertex t1a is not absorbed by Y 1
a , it has to be part of some other cycle. Since we

want a reduction that works for all L with L 6⊆ {3, 4}, we do not know much
about L except that λ ∈ L.

The next lemma is an analogue of Lemma 3.2.3 and instantiates Generic
Lemma 3.1.1 with γ = σλ2.

Lemma 3.3.6. Let X̃ be a vertex cover of size ñ of H. Then G contains an
L-cycle cover C̃ with w(C̃) = 2σλm− ñ.

Proof. We start by describing C̃ in G1. For every vertex x ∈ X̃, the cycle
consisting of all λ junctions is in C̃. Let a = {x, y} ∈ F be any edge. Then either
x or y or both are in X̃. If only x is in X̃, we let X1

a absorb z1
a, Y 1

a absorb y1
a,

and t1a is free. If only y is in X̃, we let X1
a absorb x1

a, Y 1
a absorb z1

a and t1a is again
free. If both x and y are in X̃, then we let X1

a absorb z1
a and Y 1

a absorb t1a, thus
t1a is not free.

We perform the same construction for G1 for all copies G2, . . . , Gλ. If t1a is
free, then t2a, . . . , t

λ
a are also not part of any cycle yet and we let them form a

cycle of length λ in C̃.
Clearly, C̃ is legal. Furthermore, C̃ is an L-cycle cover: Every cycle either

has length λ ∈ L or lies totally inside a single L-clamp. Since all L-clamps are
healthy in C̃, C̃ is an L-cycle cover.

Let us calculate the weight of C̃. All edges used within G2, . . . , Gλ have
weight one. The only edges that connect different copies Gξ and Gξ′ are edges
{tξa, tξ+1

a } with ξ′ = ξ + 1 (with interpreting n + 1 as 1), which have weight one
as well. Almost all edges used in G1 also have weight one; the only exception is
one junction of weight zero for each x ∈ X̃.

Since |X̃| = ñ, there are ñ edges of weight zero in C̃. The graph G contains
2σλm vertices, thus C̃ contains 2σλm edges, 2σλm − ñ of which have weight
one.

Let C be an L-cycle cover of G and let a ∈ F . We define WFa(C) as the sum
of the weights of all internal edges of Fa plus half the number of t-edges in C at
Fa. Analogously, WGξ

(C) is the number of weight one edges with both vertices
in Gξ plus half the number of weight one edges with exactly one vertex in Gξ.

Lemma 3.3.7. Let C be an L-cycle cover and let j be the number of weight one
junctions in C. Then

w(C) = j +
∑
a∈F

WFa(C) +
λ∑

ξ=2

WGξ
(C) .

Proof. Every edge with both vertices in the same Gξ is counted once. The only
edges of weight one between different Gξ are the edges {tξa, tξ+1

a } and {tλa, t1a}.
These are counted with one half in both WGξ

(C) and WGξ+1
(C) for 2 ≤ ξ ≤ λ−1

or one half in both WGξ
(C) and WFa(C) for ξ ∈ {2, λ}.
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In a legal L-cycle cover C̃ as described in Lemma 3.3.6, we have WGξ
(C̃) =

2σm for all ξ ∈ {2, . . . , λ} since every vertex in Gξ is only incident to edges of
weight one of the cycle cover by construction.

Next, we show some properties of the edge gadgets. These properties resemble
the gadget requirement in the previous section with 2σ as the gadget parameter.

Lemma 3.3.8. Let C be an arbitrary L-cycle cover of G and let a = {x, y} ∈ F
be an arbitrary edge of H. Then the following properties hold:

1. WFa(C) ≤ 2σ − 1.

2. If there are 2α external edges at Fa in C, then WFa(C) ≤ 2σ − α.

3. If there is one junction of x and one junction of y at Fa in C, then
WFa(C) ≤ 2σ − 2.

4. Let C ′ be an arbitrary subset of edges of G that legally connect Fa. Assume
that there are 2α junctions (α ∈ {1, 2}) at Fa in C ′. Let C ′′ be obtained
from C ′ by making the two clamps in Fa healthy, i.e. C ′′ differs from C ′

only in Fa’s internal edges. Then WFa(C
′′) = 2σ − α.

5. Assume that C ′ is a legal subset of the edges of G, that for all a ∈ F both
clamps of Fa are healthy, and that C ′ traverses G2, . . . , Gλ in exactly the
same way as G1. Then C ′ is an L-cycle cover.

Proof. If WFa(C) > 2σ−1, then WFa(C) = 2σ. Then there would be no external
edges in C at Fa and Fa would contain an L-cycle cover consisting solely of weight
one edges. This would imply that X1

a must absorb x1
a and Y 1

a must absorb y1
a.

Thus, z1
a is incident to two edges of weight zero contradicting WFa = 2σ.

Since Fa consists of 2σ vertices, the second claim holds.
If there is one junction of x and one junction of y at Fa in C and there are

other external edges at Fa in C, then WFa(C) ≤ 2σ − 2 according to the second
claim. If there is an internal edge of Fa in C that has weight zero, we are done
as well. Otherwise, z1

a is incident to some vertex in X1
a and thus w(X1

a) ≤ σ − 2
according to Lemma 3.3.3(4), which proves the third claim of the lemma.

The fourth claim follows from the construction and Lemma 3.3.3(3).
The fifth claim follows from the construction: C ′ consists solely of cycles and

every cycle is either inside a healthy L-clamp or has length λ ∈ L.

Let us now instantiate Generic Lemma 3.1.2.

Lemma 3.3.9. Given an arbitrary L-cycle cover C, we can compute a legal L-
cycle cover C̃ with w(C̃) ≥ w(C) in polynomial time.

Proof. We proceed similarly as in the proof of Lemma 3.2.4:

1. Let C ′ be C with all illegal edges with at least one endpoint in G1 removed.
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2. For all x ∈ X in arbitrary order: If at least one junction of x is in C, then
put all junctions of x into C ′.

3. For all a = {x, y} ∈ F in arbitrary order: If neither the junctions of x nor
the junctions of y are in C ′, choose arbitrarily one vertex of a, say x, and
add all junctions of x to C ′.

4. Rearrange C ′ within G1 such that all clamps are healthy in C ′.

5. Rearrange C ′ such that all G2, . . . , Gλ are traversed exactly like G1.

6. For all a ∈ F : If t1a, . . . , t
ξ
a are not already absorbed by clamps, let them

form a cycle of length λ. Call the result C̃.

The running time of the algorithm is obviously polynomial. Moreover, C̃ is
a legal L-cycle cover according to Lemma 3.3.8(5). What remains is to prove
w(C̃) ≥ w(C).

Let w(C) = j +
∑

a∈F WFa(C) +
∑λ

ξ=2 WGξ
(C) be the weight of C according

to Lemma 3.3.7, i.e. C contains j junctions of weight one. Analogously, let
w(C̃) = ̃ +

∑
a∈F WFa(C̃) +

∑λ
ξ=2 WGξ

(C̃), i.e. ̃ is the number of weight one

edges in C̃.
All illegal edges have weight zero, and we do not remove any junctions. We

have WGξ
(C̃) = 2σm for all ξ, which is maximal. Thus, no weight is lost in

this way. What remains is to consider the internal edges of the gadgets and the
t-edges.

Let a = {x, y} be an arbitrary edge of H. If WFa(C) ≤ WFa(C̃), then noth-
ing has to be shown. Those gadgets Fa with WFa(C) > WFa(C̃) remain to
be considered. We have WFa(C̃) ≥ 2σ − 2 according to Lemma 3.3.8(4) and
WFa(C) ≤ 2σ − 1 according to Lemma 3.3.8(1). Thus, WFa(C) = 2σ − 1 and
WFa(C̃) = 2σ − 2 = WFa(C) − 1 for all a ∈ F with WFa(C) > WFa(C̃). As in
the proof of Lemma 3.2.4, our aim is to prove that for all such gadgets, there is
a junction of weight one in C̃ that is not in C and can thus compensate for the
loss of weight one in Fa. This means that we have to prove that ̃ is at least j
plus the number of edges a with WFa(C) > WFa(C̃).

If WFa(C) = 2σ−1, then according to Lemma 3.3.8(3), the junctions at Fa in
C (if there are any) belong to the same vertex. Since WFa(C̃) = 2σ − 2, all four
junctions at Fa are in C̃. Thus, while executing the above algorithm there is a
moment at which at least one of, say, y’s junctions at Fa is in C ′, and the junctions
of x are added in the next step. The notion that a vertex x compensates Fa

is defined in exactly the same way as in the proof of Lemma 3.2.4. Thus, every
gadget Fa with WFa(C̃) < WFa(C) is compensated by some vertex x ∈ a.

It remains to be shown that the number of gadgets that are compensated by
some vertex is at most equal to the number of weight one junctions added to C ′.
Let η ∈ {0, . . . , λ} be the number of junctions of x in C. If η = λ, then x does
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not compensate any gadget. If η = 0, i.e. C does not contain any of x’s junctions,
then the junctions of x are added during Step 3 of the algorithm because there
is some edge a ∈ F with x ∈ a such that there is no junction at all in C ′ at Fa

before adding x’s junctions. Thus, x does not compensate Fa. At most λ − 1
gadgets are compensated by x, and λ − 1 junctions of x have weight one. The
case that remains is η ∈ [λ − 1]. Then λ − η junctions of x are added and at
least λ − η − 1 of them have weight one. On the other hand, there are at least
η +1 gadgets Fa such that at least one junction of x at Fa is already in C: Every
junction is at two gadgets, and thus η junctions are at η + 1 or more gadgets.
Thus, at most λ− η − 1 gadgets are compensated by x.

The lemma is proved since C̃ is a legal k-cycle cover with w(C̃) ≥ w(C).

Finally, we prove the following counterpart to Lemma 3.3.6. This lemma
instantiates Generic Lemma 3.1.3.

Lemma 3.3.10. Let C̃ be the L-cycle cover constructed as described in the
proof of Lemma 3.3.9. Choose ñ such that w(C̃) = 2σλm − ñ. Let X̃ = {x |
x’s junctions are in C̃} ⊆ X be the subset obtained from C̃. Then |X̃| = ñ.

Proof. The proof is similar to the proof of Lemma 3.3.6. We set the weight of all
junctions to one. With respect to the modified edge weights, the weight of C̃ is
2σλm. Thus, ñ is the number of weight zero junctions in C̃, which is just |X̃|.

All three generic lemmas are instantiated, and we obtain the following result
from Lemma 3.1.4.

Theorem 3.3.11. For all L ⊆ U with L 6⊆ {3, 4}, Max-L-UCC is APX-hard.

3.3.3 Clamps in Directed Graphs

The aim of this section is to prove a counterpart to Lemma 3.3.2 (for the existence
of L-clamps) for directed graphs. Let K = (V, E) be a directed graph and
u, v ∈ V . Again, K−u, K−v, and K−u−v denote the graphs obtained by deleting
u, v, and both u and v, respectively. For k ∈ N, Kk

u denotes the following graph:
Let y1, . . . , yk /∈ V be new vertices and add edges (u, y1), (y1, y2), . . . , (yk, v). For
k = 0, we add the edge (u, v). The graph Kk

v is similarly defined, except that we
now start at v, i.e. we add the edges (v, y1), (y1, y2), . . . , (yk, u). K0

v is K with the
additional edge (v, u).

Now we can define clamps for directed graphs.

Definition 3.3.12 (Directed L-Clamp). Let L ⊆ D. A directed graph K =
(V, E) with u, v ∈ V is a directed L-clamp with connectors u and v if the following
properties hold:

• Both K−u and K−v contain an L-cycle cover.
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• Neither K nor K−u−v nor Kk
u nor Kk

v for any k ∈ N contains an L-cycle
cover.

Let us now prove that directed L-clamps exist for almost all L.

Theorem 3.3.13. Let L ⊆ D be non-empty. Then there exists a directed L-clamp
if and only if L 6= D.

Proof. We first prove that directed L-clamps exist for all non-empty sets L ⊆ D
with L 6= D. We start by considering finite L and postpone the two cases that L
is finite and that both L and L are infinite.

If L is finite, max(L) = Λ exists. For L = {2}, the graph shown in Fig-
ure 3.3.4(a) is a directed L-clamp: either u or v forms a cycle of length two
with x1, and there are no other possibilities. Otherwise, we have Λ ≥ 3. Fig-
ure 3.3.4(b) shows a directed L-clamp for this case, which is a directed variant of
the undirected clamp shown in Figure 3.3.1: x1, . . . , xΛ−1 must be on the same
cycle. Since Λ is the maximum length allowed, these vertices form a cycle of
length Λ with either u or v. Again, there are no other possibilities.

Now we consider finite L. We start by considering the special case of L = {2}.
In this case, Figure 3.3.4(c) shows an L-clamp: x1, x2, and x3 must be on the
same cycle since length two is forbidden. This cycle must include u or v. If it
includes u, then x1 is left via (x1, u) and x3 is entered via (u, x3). Thus, we have
a cycle of length four in this case. If the cycle includes v, we can argue similarly.

Otherwise, max(L) = Λ ≥ 3 and Λ + 2 ∈ L and the graph shown in Fig-
ure 3.3.4(d) is an L-clamp: The vertices x1, . . . , xΛ−1 must all be on the same
cycle. Thus, either (y, x1) or (z, x1) is in the cycle cover. By symmetry, it suffices
to consider the first case. Since Λ /∈ L, the edge (xΛ−1, y) cannot be in the cycle
cover. Thus, (v, y) and (xΛ−1, z) and hence (z, v) are in the cycle cover.

The case that remains to be considered is that both L and L are infinite.
We distinguish two subcases. Either there exists a Λ ≥ 4 with Λ, Λ + 2 /∈ L
and Λ + 1 ∈ L. In this case, the graph shown in Figure 3.3.4(e) is an L-clamp:
x1, . . . , xbΛ/2c and xbΛ/2c+1, . . . , xΛ must be on the same cycle. Since the lengths
Λ and Λ + 2 are not allowed, either v or u is expelled and the other vertex is
absorbed.

Or there does not exist a Λ with Λ, Λ + 2 /∈ L and Λ + 1 ∈ L. Since both L
and L are infinite, there exists a Λ ≥ 3 with Λ /∈ L and Λ + 2 ∈ L and we can
use the graph already used for finite L (Figure 3.3.4(d)) as a directed L-clamp.

From Lemma 3.3.14 below we obtain the fact that D-clamps do not exist,
which completes the proof.

Lemma 3.3.14. Let G = (V, E) be a directed graph and let u, v ∈ V . If G−u

and G−v both contain a cycle cover, then

• both G and G−u−v contain cycle covers or
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x1

u v

(a) A {2}-clamp.

x2 x3 xΛ−2

︸ ︷︷ ︸

Λ−3 vertices

xΛ−1x1

u

v

(b) An L-clamp for finite L with max(L) = Λ ≥ 3.

x1 x3

x2

u

v

(c) A {2}-clamp.

︸ ︷︷ ︸

Λ− 3 vertices

u v

x3x2 xΛ−2
x1

xΛ−1

y

z

(d) An L-clamp for Λ 6∈ L and Λ + 2 ∈ L with Λ ≥ 3.

︸ ︷︷ ︸

dΛ/2e − 2 vertices

bΛ/2c − 2 vertices
︷ ︸︸ ︷

xbΛ/2c+1

xbΛ/2cx2x1

xΛ

u v

(e) An L-clamp for Λ,Λ + 2 6∈ L and Λ + 1 ∈ L with Λ ≥ 4.

Figure 3.3.4: Directed L-clamps. The connectors are u and v, the internal vertices
are x1, x2, . . . and y, z.

• all Gk
u and Gk

v for k ∈ N contain cycle covers.

Proof. Let E−u and E−v be the sets of edges of the cycle covers of G−u and
G−v, respectively. We construct two sequences of edges P = (e1, e2, . . .) and
P ′ = (e′1, e

′
2, . . .). These sequences can be viewed as augmenting paths and we use

them to construct cycle covers of G−u−v and G or Gk
u and Gk

v . The sequence P is
given uniquely by traversing edges of E−v forwards and edges of E−u backwards:

• e1 = (u, x1) is the unique outgoing edge of u = x0 in E−v.

• If ei = (xi−1, xi) ∈ E−v, i.e. if i is odd, then ei+1 = (xi+1, xi) ∈ E−u is the
unique incoming edge of xi in E−u.

• If ei = (xi, xi−1) ∈ E−u, i.e. if i is even, then ei+1 = (xi, xi+1) ∈ E−v is the
unique outgoing edge of xi in E−v.

• If in any of the above steps no extension of P is possible, then stop.

Let P = (e1, . . . , e`). We observe two properties of the sequence P .

Lemma 3.3.15. 1. No edge appears more than once in P .
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u v

(a) A graph G.

u v

(e) Another graph G.

u v

(b) Cycle covers of G−v (dashed and solid) and
G−u (dotted and solid).

u v

(f) Cycle covers of G−v (dashed and
solid) and G−u (dotted and solid).

u

u

v

v

(c) P (top) and P ′ (bottom). Dashed and dotted
edges belong to the cycle covers of G−v and G−u,
respectively.

u

u v

v

(g) P (top) and P ′ (bottom).

u

u

v

v

(d) Cycle covers of G0
v (top) and G0

u (bottom).

u v

u v

(h) Cycle covers of G (top) and G−u−v

(bottom).

Figure 3.3.5: Constructing new cycle covers from the sequences P and P ′.

2. If ` is odd, i.e. e` ∈ E−v, then e` = (x`−1, u). If ` is even, i.e. e` ∈ E−u,
then e` = (v, x`−1).

Proof. Assume the contrary of the first claim and let ei = ej (i 6= j) be an
edge that appears at least twice in P such that i is minimal. If i = 1, then
ej = (u, x1) ∈ E−v. This would imply ej−1 = (u, xj−2) ∈ E−u, a contradic-
tion. If i > 1, then assume ei = (xi−1, xi) ∈ E−v without loss of generality.
Since outdegE−u

(xi−1) = 1, the edge ei−1 = ej−1 is uniquely determined, which
contradicts the minimality of i.

Let us now prove the second claim. Without loss of generality, we assume
that the last edge e` belongs to E−v. Let e` = (x`−1, x`). The path P cannot be
extended, which implies that there does not exist an edge (x`+1, x`) ∈ E−u. Since
E−u is a cycle cover of G−u, this implies x` = u and completes the proof.

Now we build the sequence P ′ analogously, except that we start with the edge
e′1 = (x′1, v) ∈ E−u. Again, we traverse edges of E−v forwards and edges of E−u
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backwards. Let P ′ = (e′1, . . . , e
′
`′).

No edge appears in both P and P ′ as can be proved similarly to the first
observation above. Moreover, either P ends at u and P ′ ends at v or vice versa:
e` = (x`−1, u) if and only if e′`′ = (v, x`′−1) and e` = (v, x`−1) if and only if
e′`′ = (x`′−1, u).

Let P−u ⊆ E−u denote the set of edges of E−u that are part of P . The sets
P−v, P ′

−u, P ′
−v are defined similarly.

Two examples are shown in Figure 3.3.5: Figures 3.3.5(a) and 3.3.5(b) show
a graph with its cycle covers, while Figure 3.3.5(c) depicts P and P ′, the former
starting at u and ending at v and the latter starting at v and ending at u.
Figures 3.3.5(e), 3.3.5(f), and 3.3.5(g) show another example graph, this time P
starts and ends at u and P ′ starts and ends at v.

We distinguish two cases. Let us start with the case that P starts at u and
ends at v and, consequently, P ′ starts at v and ends at u. Then

E0
u = (E−v \ P−v) ∪ P−u ∪ {(u, v)}

is a cycle cover of G0
u. To prove this, we have to show indegE0

u
(x) = outdegE0

u
(x) =

1 for all x ∈ V :

• We removed the outgoing edge of u in E−v, which is in P−v. The incoming
edge of u in E−v is left. P−u does not contain any edge incident to u and
(u, v) is an outgoing edge of u. Thus, indegE0

u
(u) = outdegE0

u
(u) = 1.

• There is no edge incident to v in E−v. P−u contains an outgoing edge of v
and (u, v) is an incoming edge of v. Thus, indegE0

u
(v) = outdegE0

u
(v) = 1.

• For all x ∈ V \ {u, v}, either both P−v and P−u contain an incoming edge
of x or none of them does. Analogously, either both P−v and P−u contain
an outgoing edge of x or none of them does. Thus, replacing P−v by P−u

changes neither indeg(x) nor outdeg(x).

By replacing the edge (u, v) by a path (u, y1), . . . , (yk, v), we obtain a cycle
cover of Gk

u for all k ∈ N.
A cycle cover of G0

v is obtained similarly:

E0
v = (E−u \ P−u) ∪ P−v ∪ {(v, u)} .

As above, we obtain cycle covers of Gk
v by replacing the edge (v, u) by a path

(v, y1), . . . , (yk, u).
Figure 3.3.5(d) shows an example of how the new cycle covers are obtained.
The case that remains to be considered is that P starts and ends at u and P ′

starts and ends at v. In this case,

(E−v \ P−u) ∪ P−v and
(E−u \ P ′

−v) ∪ P ′
−u
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are cycle covers of G and

(E−v \ P−v) ∪ P−u and
(E−u \ P ′

−u) ∪ P ′
−v

are cycle covers of G−u−v. The proof is similar to the previous case above. Fig-
ure 3.3.5(h) shows an example.

For directed clamps on edge-weighted graphs, we have the same properties as
for undirected graphs: Lemma 3.3.3 holds also for directed graphs.

3.3.4 L-Cycle Covers in Directed Graphs

From the hardness results in the previous sections and the work by Hell et al. [56],
we obtain the NP-hardness and APX-hardness of L-DCC and Max-L-DCC, re-
spectively, for all L with 2 /∈ L and L 6⊆ {2, 3, 4}: we use the same reduction as
for undirected cycle covers and replace every undirected edge {u, v} by a pair of
directed edges (u, v) and (v, u). However, this does not work if 2 ∈ L and also
leaves open the cases when L ( {2, 3, 4}. If L = {2}, then L-DCC, Max-L-DCC,
and Max-W-L-DCC can easily be solved in polynomial time: Replace every pair
of edges (u, v) and (v, u) by an edge {u, v} of weight w(u, v)+w(v, u) and compute
a matching of maximum weight on the undirected graph thus obtained. D-DCC,
Max-D-DCC, and Max-W-D-DCC can also be solved in polynomial time.

We will show that L = {2} and L = D are the only cases in which directed
L-cycle covers can be computed efficiently by proving the NP-hardness of L-DCC
and the APX-hardness of Max-L-DCC for all other L. Thus, we completely settle
the complexity for directed graphs.

Let us start by proving the APX-hardness.

Theorem 3.3.16. Let L ⊆ D be a non-empty set. If L 6= {2} and L 6= D, then
Max-L-DCC and Max-W-L-DCC are APX-hard.

Proof. We adapt the proof presented in Section 3.3.2. Since L 6= {2}, there
exists a λ ∈ L with λ ≥ 3. Thus, Min-Vertex-Cover(λ) is APX-complete (Theo-
rem 3.4.1). All we need is such a λ and a directed L-clamp. Then we can reduce
Min-Vertex-Cover(λ) to Max-L-DCC.

Let H = (X, F ) be a λ-regular graph. The edge gadget Fa for an edge
a = {x, y} ∈ F is shown in Figure 3.3.6. It consists of two directed L-clamps X1

a

and Y 1
a . The connectors of X1

a are x1
a and z1

a while the connectors of Y 1
a are y1

a

and z1
a. Again, t1a can also serve as a connector of Y 1

a .
The edge gadgets build the graph G1: Let x ∈ X be a vertex of H and

a1, . . . , aλ ∈ F be the edges incident to x in H (in arbitrary order). Then we
assign weight one to the edges (x1

aξ
, x1

aξ+1
) for all ξ ∈ [λ− 1]. The edge (x1

aλ
, x1

a1
)

has weight zero. These λ edges are called the junctions of x.
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p1

a

y1

a

q1

a

x1

a

z1

a

Y 1

a
X1

a

t1
a

Figure 3.3.6: The directed edge gadget for a = {x, y} ∈ F .

Again, G2, . . . , Gλ are exact copies of G1 except that (xξ
aλ

, xξ
a1

) is assigned
weight one for all ξ ∈ {2, 3, . . . , λ}.

The t-vertices remain to be connected. For all edges a ∈ F , we assign weight
one to all λ edges (tξa, t

ξ+1
a ) for ξ ∈ {1, 2, . . . , λ− 1} and (tλa, t

1
a).

We assign weight zero to all edges that are not mentioned.
The remainder of the proof goes along the same lines as the APX-hardness

proof for undirected L-cycle covers.

We now prove that for all L /∈ {{2},D}, L-DCC is NP-hard. This does not
follow directly from the APX-hardness of Max-L-DCC: A famous counterexample
is 2SAT, for which it is APX-hard to maximise the number of simultaneously
satisfied clauses [70], although testing whether a 2CNF formula is satisfiable, i.e.
whether all clauses are satisfiable simultaneously, takes only polynomial time [69,
Section 9.2].

Theorem 3.3.17. Let L ⊆ D be a non-empty set. If L 6= {2} and L 6= D, then
L-DCC is NP-hard.

Proof. As in the proof of the APX-hardness of Max-L-DCC, all we need is an
L-clamp and some λ ∈ L with λ ≥ 3. We present a reduction from λ-DM (which
is NP-complete since λ ≥ 3) that is similar to the reduction used by Hell et al. [56]
to prove the NP-hardness of L-UCC for L with L 6⊆ {3, 4}.

Let (X, F ) be an instance of λ-DM. Note that we will construct a di-
rected graph G as an instance of L-DCC, i.e. G is neither complete nor edge
weighted. For each x ∈ X, we have a vertex in G that we again call x. For
a = {x1, . . . , xλ} ∈ F , we construct a cycle of length λ consisting of the vertices
a1, . . . , aλ. Then we add λ L-clamps K

xη
a with aη and xη as connectors for all

η ∈ [λ]. See Figure 3.3.7 for an example.

Lemma 3.3.18. G ∈ L-DCC if and only if (X,F ) ∈ λ-DM.

Proof. Assume first that (X, F ) ∈ λ-DM. Thus, there exists a subset F̃ ⊆ F
such that

⋃
a∈F̃ a = X and every element x ∈ X is contained in exactly one set of

F̃ . We construct an L-cycle cover of G in which all clamps are healthy as follows:

• Let a = {x1, . . . , xλ} ∈ F̃ . Then let K
xη
a expel aη and absorb xη for all

η ∈ [λ], and let a1, a2, . . . , aλ form a cycle of length λ.
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a3a2a1

x y z

Figure 3.3.7: The construction for the NP-hardness of L-DCC from the viewpoint
of a = {x, y, z} ∈ F . The L-clamps are coloured grey.

• For all a = {x1, . . . , xλ} /∈ F̃ , let K
xη
a expel xη and absorb aη for all η ∈ [λ].

We have to prove that all connectors are absorbed by exactly one clamp or are
covered by a cycle of length λ. For every x ∈ X, there is a unique a ∈ F̃ with
x ∈ a. Thus, x is absorbed by Kx

a . Consider now any a = {x1, . . . , xλ} ∈ F .
Either a ∈ F̃ , which implies that a1, . . . , aλ form a cycle of length λ ∈ L. Or
a ∈ F \ F̃ , which implies that K

xη
a absorbs aη for all η ∈ [λ].

Now we prove the reverse direction. Assume that G ∈ L-DCC, and let C be
an L-cycle cover of G. Then every clamp of G is healthy in C, i.e. it absorbs one
of its connectors and expels the other one.

Let a = {x1, . . . , xλ} ∈ F and assume that K
xη
a expels aη. Since aη must be

part of a cycle in C, (aη−1, aη) and (aη, aη+1) must be in C. Thus, K
xη−1
a and

K
xη+1
a expel aη−1 and aη+1, respectively. By repeatedly applying this argument,

we can show that either all a1, . . . , aλ are absorbed by Kx1
a , . . . , Kxλ

a or that all
are expelled by Kx1

a , . . . , Kxλ
a .

Now consider any x ∈ X and let a1, a2, . . . , a` ∈ F be all the sets that contain
x. All clamps Kx

a1
, . . . , Kx

a`
are healthy, C is an L-cycle cover of G, and x is not

incident to any further edges. Hence, there must be a unique ai such that Kx
ai

absorbs x. Hence,

F̃ = {a = {x1, . . . , xλ} ∈ F | Kxη
a absorbs xη for all η ∈ [λ]}

is indeed a λ-dimensional matching, proving (X, F ) ∈ λ-DM.

Lemma 3.3.18 proves that the construction presented is indeed a many-one
reduction from λ-DM to L-DCC, hence L-DCC is NP-hard.

If the language {1λ | λ ∈ L} is in NP, then L-DCC is also in NP and there-
fore NP-complete if L /∈ {{2},D}: We can nondeterministically guess a cycle
cover and then check if λ ∈ L for every cycle length λ occurring in that cover .
Conversely, if {1λ | λ ∈ L} is not in NP, then L-DCC is not in NP either since
there is a straightforward reduction of {1λ | λ ∈ L} to L-DCC: On input x = 1λ,
construct a graph G on λ vertices that consists solely of a Hamiltonian cycle.
Then x ∈ L if and only if G ∈ L-DCC.
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z

yx

(a) A 2-regular graph H.

x0 y0

x3 y1

y3

z1z3

z0

z2

y2x2

x1

(b) The 3-regular graph G obtained from H.

Figure 3.4.1: An example of the construction in Theorem 3.4.1. For readability,
H is 2-regular, although Min-Vertex-Cover(2) can be solved in polynomial time.

3.4 Vertex Cover in Regular Graphs

In this section, we prove that Min-Vertex-Cover(λ) is APX-complete for every
λ ≥ 3. Previously, this was only known for cubic, i.e. three-regular, graphs [4].
We need the APX-hardness of Min-Vertex-Cover(λ) in Section 3.3, where we
uniformly prove the APX-hardness of Max-L-UCC and Max-L-DCC for almost
all L.

Theorem 3.4.1. For every λ ∈ N, λ ≥ 3, Min-Vertex-Cover(λ) is APX-complete.

Proof. Since Min-Vertex-Cover is in APX (it can be approximated with factor
2 [92, Section 14.3]), Min-Vertex-Cover(λ) is in APX as well. We prove the APX-
hardness of Min-Vertex-Cover(λ) for all λ ≥ 3 by induction on λ. The base case,
i.e. the APX-hardness of Min-Vertex-Cover(3), has been proved by Alimonti and
Kann [4].

Our induction hypothesis is that Min-Vertex-Cover(λ) is APX-hard for some
λ ≥ 3. To show the APX-hardness of Min-Vertex-Cover(λ + 1), we L-reduce
Min-Vertex-Cover(λ) to Min-Vertex-Cover(λ + 1). Let H = (X, F ) be a λ-
regular graph as an instance of Min-Vertex-Cover(λ) with |X| = n. We create
a graph G = (V, E) as an instance of Min-Vertex-Cover(λ + 1) as follows. Let
H1, . . . , Hλ+1, with Hi = (Xi, Fi) be λ + 1 copies of H, i.e. Hi = {xi | x ∈ X}
and Fi = {{xi, yi} | {x, y} ∈ F}. Furthermore, let X0 = {x0 | x ∈ X} and
F0 = {{x0, xi} | x ∈ X, i ∈ [λ + 1]}, i.e. the vertex x0 is connected to all other
copies of x. Then V =

⋃λ+1
i=0 Xi and E =

⋃λ+1
i=0 Fi. Let k = |V | = (λ + 2) · n.

Figure 3.4.1 illustrates the construction.
The graph G thus constructed is (λ + 1)-regular: Every xi for x ∈ X and

i ∈ [λ + 1] is adjacent to x0 and λ vertices of Xi since H is λ-regular, and every
x0 ∈ X0 is adjacent to λ + 1 vertices x1, . . . , xλ+1. Given H, the graph G can
easily be constructed in polynomial time.

Lemma 3.4.2. If H = (X, F ) has a vertex cover X̃ of size ñ, then G = (V, E)
has a vertex cover Ṽ of size n + λñ with n = |X|.
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Proof. Let Ṽ = {xi | x ∈ X̃ ∧ i ∈ [λ + 1]} ∪ {x0 | x /∈ X̃}. Then |Ṽ | =
(λ+1) · |X̃|+n− |X̃| = n+λñ. It remains to be proved that Ṽ is a vertex cover
of G. Every edge in every Fi for i ∈ [λ + 1] is covered since X̃ is a vertex cover
of H and thus {xi | x ∈ X̃} ⊆ Ṽ is a vertex cover of Hi. The only other edges of
G are the edges in F0. For all x ∈ X, either all x1, . . . , xλ+1 are in Ṽ or x0 is in
Ṽ . Hence, all edges in F0 are covered.

Lemma 3.4.3. Let Ṽ be an arbitrary vertex cover of G of size k̃. Then we can
compute a vertex cover X̃ of H of size ñ ≤ (k̃ − n)/λ in polynomial time.

Proof. Let X̃i = Ṽ ∩Xi for i ∈ [λ + 1]. Then X̃i is a vertex cover of Hi because
Ṽ has to cover all edges in Fi and these edges are not adjacent to any vertices
outside Xi. Choose j ∈ [λ + 1] such that |X̃j| is minimal. Let X̃ = {x | xj ∈ X̃j}
and ñ = |X̃|. The set X̃ is a vertex cover of H. For all x /∈ X̃, we have x0 ∈ Ṽ
since otherwise the edge {x0, xj} is not covered by Ṽ . Thus, there are at least
n− ñ vertices of X0 in Ṽ .

What remains is to estimate the size ñ of X̃. We have

k̃ = |Ṽ | =
λ+1∑
i=0

|Xi| ≥
λ+1∑
i=1

|Xi|+ n− ñ ≥ (λ + 1) · ñ + n− ñ = λñ + n ,

hence ñ ≤ (k̃ − n)/λ. Finally, given Ṽ , the set X̃ can easily be constructed in
polynomial time.

It remains to be proved that the construction described yields an L-reduction.
Since H is λ-regular, we have opt(H) ≥ n/λ. Thus,

opt(G) ≤ |V | = (λ + 2) · n ≤ (λ + 2) · λ · opt(H) .

On the other hand, let Ṽ be an arbitrary vertex cover of G and X̃ be the vertex
cover of H constructed as described in the proof of Lemma 3.4.3. According to
the two lemmas above, we have opt(G) = λ · opt(H) + n. This together with the
inequality of Lemma 3.4.3 yields∣∣∣|X̃| − opt(H)

∣∣∣ ≤ 1

λ
·
∣∣∣|Ṽ | − opt(G)

∣∣∣ .

Overall, Min-Vertex-Cover(λ) ≤L Min-Vertex-Cover(λ + 1) for all λ ≥ 3, which
proves the theorem.



CHAPTER

FOUR

Algorithms for Cycle Covers

4.1 Approximation Algorithms

The goal of this section is to devise approximation algorithms for Max-W-L-UCC
and Max-W-L-DCC that work for arbitrary L. The catch is that for most L it
is impossible to decide whether some cycle length is in L or not.

One possibility would be to restrict ourselves to sets L such that {1λ | λ ∈ L}
is in P. For such L, Max-W-L-UCC and Max-W-L-DCC are NP optimisation
problems. Another possibility for circumventing the problem is to include the
permitted cycle lengths in the input. However, it turns out that such restrictions
are not necessary.

A necessary and sufficient condition for a complete graph with n vertices
to have an L-cycle cover is that there exist (not necessarily distinct) lengths
λ1, . . . , λk ∈ L for some k ∈ N with

∑k
i=1 λi = n. We call such an n L-admissible

and define 〈L〉 = {n | n is L-admissible}. Although L can be arbitrarily compli-
cated, 〈L〉 always allows efficient membership testing.

Lemma 4.1.1. For all L ⊆ N, there exists a finite set L′ ⊆ L with 〈L′〉 = 〈L〉.

Proof. Let L≤` = {n ∈ L | n ≤ `} ⊆ L. We denote by g(`) the greatest common
divisor of all numbers in L≤`. Then g(`) ≥ g(` + 1) ≥ 1 for all ` ∈ N. Hence, g
converges to some gL ∈ N and there exists an `0 with g(`) = gL for all ` ≥ `0.
Without loss of generality, we assume that gL = 1. Otherwise, we “scale” L down
to L̃ = {λ | λgL ∈ L}.

If 1 ∈ L, then 〈{1}〉 = 〈L〉 and we are done. We therefore assume that
1 /∈ L. There exist ξ1, . . . , ξk ∈ Z and λ1, . . . , λk ∈ L≤`0 for some k ∈ N with∑k

i=1 ξiλi = 1. Let ξ = mini∈[k] ξi. We have ξ < 0 since 1 /∈ L. Choose any

λ ∈ L≤`0 and let ` = λ · (−ξ) ·
∑k

i=1 λi. Let n ∈ 〈L〉 with n ≥ `, and let

51
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m = mod(n− `, λ) < λ. Then we can write n as

n = λ ·
⌊

n− `

λ

⌋
+ m + ` = λ ·

⌊
n− `

λ

⌋
+ m ·

k∑
i=1

ξiλi︸ ︷︷ ︸
=1

−λξ ·
k∑

i=1

λi

= λ ·
⌊

n− `

λ

⌋
+

k∑
i=1

(mξi − λξ) · λi .

We have (mξi − λξ) ≥ 0 for all i since m < λ and ξi ≥ ξ < 0. Hence, 〈L≤`0〉
contains all elements n ∈ 〈L〉 with n ≥ `. Elements of 〈L〉 smaller than ` are
contained in 〈L≤`〉 ⊇ 〈L≤`0〉. Hence, 〈L≤`〉 = 〈L〉 and L′ = L≤` is the finite set
we are looking for.

For every fixed L, we can not only test in time polynomial in n whether n is L-
admissible, but we can, provided that n ∈ 〈L〉, also find numbers λ1, . . . , λk ∈ L′

that add up to n, where L′ ⊆ L denotes a finite set with 〈L〉 = 〈L′〉. This can be
done via dynamic programming in time O(n · |L′|), which is O(n) for fixed L.

Although 〈L〉 = 〈L′〉, there are clearly graphs for which the weights of an
optimal L-cycle cover and an optimal L′-cycle cover differ: Let λ ∈ L \ L′ and
consider a graph on λ vertices. We assign weight one to λ edges that form a
Hamiltonian cycle, all other edges are assigned weight zero.

Moreover, in contrast to NP optimisation problems, for most L it is impossible
to compute a maximum weight L-cycle cover, even if we allow, say, exponential
time. The problem is that it is in general impossible to decide whether a cycle
cover is an L-cycle cover or not. Thus, Item 2 of the definition of NP optimisation
problems (Definition 2.4.2) is violated in general.

This does not matter for our approximation algorithms since they construct
L′-cycle covers whose weight is at least a certain fraction of the weight of an
optimal cycle cover without any restrictions. The weight of an optimal cycle
cover without any restrictions is an upper bound for the weight of an optimal
L-cycle cover.

Instead of computing L′-cycle covers in the following two sections, we assume
without loss of generality that L is already a finite set.

The main idea of the two approximation algorithms is as follows: We start
by computing a cycle cover C init of maximum weight. Then we take a subset S
of the edges of C init that weighs as much as possible under the restriction that
there exists an L-cycle cover that includes all edges of S. We add edges to obtain
an L-cycle cover Capx ⊇ S. Let C? be an L-cycle cover of maximum weight,
and assume that we can guarantee ρ · w(S) ≥ w(C init) for some ρ ≥ 1. Then
w(C?) ≤ w(C init) ≤ ρ · w(S) ≤ ρ · w(Capx). Thus, we have computed a factor ρ
approximation to an L-cycle cover of maximum weight.



53 4.1. Approximation Algorithms

4.1.1 Approximating Restricted Undirected Cycle Covers

The input of our algorithm for undirected graphs is an undirected complete graph
G = (V, U(V )) with |V | = n and an edge weight function w : U(V ) → N.

The main idea of the approximation algorithm is as follows: Every cycle of
length λ can be divided into bλ/3c vertex-disjoint paths of length two, which are
just two adjacent edges. This can be done as follows: Let (e1, . . . , eλ) be the
cycle, then skip e3, e6, . . . , e3·bλ/3c. If λ is not divisible by three, then additionally
skip e3·bλ/3c+1, . . . , eλ. In this way, we obtain the paths (e1, e2), (e4, e5), . . . and
one or two isolated vertices if λ is not divisible by three.

Conversely, every collection of ξ ≤ bλ/3c vertex-disjoint paths of length two
plus λ− 3ξ isolated vertices can be joined to form a cycle of length λ.

Consider a cycle cover consisting of cycles of lengths λ1, . . . , λk. Let n be
the number of vertices. Such a cycle cover can be divided into

∑k
i=1bλi/3c

paths of length two. Since bλ/3c ≥ dλ/5e for λ ≥ 3, we obtain
∑k

i=1bλi/3c ≥∑k
i=1dλi/5e ≥ dn/5e.
The next lemma states that for every cycle cover C, and thus in particular for

C init, there exists a set P ⊆ C of edges consisting of dn/5e paths of length two
such that 2.5 · w(P ) ≥ w(C). Joining the paths in P to obtain an L-cycle cover,
which can be done according to Lemma 4.1.3, yields a factor 2.5 approximation.

Lemma 4.1.2. Let C be any cycle cover of G. Then there exists a subset P ⊆ C
such that

• the graph (V, P ) consists solely of vertex-disjoint paths of length two and
isolated vertices,

• |P | = 2 · dn/5e, i.e. P contains dn/5e paths, and

• w(P ) ≥ 0.4 · w(C).

Proof. Let m = dn/5e for short. We prove the lemma by a probabilistic argument:
We devise a probability distribution on P(C) to randomly construct P ⊆ C with
the following properties:

1. For every edge e, P(e ∈ P ) ≥ 0.4.

2. P consists of m paths of length two.

By linearity of expectation, we obtain

E(w(P )) =
∑
e∈C

P(e ∈ P ) · w(e) ≥ 0.4 ·
∑
e∈C

·w(e) = 0.4 · w(C) .

Thus, there exists a P as demanded.
Consider a cycle c = (e0, . . . , eλ−1) and let ξ ≤ dλ/5e. We randomly obtain ξ

paths of length two of c as follows: Draw i ∈ {0, 1, . . . , λ−1} uniformly at random,
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and then take the ξ paths (ei, ei+1), (ei+3, ei+4), . . . , (ei+3(ξ−1), ei+3(ξ−1)+1), where
addition is modulo λ. In this way, each edge of c is part of a path with probability
2ξ/λ.

Let c1, . . . , ck be the cycles of C and let λi be the length of ci for i ∈ [k]. We
can achieve a selection P of m paths by putting either bλi/5c or dλi/5c paths of
the cycle ci into P , because

∑k
i=1dλi/5e ≥ m ≥

∑k
i=1bλi/5c.

For all cycles ci whose length λi is divisible by five, we are done since dλi/5e =
bλi/5c = λi/5: We choose λi/5 paths, thus every edge of ci is in P with proba-
bility 0.4.

Let c1, . . . , cr be the cycles whose lengths are not divisible by five. If we take
dλi/5e = bλi/5c + 1 cycles of ci, we call ci abundant. Otherwise, we call ci

deficient. We have to fix a probability pi for ci to be abundant.
Let E = m −

∑k
i=1bλi/5c. Then E cycles of c1, . . . , cr have to be abundant.

If we choose the pi such that
∑r

i=1 pi = E, then we have m paths in expectation.
Let qi = λi/5− bλi/5c ∈ [0, 1]. Then

qi · dλi/5e+ (1− qi) · bλi/5c = λi/5 .

That is, if ci were abundant with probability qi, each edge of ci would be chosen
with probability 0.4. Now we choose rational numbers pi ∈ [qi, 1] (guaranteeing
P(e ∈ P ) ≥ 0.4) such that

∑r
i=1 pi = E.

Let X be a random subset of P({c1, . . . , cr}) that contains the abundant
cycles. We need a probability distribution for X such that X is always of cardi-
nality E and P(ci ∈ X) = pi for all i ∈ [r]. Such a probability distribution exists
according to Lemma A.3.1.

Overall, we first choose randomly the set of abundant cycles. Then we know
how many paths we need to take from every cycle. We choose these paths ran-
domly as described above. The probability distribution on P(C) obtained in this
way has the desired properties:

1. For every i ∈ [r] and every edge e of ci, we have

P(e ∈ P ) = (1− pi) ·
2bλi/5c

λi

+ pi ·
2dλi/5e

λi

≥ (1− qi) ·
2bλi/5c

λi

+ qi ·
2dλi/5e

λi

≥ 0.4 .

For every i ∈ [k] \ [r], every edge of ci is in P with probability 0.4.

2. The set P contains m paths of length two.

This completes the proof of the lemma.

Given a cycle cover C, a subset P ⊆ C with maximum weight among all
subsets of C that consists of dn/5e paths of length two can be computed in time
O(n2) via dynamic programming.
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Input: an undirected graph G = (V, U(V )) with |V | = n and an edge weight
function w : U(V ) → N

Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n ∈ 〈L〉 then
2: compute a cycle cover C init of maximum weight
3: compute a subset P ⊆ C init such that (V, P ) consists of dn/5e paths of

length two and n − 3 · dn/5e isolated vertices and w(P ) is maximum
among all such sets

4: join the paths in P to obtain an L-cycle cover Capx

5: return Capx

6: else
7: return ⊥
Algorithm 4.1.1: A factor 2.5 approximation algorithm for Max-W-L-UCC.

Now assume that n is L-admissible (which is necessary for graphs with n
vertices to contain an L-cycle cover). Then for every collection P of dn/5e paths
of length two, an L-cycle cover C with C ⊇ P exists, as we will show now.

Lemma 4.1.3. Let P ⊆ E be a set of edges such that (V, P ) consists of dn/5e
vertex-disjoint paths of length two and n− 3 · dn/5e isolated vertices. Let L ⊆ U
such that n ∈ 〈L〉. Then there exists an L-cycle cover C with P ⊆ C.

Proof. Since n ∈ 〈L〉, there exist λ1, . . . , λk ∈ L with
∑k

i=1 λi = n. Then∑k
i=1dλi/5e ≥ dn/5e.
We build C as follows: For i = 1, . . . , k, build a cycle of length λi that consists

of dλi/5e paths from P and λi − 3 · dλi/5e isolated vertices. If
∑k

i=1dλi/5e >
dn/5e, P does not contain enough paths for all cycles. In this case, we build
the remaining cycles solely from isolated vertices. (There is possibly one cycle of
length λi with at least one but less than dλi/5e paths from P .) Overall, the set
C of edges thus constructed is an L-cycle cover with C ⊇ P .

Algorithm 4.1.1 begins by constructing an initial cycle cover, then computes
a set P as described above and finally joins the paths and isolated vertices to
obtain a cycle cover. Figure 4.1.1 shows an example of how the algorithm works.

Theorem 4.1.4. For every fixed L, Algorithm 4.1.1 is a factor 2.5 approximation
algorithm for Max-W-L-UCC with running time O(n3).

Proof. If L is infinite, we replace L by a finite set L′ ⊆ L with 〈L′〉 = 〈L〉
according to Lemma 4.1.1. Algorithm 4.1.1 returns ⊥ if and only if n /∈ 〈L〉.
Otherwise, an L-cycle cover Capx is returned.

Let C? denote an L-cycle cover of maximum weight of G. We have

w(C?) ≤ w(C init) ≤ 2.5 · w(P ) ≤ 2.5 · w(Capx) .
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(a) The initial cycle cover C init. (b) Obtaining a set P of d16/5e = 4 paths
of length two from C init.

(c) Joining the paths of P to obtain Capx.

Figure 4.1.1: Computing an {8}-cycle cover. For readability, edge weights are
omitted, and only the edges of the cycle covers are shown.

Hence, the algorithm computes a factor 2.5 approximation.
The running-time is dominated by the time needed to compute C init, which

takes time O(n3) [3, Chap. 12]. All other operations take time O(n2).

4.1.2 Approximating Restricted Directed Cycle Covers

We now consider directed graphs. We present an approximation algorithm for
Max-W-L-DCC that achieves an approximation ratio of 3. The input of our
algorithm consists of a directed complete graph G = (V, D(V )) with |V | = n and
an edge weight function w : D(V ) → N.

Consider a cycle of length λ. By omitting every other edge, we obtain a set of
bλ/2c edges that do not share any vertex, i.e. they form a matching. Conversely,
ξ ≤ bλ/2c pairwise non-adjacent edges together with λ− 2ξ isolated vertices can
be joined to form a cycle of length λ.

Consider a cycle cover consisting of cycles of lengths λ1, . . . , λk. From such
a cycle cover, we can obtain a matching of cardinality

∑k
i=1bλi/2c. We have

bλi/2c ≥ dλi/3e for all i ∈ [k] since λi ≥ 2. Hence,
∑k

i=1bλi/2c ≥
∑k

i=1dλi/3e ≥
dn/3e.

Every cycle cover C, and thus in particular a cycle cover C init of maximum
weight, induces such a matching that weighs at least one third of w(C).

Lemma 4.1.5. Let C be an arbitrary cycle cover of G. Then there exists a
matching M ⊆ C of cardinality dn/3e with w(M) ≥ w(C)/3.
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Proof. The proof is similar to the proof of Lemma 4.1.2.

Let m = dn/3e for short. We devise a probability distribution on P(C) to
randomly construct a matching M ⊆ C such that every edge of C is included in
M with probability at least 1/3 and M consists of m edges. Then the lemma
follows by linearity of expectation.

Let c = (e0, . . . , eλ−1) be a cycle of length λ and ξ ≤ dλ/3e. We randomly ob-
tain ξ pairwise non-adjacent edges of c as follows: First, we draw i ∈ {0, 1, . . . , λ−
1} uniformly at random, and then we take the ξ edges ei, ei+2, . . . , ei+2(ξ−1), where
addition is modulo λ. In this way, each edge of c is taken with probability ξ/λ.

For all cycles ci whose length λi is divisible by three, we are done since
dλi/3e = bλi/3c = λi/3. Thus, every edge of c is chosen with probability 1/3.

Let c1, . . . , cr be the cycles whose lengths are not divisible by three. If we take
dλi/3e = bλi/3c + 1 edges of ci, we call ci abundant, otherwise ci is deficient.
What remains is to fix a probability pi for ci to be abundant.

To obtain a matching of cardinality m, E = m −
∑k

i=1bλi/3c cycles have to
be abundant. If we choose pi such that

∑r
i=1 pi = E, then we have m edges in

expectation.

Let qi = λi/3− bλi/3c for i ∈ [r]. Then qi · dλi/5e+ (1− qi) · bλi/5c = λi/5.
Now we choose rational numbers pi ∈ [qi, 1] such that

∑r
i=1 pi = E.

Let X be a random subset of P({c1, . . . , cr}) that contains the abundant cy-
cles. We need a probability distribution for X such that X is always of cardinality
E and P(ci ∈ X) = pi. Such a distribution exists according to Lemma A.3.1.

To summarise: We first choose randomly the set of abundant cycles. Then
we know how many edges of each cycle we need, and we choose these edges as
described above. The probability distribution on P(C) obtained in this way has
the desired properties:

1. For every i ∈ [r] and every edge e of cycle ci,

P(e ∈ M) = (1− pi) · bλi/3c+ pi · dλi/3e ≥ 1/3 .

Edges of the other cycles are contained in M with probability 1/3.

2. |M | = m.

Thus, the lemma is proved.

Now we prove the counterpart of Lemma 4.1.3 above: Given any matching
M of cardinality at most dn/3e, an L-cycle cover C ⊇ M exists. Moreover, such
a matching can be computed efficiently.

Lemma 4.1.6. Let M be a matching of G of cardinality dn/3e. Then there exists
an L-cycle cover C ⊇ M .



4. ALGORITHMS FOR CYCLE COVERS 58

Input: a directed graph G = (V, D(V )) with |V | = n and an edge weight func-
tion w : D(V ) → N

Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n ∈ 〈L〉 then
2: compute a maximum weight matching M init of G of cardinality dn/3e
3: join the edges in M init to obtain an L-cycle cover Capx as described in

Lemma 4.1.6
4: return Capx

5: else
6: return ⊥

Algorithm 4.1.2: A factor 3 approximation algorithm for Max-W-L-DCC.

(a) Matching M init of cardinality d10/3e. (b) Joining the edges of M init to get Capx.

Figure 4.1.2: Computing a {5}-cycle cover. For readability, edge weights are
omitted, and only the edges of the cycle covers are shown.

Proof. Since n ∈ 〈L〉, there exist λ1, . . . , λk ∈ L with
∑k

i=1 λi = n. Then∑k
i=1dλi/3e ≥ dn/3e.
We build C as follows: For i = 1, . . . , k, build a cycle of length λi that consists

of dλ/3e edges of M and possibly one isolated vertex. If
∑k

i=1dλi/3e > dn/3e,
then M does not contain enough edges for all cycles. In this case, we build the
remaining cycles solely from isolated vertices. (There is possibly one cycle of
length λi built with at least one but less than dλi/3e edges from M .) Overall,
the set C of edges thus constructed is an L-cycle cover and fulfils C ⊇ M .

Given M , the construction of C thus described can clearly be carried out in
linear time. Overall, Algorithm 4.1.2 is a factor 3 approximation algorithm for
Max-W-L-DCC. Instead of computing an initial cycle cover, we directly compute
a matching M init of cardinality dn/3e. Figure 4.1.2 shows an example of how the
algorithm works.

Theorem 4.1.7. For every fixed L, Algorithm 4.1.2 is a factor 3 approximation
algorithm for Max-W-L-UCC with running time O(n3).

Proof. If L is infinite, we replace L by a finite set L′ ⊆ L with 〈L′〉 = 〈L〉
according to Lemma 4.1.1. Algorithm 4.1.2 returns ⊥ if and only if n /∈ 〈L〉.
Otherwise, an L-cycle cover Capx is returned.

Let C? be an L-cycle cover of maximum weight of G and C ′ be a cycle cover
of maximum weight of G. Let M ′ ⊆ C ′ denote a matching of cardinality dn/3e
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that has maximum weight among all such matchings. We have

w(C?) ≤ w(C ′) ≤ 3 · w(M ′) ≤ 3 · w(M init) ≤ 3 · w(Capx) .

Hence, Algorithm 4.1.2 computes a factor 3 approximation.
The running time is dominated by the time needed to compute the initial

matching M init, which takes time O(n3) [3, Chap. 12]. All other operations take
time O(n2).

4.2 Solving Max-4-UCC in Polynomial Time

The aim of this section is to show that Max-4-UCC can be solved deterministically
in polynomial time. To do this, we exploit Hartvigsen’s algorithm for computing
a maximum-cardinality triangle-free two-matching. We will show how to obtain
a 4-cycle cover of maximum weight from a maximum-cardinality triangle-free
two-matching.

A two-matching of an undirected graph G is a spanning subgraph in which
every vertex of G has degree at most two. Thus, two-matchings consist of disjoint
simple cycles and paths. A two-matching is a relaxation of a cycle cover (or two-
factor): In a cycle cover, every vertex has degree exactly two.

A triangle-free two-matching is a two-matching in which each cycle has a
length of at least four. The paths can have arbitrary lengths. A triangle-free two-
matching is of maximum cardinality if no other triangle-free two-matching con-
tains more edges. The problem of finding a maximum-cardinality triangle-
free two-matching can be solved in time O(n3), where n is the number of
vertices, as was proved by Hartvigsen [51, Chap. 3].

As for cycle covers, we can also consider complete graphs with edge weights
zero and one: We replace edges by weight one edges and non-edges by weight
zero edges. Then a maximum-cardinality triangle-free two-matching corresponds
to a triangle-free two-matching of maximum weight.

We want to solve Max-4-UCC, i.e. we want to find a 4-cycle cover of maximum
weight: All cycles must have a length of at least four and no paths are allowed.

Let M be a maximum weight triangle-free two-matching of a graph G of n
vertices. We can assume that M does not contain any edges of weight zero since
we can omit such edges without losing any weight and still have a triangle-free
two-matching. If M does not contain any paths, then M is already a 4-cycle
cover. Since two-matchings are relaxations of cycle covers, M is a 4-cycle cover
of maximum weight.

Let ` be the number of vertices of G that lie on paths in M . If ` ≥ 4, then
we connect these paths to get a cycle of length `. No weight is lost in this way,
and the result is a maximum weight 4-cycle cover.

We run into trouble if ` ∈ {1, 2, 3}. Let Y = {y1, . . . , y`} be the set of vertices
that lie on paths in M . These vertices are also referred to as the y-vertices. Let
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(a) Case 1: No weight is lost by using the
edge {y1, x}.

y1 y3y2y1

x
′

xx
′

x

e12 e23

y2 y3

(b) Case 2: Weight one is lost, the y-vertices
are connected to an arbitrary cycle.

y1 y3y2y1y3y2

e12 e23

x
′

x x x
′

(c) Case 3: Weight one is lost although {y2, x} weighs one.

Figure 4.2.1: The three cases for ` = 3 and `′ = 2. In each figure, the left-hand
side shows the two-matching, the right-hand side shows how the y-vertices are
connected to obtain a 4-cycle cover. Only edges of weight one are drawn except
for dotted edges which are part of the 4-cycle cover and may weigh zero. The
dashed edges belong to the cycle that contains x and x′.

`′ be the number of edges of weight one in M that connect two y-vertices. Then
0 ≤ `′ ≤ `− 1 and w(M) = n− ` + `′ ≤ n− 1.

An obvious way to obtain a cycle cover from M is to break one edge of one
cycle and connect the y-vertices to this cycle. Unfortunately, breaking an edge
might cause a loss of weight one. This yields the aforementioned approximation
within an additive error of one (see Section 2.5.1). We need a more careful
analysis to prove the following: Either we can avoid the loss of weight one, or
indeed a maximum weight 4-cycle cover has only weight w(M)− 1.

By assumption, there are no edges of weight zero in M . If `′ = 1, then we
assume that e12 = {y1, y2} is in M . If `′ = 2, then we assume that e12 and
e23 = {y2, y3} are in M . We distinguish three cases (see Figure 4.2.1):

Case 1: There is a yi ∈ Y that is an endpoint of a path in M and an x /∈ Y such
that w({yi, x}) = 1. We remove one edge, say {x, x′} ∈ M , incident to x,
add {x, yi}, and connect the remaining y-vertices to obtain a new cycle. This
new cycle is of length 4 + `. No weight is lost and we have thus obtained a
4-cycle cover of maximum weight.

Case 2: All edges connecting y-vertices to vertices not in Y have weight zero.
Then we break one arbitrary edge {x, x′} of one cycle and connect the y-
vertices to obtain a new cycle. The 4-cycle cover obtained has weight n −
` + `′ − 1. In every 4-cycle cover, the y-vertices are incident to at least ` + 1
different edges. Otherwise, they would form a cycle of length ` < 4. At least
` − `′ + 1 of these edges have weight zero. Hence, our 4-cycle cover is of
maximum weight.
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Input: an undirected graph G = (V, U(V )) with edge weights w : U(V ) → {0, 1}
Output: a 4-cycle cover C of maximum weight
1: compute a maximum weight triangle-free two-matching M of G
2: remove all edges of weight zero from M
3: let Y = {y1, . . . , y`} be the set of vertices that lie on paths in M
4: if ` = 0 then
5: C = M
6: else if ` ≥ 4 then
7: construct C ⊇ M from M by connecting the vertices in Y to a cycle
8: else
9: construct C from M as described in the case distinction

10: return C

Algorithm 4.2.1: A polynomial-time algorithm for Max-4-UCC.

Case 3: The case that remains is that ` = 3, e12, e23 ∈ M , and there is an edge
{y2, x} of weight one with x /∈ Y . In this case, w(M) = n− 1.

Neither y1 nor y3 is incident to a weight one edge except for e12 and e23.
Otherwise Case 1 can be applied. Furthermore, w({y1, y3}) = 0. Otherwise,
we can replace e23 by {y1, y3} without losing any weight and apply Case 1
again.

We break one edge {x, x′} ∈ M and add {y1, x} and {y3, x
′}. Weight one is

lost, and we obtain a 4-cycle cover of weight n − 2. We prove that this is
optimal by considering a maximum weight 4-cycle cover C and distinguishing
three cases:

3a: Both e12 and e23 are in C. Since C is triangle-free, {y1, y3} /∈ C. Hence,
both y1 and y3 are incident to an edge of weight zero, which implies
w(C) ≤ n− 2.

3b: Either e12 or e23 is in C, the other is not. Assume e12 ∈ C. Then y3 is
incident to two edges of weight zero and we have w(C) ≤ n− 2.

3c: Both e12 and e23 are not in C. Then there are at least three different
weight zero edges incident to y1 or y3. Thus, w(C) ≤ n− 3.

Overall, we have proved that Algorithm 4.2.1 solves Max-4-UCC exactly. The
running time of the algorithm is O(n3) since Hartvigsen’s algorithm takes time
O(n3) and the modifications to M can easily be done in time O(n2). Thus, we
have obtained the following result.

Theorem 4.2.1. Max-4-UCC ∈ PO.
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CHAPTER

FIVE

Open Problems on Cycle Covers

We have considered the complexity and approximability of computing restricted
cycle covers in both directed and undirected graphs. For almost all L, the deci-
sion problem is NP-hard and the optimisation problem is APX-hard. Although
computing restricted cycle covers is generally very hard, we have proved that
L-cycle covers of maximum weight can be approximated within a constant factor
in polynomial time.

For directed graphs, we have settled the complexity of computing L-cycle cov-
ers and obtained a dichotomy: If L = {2} or L = D, then L-DCC, Max-L-DCC,
and Max-W-L-DCC are solvable in polynomial time, otherwise they are in-
tractable and hard to approximate.

For undirected graphs, the status of only five cycle cover problems remains
open: 5-UCC, {4}-UCC, Max-5-UCC, Max-{4}-UCC, and Max-W-4-UCC.

There are some reasons for optimism that 5-UCC, {4}-UCC, Max-5-UCC,
and Max-{4}-UCC are solvable in polynomial time: Hartvigsen [52] presented
a polynomial time algorithm for finding cycle covers without cycles of length
four in bipartite graphs. (For bipartite graphs, additionally forbidding cycles of
length three does not change the problem.) Moreover, there are augmenting path
theorems for L-cycle covers for all L with L ⊆ {3, 4}, which includes the two cases
that are known to be polynomial time solvable. Augmenting path theorems are
often a building block for matching algorithms. Of course, this does not prove
that 5-UCC and {4}-UCC are indeed in P. In fact, there are also augmenting
path theorems for L-cycle covers for L ⊆ {3, 4} [80], even though L-UCC is
NP-complete and Max-L-UCC and Max-W-L-UCC are APX-complete in these
cases.

Results by Cunningham and Wang [34] suggest that a complete polyhedral
characterisation of 4-cycle covers might be difficult (cf. Cunningham [33]). Such a
characterisation would possibly lead to algorithms based on linear programming.

However, Hartvigsen’s algorithm for 4-UCC is quite complicated. Further-
more, the complexity of the five open problems has remained unsettled for more
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than two decades. This might be an indication that polynomial time algorithms
for these five problems, if existent, are intricate.



Part II

Smoothed Analysis
of Binary Search Trees
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CHAPTER

SIX

Smoothed Analysis and Binary Search Trees

In the first part of this thesis, we considered the worst case complexity and ap-
proximability of computing restricted cycle covers. The term “efficient” in the
context of approximability refers to the existence of polynomial-time approxima-
tion algorithms.

In this part of the thesis, we consider binary search trees, which are among
the most fundamental data structures and, as such, are building blocks for many
advanced data structures (see e.g. Aho et al. [1, 2] and Knuth [61]). Efficient in
the context of data structures based on trees means that elements can be accessed
in logarithmic time with respect to the size of the tree. The maximum access
time of an element in a tree is proportional to the height of the tree.

Unfortunately, binary search trees are very inefficient in the worst case: The
height of a tree generated from the sorted sequence is equal to the number of its
elements. In contrast, a binary search tree constructed from a sequence drawn
uniformly at random has logarithmic height in expectation. But in practice, we
usually cannot assume that our sequences are completely random.

There is a huge discrepancy between the worst height and the average height
of binary search trees. To close this gap, we consider the smoothed height of binary
search trees : Instead of considering worst-case sequences or drawing sequences
completely at random, we slightly perturb sequences given by an adversary.

We start this chapter by reviewing the history of and previous results on
smoothed analysis and binary search trees. After that, we define some nota-
tions needed in subsequent chapters (Section 6.3) and state our new results (Sec-
tion 6.4).

6.1 Existing Results for Smoothed Analysis

Santha and Vazirani introduced the semi-random model [82], in which an ad-
versary adaptively chooses a sequence of bits, each of which is corrupted inde-
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pendently with some fixed probability. They showed how to obtain sequences
of quasi-random bits from such semi-random sources. Their work inspired re-
search on semi-random graphs [21, 44], which can be viewed as a forerunner of
the smoothed analysis of discrete problems.

Spielman and Teng introduced smoothed analysis as a hybrid of average-case
and worst-case complexity [86, 89]. They showed that the simplex algorithm for
linear programming with the shadow vertex pivot rule has polynomial smoothed
complexity. This means that the running time of the algorithm is expected to be
polynomial in terms of the input size and the variance of the Gaussian pertur-
bation. Since then, smoothed analysis has been applied to a variety of fields, for
instance several variants of linear programming [22, 41,88], properties of moving
objects [35], online and other algorithms [11,83,84], property testing [87], discrete
optimisation [12,79], graph theory [45], and computational geometry [36].

Banderier, Beier, and Mehlhorn [10] applied the concept of smoothed analysis
to combinatorial problems. In particular, they analysed the number of left-to-
right maxima of a sequence, which is the number of maxima seen when scanning
a sequence from left to right. The worst case is the sequence 1, 2, . . . , n, which
yields n left-to-right maxima. On average, we expect

∑n
i=1 1/i ≈ ln n left-to-right

maxima. Banderier et al. used the perturbation model of partial permutations,
where each element of the sequence is independently selected with a probability
of p ∈ [0, 1] and then a random permutation on the selected elements is performed
(see Section 7.1 for a precise definition).

Banderier et al. proved that the number of left-to-right maxima under partial
permutations is O(

√
(n/p) log n) in expectation for 0 < p < 1. Furthermore,

they showed a lower bound of Ω(
√

n/p) for 0 < p ≤ 1/2.

6.2 Existing Results for Binary Search Trees

Given a sequence σ = (σ1, σ2, . . . , σn) of n distinct elements from any ordered
set, we obtain a binary search tree T (σ) by iteratively inserting the elements
σ1, σ2, . . . , σn into the initially empty tree (this is formally described in Sec-
tion 6.3.1). Beyond being an important data structure, binary search trees play a
central role in the analysis of algorithms. For instance, the height of T (σ) equals
the number of levels of recursion required by Quicksort when sorting σ if the first
element is always chosen as the pivot (see e.g. Cormen et al. [29]).

The worst-case height of a binary search tree is obviously n: just take σ =
(1, 2, . . . , n). (We define the length of a path as the number of vertices it con-
tains.) The expected height of the binary search tree obtained from a random
permutation (with all permutations being equally likely) has been the subject
of a considerable amount of research in the past. We briefly review some re-
sults. Let the random variable H(n) denote the height of a binary search tree
obtained from a random permutation of n elements. Robson [75] proved that
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EH(n) ≈ c ln(n) + o(ln(n)) for some c ∈ [3.63, 4.3112] and observed that H(n)
does not vary much from experiment to experiment [76]. Pittel [72] proved the

existence of a γ > 0 with γ = limn→∞
EH(n)
ln(n)

. Devroye [37] then proved that

limn→∞
EH(n)
ln(n)

= α with α ≈ 4.31107 being the larger root of α ln(2e/α) = 1. The

variance of H(n) was shown to be O((llog n)2) by Devroye and Reed [38] and
by Drmota [39]. Robson [77] proved that the expectation of the absolute value
of the difference between the height of two random trees is constant. Thus, the
height of random trees is concentrated around the mean. A climax was the result
discovered independently by Drmota [40] and Reed [74] that the variance of H(n)
is actually O(1). Furthermore, Reed [74] proved that the expectation of H(n) is
α ln n + β ln(ln n) + O(1) with β = 3

2 ln(α/2)
≈ 1.953. Finally, Robson [78] proved

strong upper bounds on the probability of large deviations from the median. His
results suggest that all moments of H(n) are bounded from above by a constant.

Although the worst-case and average-case height of binary search trees are
very well understood, nothing is known in between, i.e. when the sequences are
not completely random but the randomness is limited.

6.3 Preliminaries

For general preliminaries, we refer to Section 2.1.

Let σ = (σ1, . . . , σn) ∈ Sn for some ordered set S. We call σ a sequence.
Usually, we assume that all elements of σ are distinct, i.e. σi 6= σj for all i 6= j.
The length of σ is n. In most cases, σ will simply be a permutation of [n].
We denote the sorted sequence (1, 2, . . . , n) by σn

sort. When considering partial
alterations (see Section 7.2), we define σn

sort = (0.5, 1.5, . . . , n− 0.5) instead (this
will be clear from the context).

Let τ = (τ1, . . . , τt). We call τ a subsequence of σ if there are indexes
i1 < i2 < . . . < it with τj = σij for all j ∈ [t]. Let µ = {i1, . . . , it} ⊆ [n].
Then σµ = (σi1 , . . . , σit) denotes the subsequence consisting of all elements of σ
at positions in µ. For instance, σ[k] denotes the prefix of length k of σ. In an
abuse of notation, we sometimes use σµ to mean the set of elements at positions
in µ, i.e. in this case σµ = {σi | i ∈ µ}. Whether we consider σµ to be a sequence
or a set will always be clear from the context. For µ ⊆ [n], we define µ = [n] \ µ.

6.3.1 Binary Search Trees and Left-to-right Maxima

Let σ = (σ1, . . . , σn) be a sequence. We obtain a binary search tree T (σ) from
σ by iteratively inserting the elements σ1, σ2, . . . , σn into the initially empty tree
as follows:

• The root of T (σ) is the first element σ1 of σ.
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Figure 6.3.1: The binary search tree T (σ) obtained from σ = (1, 2, 3, 5, 7, 4, 6, 8).
We have height(σ) = 6.

• Let σ< = σ{i|σi<σ1} be σ restricted to elements smaller than σ1. The left
subtree of the root σ1 of T (σ) is obtained inductively from σ<.

Analogously, let σ> = σ{i|σi>σ1} be σ restricted to elements greater than σ1.
The right subtree of the root σ1 of T (σ) is obtained inductively from σ>.

Figure 6.3.1 shows an example. We denote the height of T (σ) by height(σ), i.e.
height(σ) is the number of nodes on the longest path from the root to a leaf.

The element σi is called a left-to-right maximum of σ if σi > σj for all
j ∈ [i − 1]. Let ltrm(σ) denote the number of left-to-right maxima of σ. We
have ltrm(σ) ≤ height(σ) since the number of left-to-right maxima of a sequence
is equal to the length of the right-most path in the tree T (σ).

6.3.2 Probability Theory

To bound large deviations from the mean of binomially distributed random vari-
ables, we will frequently use the following lemma, which is based on Chernoff
bounds and proved in Appendix A.2.

Lemma 6.3.1. Let k ∈ N, α > 1 and p ∈ [0, 1]. Assume that we have mutually
independent random variables X1, . . . , Xk that assume values in {0, 1}. Assume
further that P(Xi = 1) = p = 1 − P(Xi = 0) for all i ∈ [k]. Let X =

∑k
i=1 Xi.

Then

P
(
(X > αpk) ∨ (X < α−1pk)

)
≤ 2 · exp

(
−2(1− α−1)2p2k

)
.

6.4 New Results

We will consider the height of binary search trees subject to slight perturbations
(smoothed height), i.e. the expected height under limited randomness. The height
of a binary search tree obtained from a sequence of elements depends only on the
ordering of the elements. Therefore, one should use a perturbation model that
slightly perturbs the order of the elements of the sequence.
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6.4.1 Perturbation Models

We consider three perturbation models, which we formally define in Chapter 7.
Partial permutations, introduced by Banderier et al. [10], rearrange some ele-

ments, i.e. they randomly permute a small subset of the elements of the sequence:
Every element is marked independently with probability p, and then all marked
element are randomly permuted.

The other two perturbation models are new.
Partial alterations do not move elements, but replace some elements by new

elements chosen at random. Thus, they change the rank of the elements. More
precisely: As for partial permutations, every element is marked with probability
p, and then all marked elements are replaced by random elements.

Partial deletions remove some of the elements of the sequence without re-
placement, i.e. they shorten the input: Again, every element is marked with
probability p, and then all marked elements are removed. This model turns out
to be useful for analysing the other two models.

6.4.2 Lower and Upper Bounds

We show matching lower and upper bounds for the expected height of binary
search trees and the expected number of left-to-right maxima under all three
models in Chapter 8. For all p ∈ (0, 1) and all sequences of length n, the expec-
tation of the height of a binary search tree obtained via p-partial permutation is
at most 6.7 · (1−p) ·

√
n/p for sufficiently large n. On the other hand, the expec-

tation of the height of a binary search tree obtained from the sorted sequence via
p-partial permutation is at least 0.8 · (1− p) ·

√
n/p. This lower bound matches

the upper bound up to a constant factor.
For the number of left-to-right maxima under partial permutations, we are

able to prove an even better upper bound of 3.6 · (1−p) ·
√

n/p for all sufficiently

large n and a lower bound of 0.4 · (1− p) ·
√

n/p.
All these bounds hold for partial alterations as well.
Thus, under limited randomness, the behaviour of binary search trees and the

number of left-to-right maxima differ markedly from both the worst-case and the
average-case.

For partial deletions, we obtain (1−p) ·n for both the lower and upper bound
for the height of binary search trees and the number of left-to-right maxima.

6.4.3 Smoothed Analysis and Stability

In smoothed analysis one analyses how fragile worst case instances are. We
suggest examining also the dual property: given a good (or best case) instance,
how much can the complexity increase if the instance is perturbed slightly? In
other words, how stable are best-case instances under perturbations?
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The lower and upper bound for partial deletions are straightforward. The
main reason for considering this model is that we can bound the expected height
under partial alterations and permutations by the expected height under partial
deletions (Section 9.1). The converse holds as well, we only have to blow up the
sequences quadratically.

We exploit this when considering the stability of the perturbation models
in Section 9.2: We prove that partial deletions and, thus, partial permutations
and partial alterations as well are quite unstable, i.e. they can cause best-case
instances to become much worse. More precisely: There are sequences of length
n that yield trees of height O(log n), but the expected height of the tree obtained
after smoothing is nΩ(1).



CHAPTER

SEVEN

Perturbation Models for Permutations

Since we deal with ordering problems, we need perturbation models that slightly
change a given permutation of elements. There seem to be two natural possi-
bilities: Either change the positions of some elements, or change the elements
themselves.

Partial permutations implement the first of these possibilities: A subset of the
elements is chosen at random, and then these elements are randomly permuted.

The second possibility is realised by partial alterations. Again, a subset of
the elements is chosen randomly. These elements are then replaced by random
elements.

The third model, partial deletions, also starts by randomly choosing a subset
of the elements. These elements are then removed without replacement.

We will formally define all three perturbation models in the following three
sections. In Section 7.4, we show some properties of binary search trees and
partial permutations and alterations.

For all three models, we obtain the random subset as follows. Let σ be a
sequence of length n and p ∈ [0, 1] be a probability. Every element of σ is marked
independently of the others with probability p. More formally: The random
variable Mn

p is a random subset of [n] with P(i ∈ Mn
p ) = p for all i ∈ [n]. For

any µ ⊆ [n] we have P(Mn
p = µ) = p|µ| · (1− p)|µ|.

Let µ ⊆ [n] be the set of marked positions. If i ∈ µ, then we say that position
i and element σi are marked. Thus, σµ is the sequence (or set) of all marked
elements.

By height-permp(σ), height-alterp(σ), and height-delp(σ) we denote
the expected height of the binary search tree T (σ′), where σ′ is obtained from σ
by performing a p-partial permutation, alteration, or deletion on σ, respectively,
on σ. Analogously, by ltrm-permp(σ), ltrm-alterp(σ), and ltrm-delp(σ) we
denote the expected number of left-to-right maxima of the sequence σ′ obtained
from σ via p-partial permutation, alteration, and deletion, respectively.
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Figure 7.1.1: An example of a partial permutation. (a) Top: The sequence
σ = (1, 2, 3, 5, 7, 4, 6, 8); Figure 6.3.1 shows T (σ). The first, fifth, sixth, and
eighth element is (randomly) marked, thus µ = Mn

p = {1, 5, 6, 8}. Bottom: The
marked elements are randomly permuted. The result is the sequence σ′ = Π(σ, µ),
in this case σ′ = (4, 2, 3, 5, 7, 8, 6, 1). (b) T (σ′) with height(σ′) = 4.

7.1 Partial Permutations

The notion of p-partial permutations was introduced by Banderier et al. [10].
Given a random subset Mn

p of [n], the elements at positions in Mn
p are permuted

according to a permutation drawn uniformly at random: Let σ = (σ1, . . . , σn)
and µ ⊆ [n]. Then the sequence σ′ = Π(σ, µ) is a random variable with the
following properties:

• Π chooses a permutation π of µ uniformly at random and

• sets σ′π(i) = σi for all i ∈ µ and σ′i = σi for all i /∈ µ.

Note that i ∈ µ does not necessarily mean that σi is at a position different
from i in Π(σ, µ); the random permutation can of course map π(i) to i.

Example 7.1.1. Figure 7.1.1 shows an example.

By varying p, we can interpolate between the average and the worst case: for
p = 0, no element is marked and σ′ = σ, while for p = 1, all elements are marked
and σ′ is a random permutation of the elements of σ with all permutations being
equally likely.

Let us show that partial permutations are indeed a suitable perturbation
model by proving that the distribution of Π(σ, Mn

p ) favours sequences close to
σ. To do this, we have to introduce a metric on sequences. Let σ and τ be
two sequences of length n. Without loss of generality, we assume that both are
permutations of [n]. Otherwise, we replace the jth smallest element of either
sequence by j for j ∈ [n]. We define the distance d(σ, τ) between σ and τ as
d(σ, τ) = |{i | σi 6= τi}|, thus d is a metric. Note that d(σ, τ) = 1 is impossible
since there are no two permutations that differ in exactly one position.

The distribution of Π(σ, Mn
p ) is symmetric around σ with respect to d, i.e.

the probability that Π(σ, Mn
p ) = τ for some fixed τ depends only on d(σ, τ).
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Lemma 7.1.2. Let p ∈ (0, 1), and let σ and τ be permutations of [n] with d =
d(σ, τ). Then

P(Π(σ, Mn
p ) = τ) =

n−d∑
k=0

pk+d · (1− p)n−d−k ·
(

n− d

k

)
· 1

(k + d)!
.

Proof. All d positions where σ and τ differ must be marked. This happens with
probability pd. The probability that k of the remaining positions are marked is(

n−d
k

)
· pk · (1 − p)n−d−k. Thus, the probability that k + d positions are marked,

d of which are positions where σ and τ differ, is
(

n−d
k

)
· pk+d · (1− p)n−d−k.

If k + d positions are marked overall, the probability that the “right” permu-
tation is chosen is 1/(k + d)!.

Let Pd =
∑n−d

k=0 pk+d · (1 − p)n−d−k ·
(

n−d
k

)
· 1

(k+d)!
be the probability that

Π(σ, Mn
p ) = τ for a fixed sequence τ with distance d to σ. Then Pd tends

exponentially to zero with increasing d. Thus, the distribution of Π(σ, Mn
p ) is

highly concentrated around σ.

Lemma 7.1.3. Let p ∈ (0, 1). There exists a constant c < 1 such that for all
sufficiently large n, we have P2 ≤ c ·P0 and Pd+1 ≤ c ·Pd for all d with 2 ≤ d < n.

Proof. By omitting the last summand, we obtain

Pd ≥
n−d−1∑

k=0

pk+d · (1− p)n−d−k ·
(

n− d

k

)
· 1

(k + d)!
.

Thus,

Pd+1

Pd

≤
∑n−d−1

k=0 pk+d+1 · (1− p)n−(d+1)−k ·
(

n−(d+1)
k

)
· 1

(k+d+1)!∑n−d−1
k=0 pk+d · (1− p)n−d−k ·

(
n−d

k

)
· 1

(k+d)!

≤ max
0≤k≤n−d−1

(
pk+d+1 · (1− p)n−d−1−k ·

(
n−d−1

k

)
· 1

(k+d+1)!

pk+d · (1− p)n−d−k ·
(

n−d
k

)
· 1

(k+d)!

)

≤ p

1− p
· max

0≤k≤n−d−1

(
n− d− k

(n− d) · (k + d + 1)

)
≤ p

1− p
· 1

d + 1
.

The second inequality holds because
∑

i∈I ai/
∑

i∈I bi ≤ maxi∈I ai/bi for any set
I and nonnegative numbers ai and bi (i ∈ I). This proves the lemma for all d
with d + 1 > 1−p

p
.

What remains is to consider d ≤ 1−p
p
− 1 = 1

p
− 2. Fix α > 1 arbitrarily

with αp < 1. Then Pd+1 =
∑n−d−1

k=0 pk+d+1 · (1 − p)n−d−1−k ·
(

n−d−1
k

)
· 1

(k+d+1)!
is

dominated by the summands with k < αpn as follows: Let

P′d+1 =
∑

0≤k<αpn

pk+d+1 · (1− p)n−d−1−k ·
(

n− d− 1

k

)
· 1

(k + d + 1)!
,
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then Pd+1 ≤ (1− o(1)) · P′d+1. Furthermore, we define

P′d =
∑

0≤k<αpn

pk+1+d · (1− p)n−d−k−1 ·
(

n− d

k + 1

)
· 1

(k + 1 + d)!
≤ Pd .

Now we have Pd+1

Pd
≤ (1− o(1)) · P′d+1

P′d
and

P′d+1

P′d
≤ max

0≤k<αpn

(
pk+d+1 · (1− p)n−d−1−k ·

(
n−d−1

k

)
· 1

(k+d+1)!

pk+1+d · (1− p)n−d−k−1 ·
(

n−d
k+1

)
· 1

(k+1+d)!

)

≤ max
0≤k<αpn

(
k + 1

n− d

)
=

αpn

n− d
≤ αp + o(1)

for sufficiently large n. The last inequality holds because d ≤ 1
p
− 2 ∈ O(1).

Thus, there exists a c < 1 with Pd+1/Pd ≤ αp + o(1) ≤ c for sufficiently large n.
Finally, the proof above yields P2/P0 ≤ P2·P1

P1·P0
≤ c2 ≤ c < 1, which completes the

proof.

7.2 Partial Alterations

Let us now introduce p-partial alterations. For this perturbation model, we
restrict the sequences of length n to be permutations of [n− 1

2
] = {1

2
, 3

2
, . . . , n− 1

2
}.

Every element at a position in Mn
p is replaced by a real number drawn uni-

formly and independently at random from [0, n) to obtain a sequence σ′. All
elements in σ′ are distinct with probability one.

Instead of considering permutations of [n − 1
2
], we could also consider per-

mutations of [n] and draw the random values from [1
2
, n + 1

2
). This would not

change the results. Another possibility would be to consider permutations of [n]
and draw the random values from [0, n + 1). This would not change the results
by much either. However, for technical reasons, we consider partial alterations
as introduced above.

Example 7.2.1. Let σ = (0.5, 1.5, 2.5, 4.5, 6.5, 3.5, 5.5, 7.5) (which is the sequence
of Example 7.1.1 with 0.5 subtracted from each element) and µ = {1, 5, 6, 8}. By
replacing the marked elements with random numbers, we may obtain the sequence
(3.96..., 1.5, 2.5, 4.5, 7.22..., 7.95..., 5.5, 0.67...).

Like partial permutations, partial alterations interpolate between the worst
case (p = 0) and the average case (p = 1). Partial alterations are somewhat easier
to analyse: The majority of results on the average case height of binary search
trees is actually not obtained by considering random permutations. Instead,
the binary search trees are grown from a sequence of n random variables that
are uniformly and independently drawn from [0, 1). This corresponds to partial
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alterations for p = 1. There is no difference between partial permutations and
partial alterations for p = 1. This appears to hold for all p in the sense that the
lower and upper bounds obtained for partial permutations and partial alterations
are equal for all p.

The metric introduced above for partial permutations does not yield mean-
ingful results for alterations: replacing a single element can change the rank of
all elements. One possible metric is the edit distance: The distance of σ and τ
is the minimum number of insertions, deletions, and substitutions by which we
obtain a sequence σ′ from σ with σ′i < σ′j if and only if τi < τj for all i and j.

7.3 Partial Deletions

As the third perturbation model, we introduce p-partial deletions: Again, we
have a random marking Mn

p as in Section 7.1. Then we delete all marked elements
to obtain the sequence σMn

p
.

Example 7.3.1. The sequence σ and the marking µ as in Example 7.1.1 yield
the sequence (2, 3, 5, 6).

Partial deletions do not really perturb a sequence: any ordered sequence
remains ordered even if elements are deleted. The main reason for considering
partial deletions is that they are easy to analyse when considering the stability
of perturbation models (Section 9.2). The results obtained for partial deletions
then carry over to partial permutations and partial alterations since the expected
heights with respect to these three models are closely related (Section 9.1).

7.4 Basic Properties

In this section, we state some properties of partial permutations (Section 7.4.2)
and partial alterations (Section 7.4.3) that we will exploit in subsequent chapters.
But let us start by considering some properties of binary search trees.

7.4.1 Properties of Binary Search Trees

We start by introducing a new measure for the height of binary search trees.
Let µ ⊆ [n] and let σ be a sequence of length n. The µ-restricted height of
T (σ), denoted by height(σ, µ), is the maximum number of elements of σµ on
a root-to-leaf path in T (σ).

Lemma 7.4.1. For all sequences σ of length n and µ ⊆ [n], we have

height(σ) ≤ height(σ, µ) + height(σ, µ) and
height(σ, µ) ≤ height(σµ) .
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Proof. Consider any path of maximum length from the root to a leaf in T (σ).
This path consists of at most height(σ, µ) elements of σµ and at most height(σ, µ)
elements of σµ, which proves the first part.

For the second part, let a and b be elements of σµ that do not lie on the same
path from the root to a leaf in T (σµ). Assume that a < b. Then there exists a
c prior to a and b in σµ with a < c < b. Thus, a and b do not lie on the same
root-to-leaf path in the tree T (σ) either. Now consider any root-to-leaf path of
T (σ) with height(σ, µ) elements of σµ. Then all these elements lie on the same
root-to-leaf path in T (σµ), which proves the second part of the lemma.

Of course we have height(σ, µ) ≤ height(σ) for all σ and µ. But height(σµ) ≤
height(σ), which would imply height-delp(σ) ≤ height(σ), does not hold in gen-
eral: Consider σ = (c, a, b, d, e) (we use letters and their alphabetical ordering
instead of numbers for readability) and µ = {2, 3, 4, 5}, then σµ = (a, b, d, e).
Thus, height(σ) = 3 and height(σµ) = 4. This will be investigated further in
Section 9.2, when we consider the stability of the perturbation models.

To bound the smoothed height from above, we will use the following lemma,
which is an immediate consequence of Lemma 7.4.1.

Lemma 7.4.2. For all sequences σ of length n and µ ⊆ [n], we have

height(σ) ≤ height(σµ) + height(σ, µ) .

Proof. We have height(σ) ≤ height(σ, µ)+height(σ, µ) ≤ height(σµ)+height(σ, µ)
according to Lemma 7.4.1.

We can state equivalent lemmas for left-to-right maxima. Let σ be a sequence
of length n and µ ⊆ [n]. Then ltrm(σ, µ) denotes the µ-restricted number
of left-to-right maxima of σ, i.e. the number of elements σi such that i ∈ µ
and σi is a left-to-right maximum of σ. We omit the proof of the following lemma
since it is almost identical to the proofs of the lemmas above.

Lemma 7.4.3. Let σ be a sequence of length n and µ ⊆ [n]. Then

ltrm(σ) ≤ ltrm(σ, µ) + ltrm(σ, µ) ,
ltrm(σ, µ) ≤ ltrm(σµ) , and
ltrm(σ) ≤ ltrm(σµ) + ltrm(σ, µ) .

7.4.2 Properties of Partial Permutations

Let us now prove some properties of partial permutations. The three lemmas
proved in this section are crucial for estimating the smoothed height and the
smoothed number of left-to-right maxima under partial permutations. In the
next section, we will prove counterparts of these lemmas for partial alterations
that will play a similar role in estimating the height under partial alterations.
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We start by proving that the expected height under partial permutations
depends merely on the elements that are left unmarked. The marked elements
contribute at most O(log n) to the height. Thus, when estimating the expected
height in the subsequent sections, we can restrict ourselves to considering the
elements that are left unmarked.

Lemma 7.4.4. Let σ be a sequence of length n and let p ∈ (0, 1). Let µ ⊆ [n]
be a random set of marked positions and σ′ = Π(σ, µ) be the random sequence
obtained from σ via p-partial permutation. Then

height-permp(σ) = E(height(σ′)) ≤ E (height(σ′, µ)) + O(log n) .

Proof. We have height(σµ) ∈ O(log n) since the elements at positions in µ are
randomly permuted. Then the lemma follows from Lemma 7.4.2.

And again we obtain an equivalent lemma for left-to-right maxima.

Lemma 7.4.5. Under the assumptions of Lemma 7.4.4, we have

ltrm-permp(σ) ≤ E (ltrm(σ′, µ)) + O(log n) .

The following lemma gives an upper bound for the probability that no element
in a fixed set of elements is permuted to a position in a fixed set of positions.

Lemma 7.4.6. Let p ∈ (0, 1), α > 1, let n ∈ N be sufficiently large, and let σ be
a sequence of length n with elements from [n]. Let σ′ = Π(σ, Mn

p ).

Let ` = a
√

n/p and k = b
√

n/p with a, b ∈ Ω((polylog n)−1) ∩ O(polylog n).
Let A = σ′[`] be the set of the first ` elements of σ′ and let B ⊆ [n] be any subset

with |B| = k.

Then P(A ∩B = ∅) ≤ exp(−ab/α).

Proof. We choose β with 1 < β3 < α arbitrarily. According to Lemma 6.3.1, the
probability P that

• |Mn
p ∩ [`]| < β−1p`, i.e. that too few of the first ` positions are marked,

• |σMn
p
∩B| < β−1pk, i.e. that too few of the elements of B are marked, or

• |Mn
p | > βpn, i.e. that too many positions are marked overall

is O(exp(−nε)) for an appropriately chosen ε > 0 by Lemma 6.3.1. This holds
because a, b ∈ Ω((polylog n)−1).

From now on, we assume that at least β−1p` of the first ` positions of σ are
marked, at least β−1pk elements in B are marked, and at most βpn positions are
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marked overall. The probability that then no element from B is in A is at most(
βpn− β−1p`

βpn

)β−1pk

=

(
1− `

β2n

)β−1pk

=

(1− `

β2n

)β2n
`

 `
β2n

·β−1pk

≤ exp

(
− `

β2n
· β−1pk

)
= exp

(
−ab

β3

)
.

Overall, P(A ∩B = ∅) ≤ exp(−ab/β3) + P ≤ exp(−ab/α) for sufficiently large n
since a, b ∈ O(polylog n).

7.4.3 Properties of Partial Alterations

Partial alterations possess roughly the same properties as partial permutations.
We state the lemmas and restrict ourselves to pointing out the differences in the
proofs.

Lemma 7.4.7. Let σ be a sequence of length n with elements from [n− 1
2
] and let

p ∈ (0, 1). Let σ′ be the random sequence obtained from σ via p-partial alteration
and µ be the random set of marked positions. Then

height-alterp(σ) ≤ E(height(σ′, µ)) + O(log n) and
ltrm-alterp(σ) ≤ E(ltrm(σ′, µ)) + O(log n) .

The following lemma is the counterpart of Lemma 7.4.6.

Lemma 7.4.8. Let p ∈ (0, 1), α > 1, let n ∈ N be sufficiently large, and let σ be
a sequence with elements from [n − 1

2
]. Let σ′ be the random sequence obtained

from σ by performing a p-partial alteration.
Let ` = a

√
n/p and k = b

√
n/p with a, b ∈ Ω((polylog n)−1) ∩ O(polylog n).

Let A = σ′[`] and B = [x, x + k) ⊆ [0, n) for some x.

Then P(A ∩B = ∅) ≤ exp(−ab/α).

Proof. The proof is similar to the proof of Lemma 7.4.6. Choose β arbitrarily
with 1 < β < α. Assume that at least β−1p` of the first ` positions of σ are
marked. Then the probability that no element in A assumes a value in B is at
most (

n− k

n

)β−1p`

=

((
1− k

n

)n
k

)ab/β

≤ exp(−ab/β) .

The remainder of the proof proceeds as in the proof of Lemma 7.4.6.



CHAPTER

EIGHT

Tight Bounds for Binary Search Trees

In this chapter, we prove tight lower and upper bounds for the number of left-
to-right maxima (Section 8.1) and the height of binary search trees (Section 8.2)
under all three perturbation models. Additionally, we present some results of
experiments that we performed to estimate the constants in the bounds for the
height of binary search trees (Section 8.3). These results have led to Conjec-
ture 10.1.2.

8.1 Bounds for Left-To-Right Maxima

We start by considering the easier problem of left-to-right maxima. For par-
tial permutations and partial alterations, we obtain lower and upper bounds of
0.4 · (1− p) ·

√
n/p and 3.6 ·(1−p) ·

√
n/p, respectively. For partial deletions, we

easily obtain (1− p) · n as both the lower and upper bound. In the next section,
we prove upper bounds, while lower bounds are proved in Section 8.1.2.

8.1.1 Upper Bounds

Theorem 8.1.1. Let p ∈ (0, 1). Then for all sufficiently large n and for all
sequences σ of length n,

ltrm-permp(σ) ≤ 3.6 · (1− p) ·
√

n/p .

Proof. The main idea for proving this theorem is to estimate the probability that
one of the k largest elements of σ is among the first k elements, which would
bound the number of left-to-right maxima by 2k.

According to Lemma 7.4.5, it suffices to show

E(ltrm(σ′, µ)) ≤ C · (1− p) ·
√

n/p

81
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for some C < 3.6, where µ ⊆ [n] is the random set of marked positions and σ′ is
the sequence obtained by randomly permuting the elements of σµ. Then

ltrm-permp(σ) ≤ C · (1− p) ·
√

n/p + O(log n) ≤ 3.6 · (1− p) ·
√

n/p .

We assume without loss of generality that σ is a permutation of [n].
Let Kc = c ·

√
n/p for c ∈ [log n]. In this and the following proofs, we assume

that Kc is a natural number for the sake of readability. If Kc is not a natural
number, then we can replace Kc by dKce. The proofs remain valid.

Choose α with 1 < α < 1.001. Let P denote the probability that less than
α−1pKc of the first Kc positions are marked or that less than α−1pKc of the Kc

largest elements are marked for some c ∈ [log n] or that more than αpn elements
are marked overall. Then, by Lemma 6.3.1, P tends exponentially to zero as n
increases.

From now on, we assume that for all c ∈ [log n], at least α−1pKc of the
first Kc positions and of the Kc largest elements are marked. Furthermore, we
assume that at most αpn positions are marked overall. In this case, we say that
the partial permutation is partially successful. If a partial permutation is not
partially successful, we bound the number of left-to-right maxima by n.

We call σ′ c-successful for c ∈ [log n] if one of the Kc largest elements
n, n− 1, . . . , n−Kc + 1 is among the first Kc elements in σ′.

Assume that σ′ is c-successful and that m ∈ {n − Kc + 1, . . . , n} is among
the first Kc elements of σ′. The only unmarked elements that can contribute to
ltrm(σ′, µ) are those that are among the first Kc positions and those that are
larger than m. All other unmarked elements are smaller than m and located
behind m in σ′, thus they are no left-to-right maxima. The expected number of
unmarked elements larger than n − Kc plus the expected number of unmarked
positions among the first Kc positions is at most 2 · (1− p) ·Kc = Qc. Hence, we
have E(ltrm(σ′, µ)) ≤ Qc if σ′ is c-successful.

Let c ∈ [log n]. The probability that a partially successful partial permutation
is not c-successful is at most exp(−c2/α) according to Lemma 7.4.6. In particular,
the probability that σ′ is not (log n)-successful is at most P ′ = exp(−(log n)2/α).
If σ′ is not (log n)-successful, we bound the number of left-to-right maxima by n.

If we restrict ourselves to partially successful partial permutations, we have

P(ltrm-permp(σ) > Qc) ≤ exp(−c2/α) .

Hence, we can bound ltrm(σ′, µ) from above by

log n∑
c=0

Qc+1 · P(σ′ is not c-successful but (c + 1)-successful)︸ ︷︷ ︸
≤P(σ′ is not c-successful)

+n · (P + P ′)

≤ 2 · (1− p) ·
√

n/p ·
∑
c∈N

(c + 1) · e−
c2

α︸ ︷︷ ︸
< 1.8 for α < 1.001

+n · (P + P ′) ≤ C · (1− p) ·
√

n/p
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for some C < 3.6, which proves the theorem.

We obtain the same upper bound for the expected number of left-to-right
maxima under partial alterations.

Theorem 8.1.2. Let p ∈ (0, 1). Then for all sufficiently large n and for all
sequences σ of length n (where σ is a permutation of [n− 1

2
]),

ltrm-alterp(σ) ≤ 3.6 · (1− p) ·
√

n/p .

Proof. The main difference between the proof of this theorem and the proof of
Theorem 8.1.1 is that we have to use Lemma 7.4.8 instead of Lemma 7.4.6.

The sequence σ′ obtained from σ via p-partial alteration is called c-successful
if at least one of the first Kc elements of σ′ lies in the interval [n −Kc, n). The
remainder of the proof proceeds in the same way as the proof of Theorem 8.1.1.

For partial deletions, we easily obtain the following upper bound.

Theorem 8.1.3. For all p ∈ [0, 1], n ∈ N, and sequences σ of length n,

ltrm-delp(σ) ≤ (1− p) · n .

Proof. Let σ′ be the sequence obtained from σ via p-partial deletion. Then σ′

consists of (1 − p) · n elements in expectation. The number of elements is an
upper bound for the number of left-to-right maxima.

8.1.2 Lower Bounds

The following lemma is an improvement of the lower bound proof for the number
of left-to-right maxima under partial permutations presented by Banderier et
al. [10]. We obtain a lower bound with a much larger constant that holds for all
p ∈ (0, 1) (Theorem 8.1.5); the lower bound provided by Banderier et al. holds
only for p ≤ 1/2.

Lemma 8.1.4. Let p ∈ (0, 1), α > 1, and c > 0. Then for all sufficiently large n,
there exist sequences σ of length n with

ltrm-permp(σ) ≥ exp
(
−c2α

)
· c · (1− p) ·

√
n/p .

Proof. Let Kc = c·
√

n/p and let σ = (n−Kc+1, n−Kc+2, . . . , n, 1, 2, . . . , n−Kc).
We start with a sketch of the proof: The probability that none of the first Kc

elements is moved further to the front is bounded from below by exp(−c2α) for
any fixed α > 1. In such a case, all unmarked elements among the first Kc

elements are left-to-right maxima, and there are (1 − p) · Kc such elements in
expectation.
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Choose β arbitrarily with 1 < β3 < α. Let P denote the probability that more
than βpKc of the first Kc elements or less than β−1pn of the remaining n − Kc

elements are selected. P tends exponentially to zero as n increases (Lemma 6.3.1).
Let µ be the set of marked positions and let µc = µ∩ [Kc] be the set of marked

positions among the first Kc positions, µc = {i1, . . . , ix} with i1 < i2 < . . . < ix,
where x = |µc| is the number of such positions. Let y = |µ \ µc| be the number
of remaining positions. Let f be a random permutation of µ. We say that f is
successful if f(i) > i for all i ∈ µc. Thus, under a successful permutation, all
marked elements in {n−Kc + 1, . . . , n} are moved further to the back.

If f is successful, then all Kc − x unmarked elements in {n−Kc + 1, . . . , n}
are left-to-right maxima. Provided that at most βpKc of the first Kc elements
are marked, i.e. x ≤ βpKc, the expectation of Kc − x is at least (1− p) ·Kc.

Let us bound the probability from below that the random permutation f of
µ is successful for a given µ: For ix, y positions are allowed and x positions are
not allowed; for ix−1, y are positions allowed (all in µ \ µc plus one for position
ix minus one for position f(ix)) and x− 1 positions are not allowed; . . . ; for i1, y
positions are allowed and one position is not allowed. Thus, the probability that
the random permutation is successful is at least(

y

y + x

)x

=
((

1− x

y + x

) y+x
x︸ ︷︷ ︸

≥e−1·(1− x
y+x

)

) x2

y+x ≥ exp

((
ln

(
1− x

y + x

)
− 1

)
· x2

y + x

)
.

Provided that x ≤ βpKc and x + y ≥ y ≥ β−1pn, we obtain a probability that
the random permutation is successful of at least

exp

((
ln

(
1− βpKc

β−1pn

)
− 1

)
· β2p2K2

c

β−1pn

)
= exp

((
ln

(
1− β2c

√
pn

)
− 1

)
· β3c2

)
= Q · exp(−β3c2)

for Q =
(
1− β2c√

pn

)β3c2
, which tends to one as n increases. Thus, with a probability

of at least (1−P ) ·Q · exp(−β3c2), all unmarked elements of {Kc + 1, . . . , n} are
left-to-right maxima. Furthermore, we have (1−P ) ·Q ·exp(−β3c2) ≥ exp(−c2α)
for sufficiently large n. Since the expectation of the number of unmarked elements
among the first Kc elements is at least (1− p) ·Kc, the lemma is proved.

The term exp(−c2α) · c assumes its maximum for c = 1/
√

2α. Thus, we
obtain the strongest lower bound from Lemma 8.1.4 by choosing α close to 1 and
c = 1/

√
2α. This yields the following theorem.

Theorem 8.1.5. For all p ∈ (0, 1) and all sufficiently large n, there exists a
sequence σ of length n with

ltrm-permp(σ) ≥ 0.4 · (1− p) ·
√

n/p .
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Theorem 8.1.5 also yields the same lower bound for height-permp(σ) since
the number of left-to-right maxima of a sequence is a lower bound for the height
of the binary search tree obtained from that sequence. We can, however, prove
a stronger lower bound for the smoothed height of binary search trees (Theo-
rem 8.2.7).

A consequence of Lemma 8.1.4 is that there is no constant c such that the
number of left-to-right maxima is at most c · (1−p) ·

√
n/p with high probability,

i.e. with a probability of at least 1 − n−Ω(1). Thus, the bounds proved for the
expected tree height or the number of left-to-right maxima cannot be generalised
to bounds that hold with high probability. A bound for the tree height that
holds with high probability can be obtained from Lemma 7.4.6, as we will show in
Theorem 8.2.4. Clearly, this bound holds for the number of left-to-right maxima
as well.

Let us now prove the counterpart of Lemma 8.1.4 for partial alterations.

Lemma 8.1.6. Let p ∈ (0, 1), α > 1, and c > 0. Then for all sufficiently large
n, there exist sequences σ of length n with

ltrm-alterp(σ) ≥ exp
(
−c2α

)
· c · (1− p) ·

√
n/p .

Proof. Let Kc = c ·
√

n/p. Let σ = (n−Kc +
1
2
, n−Kc +

3
2
, . . . , n− 1

2
, 1

2
, 3

2
, . . . , n−

Kc− 1
2
). Choose β arbitrarily with 1 < β < α. Let P denote the probability that

more than βpKc of the first Kc positions are marked. By Lemma 6.3.1, P tends
exponentially to zero as n increases.

Let µc be the set of marked positions among the first Kc positions. Let x = |µc|
and µc = {i1, . . . , ix} with i1 < i2 < . . . < ix. We have σij = n−Kc + ij− 1

2
for all

j ∈ [x]. Let σ′ be the sequence obtained from σ by replacing all marked elements
with random numbers from [0, n). We say that σ′ is successful if σ′ij ≤ n − Kc

for all j ∈ [x]. If σ′ is successful, then all Kc − x unmarked elements among the
first Kc elements of σ are left-to-right maxima.

The probability that σ′ is successful is at least(
n−Kc

n

)x

=
((

1− Kc

n

) n
Kc︸ ︷︷ ︸

≥e−1·(1−Kc
n

)

)xKc
n ≥ exp

((
ln

(
1− Kc

n

)
− 1

)
· xKc

n

)
.

Provided that x ≤ βpKc, we obtain a probability that σ′ is successful of at least

exp

((
ln

(
1− βpKc

n

)
− 1

)
· βpK2

c

n

)
= exp

((
ln

(
1− βc

√
pn

)
− 1

)
· βc2

)
= Q · exp(−βc2)
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for Q =
(
1− βc√

pn

)βc2
, which tends to one as n increases. Thus, with a probability

of at least (1 − P ) · Q · exp(−βc2), all unmarked elements among the first Kc

elements are left-to-right maxima. The expected number of unmarked elements
among the first Kc elements is at least (1− p) ·Kc. Furthermore, for sufficiently
large n, we have (1−P )·Q·exp(−βc2) ≥ exp(−αc2), which proves the lemma.

From the above lemma, we obtain the same lower bounds for the number of
left-to-right maxima as for partial permutations, again by choosing α close to 1
and c = 1/

√
2α.

Theorem 8.1.7. For all p ∈ (0, 1) and all sufficiently large n, there exists a
sequence σ of length n with

ltrm-alterp(σ) ≥ 0.4 · (1− p) ·
√

n/p .

As for partial permutations, a consequence of Lemma 8.1.6 is that we cannot
achieve a bound of O((1 − p) ·

√
n/p) that holds with high probability for the

number of left-to-right maxima or the height of binary search trees, but we can
show that the height after p-partial alteration is O(

√
(n/p) · log n) with high

probability (Theorem 8.2.4).
For partial deletions, we easily obtain a matching lower bound.

Theorem 8.1.8. For all p ∈ [0, 1], n ∈ N,

ltrm-delp(σ
n
sort) = (1− p) · n .

Proof. Let σ′ be the sequence obtained from σ via p-partial deletion. Every
element of σ′ is a left-to-right maximum, and σ′ consists of (1 − p) · n elements
in expectation.

8.2 Bounds for Binary Search Trees

We now consider the smoothed height of binary search trees. For both par-
tial permutations and partial alterations, we obtain lower and upper bounds of
0.8 · (1− p) ·

√
n/p and 6.7 · (1 − p) ·

√
n/p, respectively. The upper and lower

bounds shown for the number of left-to-right maxima under partial deletions
(Theorems 8.1.3 and 8.1.8) carry over to the height of binary search trees.

8.2.1 Upper Bounds

Theorem 8.2.1. Let p ∈ (0, 1). Then for all sufficiently large n and all sequences
σ of length n, we have

height-permp(σ) ≤ 6.7 · (1− p) ·
√

n/p .



87 8.2. Bounds for Binary Search Trees

Proof. The idea is to divide the sequence into blocks B1, B2, . . ., where Bd is of
size cd2

√
n/p for some c > 0. Each block Bd is further divided into d4 parts

A1
d, . . . , A

d4

d , each consisting of cd−2
√

n/p elements. Assume that on every root-
to-leaf path in the tree obtained from the perturbed sequence, there are elements
of at most two such Ai

d for every d. Then the height can be bounded from above
by

∞∑
d=1

2 · cd−2
√

n/p︸ ︷︷ ︸
size of an Ai

d

= (cπ2/3)
√

n/p .

The probability for such an event is roughly O
(
exp(−c2)2/

(
1− exp(−c2)

))
. We

obtain the upper bound claimed in the theorem mainly by carefully applying this
bound and by exploiting the fact that only a fraction of (1−p) of the elements are
unmarked. Marked elements contribute at most O(log n) to the expected height
of the tree.

According to Lemma 7.4.4, it suffices to show

E(height(σ′, µ)) ≤ C · (1− p) ·
√

n/p

for some fixed C < 6.7, where µ ⊆ [n] is the random set of marked positions and
σ′ is the sequence obtained by randomly permuting the elements of σµ. Then

height-permp(σ) ≤ C · (1− p) ·
√

n/p + O(log n) ≤ 6.7 · (1− p) ·
√

n/p

for sufficiently large n.
Choose α arbitrarily with 1 < α < 1.01. Without loss of generality, we assume

that σ is a permutation of [n].
We define

D(d) =
d−1∑
i=1

i2 =
1

3
·
(
d− 1

)
·
(
d− 1

2

)
· d .

Then D(d) ≥ d3/8 for d ≥ 2.
Let c ∈ [log n] and Kc = c ·

√
n/p. We divide a prefix of the sequence σ into

blocks B1, B2, . . . , B(log n)2 . The block Bd consists of d2Kc elements: B1 contains
the elements of σ at the first Kc positions, B2 contains the elements of σ at the
next 4Kc positions, and so on. Thus,

Bd = σ[D(d+1)·Kc] \ σ[D(d)·Kc] .

Let B =
⋃(log n)2

d=1 Bd be the set of elements that are contained in any Bd. Let d′ =
(log n)2+1 and D′ = D(d′) ≥ (log n)6/8. We have |B| = D′ ·Kc ≥ 1

8
·(log n)6 ·Kc.

Every block Bd is further divided into d4 subsets A1
d, . . . , A

d4

d of elements as
follows: A1

d contains the Kc/d
2 smallest elements of Bd, A2

d contains the Kc/d
2

next smallest elements of Bd, . . . , and Ad4

d contains the Kc/d
2 largest elements
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of Bd. Figure 8.2.1(a) illustrates the division of σ into blocks B1, B2, . . . , B(log n)2

and subsets Ai
d for d ∈ [(log n)2] and i ∈ [d2].

Finally, we divide [n] into log n · √np subsets C1, . . . , Clog n·√np with

Cj =

{√
n/p

log n
· (j − 1) + 1, . . . ,

√
n/p

log n
· j

}
.

Thus, C1 contains the (log n)−1 ·
√

n/p smallest numbers of [n], C2 contains the

(log n)−1 ·
√

n/p next smallest numbers of [n], . . . , and Clog n·√np contains the

(log n)−1 ·
√

n/p largest elements of [n].
Let η = 1 + n−1/6. Then

η−1 =
1

1 + n−1/6
= 1− n−1/6

1 + n−1/6
≥ 1− n−1/6 . (8.1)

We call a set of k positions or elements partially successful in µ and σ′ if
at least η−1pk and at most ηpk elements of this set are marked. We say that µ
and σ′ are partially successful if the following properties are fulfilled:

• for all c ∈ [log n], d ∈ [(log n)2], and i ∈ [d4], Ai
d is partially successful in µ

and σ′, and

• for all j ∈ [log n
√

np], Cj is partially successful in µ and σ′.

There are only polynomially many sets of elements that must be partially suc-
cessful, and every such set is of cardinality Ω

(√
n/p/ polylog n

)
. Hence, there

exists some ε > 0 such that the probability that µ and σ are partially successful
is O(exp(−nε)) according to Lemma 6.3.1. Let P denote this probability. If µ
and σ′ are not partially successful, we bound the height of T (σ′) by n.

From now on, we assume that µ and σ′ are partially successful. When speaking
about partial success, we occasionally do not mention µ or σ′.

We call a subset Ai
d c-successful if at least one element of Ai

d is permuted to
one of the D(d) · c ·

√
n/p positions that precede Bd. Thus, for all d ∈ [(log n)2],

d ≥ 2, and i ∈ [d4], we have

P(Ai
d is not successful) ≤ exp(−d−2cD(d)cα−1) ≤ exp(−c2d/(8α))

according to Lemma 7.4.6: There are d−2c
√

n/p elements in Ai
d and D(d)c

√
n/p

positions that precede Bd.
We call a block Bd (for d ≥ 2) c-successful if all subsets A1

d, . . . , A
d4

d of
Bd are c-successful. The probability that Bd is not c-successful is at most
d4 · exp(−c2d/(8α)) since there are d4 subsets A1

d, . . . , A
d4

d of Bd. Figure 8.2.1
illustrates c-success.

A subset Cj is called c-successful if at least one element of Cj is among the

first D′c
√

n/p positions of σ′. The probability that a fixed Cj is not c-successful
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B3B2B1 B4

︸ ︷︷ ︸

B4 is divided into A1

4
, A2

4
, . . .

D(4) · Kc elements preceding B4

︷ ︸︸ ︷
the 42

· Kc elements of B4

︷ ︸︸ ︷

A
4
4A

1
4A

3
4A

1
4A

2
4A

5
4A

4
4A

4
4 A

3
4A

2
4

(a) Dividing the first D′ · Kc elements of σ into blocks B1, . . . , B(log n)2 . The subset
A1

4 contains the Kc/4 smallest elements of B4, . . . , and A16
4 contains the Kc/4 largest

elements of B4. (For readability, B4 is divided into only five subsets in the illustration.)

︸ ︷︷ ︸

the first D(4) · Kc positions of σ
′

︸ ︷︷ ︸

the location of B4 in σ

B4

︷ ︸︸ ︷

A
4
4A

1
4A

3
4A

1
4A

2
4A

5
4A

4
4A

4
4 A

3
4A

2
4

(b) A subset Ai
4 is c-successful if at least one element of Ai

4 is among the first D(4) ·Kc

elements of σ′. The block B4 is c-successful if all Ai
4 are c-successful.

Figure 8.2.1: The division of σ into blocks and subsets (shown here for B4).

is at most exp(− cD′

α log n
) ≤ exp(− c(log n)5

8α
). The probability that any Cj is not

c-successful is bounded from above by

log n · √np · exp

(
−c(log n)5

8α

)
≤ d′4 · exp

(
−c2d′

8α

)
(8.2)

for sufficiently large n.
Finally, we say that σ′ is c-successful if

• all blocks B1, B2, . . . , B(log n)2 are c-successful and

• all subsets C1, . . . , Clog n
√

np are c-successful.

Let c ≥ 5. The probability that σ′ is not c-successful is at most∑
2≤d≤(log n)2

d4 · exp
(
−c2d/(8α)

)
+ P(some Cj is not c-successful)

≤
∑

2≤d≤(log n)2+1

d4 · exp
(
−c2d/(8α)

)
≤
∑
d≥2

(
exp
(
−c2/(16α)

))d
=

exp
(
−c2/(16α)

)2
1− exp

(
−c2/(16α)

) = E(c, α) . (8.3)
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The first inequality holds due to Formula 8.2, the second inequality holds since
c ≥ 5. If σ′ is not (log n)-successful, which happens with a probability of at most
E(log n, α) ≤ exp(−(log n)2/(16α)), we bound the height of T (σ′) by n.

Let Qc =
(
c · π2

3
+ 2

log n

)
· (1− η−1p) ·

√
n/p.

Lemma 8.2.2. If σ′ is c-successful, then height(σ′, µ) ≤ Qc.

Proof. Consider the way in which T (σ′) is built iteratively from σ′. Let d ≥ 2.
After inserting the first D(d)·Kc elements, the partial tree T̃ grown so far contains
at least one element of Ai

d for every i ∈ [d4]. Except for elements of T̃ , there
cannot be elements from both Bj− and Bj+ for j− < i < j+ that lie on the same

root-to-leaf path of T (σ′): Let x ∈ Bi be part of T̃ , then all elements of Bj− that

are not part of T̃ are to the left of x in T (σ′), while all elements of Bj+ that are

not part of T̃ are to the right of x in T (σ′).

It follows that except for elements of T̃ , only elements of two consecutive parts
Ai

d and Ai+1
d can lie on the same root-to-leaf path of T (σ′). For every i, there are

at most 2 · d−2 ·Kc such elements.

For every d and i, there are at most (1−η−1p) ·d−2 ·Kc unmarked elements in
Ai

d since σ′ is partially successful. Thus for every d, at most 2 · (1−η−1p) ·d−2 ·Kc

unmarked elements of Bd are on the same root-to-leaf path in T (σ′).

Let B = [n] \ B be the set of elements of σ that are not contained in any
Ai

d. There cannot be unmarked elements from both Ck− ∩ B and Ck+ ∩ B for
k− < j < k+ on the same root-to-leaf path in σ′ since there is at least one
element of Cj among the first D′ · Kc elements of σ′. Thus, there are at most

2 · (1 − η−1p) ·
√

n/p

log n
unmarked elements of B on the same root-to-leaf path in

T (σ′).

The maximum number of unmarked elements on any root-to-leaf path in T (σ′)
is thus at most∑

1≤d≤(log n)2

2 · (1− η−1p) · cd−2 ·
√

n/p + 2 · (1− η−1p) · (log n)−1 ·
√

n/p

≤

(
2c ·

∑
d≥1

d−2 + 2/ log n

)
· (1− η−1p) ·

√
n/p = Qc .

According to Lemma 8.2.2 and Formula 8.3, we have P (height(σ′, µ) > Qc) ≤
E(c, α) for 5 ≤ c ≤ log n. Hence, we can bound the expectation of height(σ′, µ)
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from above by

Q5 +
∑

5≤c≤log n

Qc+1 · P(σ′ is not c-successful but (c + 1)-successful)︸ ︷︷ ︸
≤P(σ′ is not c-successful)

+ n · (P + E(log n, α))︸ ︷︷ ︸
=X

≤ (1− η−1p)︸ ︷︷ ︸
≤(1−p)+n−1/6p

·
√

n/p ·

(
5 +

∞∑
c=5

(
π2

3
(c + 1) +

2

log n

)
· E(c, α)

)
︸ ︷︷ ︸

=Y ∈O(1)

+X

≤ (1− p) ·
√

n/p︸ ︷︷ ︸
=Z

·Y + n2/6 · √p · Y + X︸ ︷︷ ︸
∈o(Z)

= Z ·
(
5 +

π2

3
·

< 0.5 for α < 1.01︷ ︸︸ ︷∑
c≥5

(c + 1) · E(c, α)︸ ︷︷ ︸
= C < 6.7 for α < 1.01

)
+ o(Z) ≤ C · (1− p) ·

√
n/p

for sufficiently large n and α < 1.01. The second inequality holds due to For-
mula 8.1. The equality holds because Z ·

∑∞
c=5

2E(c,α)
log n

∈ o(Z). This completes
the proof.

The following theorem is obtained via a proof similar to the proof of Theo-
rem 8.2.1.

Theorem 8.2.3. Let p ∈ (0, 1). Then for all sufficiently large n and all sequences
σ of length n (where σ is a permutation of [n− 1

2
]),

height-alterp(σ) ≤ 6.7 · (1− p) ·
√

n/p .

Proof. The main difference between the proof of this theorem and the proof of
Theorem 8.2.1 is that we have to use Lemma 7.4.8 instead of Lemma 7.4.6. The
blocks Bd and Cj and the subsets Ai

d are defined in the same way. Now for each
subset Ad

i we have numbers ai
d = bmin Ad

i c and bi
d = dmax Ad

i e. We say that Ad
i

is c-successful if at least one of the first D(d) · c ·
√

n/p elements is from the
interval [ai

d, b
i
d). The term c-successful for blocks Bd is defined in the same way

as in the previous proof. For subsets Cj, the term c-successful is defined just as
for Ad

i . The remainder of the proof proceeds along the same lines as the proof of
Theorem 8.2.1.

An upper bound for the height of binary search trees under partial permuta-
tion and partial alteration that holds with high probability can be obtained by
applying Lemmas 7.4.6 and 7.4.8.
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Theorem 8.2.4. Let p ∈ (0, 1), α > 1, c > 0, and let n ∈ N be sufficiently large.
Let σ be a sequence of length n and let σ′ be the sequence obtained from σ by
performing a p-partial permutation. Then

P
(
height(σ′) > c ·

√
(n/p) · log n

)
≤ n−(c/3)2/α+0.5 .

The same holds if σ is a permutation of [n− 1
2
] and σ′ is obtained by performing

a partial alteration.

Proof. Let c̃ = c/3. Let Kc̃ = c̃ ·
√

(n/p) · log n. Let B1 be the set of the Kc̃

smallest elements of σ, let B2 be the set of the Kc̃ next smallest elements of σ,
. . . , and let Bn/Kc̃

be the set of the Kc̃ largest elements of σ.
If at least one element of every Bi is among the first Kc̃ elements of σ′, then

we can bound the height of T (σ′) as follows.

Lemma 8.2.5. Assume that for every i, at least one element of Bi is among the
first Kc̃ elements of σ′.

Then height(σ′) ≤ c ·
√

(n/p) · log n.

Proof. Consider the way in which T (σ′) is built iteratively from σ′. After inserting
the first Kc̃ elements, the partial tree T̃ grown so far has a height of at most Kc̃.
The tree T̃ contains at least one element of every Bi. Except for elements of T̃ ,
there cannot be elements from both Bj− and Bj+ for j− < i < j+ that lie on the

same root-to-leaf path of T (σ′): Let x ∈ Bi be part of T̃ , then all elements of
Bj− that are not part of T̃ are to the left of x in T (σ′), while all elements of Bj+

that are not part of T̃ are to the right of x in T (σ′).
It follows that except for elements of T̃ , only elements of two consecutive

blocks Bi and Bi+1 can lie on the same root-to-leaf path of T (σ′). For every
i, there are at most 2 · Kc̃ such elements, yielding a height of at most 2 · Kc̃.
Together with the first Kc̃ elements, which build T̃ , we obtain height(σ′) ≤
3 ·Kc̃ = c ·

√
(n/p) · log n.

What remains is to estimate the probability that there is an i such that no
element of Bi is among the first Kc̃ elements. For every i, the probability that no
element of Bi is among the first Kc̃ elements in σ′ is at most exp(−(c̃2/α)·log n) =
n−c̃2/α by Lemma 7.4.6. Thus, the probability that there is any Bi such that no
element of Bi is among the first Kc̃ elements of σ′ is at most

(n/Kc̃) · n−c̃2/α = c̃−1 ·
√

p/ log n · n−c̃2/α+0.5 ≤ n−c̃2/α+0.5

for sufficiently large n, which completes the proof for partial permutations.
The same bound can be obtained for partial alterations; there are two main

differences: We now have to use Lemma 7.4.8, and we have to estimate the
probability that for every i, at least one of the first Kc elements is in the interval
[(i− 1) ·Kc, i ·Kc).
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The following result follows immediately from the previous theorem.

Corollary 8.2.6. Let p ∈ (0, 1) and n be sufficiently large. Let σ be a sequence of
length n and σ′ be the sequence obtained from σ via p-partial permutation. Then

P
(
height(σ′) > 3.7 ·

√
(n/p) · log n

)
≤ 1/n .

The same holds if σ is a permutation of [n− 1
2
] and σ′ is obtained via p-partial

alteration.

8.2.2 Lower Bounds

Now we turn to lower bounds for the smoothed height. Interestingly, the lower
bound is obtained for the sorted sequence, which is not the worst case for the
expected number of left-to-right maxima under partial permutation; the expected
number of left-to-right maxima of the sequence obtained by partially permuting
the sorted sequence σn

sort is roughly only O(log n) [10].

Theorem 8.2.7. For all p ∈ (0, 1) and all sufficiently large n ∈ N, we have

height-permp(σ
n
sort) ≥ 0.8 · (1− p) ·

√
n/p .

Proof. The proof is similar to the proof of Lemma 8.1.4, except that we consider
the sorted sequence.

Let again Kc = c ·
√

n/p for c > 0. Let σ′ be the sequence obtained from σn
sort

via p-partial permutation. We say that σ′ is c-successful if all marked elements
among the first Kc elements of σn

sort are permuted further to the back. According
to the proof of Lemma 8.1.4, we have

P(σ′ is c-successful) ≥ exp(−c2α)

for arbitrarily chosen α > 1 and sufficiently large n. If σ′ is c-successful, then
height(σ′) is at least the number of unmarked elements among the first Kc el-
ements. Let Q = (1 − p) ·

√
n/p for short. Analogously to Lemma 8.1.4, we

obtain
P (height(σ′) ≥ cQ) ≥ exp(−c2α)

for sufficiently large n. We compute a lower bound for the expected height of
T (σ′) by considering c-success for all c ∈ {0.1, 0.2, . . . , 9.9, 10} = C. To use
more values for c does not make much sense since the changes in the result are
negligible. We obtain

E(height(σ′)) ≥ Q ·
∑
c∈C

c · P(cQ ≤ height(σ′) < (c + 0.1) ·Q)

≥ Q ·
∑
c∈C

0.1 · P(height(σ′) ≥ cQ)

≥ Q ·
∑
c∈C

0.1 · exp(−c2α)︸ ︷︷ ︸
≥ 0.8 for α < 1.01

≥ 0.8 ·Q
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for sufficiently large n and α < 1.01, which proves the theorem.

We obtain the same lower bound for the height of binary search trees under
partial alterations. Again, the lower bound is obtained for the sorted sequence.

Theorem 8.2.8. For all p ∈ (0, 1) and all sufficiently large n ∈ N,

height-alterp(σ
n
sort) ≥ 0.8 · (1− p) ·

√
n/p .

Proof. The proof is almost identical to the proof of Theorem 8.2.7. The only
difference is that we have to use Lemma 8.1.6 instead of Lemma 8.1.4.

8.3 Experimental Results

We performed experiments to estimate the constants in the bounds for the height
of binary search trees.

For all n ∈ {20 000, 40 000, . . . , 500 000} and p ∈ {0.1, 0.25}, we randomly
performed 5 000 p-partial permutations on the sorted sequence σn

sort. We then
estimated height-permp(σ

n
sort) as the average height of the trees generated by the

sequences thus obtained. Figure 8.3.1 shows the results compared to 1.8 · (1 −
p) ·

√
n/p.

We performed the same experiment for n ∈ {100 000, 500 000} and p ∈
{0.05, 0.10, . . . , 0.95}. Figure 8.3.2 shows the results, again compared to 1.8 ·
(1− p) ·

√
n/p.

The experimental results lead us to Conjecture 10.1.2, which states that
height-permp(σ

n
sort) is roughly 1.8 · (1 − p) ·

√
n/p. Proving Conjecture 10.1.2

would immediately improve the lower bound of Theorem 8.2.7. Furthermore, it
would lead to stronger upper bounds for the smoothed height of binary search
trees under partial permutations, provided that Conjecture 10.1.1 holds as well.
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Figure 8.3.1: Experimental data for σn
sort for n ∈ {20 000, 40 000, . . . , 500 000} and

p ∈ {0.1, 0.25} compared to 1.8 · (1− 0.25) ·
√

n/p.



8. TIGHT BOUNDS FOR BINARY SEARCH TREES 96

0

500

1000

1500

2000

2500

3000

3500

0 0.2 0.4 0.6 0.8 1

h
ei

gh
t-

p
er

m
p
(σ

1
0
0

0
0
0

s
o
r
t

)

p

Estimate

×

×

×

×

×
×
×
×
× ×

× × × × × × × × ×

×

1.8 · (1− p) ·
√

100 000/p

(a) n = 100 000

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.2 0.4 0.6 0.8 1

h
ei

gh
t-

p
er

m
p
(σ

5
0
0

0
0
0

s
o
r
t

)

p

Estimate

×

×

×

×
×
×
×
×
×
× × × × × × × × × ×

×

1.8 · (1− p) ·
√

500 000/p

(b) n = 500 000

Figure 8.3.2: Experimental data for σn
sort for n ∈ {100 000, 500 000} and p ∈

{0.05, 0.10, . . . , 0.95} compared to 1.8 · (1− p) ·
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CHAPTER

NINE

Smoothed Analysis and Stability

Smoothed analysis can be viewed as analysing the fragility of worst case instances:
How much do worst case instances break down under slight perturbations? We
suggest examining also the dual property, the stability under slight perturbations:
Given a good (or best-case) instance, how much can the complexity increase if
the instance is perturbed slightly?

We show that all three perturbation models considered are not stable: There
are sequences that yield trees of logarithmic height, but slightly perturbing these
sequences yields trees of height nΩ(1).

In the next section, we show how to bound the expected height under partial
permutations and partial alterations by the expected height under partial dele-
tions and vice versa. In Section 9.2, we prove that the height of binary search trees
under partial deletions is fragile and transfer the results to partial permutations
by applying the results of Section 9.1.

9.1 Comparing Partial Deletions with Permu-

tations and Alterations

Partial deletions turn out to be the worst of the three models: Trees are usually
expected to be higher under partial deletions than under partial permutations
or alterations, even though they contain fewer elements. The expected height
under partial deletions yields upper bounds (up to an additional O(log n) term)
for the expected height under partial permutations and alterations. Furthermore,
we prove that lower bounds for the expected height under partial deletions yield
slightly weaker lower bounds for permutations and alterations. The main advan-
tage of partial deletions over partial permutations and partial alterations is that
partial deletions are much easier to analyse.

The following lemma is an immediate consequence of Lemmas 7.4.4, 7.4.5,
and 7.4.7, we therefore omit its proof.

97
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Lemma 9.1.1. For all sequences σ of length n and p ∈ [0, 1],

height-permp(σ) ≤ height-delp(σ) + O(log n) and
ltrm-permp(σ) ≤ ltrm-delp(σ) + O(log n) .

If σ is a permutation of [n− 1
2
], then

height-alterp(σ) ≤ height-delp(σ) + O(log n) and
ltrm-alterp(σ) ≤ ltrm-delp(σ) + O(log n) .

Thus, we can bound the expected height under partial permutations or alter-
ations from above by the expected height under partial deletions. The converse is
not true; this follows from the upper bounds for the height of binary search trees
under partial permutations and partial alterations (Theorems 8.2.1 and 8.2.3)
and the lower bound under partial deletions (Theorem 8.1.8). But we can bound
the expected height under partial deletions by the expected height under partial
permutations or alterations by padding the sequences considered.

Lemma 9.1.2. Let p ∈ (0, 1) be fixed and let σ be a sequence of length n with
height(σ) = d and height-delp(σ) = d′.

Then there exists a sequence σ̃ of length O(n2) with height(σ̃) = d + O(log n)
and height-permp(σ̃) ∈ Ω(d′).

Proof. Without loss of generality, we assume that σ is a permutation of [n].
The idea is to attach a tail of sufficiently many elements greater than n to the
sequence such that all marked elements that are greater than or equal to n will
be permuted to this tail. Thus, the overall structure of the remaining elements
from [n] will be as if a partial deletion had been carried out.

Choose K = n2p and construct σ̃ from σ as follows: the first n items of σ̃
are just σ; we call this the head of σ̃. The last K − n items of σ̃, which we
call the tail of σ̃, are numbers greater than n such that these numbers build a
tree of height O(log(K − n)) = O(log n). With a constant probability of, say,
c, all elements marked in the head are permuted into the tail (see the proof of
Lemma 8.1.4).

Consider the tree obtained from the first n elements after partial permutation
under the assumption that all marked head elements are now in the tail. This
tree is almost identical to the tree obtained from σ via partial deletion when the
same elements are marked. The only difference is that the tree contains some
elements greater than n, which only increase the length of the right-most path.
Thus, height-permp(σ̃) is at least cd′, which proves the lemma.

The following is the analogue of the above lemma for partial alterations. Since
its proof is similar to the proof of the previous lemma (the only difference is that
we have to use the proof of Lemma 8.1.6 instead of Lemma 8.1.4), we omit it.
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Lemma 9.1.3. Let p ∈ (0, 1) be fixed and let σ be a sequence of length n with
elements from [n− 1

2
]. Let d = height(σ) and d′ = height-delp(σ).

Then there exists a sequence σ̃ of length O(n2) with height(σ̃) = d + O(log n)
and height-alterp(σ̃) ∈ Ω(d′).

9.2 The (In-)Stability of Perturbations

Having shown in the previous chapter that worst case instances become much
better by smoothing, we now provide a family of best-case instances for which
smoothing results in an exponential increase in height.

We consider the following family of sequences:

• σ(1) = (1).

• σ(k+1) = (2k, σ(k), 2k +σ(k)), where c+σ = (c+σ1, . . . , c+σn) for a sequence
σ of length n.

For instance, σ(2) = (2, 1, 3) and σ(3) = (4, 2, 1, 3, 6, 5, 7). Let n = 2k − 1. Then
σ(k) contains the numbers 1, 2, . . . , n, and we have

height(σ(k)) = ltrm(σ(k)) = k ∈ Θ(log n) .

Let us estimate the expected number of left-to-right maxima after partial
deletion, thus obtaining a lower bound for the expected height of the binary
search tree. Deleting the first element of σ(k) roughly doubles the number of
left-to-right maxima in the resulting sequence. This is the basic idea behind the
following theorem; the idea is illustrated in Figure 9.2.1.

Theorem 9.2.1. Let p ∈ (0, 1). Then for all k ∈ N,

ltrm-delp(σ
(k)) =

1− p

p
·
(
(1 + p)k − 1

)
.

Proof. Let `(k) = ltrm-delp(σ
(k)) for short. The root 2k−1 is deleted with proba-

bility p. Then the expected number of left-to-right maxima is just the expectation
for the left subtree plus the expectation for the right subtree since all elements
in the left subtree are smaller and occur earlier than all elements in the right
subtree. Both expectations are `(k − 1). If the root is not deleted, we expect
1 + `(k − 1) left-to-right maxima: One is the root and `(k − 1) are expected in
the right subtree. The left subtree does not contribute any other maxima since
all elements in the left subtree are smaller than the root. We have `(1) = 1 − p
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2k+1

3 · 2k2k

T (σ(k)) T (2k+σ
(k)) T (2·2k+σ

(k)) T (3·2k+σ
(k))

(a) T (σ(k+2)).

2k

T (2k+σ
(k))T (σ(k))

3 · 2k

T (2·2k+σ
(k)) T (3·2k+σ

(k))

(b) Removing the root 2k+1 roughly doubles the
height.

T (σ(k))

T (2k+σ
(k))

T (2·2k+σ
(k))

T (3·2k+σ
(k))

(c) Additionally removing the roots 2k

of T (σ(k+1)) and 3 · 2k of T (2k+1 +
σ(k+1)) increases the height by a fac-
tor of four.

Figure 9.2.1: Removing root elements increases the height and the number of
left-to-right maxima.

since the single element will be deleted with probability p. Overall, we have

`(k) = p · 2 · `(k − 1) + (1− p) · (1 + `(k − 1))

= (1 + p) · `(k − 1) + (1− p) = (1− p) ·
k−1∑
i=0

(1 + p)i

=
1− p

p
·
(
(1 + p)k − 1

)
.

Corollary 9.2.2. For all p ∈ (0, 1) and all k ∈ N,

height-delp(σ
(k)) ≥ 1− p

p
·
(
(1 + p)k − 1

)
.

We conclude that there are some best case instances that are quite fragile
under partial deletions: From logarithmic height they “jump” via smoothing to
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a height of Ω(nlog(1+p)). (We have 1−p
p
· ((1 + p)k − 1) ∈ Θ(nlog(1+p)).) Thus, the

height increases exponentially.
We can transfer this result to partial permutations and partial alterations

due to Lemmas 9.1.2 and 9.1.3. Therefore, we consider sequences σ̃(k) which are
obtained from σ(k) as described in the proof of Lemma 9.1.2.

Corollary 9.2.3. Let p ∈ (0, 1) be fixed. Then

height(σ̃(k)) ∈ O(log n) ,
height-permp(σ̃

(k)) ∈ Ω
(
nε
)

, and
height-alterp(σ̃

(k)) ∈ Ω
(
nε
)

for some fixed ε > 0.

For the sake of completeness, let us mention that the number of left-to-right-
maxima is maximally fragile, at least asymptotically for any fixed p: There are
sequences with one left-to-right maximum for which the expected number of
left-to-right maxima after partial permutation is Ω(

√
n). The same holds for

partial alterations. For partial deletions, the number can jump from 1 to Ω(n).
The proofs are straightforward: Take an adversarial sequence of length n − 1
for proving lower bounds for the expected number of left-to-right maxima under
any of these perturbation models and add an n at the front of the sequence.
For partial permutations, this n will be marked with constant probability and
moved behind the first Θ(

√
n/p) elements. For the other two models, the proof

is similar.
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CHAPTER

TEN

Concluding Remarks

We conclude the second part of the thesis with some conjectures regarding binary
search trees and prospects for further research in the area of smoothed analysis
of discrete problems.

10.1 Conjectures

We have analysed the height of binary search trees obtained from perturbed
sequences and obtained asymptotically tight lower and upper bounds of roughly
Θ(
√

n) for the height under partial permutations and alterations. This stands in
contrast to both the worst-case and the average-case height of n and Θ(log n),
respectively. Thus, the height of binary search trees under limited randomness
differs significantly from both the average and the worst case. One direction for
future work is of course improving the constants of the bounds.

Interestingly, the sorted sequence σn
sort turns out to be a worst case for the

smoothed height of binary search trees in the sense that the lower bounds are
obtained for σn

sort (Theorems 8.2.7 and 8.2.8). This is in contrast to the fact that
the expected number of left-to-right maxima of σn

sort under p-partial permutations
is roughly O(log n) [10]. We believe that for the height of binary search trees,
σn

sort is indeed the worst case.

Conjecture 10.1.1. For all p ∈ [0, 1], all n ∈ N, and every sequence σ of
length n,

height-permp(σ) ≤ height-permp(σ
n
sort) and

height-alterp(σ) ≤ height-alterp(σ
n
sort) .

We have performed experiments to estimate the constants in the bounds for
the height of binary search trees. For all n ∈ {20 000, 40 000, . . . , 500 000} and
p ∈ {0.1, 0.25}, we performed 5 000 partial permutations of σn

sort. We did the

103
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same thing for n ∈ {100 000, 500 000} and p ∈ {0.05, 0.10, . . . , 0.95}. (See Sec-
tion 8.3 for more details.) The results led to the following conjecture. Proving
this conjecture would immediately improve our lower bound. Provided that Con-
jecture 10.1.1 holds as well, we would also obtain an improved upper bound for
the height of binary search trees under partial permutations.

Conjecture 10.1.2. For p ∈ (0, 1) and sufficiently large n,

height-permp(σ
n
sort) = (γ + o(1)) · (1− p) ·

√
n/p

for some constant γ ≈ 1.8.

Throughout this work, the bounds obtained for partial permutations and
partial alterations are equal. Moreover, the proofs used to obtain these bounds
are almost identical. We suspect that this is always true for binary search trees.

Conjecture 10.1.3. For all p ∈ [0, 1] and σ,

height-permp(σ) ≈ height-alterp(σ) .

10.2 Smoothed Analysis of Discrete Problems

In addition to partial permutations and alterations, one could consider other
perturbation models for sequences. From a more abstract point of view, a future
research direction would be to characterise the properties of perturbation models
that lead to upper or lower bounds that are asymptotically different from the
average or worst case.

Apart from lower and upper bounds, we have also examined the stability of
perturbations, i.e. how much higher a tree can become if the underlying sequence
is perturbed. It turns out that all three perturbation models are unstable.

Finally, we are interested in generalising these results to other problems based
on permutations, like sorting algorithms (Quicksort under partial permutations
has already been investigated by Banderier et al. [10]), routing algorithms, and
other algorithms and data structures. Hopefully, this will shed some light on
the discrepancy between the worst-case and average-case complexity of these
problems.



APPENDIX

A

Technical Lemmas

A.1 L-Reductions imply AP-Reductions

Lemma A.1.1. Let Π and Π′ be two optimisation problems with Π ∈ APX. If
Π ≤L Π′, then Π ≤AP Π′.

Proof. Since Π = (I, sol, m, goal) ≤L Π′ = (I ′, sol′, m′, goal′), there exist two
functions fL and gL and constants αL and βL as described in Definition 2.4.9.

Let us first assume that Π is a minimisation problem, thus m?(x) ≤ m(x, y)
for all x ∈ I and y ∈ sol(x). For the AP-reduction, we choose fAP(x, r) = fL(x)
and gAP(x, y′, r) = gL(x, y′). What remains to be proved is that there exists some
constant αAP ≥ 1 such that R′(x′, y′) ≤ r implies R(x, y) ≤ 1 + αAP · (r − 1) for
all r > 1. Let R′(x′, y′) ≤ r and αAP = αLβL, then

R(x, y) =
m(x, y)

m?(x)
=

m(x, y)−m?(x)

m?(x)
+ 1 ≤ βL · |m′(x′, y′)−m′?(x′)|

α−1
L ·m′?(x′)

+ 1

≤ αLβL ·
max{m′?(x′), m′(x′, y′)} −min{m′?(x′), m′(x′, y′)}

min{m′?(x′), m′(x′, y′)}
+ 1

≤ αAP · (R′(x′, y′)− 1) + 1 ≤ αAP · (r − 1) + 1.

Now assume that Π is a maximisation problem. For this case, we have to
exploit Π ∈ APX, i.e. there exists a factor γ approximation algorithm for Π for
some γ ≥ 1. Let h be the function computed by this approximation algorithm.
Then R(x, h(x)) ≤ γ. We choose fAP as above. The function gAP selects the
better of the two solutions h(x) and gL(x, y′):

y = gAP(x, y′) =

{
h(x) if m(x, h(x)) ≥ m(x, gL(x, y′)) and

gL(x, y′) otherwise.

Let R′(x′, y′) ≤ r and αAP = αLβLγ, then

R(x, y) =
m?(x)−m(x, y)

m(x, y)
+ 1 ≤ m?(x)−m(x, y)

γ−1 ·m?(x)
≤ αAP · (r − 1) + 1 ,
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which proves the lemma.

A.2 Chernoff Bounds

Let p ∈ (0, 1) and let X1, X2, . . . , Xk be mutually independent random variables
with P(Xi = 1) = 1 − P(Xi = 0) = p and X =

∑k
i=1 Xi. Clearly, E(X) = pk.

The probability that X deviates by more than a from its expectation is bounded
from above by

P(|X − pk| > a) < 2 · exp

(
−2a2

k

)
(A.1)

according to Alon et al. [5, Corollary A.7].
Let us now prove Lemma 6.3.1.

Lemma 6.3.1. Let k ∈ N, α > 1 and p ∈ [0, 1]. Assume that we have mutually
independent random variables X1, . . . , Xk that assume values in {0, 1}. Assume
further that P(Xi = 1) = p = 1 − P(Xi = 0) for all i ∈ [k]. Let X =

∑k
i=1 Xi.

Then

P
(
(X > αpk) ∨ (X < α−1pk)

)
≤ 2 · exp

(
−2(1− α−1)2p2k

)
.

Proof. Since α − 1 ≥ 1 − α−1 for all α ∈ R, we apply Formula A.1 with a =
(1− α−1) · pk and obtain

P
(
(X > αpk) ∨ (X < α−1pk)

)
≤ P

(
|X − pk| > (1− α−1)pk

)
< 2 · exp

(
−2(1− α−1)2p2k2

k

)
= 2 · exp

(
−2(1− α−1)2p2k

)
.

A.3 Adjusting Probabilities

Lemma A.3.1. Let n, E ∈ N with E ≤ n. Let p1, . . . , pn be rational numbers
with 0 ≤ pi ≤ 1 for all i ∈ [n] such that

∑n
i=1 pi = E.

Let X ⊆ [n] be a random set. Then there exists a probability distribution on
P([n]) with the following properties:

1. For all i ∈ [n], P(i ∈ X) = pi.

2. P(|X| = E) = 1.

Proof. Since all pi are rational, there exist M, P1, . . . , Pn ∈ N with pi = Pi/M
for all i ∈ [n]. Consider a matrix µ = (µi,j)i∈[n],j∈[M ] with µi,j ∈ {0, 1} and the
following properties:
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1. For all i ∈ [n],
∑M

j=1 µi,j = Pi, i.e. the row sum of row i is Pi.

2. For all j ∈ [M ],
∑n

i=1 µi,j = E, i.e. the column sum of column j is E.

Then µ corresponds to a distribution as claimed: Choose a j ∈ [M ] uniformly at

random and set X = {i | µi,j = 1}. Then P(i ∈ X) =
|{j|µi,j=1}|

M
= Pi

M
= pi and

|X| =
∑n

i=1 µi,j = E.
Let us quickly check that the sum of the column sums equals the sum of the

row sums, which is a necessary condition for such a matrix to exist: The sum of
the row sums is

∑n
i=1 Pi = M ·

∑n
i=1 pi = ME. Each column sum is E and there

are M columns, hence the sum of the column sums is ME.
We construct the matrix µ as follows: For all i ∈ [n], set µi,1 = µi,2 = . . . =

µi,Pi
= 1 and µi,Pi+1 = . . . , µi,M = 0. Thus, the row sum of row i is Pi, which is

as claimed. Let us now iteratively modify the matrix such that each column sum
becomes E and the row sums are left unchanged.

If µ already fulfils the second property, i.e. if every column sum is E, we are
done. Otherwise, there exist two columns j+ and j− with

∑n
i=1 µi,j+ > E >∑n

i=1 µi,j− . Hence, there is an i? ∈ [n] with µi?,j+ = 1 and µi?,j− = 0. We modify
µ by setting µi?,j+ = 0 and µi?,j− = 1. This does not change the row sums. By
iterating this, we obtain a matrix µ as claimed.
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6. Bodo Manthey and Rüdiger Reischuk. The intractability of computing
the Hamming distance. In Toshihide Ibaraki, Naoki Katoh, and Hirotaka
Ono, editors, Algorithms and Computation, 14th International Symposium,
ISAAC 2003, Kyoto, Japan, December 2003, Proceedings, volume 2906 of
Lecture Notes in Computer Science, pages 88–97. Springer, 2003.
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