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from the Department of Computer Sciences

Submitted by

Nadine Gdaniec

from Hamburg
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Abstract

Respiratory motion is a common source of artifacts in abdominal magnetic resonance

imaging because of long scan durations. These are induced by the large covered imaging

volume and the high spatial resolution required for diagnosis. The achievable breath-

hold duration of a particular patient is difficult to predict and varies over multiple breath-

holds. This is especially relevant in dynamic contrast-enhanced examinations because

multiple breath-holds with short time to recovery need to be performed. This variation

in breath-hold duration renders scan adaptation before the scan challenging.

Compressed sensing is used in this thesis to address the issue of unpredictable breath-

hold durations with an optimal usage of the data. First, a fast implementation for general

compressed sensing sampling patterns is proposed with fixed scan durations. This im-

plementation enables generation of sampling patterns directly and automatically on the

scanner after scan planning. Theoretical background is presented for optimizing the

sampling density for a given application and the required reduction factor.

This thesis aims to imaging of the abdomen that is more robust against premature on-

set of breathing by using compressed sensing for flexible scan termination at breathing

onset. The spatial resolution is increased with time to achieve a continuous compro-

mise between spatial resolution and signal-to-noise ratio. Independent of the achieved

breath-hold duration, the sampling patterns enable reconstruction from consistent data

that were acquired during the breath-hold. Feasibility is shown for 3D dual-gradient-

echo sequences for water/fat imaging without contrast agent and for dynamic contrast-

enhanced imaging. Furthermore, the combination with a fast sequence-switching ap-

proach is shown that enables dual-contrast imaging within a single breath-hold to ob-

tain spatial and temporal correspondence of the images. As an alternative application,

the adaptive samling patterns are used for the assessment of the liver fat fraction. This

application requires high accuracy due low relative fat content of the liver even for fatty

liver disease.

In dynamic contrast-enhanced imaging of the liver a series of 3D data with the same ex-

perimental parameters is acquired before and after contrast injection. The data exhibit

similarity that is exploited in this thesis to improve image quality with a joint recon-

struction of the temporal phases.

The robust sampling approach ensures imaging without motion artifacts in case of pre-

mature breathing onset in abdominal examinations. By preventing repeated scanning,

the proposed method improves patient comfort, image quality, and the work-flow.



Zusammenfassung

Atembewegungen sind eine häufig auftretende Ursache für Artefakte in abdominaler

Magnetresonanztomographie aufgrund langer Aufnahmezeiten. Diese werden durch

das große Bildgebungsvolumen und die hohe Auflösung, die für die Diagnostik benötigt

werden, verursacht. Die Dauer für die ein Patient die Luft anhalten kann ist schwer

vorauszusagen und variiert zudem bei mehrfachem Atemanhalten. Besonders bei kon-

trastmittelverstärkter Bildgebung ist dies relevant, weil mehrfach der Atem angehalten

werden muss und dabei kaum Zeit zum Erholen bleibt. Diese Variation der Luftan-

haltedauer macht die Anpassung einer Aufnahme vor der Ausführung zu einer Heraus-

forderung.

Um das Problem unvorhersagbarer Dauer des Atmeanhaltens zu adressieren, wird in

dieser Arbeit die komprimierte Abtastung verwendet um die Daten optimal zu nutzen.

Als erstes wird die schnelle Implementierung eines allgemeinen Abtastmusters mit fes-

ter Aufnahmedauer für die komprimierte Abtastung vorgestellt. Diese Implentierung

erlaubt die automatische Erzeugung des Abtastmusters direkt auf dem Tomographen.

Es wird theoretisches Hintergrundwissen für die Optimierung der Abtastdichte für eine

gegebene Applikation bei gegebenem Unterabtastungsfaktor präsentiert.

Das Ziel dieser Arbeit ist es mit Hilfe von komprimierter Abtastung die abdominale

Bildgebung robuster gegenüber vorzeitig einsetzendem Atem zu machen, indem die

Aufnahme beim Einsetzen von Atmung abgebrochen wird. Die örtliche Auflösung wird

mit der Zeit vergrößert, um einen kontinuierlichen Kompromiss zwischen der örtlichen

Auflösung und des Signal-zu-Rausch-Verhältnisses zu erreichen. Unabhängig von der

erreichten Dauer des Atemanhaltens ermöglichen diese Abtastmuster die Rekonstruk-

tion von konsistenten Daten, die bei angehaltenem Atem aufegnommen wurden. Die

Machbarkeit dieser Methode wird anhand von 3D dual-Gradientenecho-sequenzen für

Wasser/Fett Bildgebung ohne Kontrastmittel und anhand von dynamimschen kontrastmittel-

verstärkten Anwendungen gezeigt. Desweiteren wird die Kombination mit einem schnellen

Sequenzwechsel gezeigt, wodurch eine Aufnahme zweier Kontraste während eines Ate-

manhalte Vorgangs ermöglicht wird, die örtliche und zeitliche Korrespondenz aufweisen.

Als weitere Anwendung werden die adaptiven Abtastmuster für die Bestimmung des

Leberfettgehalts verwendet. Diese Anwendung benötigt hohe Genauigkeit auf Grund

des niedrigen relativen Fettgehaltes der Leber, auch bei krankhafter Fettleber.

In dynamischer kontrastmittelverstärkter 3D Bildgebung der Leber werden Daten mit

konstanten experimentellen Parametern vor und nach Kontrastmittelinjektion aufgenom-

men. Die Daten weisen eine große Ähnlichkeit auf, die in dieser Arbeit ausgenutzt wird
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um mittels einer gemeinsamen Rekonstruktion der temporären Phasen die Bildqualität

zu verbessern.

Die robuste Abtastmethode stellt Bildgebung ohne Bewegungsartefakte bei vorzeitig

einsetzendem Atem in abdominalen Untersuchungen sicher. Durch das Verhindern

erneuter Aufnahmen wird der Komfort für den Patienten, die Bildqualität und der Ar-

beitsablaufes verbessert.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a non-invasive imaging technique that provides

images from inside the human body without ionizing radiation. The signal that is used

in MRI originates from the imaged subject. MRI supports a huge variety of contrast

mechanisms and a better soft-tissue contrast than imaging modalities based on ioniz-

ing radiation, like computed tomography. This is the primary motivation to use MRI

for different applications. However, MRI suffers from problems in some applications

mainly due to long scan times. The long scan times are not only uncomfortable for

the patient, but also increase the risk of artifacts in the images in case of motion. The

artifacts can range from slightly visible to very severe, depending on the motion pattern

and the sensitivity of the experiment to motion. Motion can be involuntary motion of

e.g. the hands, knees, or the head, or vital motion, like respiration, pulsation of the

blood flow, peristaltic, or heart beating. While the first kind of motion can be controlled

to some extent, this becomes much more complicated for the second source of motion.

For increased patient comfort, reduced motion artifacts, and better workflow, techniques

were investigated in the past to accelerate the MRI acquisition substantially. These im-

provements rely on advances in hardware, in pulse sequence design, and in algorithms,

to reconstruct from less data. Parallel imaging or methods based on data redundancy

are nice examples of that. The progress in these areas enabled new clinical possibilities,

like 3D imaging of, for example, the abdomen, which otherwise would be inconceiv-

able. MRI is frequently used for imaging of the brain providing high resolution images,

because motion can be restricted successfully. Despite the progress that has been made

in the last decades, imaging of the abdomen is still a challenging task with frequently

occurring respiratory motion artifacts hampering reliable clinical diagnosis.

1



Chapter 1. Introduction 2

In this thesis, a method to obtain diagnostic images of the abdomen with significantly

reduced motion artifacts is presented that uses compressed sensing. To ease the un-

derstanding of the thesis, the background of MRI and on compressed sensing (CS) is

introduced in Chapter 2. Typically, acquiring less data is expected from CS, a rapidly

emerging research area, based on the idea that natural images, and most of MR images,

are compressible. This knowledge can be exploited during data acquisition to decrease

the amount of acquired data. While excellent theoretical work has been performed on

this topic in the past, the application of CS to MRI still requires research to pave the

way towards its clinical use. The application of CS affects the acquisition as well as

the reconstruction process that both need to be optimized to obtain high quality images.

During acquisition the sampling has to lead to incoherent aliasing in the sparsity domain

to be able to reconstruct images without artifacts. The fast generation of such a sam-

pling pattern with a fixed number of samples and a given variable density is described in

Chapter 3 enabling generation directly on the scanner. For an efficient calculation of the

intended sampling patterns, the location-dependent sampling density is crucial. While

the sampling density for a fixed reduction factor and uniform sampling is obvious, this

is not so for variable density sampling. The estimation of the sampling density func-

tion dependent on the reduction factor without time-consuming simulation is included

in Chapter 3 as well.

While the basic feasibility of CS has already been shown for various applications in

the past, the technique is not used in clinical practice yet. The reduced image acqui-

sition time is paid for by higher computational cost of the reconstruction, and thus, it

is not useful for all applications. This thesis aims at using CS to achieve more robust

imaging to ensure diagnostic images. In Chapter 4, a sampling pattern is proposed that

automatically increases the spatial resolution during the scan combined with flexible

scan termination. This concept can be applied to breath-held abdominal imaging to

exploit the total breath-hold duration or handle premature breathing onset in patients

and immediately terminating the acquisition at the onset of breathing. The scan auto-

matically adapts to the breath-hold duration a particular patient is able to achieve and

reconstructs an image from the acquired data without motion artifacts. The sampling

pattern performs a compromise between spatial resolution and signal-to-noise ratio for

every breath-hold duration. The breathing onset can be detected with navigators. Two

different navigators are used in this thesis in more detail. Due to the scan termina-

tion, and due to the proposed sampling pattern, only consistent data that satisfy CS
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constraints are used for reconstruction, and images with reduced respiratory motion ar-

tifacts are obtained. This method is introduced and evaluated on a variety of abdominal

imaging procedures on volunteers and patients with and without contrast agents, also

presented in Chapter 4. The application of the motion-robust adaptive sampling pattern

to dynamic contrast-enhanced imaging is especially relevant because of the time con-

straints of the imaging series. The patients have hardly any time to recover between

subsequent scans, and achieving the same breath-hold duration becomes difficult. The

adaptive sampling pattern is furthermore combined with dual-contrast imaging within

one breath-hold by using a fast sequence-switching approach. This enables perfect spa-

tial correspondence of the data, because they are acquired in the same breath-hold.

One particularly challenging application of the proposed sampling scheme is the deter-

mination of the fat fraction of the liver and is presented separately in Chapter 5. The

estimation of the fat-fraction of the liver is a promising biomarker for fatty liver dis-

ease. MRI is a non-invasive alternative for biopsy in this application. The fat fraction

of the liver is less than ten percent of the total tissue and thus requires exact and re-

liable quantitatively estimated values. Motion artifacts need to be prevented, because

they sophisticate the quantitative values. Due to various issues, among others induced

by the prospective undersampling, the acquisition is modified. It is combined with the

adaptive sampling pattern and the sequence switching approach that enables switching

between scans with hardly any delay, and thus, enables fat-fraction maps without mo-

tion artifacts.

In Chapter 6, a joint reconstruction of multiple temporal phases from a dynamic contrast-

enhanced examination is presented. The images from different temporal phases of the

same patient contain redundant information that can be exploited with this reconstruc-

tion. The redundancy is related to the fixed geometry of the imaged object, apart from

motion due to distinct breath-holds, but also to the knowledge that the contrast agent

does not induce changes in the fat signal. A weighting of the distinct temporal phases

is proposed in order to be able to influence their mutual impact.

The conclusion in Chapter 7 gives an outlook of possible future research activities.



Chapter 2

Background on Magnetic Resonance
Imaging

The following chapter about the background of magnetic resonance imaging (MRI) is

supposed to ensure a better understanding of the thesis, but raises no claim of complete-

ness. For a complete introduction to the field of MRI, see existing literature [1, 2].

2.1 Signal generation

Magnetic resonance imaging (MRI) is a noninvasive medical imaging technique that

is based on nuclear magnetic resonance (NMR) effects. A signal is therefore only ex-

pected for NMR active nuclei. The most frequently used nucleus is hydrogen, consisting

of one proton with a spin quantum number of 1
2

that results in two degenerate energy

states, called spin up and down with a small magnetic moment. However, the human

body contains a large number of nuclei and can be described by a net magnetization M ,

the volume average over the magnetic moments. In a field-free environment, the spins

of the nuclei are randomly distributed and thus result in a vanishing net magnetization

M . An external homogeneous magnetic field that abrogates the degeneration of the en-

ergy states is applied, and thus, results in unequal occupancy of the energy states. The

energy states can be described in a classical model with a magnetic moment precessing

at Larmor frequency

ω = γB0 (2.1)

4



Chapter 2. Background MRI 5

around the external magnetic field. The gyromagnetic constant γ is specific to the type

of examined nuclei. The resulting equilibrium net magnetization M that results from

the occupancy difference depends on the temperature and the applied field strength. A

transition between these discrete quantum energy states can be achieved by the appli-

cation of a radio frequency (RF) pulse of adequate frequency/energy that moves the net

magnetization away from its thermal equilibrium value. Those RF pulses are termed

excitation pulses. After turning off the RF pulse, the system relaxes to the thermal equi-

librium state and is thus emitting radiation, called free induction decay. The excitation

as well as the relaxation process can be described by the Bloch equations.

If a receive coil is properly placed next to the object, the emitted radiation changes the

magnetic flux through the coil. A change in magnetic flux results in an induced current

in the receive coil generating an MR signal. The MR steady state signal f from each

small volume element, called voxel, depends on the proton density as well as on the

relaxation time T1 of the tissue and the repetition time TR of subsequent excitations

f ∝ ρ(x, y, z)(1− e−
TR
T1 ). (2.2)

A further fundamental element of MR imaging is the use of magnetic field gradients G.

They represent linearly changing magnetic field components that can be applied to the

main magnetic field B0 in the three directions (x, y, z) with appropriate waveforms as

a function of time. A signal is created from the set of protons in a voxel if the protons

precess in phase. Due to different reasons, if a gradient is switched on, the local mag-

netic moments dephase with time. An adequate choice of the magnetic field gradients

G or additional RF pulses can be used to rephase the protons and thus regenerate signal,

called echoes.

The relaxation times of distinct tissue types in the body are different and thus generate

contrast in the image [1, 2]. By variation of the excitation pulse, dephasing, rephasing

mechanisms, or the timing, various MR signal levels can be generated for different tis-

sue types that have varying magnetization properties and thus induce contrast in MR

images. This high flexibility in generating contrast in the images is one of the assets of

MR imaging.
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2.2 Spatial encoding

The described signal is the superposition of the emitted radiation from the entire excited

volume. In traditional MRI, the spatial encoding of the signal is performed by applying

a magnetic field gradient to the object [3]. This choice of encoding is referred to as

Fourier encoding of the imaging object that ensures fast reconstruction by using an FFT

in Cartesian imaging and is described in Section 2.2.2 and Section 2.2.3. Furthermore,

it enables imaging of details that are far smaller than the wavelength of the applied ex-

citation radiation. Basically, these techniques render the Larmor frequency or phase of

the magnetic moments location dependent.

Three different gradient-encoding techniques are frequently used, namely slice selec-

tion, phase encoding, and frequency encoding that differ by the timing of the applied

magnetic field gradients G, see Figure 2.1. The magnetic field gradients can be applied

during signal excitation, signal evolution, or signal sampling, having different impact

on the acquired signal. The encoding methods are described in more detail in the fol-

lowing sections.

In the last decades, the spatial sensitivity of a plurality of receive coils was found to

allow an alternative way of spatial signal encoding [4, 5], because coils placed at dif-

ferent locations receive signal from the same source differently well. Fourier encoding

and multiple receive coils can be combined to speed up the image acquisition. Various

methods exist that are summed up as parallel imaging techniques and their underlying

principle is described in Section 2.2.4.

2.2.1 Encoding during signal excitation: Slice selection

One encoding method is slice selection. For slice selection, a magnetic field gradient

Gz(t) in 1D is applied during RF excitation resulting in a spatially linearly changing

magnetic field. The Larmor frequency depends on the magnetic field strength, see (2.1)

and is thus spatially linearly changing as well. Due to the spatially dependent resonance

frequency, the applied RF pulse with finite bandwidth is only resonant in a spatially re-

stricted region. Only the corresponding protons in this region, therefore, are influenced

by the excitation pulse and contribute to the detectable MR signal.
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Figure 2.1: Temporal scheme of encoding methods. The imaging process can be
divided into three sections: signal excitation, signal evolution, and signal sampling.
Slice selection is performed during excitation indicated by the gradientGz in the figure.
Signal evolution is used to incorporate phase encoding with the gradient of varying
strength per profile Gy. Frequency encoding is performed in the last stage, during
signal sampling by applying the gradient Gx.

2.2.2 Encoding during signal sampling: Frequency encoding

A very time efficient encoding technique is frequency encoding that is performed di-

rectly during signal sampling. To understand the underlying principle, a further de-

scription of the MR signal in a selected slice is required.

In a homogeneous magnetic field the protons with density ρ(x, y, z) emit radiation at the

Larmor frequency ω0. The proton density ρ(x, y, z) is assumed to be constant in time

here. In general, it can be temporally varying due to any kind of motion (e.g. cardiac

motion, blood flow, respiratory motion, contrast agents). The signal f(t) induced in a

receive loop by the radiation can be described as a temporally changing superposition

of radiation from all locations of the excited volume V

f(t) =

∫
V

ρ(x, y, z)e−iω0t dx dy dz. (2.3)

The signal phase for this case can be defined as

φ(t) = ω0t. (2.4)



Chapter 2. Background MRI 8

Figure 2.2: Connection of measurement space and image space. The acquisition of
data is normally performed in k-space, shown in the left part of the figure with corre-
sponding data. The image is obtained by a Fourier transform and is shown here in the
right part of the figure.

An additional magnetic field gradient Gx(t), applied during read-out leads to a spatially

dependent phase

φ(x, t) = ω0t+ x

t∫
0

γGx(τ) dτ = ω0t+ xkx(t), (2.5)

that can be inserted in (2.3) and gives

f(t) =

∫
V

ρ(x, y, z)e−ikx(t)x dx dy dz, (2.6)

if the signal is demodulated at Larmor frequency ω0t. In the latter two equations, the

variable

kx(t) = γ

t∫
0

Gx(τ) dτ (2.7)

is used. It is defined as the coordinate in the measurement space [6, 7] that is called

k-space. If the gradient is a constant Gx(t) = Gx, then kx = γGxt. This means that

the resonance frequency is changing linearly with the spatial position, which allows

directly mapping them onto each other. This procedure is called frequency encoding

and can be used to encode one spatial direction. For the remaining directions, other

encoding methods need to be used to obtain 2D or 3D images.
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2.2.3 Encoding between signal excitation and signal sampling: Phase
encoding

A far more time-consuming encoding technique compared with frequency encoding is

phase encoding that can be used to encode the remaining spatial directions. An ad-

ditional magnetic field gradient, called phase encoding gradient Gy, is applied during

signal evolution, i.e. between RF excitation and sampling. The strength of the magnetic

field is increasing in the phase encoding direction and leads to differing resonance fre-

quency along this direction and hence differing rate of precession of the spins. After the

application of this gradient for a fixed time T , and turning off the gradient afterwards,

the spins along this direction precess at the same rate again, but their phase differs

φ(y, t) = ω0t+ yγGyT = ω0t+ yky. (2.8)

Because only one ky can be encoded for one read-out, several repetitions have to be

performed that differ in the strength of the magnetic field gradientGy. These repetitions

are the reason for the long scan times in MRI. This encoding technique is explained

here for one direction, but can be applied in both remaining directions (ky,kz) for 3D

imaging. The signal modulation can be formulated similar to (2.6) as

f(t) =

∫
V

ρ(x, y, z)e−i(kx(t)x+ky(t)y+kz(t)z) dx dy dz. (2.9)

This equation contains the k-space coordinates kx(t), ky(t), and kz(t). The spin density

and the k-space signal are related by a Fourier transform, see Figure 2.2. If the sam-

pling is performed on a uniform Cartesian grid in k-space, the transformation can be

performed efficiently with an inverse fast Fourier transform (iFFT). Due to the discrete

sampling in the measurement space (k-space), periodicity of the object in image space

is enforced. The periodicity constant is related to the distance of neighboring profiles in

k-space ∆k by the Shannon-Nyquist sampling theorem:

rmax ∝
1

∆k
(2.10)

with r representing any of the three spatial directions. The value rmax sets the size

of the imaged area, called field of view (FOV). This is illustrated in Figure 2.3 for

an appropriate choice of ∆k for the size of the object in image (a). For illustrative

purposes, every second k-space profile was removed resulting in doubled ∆k, shown in
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Figure 2.3: Implication of discrete sampling. Sampling in k-space is frequently per-
formed on a uniform Cartesian grid to be able to perform reconstruction via FFT that
has low computational cost. The discrete sampling assumes periodicity of the object
in image space and thus requires an appropriate choice of the distance of neighbor-
ing k-space profiles, shown in the upper part of the image. The lower part shows the
consequences of a ∆k chosen too high, the images overlap.

Figure 2.3(b). This distance of neighboring k-space profiles is oversized for the object,

and the images are overlapping due to undersampling. The corresponding effect in

image space is called aliasing. Furthermore, the finite number of samples is the cause

of the finite resolution of the image. The maximum extent of profiles in k-space sets the

spatial resolution of the image:

∆r ∝ 1

2kmax
. (2.11)

2.2.4 Accelerate the acquisition: Parallel imaging

Fourier encoding has one disadvantage, it is time-consuming because the individual k-

space profiles have to be acquired sequentially. A completely different idea for spatial

encoding is based on the fact that the spatial receiver sensitivity strongly depends on the

location of the receiver. The signal from every individual voxel ail for a coil l is thus

the weighted spin density ρi with the corresponding sensitivity sil at location i

ail = silρi. (2.12)

Using a receiver array instead of a single receiver thus enables acquisition of multiple

profiles of the same object with the same encoding, but with distinct sensitivities in par-

allel. A rather extreme variant of pure sensitivity encoding is proposed in [4], where

an encoding without magnetic field gradients, but with a large number of receivers, is

proposed.
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Later, a method was proposed [5, 8, 9, 10, 11] that keeps Fourier encoding, but re-

duces the number of phase encoding steps by using multiple receivers. This concept is

frequently used today and is called parallel imaging (PI). Because of the difference in

spatial sensitivity of the coils of the array, the combination of both types of encoding

can reduce the scan time. This becomes obvious for an unrealistic, but intuitive exam-

ple with an array consisting of two coils with each coil receiving signal from disjoint

halves of the object. Due to the halved FOV of each coil, the distance in k-space can

be doubled, which results in only half the scan time. The images from both coils can

be combined to one image. This is described in more detail for realistic sensitivity pro-

files and for more than two coils in [12]. The required parallel imaging reconstruction

procedures can be divided into two types. One type, in which image reconstruction is

performed in image space and the other, in which image reconstruction is performed in

k-space.

2.2.4.1 SENSE: SENSitivity Encoding

SENSE is an example of an image-space based method and is presented in [8] together

with two different reconstruction methods using linear algebra and an SNR analysis for

multiple receivers. It combines sensitivity with phase encoding and is, in principle, ap-

plicable to any kind of sampling pattern in k-space.

If the number of phase encoding steps is reduced while maintaining the resolution, uni-

form k-space sampling is performed at a lower rate than the Nyquist sampling rate. This

results in aliasing in image space, because the FOV is reduced, while the object size re-

mains the same. Within this reduced FOV, each pixel is a superposition of pixel values

from different locations out of the larger FOV, as is illustrated in Figure 2.3. This can

also be understood in terms of the point spread function (PSF). The PSF is the response

of an imaging system to a point-wise input. It is calculated by choosing a single pixel

in image space to have an assigned value of one, while the rest is zero. Applying an

FFT to this input, followed by the application of the sampling pattern, and subsequently

followed by an iFFT gives the PSF. For regular sub-sampling by a factor of two, this

results in two pixels with values unequal to zero separated by half the FOV. This repe-

tition of the pixel is induced by the discrete sampling in k-space and is called aliasing.

In a SENSE reconstruction, for each element of the array, an aliased image is recon-

structed in the first step. In a second step, unfolding of the coil images is performed.



Chapter 2. Background MRI 12

The number of aliased pixels and their location is determined by the degree of under-

sampling, described by the PSF. Because of the spatial sensitivity of the coil array, the

weighting of the aliased pixels for the superposition is different for every coil element

of the array and denoted by the matrix S.

For convenience, the pixel-wise unfolding process is described here for a reduction fac-

tor of two with two coils. The aliased pixel value at location i from coil u is denoted

by aiu, the sensitivity by siu and the unfolded pixel by ρi. The pixel-values for the

overlapping pixels are a superposition of multiple pixels, in this case two

ai1 = si1ρi + sj1ρj (2.13a)

ai2 = si2ρi + sj2ρj. (2.13b)

The coil sensitivities need to be known to be able to solve this system of equations. It

becomes clear from this system of equations that the number of folded pixels for every

location must not exceed the number of coils and that it can only be solved if the coil

sensitivities are linearly independent of each other. If the independence is not given,

then the reduction factor needs to be reduced or additional coils need to be introduced.

(2.13a) and (2.13b) can be written in matrix form as

a = Sρ. (2.14)

Multiplying (2.14) with SH from the left yields

SHa = SHSρ. (2.15)

The product SHS is square, enabling inversion

ρ = (SHS)−1SHa = Ua. (2.16)

The product (SHS)−1SH is the Moore-Penrose pseudo-inverse, which yields the least

squares estimator to (2.14). If the noise level and correlation between coils from the

coil array, described by the noise covariance matrix Φ in [8, 13], are taken into account,

the unfolding matrix becomes slighty more complicated:

U = (SHΦ−1S)−1SHΦ−1. (2.17)
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This is the best linear unbiased estimator (BLUE) to the solution of (2.14). Hence, the

unfolded pixel values ρ from the full FOV are calculated according to

ρ = Ua (2.18)

from the aliased images a. The system of equations is fully determined if the number

of channels N equals the sub-sampling factor R and the coils are independent. Due

to imperfections in the acquisition, like noise, and redundant information of the ar-

ray elements, the sub-sampling factor needs to be chosen smaller than the number of

channels. This overdetermined system of equations can be solved by calculating the

Moore-Penrose pseudoinverse [14], done in (2.16).

2.2.4.2 GRAPPA: Generalized Autocalibrated Partially Parallel Acquisitions

Instead of performing the unfolding in image space, the unfolding can be performed

in k-space instead. The most frequently used algorithm of this kind of reconstruction

methods is called GRAPPA [9], which is described in the following.

In image space, the signal from the coil element m for each voxel aim can be estimated

from the signal ail of the coil element l at the same spatial position i

aim = ail
sim
sil

(2.19)

with the help of the coil sensitivity maps. Noise is ignored in this illustrative consider-

ation. This multiplication in image space corresponds to a convolution in k-space with

a convolution kernel of restricted size due to the smooth variation of the coil sensitivity

maps. This is the underlying assumption for the basic idea of GRAPPA [9]. Unacquired

profiles of a single coil can be estimated from a weighted sum of neighboring profiles,

indicated by the weighting factors n(j, b, l,m) (taken together in a block with the unac-

quired profiles), from the same coil and the other coils by a block-wise reconstruction

fj(ky −m∆ky) =
L∑
l=1

Nb−1∑
b=0

n(j, b, l,m)fl(ky − bR∆ky). (2.20)

In this equation, fj(ky −m∆ky) is the k-space signal at the position ky −m∆ky, Nb is

the number of blocks, R is the reduction factor, l counts through coils, while b counts
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Figure 2.4: Illustration of a block for a reduction factor of two in one direction. Every
row is the data from one coil, while every column is the data for a fixed location in
k-space ky. Every second profile is acquired, indicated by a black filled circle. Every
other profile is not acquired indicated by an empty circle and an additional ACS line
that is used to learn the weightings n from neighboring blocks. A block is the affiliation
of an acquired column of profiles with a column of unacquired profiles. The weightings
are used to calculate the values of unacquired profiles from acquired profiles.

through reconstruction blocks. Figure 2.4 illustrates the sampling pattern for a reduc-

tion factor of two and the definition of a block in this approach. Each circle corre-

sponds to one read-out profile. Every second profile is acquired (black filled circles),

while every other is left unacquired (unfilled circles). The arrows indicate estimation

of an unacquired profile from acquired profiles of neighboring blocks by convolution

with a convolution kernel. The convolution kernel, respectively the weighting factors

n(j, b, l,m), are learned from the additional autocalibration signal (ACS) profiles (grey

filled circles in Figure 2.5). The ACS is a fully sampled region typically placed at the

center of k-space due to the better SNR compared with the periphery. The ACS can

be included in the actual reconstruction to improve image quality. One block is the af-

filiation of data from all coils at a specific location in k-space ky and the neighboring

unacquired k-space profiles from all coils. The reconstruction procedure described in

(2.20) is repeated for every single element of the coil array and results in unaliased sin-

gle coil images that are combined in a further step.

The number of contributing blocks to one unacquired profile has an influence on the

quality of the reconstructed image. It is stated in [9] that inclusion of all acquired

blocks in the reconstruction leads to an exact reconstruction, but only profiles close to

the missing profile contribute significantly. The restriction to neighboring profiles in

k-space results in a more stable reconstruction for noisy data and is computationally

clearly more efficient.
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Figure 2.5: Illustration of ACS profiles. The weightings of neighboring profiles that
contribute to the calculation of an estimation of an unacquired profile are calculated
with the help of additionally acquired ACS profiles (gray). These weighting factors
form the convolution kernel that is used to fill k-space by calculating unacquired pro-
files. The number of contributing blocks for each profile is restricted due to the smooth
variation of the coil sensitivity maps.

2.2.4.3 Coil sensitivity maps calibration

For both parallel imaging techniques, knowledge of the coil sensitivities is crucial. For

SENSE, they are explicitly needed in image space, while their representation in k-space

is required for GRAPPA. In principal, there are two possibilities to obtain the coil sen-

sitivity maps, either during the actual scan by acquiring a fully sampled central k-space

region, called autocalibration area, or during a separate low resolution scan, called ref-

erence scan.

Additionally acquired central k-space profiles can be used directly to calculate weight-

ings for neighboring k-space profiles as described in Section 2.2.4.2 or can be Fourier

transformed and smoothened to be used as coil sensitivity maps in image based recon-

struction. The autocalibration method has temporal correspondence to the actual scan

that can be advantageous in case of motion or dynamic imaging. However, it lengthens

the scan time of the actual scan and is acquired during every scan to exploit the advan-

tage described before.

The additional reference scan can be used for image-based, as well as k-space-based

parallel-imaging reconstruction techniques. It is only acquired once, or if significant

changes have occurred. This shortens the actual scan duration, but is prone to misalign-

ment due to motion.
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2.2.4.4 Coil compression

With an increasing number of coil elements, the amount of data increases as does the

reconstruction time. This is especially relevant for 3D imaging or dynamic studies. A

way to handle this problem is coil compression [15, 16, 17], which reduces the number

of physical coils to a smaller number of virtual coils by linearly combining the data

from the physical coils. This becomes possible due to the redundant information of the

physical coils that is reduced in the virtual coils.

The first compression techniques were hardware implementations [17, 18] that used the

noise covariance between channel elements. These lead to compression with loss of

information, because the sensitivity profiles are not used. Several software implementa-

tions of coil compression were proposed [15, 16, 19, 20, 21] for 2D Cartesian data and

applied to 3D by using the same compression for each 2D slice out of the 3D data.

The extension of the compression to 3D imaging was made spatially dependent in [22],

by using a different compression for each slice out of the 3D data. This coil compression

technique was implemented and used in this work and is, therefore, further described in

the following.

The direction of frequency encoding points along the x direction and is fully sampled.

The 2D slices are perpendicular to this axis and are obtained by a 1D Fourier transform

along this direction of the k-space data f . The compression procedure can be performed

in this hybrid space or in image space by applying an additional Fourier transform in the

other two directions. These two approaches give equivalent results, and the procedure

is described here in image space for convenience. The compression procedure can be

described by

ρ′x(y, z) = Axρx(y, z), (2.21)

with the data vector ρx(y, z) = [ρx,1(y, z), ρx,2(y, z), ..., ρx,N(y, z)]T at position x and

2D image space coordinate (y, z) fromN physical coils, the compressed data ρ′x(y, z) =

[ρ′x,1(y, z), ρ′x,2(y, z), ..., ρ′x,M(y, z)]T from M virtual coils, and the compression matrix

Ax ∈ CM×N with N > M . The index x indicates that for each position in the fre-

quency encoding direction x a different compression matrixAx is used.
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This problem can be reformulated as a minimization problem

minimize
Ax

∑
x,y,z

||(AH
x Ax − I)

bmrhox(y, z)||2

subject to AxA
H
x = I,

(2.22)

that can be solved independently for every position x. This is done by performing an

inverse FFT of the 3D k-space data. For every position in image space x, a data matrix

Rx is defined, where every column contains the 2D image data from one coil of spatial

position x. The SVD ofRx needs to be calculated

Rx = UxΣx(Vx)
H . (2.23)

Ux is a unitary matrix containing the eigenvectors of RxR
H
x as columns. Σx is a rect-

angular matrix with non-zero singular values ofRx found on the diagonal of Σx. Vx is

a unitary matrix containing the eigenvectors ofRH
x Rx as columns.

The first M rows fromUx are used as initial guess for the compression matrixAx. This

procedure leads to a non-smooth variation of the compression matrix along x and thus to

serious problems in kernel-based reconstructions, because the weightings are not con-

sistent anymore. Therefore, the procedure is further extended [22]. The compression

matrix can be multiplied with a unitary matrix P and remains a solution of (2.22). This

suggests to find a unitary matrix that renders the behavior ofA smooth along x to enable

a kernel-based reconstruction. This can be formulated as a minimization problem

minimize
Ax,Px

∑
x

||(Ax −Ax−1)||2F

subject to Ax = PxA
0
x,

Px(Px)
H = (Px)

HPx = I,

(2.24)

which becomes unique for a fixed Px = I at some location x. A0
x is the initial guess

and is obtained by solving (2.22). This equation can be solved for each location x via

an iterative procedure. Calculate the SVD of Cx = A0
x(Ax−1)H and use the results

to calculate Ax = PxA
0
x = V C

x (UC
x )HA0

x that is used for the location x + 1. This

results in a smooth behavior of the compression matrix along the frequency encoding

direction. Thus, a kernel-based parallel imaging remains possible with this compression

technique.
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2.3 Accelerate the acquisition: compressed sensing

A different acceleration method, called compressed sensing (CS), has gained a lot of

interest recently [23, 24, 25, 26, 27, 28, 29, 30]. The main idea of this approach is

that compressibility in a defined transform domain can be utilized for efficient sam-

pling. The compressibility is known from image compression techniques like JPEG

and JPEG2000 for natural images or acoustic signals. Traditionally, the signal ρ ∈ CM

is sampled at a uniform rate and thus results in a fixed number of N samples. Af-

terwards, the signal is transformed to the sparsity domain, and only S coefficients are

needed to represent the signal in an adequate manner. The rest of the N−S coefficients

are discarded. This raises the question, whether it is sufficient to acquire fewer samples

if the signal obviously contains less information. In CS it is stated that signals can be

recovered from incomplete data with an adequate reconstruction if the signal is sparse,

and the measurement and sparsity domain are incoherent [23]. The signal is described

here as 1D signal, but any data (2D or 3D) can be reformatted and represented as a 1D

signal as well.

2.3.1 Sampling

Linear measurements fk of the signal ρ are performed. This process can be described

with the set of encoding functions ϕk and the inner product

fk = 〈ρ,ϕHk 〉. (2.25)

The measurement vector f can be described with the help of the measurement matrix

Φ, where the encoding functions ϕk are the rows of Φ

f = Φρ. (2.26)

This is a system of N linear equations. It depends on the measurement matrix, how

the inversion of this equation and thus the reconstruction can be performed. If Φ is an

orthonormal matrix, than the recovering process is given by

ρ = ΦHf . (2.27)

If the number of measurements M is larger than the number of unknowns N , (2.27) is

an overdetermined system of equations. The pseudo-inverse is calculated to recover a
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least squares estimate to the signal ρ

ρ = (ΦHΦ)−1ΦHf . (2.28)

In CS, the number of measurements M is smaller than the number of unknowns N . In

general, an infinite number of solutions to (2.26) exist, but if the signal is sparse, the

sparsest solution is unique. Sparsity means that the support of ρ is smaller than N , only

S of the N coefficients of the signal ρ are nonzero. In reality, this conditions needs to

be relaxed slightly. The signal is called compressible if S coefficients are large and the

rest of the coefficients are small.

If the support of ρ is known and thus the location of the S largest coefficients, then the

inversion can be performed directly because N−S columns of the measurement matrix

can be removed, which corresponds to a reduced number of unknowns. Otherwise, the

sparsest solution needs to be found.

2.3.2 Sparsity of signal, compression

Many natural signals have a concise or sparse representation in a specific transform

domain. This means that only a few coefficients are significantly larger than zero, and

the majority of coefficients are negligible. In a mathematical description, the signal can

be expanded e.g. in an orthonormal basis Ψ

ρ =
N∑
i=1

〈ρ,Ψi〉Ψi =
N∑
i=1

biΨi (2.29)

with only few large coefficients bi = 〈ρ,Ψi〉 that are represented by a vector bS . The

rest of the coefficients can be discarded without severe loss of information. The error

that is made by discarding coefficients is set by

||ρ− ρS||2 = ||Ψb−ΨbS||2 = ||b− bS||2 (2.30)

if Ψ is an orthonormal basis. This error is small if the discarded coefficients are small.

The choice of Ψ for MR imaging is described further in the following. The image

quality and the visible loss of information caused by discarding coefficients depends

on the transform domain and its influence on the visual perception. It is possible to
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choose the image domain as the sparsifying transform domain Ψ. Most images have

lots of large coefficients, though. Keeping only the largest coefficients results in loss

of low signal content. This is a good choice for angiography, because these images are

already sparse in the image domain. If Ψ is chosen to be the Fourier basis, the smallest

coefficients are in the periphery of k-space. Discarding these coefficients results in a

low resolution image. A different result is obtained if Ψ is chosen to be the pixel-wise

finite difference of the image. Discarding small coefficients in this transform domain

results in loss of small differences. Only large differences of neighboring pixels are

kept that result in a cartoon-like image. Choosing Ψ to be the wavelet transform and

keeping only large wavelet coefficients is not visible to the human eye for a huge range

of compression factors. Thus, wavelets are an obvious transform domain for a wide

range of applications.

2.3.3 Incoherence

Compressed sensing requires low coherence between the measurement domain and the

sparsity domain. The aliasing in the sparsity domain thus appears incoherent as well

and enables reconstruction to distinguish between real and backfolded image content.

The influence of coherence can be understood by assuming the following worst case

scenario. The coherence reaches its maximum if the measurement and sparsity domain

coincide. This requires knowledge about the support, because otherwise it is likely that

only small coefficients are measured due to the sparsity of the signal. Recovery is thus

impossible if the small coefficients are known, but not the large ones.

A pair that has minimum coherence is for example the canonical basis with the Fourier

basis. Furthermore, a random transform is largely incoherent with any kind of sparsity

transform.

In MRI, the measurement basis Φ is typically the Fourier basis, and undersampling

is usually performed by skipping k-space profiles. It is known that a random choice

of the coefficients of Φ in all dimensions leads to successful reconstruction with high

probability, but this acquisition is impractical due to physical constraints. The frequency

encoding direction is always fully sampled and undersampling is performed in the phase

encoding directions. During acquisition, there is some freedom in the choice of k-space

profiles that can be used to achieve incoherence with the sparsity domain. The set
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of measured k-space profiles is called sampling pattern. The sparsifying transform is

usually the wavelet or finite differences transform as described in Chapter 2.3.2. It has

been shown [23] that a suitable sampling pattern for combined compressed sensing and

parallel imaging is Poisson disk sampling [31, 32].

2.3.4 Sparsity enforcing reconstruction

Successful recovery of a sparse signal b from incomplete measurements f = Ab is

only possible with an adequate reconstruction. The problem is usually formulated as a

constrained minimization problem

minb ||b||0 s.t. f = Ab. (2.31)

There are a couple of existing reconstructions that render distinct undersampling factors

possible. Iterative greedy algorithms try to find the optimal solution to the reconstruc-

tion problem with `0 norm step by step. In each iteration, the support of the signal is

updated by adding the column of the measurement matrix with highest correlation to

the residual. Some examples for such algorithms are matching pursuit [33], Orthogonal

Matching Pursuit (OMP) [34], and Compressive Sampling matching pursuit (CoSaMP)

[35].

Convex relaxation algortihms represent a different class of reconstruction solving con-

vex optimization problems through linear programming to recover the original signal.

The minimization problem is formulated as

minb ||b||1 s.t. f = Ab. (2.32)

with the convex relaxation `1 of the non-convex `0 norm. Examples for this kind of

reconstruction are Basis Pursuit (BP) [36], Basis Pursuit De-Noising (BPDN) [36], and

Least Absolute Shrinkage and Selection Operator (LASSO) [37].

Iterative thresholding algorithms constitute to the third group of algorithms that im-

press with easy implementation and fast computation. These algorithms are two-step

algorithms that perform in each iteration hard- [38] or soft-thresholding [39] in the do-

main, where the signal is supposed to be compressible, and enforce data consistency

in measurement space. Extensions were already proposed, like for example Message

Passing (MP) [40], Belief Propagation [41], Expander Matching Pursuit [42], Sparse
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Matching Pursuit [43], Sequential Matching Pursuits [44], and Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) [45].

Non-convex optimization algorithms using the lp norm

||b||p =

(∑
i

|bi|p
)1/p

(2.33)

exist to reconstruct the signal, like FOCal Underdetermined System Solution (FO-

CUSS) [46] (1 ≤ p ≤ 2), Iterative Re-weighted Least Squares [47], Sparse Bayesian

Learning Algorithms [48], and algorithms based on Monte-Carlo [49].

The last type of reconstructions mentioned here are called Bregman iterative algorithms

[50] that find solutions to the Basis Pursuit problem by solving an unconstrained prob-

lem with a small number of instances. The number of iterations ranges from 2 to 6 with

this algorithm and is thus computationally efficient.

The aforementioned algorithms are not specific to any kind of application, but there are

a number of algorithms that are specifically designed for medical imaging, especially

for MRI [23, 51, 52, 53, 54]. Further examples are given in Section 2.4.

2.4 CS in MRI

The application of CS to MRI is obvious, because the data acquisition is performed in

k-space that can be interpreted as a linear combination of data from image space. The

incoherence of the measurement domain and the sparsity domain can be achieved with

the choice of an adequate sampling pattern. Furthermore, in some applications, like

angiography for example, the images are already sparse in image space [55], and no

further transformation is needed, while the total variation or the `1 norm of the wavelet

transformed image are adequate measures for the sparsity in other applications.

An existing and frequently used technique to accelerate the acquisition in MRI is paral-

lel imaging, described in 2.2.4. Several acquisition and reconstruction techniques aim

at combining parallel imaging and compressed sensing [51, 52, 56] to achieve even

higher acceleration factors. As described in Section 2.2.4, the parallel imaging tech-

niques can be divided into image space and k-space related methods that can both be
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combined with CS. Furthermore, the reconstructions can be performed sequentially, i.e.

CS-SENSE [56] or k-t Sparse GROWL [57], or combined into one problem to be solved

[51, 52, 58, 59].

Because an optimal reconstruction is obtained with SENSE for known and exact coil

sensitivity maps [8], several approaches were presented to combine CS and SENSE

[56, 59, 60, 61, 62]. A recently proposed algorithm, called Sparse BLIP [58], simulta-

neously estimates the coil sensitivities and reconstructs the image in an iterative manner.

To avoid artifacts due to incorrect coil sensitivities, an additional total variation (TV)

constraint is included in the minimization problem. This minimization problem is di-

vided into two sub-problems, each minimized in individual steps for every iteration.

The initial coil sensitivities are estimated from the fully sampled central k-space. The

problem of incorrect coil sensitivities is also addressed in [52] by using not only one

set of coil sensitivities, but two. The sets of coil sensitivities are estimated from the

fully sampled central region by solving an eigenvalue problem that is further described

in Chapter 6. A combination of CS with kernel-based parallel imaging is presented in

[51, 57].

In dynamic MRI, the sensitivity information provided by a pre-scan is not accurate for

all temporal phases. TSENSE [63] improves the sensitivity information by enabling

temporal change. This can also be used in CS techniques, but leads to significantly in-

creased reconstruction times.

Furthermore, CS was applied to higher-dimensional signals including the additional

temporal dimension for cardiac cine imaging [64] or dynamic contrast-enhanced imag-

ing in general [65, 66, 67]. These imaging procedures aim at increasing the spatial

or temporal resolution of the imaging series by exploiting redundancy in the temporal

domain. The redundancy was already exploited without using compressed sensing in k-

space sharing techniques like keyhole imaging [68, 69] or TRICKS [70]. Furthermore,

existing parallel imaging techniques were extended to exploit temporal correlation like

k-t BLAST/k-t SENSE [71], k-t GRAPPA [72] and SPEAR [73].

The adequate CS reconstruction technique is dependent on the application. For exam-

ple, the motion of the heart is expected to be periodic, thus it is obvious to modulate

each voxel by a linear combination of Fourier exponentials that can be learned from

previously acquired training data [71, 74, 75, 76]. This can be extended to exploit CS as
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well and was described in several publications [53, 64, 77]. Because of the lack of pe-

riodicity in cardiac cine MRI and naturally for dynamic contrast enhanced imaging, the

reconstruction results often suffer from artifacts or require a large set of basis functions.

Therefore, based on the assumption that the signal has low rank, the interest in learned

orthogonal dictionaries from the undersampled data itself increases [78, 79, 80, 81].

An approach called blind compressed sensing (BCS) is proposed in [82]. A dictionary

is learned from the data itself and is thus comparable to low-rank approaches, but is not

necessarily orthogonal. Furthermore, the coefficients are thought to be sparse.

A different approach is known as k-t SPARSE-SENSE that has several applications

[59, 83] and exploits the joint multi-coil sparsity to accelerate dynamic MR imaging.

This technique was further developed recently to be used with golden-angle radial ac-

quisition [84].

A recently proposed sequential PI and CS reconstruction for dynamic MRI is k-t Sparse

GROWL [57]. GROWL, which is a specific k-space based parallel imaging technique, is

performed before applying flexible virtual coil (FVC) k-t CS. GROWL recovers missing

k-space profiles around acquired k-space profiles and thus lowers the overall reduction

factor, before the CS reconstruction is performed. FVC is a special channel compres-

sion technique that is used for lowering the computational cost of the CS reconstruction.

After the CS reconstruction, the signals from the original number of channels are recov-

ered.

Motion is a frequently occurring problem in dynamic MRI that results in artifacts as

well as reduced sparsity in images from reconstructions exploiting low rank and peri-

odicity. Approaches were proposed to compensate for this motion by assuming rigid

or non-rigid motion and binning the data [85, 86]. Reconstruction of the individual

bins and performing image transformations defined by the motion model can be used

to jointly reconstruct motion corrected CINE images of all bins [85]. MASTeR [87]

is a different algorithm that individually reconstructs the images from the time-series

with a CS reconstruction in the first step and afterwards solves a modified problem that

enforces data consistency and sparsity of the differences to temporally neighboring im-

ages.

Alternatively, the transformation can be performed before CS reconstruction [54, 88].

A recently proposed method, called BLOSM [89], divides the image in small blocks
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and tracks them in the following images of the time series. Low rank is enforced on the

temporal evolution of the blocks.

A different assumption for improved dynamic MRI is group sparsity [90, 91], called k-t

group sparse reconstruction. It is based on the structure of the MR signal in x-f space,

neighboring voxels in image space from the support region of the image are grouped

together. The optimization problem is reformulated and enforces sparsity on the mixed

`1-`2 norm of the groups [91]. A different grouping method based on the intensities of

the voxels was presented recently [90].

Apart from the redundant information from multiple receive channels and temporal evo-

lution, redundancy is also present in the images from multiple echoes. A joint recon-

struction approach is proposed in [26, 92] to exploit this knowledge.

2.5 Water-fat separation

In conventional MRI the signal mainly results from protons of the water molecules and

slightly shifted in MR spectrum from protons of the fat molecules. The signal from fat is

often hyperintense and can potentially obscure underlying structures in images. There-

fore, the suppression of fat is frequently desired and can be performed during the ac-

quisition, or alternatively during the reconstruction. The suppression during acquisition

is based on the difference in relaxation time (inversion recovery [93]) and difference in

resonance frequency ∆ν (selective saturation [94]) between water and fat. These meth-

ods have disadvantages, like longer scan time, lower SNR, and imperfect suppression

due to magnetic field imhomogeneities. Some of these disadvantages can be overcome

by a water-fat separation performed during reconstruction. This is realized in chemical

shift-based water-fat separation methods [95] that acquire data at several echo times and

that solve for the water and fat content afterwards. The signal of the n-th echo at each

pixel j in image space is given by a weighted sum of the complex water W and fat F

signals

ρnj = (Wj + Fje
iΘn)eiφn (2.34)

with the dephasing angle Θ = 2π∆ν tn and the echo time tn. The phasor φn contains

the error induced by field inhomogeneity. Different Dixon methods differ in the number

of acquired echoes, the corresponding constraints on the echo times, and the separation

procedure. One- to multi-echo methods are used dependent on the application. A small
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number of echoes with flexible echo times is favorable for abdominal imaging with

breath-hold requirements, because the breath-hold clearly restricts imaging time. While

single-echo techniques are prone to large errors, if no prior knowledge is available [96],

two- and three- echo methods provide high quality water-fat separation and enable flex-

ible echo times [97, 98, 99, 100, 101].

In this work, a two-point water-fat separation with flexible choice of echo times [97] is

used. The separation of the signal into its water and fat content is performed in three

subsequent steps. The first is the computation of possible values for the phasor for each

pixel individually. Afterwards, an appropriate value for the phasor is selected out of the

possible values, with an additional smoothness constraint on the spatial variation of the

phasor. As a final step, the water and fat content are calculated individually for each

pixel based on the signal from the two echo times and the phasor.

2.6 Contrast agents

Contrast in MRI is generated by different physical properties of neighboring tissues.

These physical properties include proton density, relaxation properties like T1, T2, and

T ∗2 , and differences in resonance frequency. The differences in these properties of the

different tissue types are sometimes quite small and thus difficult to detect. Furthermore,

partial volume effects can lead to canceled signal in individual voxels. Enhancement of

these characteristic properties can be achieved by the application of contrast agents that

are frequently used to facilitate better diagnosis based on the MRI images. The temporal

evolution of the contrast agent uptake and wash-out has a further significant influence

on diagnosis, because perfusion varies for different tissue types.

Enhancement of the characteristic is only possible for some properties. The proton

density can not be changed and is thus always left unattached, but it is possible to change

the relaxation properties of the tissue types. Relaxation of individual water protons is

induced by dipole-dipole interactions facilitated by small magnetic field fluctuations

in the neighborhood of protons. The quantitative influence of contrast agents on Ti is

described by the relaxivity

ri =
∆(1/Ti)

c
(2.35)

with the concentration of the contrast agent c.
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Paramagnetic contrast agents (i.e. Gadolinium) have unpaired outer electrons and thus

act as dipols with large magnetic field fluctuations. If these magnetic field fluctuations

are close enough to the Larmor frequency of the protons, the relaxation of the neighbor-

ing protons is significantly increased and thus leads to enhanced contrast in T1 weighted

MR images. Although the Gadolinium is caged in the contrast media, the concentra-

tion of Gadolinium has been lowered during the years to decrease undesired side effects

due to the toxicity of Gadolinium. Gadolinium containing contrast agents can lead to

nephrogenic systemic fibrosis (NSF) in case of chronic or acute renal impairment even

days after examination.

Superparamagnetic contrast agents (i.e. iron oxide), called SPIO, modify the contrast

in T2/T
∗
2 weighted MR images by inducing large local magnetic field inhomogeneities.

The protons within an individual voxel thus experience significantly different magnetic

fields and thus precess at different frequencies that leads to signal dephasing and thus

lowers T2/T
∗
2 intensity in tissues containing the contrast agent.



Chapter 3

Sampling in CS MRI

This chapter describes a CS sampling strategy for optimized 3D Cartesian MR imaging.

The 3D k-space is undersampled in the two phase encoding directions. The undersam-

pling is described for a 2D plane, where each sampling point indicates a profile.

As stated earlier, the sampling-pattern is essential for the reconstruction results. The

coherence between the sensing basis and the representation basis influences the desired

number of samples for successful reconstruction. Random undersampling of k-space

with sufficient profiles results in low coherence for an arbitrary representation basis.

However, there is a non-vanishing probability that random undersampling results in

non-optimal sampling-patterns, either characterized by areas with tendencies of clus-

tering sampling points and large holes in sample distributions, or by missing important

areas of k-space. This is especially relevant for uniform undersampling, because every

random realization has the same probability. Variable-density sampling could be con-

sidered as a means of helping to avoid some of these effects, but is still prone to the

above mentioned issues. A possibility to prevent holes and clustering is a Poisson-disk

distribution of samples that is at the same time able to ensure appropriate sampling of

important regions of k-space.

3.1 Uniform Poisson-disk sampling

For performing CS, the measurement matrix has to lead to incoherence between the

measurement domain and the sparsity domain. In CS for MRI, the measurement matrix

is composed of the Fourier encoding matrix, the sparsifying transform matrix, and the

28
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undersampling matrix. The choice for the sparsity/compressible domain can be mod-

ified, but needs to be adequate for the signal, while the undersampling matrix can be

modified. Among different possibilities to achieve incoherence by the sampling pat-

tern, a variant of a Poisson-disk distribution of samples is used here. A Poisson-disk

distribution [23, 31, 32] is a pseudo random distribution of samples with constraints that

prevents clustering by defining a minimum distance between neighboring samples.

There are different methods to generate a Poisson-disk distribution in a 2D plane with-

out grid [102, 103]. In MRI, it is advantageous to acquire data on a Cartesian grid to

be able to use a FFT for a fast transformation between the image and Fourier domain.

Poisson-disk distributions generated in a plane without grid can be mapped on a Carte-

sian grid. Alternatively, distributions can be generated directly on a Cartesian grid. This

method is proposed in this work and is described in the following sections.

The coordinates of the samples can be generated directly on a Cartesian grid by re-

stricting the distances between samples by a lower bound κmin. A compliant maximum

distance can be implicitly defined by using the appropriate pair of κmin and mean re-

duction factor R = Nt

N
in the plane. Nt is the total, while N is the desired number of

samples in k-space. With the desired number of samples and the covered k-space area,

the average distance between samples can be calculated and rounded off to the next

possible value on a Cartesian grid to define κmin, i.e. the lower bound on the distance

between samples. To study the influence of the lower bound and the reduction factor R

on the enforced upper bound, the situation is described in more detail in 1D.

For a completely random distribution ofN samples onNt possible positions on a Carte-

sian grid, the worst case, i.e. the largest hole, occurs if the samples are clustered on one

side. The size of the hole is Nt − N in this case, which equals the number of samples

that are left to choose from. This describes the worst case. For all other distributions,

the distances between samples lie on the interval [1;Nt − N ]. If the distribution of

samples is not completely random, but with an additional constraint on the minimum

distance κmin between samples, then the situation is slightly different. The worst case

is once again closest-packing of samples, which is less dense than in the completely

random case described before. The largest hole is given by Nt − κminN , with

κmin = bNt

N
c = max

{
k ∈ Z|k ≤ Nt

N

}
≥ 1. (3.1)
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The size of the hole,Nt−κminN , equals once again the number of samples left to choose

from. For any distribution better than the worst case, the possible distances of samples

are from the interval [κmin;Nt−κminN ]. Because Nt−κminN ≤ Nt−N , the maximum

enforced distance between samples is smaller or equal to the size of the completely

random distribution. This restriction is able to prevent large wholes if κ is sufficiently

large, but it is not strict enough to prevent smaller holes. This is especially relevant

for reduction factors smaller than two, because the value κmin is reduced to κmin = 1

in these cases and is equivalent to random sampling. The concept of relaxation [32],

described later, is needed here.

For the sake of completeness, the minimum distance is given for the 2D case:

κmin = b
√
Nt

N
c = max

{
k =

√
x2 + y2, x, y ∈ Z|k ≤

√
Nt

N

}
≥ 1. (3.2)

It is stated earlier in this section that the largest possible hole is related to the samples

that are still left, afterN samples were chosen. If no possible samples are left, it follows

by implication that the maximum distance is restricted by an upper bound 2κmin. The

number of samples is not predetermined with this method, but can be restricted by start-

ing with a larger minimum distance κ0 > κmin. This leads to the concept of relaxation.

Relaxation is known from continuous Poisson-disk distributions [32, 103] and is used

there to ensure termination of the Dart-Throwing algorithm. A Poisson-disk distribution

with a relatively large radius of forbidden samples is created to fill the plane once, until

no possible samples are left, followed by decreasing radii, until the desired sampling

density is reached.

This can be applied directly to Cartesian Poisson-disk distributions. With this method,

the maximum possible distance between two samples becomes 2κ0. A quasi random

distribution of samples with constraints is achieved. The resulting distance to the near-

est neighbor is restricted to the interval [κmin; 2κ0].

While the benefit for large reduction factor is not immediately obvious, this is the case

for distributions with κmin = 1 on a Cartesian grid. Without relaxation, a pure random

distribution would result.
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Figure 3.1: Realization of a Poisson-disk distribution. A description of different sets
using a uniform random distribution is given in (a). Every chosen sample, indicated by
a blue dot, is surrounded by an area of constant diameter κmin, where random selection
is prohibited. Additional samples can only be chosen from the white area. Generated
realizations of uniform Poisson-disk distributions for reduction factors R of (b) 4, (c)
8, and (d) 12.

3.1.1 Implementation details and evaluation

The choice of random samples out of a defined and fixed set can be made with a Dart-

Throwing [102] approach, which subsequently chooses random samples out of the orig-

inal set S. If one sample has been chosen already, the random selection is repeated. This

immediately leads to problems for large numbers of desired samples, because repeated

random selections become more frequent as the sampling density increases, which im-

plies prohibitively long computation times. To avoid this, random selections are per-

formed on a temporally changing subset of the original set: the set of available samples

P . For illustrative purposes, Figure 3.1(a) is given. The samples are randomly chosen

out of the subset P = S\(M ∪ T ), which is the set of available samples (samples out

of the unmarked area). M is the set of already chosen samples (blue dots) and with the

additional definition of T , which is the set of forbidden samples (occupying a circle)

around the already chosen ones, a minimum distance restricted distribution can be re-

alized as opposed to a pure random distribution. Updates of the subset P need to be

performed after every random selection of a sample.

In case of autocalibrated PI, the central k-space area can be fully sampled, but the

remaining general approach remains applicable.

For the calculation directly on a Cartesian grid, C-code has been created for this work,

following the description given above. Generated realizations of the distributions are

given in Figures 3.1(b-d), which differ by the reduction factor, (b) R = 4, (c) R = 8,

and (d) R = 12.
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Figure 3.2: Voronoi diagram for uniform sampling density. (a) is from a random
sampling-pattern, with Voronoi areas spread over a wide range. (b) is from a Poisson-
disk distribution, while (c,d) are from Poisson-disk distributions with relaxation. (c)
and (d) differ by the starting value (c) κ0 ≈ κmin + 2, and (d) κ0 ≈ κmin + 5. The
range of the size of the Voronoi areas is smaller in (b-d), compared with (a). A smaller
range indicates a uniform distribution without holes and clustering of samples.

To evaluate the generated distributions further, Voronoi diagrams are calculated for dif-

ferent uniform density distributions and a reduction factor R = 6. The Voronoi diagram

for a random distribution without constraints is given in Figure 3.2(a). The disadvan-

tages of this distribution are clearly visible, the sizes of the areas are spread over a wide

range, see also Figure 3.3(a). Clustering of samples and large holes are not prevented.

For the Poisson-disk distribution without relaxation, shown in 3.2(b), the size of the

areas is clearly restricted, see also Figure 3.3(b). The relaxed Poisson-disk distribu-

tions, shown in Figure 3.2(c,d), are comparable to the case without relaxation. There

is no difference visible, because the target value κmin resulted in a distribution with

hardly any possible samples left. The same reason holds for the similarity of (c) and

(d), which differ in the starting value κ0. The means of Voronoi areas, as well as the

standard deviations and the maximum values are summarized in Table 3.1. The mean

area approximates the reduction factor in all cases. The standard deviation, as well as
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Figure 3.3: Histogram of Voronoi areas for uniform sampling density distributions.
(a) Histogram of the random distribution; (b) Poisson-disk distribution; (c,d) Relaxed
Poisson-disk distributions, same examples as in Figure 3.2. (b-d) indicate similar dis-
tributions, while (a) is obviously spread over a wider range.

the maximum area differ significantly between the random and the Poisson disk case.

The differences between the different PD distributions are not significant.

3.2 Variable-density Poisson-disk sampling

The signal distribution in k-space depends on the geometry, the structure of the object,

and the experimental settings. Nevertheless, they always have one property in common:

the highest signal amplitude is accumulated in the central part of k-space and decays to

the periphery. The exact decay as well as the best fitting function depends on the object

and the protocol. In MRI, without acceleration using compressed sensing, k-space is

typically sampled on a Cartesian grid with constant distance between samples (uniform

density), fulfilling the Shannon sampling theorem. If CS undersampling is performed,
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Table 3.1: Analysis of Voronoi diagram. For realization of different distributions,
Voronoi diagrams are calculated and the means, standard deviations and the maxima of
the resulting areas are calculated and summarized in this table in unit areas of k-space.
The mean area approximates the reduction factor and the standard deviation gives a
hint for the spread of the areas. Clustering corresponds to smaller areas, while holes
correspond to large areas. The random distribution is worse than the other methods,
which result in similar quality of distributions.

Random Poisson Relaxed PD Relaxed PD
sampling disk (PD) κ0 ≈ κmin + 2 κ0 ≈ κmin + 5

mean 5.97 6.01 6.0 6.01
std 2.79 1.2 1.21 1.19
max 18.9 10.3 10.6 11

it is essential to decide, which sampling density (uniform or variable density) should be

achieved, and which samples should be acquired. It is known from image compression

and previous compressed sensing applications that natural images as well as MR im-

ages have a sparse representation in the wavelet domain [23]. The scales in the wavelet

domain are band-pass filtered images of the original signal. It is further known that the

coarse scales are dense compared with the sparse fine scales [23]. Therefore, higher fre-

quencies potentially need less data to be reconstructed, and undersampling is performed

according to a variable-density with decaying density towards the periphery of k-space.

The sampling density can be optimized for a selected protocol and anatomy.

In Section 3.1, generation of the sampling-pattern for a uniform Poisson-disk distribu-

tion is described. Therefore, this concept is adjusted to generate a variable density in

k-space in the following. It is obvious that a variable density is achieved if the radius

κ of forbidden neighborhood around a sample becomes location dependent. In the next

sections, the construction of a reasonable function κ(i) is derived. The variable i counts

through all possible positions in k-space.

3.2.1 Probability mass function

The probability mass function (pmf), denoted by pI(i) here, is the most probable fourier

representation of the imaged object. It gives the probability that one sample is placed

at one specific location i in k-space. The corresponding sample space consists of all

locations in k-space and as a probability mass, the sum of p over all locations is one.



Chapter 3. Sampling in CS MRI 35

For uniform sampling, the samples are chosen randomly from the set of possible sam-

ples with a homogeneous probability mass function (pmf). To achieve a variable density,

the samples are chosen from a non-uniform pmf instead.

Variable-density sampling was motivated with the differing sparsity of the wavelet

scales and the knowledge about the typical signal distribution in k-space. The exact de-

cay of the sampling density towards the k-space periphery needs to be selected. One ap-

proach is presented in [23], where a decaying sampling density according to the power

of one to six of the distance from k-space center is proposed. This empirically reduces

the interference in the transform domain, but is not proven to be optimal. In [104], the

signal distribution in k-space is further analyzed, and a formula is derived empirically

for the signal power spectrum

I(l) ∝
(
l2 +

( ε

2π

)2
)−3/2

. (3.3)

In this equation, l is the distance from k-space center, and ε is an empirical parameter

that is chosen according to the relative size of objects compared with the FOV. A factor

of 25 is proposed for MR images [104].

Instead of giving a formula for the signal distribution, it can be determined empirically

on a series of MR training images for specific applications, briefly described below. As

mentioned before, in 3D imaging, the frequency-encoding direction is fully sampled,

and undersampling is only performed in the 2D phase-encoding plane. From the 3D

k-space data, a 1D Fourier transform in the frequency-encoding direction is performed

to achieve a hybrid space. An averaging over the slices results in smoothing of the 2D

k-space data. This mean distribution is normalized to fulfill the requirements of a pmf.

The resulting pmf is a function of the two coordinates ky and kz. It describes roughly

the signal and its information distribution in k-space, and is further used to guide the

sampling process by influencing its sampling density.

3.2.2 Sampling density function

The aim is to create a variable-density Poisson-disk sampling by influencing the radius

κ of forbidden neighborhood around a given sample. As stated earlier, the size of the

forbidden neighborhood sets an upper bound on the sampling density. Therefore, the

radius needs to match the final location-dependent sampling density function (sdf) for
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a random choice of N samples and needs to be known in advance. Thus, the resulting

mean sampling density function for a fixed number of chosen samples from a pmf pI(i)

needs to be determined. The sdf can be regarded as the expectation value of finding a

sample at one specific location.

One possibility is a Monte-Carlo simulation of the sdf from the pmf by choosingN sam-

ples randomly multiple times and then averaging over the individual repetitions. For this

procedure, a large number of realizations of the distribution must be performed. This is

computationally expensive, and therefore, not done here.

The procedure, how the sdf d(i) can be calculated exactly and in a less time consuming

fashion, is derived in the following. The aim of the calculation is the sdf d(i) that is

achieved if N samples are randomly chosen without recline from a given pmf pI(i) out

of a finite set. It is obvious that the sdf depends on the total number of samples N .

Two cases are immediately clear. If N = 1, then one sample is chosen out of the total

number of possible samples Nt, and therefore, sdf and pmf equal each other. In the

other case, if N = Nt, then all possible samples are chosen, which is full sampling and

is equivalent to a homogeneous sdf d(i) = 1, independent of the pmf pI(i). The cases

in between require deeper insights.

A prediction for the distribution of N samples that are chosen without recline out of

a total number of Nt not equally probable samples is challenging, because the experi-

ments are not independent of each other. It is, therefore, necessary to redefine this case

with the equivalence of choosing samples with recline, but if one sample has been cho-

sen already, an additional try is performed. This way, the probability of the samples in

each try stays constant, because the experiments are independent, but the total number

of trials (N ′ > N ) is unknown in advance.

The experiments are described byNt multivariate independent variablesZ1, ..., ZNt . Let

Z1, ..., ZNt be the stochastic variables giving the times the locations 1, ..., Nt were cho-

sen. The sample spaces of Z1, ..., ZNt are [0, 1, ..., N ′]. For each location i ∈ [1, ..., Nt]

in the ky-kz plane, the probability that this sample is chosen in one try is given by the

pmf pI(i). For N ′ independent trials, each Zi follows a binomial distribution with pmf

Ψ and parameters pI(i) and N ′.

During the process of generating a sampling pattern, it is decided, whether one sample

is taken once or not, repeated selection is no option. Therefore, a simplified stochastic
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Figure 3.4: Illustration of probability mass funtion (pmf) pI(i) and sampling density
function (sdf) d(i) for an example pmf. The pmf (a) is decaying according to the power
of 6 with the distance to k-space center. Based on the pmf, the sdf is determined for
different undersampling factors R = Nt

N : (b) 8, (c) 4, (d) 1.5. From (b-d) the tendency
to more uniform sampled k-space for very low reduction factors can be seen.

variable Si with a reduced sample space [0, 1] compared with Zi is sufficient. In this

sample space, one means that the sample is taken, and zero means that the sample is not

taken. The corresponding pmf Φ of Si can be calculated from the known pmf Ψ of the

variable Zi:

ΦSi
(si = 0) = ΨZi

(zi = 0) = (1− pI(i))N
′

ΦSi
(si = 1) = ΨZi

(zi > 0) = 1−ΨZi
(zi = 0) = 1− (1− pI(i))N

′
.

(3.4)

The sdf d(i) at location i is the expectation value E[Si] of the variable Si and is calcu-

lated according to the formula

d(i) = E[Si] = 0 · (1− pI(i))N
′
+ 1 · (1− (1− pI(i))N

′
) = 1− (1− pI(i))N

′
. (3.5)

The equations given above still contain the unknown number of trials N ′. This can be

determined by making use of an additional constraint: The total number of selected

samples needs to be N . Mathematically, this can be described with the help of the

expectation value of the stochastic variable T =
∑Nt

i=1 Si:

E[T ] = E[
Nt∑
i=1

Si] =
Nt∑
i=1

E[Si] =
Nt∑
i=1

1− (1−pI(i))N
′
= Nt−

Nt∑
i=1

(1−pI(i))N
′
. (3.6)
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Figure 3.5: Illustration of pmf pI(i) and sdf d(i) based on invivo data. The pmf (a) is
calculated from one invivo dataset as described in Section 3.2.1. Based on the pmf, the
sdf is determined for different undersampling factors R = Nt

N : (b) 20, (c) 5, (d) 3.

This results in the following formulation of the constraint:

E[T ] = N. (3.7)

It is possible to determineN ′ in a few iterations beginning withN ′ = N and calculating

the corresponding expectation valueNapp = E[T ], which is the result of (3.6) and fulfills

the condition Napp < N . The value N ′ for the next iteration is N ′ = N ′ R
Napp

. The

iterations are performed, until N −Napp < 1. The final N ′ defines the sdf according to

(3.5).

The cases described above for N = 1 and N = Nt ⇔ lim
N ′→∞

can also be described by

(3.5) and give consistent results:

N = 1→ d(i) = 1− (1− pI(i))1 = pI(i)

N = Nt → d(i) = lim
N ′→∞

1− (1− pI(i))N
′
= 1.

(3.8)

An illustration is shown in Figure 3.4(a) with a pmf pI(i) decaying according to the

power of 6 with the distance to k-space center. The resulting sdf d(i) is given in Fig-

ures 3.4(b-d) for different numbers of undersampling factors R. It indicates that, for

low N , the sdf shows similar behaviour as the pmf, which converges towards one on the

whole plane for N → Nt. In Figure 3.5(a), the pmf is determined from in
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Table 3.2: Computation times for determination of location-dependent radii κ of for-
bidden neighborhood for a given probability mass function. The number of iterations
is rapidly increasing for R→ 1, but the result for the case R = 1 is immediately clear
(d(i) = 1) and requires no calculation.

Reduction
factor (R) Iterations time [s]

4 6 0.104
3 7 0.103
2 10 0.104
1.5 15 0.115
1.2 25 0.156
1.1 38 0.254
1 3080 7.673

3.2.2.1 Computational cost

The algorithm described in Section 3.2.1 and Section 3.2.2 was implemented in C. Its

computation time is influenced by the number of iterations needed to achieve conver-

gence. In every iteration, E[T ] is calculated, consisting of a sum over all locations. The

number of iterations increases for decreasing reduction factors and has strong influence

on the computation time for low reduction factors. For reduction factors larger than

R = 1.1, the computation times are typically under 1 s. Lower values of the reduc-

tion factor result in higher computation times (for example 7.67 s for a matrix size of

300 × 100 and R = 1, see Table 3.2). On the other hand, for the case R = 1, it is

unnecessary to even start the calculation because of sdf = 1 for the whole plane. The

algorithm was tested for multiple values of the reduction factor R on a 64-bit system

with 12 GB RAM and an Intel Xeon processor with 2.67 GHz. The application is de-

signed to run on a single core. The results for a Cartesian grid of size 300 × 100 are

given in Table 3.2, showing that acceptable computation times can be found for useful

reduction factors.

3.3 Realization of variable-density Poisson-disk distri-

bution

In the last section, the determination of a sdf from a meaningful pmf was derived. The

missing step is the determination of the function κ. The relation between the sdf and
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Figure 3.6: Variable-density Poisson-disk sampling pattern. Location-dependent for-
bidden neighborhood (a). Please note the different diameters of the neighborhood
around the samples. Resulting sampling patterns are given for different undersampling
factors R = Nt

N : (b) 8, (c) 5, and (d) 3. The underlying pmf is taken from Figure 3.4.

the mean distance κ̄ between samples is given by

d(i) ∝ 1

κ̄n
. (3.9)

In this equation, κ is given in units of gaps between adjacent samples on a Cartesian

grid, and n is the dimension of the undersampling space. For a given sdf d(i), it is

therefore possible to determine the location-dependent function κ̄(i). By arranging for-

bidden neighborhoods around already chosen samples with a predefined radius κ, it is

obvious that κ does not coincide with the mean, but with the minimum distance between

samples. Because the possible distance between samples is a discrete set on a Cartesian

grid, it is one possibility to round off κ̄ to the next possible value on a Cartesian grid,

indicated by the symbol b c. This is summarized by the following equation

κ(i) = bκ̄(i)c =

⌊
n

√
1

d(i)

⌋
, (3.10)

which describes the location-dependent radius of forbidden neighborhood (Figure 3.6).

Using this strategy alone to generate the Poisson-disk distribution results in distribu-

tions with clearly visible steps due to the finite set of possible distances. Therefore, the

k-space is segmented into rings. The sdf integrated over these areas gives the number

of samples to choose out of this region. The forbidden neighborhood is generated as

described before.

For lowering the computational cost, it is essential to choose samples without recline

according to the originally described stochastic model. The implementation of the

variable-density Poisson-disk generation would otherwise result in prohibitively long

computation times due to increasing numbers of repeated trials (N ′). Because of that,
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Table 3.3: Computation times for sampling-pattern generation. Times include the
whole pattern generation and the calculation of the radii κ from a given probability
mass function pmf. The time increases for R→ 1.

Reduction time [s] for grid time [s] for grid
factor (R) size 300× 100 size 200× 100

4 1.57 0.84
3 1.68 0.83
2.5 1.83 0.94
2 2.67 1.34
1.5 3.26 1.7
1.4 3.63 1.75
1.3 3.76 1.86
1.2 4.25 1.99
1.1 4.49 2.19

the random choice of samples is not performed on the set of all samples, but on the

available set that is updated after each try. The redefined model is only used to calculate

the sdf.

3.3.0.2 Computational cost of sampling-pattern generation

The algorithm has been implemented in C and tested for multiple values of the reduction

factor R on a 64-bit system with 12 GB RAM and an Intel Xeon processor with 2.67

GHz. The application was designed to run on a single core. The results for a Cartesian

grid of size 300 × 100 and 200 × 100 are given in Table 3.3. Decreasing the reduction

factor R results in higher computation times (for example 4.49 s for a matrix size of

300× 100 and R = 1.1, see Table 3.3).

3.4 Undersampling in 1D

Although the method is described here for 3D imaging, it is also applicable to 2D imag-

ing. In 2D Cartesian imaging, the frequency direction is fully sampled, and undersam-

pling is performed only on the phase encoding direction. The determination of the sdf

from the pmf is unchanged, but the summation over Φ is reduced to a summation in 1D.

The Poisson-disk generation can be implemented in the same way, with the difference

that the neighborhood is an interval instead of a circle, see Figure 3.7 (a). The C-code

implemented for 2D undersampling-patterns is also able to generate the described 1D



Chapter 3. Sampling in CS MRI 42

Figure 3.7: Variable-density Poisson-disk sampling-pattern in 1D. Location-
dependent forbidden neighborhood (a), indicated by red interval around the samples.
Resulting sampling-patterns are given for different undersampling factors R = Nt

N : (b)
3, (c) 2, and (d) 1.3.

undersampling-patterns. Examples for generated variable-density sampling-patterns in

1D are given in Figures 3.7 (b-d) for different undersampling factors R.

3.5 Temporal order

The procedure described before can be used to decide, which samples should be ac-

quired. The temporal order of the samples is not determined until now. Acquisition in

the same temporal order as the samples were chosen from the set of possible samples

is not impossible, but leads to unpredictable results. The distance between subsequent

samples could be large, and therefore, result in eddy current induced artifacts or signif-

icant contrast change. Because of that, the determination of the final sampling-pattern

and the temporal order need to be performed before the actual acquisition.

The best temporal order depends on the MR sequence and the contrast to be achieved.

For a signal that is immediately in the steady state and has no fluctuation, the temporal

order has no influence. The situation for temporally varying signals is different, because

the temporal order influences the contrast as well as the artifact appearance. However,

this is out of scope of the considerations here.

In Chapter 4, the temporal order for abdominal T1-weighted dual-echo imaging with

incomplete breath-holds is described in detail.
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3.6 Initial experiments and results

Among other experiments that were performed to evaluate the sampling, one selec-

tive experiment is presented in the following for illustrative purposes. The experiments

were performed on a volunteer on a 3T scanner (Ingenia, Philips Healthcare, Best, The

Netherlands). An 8-element head-coil was used to acquire multi-slice data of the head

with a resolution of 0.9× 0.9× 1 mm3 and a FOV of 280× 223× 180 mm3. A gradi-

ent echo sequence with a flip angle of 30◦, and TE/TR of 1.9/25 ms was chosen. The

experiment was performed without acceleration to make retrospective undersampling

possible. Different sub-sampling patterns were used retrospectively to evaluate their in-

fluence on image quality. Reconstructed images are shown in Figure 3.8 with a detailed

view given in Figure 3.9. The images of the whole head (Figure 3.8) are comparable

in image quality. Differences are hardly visible in the large volume images obtained for

the full sampling (a), completely random sampling (b), uniform Poisson-disk sampling

(c), variable-density Poisson-disk sampling, decaying with (k/∆k)6 (d), and optimized

sampling according to the signal distribution in k-space (e). In the detailed view of the

images in Figure 3.9, differences become visible. The largest deviation from the fully

sampled data is visible for the random sampling (b), while the image qualities of the

reconstructions are similar for the three Poisson-disk distributions with differing sam-

pling density functions. Difference images to the fully sampled image are calculated

and shown in Figure 3.10 for the same sampling patterns as in Figures 3.8 and 3.9.

Consistent with the latter images, the largest error occurs for the completely random

sampling pattern in Figure 3.10 (a). The uniform Poisson-disk sampling (b) reduces the

errors, but better results are achieved with the two variable-density Poisson-disk sam-

pling schemes (c,d).

Due to the choice of the reconstruction, the central k-space is fully sampled and used

for calibration. This already induces a variable-density for all sampling patterns pre-

sented before. The terms uniform, random etc., therefore, are related to the outer part

of k-space only.

The experiment presented here was retrospectively undersampled. This enables the cal-

culation of an optimized variable-density according to the actual signal distribution in

k-space. This sampling density is very specific to the image and potentially inappro-

priate for other patients or slightly changed locations, orientations or contrast. In gen-

eral, the distribution is unknown in advance. Typical distributions can be learned from
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Figure 3.8: Simulation of different sampling-patterns. The fully sampled data is un-
dersampled with the indicated sampling-pattern, each with a reduction factor ofR = 5,
and reconstructed by a combined CS/PI reconstruction (`1-SPIRiT). For reference the
Fourier transformed fully sampled data is given in (a), which is acquired in a 10 minute
scan. The reconstructed images of the retrospectively sub-sampled data are shown in
(b-e) for different kinds of sub-sampling-patterns. The reconstruction relies on calibra-
tion lines, therefore all sampling-patterns have a fully sampled central area in common.
The specified sampling refers to the outer part of k-space. (b) is uniform randomly
undersampled, while (c) is a uniform Poisson-disk sampling, (d) a variable-density
Poisson-disk distribution with a pmf decaying proportional to (k/∆k)6, and (e) is op-
timized according to the signal distribution in k-space.

prior example images, but compared to the procedure described above, the distributions

should fulfill some properties, such as radial symmetry, for example. This makes them

more robust against small rotations compared to reference. Furthermore, they should

be smoothened to cancel out object-specific variations in k-space.

Apart from the usually analyzed MR imaging, there are applications, where the ten-

dency of signal decay towards the periphery is violated. Among others, this is the case

for tagging techniques [105]. A series of RF pulses and gradients is applied before the

imaging to prepare the magnetization periodically in image space. A periodic 1D or 2D

modulation in image space results in replica of the central maximum in outer parts of k-

space. In this case, a sampling density that is adapted to the expected signal distribution

is clearly advantageous compared to a decay towards the periphery.
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Figure 3.9: Detailed view of the images from Figure 3.8. The image arrangement (a-e)
is the same as given in Figure 3.8. Differences are visible in the upper left corner under
the letters, as well as in the lower parts of the images. The largest deviation is visible
for the random distribution of samples. The two Poisson-disk distributions result in
similar image quality.

3.7 Discussion

In this chapter, a fast possibility for generating a quasi-continuous variable density Pois-

son disk distribution on a Cartesian grid was proposed. As a special case, the algorithm

is also able to calculate uniform density Poisson disk distributions. The calculation is

fast enough to run on the scanner after setting the experimental parameters.

A possibility was shown to generate a desired variable density by dividing the k-space

in rings of desired thickness with constant sampling density inside and a corresponding

Poisson disk radius. This radius is specific for the desired variable density function,

but also for the wanted total reduction factor, because the sampling density increases

with decreasing reduction factor. For this purpose, a method is proposed to derive the

sampling density function from the probability density. It is an iterative method that has

been shown to have low computation times and is thus clearly advantageous compared

to a calculation via Monte-Carlo simulations. It is advantageous for the computational

cost and for the quality of the distribution to use an appropriate Poisson disk radius. A

Poisson disk radius that is too low for the desired density of samples results in fewer
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Figure 3.10: Difference images to the fully sampled reference for the simulated dif-
ferent sampling-patterns. Difference images are upscaled by a factor of 7. (a) is from
uniform random undersampling, while (b) is from a uniform Poisson-disk sampling,
(c) from a variable-density Poisson-disk distribution with a pmf decaying as (k/∆k)6,
and (d) from a variable-density Poisson-disk distribution with sdf optimized according
to signal distribution in k-space.

restrictions to the spread of possible distances between samples and thus to a distribu-

tion that becomes more comparable to a pure random distribution. The other extreme is

a Poisson disk radius that is chosen too large and produces a distribution with a lower

sampling density than desired. To achieve the desired sampling density, the Poisson

radius needs to be decreased step by step, a procedure known as relaxation that is com-

putationally intense if the number of iterations is large.

An input for the proposed method is the probability density function that can be chosen

freely and is thus able to fulfill any desired variable density function. Sampling patterns

generated with this algorithm were tested on different density functions showing clear

improvement for the Poisson disk distributions compared with pure random sampling.

The pure random distribution of samples frequently leads to a wider spread of realized

distances between neighboring profiles. This can be seen in the Voronoi diagrams and

clearly leads to a severe loss of information in the images. These distances are restricted

by the Poisson disk distribution due to the adequate choice of the forbidden neighbor-

hood. The variable density Poisson disk distributions is slightly improved compared to

homogeneous sampling density. The optimum variable density function for combined

compressed sensing and parallel imaging needs to be found. The optimum solution

is not obvious, because the two methods have potentially conflicting requirements to

fulfill. A pure CS reconstruction theoretically shows superior results if the knowledge
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about the sparsity of the distinct scales is exploited. This results in variable density with

clearly more undersampling in the periphery. A pure PI reconstruction has potentially

problems to recover the signal if the reduction factor is lower than a specific value. This

value is set by the number of coils and their ability to produce independent images.

This is clearly different from the reduction factor in CS that is set by the sparsity of the

signal.

The special case for generating a uniform density Poisson disk distribution requires only

slight modifications to the algorithm for variable density distributions. The separation

of k-space to rings is not necessary for this kind of distribution, because the sampling

density is constant on the plane by definition. Furthermore, the sampling density func-

tion is uniform and is thus easily calculated. Nevertheless, the calculation as described

in Section 3.2.2 also holds for uniform density distributions and is thus kept for con-

venience in the algorithm for uniform densities. To ensure a good distribution, one

relaxation step is recommended that only leads to slightly higher computational cost

due to the restricted number of relaxation steps.



Chapter 4

Incomplete breath-holds in abdominal
MRI

This chapter is to a large extent based on the full paper ”Robust abdominal imaging

with incomplete breath-holds” published in MRM [106].

4.1 Abdominal MRI

Respiratory motion is a common source of artifacts in MRI. Performing the acquisition

in a single breath-hold has proven to be an efficient means to minimize such motion arti-

facts, especially in abdominal imaging. However, the scan time required to cover a large

volume with high spatial resolution, as desired in abdominal imaging, often over-strains

the breath-holding capabilities of patients, leading to a premature onset of respiratory

motion during the acquisition and to an inconsistent dataset. This will be referred to

as incomplete breath-hold. The resulting artifacts and their dependence on the acqui-

sition order, i.e. the temporal order, in which the k-space profiles are measured, were

studied in [107]. A centric acquisition order that covers the central k-space first, was

demonstrated to reduce artifacts. This can be explained by the typical distribution of

signal energy in k-space. Inconsistencies in the profiles with higher signal energy from

the central k-space result in higher artifact energy. Therefore, it is suggested to collect

these profiles first to minimize the risk of respiratory motion during their acquisition.

After the scan, the image quality is often assessed quickly, and if rated inadequate due

to artifacts, the scan will be repeated with reduced spatial resolution, in order to adapt

48
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the scan time to the breath-holding capabilities of the particular patient. This procedure

obviously complicates the workflow and prolongs the examination. Alternatively, the

acquisition may be distributed over multiple breath-holds [108]. This decreases the du-

ration of each breath-hold, but increases the scan time substantially, because the patient

needs several breathing cycles between subsequent breath-holds to recover. Moreover,

limited repeatability of the breath-hold position may also cause artifacts.

The breath-holding capabilities of a particular patient are unknown in advance and may

degrade over multiple breath-holds, rendering the use of a predefined breath-hold du-

ration prone to failure. Performing the acquisition during free-breathing instead is at-

tractive in particular for the examination of very sick or uncooperative subjects [109].

Navigators are employed to determine the breathing position to restrict the acquisition

to a certain range of breathing positions, the so-called gating window [110, 111]. How-

ever, this approach lowers the scan efficiency dramatically, since k-space profiles are

collected in only a fraction of the breathing cycle.

Both breath-holding and free-breathing strategies benefit from various methods for scan

acceleration, like PI and CS. This work is focused on single breath-hold abdominal

imaging that is favored to achieve a high scan efficiency and motion state consistency.

It is aimed at making single breath-hold abdominal imaging more insensitive to incom-

plete breath-holds to reliably attain high image quality in most patients. PI and CS are

jointly applied to cover a large volume with high spatial resolution as fast as possible.

A navigator-based detection of the onset of respiration, triggering an automatic scan

termination, is suggested to avoid the use of inconsistent data in the reconstruction and

thus to suppress artifacts caused by incomplete breath-holds. Two different navigator

types are tested. For the first time, an acquisition order is proposed that permits an

almost continuous compromise between spatial resolution and undersampling artifacts

during the scan and obviates the need for a manual, prospective adaptation of the spatial

resolution or coverage to the expected breath-holding capabilities of a particular patient.

In the next section, the design of the sampling pattern and the acquisition order is ex-

plained first together with navigator methods for scan termination. Then, an outline of

the employed reconstruction is given, and the performed phantom and in-vivo exper-

iments are described. The in-vivo experiments cover 3D T1 weighted gradient echo

imaging with and without contrast agent, and dual-contrast imaging within one breath-

hold. Finally, the results are summarized and discussed, as are selected aspects of the
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new strategy for coping with incomplete breath-holds in single breath-hold abdominal

imaging.

4.2 Sampling strategy for incomplete breath-holds

The primary goal in the design of the sampling patterns and the acquisition order is to

reconcile the different, possibly conflicting requirements resulting from the individual

properties introduced above. These requirements include: (a) increasing spatial resolu-

tion over time and full uniform sampling inside a central area for autocalibrated PI, (b)

non-uniform sub-sampling outside of the autocalibration area for CS, and (c) variable-

density sampling to account for the expected distribution of signal energy. These re-

quirements have to be met in principle throughout the acquisition to facilitate the recon-

struction of images from undersampled data collected up to any point in time. Motion

artifacts can thus be minimized independently of the actually achieved breath-hold du-

ration by reconstructing from consistent data only. Moreover, these requirements permit

enhancing image quality in terms of spatial resolution and undersampling artifacts con-

tinuously with the breath-hold duration.

The design of the sampling patterns and the acquisition order is described in detail in

the following for 3D Cartesian imaging. The acquisition order reduces to a sequence

of k-space profiles in the two phase-encoding directions ky and kz, since the k-space is

fully sampled along the read-out direction kx.

4.2.1 Increasing spatial resolution and autocalibration

A commonly used approach is the manual prospective adaptation of the spatial reso-

lution or coverage to reduce the breath-hold duration. Instead, it is proposed to auto-

matically increase the spatial resolution in the two phase-encoding directions gradually

during the scan.

The k-space is divided into two parts: a central autocalibration area and the remaining

k-space that is denoted as periphery. To support an autocalibration of the sensitivity

of multiple receive coils for PI, the central k-space area is fully sampled first. This is

typically the most stable period of the breath-hold with the least risk of motion during

the acquisition. The number of k-space profiles in this autocalibration area is denoted
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Figure 4.1: Increasing spatial resolution with time. (a) The calibration area sampled
fully first. (b) The first section, marked as grey area, and the first fraction, shown as
a set of black dots, indicating phase-encoding steps to be measured. (c,d) The second
and third section, covering a larger k-space area and thus supporting a higher spatial
resolution, and the second and third fraction. (f-h) All phase-encoding steps measured
up to the first, second, and third fraction. (e) The maximum |k| is reached at different
points in time during the acquisition for different values of Ω. Shown are schemati-
cally four graphs with Ω1 > Ω2 > Ω3 > Ω4. For an increasing value Ω the target
|k|max is reached earlier. The remaining scan time after reaching the target resolution
is used to improve SNR and to reduce potential undersampling artifacts by decreasing
the reduction factor.

by N0. The half-axes a0 and b0 of the ellipse delimiting this autocalibration area define

the first, coarsest spatial resolution level (cf. Figure 4.1(a)).

Typical distributions of the signal energy in MR images have their maxima at the center

of k-space and decay towards the periphery [104]. Motion appearing during coverage of

the central area, therefore, leads to more severe artifacts than motion appearing during

coverage of the peripheral area. Because of that, the center of k-space is acquired first

and the coverage of k-space is then successively increased. This approach, described in

[107], is extended in this work, to allow for an efficient application of PI and CS and to

enable a reconstruction of images from consistent data in case of scan termination due

to motion.

The increase of the spatial resolution over time is described by the parameter Ω. It is de-

fined as the inverse of the average sampling density in the covered k-space periphery and

related to the temporal increase of the k-space coverage. This user-defined parameter Ω

gives an upper limit of the total reduction factor, ensuring that robust reconstruction can

be achieved at any breath-hold duration. It thus allows us to trade off between spatial

resolution and artifact level during the acquisition. Consequently, the spatial resolution



Chapter 4. Incomplete Breath-hold 52

increases with the breath-hold duration, and the initially larger voxels help in attaining

an acceptable SNR and successful reconstruction without undersamplimg artifacts early

on. The interpretation of Ω as reduction factor in the periphery is valid until the target

resolution is reached. For later times, the reduction factor decreases.

In addition to the parameter Ω, the total reduction factor R is used in the following.

R is defined as the reduction factor related to the covered k-space at a given time. As

opposed to Ω, a parameter that is defined in the periphery of k-space, the total reduction

factor R includes the autocalibration area.

For the generation of the profile order in the periphery, all remaining k-space profiles,

apart from the central profiles, ideally to be measured are grouped into fractions. These

fractions are acquired sequentially in time. A fraction is a realization of a distribution

of N profiles on a section Si of k-space. Sections are nested sets of k-space profiles,

i.e. each subsequent section contains all the previous sections that can be regarded as

concentric, elliptically shaped k-space areas, indicated by grey areas in Figure 4.1(b-d).

Their half-axes ai and bi, i = 1, 2, 3, . . . , determine the subsequent spatial resolution

levels. The area of one section multiplied with the density of possible sample locations

on a Cartesian grid ρ, which is one per unit area here, gives an estimate of the number of

profiles within one section, Ni ≈ πaibiρ. It has to be ensured that the average reduction

factor in the periphery of section i, excluding calibration lines N0, is Ω

Ni −N0

iN
≈ πaibiρ−N0

iN
= Ω. (4.1)

Solving this equation for the product aibi yields

aibi = (iNΩ +N0)
1

πρ
. (4.2)

Because the ratio

ai
bi

=
aT

bT
, (4.3)

with aT = max ky and bT = max kz corresponding to the target spatial resolution in the

ky and kz direction, is fixed, the half axis can be written as

ai =

√
(iNΩ +N0)

aT

πbTρ
. (4.4)
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This is a monotonically increasing function, reaching the target resolution correspond-

ing to aT at some section i that can be calculated by setting ai = aT. For larger section

numbers i, the half axis ai = aT is fixed. This can be summarized as

ai =


√

(iNΩ +N0) aT
πbTρ

, if i < πaibiρ−N0

NΩ

aT, otherwise

(4.5)

bi = ai
bT

aT
. (4.6)

After the target resolution is reached, any remaining time is spent on decreasing the

total reduction factor, by increasing the sampling density in k-space according to the

non-uniform subsampling described in the next section. The spatial resolution stays

fixed, while additional samples result in decreasing reduction factors in the periphery.

The temporal evolution of ai is schematically shown in Figure 4.1(e) for different Ω.

The growing half-axes and thus the size of the sections are illustrated in Figure 4.1 on

an example, for which Ω = 8 and N = 347 were chosen. Each dot in the 2D k-space

(two phase-encoding directions) represents a measured profile. Added profiles from one

fraction each are indicated in Figure 4.1(a-d). As opposed to this, Figure 4.1(f-h) show

the accumulated fractions, representing the resulting sampling patterns. The selection

of these profiles for each fraction is explained next.

4.2.2 Non-uniform variable-density Poisson-disk sampling

The sampling patterns have to permit autocalibrated PI and have to lead to incoherent

aliasing to support CS. This is achieved with a fully sampled auto-calibration area in

the center of k-space and a Poisson-disk distribution [23, 31] in the periphery.

The process of generating a Poisson-disk distribution has already been described in

Chapter 3 for a fixed reduction factor that is determined before the scan starts. The

difference for the adaptive sampling patterns with unknown reduction factor in advance

is the temporally changing subset S that is increasing with time. This corresponds to

improving spatial resolution as time passes by.

The elliptically shaped central k-space area is fully sampled, and thus also captures the

highest signal energy. In the peripheral k-space, the sampling density should decay as
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a function of the distance to the k-space center. This is achievable with a varying min-

imum distance rmin of profiles in k-space. The variation can be a discrete distribution

with constant values within specific regions or it can be made approximately continu-

ous, an approach that was chosen in this chapter. Basically, a quadratic decay of the

sampling density was used. This is an improvement compared with uniform sampling

density. The resulting condition for the minimum distance rmin is briefly described in

the following. Every profile in k-space with coordinates (ky, kz) can be uniquely as-

signed to an ellipse with fixed half-axes (a, b) that fulfill a/b = aT/bT . The same rmin is

assigned to all points on the ellipse (a, b). A linear function in the half-axis a is assumed

rmin = ma+ c = m

√
k2
y +

(
kz
aT

bT

)2

+ c. (4.7)

The parametersm and c are determined by the constraints rmin(
ai−a0

2
) = r̄ and rmin(a0) =

r̄
2
, with r̄ being the average distance between samples for a given Ω, leading to

m =
r̄

ai − 3a0

(4.8)

c = r̄
ai − 5a0

2(ai − 3a0)
. (4.9)

Because there is only a discrete set of possible distances between profiles on a Cartesian

grid, the initial value of r̄ is the largest possible distance smaller than
√

Ω. If the set of

possible samples P is empty, r̄ is changed to the next possible lower value. This proce-

dure is known as relaxation and has been explained in more detail in Chapter 3. Updates

of the variable r̄ can occur at any time if P is empty, but are required at the latest when

the target resolution is reached, because the remaining breath-hold duration is used to

decrease the overall reduction factor. The additional samples keep approximating a

Poisson-disk distribution of profiles with increased sampling density that corresponds

to decreased minimum distance between samples.

4.2.3 Acquisition order

The process of assigning profiles to fractions was described in the last sections, but the

acquisition time-order of profiles in the fractions has been unaddressed and is therefore

discussed in the following. It can potentially be selected freely in this method, thus

permitting an optimization of the trajectory in (ky, kz)-space.
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To reduce eddy-current-induced artifacts, the distances between subsequent profiles can

be minimized, for instance. In this work, a different approach is used. To describe the

profile ordering scheme it is obvious to represent profiles in polar coordinates. The ori-

gin of this coordinate system is the k-space center and the radial axis points along the

first phase-encoding direction ky.

The profiles from one fraction are traversed sequentially in time according to their an-

gles in polar coordinates from lowest values to highest. This enforces an upper bound

on the distance between subsequent samples and can be calculated with low computa-

tional cost. However, this is not the optimal solution regarding eddy currents induced

in the object. Other possibilities are solving the traveling salesman problem for the set

of samples from one fraction. This approach is computationally clearly more intense

and thus disadvantages for computation on the scanner. Furthermore, the time to k = 0

is not easy to predict for this solution and thus not applicable to imaging with contrast

agents. A different approach is traversing the profiles in a quasi linear manner that is

also computationally efficient.

4.3 Motion sensors

In parallel to the data acquisition, the breath-hold has to be monitored. Therefore, in-

dependent of the fractions, motion detection is performed using a navigator interleaved

with data acquisition after a fixed number of acquired profiles. Depending on the mo-

tion state, sensed by the navigator, scan termination could be enforced. Because of that,

it is not guaranteed that the last fraction is complete after scan termination. For a low

number of profiles within one fraction, this potential asymmetry in k-space sampling

will not have a substantial influence on the reconstruction and the resulting image qual-

ity. For motion detection, external sensors, like belts or cameras, or internal MR-based

sensors, like the pencil-beam [112, 113] or other kind of navigators, can be used. In

this work, two different kind of navigators were tested in combination with the adaptive

sampling patterns. First, a pencil-beam navigator, performing a kind of 1D imaging in a

small cylindrical volume to estimate the position of the diaphragm, and second a k = 0

navigator that repeatedly acquires the k-space center and calculates the correlation be-

tween the profiles to estimate consistency, have been used.
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Figure 4.2: Navigator signal used for automatic scan termination. The location of
the 1D pencil-beam navigator is schematically shown in the inlay. A typical navigator
displacement signal obtained from a correlation with a reference signal is shown. A
slight drift during breath-hold is visible. The first averaged navigator positions are used
as reference (dotted line). An acceptance window of 10mm width around the reference
position is used as termination criterion. The navigator indicating breathing onset in
this case is marked with an arrow.

4.3.1 1D pencil-beam

The 1D pencil-beam navigator is an internal MR-based sensor that is part of the scan-

ner software. In clinical practice, it is used in gated acquisitions of the abdomen or

the heart, for example. It is manually placed on the diaphragm, based on a survey

scan. A 1D imaging volume oriented along the feet-head direction is planned to cover

part of the lungs and the liver. Excitation and read-out is performed on this volume

(c.f. Figure 4.2). In image space, the contrast between the liver and the lungs changes

dramatically and can therefore be detected easily by an edge finding algorithm. The

evaluation of the signal is performed in real-time, to decide for the next shot if data

acquisition should be performed. In this work, the navigator signal is used to moni-

tor the breath-hold. Therefore, a termination criterion is implemented in the software

that stops the TFE acquisition if deviations larger than a predefined value occur. The

navigator is acquired after one shot of a TFE train. This corresponds to an update rate

of approximately 1/500 ms. An example for a navigator signal is given in Figure 4.2.

The evaluation of the signal is stable and reliable. However, the application of such

a navigator to the spin system interrupts the imaging sequence. This can cause signal

variation due to steady state perturbations. Furthermore, the spatially selective exci-

tation can lead to saturation artifacts in the image if the flip angle is chosen too high.



Chapter 4. Incomplete Breath-hold 57

This is disadvantageous, because the navigator is placed on the region of interest (ROI)

for liver examinations. Additionally, the 1D pencil-beam navigator lengthens the scan

time or reduces scan efficiency, because of the long navigator acquisition duration of

approximately 20 − 30 ms. For the purposes of this thesis, the pencil-beam navigator

gives more information than what is actually needed. Instead of the actual displace-

ment of the diaphragm, an indication of breath-holding or breathing on-set would be

sufficient.

4.3.2 k=0 Navigator

The k = 0 navigator uses the imaging sequence itself to monitor the breath-hold. It

repeatedly measures the central k-space profile fj at equidistant times j ensuring a

fixed update rate. If the patient starts breathing, the signal changes and the similarity of

fj before breathing onset and fk after breathing onset reduces. The acquisition takes

only one repetition time that is typically in the order of 3 − 6ms for a dual-gradient-

echo acquisition. Because motion significantly changes the phase of k-space data in

MR imaging, the complex signal is used for evaluation [114]. The magnitude of the

complex correlation coefficient between the reference fr and subsequent profiles fj

c(fr,fj) =
cov(fr,fj)√

cov(fr,fr)cov(fj,fj)
(4.10)

is calculated. The covariance is defined as

cov(fi,fj) =
1

N − 1
〈fi − f̄i,fj − f̄j〉 (4.11)

with the scalar product 〈a, b〉 of the vectors a and b. This method is not able to give

an absolute value for the position or the displacement of the diaphragm. It is only a

measure of the similarity of subsequent profiles.

One approach to set the reference profile in (4.10) is to choose

fr = f1. (4.12)

This choice for the reference profile is applicable to signals in steady state.

The similarity between navigator profiles is not only influenced by motion, but also by
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Figure 4.3: Correlation coefficient calculated from k=0 navigator signal for two expe-
rienced volunteers from experiments performed in the research laboratories Hamburg.
Three different investigated approaches for the reference profile were tested that gave
the same time for breathing onset in the volunteers. One approach is to take the first
profile as reference profile, the second approach is to take the average of the first ten
navigators as reference if the first profile is not reliable. The last investigated method
is to take the running average as reference profile. Slight drift in the signal (b) with
unknown source is partly suppressed by the running average as reference profile com-
pared with the other two possibilities to choose the reference profile.

signals in transient state or and by contrast agent injection. These changes can be mis-

interpreted as motion. For signal changes that are much slower than breathing motion,

the reference profile can be set to

fr =
1

j − 1

j−1∑
i=1

fi (4.13)
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or alternatively to

fr =
1

k − 1

j−1∑
i=j−k

fi. (4.14)

Equation (4.14) is a running average over k-profiles that adapts to low-frequency changes

of the signal, like changes due to contrast agent injection. Equations (4.13) and (4.14)

are only examples for the choice of the reference profile that aim at distinguishing be-

tween signal changes due to respiratory motion and due to other sources. Different

methods to perform the separation based on specific properties are conceivable and are

desired to be able to use the k = 0 navigator for a specific application.

Apart from this restriction to a limited number of applications, the k = 0 navigator

has one major advantage. Because the imaging sequence itself is used to acquire the

navigator signal, it is not interrupted and the steady-state is therefore maintained. Any

saturation effects, as known from pencil-beam navigators, are avoided on top.

In the experiments performed in this work, different reference profiles were used. For

Figure 4.4: Correlation coefficients obtained from clinical DCE imaging, acquired at
the UTSW Dallas. Navigator signal evaluated for a patient before contrast injection (a)
and post contrast injection (b) during equilibrium phase. The correlation coefficients
are consistently higher after contrast injection due to increased SNR. Slight drifts in the
signal are suppressed by the running average reference compared with the first profile
and the average over the first ten profiles used as reference. Breathing instructions are
different at the UTSW Dallas compared with the experiments performed in Hamburg.

the experiments described in Section 4.5.2 the pencil-beam navigator and the k=0 navi-

gator with the reference profile defined in (4.12) were used. The breathing onset was in

all cases easily detected and examples are shown in Figure 4.3 for two examinations on

two volunteers and different approaches to evaluate the navigator signal.
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The breathing onset is clearly visible as a sudden decrease in the correlation coeffi-

cient. The different approaches for choosing the reference profile give the same time of

breathing onset with slightly higher values of the correlation coefficient for the running

average. This is because the running average is insensitive to slow drifts. These drifts

can be caused either by motion of the diaphragm or by general signal variation.

The choice of the reference is harder for DCE experiments because the signal is inten-

tionally temporally varying. The experiments in Section 4.5.3 contain pre-contrast and

only one post-contrast (equilibrium) phase with minor signal change. The evaluation

of the navigator is most complicated for the arterial phase because the largest signal

variation occurs at this time. This case is not covered in this work. An example a for

navigator signal obtained in a patient with contrast injection is shown in Figure 4.4. The

navigator signal was acquired during the examination but intentionally not used for scan

termination, because erroneously interruption of the scan had to be prevented. The scan

was terminated after a fixed scan duration and the data were retrospectively truncated

to the desired breath-hold duration. The navigator signal was evaluated retrospectively

and evaluated with the reference profiles given Equations 4.12,4.13, and 4.14 in these

cases and an example is shown in 4.4. The end of signal in Figure 4.4 does not corre-

spond to breathing onset as in Figure 4.3, the patients held the breath during the scan

and the scan was terminated at the predefined reduction factor.

The equilibrium phase is a phase with only slight signal change due to contrast wash-

out. Therefore, the navigator behavior is not completely different for the two tempo-

ral phases. The right and left images are scaled to show the same interval as in Fig-

ure 4.3(b). It can be seen that the correlation coefficient of the k=0 navigator is higher

for the post-contrast scan compared with the pre-contrast scan. This was observed in

all patients and is most probably caused by the improved SNR due to the contrast agent

injection. Compared with experienced volunteers, breathing instructions are different

in a clinical environment and hard to follow for patients. This hampers the evaluation

of the k=0 navigator signal further in a few cases, because the patient did not necessar-

ily start the breath-hold at the same time the scan started. The k=0 navigator with the

first profile as reference indicates a slight drift that is corrected by the running-average

reference as expected. It depends on the purpose whether a slight drift of the diaphragm

should be accepted or not. However, contrast injection potentially results in drift of the

correlation coefficient due to contrast wash-in and wash-out as well and is thus hard to

distinguish from diaphragm drift.
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4.4 Reconstruction

The acquisition is stopped at the onset of breathing, and therefore, motion-free data

are used for reconstruction. This prevents motion artifacts, but implies an incomplete

dataset. To eliminate aliasing artifacts, a CS-PI reconstruction is applied that deals

with the potential missing data problem. The image reconstruction is performed with

`1-SPIRiT [51]. This reconstruction combines compressed sensing and parallel imag-

ing based on auto-calibration. As described in [24], `1-SPIRiT solves the constrained

minimization problem containing the sparsifying transform Ψ, in this case a wavelet

transform using Daubechies 4 wavelets,

minρ Joint `1(Ψρ) (4.15)

s.t. DFρ = f |acq (4.16)

Gf = f (4.17)

via a Projections Onto Convex Sets (POCS) algorithm. In this notation, f |acq are the

acquired data in k-space, ρ is the image to be reconstructed, F is the Fourier transform

operator, and D is the operator that selects the acquired data in k-space. The Joint`1-

norm is a combined `1/`2-norm, defined by

Joint `1(b) =
∑
r

√∑
i

|bir|2, (4.18)

where i is the channel index and r is the position index of the wavelet coefficient. The

joint sparsity takes into account that images from different coils have large coefficients

at the same spatial positions. The first constraint enforces data consistency. The second

constraint that can also be written as

fi =
Nc∑
j=1

gij ∗ fj (4.19)

enforces calibration consistency with i, j being the channel indices and Nc being the

total number of channels. The operator G performs convolutions with the appropriate

convolution kernels gij . These calibration kernels are estimated from the fully sampled

central k-space profiles.
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4.5 Experiments and results

4.5.1 Phantom simulation

The proposed sampling patterns depend on the user-defined parameter Ω that deter-

mines the trade-off between undersampling artifacts, spatial resolution, and noise level.

For the evaluation of the influence of Ω on the reconstructed images as well as for a val-

idation of the increasing spatial resolution with scan time, simulations were performed

on a fully sampled 3D dataset acquired on a resolution phantom with the proposed sam-

pling pattern.

The sizes of the in-plane structures in this phantom were in a range of [0.5mm; 2mm].

The target spatial resolution of the acquisition was 0.75 × 0.75 × 3mm3 in a FOV of

240 × 240 × 150mm3. The data were acquired with the proposed sampling pattern.

For the investigation of the breath-hold duration on the imaging procedure, the data

Figure 4.5: Simulation of different ’breath-hold’ durations. A 3D phantom dataset
was retrospectively undersampled using the proposed sampling pattern and a fixed Ω
of 5. Different number of profiles were included in the reconstruction, simulating
scan durations as indicated in (a-f). The total reduction factor and the spatial resolu-
tion are changing with the ’breath-hold’ duration. Corresponding values (number of
profiles / total reduction factor R / spatial resolution percentage) are given in the fol-
lowing: (a) 1000/4.1/51, (b) 2000/4.6/78, (c) 3000/4.7/94, (d) 4000/4.0/100, (e)
5000/3.2/100, and (f) 20480/1.0/100. The shown results are zoomed areas of slices
from the resolution section of a phantom. A subsection of the fully sampled dataset
is shown in (f) for comparison. For increasing number of samples, the image quality
improves in terms of resolution and noise.

were retrospectively undersampled with the proposed sampling pattern using different

number of samples to systematically evaluate the influence of the scan time on image
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Figure 4.6: Simulation of different values of the parameter Ω. A 3D phantom dataset
was retrospectively undersampled, using the proposed sampling pattern and a fixed
amount of data (2000 profiles). The chosen values for the parameter Ω are indicated
in the images, resulting in different total reduction factors and spatial resolution. Cor-
responding values (total reduction factor R / spatial resolution percentage) are given in
the following: (a) 2.83/61, (b) 4.58/78, (c) 6.42/91, (d) 7.92/100, and (e) 7.92/100.
The shown results are enlargements of the resolution section of the phantom. The re-
sult for full sampling is shown in (f) for comparison. The achieved spatial resolution
depends on the chosen Ω and on the reconstruction and improves from (a-c) (see dotted
arrow for in-plane and full arrow for through-plane resolution). On the other hand, im-
ages with large values of Ω (d,e) suffer from image artifacts and increased noise. This
restricts the range of acceptable values of Ω.

quality. According to (4.5), the spatial resolution should increase with time. The image

quality is not only dependent on the resolution, but also on the undersampling that can

lead to noise amplification.

Results from simulations using a fixed Ω of 5 are shown in Figure 4.5 for increas-

ing number of samples. These results mimic measurements terminated at varying scan

progress, with scan durations indicated in the images. As expected, the resolution in AP

direction (in-plane), the through-plane resolution, and the SNR improve with growing

number of samples. The read-out direction points from left to right and therefore, the

resolution in this direction stays fixed. The improved in-plane resolution can be deduced

from reduced blurring for increasing number of samples as well as from the structures

in the resolution phantom. The improved through-plane resolution becomes obvious

when comparing results with the fully sampled reference dataset in Figure 4.5(f). In

the upper left corner, a high intensity square (see arrow in Figure 4.5(a)), from a neigh-

boring slice appears in the undersampled data that is absent in the original image. The

reduced intensity for increasing number of samples reflects the improved through-plane

resolution.
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Further simulations on this phantom dataset were performed for different values of Ω

while keeping the total number of samples used in the reconstruction fixed. This cor-

responds to a fixed breath-hold duration and is indicated by the dotted vertical line in

Figure 4.1(e). The covered k-space area is determined by (4.5), promising increasing

spatial resolution with increasing Ω.

The parameter Ω is important for the generation of the proposed sampling patterns be-

cause it determines the velocity that is used to cover k-space over time, affects the under-

sampling artifacts prior reconstruction, and the SNR at the same time. Reconstruction

results from the same phantom dataset are shown in Figure 4.6. It was retrospectively

undersampled for different values of Ω and a fixed value of samples N = 2000 that

corresponds to a fixed scan duration. The values of Ω are indicated in the images. It

can be seen in Figure 4.6(a-c) that the in-plane as well as the through-plane resolution

increases. The increased in-plane resolution is visible in the line marked with the dot-

ted arrow. In Figure 4.6(a), it appears as a line, whereas it appears as a set of dots in

Figure 4.6(c). The tendency of improved through-plane resolution is also visible in the

left corner (see full arrow), where a neighboring slice becomes visible in the undersam-

pled data. The intensity becomes lower in Figure 4.6(c) compared with Figure 4.6(a).

For higher Ω, resulting images are shown in Figures 4.6(d,e), image quality is start-

ing to degrade by a higher noise level, because the sampling density is too low in the

periphery.

4.5.2 3D T1-weighted gradient-echo imaging without contrast agent

Experiments on 8 healthy volunteers, age 30-54, were performed on a 1.5 T scan-

ner (Philips Healthcare, Best, The Netherlands) with a 3D T1-weighted spoiled dual-

gradient-echo sequence, for water-fat separation using a two-point Dixon method (mDIXON

[97]), employing a 16-element torso coil. The used mDIXON algorithm enables a flex-

ible choice of the echo times and thus eases sequence design. The flip angle was 15◦,

TE1/TE2/TR were 1.3/2.3/3.7 ms, and the echoes were acquired using bipolar gradi-

ents with a pixel bandwidth of 1322 Hz, the FOV was about 375× 240× 230 mm3, and

the target actual spatial resolution was 1.5× 1.5× 3 mm3, covering the whole liver.

The implementation of the adaptive PD sampling-pattern generation is fast enough to

enable its execution directly on the scanner during protocol specification. This simpli-

fies workflow, especially for in-vivo imaging. For imaging on volunteers, the number of
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Figure 4.7: Results in a volunteer from a scan with 16s breath-hold duration. This
corresponds to a total reduction factor of R = 4.14 related to the achieved k-space
coverage |k|max at scan termination. Example slices of water and fat images in the axial
and the reformatted coronal plane are shown. Images indicate good image quality and
3D coverage without motion artifacts.

fractions was 40− 50, and Ω = 8 was chosen. The measurements were complemented

by an interleaved 1D pencil-beam navigator acquisition to detect the onset of respira-

tion. The reference breath-hold position was derived from the first diaphragm positions

of the breath-hold. The navigator was measured interleaved every 200 − 500 ms using

a flip angle of 15◦ for low interference with the magnetization in the target volume. An

acceptance window with a width of 10 mm around the reference position was chosen.

During breath-holding, the position of the diaphragm only changes little with a slight

drift. The first navigator after onset of breathing causes scan termination approximately

half a second later. The profiles acquired in this period were also used for reconstruc-

tion. The alternative k=0 navigator was used for scan termination as well with the

reference profile given by (4.12).

The reconstruction has been performed off-line so far. To accelerate the reconstruction,

a coil compression technique [22] was used before `1-SPIRiT [51]. The signals from

the 16 channel coil were reduced to six virtual channels without significant information

loss. The compressed signal was then used as an input for the CS-PI reconstruction

(included in the available freeware1) that is written in C++ supporting multiple cores

of CPUs or GPUs. In this work, a 64-bit Linux system with 4 CPUs (Dual-Core AMD

Opteron 2220) was used resulting in reconstruction times in the order of 4-5 min for one

echo. The reconstruction times of this kind of algorithm for multiple CPUs and GPUs

1http://www.eecs.berkeley.edu/∼mlustig/Software.html
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Figure 4.8: Influence of breath-hold duration on image quality. The underlying mea-
surement was automatically stopped after 19 s at breathing onset. For a comparison
without misregistration artifacts data were retrospectively discarded to simulate shorter
breath-hold durations of 14s, 10s and 6s. Images of a selected slice of the 3D datasets
are shown. The water- and fat-only image, the first echo image and the difference of
this image to the first echo image obtained with the 19 s breath-hold, upscaled by a
factor of three, are shown. A lower spatial resolution, both in-plane and through-plane,
becomes apparent for shorter breath-hold durations.
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were studied in detail by Murphy et al. [25]. The resulting images from the individual

coils were combined using a Roemer [13] reconstruction to obtain one complex-valued

image for each of the two echoes. To these two echo images, an mDIXON [97] sepa-

ration step was optionally applied, resulting in one water and one fat image. Feasibility

was shown on eight different volunteers for different breath-hold durations yielding

good image quality. Representative reconstructed images from a scan with flexible scan

termination after 16 s, which is a moderate breath-hold duration, are shown in Fig-

ure 4.7. The reformatted water and fat images in the axial and coronal plane show good

image quality without artifacts from respiratory motion.

One of the in vivo datasets was further analysed by retrospectively simulating shorter

breath-hold durations. This allows for a comparison without misregistration artifacts

from multiple breath-holds. The measurement underlying Figure 4.8 was automatically

Figure 4.9: Motion artifact suppression by scan termination. Reconstructed images
from the first echo of a dual echo acquisition for three individual scans using the pro-
posed sampling patterns with a total duration of 20 s (R = 2.8) without self-termination
and incomplete breath-holds of (a,b) 12 s (R = 4.5), (c,d) 15 s (R = 3.8), and (e,f) 18
s (R = 3.1) duration. (a,c,e) are reconstructed from data acquired before onset of
breathing, (b,d,f) from all data acquired in the first 20 s while the reconstruction pa-
rameters were kept the same in all cases. Motion artifacts are clearly visible in (b,d,f),
significantly degrading image quality.

stopped at the onset of breathing after 19 s. For comparison, shorter breath holding
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was simulated by retrospectively skipping data. Towards shorter acquisition times, the

spatial resolution of the single echo images is reduced in the two phase-encoding direc-

tions that are anterior-posterior and feet-head. The lowered resolution is transferred to

the water and fat images. Dual-echo acquisitions were performed resulting in improved

SNR for the water-fat separation compared to fat suppression techniques performed

during acquisition. The corresponding difference images of the first echo in the fourth

column, upscaled by a factor of three, demonstrate once again the loss of in-plane and

through-plane resolution for shorter breath-holds. Difference images of the water and

fat images were calculated as well, showing similar result.

To illustrate the effectiveness of motion suppression with the proposed method, a series

of experiments on one volunteer with different breath-hold durations was additionally

performed. The scans were terminated after a fixed duration of 20 s. Reconstruction

is performed from data acquired only before onset of breathing and from all acquired

data.

Reconstructed images of the first echo from a dual-echo acquisition with a scan dura-

tion of 20 s are shown in Figure 4.9. The volunteer started breathing already after (a,b)

12 s, (c,d) 15 s, and (e,f) 18 s respectively. Figures 4.9(a,c,e) show images reconstructed

from data acquired before breathing onset, while Figures 4.9(b,d,f) show images re-

constructed from all acquired data. Although the data are acquired with the proposed

sampling patterns that are already less sensitive to motion, (b,d,f) are degraded by se-

vere motion artifacts. As opposed to this, no motion artifacts are visible in (a,c,e) from

the same data, because they were reconstructed only from the consistent part of the data.

4.5.3 3D T1-weighted gradient-echo imaging with contrast agent

Image quality in clinical dynamic contrast enhanced (DCE) MRI of the abdomen is of-

ten challenged by respiratory motion artifacts. DCE studies are commonly acquired at

the end of the MRI examination, after the patient has gone through several breath-holds

and the average breath-hold capability is known. However, patients may have trouble

holding their breath after contrast injection [115] and this is often unpredictable as many

of them may have been able to do so earlier in the examination.

The temporal order of an abdominal T1 weighted dynamic imaging study is schemati-

cally shown in Figure 4.10. Typically, in a standard protocol, a series of 3D abdominal
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Figure 4.10: Schematic temporal sequence of dynamic contrast-enhanced liver MRI.
The same imaging sequence is performed before contrast injection and at multiple time
points after contrast injection to cover significant stages of contrast wash-in and wash-
out. At each time-point a 3D dual-gradient echo imaging procedure is performed to be
able to separate the water and fat signal retrospectively.

dual-gradient echo images with constant imaging parameters is acquired followed by

water-fat separation. The first one is acquired before contrast injection and is used as

a reference image. Gadovist is used in clinical practice and was also used as contrast

agent in this study with a concentration of 0.1 mmol/kg injected as bolus injection using

a power injector set to 2 cc/s, followed by a 20 cc saline flush at 2cc/s. Gadovist is a

paramagnetic non-selective contrast agent that contains Gadolinium. The physical prin-

ciple behind the increase of contrast in T1-weighted images is described in Section 2.6.

Gadovist is ranked to have low risk for the patients to develop nephrogenic systemic

fibrosis (NSF). Gadolinium is increasing the signal intensity in T1 weighted images by

lowering the T1 relaxation time of surrounding tissue. The contrast wash-in is moni-

tored with a bolus track sequence that repeatedly measures a 2D coronal slice of the

abdomen. At bolus arrival, the acquisition of the arterial phase images is started. The

contrast is visible in the aorta, the hepatic artery and potentially in diseased tissue. The

further contrast wash-in in the liver is monitored during the portal-venous phase that is

typically 40 s after bolus arrival. The wash-out of contrast is further monitored during

the delayed venous (90 s after bolus arrival) and the equilibrium phase (120 s after bolus

arrival). Different tissue types have different temporal characteristics of contrast wash-

in and wash-out dependent on their blood circulation and supply. This knowledge helps

in separating healthy tissue from diseased as well as malignant from benign tumors.
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Contrast-agent is furthermore helpful to determine the full extent of malignant tumors

and to characterize extrahepatic diseases with non-selective contrast agents.

Because of the occurring incomplete breath-holds in clinical practice, the presented

adaptive sampling is applied to abdominal DCE MRI to study the benefit for this ap-

plication. Basic feasibility has to be shown for the adaptive sampling approach with

injection of contrast agent. The acquisition stays basically the same as described in the

Section 4.5.2. As opposed to the experiments described there, the application of con-

trast to the patient results in changing physical properties of the tissue. The relaxation

times change continuously in time and spatially dependent during the entire examina-

tion. Therefore, the signal can no longer be regarded as temporally constant and thus

potentially leads to artifacts in the image.

In conventional DCE abdominal MR imaging, the k-space is traversed in a linear man-

ner. This results in minor artifacts in the image, because the contrast change is rather

smooth. Potentially, the artifacts are less severe for parallel imaging compared with

fully sampling, because the acquisition time is shorter and thus the contrast change is

lower. The contrast in the image is mainly influenced by the time to k0 that is half the

scan time for conventional abdominal DCE MRI.

The adaptive sampling patterns are far more irregular. By construction, the central

k-space is acquired first. Therefore, the time to k0 is zero for the adaptive sampling pat-

terns and the timing of the acquisition relative to contrast injection needs to be adapted

to achieve exactly the same contrast as in the conventional case. A more challenging

fact to consider is the irregular sampling after the acquisition of the calibration lines.

Temporally close profiles are distributed over k-space, instead of being ’spatially’ close

to each other in k-space. This can result in a totally different signal intensity of spatially

close profiles in k-space that appear as artifacts in image space. The artifacts seem

comparable to incoherent aliasing that appears if undersampled data is Fourier trans-

formed to image space without a CS reconstruction performed before. As opposed to

the incoherent aliasing, the artifacts due to signal variations are not removed by a CS

reconstruction, because the artifacts are induced by inconsistencies in the acquired data

and not by unacquired k-space profiles. This observation points out that, although the

experimental parameters are almost unchanged, the application has to cope with even

more difficulties.

Abdominal imaging was performed on one healthy volunteer and four patients on a
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Figure 4.11: Images reconstructed from data acquired before contrast-injection. The
images correspond to the pre-contrast injection images of the clinical protocol. (a)
is reconstructed from the first 19s of the scan with stable breath-hold, while (b) is
reconstructed from truncated data to simulate shorter breath-hold of 13s. A control
volume was added within the FOV (see arrow) to study the signal intensity dependence
on the breath-hold duration, because quantitative enhancement characteristics are used
for diagnosis.

3T scanner (Achieva, Philips Healthcare, Best, The Netherlands) at the University of

Texas Southwestern Medical Center using a 16-element torso coil. Embedded in a clin-

ical DCE series, two additional 19 s breath-hold acquisitions were obtained: one before

contrast injection and one after the clinical DCE acquisitions in order to avoid inter-

ference with the existing clinical procedure. As a side-effect the difficulties caused

by signal variations are expected to be less harmful in the late phases compared with

the early phases. The early image is comparable to the first pre-contrast dataset of

the clinical series, while the late image is comparable to the last post-contrast acqui-

sition. A T1-weighted spoiled dual-gradient-echo sequence with a TE1/TE2/TR of

1.13/2.0/3.7 ms (mDIXON) and a flip angle of α = 10◦ was employed to cover a

typical FOV of 340 × 262 × 300 mm3 with an actual acquired spatial resolution of

1.5× 1.5× 3.0 mm3. A combined PI and CS reconstruction (`1-SPIRiT [51]) was used

for reconstruction of the two echo images, and two-point water fat separation [97] with

flexible echo times was performed as a final step.
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Figure 4.12: Images reconstructed from data acquired after contrast-injection and after
the dynamic series of the clinical protocol. The images therefore correspond best to the
last phase of the clinical protocol. (a) is reconstructed from the first 19s of a scan with
stable breath-hold, while (b,c) are reconstructed from truncated data to simulate shorter
breath-holds of 13s (b), and 10s (c). The control volume remains in the FOV for the
post-contrast images.

The reconstruction ensures the same final voxel size of pre- and post-contrast acquisi-

tions to enable subtraction. Because relative enhancement is a crucial criterion for lesion

characterization in clinical practice, one needs to be sure that the signal amplitude is not

influenced by the breath-hold duration. This is evaluated in this work with an additional

phantom placed on the volunteer, acting as control volume within the FOV. Signal dif-

ference maps are calculated for distinct breath-hold durations of pre- and post-contrast

images to evaluate the influence of the breath-hold duration on quantitative enhance-

ment characteristics.
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Figure 4.13: Dependence of enhancement characteristics on the breath-hold duration.
(a-c) is the absolute difference between the water images of the two phases (Spost −
Spre), while (d-f) is the ratio between difference and the pre-contrast image ((Spost −
Spre)/Spre). The breath-hold duration of the pre-contrast scan is kept constant, while
the post-contrast breath-hold is truncated to varying breath-hold durations. The images
show enhancement in expected regions within the body with quantitative values that
are independent of the breath-hold duration. The signal intensity within the control
volume remains unaffected for all breath-hold durations.

The data shown in Figures 4.11(a) and 4.12(a) are from acquisitions with 19 s breath-

hold duration before contrast injection, and the other with the same breath-hold du-

ration, but after the clinical dynamic protocol. The additional control volume can be

seen in the axial images. In addition, a shorter 13 s breath-hold Figure 4.11(b) was

also simulated by truncating the acquired data. Pre-contrast images were successfully

reconstructed from various simulated breath-hold durations with preservation of im-

age quality (Figure 4.11). Post-contrast images were also reconstructed with shorter,

i.e. 13 s in Figure 4.12(b), and 10 s in Figure 4.12(c) simulated breath-holds. Recon-

struction of pre- and post-contrast images can be performed for different breath-hold

durations indicating robustness against premature breathing onset. Evaluation of the

influence of the breath-hold duration on quantitative enhancement characteristics needs

to be performed. Therefore, the difference between the pre- and post-contrast images as

well as the ratio of the difference and the pre-contrast images is calculated for different

breath-hold durations of the post-contrast images. For Figure 4.13, the pre-contrast im-

ages are taken from the first 19 s, while the post-contrast images are from 19 s, 13 s and

10 s breath-hold durations. Figure 4.13 indicates expected enhancement characteristics

within the body and no significant change of the mean value within the control volume

for the two acquisitions with distinct breath-hold duration. The breath-hold duration

influences the resolution of the motion artifact-free images, but leaves the quantitative

information unaffected. The breath-hold position of the pre -and post- contrast images
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Figure 4.14: Reconstructed patient data. Images are from two different patients. On
the left: patient I (a) pre-, (b) post-contrast. On the right: patient II (c) pre-, (d) post-
contrast, acquired with the proposed adaptive sampling pattern. Promising image qual-
ity without motion artifacts is also achieved in patients.

is assumed to be consistent for these experiments. This experiment was performed

on a healthy volunteer, but it was also tested on three patients after the influence of

the breath-hold duration on quantitative diagnostic values was clarified. Representative

pre- and post-contrast water images out of 3D patient data from two different patients

are shown in Figure 4.14. In Figure 4.14, (a,b) correspond to one patient, while (c,d)

correspond to the other. Pre-contrast images are shown in (a,c), while post-contrast im-

ages are shown in (b,d). The image quality is promising without any motion artifacts

induced by respiration.

4.5.4 Dual-contrast imaging within one breath-hold

In MRI, several images with different contrasts are often advantageous for a precise

differential diagnosis. To avoid potential respiratory motion induced artifacts, abdom-

inal imaging is usually performed during one or multiple breath-holds. Nevertheless

this approach can lead to spatial inconsistencies between data acquired in different

breath-holds. Recently, it was proposed to perform multi-contrast MRI within the same

breath-hold [116] using highly accelerated parallel imaging (PI). However, the dispro-

portionately long delay between the two scans of approximately 1 s increases the risk of

a premature onset of breathing during the second scan and thus degraded image quality.
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To overcome this problem, fast sequence switching [117] and the proposed adaptive

sampling is applied to dual-contrast imaging.

Figure 4.15: Schematic illustration of temporal sequence for dual-contrast within one
breath-hold. The preparation scans of both scans are performed before the actual scan
while the patient/volunteer is free-breathing. After the breath-holding instructions, the
first scan is started manually and its duration easily fits into the breath-hold. Immedi-
ately at the end of the first scan, the second scan starts automatically

The aim is to acquire two distinct scans immediately after each other to ensure consis-

tency of the scans. The required preparation phases of both scans are performed before

the actual acquisition while the patient is free-breathing as shown in Figure 4.15 to en-

sure they are not performed in between the scans. After their completion, breath-hold

instructions are given and the first scan is performed immediately at the beginning of

the breath-hold. During the first scan that is chosen to last only a fraction of the breath-

hold, it is likely that the patients are capable to hold their breath. Therefore, this scan

could be fully sampled. This is no stringent claim, the first scan can also be acquired

using acceleration techniques like parallel imaging. Switching to the subsequent scan is

performed using a spectrometer task swapping approach, pre-storing arbitrary MR se-

quences on the data acquisition system as parallel tasks, allowing switching sequences

in less than a few micro-seconds. The second scan, starting immediately after the first

scan, has to be designed differently to be able to cope with sudden breathing onset. The

adaptive sampling approach presented in this chapter is applied to this dual-contrast

imaging sequence.

Abdominal imaging was performed on volunteers on a 1.5T scanner (Philips Health-

care, Best, The Netherlands), using a 16-element torso coil. For the first scan a con-

ventional 2D Look-Locker sequence, sampling 12 complete low-resolution single shot

gradient-echo images after inversion (α = 10◦, TE/TR : 2.8/6.4 ms, resolution: 3 ×
2.6× 15 mm3, total scan time= 3 s) was chosen to estimate a central slice liver T1 map,

reconstructed using conventional reconstruction. For the second scan, a T1-weighted
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Figure 4.16: Results for dual-contrast single breath-hold abdominal MRI: In this ex-
ample a standard Look-locker T1 mapping scan was combined with a second 3D wa-
ter/fat resolved dual-echo Dixon. (a) Pixel-wise estimation of T1 and (b) resulting T1
map from the first scan (3 s scan duration) during a breath-hold. (c,d) Selected wa-
ter/fat images from the second scan acquired during the same breath-hold. From the
total breath-hold duration of 19 s were 16 s left for the second scan (c,d). Water images
for simulated earlier breathing onsets resulting in scan duration of the second scan of
13 s (e) and 10 s (f), underlying the temporal resolution adaptation.

spoiled gradient-echo sequence with a TE1/TE2/TR of 1.29/2.34/3.67 ms was em-

ployed to cover a typical FOV of 380×280×240 mm3 with an actual spatial resolution

of 1.5 × 1.5 × 3.0 mm3. A combined PI and CS reconstruction (`1-SPIRiT [51]) was

used for reconstruction of the two echo images, and water fat separation [97] was per-

formed as a final step.

The estimation of the T1 map of the liver from the first scan is shown in Figure 4.16(a,b)

with a measured T1 value from ROI of 570 ms, while the reconstructed images from

the second scan are shown in Figure 4.16(c,d). This volunteer held their breath for 19 s,

with automatic scan termination at breathing onset. The effective scanning time of the

second scan was 16 s. For comparison, this data was further undersampled to simu-

late breath-hold durations of (3+13) s (Figure 4.16(e)) and (3+10) s (Figure 4.16(f)) to

emphasize the automatically adapted resolution of the second scan.
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4.6 Discussion

Imaging of the abdomen often suffers from motion artifacts. Therefore, a novel ap-

proach for more robust 3D abdominal imaging with incomplete breath-holds was pro-

posed and feasibility was shown in simulations and in vivo measurements for different

applications. Good image quality was obtained for the single-echo and the water-fat im-

ages for all breath-hold durations albeit at different spatial resolutions. Motion artifact

suppression by scan termination was clearly shown to be superior to using inconsistent

data for reconstruction (cf. Figure 4.9). This approach ensures an optimal compromise

between undersampling artifacts and spatial resolution for an arbitrary breath-hold du-

ration, while preventing motion induced artifacts. Instead of adapting the spatial reso-

lution in advance, based on an estimate of the breath-hold duration a particular patient

is able to achieve, it is automatically increased during the scan. This is advantageous,

because the breath-hold duration of a patient is difficult to predict, especially for sick or

uncooperative patients, and in any case potentially diagnostically useful images can be

obtained making undesired scan repetitions unnecessary.

In the previously proposed approach by Maki et al. [107], the acquisition is not termi-

nated, and the complete dataset is used for reconstruction. This ensures full resolution,

but leads to motion artifacts, dependent on the breath-hold duration. A simple exten-

sion of the previous method would be the combination with a motion sensor for scan

termination. This would result in lower resolution than in the approach proposed here,

which integrates PI and CS and, therefore, enables undersampling of k-space.

The main parameters for the generation of the sampling patterns are the number of cal-

ibration lines in the center of k-space, the number of fractions f and Ω. The number of

calibration lines is mainly determined by the reconstruction and the energy of the signal.

In the reconstruction technique used in this work (`1-SPIRiT), a convolution kernel fit

is performed from the calibration lines. A sufficient number of equations is needed for

this optimization process. Therefore, an increasing number of calibration lines up to a

certain limit leads to an improved calibration kernel. Furthermore, it is advantageous

if the part of the signal with highest energy is fully sampled. However, with increasing

number of calibration lines, the time to acquire the central part of k-space is also in-

creased, leading to lower spatial resolution.

For the selection of a suitable number of fractions, two competitive factors, acquisition



Chapter 4. Incomplete Breath-hold 78

time of one fraction and distance between samples, have to be taken into account. An

incomplete fraction results in an asymmetrically acquired k-space, which is less severe

if the number of samples within one fraction is low. This makes a large number of frac-

tions preferable. On the other hand, a larger number of samples in one fraction results

in a reduced average distance between samples, and therefore, in reduced eddy currents.

The potential asymmetry in k-space is caused by the chosen temporal order within the

fractions according to the angle in polar coordinates of the profiles. Improvements can

be achieved if the profiles within one fraction are traversed in a manner similar to a

spiral. Another possibility is to choose the same number of profiles in a shot as in one

fraction that ensures a symmetric sampling pattern. This potentially comes at the cost

of lower temporal resolution of the motion sensing or of a higher distance between sam-

ples.

The evolution of the covered k-space area is determined by the parameter Ω through

(4.5). This evolution together with the reconstruction determines the spatial resolution

and the artifact level, which are competitive. To determine the reasonable range for

Ω, simulations were performed on a retrospectively undersampled phantom scan. As

expected from (4.5), the resolution improves for increasing Ω. At some stage, residual

undersampling artifacts and noise arise, which cannot be removed by the reconstruction

and become clearly visible for Ω = 12. Therefore, as a compromise, Ω = 8 was chosen

for the experiments. This choice is specific for the chosen coil and sequence, which

potentially needs to be adapted slightly for other configurations.

The chosen variable density is adapted only slightly to the expected signal distribution

in k-space. It is decaying to the k-space periphery, which is an improvement compared

with uniform sampling density. This choice for the sampling density, as implicitly given

in (4.7), is just one possibility and can potentially be changed to an arbitrary function.

Optimization could lead to further improved reconstruction results.

Once the maximum resolution is reached, the remaining scan time is used to improve

the SNR and for better conditioning the reconstruction, until the patient starts to breathe.

The acquisition adapts to the actually achieved breath-hold duration, which can be mon-

itored either by external sensors or navigators, or can be determined from a series of

images reconstructed from different amounts of data. Two different navigator meth-

ods were tested, the 1D pencil beam navigator and the k=0 navigator, while only one
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was used in each acquisition. With the 1D pencil-beam navigator, a robust termina-

tion method was implemented. Scan termination is favorable compared to retrospective

truncation because of patient comfort and scan efficiency. However, the 1D pencil-beam

navigator has the disadvantage of interrupting the steady state of the magnetization in

the imaging volume. Because of that, the intershot signal intensity varies resulting in

contrast variations. Furthermore, the navigator can lead to magnetization saturation in

the imaging volume. The use of motion detection based on repeatedly measuring the

k-space center could avoid these artifacts [114]. The application of the k=0 navigator to

imaging in the steady-state is obvious, but application to temporally changing signals is

more challenging. Methods to cope with signal drift, like a running average as reference

profile indicated significant compensation of the temporal behavior while still enabling

detection of breathing onset.

The single echo images are reconstructed independently of each other in this study, in-

stead of performing a joint CS reconstruction and water-fat separation [26, 27, 28]. As

discussed in [26], the advantage of applying a joint CS reconstruction and water-fat sep-

aration reconstruction grows with the number of echoes, because both of the increased

spectral dimension and the improved model accuracy. The reason for focusing on a

sequential CS reconstruction and water-fat separation in this work is that the improve-

ment expected from a joint CS reconstruction and water-fat separation is small for a

two-point water-fat separation and hardly justifies the additional complexity.

The joint reconstruction of the temporal phases of a DCE examination is presented

and discussed in more detail in Chapter 6. The presented approach is not restricted to

gradient-echo sequences and can potentially be applied also to other sequences and con-

trasts. For this purpose, the acquisition order within the fragments needs to be adapted

to match the imaging conditions for the particular sequence.

Two further applications for the proposed sampling patterns are presented in this chap-

ter, DCE imaging of the abdomen and dual-contrast imaging. The concept of flexible

scan termination based on the individual breath-hold duration of a patient can be ap-

plied to dynamic contrast enhanced imaging of the abdomen. Feasibility is shown here

for a temporal phase acquired directly after the clinical protocol that is comparable to

the equilibrium phase. Data were acquired with a fixed termination at a reduction fac-

tor of 2.5 with the k=0 navigator used for monitoring the breath-hold. The data were
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retrospectively truncated to the achieved breath-hold duration. While the k=0 naviga-

tor proved to be reliable for healthy volunteers for imaging without contrast agent, the

situation seemed different for inexperienced volunteers and patients with the adminis-

tration of contrast agent. Further studies have to be done further study on this kind of

navigator to apply it in a reliable way on patients. One major problem to address is the

choice of the reference profile. Due to the breath-holding instructions, the first part of

the scan is not necessarily the best choice for reference, because the breath is potentially

not held yet. One option is the presented average over a fixed number of profiles or the

running average over profiles as reference. The study shows that different breath-hold

durations do not have an influence on the mean signal value which enables an evaluation

of spatially restricted absolute and relative enhancement for diagnosis on the water/fat

images as well as difference images. The adaptive sampling patterns need to be applied

to the arterial phase to exploit the full advantages of the method, but the influence of

the rapidly changing contrast on the k=0 navigator and the data consistency can lead to

problems for this temporal phase.

Dual-contrast imaging could be of interest as a building stone for future liver perfusion

studies, delivering a coarse T1 map to estimate relaxivity in every dynamic for high

temporal correlation to improve perfusion analysis. However, the concept of combin-

ing multiple-contrast scans in a single breath-hold with ultra-fast sequence switching

and the adaptive profile order to cope with early breathing onset without compromising

image quality can find many other applications. With the proposed approach, multiple

contrast images of the abdomen could be acquired quasi-simultaneously within a single

breath-hold reducing the risk of misregistration. While the first scan is uncritical, the

second scan is adapted to the breath-hold capabilities of the patient and terminated auto-

matically in case of breathing onset preventing motion artifacts at the cost of a potential

lower resolution.
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Dual-scan multi-echo acquisition for
estimating the liver fat fraction

The liver fat fraction is an important biomarker for early diagnosis of non-alcoholic fatty

liver disease (NAFLD) that can result in liver cirrhosis and carcinoma in later stages of

corresponding diseases. Diseases of the liver are hard to recognize, before the major-

ity of the liver is affected, because the liver works normally before. Early diagnosis is

especially relevant for liver diseases, because apart from the skin, the liver is the only

organ that can regrow and thus recover from diseases if a sufficiently large amount of

the organ is still working.

Quantitative assessment of the liver fat fraction with MRI is becoming more impor-

tant. The reason for this is twofold. First of all, the occurrence of NAFLD increases

significantly due to the increasing obesity in developed countries. Furthermore, the

conventional method for diagnosis, the biopsy, has clear disadvantages. It is an invasive

technique that always includes some risk, and it is a point-wise probing approach that is

less accurate, because the small number of probes are not representative for the whole

liver.

MRI is a non-invasive alternative to estimate the quantitative fat fraction of the whole

liver [118]. The quantitative value does not only rely on a small set of samples, but

on the water/fat content of the whole organ. This sounds promising, but imaging of

the abdomen is challenging due to long scan duration in MRI and the restricted ability

of patients to hold their breath to prevent motion artifacts. The imaging times become

even longer for multi-echo sequences that are needed for a water-fat separation based

81
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on chemical shift encoding techniques [95, 97, 98]. The separation requires a minimum

of two echoes, obtained at different TEs, and is performed during reconstruction. The

required number of echoes depends on the number of unknowns in the signal model,

namely the number of fat peaks in the spectrum. With increasing number of included

peaks, the accuracy of the separation improves. This is especially relevant for the quan-

titative fat fraction, because abnormal values already begin at a rather low percentage

of the fat content.

Lately, different papers were published facing the topic of fat fraction estimation from

MRI measurements [118, 119, 120]. The fat fraction is also relevant in other parts of

the body, as described in [121]. The techniques require a correction of the magnetic

field inhomogeneities and T ∗2 relaxation to obtain an accurate separation and artifact

minimization. Multi-echo sequences can be performed using unipolar or bipolar read-

out gradients. Unipolar gradients use the same read-out direction for each echo with

fly-back in between. This increases the length of the acquisition compared to bipolar

read-out gradients, but does not require correction for the different shift directions of

the fat from every other echo due to gradient reversal.

The breath-hold duration of patients can be difficult to predict and is potentially shorter

than for healthy volunteers. Breathing onset before scan termination can result in res-

piratory motion artifacts. These artifacts can lead to an incomplete separation or to

inaccurate estimates of the fat fraction. The influence of a premature onset of breathing

for an accelerated fat fraction scan using SENSE with a reduction factor of two is shown

in Figure 5.1. The total scan duration was 17 s, and the volunteer once held the breath

for the whole scan time, and once started breathing after 14 s leading to respiratory mo-

tion artifacts. Artifacts are already visible in the scan with 17 s breath-hold duration,

although the volunteer perfectly held the breath. The source of these artifacts is not

completely clarified yet, but it is obvious that inconsistency can produce even severe

artifacts in undersampled CS acquisition due to inconsistency in the data.

5.1 Methods

The artifacts in the images in Figure 5.1 have multiple reasons. One is definitely the

slow convergence of the transverse magnetization to the steady state, although the flip

angle is rather low. Furthermore, the low resolution that is needed to achieve sufficient



Chapter 5. Liver fat fraction 83

Figure 5.1: Influence of motion on fat fraction maps. The images are reconstructed fat
fraction maps that were acquired with a multi-echo sequence with a SENSE factor of
two (a,b) and the adaptive sampling pattern described in Chapter 4 (c,d). During the
acquisition of the images on the left (a,c) the volunteer held the breath for the whole
acquisition (17 s). For the images on the right (b,d) the volunteer started breathing after
holding the breath for 14 s. Artifacts are already visible in the 17 s breath-hold standard
acquisition (a), but are much more pronounced for the incomplete breath-hold in (b)
leading to a higher estimate of the liver fat fraction with values higher than 0.1 in some
regions of the liver. The images acquired with the adaptive sampling patterns have
clearly degraded image quality. Due to inconsistency in the data, the CS reconstruction
fails.

SNR, induces Gibbs ringing. The large number of echoes sampled with bipolar read-out

gradients can potentially induce eddy current related effects.

To obtain some insight into the nature of the induced artifacts, multiple experiments

were performed that indicate a strong dependence on scanning parameters, e.g. TR,

TE, TFE-factor, resolution, flip angle, and acquisition order. Furthermore, the artifacts

are different for distinct echoes as is visible in Figure 5.2 showing different echoes from

a single scan with six echoes and full sampling with linear profile order on a volunteer,

who perfectly held the breath during the scan. Fully sampled experiments were per-

formed on phantoms to preclude motion as the origin of the artifacts. A dependence

on the echo number and the echo times is also visible, see Figure 5.3. The images

in Figure 5.3 are central slices out of a 3D gradient echo sequence with six Echoes,

and TE1/∆TE/TR of 0.95/0.8/6.1 ms. The artifacts appear more pronounced for later

echoes, e.g. the sixth echo in (c), then for the first (a) and third (b) echo. Problems

arising from a multi-echo sequence, especially with bipolar read-out, were already men-

tioned in [121] that finally used multi-acquisition to reduce the artifacts while accepting
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Figure 5.2: Echo images from a fully sampled data acquisition and a linear profile
order. Artifacts are already visible in these images although the breath was held. The
artifacts appear different for different echoes. In the lower part of the figure a detailed
view of one echo is shown to clarify the appearance of artifacts.

prolonged acquisition times.

The examples of experiments that were performed for this work indicate that the exper-

imental parameters need to be carefully chosen. Otherwise, the signal is quite unstable,

leading to artifacts in the image for an irregular sampling. The principal ability to re-

construct an image from retrospectively undersampled data does not imply that recon-

struction is also possible from prospectively undersampled data, because the sampling

process can have significant influence on the signal. For demonstrative purposes, an

example of the influence of a smooth estimated signal build up with time is shown in

Figure 5.4 for a simulated phantom data. The distribution of the signal variation in k-

space is shown in (a) for a linear profile order (blue) and a random profile order (black).

To mimic the effect, the Fourier transformed image data of a phantom were multiplied

with the weighting factors. An inverse Fourier transform results in the images shown

in (b) for the linear profile order and (c) for the random profile order. It is clearly vis-

ible that the random profile order produces more severe artifacts than the linear profile

order. The artifacts from the random sampling patterns seem comparable to incoher-

ent undersampling artifacts and thus hard to distinguish in case of undersampled data
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Figure 5.3: Echo images from a phantom scan. The phantom data was fully sampled
on a phantom to investigate the causes of artifacts, like motion and undersampling. The
data acquisition was performed with the adaptive sampling pattern in low-high order
without scan termination before the data was fully sampled. Screen shots of the first
echo is shown in (a), the third echo in (b), and the sixth echo in (c). The vertical red
line indicates a profile that is not shown here. The artifacts appear much more severe
for later echoes than for the first one.

for CS reconstruction. Furthermore, the artifacts that seem comparable to incoherent

undersampling artifacts cannot be removed with a CS reconstruction, because they are

induced by inconsistency in acquired data and not by unacquired data. The pixel-wise

difference image to the original phantom is shown in (d) for the linear order and (e)

for the random order. This is only one complication induced by an irregular sampling,

apart from potential additional eddy current effects that might occur compared with lin-

ear profile order.

The artifacts were more pronounced in later echoes, visible in Figure 5.3. No combi-

nation of experimental parameters was able to remove the artifacts completely for all

echoes, but some make them less apparent in the first echoes. This suggests acquiring

only earlier echoes making use of the adaptive sampling pattern described in Chapter 4.

This enables a flexible scan termination, respectively truncating the data retrospec-

tively and reconstructing from consistent data. However, for an exact estimation of

the fat fraction, a larger number of echoes is required to support a more precise signal

model. Thus, the data for the fat fraction maps were acquired in a two stage procedure

with a gradient echo sequence sampling three echoes each, see Figure 5.5. The echo

spacing ∆TE and the repetition time TR in both sub-scans coincide, but the two scans

differ by the echo times set by the first echo. Let the echo time of the first echo in the

first scan be TE1, the shortest possible echo time, then the echo time of the first echo

in the second scan is TE1 + ∆TE/2. The repetition time is chosen to be the shortest

possible for the second scan. This choice of acquisition parameters effectively halves
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Figure 5.4: Influence of the sampling pattern for signal with signal amplitude varying.
The signal amplitude in k-space was modulated along one direction with the weightings
shown in (a) that are distributed in a linear sampling pattern (blue) and in a random
sampling pattern (black). The artifacts induced by this weighting factors are shown in
(b) for the linear order and in (c) for the random order. In image (b) the artifacts are
hardly visible, while the artifacts in the image in (c) seem comparable to incoherent
undersampling artifacts. The corresponding difference to the reference image is shown
in (d) and (e).

the echo spacing, which would not have been possible with the standard acquisition and

other parameters unchanged, see upper part in Figure 5.6. This dual-scan procedure

slightly lowers the scan efficiency, because 2TR are required to obtain six echoes, and

2TR of the dual-scan is slightly larger than the TR of the single scan multi-echo scan

with six echoes. The scans were performed directly after each other (Figure 5.6 (a))

or interleaved after execution of one kernel (Figure 5.6 (b)) with a sequence switching

approach [117]. One kernel corresponds to one TR in FFE sequences and one TFE shot

in TFE sequences. Both possibilities were tested for this application, and results are

shown in the following section. This technique was already used in Section 4.5.4 for
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Figure 5.5: Timing of the single scan multi-echo acquisition compared with the dual
scan multi-echo acquisitions. The single scan multi-echo acquisition acquires 6 echoes
after the excitation pulse α. Dual scan: The first scan is acquired with three echoes
using the shortest possible TE1 and ∆TE. The TR corresponds to the TR from the
second scan that is slightly larger than the shortest possible from the first scan because
the echoes from the second scan are shifted by a fixed amount ∆TE/2. Apart from
that the two scans are equivalent with the same flip angle α of the excitation pulse and
other experimental parameters.

the acquisition of two contrasts in one breath-hold.

The data shown in the following section were acquired with adaptive sampling patterns,

but without the additional navigator to minimize additional influences on the steady

state of the signal. The data can be truncated retrospectively to include only consistent

data in the reconstruction.
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Figure 5.6: Explanation: interleaved scan and interleaved kernel. The two scans, indi-
cated by gray and white areas, were acquired with different temporal order. The first
order is called interleaved scan (a), which means acquiring the first scan completely
or with a predetermined undersampling factor and afterwards switching to the next
scan. The other possibility is interleaved kernel (b), which means that switching is
performed after one kernel of a scan. A kernel has different definitions for TFE and
FFE sequences. A kernel in TFE sequences is one TFE shot with a duration of the
TFE-factor multiplied with TR. In FFE sequences, a kernel is one excitation pulse with
the following multi-echo read-outs and has a duration of 1 TR.

5.2 Experiments

Experiments on four healthy volunteers, age 30-54, were performed on a 3 T scan-

ner (Philips Healthcare, Best, The Netherlands) with a 3D T1-weighted spoiled multi-

gradient-echo sequence, for water-fat separation using a six-point Dixon method (mDIXON

[97]), employing a 32-element torso coil. The used mDIXON algorithm enables a

flexible choice of the echo times and thus eases sequence design. The flip angle was

3◦, TE1/∆TE/TR was 1.07/1.3/5.8 ms, respectively 1.72/1.3/5.8 ms, acquired using

bipolar gradients with a pixel bandwidth of 1081 Hz, the FOV was about 375 × 240 ×
230 mm3, and the target actual spatial resolution was 2.8× 2.8× 3.6 mm3, respectively

2× 2× 3.6 mm3 covering the whole liver.

The calculation of the adaptive Poisson-disk sampling patterns was performed on the

scanner after scan planning to enable prospective undersampling of the data and flexi-

ble scan termination. For imaging on volunteers, the number of fractions was 30, and

Ω = 4 was chosen. The resolution of the fat fraction scans is much lower. Sparsity is

first of all expected for higher frequencies, thus the achievable reduction factor is lower.

The reconstruction is performed off-line so far. To accelerate the reconstruction, a coil

compression technique [22] was used before `1-SPIRiT [51]. The signals from the 28-

channel coil were reduced to ten virtual channels without significant information loss.

The compressed signal was then used as an input for the CS-PI reconstruction that was

also used for the reconstruction of the images in Chapter 4. The resulting images from

the individual coils were combined using a Roemer [13] reconstruction to obtain one
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Figure 5.7: Axial fat fraction map and coronal reformat. The images were acquired
within two scans with a scan pause of approximately 2 s in between, both acquired with
a reduction factor of four to be able to acquire them in one breath-hold. The sampling
corresponds to the sequence switching scheme shown in Figure 5.6 (a). The scans
both consist of three echoes with different echo times, but the same echo spacing and
repetition time. The fat fraction maps show non of the artifacts visible in the six echo
scans suggesting further investigation to reduce the scan pause between the scans.

Figure 5.8: Fat fraction maps from two scans each without spacing between the scans.
The images were reconstructed from two scans acquired interleaved and a reduction
factor of four with adaptive sampling patterns. The switching between the scans is per-
formed after completion of the first scan for the image shown in the left, corresponding
to the sequence switching scheme shown in Figure 5.6(a), and after each TFE shot
on the right, corresponding to the sequence switching scheme shown in Figure 5.6(b).
The gray-scale ranges from zero to one to see the underlying anatomy and the colored
overlay from zero to 0.1 for better distinction in the liver. For this volunteer the arti-
facts seem more severe for the switching after each kernel than for switching after the
completion of the first scan.

complex valued image for each of the six echoes. The echoes are ordered according

to their echo times respecting the reverse read-out gradients of the second echoes from

each scan. To these six echo images, an mDIXON [97] separation step was optionally

applied, resulting in one water and one fat image. Based on the waterW and fat images

F the 3D fat-fraction map Q is calculated according to

Q =
|F |

|F |+ |W |
. (5.1)

In Figure 5.7, the acquisition was performed comparably to interleaved scan, but with a

scan pause of 2 s in between to be able to see the benefit of this scan procedure before
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implementing the combination of the adaptive sampling pattern together with the fast

sequence switching approach on the scanner. The data were acquired on a volunteer

with good breath-holding capabilities that could hold the breath during the acquisition

of both scans. The reconstructed images have good image quality suggesting the need

for further work in this direction.

The combination of the fast sequence switching with the adaptive sampling patterns

was implemented for the Ingenia 3T scanner, and fat fraction maps were acquired using

the approach of distributing the six-echo scan to two three-echo scans and acquisition

with adaptive sampling patterns. To reduce disturbances, the acquisition was performed

without an additional navigator, and the truncation was performed afterwards. The scans

were automatically terminated, after a reduction factor of four was achieved.

Reconstructed images are shown in Figures 5.8 and 5.9 for two volunteers. The data for

the images in Figure 5.8 were acquired using a TFE sequence with a TFE factor of 150

and further experimental parameters described earlier in this section. The left image is

obtained with the interleaved scan approach and the right image with the interleaved

kernel. Both images indicate superior image quality and more reasonable fat fraction

values compared with the images in Figure 5.1(b-d).

The same acquisition with slightly reduced resolution and a TFE factor of 30 was per-

formed on a different volunteer, and the images are shown in 5.9(c,d). The image in (c)

is obtained using the interleaved scan and (d) using interleaved kernel. The images in

(a,b) are obtained from an FFE sequence using (a) interleaved scan and (b) interleaved

kernel. The image quality is comparable in the images with slightly less reasonable

values for the FFE interleaved kernel acquisition. It is visible that the water-fat sepa-

ration could not perfectly separate the water and fat content in the volunteers for both

methods, interleaved scan and interleaved kernel.

5.3 Discussion

The application of the adaptive sampling patterns to the fat fraction estimation described

in this chapter is a perfect example to show that reconstruction from retrospective and

prospective undersampled data has a different degree of difficulty. Inconsistency in the

data can be induced by eddy current effects caused by the irregular sampling. However,



Chapter 5. Liver fat fraction 91

Figure 5.9: Comparison of acquisition methods. The images in (a,b) were obtained
using a FFE sequence and (c,d) using a TFE sequence. The switching between the two
scans can be performed at different points in time. The images in (a,c) were obtained
from interleaving scans, which means that the first scan needs to be complete before the
second scan is immediately performed. During the acquisition of (b,d) the switching
was performed after completion of one kernel and thus multiple times during the scan.

apart from that, irregular sampling causes strong signal fluctuations in k-space, even if

the signal variation is temporally smooth. It was argued in this chapter that this causes

clearly severe artifacts for the irregular sampling compared with linear sampling. Ret-

rospective undersampling of linearly sampled data ignores this difficulty completely.

Therefore, one big issue for this application was to reduce signal inconsistency before

starting with an undersampling of these data during acquisition. The distance between

temporally close profiles is controlled in the same way as described in Chapter 4 by

traversing the profiles from fractions according to their angle in polar coordinates.

By variation of the experimental parameters, the artifacts were not removed completely,

and thus further investigations need to be undertaken. Nevertheless, the experiments on

phantoms indicated best image quality for the first echoes and suggested the dual-scan

multi-echo sequence. Each of the scans in this approach contained only half the echoes

compared with the standard approach. Instead, two scans are acquired in an interleaved

mode to perform the water-fat separation based on the same total number of echoes.

One disadvantage of this approach is the slightly reduced scan efficiency.
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Furthermore, the dual-scan multi-echo acquisition has some other interesting advan-

tages. Given a fixed gradient performance, very high spatial resolution may result in an

unacceptable long inter-echo time, which is not appropriate for proper chemical shift

encoding and subsequent water-fat separation. The proposed approach represents a hy-

brid chemical shift encoding approach that can help to increase the flexibility to tailor

the sequences to the clinical needs.

The dual-scan multi-echo acquisition enables different possibilities to order the scans

temporally, i.e interleaved scan and interleaved kernel. Performing the scans one after

another has the advantage that the scans hardly influence each other. On the other hand,

the adaptive scan termination can only be applied to the second scan with this choice.

The duration of the first scan has to be chosen prior to scan execution implying a limita-

tion. The joint reconstruction described in Chapter 6 can also be used to reconstruct the

data from both scans together. This is especially helpful, as the data from both scans are

acquired during the same breath-hold and are therefore spatially corresponding. This

could help to achieve the same image quality for both scans, but is not implemented

for this work. In the interleaved case, the scan termination can be applied to both scans

exploiting the whole potential of the breath-hold for both scans. Nevertheless, this is

only possible if the scans do not influence each other.

The CS reconstruction of the echoes is performed separately in this work. This is not

stringent, and reconstructing the echoes together can improve the image quality, espe-

cially if the undersampling patterns of the echoes are distinct. The water-fat separation

is performed based on the echoes from both scans of the dual-scan approach. The ar-

tifacts are clearly reduced compared to the initially performed experiments, but are not

completely gone. A reason for the incomplete separation of the water and fat content

could be a small inaccuracy in the echo times. The separation algorithm is based on

equal distance between echoes. Due to the distribution of the echoes to two scans, the

echo time of the first echo of the second scan is manually determined based on values

given in the user-interface of the scanner. The physically used values differ slightly and

can lead to a small deviation from the required value for the echo time of the first echo

from the second scan TE1 + ∆TE/2. This potential cause of inaccuracy needs to be

eliminated in future evaluations of this quantitative procedure. The correspondence of

the quantitative values generated with this procedure to state-of-the art methods is not

covered in this work, but needs to be addressed in the future.
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Joint reconstruction

6.1 Background

Imaging of the abdomen is often corrupted by respiratory motion-induced artifacts. One

possibility to cope with this problem has already been stated in Chapter 4. A breath-

hold adaptive approach is used to obtain as much consistent data as possible and re-

construct an image from the acquired amount of data. Abdominal imaging becomes

even more challenging for dynamic contrast-enhanced (DCE) imaging, because of the

strict time constraints due to the use of contrast agent. The patients have no time to

recover from the used breath-holding regimes, especially in early phases. Furthermore,

proper breath-holding becomes more difficult for some patients after contrast injection.

Among these additional problems, DCE imaging has a meaningful advantage. An ab-

dominal dynamic contrast-enhanced (DCE) examination typically consists of a series of

five or more images of essentially the same anatomy. They are acquired with the same

imaging parameters, FOV, and resolution during multiple breath-holds, and therefore,

have much in common. The resulting images represent the same anatomy, but differ

due to contrast-agent arrival and wash-out. Compressed sensing (CS) can potentially

improve the temporal and spatial resolution of such image series further [53]. Differ-

ent approaches for CS in dynamic imaging were previously proposed, for example low

rank and sparse matrix decomposition [122]. These approaches were primarily tailored

to dynamic cardiac imaging. In the following, a joint reconstruction of abdominal DCE

images is proposed.

93
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6.2 Reconstruction

In abdominal DCE imaging, a series of 3D image data are acquired, while the imaging

parameters remain unchanged. Nevertheless, the images show temporal evolution that

has mainly two reasons. The first cause of change is motion. The data are acquired

in multiple breath-holds, which are potentially not at the same breath-hold position

every time. As a first approximation, this motion is neglected. The second cause of

change, next to motion, is the injection of contrast agent. The contrast-agent injection

intentionally causes a wash-in of contrast agent shortly after injection and slower wash-

out, changing overall contrast based on the amount of contrast media present in the

different tissues. The contrast is monitored during all temporal phases, and the temporal

behavior is used for differential diagnosis.

Apart from the unaltered anatomy, it is known that the contrast agent leaves the fat

signal unchanged. This can be used in the reconstruction as prior knowledge. The

reconstruction is normally formulated as a constrained optimization problem. The prior

knowledge can be incorporated in the reconstruction as an additional constraint that

is formulated as a joint sparsity of the 3D image data from different temporal phases.

The modified minimization problem is incorporated in a reconstruction that is called

`1-ESPIRiT [52]. ESPIRiT is divided into two reconstruction steps that are described

in the following.

First, coil sensitivity maps are calculated from a fully sampled central k-space region.

The data from the central k-space are stored in the calibration matrix A in a special

form. Each row ofA contains the calibration data from a block running throughout the

fully sampled region as a sliding window. The calibration consistency can be written as

Wf = f (6.1)

with the operator W that mainly consists of the vectors spanning the row space of A.

These vectors are calculated by an SVD of A. The equation indicates that f is an

eigenvector of W with eigenvalue 1. The k-space data f can be written in terms of the

original image ρ weighted with coil sensitivities S

f = FSρ (6.2)
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with the Fourier transform operator F , and can be used to reformulate the eigenvalue

problem in (6.1) for each location in image space

F−1WFSρ = Sρ. (6.3)

The coil sensitivity maps correspond to the eigenvectors with eigenvalue one. Because

of imperfections in the acquisition, in some cases, one set of coil sensitivity maps is

not sufficient. This corresponds to multiple eigenvectors to eigenvalue one or slightly

smaller than one.

The second step is the reconstruction. The coil sensitivity maps can be used in the

reconstruction step to achieve images via a SENSE reconstruction. The incorporation

of multiple sets of coil sensitivity maps in the reconstruction is called ”soft” SENSE

[52] and requires a reformulation of the signal:

fi = PF
M∑
j=1

Sjiρ
j. (6.4)

The k-space data vector is denoted by f , while P is the undersampling operator. The

index j counts through the set of images and the corresponding coil sensitivity maps.

Several images ρj result at once from a least-squares solution of (6.4).

The minimization functions for CS applications solved with ESPIRiT contain at least

a data consistency term. The extension with a sparsity-enforcing term was proposed in

[52] and is called `1-ESPIRiT. This sparsity-enforcing term is modified in this work to

incorporate all temporal phases of the DCE acquisition instead of only one and results

in the minimization function

min
ρ

∑
i

∣∣∣∣∣
∣∣∣∣∣fi − PF∑

j

Sjiρ
j

∣∣∣∣∣
∣∣∣∣∣
2

2

+ α
∑
j

∣∣∣∣∣∣
∣∣∣∣∣∣
√∑

k

βk|Ψρjk|2

∣∣∣∣∣∣
∣∣∣∣∣∣
2

1

. (6.5)

The first term corresponds to (6.4), while the second term enforces sparsity and is

weighted with the regularization parameter α. The squared weighted sum of the sparsi-

fied (transform Ψ) temporal phases is taken. The weighting β can be used to give more

importance to the temporal phase with higher reliability. Most probable, this will be the

data that are acquired before contrast-agent injection, because of minor imposed time

constraints. The squared sum can potentially help to recover coefficients that would be
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lost in the incoherent aliasing with separate reconstruction. In that way, some redun-

dant information becomes accessible due to the entire measurement and can be used to

improve final reconstruction quality. The method is insensitive to slight disturbances,

because the influence of the temporal phases on each other is indirect and not strict. The

reconstruction is implemented in Matlab and was modified to reconstruct 3D data sets

with the joint sparsity-enforcing constraint.

6.3 Phantom simulation

Initial experiments are performed on simulated phantom data using Matlab. While

covering the same geometric objects, the phantom images are generated with differ-

ent gray-scale values in some regions to simulate contrast enhancement in the liver and

the arteries. The images are multiplied in image space with artificial coil sensitivi-

ties to simulate six receive channels. Afterwards, the images are Fourier transformed

and undersampled in k-space with varying undersampling factors. A variable-density

Poisson-disk sampling-pattern described in Chapter 3 is used. Additionally, the central

k-space is fully sampled to allow the calculation of sensitivity maps from these regions.

Both datasets are reconstructed with the joint approach and separately for comparison.

6.3.1 Simulations without disturbance

The procedure described before is performed on the images shown in Figure 6.1(a,b).

The image in (a) imitates an axial slice from an abdominal MRI scan with organs of

different size before contrast injection. Image (b) imitates the same scan after con-

trast injection, which is indicated by changing contrast in some regions. The contrast

agent only changes contrast in locations with water-containing voxels. The part of the

abdomen only containing fat is unaffected by the contrast injection. The images are

Fourier transformed and the post-contrast data is undersampled with a variable-density

Poisson-disk distribution of samples. The reduction factor differs for the individal im-

ages, Rpost = 8 in (c,d) and Rpost = 16 in (e,f). The data is reconstructed using `1-

ESPIRiT (c,e) and Joint `1-ESPIRiT (d,f). Reconstruction results are clearly improved

with the joint reconstruction for high reduction factors. The pre-contrast scan is fully

sampled in this case without any disturbance and therefore quite reliable. The weight-

ing β was therefore chosen rather extreme, β1 = 50
51

and β2 = 1
50

. The influence of the
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Figure 6.1: Joint reconstruction of simulated DCE phantom. In (a,b) fully sampled
phantom data are shown. The image in (a) mimics the abdomen before contrast in-
jection, while the image in (b) is used as post-contrast image. In (c,d) reconstructed
post-contrast images are shown for R = 8 and reconstructed using (c) `1-ESPIRiT,
and (d) Joint `1-ESPIRiT. In (e,f) post-contrast images are shown with R = 16, re-
constructed using (e) `1-ESPIRiT, and (f) Joint `1-ESPIRiT. Improved reconstruction
results are obtained for high reduction factors, while a separate reconstruction is suffi-
cient for low reduction factors.

quality of the pre-contrast scan on the joint reconstruction is evaluated by varying the

reduction factors Rpre and calculating the normalized RMSE e according to

e =

√
1
N

∑N
i=1 |ρi − ρref,i|2

maxi |ρref,i|
, (6.6)

with the fully sampled reference image ρref. The RMSE is calculated in image space

and is summarized in Table 6.1. The joint reconstruction consistently results in a lower

error for all combinations of Rpre and Rpost compared with separate reconstruction. As

expected, the errors become worse for increasing Rpre. The same tendency is visible for

increasing Rpost. The sparsity of the phantom data is quite high, which constitutes the

high achievable reduction factors. In the examples shown here, only the influence of the

joint reconstruction on the post-contrast images is studied. Nevertheless, the results are
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Table 6.1: Joint reconstruction: RMSE calculated according to (6.6) for Rpost = 4
and Rpost = 8. For comparison the post contrast images were reconstructed with the
separate reconstruction (`1-ESPIRiT) as well and the RMSE calculated. For the joint
reconstruction a dependence on the reduction factor Rpre = 1, 2, 4, 8 of the reference
pre-contrast image is visible. The RMSE is reduced for the joint approach compared
to the separate reconstruction.

Recon- RMSE of
struction Rpost Rpre ρ2(%)

`1-ESPIRiT 4 / 3.78

Joint- 1 3.11
`1-ESPIRiT 2 3.48

4 3.66
8 3.54

`1-ESPIRiT 8 / 6.37

Joint- 1 4.16
`1-ESPIRiT 2 4.47

4 4.77
8 5.72

equally applicable to the reverse case, the pre-contrast data can benefit from the post-

contrast data. The focus here is on the post-contrast data, because these data tend to be

prone to incomplete breath-holds more strongly than the pre-contrast data. It needs to

be stated clearly that the benefit of the joint approach is not fully exploited here. The

examples are based on a set of data with two temporal phases, while a DCE examination

contains at least four temporal phases. In real MRI data, the sparsity is lower, noise is

present, and motion can potentially occur. The influence of the latter two is simulated

in the phantom data in the following.

6.3.2 Additional noise

The results shown so far indicate better reconstruction results for the joint reconstruc-

tion. Under MRI experimental conditions, the signal is prone to different types of im-

perfections, like non-steady state of signal, noise, motion, eddy currents. The influence

of noise is studied here. Gaussian noise with mean µ = 0 and variance σ2 was added

to the pre- and post-contrast data. The noise was generated for every single experiment

independently, and therefore, differs for the varying reduction factors. The RMSE of

the reconstruction result, calculated according to (6.6), without noise is calculated and
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Table 6.2: Joint reconstruction: RMSE calculated according to (6.6) for the post con-
trast result given for varyingRpre andRpost. Normal distributed noise with mean µ = 0
and variance σ2 = 0.01 was added to the pre- and post-contrast phantom data. For
comparison the post contrast images were reconstructed with the separate reconstruc-
tion (`1-ESPIRiT) as well and the RMSE calculated. The dependence on the reduction
factor Rpre of reference pre-contrast image is visible with reduced RMSE for the joint
approach.

Recon- RMSE of
struction Rpost Rpre ρ2(%)

`1-ESPIRiT 2 / 3.57

Joint- 1 2.99
`1-ESPIRiT 2 3.54

4 3.56
6 3.55
8 3.35

`1-ESPIRiT 4 / 4.55

Joint- 1 3.69
`1-ESPIRiT 2 3.99

4 3.95
6 4.0
8 3.96

Recon- RMSE of
struction Rpost Rpre ρ2(%)

`1-ESPIRiT 6 / 4.57

Joint- 1 3.66
`1-ESPIRiT 2 4.27

4 4.25
6 4.2
8 4.23

`1-ESPIRiT 8 / 5.29

Joint- 1 4.3
`1-ESPIRiT 2 4.44

4 4.49
6 4.69
8 5.0

summarized in Table 6.2 for σ2 = 0.01. The absolute gray-scale values of the original

images are scaled to the interval [0, 1].

The weighting β needs to be chosen adequately based on the expected consistency and

artifacts in the images. Because the pre-contrast data is potentially of degraded image

quality due to the added noise in these cases, the weighting β is modified for these

experiments, β1 = 0.1 and β2 = 0.9. The benefit of the joint reconstruction is not

as apparent as without noise. However, for Rpre = 1, the joint reconstruction is still

consistently improved compared to the separate reconstruction. This changes slightly

for Rpre = 2, where improvements are only visible for Rpost ≥ 4. The separate recon-

struction is able to cope with R = 2 itself, a prior knowledge with comparable artifacts

helps only slightly. This behavior stays the same for Rpre > 2 and Rpost = 2. Some

improvements are still apparent for larger Rpost.

The experiments were repeated with a higher noise level, σ2 = 0.05. The results are

summarized in Table 6.3 indicating an even lower benefit for the joint reconstruction.

The dependence of the RMSE on the reduction factor Rpre is lowered. Potentially, the
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Table 6.3: Joint reconstruction: RMSE calculated according to (6.6) for the post con-
trast result given for varyingRpre andRpost. Normal distributed noise with mean µ = 0
and variance σ2 = 0.05 was added to the pre- and post-contrast phantom data. For
comparison, the post contrast images were reconstructed with the separate reconstruc-
tion (`1-ESPIRiT) as well and the RMSE calculated. The dependence on reduction
factor of reference pre-contrast image is becoming lower, because the additional noise
is inducing large errors already.

Recon- RMSE of
struction Rpost Rpre ρ2(%)

`1-ESPIRiT 2 / 4.77

Joint- 1 4.42
`1-ESPIRiT 2 4.86

4 4.62
6 5.31
8 4.43

`1-ESPIRiT 4 / 6.32

Joint- 1 5.18
`1-ESPIRiT 2 5.97

4 4.97
6 6.46
8 5.52

Recon- RMSE of
struction Rpost Rpre ρ2(%)

`1-ESPIRiT 6 / 6.67

Joint- 1 4.88
`1-ESPIRiT 2 5.22

4 5.24
6 5.56
8 5.73

`1-ESPIRiT 8 / 6.58

Joint- 1 5.48
`1-ESPIRiT 2 5.75

4 5.41
6 5.91
8 5.92

noise level is of the same order as the incoherent aliasing from undersampling or even

higher.

6.3.3 Influence of motion

Another cause of experimental imperfections is a potential misalignment due to mo-

tion. Because the images are acquired during a series of breath-holds, it is often dif-

ficult to achieve exactly the same breath-hold position in every individual breath-hold.

The influence of motion is simulated here by a translation of the pre-contrast image.

Some other rigid or affine transformation could be performed alternatively to evaluate

the influence of motion. A translation of two pixels in one direction was performed

on the pre-contrast data in image space. The RMSE of the reconstruction results of

the post-contrast data, calculated according to (6.6), were calculated and are summa-

rized in Table 6.4. The results are consistent with the ones from the simulations with

noise. For a reduction factor of Rpost = 2, the separate reconstruction is sufficient. Prior

knowledge that is prone to inconsistencies worsens the reconstruction. The benefit of
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Table 6.4: Joint reconstruction: RMSE calculated according to (6.6) for the post con-
trast result for varyingRpre andRpost. A shift of two pixels in one direction was applied
to simulate slight motion. For comparison the post contrast images were reconstructed
with the separate reconstruction (`1-ESPIRiT) as well and the RMSE calculated. De-
pendence on reduction factor Rpre of reference pre-contrast image is visible with re-
duced RMSE for the joint approach compared to separate reconstruction.

Recon- RMSE of
struction Rpost Rpre ρ2(%)

`1-ESPIRiT 2 / 3.61

Joint- 1 3.74
`1-ESPIRiT 2 3.78

4 3.61
6 3.51
8 3.46

`1-ESPIRiT 4 / 4.25

Joint- 1 3.82
`1-ESPIRiT 2 3.9

4 3.93
6 3.8
8 3.91

Recon- RMSE of
struction Rpost Rpre ρ2(%)

`1-ESPIRiT 6 / 4.53

Joint- 1 3.85
`1-ESPIRiT 2 3.88

4 4.0
6 4.06
8 4.11

`1-ESPIRiT 8 / 5.28

Joint- 1 4.69
`1-ESPIRiT 2 4.57

4 4.74
6 4.85
8 4.93

the joint reconstruction is based on the assumption that the same wavelet coefficients

are large for the differing temporal phases. Exactly this assumption is violated for mo-

tion between the temporal phases. For higher reduction factors, the situation becomes

different. There is some benefit for the joint reconstruction, although the rigid-body

motion-model was not taken into account in the signal model and the corresponding

reconstruction problem given in (6.5). It is further visible that slight motion has a larger

impact on the RMSE than slightly increased noise.

The experiments were repeated for a large translation of five pixels. The corresponding

RMSE (6.6) of the reconstruction results are given in Table 6.5 and indicate degraded

results for small Rpost and slight improvement for larger Rpost compared to separate

reconstruction (`1-ESPIRiT). A motion correction needs to be included in the mini-

mization problem to achieve better reconstruction results with the joint approach.

The influence of the choice of the weighting β needs to be evaluated further. In the case

of disturbances, an equal weighting of the temporal phases can potentially lead to better

results for small reduction factors, because inconsistencies have a lower impact on the

post-contrast images.
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Table 6.5: Joint reconstruction: RMSE calculated according to (6.6) for the post con-
trast result for varying Rpre and Rpost. A shift of five pixels in both directions was
applied to simulate stronger motion. For comparison the post contrast images were
reconstructed with the separate reconstruction (`1-ESPIRiT) as well and the RMSE
calculated. The dependence on reduction factor Rpre of reference pre-contrast image
is visible. For low reduction factors Rpost the RMSE error is increased for the joint re-
construction compared to separate reconstruction. The situation is reversed for higher
reduction factors Rpost.

Recon- RMSE of
struction Rpost Rpre ρ2(%)

`1-ESPIRiT 2 / 3.61

Joint- 1 3.93
`1-ESPIRiT 2 3.7

4 3.64
6 3.63
8 3.64

`1-ESPIRiT 4 / 4.25

Joint- 1 4.44
`1-ESPIRiT 2 4.22

4 4.01
6 4.02
8 4.04

Recon- RMSE of
struction Rpost Rpre ρ2(%)

`1-ESPIRiT 6 / 4.53

Joint- 1 4.42
`1-ESPIRiT 2 4.37

4 4.24
6 4.3
8 4.33

`1-ESPIRiT 8 / 5.28

Joint- 1 4.45
`1-ESPIRiT 2 4.69

4 4.9
6 5.05
8 5.03

6.4 In vivo experiments

Experiments on healthy volunteers were performed on a 3 T scanner (Philips Health-

care, Best, The Netherlands) with a 3D T1-weighted spoiled dual-gradient-echo se-

quence. The flip angle was 10◦, TE1/TE2/TR were 1.3/2.3/3.7 ms, data were ac-

quired using bipolar gradients with a pixel bandwidth of 1322 Hz, the FOV was about

375× 240× 230 mm3, and the target actual spatial resolution was 1.5× 1.5× 3 mm3,

covering the whole abdomen. Data were measured with the adaptive sampling-pattern

described in Chapter 4 that implies lower resolution for shorter breath-holds. This is

not optimal for the joint reconstruction described before, because improvements are ex-

pected for high incoherent aliasing, which is not achieved with the sampling-patterns

optimized for separate reconstruction. Nevertheless, some volunteer data with long

breath-hold durations, for which the target resolution was achieved, can be used. The

post-contrast data were further undersampled retrospectively to achieve more uniform

undersampling patterns. In this way, shorter breath-holds during data acquisition were
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Figure 6.2: Comparison of individual and joint reconstruction. The image in (a) is
reconstructed with individual ESPIRiT from the longest available breath-hold. The
data for the reconstructed images (b,c) were further undersampled to obtain a reduction
factor of 6,6 to simulate shorter breath-holds. The image in (b) was reconstructed using
`1-ESPIRiT, while (c) was reconstructed using Joint-ESPIRiT. The images in (b,c) are
comparable in image quality.

simulated, and the data were reconstructed with the joint reconstruction. For compar-

ison, same data were reconstructed with each temporal phase individually. As a refer-

ence, the separate reconstruction was also performed on the longest available breath-

hold.

The reconstruction was modified to handle 3D data. Slices were reconstructed in par-

allel to reduce reconstruction times. Images of the first echo from on selected volun-

teer are shown in Figure 6.2. The reconstruction result from the longest breath-hold is

shown in (a) for reference. An individual reconstruction of the temporal phases from

short breath-hold duration is given in (b) and joint reconstruction in (c). The data were

undersampled by an undersampling factor of 6.6. The images (b) and (c) are compa-

rable in image quality, with a RMSE, calculated according to (6.6), of 3.04% for the

individual reconstruction and 2.84% for the joint reconstruction and thus slightly im-

proved for the joint reconstruction. The reconstructed image from the longest available

breath-hold was used as ground-truth here, because fully sampled data are not available.

6.5 Discussion

Phantom simulations indicate superior reconstruction results for the joint reconstruction

of pre- and post-contrast images compared with separate `1-ESPIRiT reconstruction if

the images perfectly correspond to each other. This means that no motion occurred

between the two temporal phases, and there is no noise in the images. If the under-

sampling factors of the two temporal phases are different, the phase with fewer samples
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clearly benefits from the joint reconstruction.

The situation changes for the phantom simulations with noise or motion, because the re-

liability becomes lower and the improvement of the joint reconstruction compared with

the separate reconstruction less obvious. For a reduction factor of R = 2, the separate

reconstruction gives good results. Incorporating the second temporal phase gives hardly

any improvement, because the quality of the additional knowledge is degraded due to

noise or motion and not better than the first image. For higher reduction factors Rpost,

the separate reconstruction gives results with higher artifacts due to undersampling. The

lowered reliability of the second scan, compared to the first scan, thus induces lower ar-

tifacts than the higher undersampling factor, and the joint reconstruction gives slightly

improved results. This is not the case for large motion between the phases. The joint

reconstruction partially gives worse results than the separate reconstruction or hardly

any improvement. It is thus stated that a joint reconstruction can give clearly better

results for high reliability of the temporal phases. If motion occurs, a motion correction

is essential.

For in vivo data, the error relative to the 27 s post-contrast scan is only slightly reduced

for the joint reconstruction. The improvement is strongly dependent on the quality of

the pre-contrast image and the geometric alignment of the phases. Furthermore, the

phantom simulations indicate that the joint approach is especially helpful in extreme

cases, where separate sparsity fails. Larger improvement for in vivo data is expected

for higher undersampling. This work shows that joint approaches can potentially im-

prove image quality in DCE abdominal imaging in patients with insufficient breath-hold

capability. If the geometric alignment is insufficient, a motion correction needs to be

performed.
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Conclusion

MRI is a non-invasive imaging technique with clear advantages over other imaging

modalities, but also one major disadvantage: long imaging times. A lot of development

effort has been invested in the recent years to accelerate the acquisition. One of these

promising methods is compressed sensing (CS). Apart from a general CS sampling pat-

tern, this thesis does not only aim at maximum possible scan acceleration, but proposes

the application of CS for the achievement of more robustness in abdominal MRI.

The theoretical impact of this thesis is the design of optimized compressed sensing sam-

pling patterns in general and sampling patterns with a focus on abdominal applications.

The incoherent sampling pattern, which uses a fixed reduction factor, is not specifically

designed for abdominal imaging. It is a more general approach that enables a fast gen-

eration of Poisson disk sampling distributions with arbitrary variable density functions.

Incoherence is ensured, while clustering and large holes are prevented successfully.

The low computational cost makes generation directly on the scanner possible. With the

choice of the variable density function, it is possible to adopt the sampling pattern to the

requirements of several clinical application. Although the variable densities shown here

are constant or decaying with the distance to the k-space center, this is not mandatory.

The variable densities are arbitrary and can thus have e.g. multiple maxima in k-space

or increasing density towards the periphery. While the sampling-pattern generator pro-

vides sufficient freedom for the choice of the variable density, the optimal sampling

density for a combined compressed sensing and parallel imaging reconstruction is not

discussed here in case of 3D head or abdominal imaging and needs to be investigated

in the future. It is argued that the sampling density should decay with distance to k-

space center due to the increased sparsity of finer wavelet scales that are represented
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by coefficients in the periphery of k-space. This is relatively compelling for pure CS

reconstruction, but not necessarily optimal for parallel imaging, because the sampling

density in the periphery is reduced and potentially lower than the lower bound required

for artifact-free parallel imaging reconstruction. Once this variable density is found, the

sampling-pattern generator is able to generate corresponding sampling patterns for 1D

and 2D undersampling.

In this thesis, a method is proposed to attain an increased robustness in 3D abdominal

imaging by applying compressed sensing and a flexible sampling scheme to abdominal

MRI. The sampling pattern increases the resolution automatically during the scan and

ensures incoherence at any time during acquisition. This enables arbitrary scan termi-

nation at breathing-onset and compressed sensing reconstruction from consistent data.

Shorter breath-holds are compromised with lowered resolution, but motion artifacts are

prevented in the reconstructed images for any breath-hold duration respiratory. The

breath-hold adaptive sampling pattern preserves the benefits of breath-holding, while

suppressing motion artifacts induced by premature breathing onset. The method was

successfully applied to 3D gradient-echo imaging of the abdomen and extended to dual-

echo imaging for water-fat separation. Furthermore, the adaptive sampling pattern was

applied to dual-contrast imaging within one breath-hold using a sequence switching ap-

proach that enables switching between scans almost immediately. In this way, geometri-

cally consistent data, providing two contrasts, are obtained by exploiting the individual

breath-hold duration with the adaptive sampling pattern.

The sampling pattern was applied successfully to dynamic contrast enhanced imaging

that is typically prone to motion artifacts because of the time constraints of the imag-

ing series. The reconstruction results are promising for all examined applications, but

further research has to be done on one of the used navigators to obtain reliable breath-

holding information even for dynamic contrast-enhanced imaging of the abdomen. This

is challenging because of two reasons. The evaluation of the navigator in examinations

on volunteers is reliable, because the volunteers are experienced. In clinical practice,

however, the ability of patients to follow breath-holding instructions is limited, and the

evaluation of the navigator signal is thus quite challenging. Furthermore, the intended

contrast change during an individual scan induced by contrast-agent injection has to be

separated from changing signal due to respiratory motion. One concept is shown in this

work that was tested on one of the late phases of the imaging series. Nevertheless, eval-

uation is also crucial for the early phases. This needs to be done in the future, because



Chapter 7. Conclusion 107

these phases are the most critical temporal phases with highest contrast change. Along

this line, the sampling pattern has to be evaluated on the other temporal phases of a

dynamic contrast-enhanced imaging series.

The images from a dynamic contrast-enhanced examination have quite some informa-

tion in common. This knowledge was exploited in this thesis by a weighted joint re-

construction of the temporal phases. The experiments on phantom data consistently

indicate better reconstruction results than separate reconstruction in case of perfect spa-

tial correspondence and without noise. The image quality of the joint reconstruction

and separate reconstruction is comparable with slightly reduced errors for the joint ap-

proach. As a next step, an included motion correction could help in obtaining better

results, but apart from that, it is obvious that two phases cannot have a tremendous im-

pact. The inclusion of more temporal phases is potentially promising.

The method was extended in this thesis to multi-echo imaging for a water-fat separation

with high accuracy. This sequence was used for a new application to improve quantita-

tive MRI. The fat fraction of the entire liver was estimated using the adaptive sampling

pattern to obtain maps without motion artifacts to increase accuracy. Although improve-

ment is visible in the images, questions remain to be answered in the future. A signal

change during image acquisition leads to severe artifacts in the adaptive sampling ap-

proach compared with a linear sampling approach, because spatially closed profiles in

k-space are not acquired in a temporally closed fashion. The adaptive sampling pattern

is thus only partly applicable to signals not in the steady state. Apart from the approach

to the steady-state, the echoes varied significantly in image quality with a tendency to

a decreased image quality for later echoes. Thus, the required number of six echoes

were acquired separately in two scans of three echoes with a sequence switching ap-

proach that enables switching between the scans with hardly any delay. This effectively

reduces the echo spacing and the artifacts in the image to a comparable image quality

with respect to a linear sampling. The artifacts are not completely removed, and further

research needs to be done on this topic.

Starting from a general sampling pattern for compressed sensing in MRI, a sampling

pattern is proposed for abdominal imaging that increases patient comfort. The abdomi-

nal imaging procedures, presented in this thesis, offer a promising and realistic clinical

application of compressed sensing to MRI with the aim to improve image quality and

robustness in 3D abdominal imaging.
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