Therapie der chronischen Hepatitis C: Eine retrospektive vergleichende Analyse des Therapieansprechens unter Alltagsbedingungen in zwei Schwerpunktzentren im Vergleich zur publizierten Studienlage.
1. Berichterstatter: Priv. - Doz. Dr. med. Thomas Witthöft

2. Berichterstatter: Priv. – Doz. Dr. rer. nat. Karoline Gaede

Tag der mündlichen Prüfung: 04.06.2014

zum Druck genehmigt. Lübeck, den 04.06.2014

-Promotionskommission der Sektion Medizin-
Inhaltsverzeichnis

1. Einleitung .. 9
 1.1. Definition ... 9
 1.2. Historischer Überblick 9
 1.3. Epidemiologie ... 10
 1.4. Ätiologie und Pathogenese 11
 1.5. Klinik und Morphologie 12
 1.6. Diagnostik ... 13
 1.7. Therapie .. 15
 1.8. Fragestellung ... 17

2. Material und Methoden .. 18
 2.1. Patienten und Daten 18
 2.2. Gesamtkollektiv .. 19
 2.2.1. Geschlechtsverteilung 19
 2.2.2. Altersverteilung 20
 2.2.3. Gewichtsverteilung 20
 2.2.4. Verteilung des Body Mass Index (BMI) 21
 2.2.5. Infektionsdauer 21
 2.2.6. Verteilung anhand des Genotyps 21
 2.2.7. Verteilung nach Viruslast 22
 2.2.8. Verteilung nach Fibrosierungsgrad 23
 2.2.9. Verteilung nach Begleiterkrankungen 23
2.3. Testmethoden zur Bestimmung der quantitativen und qualitativen HCV-RNA

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1.</td>
<td>Roche COBAS AMPLICOR HCV MONITOR® Test, v2.0</td>
<td>24</td>
</tr>
<tr>
<td>2.3.2.</td>
<td>Roche AMPLICOR HCV Monitor®, v2.0</td>
<td>24</td>
</tr>
<tr>
<td>2.3.3.</td>
<td>Roche Cobas Taqman® HCV</td>
<td>25</td>
</tr>
<tr>
<td>2.3.4.</td>
<td>Roche COBAS AMPLICOR® HCV Test v2.0</td>
<td>25</td>
</tr>
</tbody>
</table>

2.4. Statistische Analyse | 26

2.5. Matched Pairs | 27

2.6. Labormethoden | 28

3. Ergebnisse | 29

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.</td>
<td>Komedikation</td>
</tr>
<tr>
<td>3.2.</td>
<td>Dosis</td>
</tr>
<tr>
<td>3.3.</td>
<td>Behandlungsdauer</td>
</tr>
<tr>
<td>3.4.</td>
<td>Labordaten</td>
</tr>
<tr>
<td>3.5.</td>
<td>Verträglichkeit</td>
</tr>
<tr>
<td>3.5.1.</td>
<td>Klinische Verträglichkeit gesamt</td>
</tr>
<tr>
<td>3.5.2.</td>
<td>Klinische Symptome</td>
</tr>
</tbody>
</table>

3.6. Ende der Behandlung | 38

3.7. Virologisches Ansprechen | 39

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.1.</td>
<td>Rapid Virological Response</td>
</tr>
<tr>
<td>3.7.2.</td>
<td>Early Virological Response</td>
</tr>
<tr>
<td>3.7.3.</td>
<td>End of treatment Response</td>
</tr>
<tr>
<td>3.7.4.</td>
<td>Sustained Virological Response</td>
</tr>
</tbody>
</table>
4. Diskussion ... 49

5. Zusammenfassung ... 61

6. Literaturverzeichnis ... 63

7. Anhang .. 75

8. Danksagung ... 79

9. Lebenslauf ... 80
Abbildungsverzeichnis:

Grafik 1: Diagnostik bei klinischem Verdacht auf eine HCV-Infektion..................15
Grafik 2: Komedikation zu Therapiebeginn..30
Grafik 3: Dosierungsschema..30
Grafik 4: Kumulierte Interferondosis (%; kategorisiert)..32
Grafik 5: Kumulierte Ribavirindosis (%; kategorisiert)...32
Grafik 6: Behandlungsdauer (Wochen)...34
Grafik 7: Verträglichkeit (klinische Symptomatik gesamt).......................................36
Grafik 8: Verträglichkeit im gesamten Therapiezeitraum.......................................37
Grafik 9: Abbruchgründe...39
Grafik 10: Early virological response...40
Grafik 11: End of treatment response...41
Grafik 12: Sustained virological response ...43
Grafik 13: Sustained virological response nach Genotypen.................................43
Grafik 14: Virological response im Überblick..44
Grafik 15: Sustained virological response nach GOT-Werten.............................45
Grafik 16: Sustained virological response nach GPT-Werten.............................45
Grafik 17: Sustained virological response nach γ-GT-Werten..............................46
Grafik 18: Sustained virological response nach Alter..46
Grafik 19: Sustained virological response nach BMI..47
Grafik 20: Sustained virological response nach Berufsstand...............................48
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>DNS</td>
<td>Desoxyrubonukleinsäure</td>
</tr>
<tr>
<td>E-CRF</td>
<td>Electronic-Case Report Form</td>
</tr>
<tr>
<td>etc.</td>
<td>et cetera</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosobent Assay</td>
</tr>
<tr>
<td>ETR</td>
<td>End of Treatment Response</td>
</tr>
<tr>
<td>EVR</td>
<td>Early Virological Response</td>
</tr>
<tr>
<td>GOT</td>
<td>Glutamat-Oxalacetat-Transaminase</td>
</tr>
<tr>
<td>GPT</td>
<td>Glutamat-Pyruvat-Transaminase</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C Virus</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention To Treat</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenös</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PRACTICE</td>
<td>Pegylated Interferons and Ribavirin: Analyssis of CHC Treatment in Centres of Excellences</td>
</tr>
<tr>
<td>PT</td>
<td>Population Per Protocol</td>
</tr>
<tr>
<td>RNS</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>SVR</td>
<td>Sustained Virological Response</td>
</tr>
<tr>
<td>TSH</td>
<td>Thyreoida Stimulierendes Hormon</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>γ-GT</td>
<td>Gamma-Glutamyl-Transferase</td>
</tr>
</tbody>
</table>
(+) positiv
z.B. zum Beispiel
1. Einleitung

1.1. Definition

1.2. Historischer Überblick

Der Virus der Hepatitis C wurde erst im Jahr 1989 entdeckt, nachdem Verlaufsformen der Leberentzündung auftraten, die nicht den seit den 70er Jahren bekannten Typen der Hepatitis A oder der Hepatitis B zugeordnet werden konnten.

Mit Hilfe gentechnischer Methoden gelang es schließlich das Erbmaterial des Hepatitis C Virus, zunächst als Non-A-Non-B- Virus bezeichnet, nachzuweisen.

Dieser ist ein 45 nm großes behülltes Einzel(+)-Strang-RNA-Virus der Gattung Hepacivirus der Familie Flaviviridae. Es lassen sich sechs verschiedene Genotypen und 30 Subtypen unterscheiden, von denen in Europa in erster Linie die Genotypen 1,2 und 3 vorkommen.

Bis zum heutigen Zeitpunkt steht im Gegensatz zur Hepatitis A und B weder ein passiver
noch ein aktiver Impfstoff zur Verfügung. Die Expostionsprophylaxe durch geeignete Verhaltensweisen ist daher von besonderer Bedeutung [8, 41, 35, 48, 50].

1.3 Epidemiologie

Weltweit sind etwa 170 Millionen Menschen mit dem Hepatitis C Virus infiziert, in Deutschland sind es zwischen 400.000 und 500.000 [94, 50]. Die Prävalenz weltweit liegt mit 2,6 % deutlich über dem deutschen Wert mit 0,5 %.

Die Inzidenz der Hepatitis C lag in Deutschland im Jahr 2009 bei 6,6 Erstdiagnosen pro 100.000 Einwohner; seit 2005 weist die bundesweit übermittelte Inzidenz einen sinkenden Trend auf, während es europaweit durch den hohen Anteil intravenöser Drogenkonsumenten sowie infolge einer Einwanderungswelle aus endemischen Ländern zu einem deutlichen Anstieg Hepatitis C infizierter Menschen gekommen ist [19, 71, 72, 95].

Ein Häufigkeitsgipfel zeigte sich in der Altersgruppe der 25- bis 29-jährigen mit einer mehr als doppelt so hohen Inzidenz an Neuerkrankungen bei Männern im Vergleich zu Frauen [8].

Bei über 70 % der Infizierten gelingt es dem Immunsystem nicht, das Virus zu eliminieren; die Infektionen verlaufen chronisch [8].

1.4. Ätiologie und Pathogenese
Die ätiologische Einteilung der chronischen Hepatitis C erfolgt anhand serologischer Merkmale. Von Bedeutung sind hier das Anti-HCV, das HCV-RNS sowie der Autoantikörper Anti-LKM1 (Liver Kidney Microsomal Antikörper Typ 1), die eine Abgrenzung zu anderen Arten chronischer Hepatitiden ermöglichen.

Bei der immunologischen Abwehr des Hepatitis C Virus und der Entwicklung von Leberzellschäden sind die zellvermittelte Immunantwort sowie die Freisetzung von antiviralen Zytokinen der T-Zellen von Bedeutung; doch auch der Befall von Lymphozyten mit dem HCV scheint die Immunantwort zu beeinflussen.

Die Leberzellschädigung entsteht durch virusaktivierte CD4-positive T-Helferzellen, die durch Zytokinausschüttung HCV-spezifische zytotoxische CD8-positive T-Zellen aktivieren.

Die Entwicklung einer chronischen Infektion beruht auf einer unzulänglichen adaptiven Immunantwort, durch die es nur zu einer geringen und funktionell ineffektiven CD4- und CD8-T-Zellantwort kommt. HCV-Proteine können so mit dem angeborenen Immunsystem durch Blockade der Typ-1-Interferon-Antwort und Inhibierung der Signalwege für Interferon und seine Effektormoleküle interferieren; natürliche Killerzellen als immunologische Reaktion auf die HCV-Infektion werden vermehrt exprimiert.

Entzündungsreaktionen, wie die Zunahme von aktivierten sinusoidalen Zellen, eine Vermehrung von Lymphozyten oder Fettvakuolen sowie vereinzelte Gallengangsläsionen auf [10, 43, 35, 48, 50, 95].

1.5. Klinik und Morphologie

Die Klassifikation des Schweregrades der chronischen Hepatitis C basiert auf klinischen, serologischen und histologischen Befunden. Die Einteilung erfolgt nach der Erkrankungursache, dem Grad der entzündlichen Aktivität (Grading) und nach dem Stadium des bindegewebigen Umbaus (Staging). Das Grading erfolgt nach dem Ausmaß perportalner Nekrosen und der Zerstörung der parenchymatösen Grenzlamelle perportalner Hepatozyten durch Entzündungszellen und ermöglicht die deskriptive Beschreibung einer
chronischen Hepatitis in minimal, geringgradig, mäßiggradig oder schwer. Das Staging dient als Hinweis auf das Stadium der Erkrankung und wird auf einer numerischen Skala von 1 bis 6 (HAI) oder 0 bis 4 (METAVIR) angegeben.

Generell schreitet die Fibrogenese bei der chronischen Hepatitis C nur langsam voran, endet dann jedoch bei einem Viertel der Infizierten in einer Leberzirrhose mit anschließender Dekompensation. So stellt die Hepatitis C Infektion auch die häufigste Ursache einer Lebertransplantation dar [8, 38, 42, 44, 46, 95].

1.6. Diagnostik

Die Diagnostik setzt sich aus mehreren einzelnen Schritten zusammen. Am Anfang der Diagnosefindung stehen zunächst meist klinische Symptome oder der Nachweis erhöhter Transaminasen im Blutbild.

Die Infektionen sind jedoch in ungefähr der Hälfte der Fälle symptomlos oder führen zu unspezifischen, grippeähnlichen Beschwerden. Ein Ikterus sowie die typische Entfärbung des Stuhls und Dunkelfärbung des Urins entwickeln sich nur bei unter 10 % der Infizierten.

Auch die körperliche Untersuchung ist häufig wenig ergiebig; zur allgemeinen Abgeschlagenheit und Müdigkeit können Gelenkschmerzen, Appetitlosigkeit und Schmerzen im rechten Oberbauch auftreten.

Im Labor zeigen sich die bereits erwähnten erhöhten Transaminasen GOT, GPT und γ-GT. Auch ein Anstieg des Bilirubins, Veränderungen in der Zahl der neutrophilen Granulozyten und Lymphozyten sowie ein Abfall der Prothrombinzeit können Hinweis auf eine Infektion mit dem Hepatitis C Virus sein.

Aussagekräftig ist jedoch nur der direkte Nachweis von spezifischen Antikörpern gegen das Hepatitis C Virus sowie der direkte Nachweis viraler RNS selbst. Zunächst werden mit Hilfe eines ELISA-Tests spezifische Antikörper, die etwa drei Monate nach Infektion im
Blut auftreten, nachgewiesen. Da die Antikörper jedoch noch Jahre nach der Infektion im Blut zirkulieren, lässt ihr Nachweis keine eindeutigen Rückschlüsse auf die Aktivität der Krankheit zu. Fällt der ELISA-Test daher positiv aus, also sind Antikörper gegen das Hepatitis C Virus vorhanden, müssen ein quantitativer und ein qualitativer Bestätigungstest mit Hilfe einer PCR durchgeführt werden.

Im letzten Schritt der Diagnosefindung wird meistens eine Leberbiopsie gemacht, die Aufschlüsse über den Grad der entzündlichen Aktivität (Grading) sowie des Stadiums eines bindegewebigen Umbaus (Staging) zulässt [8, 38, 39, 41, 48, 50, 77].
1.7. Therapie

Ziel einer antiviralen Therapie der Hepatitis C Infektion ist die Eradikation des Virus und damit die Verhinderung der Entwicklung einer Leberzirrhose oder eines hepatozellulären Karzinoms. Als primäres Therapieziel gilt der fehlende Nachweis der HCV-RNS im Blutserum sechs Monaten nach Therapieende („Sustained Virological Response“, SVR) [83, 84].

Innerhalb des letzten Jahrzehnts fand eine kontinuierliche Entwicklung der antiviralen Therapie der chronischen Virushepatitis statt. Die erste Substanz, die klinisch zum Einsatz kam, war das Interferon α. Aus der anfänglichen Interferon-Monotherapie und der
späteren Kombinationstherapie von Interferon mit Ribavirin konnten wichtige Erkenntnisse für die weitere Entwicklung der antiviralen Therapie der Hepatitis C gewonnen werden.

Inzwischen haben die pegylierten Interferone die Standardinterferone bei der Behandlung ersetzt. Sie werden siebenmal langsamer eliminiert als die Standardinterferone, d.h., sie besitzen also eine deutlich längere Halbwertszeit und erreichen länger wirksame Konzentrationen im Serum, so dass eine einmalige Gabe pro Woche möglich ist. Im Gegensatz zu den teils sehr hohen Spitzenspiegeln mit vermehrten Nebenwirkungen und den Talspiegeln ohne pharmazeutische Substanz im Blut, wie sie bei den kurz wirksamen Interferonen auftraten, führt die Gabe von Peginterferon zu stabilen und länger pharmakologisch wirksamen vorhandenen Wirkspiegeln.

Der gegenwärtige Standard ist eine Kombinationstherapie aus Peginterferon α2a oder Peginterferon α2b und Ribavirin, bei Patienten mit Genotyp 1 Infektion für 48 Wochen und bei Patienten mit den Genotypen 2 oder 3 für 24 Wochen [9, 33, 46, 80,]. Die zwei pegylierten Interferone unterscheiden sich in ihrer Pharmakokinetik und ihres Verträglichkeitsprofils. Die Quantifizierung der HCV-RNS im Serum in den Therapiewochen vier und 12 dient als Verlaufskontrolle des virologischen Ansprechens.

Neueste wissenschaftliche Erkenntnisse und klinische Erfahrungen in Bezug auf die Behandlung von Patienten mit dem Genotyp 1 zeigen deutlich höhere SVR Raten (bis zu 75 %) bei einer Triple-Therapie mit Ribavirin, pegyliertem Interferon α und einem Proteasehemmer (Boceprevir oder Telaprevir). Auch die Behandlungsdauer konnte hier in bestimmten Fällen von 48 auf 24 bzw. 28 Wochen verringert werden. Diese neue Therapiestrategie wird bereits vom bng, dem „Berufsverband niedergelassener Gastroenterologen“, empfohlen und wird wohl zukünftig Bestandteil der S3 Leitlinie zur Hepatitis C Behandlung werden [35].

Ein positives virologisches Ansprechen bis zu Woche vier ist als hoher prädiktiver Wert zu beurteilen, da Patienten, die in Woche vier virusfrei waren, eine 90 %-ige Chance auf vollständige Heilung haben [82]. Liegt die Viruslast in Woche 12 um zwei log-Stufen niedriger, liegen die Chancen auf ein anhaltendes virologisches Ansprechen (SVR) noch immer bei einem Drittel. Kommt es bis zur 12. Behandlungswoche zum Abfall der Viruslast
unter die Nachweigrenze, steigt die Chance einer erfolgreichen SVR sogar auf 68 %. Ein Ausbleiben der Virusreduktion um zwei log-Stufen stellt ein Abbruchkriterium der Medikation dar, weil das Ziel eines dauerhaften Ansprechens auf die Therapie nicht zu erreichen scheint.

1.8. Fragestellung

2. **Material und Methoden**

2.1. **Patienten und Daten**

In der vorliegenden Arbeit wurden sowohl klinische als auch laborchemische Daten von Patienten der Medizinischen Klinik I des Universitätsklinikums Schleswig-Holstein Campus Lübeck (Dres. K. Schmidt und T. Witthöft) sowie der Gastroenterologischen Praxis in Stade von Priv. -Doz. Dr. T. Witthöft erhoben. Bei diesen Patienten wurde zwischen dem 1. Januar 2000 und dem 31. Dezember 2007 eine Hepatitis C Behandlung mit Peginterferon α-2a (40 KD) (PEGASYS®; Roche, Welwyn Garden City, UK) plus Ribavirin (COPEGUS®; Roche, Grenzach-Wyhlen, Germany) oder mit Peginterferon α-2b (12 KD) (PEGINTRON; Schering-Plough, Bruxelles, Belgium) plus Ribavirin (Rebetol®; Schering-Plough, jetzt MSD) durchgeführt.

Die Ergebnisse des Peginterferon-Vergleichs wurden retrospektiv erhoben; die Compliance der Patienten im Hinblick auf Dosis und Behandlungsdauer konnte im Einzelnen nicht kontrolliert werden, sondern muss sich auf die klinische Praxis des Behandlungszentrums zu der Zeit beschränken, in der die Patienten behandelt wurden.

Die Entscheidung zur Auswahl der Patienten ins Datenkollektiv lag einzig im Bereich des behandelnden Arztes; weitere Einschlusskriterien, außer der Diagnose einer chronischen Hepatitis C, wurden nicht gefordert.

Die Datenerfassung erfolgte online über das e-CRF. Dies ist ein elektronischer Erhebungsbogen, in dem die dem Prüfplan der klinischen Studie entsprechenden und erforderlichen Unterlagen des jeweiligen Patienten dokumentiert und dann an den Auftraggeber der Studie in anonymisierter Form weitergeleitet werden.

Jeder Proband gab nach ausführlicher Aufklärung über den Studienverlauf und die mit der Teilnahme verbundenen Risiken eine schriftliche Einverständniserklärung ab. Die Studie wurde von der Ethikkommission der Ärztekammer Westfalen-Lippe und der Medizinischen
2.2. Gesamtkollektiv

2.2.1. Geschlechtsverteilung

Insgesamt sind 106 (52,36 %) der Studienteilnehmer männlich und 96 (47,64 %) weiblich. In den Untergruppen ergibt sich folgendes Verteilungsmuster: in der Pegasys Kohorte der ITT-Gruppen liegt der Anteil männlicher Probanden bei 49,12 %, der weibliche Anteil bei 50,88 %; in der Pegintron Kohorte der ITT-Gruppe liegt der männliche Anteil mit 53,79 % etwas höher als der weibliche Anteil mit 46,21 %.

2.2.2. Altersverteilung

Die Studienteilnehmer sind zu Beginn der Untersuchungen im Mittel 39,68 Jahre alt, die Standardabweichung beträgt 12,13. Der Median liegt für alle Kohorten im Mittel bei 39,0 Jahren. Das Altersprofil der vier Untergruppen ist vergleichbar.

2.2.3. Gewichtsverteilung

Die Gewichtsverteilung der Probanden ergibt in der Pegasys Kohorte der ITT-Gruppe einen Mittelwert von 72,39 kg; die Pegintron Kohorte kommt auf 73,57 kg. Die Pegasys Kohorte der PP-Gruppe weist einen Mittelwert von 72,18 kg auf, die Pegintron Kohorte kommt auf ebenfalls 73,57 kg.

Die Standardabweichung liegt in der Pegasys Kohorte mit 15,59 etwas höher als in der Pegintron Kohorte mit 12,74.

In der Gruppe der Matched Pairs liegt das mittlere Gewicht in der Pegasys Kohorte bei 70,38 kg, in der Pegintron Kohorte bei 74,31 kg. Die Standardabweichung beträgt hier nur 9,05 bei Pegasys und 11,75 bei Pegintron.
2.2.4. Verteilung nach Body-Mass-Index (BMI)

Der BMI berechnet sich nach folgender Formel: \(\text{BMI} = \frac{m}{l^2} \) (Körpermasse)/l² (Körpergröße). Laut WHO (Weltgesundheitsorganisation) liegt der normale BMI zwischen 18,5 kg/m² und 24,99 kg/m²; ab einem BMI von 30 kg/m² sind übergewichtige Menschen behandlungsbedürftig.

2.2.5. Infektionsdauer

2.2.6. Verteilung anhand des Genotyps

Bei der Aufteilung im Genotyp 2/3 ergab sich folgendes Bild: die Pegasys Kohorte beider Gruppen beinhaltet je 24 Patienten, die Pegintron Kohorte je 65 Patienten.

2.2.7. Verteilung nach Viruslast

Die Einteilung der Viruslast zu Beginn der Therapie erfolgte in Probanden mit einer geringen Viruslast (≤ 400.000 IU/ml) und Probanden mit hoher Viruslast. 49 Patienten des Gesamtkollektivs wiesen zu Beginn eine geringe Viruslast auf, 153 Patienten zum gleichen Zeitpunkt eine hohe Viruslast.

In der Pegintron Kohorte mit dem Genotyp 1/4/5/6 wiesen in beiden Gruppen je 16 Patienten eine niedrige Viruslast auf, bei je 64 Patienten konnten hohe Viruslasten nachgewiesen werden. Beim Genotyp 2/3 der Pegintron Kohorte wiesen je 17 Patienten eine niedrige Viruslast und je 48 Patienten eine hohe Viruslast auf.

2.2.8. Verteilung nach Fibrosierungsgrad

Ein Vergleich des Patientenkollektivs anhand des Fibrosierungsgrades ist nur bedingt möglich zu erheben, da eine histologische Untersuchung der Probanden in der Pegasys Kohorte nur bei 52,63 % (ITT-Gruppe) bzw. 51,79 % (PP-Gruppe) und in der Pegintron Kohorte sogar nur bei 0,69 % der Probanden erfolgt ist.

Keine oder minimale Fibrosierungen der Leber konnten bei 60 % der untersuchten Patienten der Pegasys Kohorte der ITT-Gruppe festgestellt werden; ein mäßiges Fibrosierungsstadium lag in dieser Gruppe bei 16,67 % der Patienten vor. Mäßige Fibrosierungen der Pegasys Kohorte in der PP-Gruppe traten bei 17,24 % der untersuchten Patienten auf.

Schwere Fibrosierungen wiesen hier nur 3,33 % (ITT-Gruppe) und 3,45 % (PP-Gruppe) der Patienten auf.

2.2.9. Verteilung nach Begleiterkrankungen

Insgesamt wiesen 35 Patienten des Gesamtkollektivs Begleiterkrankungen auf. In der Pegasys Kohorte der ITT-Gruppe lag die Zahl der Betroffenen bei 47,37 %, in der PP-Gruppe bei 46,43 %; die Pegintron Kohorte hingegen kam in beiden Gruppen nur auf 5,52 %.

2.3. Testmethoden zur Bestimmung der quantitativen und qualitativen HCV-RNA

Die Bestimmung der HCV-RNA Viruslast erfolgte mit teils verschiedenen Tests: verwendet wurden der Roche Cobas Taqman® HCV (quantitativ), der Roche COBAS AMPLICOR HCV MONITOR® Test, v2.0 (quantitativ), der Roche AMPLICOR HCV MONITOR®,
v2.0(qualitativ) sowie der Roche COBAS AMPLICOR® HCV Test v2.0 (qualitativ).
Die unter den Punkten 2.1. bis 2.4. genannten Beschreibungen der Testmethoden sind der Herstellerseite der Roche Pharma entnommen [47].

2.3.1. Roche COBAS AMPLICOR HCV MONITOR® Test, v2.0

Die von Roche entwickelte AmpErase® schützt vor Kontaminationen mit Amplifikaten aus vorhergehenden PCRs. Bevor die eigentliche PCR startet, werden derartige DNS-Amplifikate spezifisch abgebaut, da sie Desoxy-Uracil enthalten.

2.3.2. Roche AMPLICOR HCV Monitor®, v2.0

entwickelte AmpErase® schützt vor Kontaminationen mit Amplifikaten aus vorhergehenden PCRs. Bevor die eigentliche PCR startet, werden derartige DNS-Amplifikate spezifisch abgebaut, da sie Desoxy-Uracil enthalten.

2.3.3. Roche Cobas Taqman® HCV

2.3.4. Roche COBAS AMPLICOR® HCV Test v2,0

Der HCV-Test mit COBAS® AMPLICOR® ist ein standardisierter Test auf PCR-Basis, der einen schnellen, zuverlässigen und direkten Nachweis der Hepatitis C - Virämie gestattet. Er gewährleistet auch dann eine hochempfindliche, spezifische Detektion und Diagnostik, wenn herkömmliche Methoden ungeeignet sind, so zum Beispiel im frühen Krankheitsstadium, wenn der infizierte Patient noch anti-HCV negativ ist sowie nach passivem Antikörper-Transfer, zum Beispiel bei Neugeborenen.

Zur Durchführung des qualitativen Tests wird die virale HCV-RNS zunächst aus 200 µl

2.4. Statistische Analyse

Univariable und multivariable statistische Regressionsanalysen wurden erhoben, um die unabhängigen bzw. abhängigen Faktoren zu belegen.

Alle Variablen, die in der univariablen Analyse einen Wert von P < 0,1 erreichten, wurden in der multivariablen Analyse auf Signifikanz untersucht.

Der Mittelwert wurde berechnet als Quotient der Summe aller beobachteten Werte und der Anzahl aller zu untersuchender Werte. Die mathematische Grundlage der Berechnung ergibt sich aus:
Alle Rohdaten wurden mithilfe des Statistikprogramms SPSS® (Version SPSS® 12.0.2), der Testimate Version 6.4.27, der Matched Version 1.1 (SPSS® Inc., Chicago, IL, USA) sowie dem Statistikprogramm R ausgewertet. Die Tabellen und Grafiken wurden mit Open Office erstellt.

2.5. Matched Pairs

- **Altersunterschied < 10 Jahre**
- **Gleicher HCV-Genotyp (nur Hauttyp)**
- **Gleiche Viruslastkategorie: LVL oder HVL (Cut-off: <400.000 IU/ml)**
- **BMI-Abweichung < 2 kg/m²**
- **Gleiche Anamnese der Hepatitis C incl. der Unterkategorien Monotherapie, IFN-RBV-Kombinationstherapie, PEG-RBV-Kombinationstherapie, virologische Nonresponse und nicht adäquate Vortherapie**
- **Gleiche Kriterien bezüglich Substitution**
- **Gleiche Kriterien bezüglich HIV-Koinfektion**

Die verschiedenen Populationen wurden dann weiter unterteilt in Kohorten, die entweder mit Ribavirin und Peginterferon-α2a (Pegasys) oder Ribavirin und Peginterferon-α2b
(Pegintron) behandelt wurden.

Auf der Basis, Vergleichsmöglichkeiten der unterschiedlichen Kohorten und der Matched Pairs zu schaffen und Einflussfaktoren zu definieren, erfolgte zunächst eine Baseline-Untersuchung, bei der neben Geschlecht, Alter, Gewicht, BMI und Infektionsdauer auch Parameter wie Viruslast, Histologie und Begleiterkrankungen festgehalten wurden. Im Verlauf der Studie gingen dann auch verschiedene Laborparameter, die Ko-Medikationen, die Behandlungsdauer, die Dosen, die Entwicklung der Viruslast sowie die Verträglichkeit in die Auswertung mit ein.

2.6. Labormethoden

Die Untersuchungen der klinischen Chemie erfolgten lokal am Institut für klinische Chemie am Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562 Lübeck oder im Bioscientia Labor von Dr. von Froreich, Großmoorbogen 25, 21079 Hamburg.

Die Bestimmung der HCV-RNA fand im Institut für Mikrobiologie am Universitätsklinikum Schleswig-Holstein, Campus Lübeck sowie am Universitätsklinikum Hamburg-Eppendorf, Institut für Medizinische Mikrobiologie, Virologie u.Hygiene, Martinistraße 52, 20251 Hamburg statt.
3. Ergebnisse

3.1. Komedikation

Die Begleitmedikation der unterschiedlichen Gruppen zeigte signifikante Unterschiede. Untersucht wurde die zusätzliche Einnahme von Antiinfektiva, Antiepileptica, Psychopharmaka, Thyreostatika und anderen auf das Nervensystem wirkenden Substanzen.

Keine Begleitmedikation benötigten in der Pegasys ITT-Population 57,89 % der Patienten und in der Pegasys PP-Population 57,14%, wohingegen in beiden Pegintron Populationen keine weitere Medikation eingenommen wurde. Auch bei den Matched-Pairs lag der Anteil der Patienten ohne Begleitmedikation bei 61,90 % in der Pegasys Kohorte; bei der Pegintron Kohorte waren es 100 %.

<table>
<thead>
<tr>
<th>Genotyp 1/4/5/6 (48 Wochen)</th>
<th>Pegasys</th>
<th>180 μg Interferon/Woche + 1000-1200 mg/die Ribavirin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pegintron</td>
<td>1,5 μg/kg KG Interferon/Woche + 800-1400 mg/die Ribavirin</td>
<td></td>
</tr>
</tbody>
</table>

Grafik 2: Komedikation zu Therapiebeginn

3.2. Dosis

Keine Zusatzmedikation
Antivirale Medikation
Antipsychotika
Schilddrüsenmedikation
Antiepileptika
Andere Neuroleptika

N = 42
N = 26
N = 15
N = 1

den Matched Pairs 0,00 %)
Beim Vergleich der kumulierten Ribavirindosis zeigte sich in der ITT-Gruppe der Pegasys Kohorte beim Genotyp 1/4/5/6, dass die Patienten im Mittel mit 89,53 % (in der PP Gruppe 89,73 %) der Dosis auskamen, während in der Pegintron Kohorte der gleichen Gruppe 100,49 % (in der PP-Gruppe ebenso) der kumulierten Ribavirindosis benötigt wurden. Bei den Matched Pairs betrug der Wert in der Pegasys Kohorte 89,97 %, in der Pegintron Kohorte 99,55 %.

Betrachtet man die Daten beim Genotyp 2/3, so zeigt sich, dass in der Pegasys Kohorte der ITT-Gruppe 105,14 % (in der PP-Gruppe auch) der kumulierten Ribavirin Dosis benötigt wurden; in der Pegintron Kohorte lag der Wert der ITT-Gruppe bei 90,51 % (in der PP-Gruppe auch). Bei den Matched Pairs betrug der Wert in der Pegasys Kohorte 105,22 %, in der Pegintron Kohorte 88,74 %.

Beim Vergleich der kumulierten Interferondosis zeigte sich in der ITT-Gruppe der Pegasys Kohorte beim Genotyp 1/4/5/6, dass die Patienten im Mittel mit 98,14 % (in der PP Gruppe 98,15 %) der Dosis auskamen, während in der Pegintron Kohorte der ITT-Gruppe 87,61 % (in der PP-Gruppe ebenso) der kumulierten Interferondosis benötigt wurden. Bei den Matched Pairs betrug der Wert in der Pegasys Kohorte 98,26 %, in der Pegintron Kohorte 93,68 %.

Betrachtet man die Daten beim Genotyp 2/3, so zeigt sich, dass in der Pegasys Kohorte der ITT-Gruppe 103,65 % (in der PP-Gruppe auch) der kumulierten Interferondosis benötigt wurden; in der Pegintron Kohorte lag der Wert der ITT-Gruppe bei 96,24 % (in der PP-Gruppe auch). Bei den Matched Pairs betrug der Wert in der Pegasys Kohorte 104,44 %, in der Pegintron Kohorte 93,46 %.
3.3. Behandlungsdauer

Grafik 6: Mittlere Behandlungsdauer (Wochen)
3.4. **Labordaten**

Die Auswertung der Labordaten bezieht sich auf Veränderungen der Ausgangswerte bis hin zur 24. Woche der Nachbeobachtung.

Untersucht wurden das Hämoglobin, die Thrombozyten, die Leukozyten, die Neutrophilen, die Leberwerte GOT, GPT und γ-GT, Kreatinin, Glucose, das Gesamt-Bilirubin und der Schilddrüsenwert TSH basal.

Die Daten hierzu befinden sich im Anhang.

3.5. **Verträglichkeit**

Die Betrachtung der Untersuchungen zur Verträglichkeit der unterschiedlichen Interferone Pegasys (Interferon α2-a) und Pegintron (Interferon α2-b) bezieht sich zum einen auf eine Verlaufskontrolle aller klinischen Symptome im Gesamtzeitraum der Studie (Eingangsuntersuchung, bis zur 12 Woche, > 12 Woche, Gesamtzeitraum und 24. Woche der Nachbeobachtung), zum anderen auf eine differenzierte Untersuchung einzelner Symptome, die in einem nachgewiesenen Kausalzusammenhang mit der Medikamenteneinnahme stehen.

3.5.1. **Klinische Verträglichkeit gesamt**

Die Untersuchung der klinischen Verträglichkeit zeigt signifikante Unterschiede zwischen den einzelnen Genotypen sowie auch zwischen den beiden Kohorten Pegasys und Pegintron:
Bei der Pegasys Kohorte der ITT- und PP-Population mit den Genotypen 1/4/5/6 gaben bei der Eingangsuntersuchung 69,7 % (ITT), 71,88 % (PP) und 66,67 % (Matched Pairs) der Patienten an, unter klinischen Symptomen zu leiden. Im weiteren Verlauf nahmen diese Werte bis zur 12. Woche auf 48,8 % (ITT), 46,88 % (PP) bzw. 48,15 % (Matched Pairs) ab, nach der 12. Woche lagen sie dann bei 46,67 % (ITT), 48,28 % (PP) bzw. 50,00 % (Matched Pairs). In der Woche 24 der Nachbeobachtung klagten noch 15,63 % (Matched Pairs 14,81 %) über das Bestehen klinischer Symptome.

Vergleichend zeigten sich bei den Genotypen 2/3 vor allem zu Beginn hohe Zahlen betroffener Patienten, die jedoch im Verlauf deutlich sanken. So gaben hier in der Eingangsuntersuchung 87,5 % (Matched Pairs 86,67 %) der Patienten an, unter klinischen Symptomen zu leiden; bis zur 12. Woche waren es noch immer 70,83 % (Matched Pairs 80,00 %). Während des Zeitraums der 12. Woche bis zum Behandlungsende sank die Zahl der Betroffenen jedoch auf 8,33 % (Matched Pairs 13,33 %) und in Woche 24 der Nachbeobachtung klagten nur noch 4,17 % (Matched Pairs 0,00 %) der Patienten über Symptome.

Im Gegensatz hierzu ist die Peginteron Kohorte zu betrachten: Hier ergeben sich in der ITT- und der PP-Population der Genotypen 1/4/5/6 in der Eingangsuntersuchung Werte von 41,25 % (Matched Pairs 29,63 %), bis zur Woche 12 sank die Zahl auf 31,25 % (Matched Pairs 18,52 %), nach der 12. Woche waren nur noch 2,82 % (Matched Pairs 0,00 %) betroffen; in Woche 24 der Nachbeobachtung zeigte sich ein geringer Anstieg auf 3,75 % (Matched Pairs 0,00 %).

Bei den Genotypen 2/3 gaben bei der Eingangsuntersuchung 53,85 % (Matched Pairs 53,33 %) der Patienten klinische Symptome an, bis zur 12. Woche waren es nur noch 43,08 % (Matched Pairs 46,67 %); nach der 12. Woche bis zum Behandlungsende sank die Zahl Betroffener dann auf 4,62 % (Matched Pairs 0,00 %) und auf einen Wert von 1,54 % (Matched Pairs 0,00 %) in Woche 24 der Nachbeobachtung.
3.5.2. **Klinische Symptome**

Die Auswertung der klinischen Begleitsymptome ergab bei einigen Patienten ein erhöhtes Auftreten von Müdigkeit, Fieber, Haarausfall, Muskelschmerzen, Gewichtsabnahme, Kopfschmerzen oder Reizbarkeit.

In der Pegintron Kohorte zeigten sich insgesamt weniger Fälle klinischer Symptome: so gaben bei den Matched Pairs der Pegasys Kohorte mit dem Genotyp 1/4/5/6 nur vereinzelte Patienten an, unter Müdigkeit, Muskelschmerzen oder erhöhter Reizbarkeit zu leiden. Die Matched-Pairs mit dem Genotyp 2/3
beklagten häufig Müdigkeit. Eine Gewichtsabnahme trat in wenigen Fällen auf.

Grafik 8: Verträglichkeit im gesamten Therapiezeitraum

3.6. Ende der Behandlung

Ein vorzeitiger Abbruch der Behandlung erfolgte in der Pegasys Kohorte bei 8,77 % der ITT-Gruppe, 8,93 % der PP-Gruppe und 7,14 % der Matched Pairs; in der Pegintron-Kohorte lagen diese Werte in beiden Gruppen bei 9,66 % und bei den Matched Pairs bei nur 4,76 %.

Hauptgrund für einen Therapieabbruch stellte ein mangelndes virologisches Ansprechen dar, welches in der Pegasys Kohorte bei 80,00 % in beiden Gruppen (bei den Matched Pairs 66,67 %) und in der Pegintron Kohorte sogar bei 100 % in allen Gruppen der Fall war.

Grafik 9: Abbruchgründe

3.7. Virologisches Ansprechen
Die Ergebnisse des virologischen Ansprechens unterteilen sich in ein „Rapid Virological Response“ in Woche 4, ein „Early Virological Response“ in Woche 12, ein „End of Treatment Response“ und ein „Sustained Virological Response“.

3.7.1. Rapid Virological Response (RVR)

Die Definition einer positiven „Rapid Virological Response“ sieht ein qualitatives negatives HCV-PCR Ergebnis und/oder eine Viruslast < 50 IU/ml in Woche 4 der Behandlung vor.

Da die Anzahl des Patientenkollektivs bei dieser Untersuchung nur sehr gering war, scheint die Aussagekraft fraglich.

In der Pegasys Kohorte beider Gruppen zeigten sich zu diesem Zeitpunkt keineResponder; ein Non-Responder trat hier auf. Die Pegintron-Kohorte wies 6 Patienten als Responder und keinen Non-Responder nach.

3.7.2. Early Virological Response (EVR)

Die Definition der „Early Virological Response“ sieht ein qualitatives negatives HCV-PCR Ergebnis und/oder einen Abfall der Viruslast um > 2 log-Stufen und/oder eine Viruslast < 50 IU/ml vor.

Die Zahl der Responder lag hier in der Pegasys Kohorte der ITT-Gruppe bei 80,65 %, in der PP-Gruppe bei 80,00 % und bei den Matched Pairs bei 88,00 %. Die Pegintron Kohorte zeigte ähnliche Werte mit 77,66 % Respondern in beiden Gruppen (Matched Pairs 83,33 %). Die Zahlen der Matched Pairs lagen bei 88 % (Pegasys) und 83,33 % (Pegintron).
Die Definition der „End of Treatment Response“ sieht ein qualitatives negatives HCV-PCR Ergebnis und/oder eines unter der Nachweisgrenze und/oder < 50 IU/ml vor.

Bei dieser Follow-up Untersuchung nahm das gesamte Patientenkollektiv teil. In der Pegasys Kohorte ergab sich in der ITT-Gruppe eine Responderzahl von 84,21 %, in der PP-Gruppe waren es 83,93 %. Die Pegintron Kohorte zeigte Werte von 81,38 % in beiden Gruppen. Die Zahlen der Matched Pairs lagen noch höher bei 85,71 % (Pegasys) und 83,33 % (Pegintron).
3.7.4. Sustained Virological Response (SVR)

Die Definition der „Sustained Virological Response“ sieht ein qualitatives negatives HCV-PCR Ergebnis und/oder eines unter der Nachweisgrenze und/oder < 50 IU/ml vor [70].

Bei dieser Follow-up Untersuchung nahm das gesamte Patientenkollektiv teil; ein Patient aus der ITT-Gruppe der Pegasys Kohorte konnte nur noch einer Patient-lost-to-follow-up Gruppe zugeordnet werden.

Die Werte der Responder in der Pegasys Kohorte der ITT-Gruppe lagen bei 70,18 %, in der PP-Gruppe bei 71,43 %. In der Pegintron-Kohorte ergaben sich Zahlen von 75,86 % in beiden Gruppen. Die Responder bei den Matched Pairs lagen bei 71,43 % (Pegasys) und 76,19 % (Pegintron).

Grafik 12: Sustained virological response
Sustained virological response nach Genotypen

Grafik 13: Sustained virological response nach Genotypen

Virological response

Grafik 14: Virological response im Überblick

Weiterhin wurde die „Sustained Virological Response“ in Abhängigkeit von der

Erhöhte Responderzahlen in der „Sustained Virological Response“ zeigten sich überwiegend bei erhöhtem GPT und erhöhtem GOT.

Grafik 15: Sustained virological response nach GOT-Werten
Leicht gesteigerte γ-GT-Werte wirkten sich positiv aus. Die Bedeutung des Alters unterschied sich innerhalb der Gruppen deutlich, so dass hier keine generelle Tendenz festgestellt werden konnte.
Grafik 18: Sustained virological response nach Alter

Alkohol-/Drogenabusus, psychiatrische Krankheiten und die Art des
Übertragungswege liefern keine aussagekräftigen Ergebnisse, da die Anzahl des Untersuchungskollektivs hier zu gering war.

4. Diskussion

Die hier analysierten Daten beziehen sich auf die Kohortenstudie PRACTICE, die über einen Zeitraum von sieben Jahren durchgeführt wurde. Es wurden in der Untersuchung Patienten mit chronisch replikativer Hepatitis C mit pegyliertem Interferon und Ribavirin unter klinischen realen Bedingungen behandelt. Es ergaben sich verschiedene positive und negative Einflussfaktoren, deren Bedeutung im Folgenden näher betrachtet und mit den zuvor erhobenen Daten anderer Studien verglichen werden soll.

Die vorliegende Arbeit befasst sich mit der Frage, ob eine Hepatitis C Behandlung unter normalen, alltäglichen klinischen Bedingungen an zwei Schwerpunktzentren der Hepatitis C Behandlung ähnliche Therapieerfolge ermöglicht, wie unter den besonderen Bedingungen von klinischen Studien mit definierten Ein- und Ausschlusskriterien.
Zunächst ist festzustellen, dass gute SVR-Raten erreicht werden konnten, unabhängig der zusätzlichen Behandlung von Patienten, deren Alter, Gewicht, Begleiterkrankungen und Laborwerten den Ausschluss aus einer klinischen Studie bedeutet hätten. In anderen Studien konnte bereits eine Vielzahl der Faktoren der Baseline-Charakteristika, wie der HCV-Genotyp, die Viruslast, das Alter, der Fibrosegrad, die Leberwerte und die verabreichten Ribavirindosen als beeinflussende Parameter für ein Therapieansprechen ermittelt werden [3, 5, 21, 22, 25, 29, 54, 55, 57, 58, 60, 62, 78, 98].

Die Daten randomisierter klinischer Studien beeinflussen maßgeblich die Behandlungsleitlinien und informieren Arzt und medizinisches Personal über die Rahmenmöglichkeiten einer individualisierten Therapie. Trotzdem besteht bei Einschluss einer Studienpopulation die Notwendigkeit, Beschränkungen und Rahmenvoraussetzungen zu schaffen, die vergleichbare Handlungs- und

Die hier erreichten SVR-Raten belaufen sich auf gesamt 73 %, wovon 64,0 % Patienten mit dem Genotyp 1/4/5/6 und 84,4 % Patienten mit dem Genotyp 2/3 waren.

Diese Ergebnisse liegen deutlich über den Heilungsraten führender klinischer Studien, die SVR-Raten zwischen 42-46 % bei Genotyp 1 infizierten Patienten und 76-82 % bei Genotyp 2/3 infizierten Patienten erreichten. Auch vergleichende retrospektive Untersuchungen unter realen, klinischen Alltagsbedingungen erreichten hier nur Gesamt-SVR-Werte von 49-66 %, mit Raten zwischen 37-61 % bei Genotyp 1 infizierten Patienten und bis zu 70 % bei Genotyp 2/3 infizierten Patienten [14, 27, 59, 76, 86, 91, 92, 94].

Bei der Betrachtung der Abbruchraten fällt ebenso eine deutliche Diskrepanz zu den führenden klinischen Angaben mit Abbruchraten von 14-21 % sowie auch zu anderen klinischen Kohortenstudien, die Ribavirin in Kombination mit einem Peginterferon im klinischen Alltag testeten und Werte von 11-33 % publizierten, auf [14,25, 29, 58, 86, 91, 92, 94]. In dieser Teilpopulation der PRACTICE-Studie lag die Gesamt-Abbruchrate bei nur 9,2 % und beweist damit, dass die Effizienz und die Therapietoleranz von Ribavirin und Peginterferon im klinischen Alltag gleich oder sogar besser sein kann als unter streng strukturierten Studiengrenzen

Um einen gültigen Vergleich zwischen den zwei pegylierten Interferonen zu schaffen, ist es wichtig, Patienten nicht nur nach ähnlichen
Baselinecharakteristika, sondern auch nach den jeweiligen Ribavirindosen zu Matched Pairs zusammenzufassen. Die wichtigsten Einflussfaktoren auf die SVR sind der Genotyp und die Viruslast, aber auch andere Baselineparameter wie Alter, BMI und einige Laborwerte scheinen bedeutsam zu sein.

Die Ribavirindosis scheint sowohl wichtig für einen frühen Abfall der Viruslast und für die EVR, aber auch als Präventionsindikator für ein Therapieversagen und eine spätere SVR ist sie von Bedeutung. Es konnte bewiesen werden, dass die Höhe der Ribavirin-Startdosis ein prädiktiver Faktor für die SVR ist. Dies konnte auch in anderen aktuellen Studien wie der STAT C (specifically targeted antiviral therapy for hepatitis C) bestätigt werden [3, 21, 29, 31, 55, 57, 78, 99].

In wegweisenden klinischen Untersuchungen konnte das Vorhandensein einer Leberzirrhose mit einer verringerten SVR assoziiert, das Fehlen fibrotischer Leberveränderungen hingegen als ein positiver SVR Vorhersagewert interpretiert werden [2]. In diesem Patientenkollektiv wurde nur in 50 % der Fälle eine Leberbiopsie durchgeführt, wobei der Anteil derjenigen Patienten mit Leberzirrhose bei 3,39 % lag. Aufgrund dieser geringen Prozentzahl von Patienten mit schwerwiegenden fibrotischen Leberveränderungen konnte der Einfluss dieser auf die SVR nicht hinreichend ermittelt werden. In anderen klinischen Studien, die zum Teil bis zu 15 % Patienten mit Leberzirrhose eingeschlossen hatten, konnte der negative Einfluss einer vorhandenen Leberzirrhose anhand signifikanter Werte jedoch schon hinreichend belegt werden [2, 16, 29, 39, 58, 91, 92, 94].

Erhöhte γ-GT Werte konnten ebenso bereits in vielen univariablen und

Bei den Leberenzymen GPT und GOT zeigten sich bessere SVR-Raten bei erhöhten Ausgangswerten im Vergleich zu Patienten mit Normalwerten in der Eingangsuntersuchung (11,8 % SVR Vorteil bei GPT, 3,5 % SVR Vorteil bei GOT) [21, 22, 25, 29, 58, 63, 78, 98].

Auch die erhobenen Daten zum Einfluss des BMI auf die SVR ergaben, dass leicht adipöse Patienten mit einem BMI zwischen 25 und 30 höhere Erfolgschancen haben, als normal oder untergewichtige Patienten (4,8 % SVR Vorteil gegenüber Patienten mit einem BMI < 25, 7,5 % SVR Vorteil gegenüber Patienten mit einem BMI > 30) [5, 22, 25, 55, 57, 78, 98].

Die SVR in Abhängigkeit vom Berufsstand ergab, dass die SVR bei erwerbstätigen Patienten über der SVR von erwerbslosen Patienten lag.

Ob psychiatrischen Begleiterkrankungen, Drogen- bzw. Alkoholabusus oder die Art des Übertragungsweges einen Einfluss auf den Behandlungserfolg haben, konnte aufgrund der zu geringen Anzahl betroffener Patienten nicht abschließend geklärt werden. Die Tendenz lässt allerdings vermuten, dass Patienten ohne psychiatrische Begleiterkrankungen und ohne Suchtverhalten bessere Chancen auf das Erreichen der SVR haben, als Patienten mit psychiatrischen Krankheiten oder Drogen- und/oder Alkoholabusus. Ursache dessen mag zum einen sein, dass das durch das Hepatitis C Virus bereits angegriffene Immunsystem durch weitere Belastungen zusätzlich geschwächt wird, zum anderen ließe sich vermuten, dass die Therapiecompliance bei Patienten ohne psychiatrische Erkrankungen oder Suchtverhalten besser und zuverlässiger ist, als bei Patienten mit labilen Lebensumständen. Dieser Einflussfaktor auf die Compliance wurde bereits in diversen anderen Untersuchungen bestätigt und zeigte, dass vor allem ein gesundes und normales Maß an Ängstlichkeit die Compliance fördert, wohingegen ein Übermaß oder ein Verlust von Angst diese deutlich minderte [7, 30, 90].

Ein weiterer, bisher wenig untersuchter negativer Einflussfaktor scheint ein erhöhtes Serumferritin bei Behandlungsbeginn zu sein. Hier konnte festgestellt werden, dass Patienten mit einem Serumferritin < 200 μg/l einen um 69,8 %
höheren Behandlungserfolg hatten, als Patienten mit einem Serumferritin von > 200 μg/l. Die Bedeutung dieser Feststellung ist aufgrund des kleinen Untersuchungskollektivs von nur 27 Patienten noch nicht abschließend geklärt; zukünftig stellt sich allerdings die Frage, ob das Serumferritin nicht ebenfalls zu den bereits seit langer Zeit bekannten Einflussfaktoren (z.B. γ-GT, GOT; Genotyp) auf die SVR in der Therapie der Hepatitis C hinzuzuzählen wäre.

Die große Stärke der PRACTICE-Studie ist ihr langer Zeitraum mit einer Beobachtung von sieben Jahren. Die Studie besteht aus einer vollständig unselektionierten Patientenkohorte mit chronischer Hepatitis C Erkrankung, die unter normalen, klinischen Bedingungen behandelt wurde und damit in Kontrast zu den hoch selektiven und kontrollierten randomisierten klinischen Studien steht. Die Daten, die aus solchen unselektionierten Kohortenstudien entnommen werden können, spiegeln die Möglichkeiten der klinischen Routine wesentlich realer wider, als klinische Studien mit ihren optimierten Rahmenbedingungen.

Die Verantwortung der Übermittlung der jeweiligen Daten zur Datenzentrale der PRACTICE-Studie oblag einzig dem behandelnden Arzt. Dennoch bestätigten die beteiligten Zentren, dass behandelte Patienten mit Hepatitis C Erkrankung während des Studienzeitraumes ohne Vorauswahl in die Dokumentation
eingegangen sind. Wie bei allen Studien besteht jedoch die Möglichkeit fehlender Daten, da nur solche in die Auswertung einfließen, die auch vom Arzt dokumentiert wurden. Auch wenn die Kerndaten für die Auswertung der Hepatitis C Therapie zu einem hohen Prozentsatz vorlagen, so gab es für einige Parameter nur sehr begrenzte Werte. Dies spiegelt wiederum den großen Unterschied zu klinischen Studien wider, bei denen viele verschiedene Parameter systematisch erhoben und gesammelt werden; im Gegensatz dazu steht wieder die klinische Alltagssituation, wo nur die vom behandelnden Arzt für wichtig erachteten und routinemäßig relevanten Laborwerte bestimmt werden.

Trotz der beschränkten Datenlage konnte festgestellt werden, dass die Behandlung der Patienten in den zwei Zentren der PRACTICE-Studie (UKSH-Lübeck und Gastroenterologische Gemeinschaftspraxis Stade) als erfolgreich einzuschätzen ist und sogar höhere SVR-Raten im Vergleich zur publizierten Studienlage zu finden waren [14, 27, 76, 85]. Dies mag zunächst verwundern, da man unter den vermeintlich optimierten Bedingungen klinisch randomisierter Studien die besseren Ergebnisse erwartet hätte; es scheint jedoch vielmehr so zu sein, dass neben den bereits ausführlich genannten positiven und negativen Einflussfaktoren die individuelle Betreuung des Hepatitis C erkrankten Patienten der erfolgsversprechende Faktor ist. Unter den Voraussetzungen der klinischen Alltagssituation hat der behandelnde Arzt im besten Fall die Möglichkeit, die Therapie der persönlichen Situation des Patienten (z.B. lebt der Patient alleine, wie ist das soziale Umfeld, wie weit wohnt der Patient vom Ort der Therapie entfernt) anzupassen und so ein höheres Maß an Flexibilität und Wohlbefinden zu schaffen [91, 92, 93]. Die Gefahr einer Selektionsbias in der Datenübermittlung wurde reduziert, indem nur Patienten in die Auswertung eingegangen sind, deren Therapieverlauf vollständig dokumentiert worden ist.

Indikationen und Risiken zusätzlicher Untersuchungen, wie z.B. einer Leberbiopsie, werden konsequenter und in Abhängigkeit des Nutzens für den einzelnen Patienten geprüft und nicht nach den festgesetzten Schemata randomisierter klinischer Studien vollzogen. Auch die Möglichkeit, Empfehlungen oder Ratschläge hinsichtlich zusätzlicher Therapieoptionen, z.B. im Rahmen von

Klinisch randomisierte Studien stellen somit eher ein Hindernis dar, weil das Hauptkriterium dort in einer möglichst hohen Vergleichbarkeit der in die Studie integrierten Patienten liegt. Auch eine mögliche Assoziation des Patienten als Teilnehmer einer randomisierten klinischen Studie ein „Versuchskaninchen“ der medizinischen Wissenschaft oder auch der Pharmaindustrie zu sein, könnte ein negativer Einflussfaktor auf den Erfolg der Behandlung darstellen und somit auch
Grund des schlechteren Abschneidens gegenüber der klinischen Alltagssituation sein.

Patienten klinisch randomisierter Studien sind durch häufige Follow-up Untersuchungen, Telefonmonitorings etc. viel stärker dazu angehalten, sich mit der Erkrankung zu befassen und mögliche Symptome oder Veränderungen intensiver wahrzunehmen und zu beobachten. Unspezifische Symptome wie Müdigkeit, Kopfschmerzen und eine erhöhte Reizbarkeit, die bei einer Medikation mit Interferonen und Ribavirin auftreten können, werden häufiger perzipiert und als direkte Folge der Krankheit oder der Therapie verstanden.

Diese Form der erhöhten Sensibilität gegenüber der eigenen Erkrankung und der Wahrnehmung körpereigener Symptome beruht auf Mechanismen wie Konditionierung und Erwartungshaltung; aber auch physiologische Komponenten, die bereits beim Nocebo-Effekt eine entscheidende Rolle spielen, könnten hier von Bedeutung sein. Der Nocebo-Effekt bezeichnet eine Reaktion auf ein Medikament oder eine andere Maßnahme ohne spezifische Wirkung. Im Gegensatz zum Placebo-Effekt erfolgt hier jedoch eine Negativwirkung. Studien haben gezeigt, dass der in der Darmschleimhaut gebildete Transmitter Cholecystokinin Schmerzreaktionen im Gehirn auslösen kann, die in erhöhtem Maße mit Phobien und Ängsten einhergehen. Gehäufte Auftrittsrate von Nebenwirkungen kommen laut Studienlage vermehrt bei Patienten vor, die eine gewisse Erwartungshaltung
gegenüber der eintretenden Negativreaktion haben und führen zu einer vermehrten Ausschüttung des Botenstoffes [4, 15, 17, 23, 24, 64, 80, 85].

Zwar könnte die intensive Betreuung innerhalb randomisierter Studien auch zu einer verbesserten Compliance des Patienten gegenüber der Behandlung und der Medikation führen, doch scheinen hier im Gesamtkollektiv die negativen Einflussgrößen zu überwiegen.

Die im Jahr 2011 zugelassene Tripletherapie bei der Behandlung einer chronischen Hepatitis C Infektion mit dem Genotyp 1 wurde in dieser Arbeit nicht untersucht und soll daher nur aus Gründen der Vollständigkeit abschließend erwähnt werden.

Trotz dieser Negativaspekte überwiegen letztendlich jedoch die Vorteile eines erhöhten Therapieansprechens und die Möglichkeit einer Therapieverkürzung auf 24 - 28 Wochen bei Patienten einer Ersttherapie als auch bei Patienten einer Re-Therapie nach erneutem Anstieg der Viruskonzentration. Somit hat die Tripletherapie mit einem Proteaseinhibitor die duale Therapie als Standardtherapie bei Patienten mit einer chronischen Hepatitis C Infektion des Genotyps 1 abgelöst. Eine Ausweitung der Zulassung von Boceprevir oder Telaprevir zur Behandlung anderer Genotypen ist nicht zu erwarten, da sich hier bereits in Phase-1-Studien keine signifikante Effektivität zeigte [34].

Eine weitere Behandlungsoption einer HCV-Infektion mit dem Genotyp 1 stellt die Kombinationstherapie mit Feldaprevir plus Deleobuvir plus Ribavirin dar, die bereits in einer klinischen Phase 2b-Studie (SOUND-C2-Studie) gute SVR-Raten von bis zu 69 % und ein niedriges Nebenwirkungsprofil erreichen konnte [96].

In 2014 wird eine weitere multizentrische, internationale Phase-II-Studie zur Beurteilung der Verträglichkeit und des langfristigen Therapieansprechens unter Daclatasavir (NS5A-Inhibitor) und Ribavirin bei Therapie-naiven Patienten mit HCV Genotyp-1 beginnen.

Auch hier zeichnet sich somit eine Entwicklung hin zur Interferon-freien Therapie der chronischen Hepatitis C mit dem Genotyp 1 ab.
5. Zusammenfassung

Ein weiterer Schwerpunkt lag auf einer Analyse der Einflussfaktoren auf die Sustained Virological Response, also eines qualitativ negativen HCV-PCR Ergebnisses oder eines Nachweises der Viruslast < 50 IU/ml.

Um ein möglichst hohes Maß an Vergleichbarkeit zu schaffen, wurden die Patienten anhand von Baseline-Charakteristika zu Matched-Pairs zusammengefasst und im Verlauf auf Abbruchraten, Verträglichkeit der Medikation, Laborparameter und vor allem auf das Ansprechen der Therapie hin untersucht. Der Erfolg der Therapie wurde zu verschiedenen Zeitpunkten anhand der Rapid Virological Response, Early Virological Response, End of treatment Response und vor allem der Sustained Virological Response ermittelt.

Viele der bereits aus anderen Studien bekannten Einflussfaktoren auf ein möglichst positives Therapieansprechen, wie der Genotyp, die Viruslast zu Beginn, der Fibrosegrad, das Alter, der BMI, die Ribavirindosis und die Leberwerte konnten hinsichtlich ihrer großen Bedeutung bestätigt werden. Andere Faktoren wie das Serumferritin, der Infektionsweg, psychiatrische Zusatzerkrankungen, Suchtverhalten oder psychologische Einflüsse wie Erwerbstätigkeit und Berufsstand schienen im untersuchten Patientenkollektiv ebenfalls Geltung zu haben. Ob diese zusätzlichen Erkenntnisse für die Behandlung der Hepatitis C in Zukunft von Belang sein werden, müssen weitere Daten zeigen.
Im Hinblick auf Effizienz und Toleranz der Hepatitis C Therapie unter alltäglichen klinischen Bedingungen konnte belegt werden, dass die Erfolgsraten deutlich über denjenigen führender klinisch randomisierter Studien lagen. Verglichen werden konnten die hier erreichten SVR-Raten von 64 % beim Genotyp 1/4/5/6 gegenüber Erfolgsraten von 42-46 % anderer randomisierter Studien sowie 84,4 % beim Genotyp 2/3 gegenüber 76-82 % bei anderen Veröffentlichungen.

Zusammenfassend ist zu sagen, dass die Behandlung des an Hepatitis C erkrankten Patienten innerhalb randomisierter klinischer Studien keinesfalls als erfolgreicher zu betrachten ist als unter einer guten Routinebehandlung der klinischen Alltagssituation. Die Ergebnisse haben gezeigt, dass die Möglichkeit einer individuellen, auf den einzelnen betroffenen Patienten angepassten Therapie im Allgemeinen den größeren Behandlungserfolg verspricht als die starren Rahmenbedingungen und Therapiemuster klinisch randomisierter Studien.
Literaturverzeichnis

84. Swain M, Lai M, Shiffman ML et al. Sustained virologic response resulting from treatment with peginterferon alfa-2a alone or in combination with ribavirin is durable and constitutes a cure: an ongoing 5-year follow-up. *Gastroenterology* 2007; 132: 741A.

90. Witthöft T, Huppe D, John C et al. Efficacy and tolerability of peginterferon alfa-2a or alfa-2b plus ribavirin in the daily routine treatment of patients with chronic hepatitis C in Germany: the PRACTICE study. *J Viral Hepat* 2010; 459-68.

Ein positives Votum der Ethikkommission der Ärztekammer Westfalen-Lippe und der Medizinischen Fakultät der Westfälischen Wilhelms-Universität Münster wurde am 27.11.2007 genehmigt und liegt unter dem Aktenzeichen 2007-483-f-S. vor.

Die nachfolgenden Daten beziehen sich auf die Laborergebnisse in Woche 24 der Nachbeobachtung gegenüber dem Ausgangswert.

<table>
<thead>
<tr>
<th>Patientengruppe</th>
<th>Hämoglobin (g/dl)</th>
<th>Hämoglobin (g/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittelwert</td>
<td>SD</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 ITT Pegasys</td>
<td>-0,52</td>
<td>1,47</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 PP Pegasys</td>
<td>-0,52</td>
<td>1,47</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 MP-PP Pegasys</td>
<td>-0,34</td>
<td>1,24</td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Pegasys</td>
<td>-0,34</td>
<td>1,24</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegasys</td>
<td>-0,51</td>
<td>1,06</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 ITT Peginteron</td>
<td>-0,2</td>
<td>1,42</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 PP Peginteron</td>
<td>-0,4</td>
<td>1,42</td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Peginteron</td>
<td>0,13</td>
<td>1,8</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Peginteron</td>
<td>0,13</td>
<td>1,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patientengruppe</th>
<th>Thrombozyten (/μl)</th>
<th>Thrombozyten (/μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittelwert</td>
<td>SD</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 ITT Pegasys</td>
<td>-18200</td>
<td>90531</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 PP Pegasys</td>
<td>-18200</td>
<td>90531</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 MP-PP Pegasys</td>
<td>-6333</td>
<td>41701</td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Pegasys</td>
<td>-6333</td>
<td>41701</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegasys</td>
<td>-56920</td>
<td>237061</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 ITT Peginteron</td>
<td>-56920</td>
<td>237061</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 PP Peginteron</td>
<td>-12063</td>
<td>82933</td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Peginteron</td>
<td>-6333</td>
<td>71507</td>
</tr>
</tbody>
</table>
Patientengruppe

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Neutrophile (%)</th>
<th>Mittelwert</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp 1/4/5/6</td>
<td>0,92</td>
<td>0,92</td>
<td>12,57</td>
</tr>
<tr>
<td>ITT Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6</td>
<td>0,92</td>
<td>0,92</td>
<td>12,57</td>
</tr>
<tr>
<td>PP Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6</td>
<td>0,56</td>
<td>0,56</td>
<td>13,1</td>
</tr>
<tr>
<td>MP-PP Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>0,3</td>
<td>0,3</td>
<td>10,58</td>
</tr>
<tr>
<td>ITT Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>0,3</td>
<td>0,3</td>
<td>10,58</td>
</tr>
<tr>
<td>PP Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>0,72</td>
<td>0,72</td>
<td>10,76</td>
</tr>
<tr>
<td>PP Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>-0,2</td>
<td>-0,2</td>
<td>14,73</td>
</tr>
<tr>
<td>ITT Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6</td>
<td>-0,2</td>
<td>-0,2</td>
<td>14,73</td>
</tr>
<tr>
<td>PP Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6</td>
<td>-4,04</td>
<td>-4,04</td>
<td>13,96</td>
</tr>
<tr>
<td>MP-PP Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>0,03</td>
<td>0,03</td>
<td>16,59</td>
</tr>
<tr>
<td>ITT Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>0,03</td>
<td>0,03</td>
<td>16,59</td>
</tr>
<tr>
<td>PP Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>0,21</td>
<td>0,21</td>
<td>19,31</td>
</tr>
<tr>
<td>PP Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patientengruppe

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>GPT (U/l)</th>
<th>Mittelwert</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp 1/4/5/6</td>
<td>-37,73</td>
<td>-37,73</td>
<td>48,65</td>
</tr>
<tr>
<td>ITT Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6</td>
<td>-37,73</td>
<td>-37,73</td>
<td>48,65</td>
</tr>
<tr>
<td>PP Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6</td>
<td>-38,27</td>
<td>-38,27</td>
<td>51,22</td>
</tr>
<tr>
<td>MP-PP Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>-61,43</td>
<td>-61,43</td>
<td>92,61</td>
</tr>
<tr>
<td>ITT Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>-61,43</td>
<td>-61,43</td>
<td>92,61</td>
</tr>
<tr>
<td>PP Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>-54,57</td>
<td>-54,57</td>
<td>102,87</td>
</tr>
<tr>
<td>PP Pegasys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6</td>
<td>-17,01</td>
<td>-17,01</td>
<td>11,98</td>
</tr>
<tr>
<td>ITT Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6</td>
<td>-17,01</td>
<td>-17,01</td>
<td>11,98</td>
</tr>
<tr>
<td>PP Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6</td>
<td>-16,37</td>
<td>-16,37</td>
<td>10,45</td>
</tr>
<tr>
<td>MP-PP Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>-16,85</td>
<td>-16,85</td>
<td>8,32</td>
</tr>
<tr>
<td>ITT Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>-16,85</td>
<td>-16,85</td>
<td>8,32</td>
</tr>
<tr>
<td>PP Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3</td>
<td>-17,57</td>
<td>-17,57</td>
<td>6,85</td>
</tr>
<tr>
<td>PP Pegintron</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Patientengruppe

<table>
<thead>
<tr>
<th>Genotyp 1/4/5/6 ITT Pegasys</th>
<th>0,06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp 1/4/5/6 PP Pegasys</td>
<td>0,05</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 MP-PP Pegasys</td>
<td>0,08</td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Pegasys</td>
<td>-0,13</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegasys</td>
<td>-0,13</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegasys</td>
<td>-0,12</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 ITT Pegtron</td>
<td>-0,15</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 PP Pegtron</td>
<td>-0,15</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 MP-PP Pegtron</td>
<td>-0,13</td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Pegtron</td>
<td>-0,1</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegtron</td>
<td>-0,1</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegtron</td>
<td>-0,1</td>
</tr>
</tbody>
</table>

Kreatinin (mg/dl)

<table>
<thead>
<tr>
<th>Genotyp 1/4/5/6 ITT Pegasys</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp 1/4/5/6 PP Pegasys</td>
<td>-0,01</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 MP-PP Pegasys</td>
<td>-0,02</td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Pegasys</td>
<td>0,01</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegasys</td>
<td>0,01</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegasys</td>
<td>-0,02</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 ITT Pegtron</td>
<td>-0,04</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 PP Pegtron</td>
<td>-0,04</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 MP-PP Pegtron</td>
<td>-0,07</td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Pegtron</td>
<td>-0,07</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegtron</td>
<td>-0,07</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegtron</td>
<td>-0,04</td>
</tr>
<tr>
<td>Patientengruppe</td>
<td>Γ-GT (U/l)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 ITT Pegasys</td>
<td>-32,16</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 PP Pegasys</td>
<td>-32,16</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 MP-PP Pegasys</td>
<td>-31,44</td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Pegasys</td>
<td>-18,95</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegasys</td>
<td>-18,95</td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 MP-PP Pegasys</td>
<td>-10,02</td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Pegintron</td>
<td>-7,55</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegintron</td>
<td>-7,55</td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegintron</td>
<td>-7,17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patientengruppe</th>
<th>Leukozyten (/μl)</th>
<th>Mittelwert</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp 1/4/5/6 ITT Pegasys</td>
<td>-537</td>
<td>2571</td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 PP Pegasys</td>
<td>-537</td>
<td>2571</td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 MP-PP Pegasys</td>
<td>-728</td>
<td>2596</td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Pegasys</td>
<td>-1003</td>
<td>1040</td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegasys</td>
<td>-1003</td>
<td>1040</td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegasys</td>
<td>-1236</td>
<td>1026</td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 ITT Pegintron</td>
<td>-474</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 PP Pegintron</td>
<td>-474</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>Genotyp 1/4/5/6 MP-PP Pegintron</td>
<td>-879</td>
<td>2243</td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3 ITT Pegintron</td>
<td>-275</td>
<td>2145</td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegintron</td>
<td>-275</td>
<td>2145</td>
<td></td>
</tr>
<tr>
<td>Genotyp 2/3 PP Pegintron</td>
<td>807</td>
<td>2297</td>
<td></td>
</tr>
</tbody>
</table>
8. Danksagung

An dieser Stelle danke ich Prof. Dr. Hendrik Lehnert, Direktor der Medizinischen Klinik I des Universitätsklinikums Schleswig Holstein, für die Überlassung der Daten.

Für die biometrische Beratung bedanke ich mich bei Dr. Reinhard Vonthein vom Institut für Medizinische Biometrie und Statistik der Universität zu Lübeck.

Uwe Marquardt danke ich für die Hilfe bei EDV-Problemen.

Meiner Familie und meinem Freund danke ich für ihre Liebe und Unterstützung, ihre Ratschläge und dafür, dass sie immer für mich da sind.
9. Lebenslauf

Persönliche Angaben:
Name: Vera Dorothee Graff
Geburtstag: 26.07.1985
Geburtsort: Hamburg
Anschrift: Isestraße 5, 20144 Hamburg

Schulbildung:
1995 - 2004: Gymnasium Christianeum, Hamburg
Abschluss: Abitur

Studium/Ausbildung:
2004 - 2005: Studium der Rechtswissenschaften an der Universität Mainz
2006 - 2007: Studium der Humanmedizin an der Universität Göttingen
2007 - heute: Studium der Humanmedizin an der Universität zu Lübeck
März 2010: Ärztliche Vorprüfung
Famulaturen:
Augenheilkunde: Universitätsklinikum Hamburg-Eppendorf
HNO: Marienkrankenhaus, Hamburg
 Praxis Dr. Nadjmi, Hamburg
Kardiologie: Krankenhaus Sundsvall, Schweden
Notfallmedizin: Asklepios Klinik Nord, Hamburg
Orthopädie: Schoen-Klinik, Hamburg-Eilbek
 Praxis Orthoclinic, Hamburg

Praktisches Jahr:
Innere Medizin: Lungenclinic Großhansdorf
Chirurgie: Amalie-Siveking-Krankenhaus, Hamburg
HNO: Bundeswehrkrankenhaus, Hamburg

Berufstätigkeit:
10/2008 - 02/2013: Tätigkeit als Study Nurse in der Kardiologischen
 Hochschulambulanz des Universitätsklinikums Lübeck

Zeitlicher Rahmen der Dissertation:
04/2011: Annahme als Doktorandin bei Priv.-Doz. Dr. med. T. Witthöft
04/2011 - 02.2013: Statistische und schriftliche Auswertung
02/2013: Abgabe der Dissertation