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 On Human-Machine Interfaces based on 

Electrical Brain Signals  

 

MEHRNAZ KHODAM HAZRATI 

ABSTRACT 

 

Nowadays brain machine interfacing (BMI) and its non-invasive branch, brain computer 

interfacing (BCI), is a marvelous scientific concept which describes any communication 

channel established directly from the brain, to the surrounding physical world by bypassing 

the natural neural-muscular peripheral system. The proliferation of sophisticated 

communication and electronic devices paved the way for a renaissance in brain computer 

interfacing. Each BCI is tailored for a specific application regarding the hardware employed 

and the computational techniques and algorithmic approaches used to form its elements. In 

this dissertation, novel mathematical methods as well as design considerations are combined 

to shape the imaginary-based BCI for control applications. For each application an overview 

of each component is presented and the entire system is evaluated. Each dataset was evaluated 

offline by calculating evoked potential (EP), power band spectrum and event-related spectral 

perturbation (ERSP) analysis. 

In order to design a BCI several mental strategies can be used. This project addresses 

EEG classification during limb movement imagination and relaxation. For this purpose two 

essential aspects should be considered. On one side, the quality of imaginary tasks performed 

by the subjects and their ability to control their mind affects highly the performance of EEG-

based BCI. On the other side, application of BCI systems heavily depends on the online EEG 

signal processing feasibility. During online experiments, the moving windows starting from 

the beginning of the trial were used for feature extraction and classification. Each trial session 

consisted of two consecutive phases, relaxation and hand movement imagination.  

EEG-based brain-actuated control requires a classifier to discriminate between mental 

states. In this way, online feature extraction and classification of EEG signals are the most 

important parts. I investigated in particular a selection of feature extraction schemes exploited 

for the proposed BCI paradigms. These feature sets can be categorized under three groups: 



IV 

 

Time-frequency analysis, fractal components, and higher order statistics. Initially the power 

spectrum was estimated to extract online features, which are theta, alpha, beta, and gamma 

power bands. The feature vectors were formed and fed into the classifier. There are many 

different types of classifiers, with some being far more effective than others. In this work, I 

investigated the effect of classification methods and their adaptation on the performance of 

BCI. The LDA, QDA and soft-SVM in the current work were implemented in a special 

architecture. The results demonstrated that the classification accuracy of ensemble SVM was 

significantly higher than that of the single SVM. The output of the decision making algorithm 

was presented to the subject during experiments as bio-feedback using simulated hand 

demonstration, a robotic hand prosthetics, a robot and an avatar in the virtual world. All 

experiments were carried out on human subjects. 
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Chapter1 

Overview and introduction1  

 

 

1.1. Motivation: Communication in a wider sense  

Theoretically, there are a myriad of possible communication methods between two 

humans (Arndt, 2001). Just using one’s five senses, the amount of information one can send 

or receive through each of their natural communication channels is amazingly high. In a 

primary sense, a body gesture or an obvious physical behavior can be interpreted as a 

communication signal and consequently can be understood easily by another person 

(Tomasello, 2008). On a more abstract level i. e. within the linguistic domain, as Noam 

Chomsky (1966) explains, a human is able to construct an infinite variety of sentences using a 

finite set of rules to convey an almost uncountable variety of messages (Chomsky, 2006).  

Beyond the capabilities of our conventional senses, we can also extend our 

communication with the outside world by exploiting technology (Daly I., 2012). 

Developments in computer science have changed our perspective towards machines and their 

usability. Nowadays machines are already inseparable parts of our lives within our wired 

world (Torrance, 1984); peer-to-peer computing is changing the way people interact (Loo, 

2003). Thus it may indeed be seen desirable to “upgrade” the human body to improve or 

augment conventional forms of human communication by establishing new 

electrical/mechanical control and communication channels (Coyle, 2010). It can be notably 

useful for people who undergo serious physical communication impediments, e. g. paralysis, 

blindness or deafness, but it could also give the healthy ones new communication 

opportunities. The plasticity of the brain is the key to its learning and adaptation capabilities 

which will be vital for the extension of both afferent (sensory) and efferent (motor) nervous 

structures in the future (Dennett, 1992) (Coyle, 2010). It does not, however, convey that we 

should all strive to become Cybernetic organisms, or, to use the term introduced by Professor 

Kevin Warwick (1998), Cyborgs, which are theoretical constructs that intimately and 

                                                           
1 Some parts of the present chapter have been peer reviewed and published in the papers written by Mehrnaz. Kh. Hazrati.  
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irreversibly integrate technology and biology. Yet, this construct offers an extended and novel 

sense of what it implies to be human (Daly I., 2012). 

The interface between humans and computers in any case seems to be more complicated 

than thought before (Kuebler et al, 2001). The ability to communicate decreases with the 

information transfer rate dramatically if in our natural communication model above a 

computer is substituted on the other side (Wolpaw et al., 2002). The reason for this is 

described well in a recent paper from Schalk, who discusses the theoretical and practical 

possibility for direct communication between the brain and computers (Schalk, 2008). Our 

central and peripheral nervous system is a massively interactive computational system with 

the ability to process extremely diverse and dense sensory inputs, store coded and selected 

information, express thought and control the available output system (Scarabino et al., 2003). 

The lack of intellect and consciousness in machines, on one hand and the different 

computational policy on the other, keeps the speed of this improvement down. Looking 

closer, there are even more substantial differences between the human mind and computers. 

Apart from the limitations in input/output structures, the brain is not simply a binary decoder 

and interpretation and comprehension are concepts beyond simple programming. According 

to the current view, the human brain seems to be a vastly parallel system which continuously 

receives information from the environment (Hubel, 1979). It has a high degree of adaptation 

along with prediction abilities which could be interpreted coarsely as intelligence (Torrance, 

1984). The human brain, in contrast to any computer, can plan, predict and postpone for a 

better or more effective result in the future (Tomasello, 2008). In a stunning paper, Alan 

Turing (1950) brings up a basic discussion about the computability of the brain’s actions and 

wonders whether an analogous model can be implemented on a computer to create a universal 

machine (Turing, 1950). The question entails challenges and remains unexplored.  

In bioengineering, human machine interfaces (HMI) or, equivalently, man machine 

interfaces (MMI) comprise literally any interaction between humans and machines other than 

those based on manual (or natural) contact. An interaction can involve one or more physical 

or cognitive aspects of humans such as the visual, auditory or tactile systems. Eye blinks, 

muscular signals and brain signal are common signals used in this area of research (Cannan et 

al., 2010). In practice each HMI system has a particular aim, performance level and set of 

limitations, but in theory is an upgrade to the human body. Among all disciplines, the 

symbiosis between the brain and computers is completely amazing. Brain machine interfacing 

(BMI) and its non-invasive branch brain computer interfacing (BCI) is a marvelous scientific 

concept to describe any communication channel established directly from the brain, to the 
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surrounding physical world by bypassing the natural neural-muscular peripheral system, 

either for control, communication (Graimann et al, 2010) or for conveying an intention, as 

Schwartz describes (Schwartz, 2007). The relationship between these concepts is highlighted 

in Figure 1.1. Wolpow et al. defines the direct connection of the brain to its environment as an 

“effective bypass” (Wolpaw et al., 2002).  

 

 

  

 

 

 

 

 

 

Figure 1.1: Hierarchical nomenclature of human machine interfacing: HMI comprises literally any interaction 

between the human and a machine other than those based on manual contact. Brain Computer interfacing is a 

non-invasive subgroup of Brain machine interfacing (Graimann et al, 2010).  

In the course of development up till now, computational techniques, physiological 

discoveries and hardware design have been used in combination giving ascent to some type of 

brain-machine wiring. There are complex and subtle concepts of mind consciousness and 

brain functional structure, whose boundaries are to be discovered. So the task is not mundane; 

the topic remains challenging with open problems in modern science and related 

philosophical debates. Brain computer interfacing comes in various guises and structures. It 

can be categorized based on the type of brain signal, whether the computation strategy is 

online or offline, and whether the scenarios are cue-based or self-paced (Cannan et al., 2010) 

(Graimann et al, 2010).  

1.2. Brain computer interface (BCI) 

Brain computer interfacing is an augmenting communication channel, which extends 

the ranges of human senses by establishing a direct connection between the brain and the 

outside virtual or physical world (Wolpaw et al., 2002). BCI is based on superficial brain 

signals alone (Figure 1.2), so no other biological signal is supposed to be any help to this type 

        Bladder control implant 

Deep brain stimulation 
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of communication (Graimann et al, 2010). Its initial goal is to establish a rehabilitation facility 

to patients who suffer from severe kind of motor impairments (Wolpaw et al., 2002).  

Forfeiture of movement control in humans is a problem that is common worldwide and 

has a deeply negative effect on the patient's quality of life. It is estimated that nearly five 

million people suffer from loss of voluntary muscle control around the world which impair 

them to communicate in a normal way (Kuebler et al, 2001). The causes are diverse and may 

vary from spinal cord injury, stroke to amyotrophic lateral sclerosis (ALS) disease (Society of 

Neuroscience, 2008).  

For the present purpose of BCI, two classes of syndromes may be distinguished: 1) 

Incomplete impairments of movement control when the patient is still able to communicate 

and BCI is used as a means to overcome the blocking of neural efference and control, e.g., to 

control movements of the right hand. Such syndromes are due to spinal cord lesions, which 

may lead to palsy of the two legs or (if the lesion is higher) to tetraplegia (palsy of all four 

limbs) or due to stroke (cerebral palsy) which may lead to hemiplegia (palsy of one side of the 

body) 2) Complete impairment of movement control when BCI is mainly used to provide a 

means of communication for the patient to the external world. This "locked-in syndrome" 

may be due to ALS or due to the stroke in the brain stem (Scarabino et al., 2003). ALS 

happens for unknown reasons, when brain and spinal motor neurons in the spinal cord begin 

to disintegrate (Society of Neuroscience, 2008). In people with ALS the motor neurons 

gradually degenerate, while their brain would maintain its intact cognitive function. When the 

disease reaches the last stage, they might lose all voluntary muscle control. Patients unable to 

communicate and unable to perform simple bodily functions are thus called "locked-in“ based 

on their mandatory need for full-time care (Townsend et al., 2010). 

Using technology one might communicate in a different manner with either the 

surrounding physical world or any virtual environment. BCI as a branch under HMI must 

fulfill several conditions (Cannan et al., 2010): The BCI-system needs to receive direct input 

from the brain by evaluating brain waves of the user in real-time to make the decision based 

on the information extracted from each segment of the data. It leads to a control command, a 

physical action on a real or virtual object or any communication sent to a device, while the 

subject observes its result as biofeedback. The entire scenario should rely on the subject’s 

intention or a time locked paradigm. Once restricted to specially equipped laboratories, BCI 

today is almost ubiquitous. There are several labs and BCI research groups, who actively 

work on new ideas all over the world (Allison, 2012).  
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Figure 1.2: Brain computer interfacing establishes a direct communication between the brain and the surrounding 

world (computer) and bypasses the afferent/efferent system. It may indeed be seen as a desirable way to 

“upgrade” the human body to improve or augment conventional forms of human communication by establishing 

new electrical/mechanical control and communication channels (Graimann et al, 2010) 

1.3. A review on the current trend 

Emerging from science-fiction stories like “Forbidden planet” in 1956 (Thomas, 2008) 

and well-known TV series like “Star Trek” in 1966 (Graimann et al, 2010) to the “Matrix” 

movies (Coyle, 2010), the ambitious idea of hooking up the human brain to a machine and 

translating the mere thinking power into physical or virtual actions has fascinated humans. 

Meanwhile scientist dealt with it as a serious research topic. In 1964 the neurophysiologist, 

Dr. Grey Walter investigated the brain signals of volunteer subjects while they were pressing 

a button. He found that the control signal actually appears before the movement happens. He 

introduced the concept of contingent negative variation (CNV) that appears following the 

conditional response (Walter W. G. et al., 1964). Later his research group reported that 

cerebral events resembling evoked potentials could also occur in the absence of expected 

stimuli (Weinberg et al, 1970). These early ideas established the fundamental viewpoint on 

designing such a system. Not being a science-fiction theme any more, in 1973 at the 

University of California Los Angeles (UCLA), Vidal introduced his online brain-based 

control game and the term brain computer interface to the research society (Vidal, 1973). 

Since then numerous BCI systems-under various guises- have been developed employing 

different signals and signal processing algorithms. They differ in design and performance 

level and address different groups of users. Building BCIs is an interdisciplinary field 

combining expertise in medicine, neurology, psychology, machine learning, statistics and 

signal processing, as well as philosophy (Kennedy et al., 2000) (Scarabino et al., 2003) 

Brain-Computer 

Interface 

Neuromuscular 

pathways 

Edited from original photo: M12156RG [RM] © www.visualphotoes.com 
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(Donoghue, 2007) (Schalk et al., 2007). Figure 1.3 depicts the general overview on the 

structure of a closed-loop Brain computer interface. Although BCIs were originally developed 

for assisting or augmenting human cognitive or sensory-motor functions, nowadays they are 

found in various applications for healthy users such as entertainment and gaming (Mason, 

2006) (Lebedev et al., 2006). Nowadays several research groups worldwide try to realize the 

dream of translating the mere thinking power into mechanical or virtual actions. The result 

from a review on current trends in BCI shows a technological transition from isolated 

demonstrations to systematic research and commercial development in this area (Brunner et 

al., 2011). BCI presents a broad range of applications from a simple binary decision maker to 

more complex and sophisticated prosthesis control systems (Allison, 2012). Although the 

development of BCIs shows promising results, in most cases the reported measures of 

accuracy and information transfer rates come from highly controlled studies in the laboratory 

with precise indications of which targets the users should pursue (Mason et al., 2005). The use 

of BCI is still very limited in serious clinical applications (Kuebler et al, 2001) (Allison, 

2012). 

 

Figure 1.3: A general overview of the structure of a closed-loop brain computer interface for diverse applications 

such as wheelchair control and virtual keyboard use (adopted from (Graimann et al, 2010)) 

Applying advanced EEG processing methods to real-time EEG analyses has been used 

in the polygraph system, also known as the lie detector (Heussen, 2010), trust assessments 

(BinAb R. et al., 2009), brain fingerprinting (Parasuraman, 2007), cursor control interfaces 

(Kalcher et al., 1993) and home automation (Farwell, 1986). Virtual keyboards allow users to 

compose phrases and sentences just by thinking. BCI systems for mouse control can be used 
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in 2D or 3D to facilitate interaction with the computer programs to access the internet (Schalk 

et al., 2007) (Daly I., 2012).  

Before embarking on a tour of technical designs of Brain Computer Interfaces, we will 

briefly review the human brain anatomy along with the mechanisms underlying the generation 

of brain activity, the brain signals and their recording history. The rest of this chapter provides 

a general introduction to the concept of human machine interfaces and presents a background 

of the available computational tools for analyzing the brain.  

1.4. Brain Anatomy 

After cardio-centrist historical debates, Hippocrates (460-377 B.C.) was the first major 

historical figure to suggest the brain as the center of our understandings and all of our feelings 

(Coyle, 2010). The human brain is still the most astonishing riddle to be unveiled. Each 

individual obviously has a unique mind affected by his genetics, training and environment, 

which is developed by the life experiences, yet there are still physiological and logical 

similarities rendering it suitable for investigation (Attwood, 1989). David H. Hubel (1981 

Nobel Prize Winner) describes the brain as a complicated, intricately woven tissue, like 

nothing else we know of in the universe (Hubel, 1979). This spongy three pound mass of fatty 

tissue controls all body activities and like every other living organ, is composed of cells. The 

central nervous system (CNS) embodies two main classes of cells. The majority of them has a 

protective and regulatory role and is called Glia. Neurons, on the other hand, are the brain’s 

primary computing elements (Hubel, 1979) (Rothwell, 2001) and are highly specialized cells 

responsible for the brains’ electrical functions. There are in total between one billion and one 

trillion active neurons inside the brain (Dayan et al., 2001). The number of neurons in the 

brain is very diverse amongst species. One estimate puts the human brain at about 100 billion 

(10��) neurons and approximately 4-6 quadrillion (10��) synapses (Thomas, 2008). Each 

neuron is able to “talk” to an average of 10,000 others (Society of Neuroscience, 2008). 

Neurons have characteristic that are unique remarkable among the cells of the body. Millions 

of neurons interact together in a complicated fashion which is more nuanced than just ones 

and zeros being coded. Each neuron seems to be an autonomous, analog computer of its own 

(Watson, 1997). There are electrical and chemical interactions which enable them to 

propagate signals rapidly over large distances. This is done by generating distinctive electrical 

pulses or spikes that can travel through nerve fibers (Attwood, 1989). A neuron simply signals 

its neighbors when it has information to be sent. Neurons are relatively slow processing 

elements compared to individual transistors elements in digital computers (Watson, 1997). 
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Thus, it is even more impressive to know that the brain can compute hundreds times faster 

than digital computers. The speed comes along with optimum power consumption (Watson, 

1997). The outstanding speed and efficiency of the brain is the corollary of the massive 

parallelism and synchronization of the brain's hundred million neurons. It also reflects the 

strain of the analog computing that governs the neurons. A neuron has perhaps a hundred 

internal electrical levels, giving it far more information content than the binary on-off of a 

digital switch (Attwood, 1989). And instead of treating all inputs in a similar fashion, neurons 

can weigh the input pulses coming from certain favorite neighbors with simultaneously firing, 

according to the theory known as Hebb’s rule (Lytton, 2002). The tiny junction where one 

neuron receives input from its neighbor acts as a little memory element. Thus, each neuron is 

aware of its previous inputs. This property dramatically increases the efficiency by reducing 

the need for data to be swapped during a computation. Figure 1.4 demonstrates the structure 

of a typical neuron (Attwood, 1989). 

 

Figure 1.4: Rough structure of a neuron. The stimulus travels from dendrites to the axon terminal bundle and 

after that is transmitted chemically to the next neuron (adopted from Attwood and MacKay (Attwood, 1989)). 

Dendrites are connected to either dendrites or the axons of other cells. They usually 

receive the impulses from other cells (Attwood, 1989). A stimulus travels along the axon. It is 

transmitted chemically, by the release of chemical neurotransmitters at the synapse, to send 

the message further (Attwood, 1989). The entire process of conveying the information is 

referred to the action potential (AP) (Sanei, 2007). There is a resting electrical potential of 

around -70mV between the soma (also called body of the neuron) and synapses which 

changes with variation in synaptic activities. When action potential starts, Na� ions rush into 

the cell and cause the electrical potential to rapidly change from -50 or -90mV to about 

+30mV (Roche Lexikon  Medizin,  2003).  This overshoot (depolarization) is then followed 

by a repolarization phase by closing sodium (Na�) channels and opening potassium (K�) 

channels. Usually after some millisecond, the cell returns to its resting potential (Sanei, 2007) 

(Dayan et al., 2001). Action potentials and synaptic currents transferred between the synapses 

contain information and are responsible for the functionality of the CNS (Scarabino et al., 
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2003). Neurons usually have a fantastic isolating cover, called the Myelin sheath, discovered 

by Rudolf Virchow (1821-1902), which speeds the transmission of electrical signals along the 

axon by saltatory conduction (Attwood, 1989). Neurons represent and transmit information by 

producing sequences of spikes in various temporal patterns. Axons code the information in 

time and propagate pulses in an “all or none fashion” called action potentials (Rothwell, 

2001). Neural coding and measurement of stimulus characteristics, for instance the intensity 

of light or sound, as well as motor action, such as attributes of a limb movement are studied in 

the field of computational neuroscience (Chapin, 1999) (Schwartz, 2007). The brain is well 

structured and highly organized. Each group of neurons typically constitutes a functional 

section of the brain. A rough lateral and median view of the brain can be seen in Figure 1.5.  

 

Figure 1.5: Lateral and medial view of the major parts of the brain: Frontal, Parietal, Temporal and Occipital 

lobes (Sanei, 2007) 

Each part is dedicated to a particular task or contributes to a series of functions. The 

brain cortex serves as the center for thought, perception and memory. The major sections of 

the cerebral cortex are the frontal lobe, the parietal lobe, the temporal lobe and the occipital 

lobe. Each lobe is known to be responsible for a set of predefined functions (Scarabino et al., 

2003). However, some particular regions could be associated with more than one task or 

function. In addition, accomplishing more complex functions, like speech or vision, needs 

cooperation between several regions of the brain (Daly I., 2012). The frontal lobe is credited 

for the highest intellectual functions such as planning and problem-solving (Daly I., 2012). It 

is also known that during mental tasks different regions within the brain have interaction or 

cross-talk (Vuckovic et al., 2008). Although the detailed mechanisms are still not completely 

understood, the synchronized electrical activities of groups of neurons in the cortex contribute 

to electrical potentials measurable on the surface of the scalp (Berger, 1930) (Nunez, 1981). 
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1.5. Brain signals 

Brain activity in humans starts between the 4th and 5th month of prenatal development 

and not only reflects the brain functioning labor but also signifies the status of the entire body 

all over life (Sanei, 2007). The acquisition and processing of brain activity as a noise-like 

non-stationary signal requires accurate hardware and highly advanced computational 

methods. A successful trial was done initially in 1875 by an English scientist, Richard Caton 

(1842-1926), who used a galvanometer to measure the electrical brain activity from a human 

for the first time (Sanei, 2007). There has been a huge effort since then to localize and 

categorize the brain signals regarding the input presented to the brain or the output recorded 

from the peripheral limbs. Many researchers started to observe cerebral electrical activity over 

the cortex. Ernst Fleischl von Marxow (1845–1891) for example reported on observed visual 

cortex activity in animals (Fleischl, 1890). The inception of brain electromagnetic 

measurement was reported in 1912 by Vladmir Pravdich-Neminsky (1879-1952) who 

recorded the brain electrical activity called electrocerebrogram from the dura in dogs (Sanei, 

2007). In the same years, graphical representations from external electrical stimulation of 

brain measurements were shown by Napoleon Cybulski (1854-1919) from an epileptic seizure 

in a dog (Sanei, 2007). In 1903 Willem Einthoven introduced his more accurate device for 

photographic recording of brain activity (Sanei, 2007). Later in 1928, the discovery of human 

brain signals under the current name of Electroencephalography by Hans Berger (1873-1941) 

changed the traditional view of the human mind and opened a new door to a fascinating way 

of understanding the human brain (Berger, 1933). He reported the first EEG recording using a 

bipolar electrode mounted on fronto-occipital sites in 1929 (Berger, 1930). 

The neologism of Electro-encephalo-graph (EEG) then was used to describe the 

recording and demonstration (Figure 1.8) of the brain’s electrical activities (Electro) emitting 

from the brain (Encephalo). Understanding the mechanisms underlying the generation of 

brain activity along with neuro-physiological and electrical aspects of the recording makes the 

EEG a coarse but valuable view on functionality of the human brain (Sanei, 2007). Discovery 

of EEG activity opened a window to the topography of brain function. It is now accepted that 

EEG reflects the integrative activities of synaptic potentials of millions of pyramidal cells in 

the cerebral cortex (Dayan et al., 2001). It means that extracellular ionic currents caused by 

dendritic electrical activity make the electrical potentials of the scalp and EEG (Wickelgren, 

2003). So the ionic currents involved in the generation of fast action potentials contribute little 

to the averaged field potentials representing the EEG (Wickelgren, 2003). Although it can 

only detect large-scale neural dynamics, it is a rich information source and plays an important 
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role in monitoring and controlling of brain function as well as in clinical diagnostic 

applications. It is a good tool for detecting different physiological and pathological conditions 

(Sanei, 2007).   

EEG is the main source of brain signals used in BCI research (Dornhege et al., 2007). It 

can be recorded as a time-varying difference in voltage between an electrode placed over the 

scalp and a reference electrode attached to the earlobe or other part of the body (Parasuraman, 

2007). There are alternative recordings approaches such as Magnetoencephalography (MEG) 

(Dornhege et al., 2007), functional magnetic resonance imaging (fMRI) interpretation 

(Dornhege et al., 2007), positron emission tomography (PET) (Sanei, 2007), analysis of near 

infrared spectra (NIRS) (Karat et al., 2010), and thermography (Graimann et al, 2010). 

Magnetoencephalography (MEG) is a method for recording the magnetic fields associated 

with brain activity. fMRI and NIRS are both hemodynamic based techniques which measure 

small changes in the blood oxygenation level-dependent (BOLD) signals associated with 

cortical activation (Graimann et al, 2010). There is a clear correlation between absorption 

spectrum in the near-infrared wavelength and the change of oxy- and deoxy-Hb concentration 

in the tissue, which is in fact affected by the metabolic activity (Karat et al., 2010). 

All mentioned methods are promising modalities for acquiring signals from the brain in 

a non-invasive way and have been employed for the development of brain–computer 

interfacing. However, there are drawbacks which make them unsuitable for a long-term 

solution in most BCI applications: MEG and fMRI are costly and bulky devices. PET and 

MRI suffer from poor temporal resolution (Coyle, et al., 2004). In the future NIRS may 

provide both temporal and spatial resolution (Coyle, et al., 2004), but this technique is still in 

an early stage of development and currently has poor temporal resolution (Graimann et al, 

2010). 

1.5.1. Invasive vs. noninvasive recording 

Brain activity takes place on the molecular scale through electro-chemical processes and 

produces due to ion fluxes a variety of magneto-electrical signals that can be measured on 

different levels of resolution using diverse recording technologies (Dornhege et al., 2007). In 

general, there are three different approaches to detecting the brain’s electrical activity: EEG, 

electrocorticograph (ECoG), and intracortical recordings (Schalk, 2011). EEG is a non-

invasive approach, whereas other deeper, yet more precise approaches - ECoG and single 

neuron electrodes are considered invasive (Blakely et al., 2009). The level of invasiveness 

depends on the place of the electrode as is shown in Figure 1.6. For EEG recording the 

electrodes are placed over the surface of the scalp and for ECoG recording they are usually 
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mounted over the cortex, e. g. primary motor cortex (Hochberg et al., 2012). ECoG does not 

damage any neurons (Schalk, 2010). Intracortical recording electrodes (O'Doherty et al., 

2009) penetrate the brain tissue. By using this range of methods, the spiking of individual 

neurons can be recorded (Dornhege et al., 2007). 

Pioneered in the early 1950s by Penfield and Jasper, Electrocorticography (ECoG) or 

intracranial EEG (iEEG) systems used electrodes placed on the exposed surface of the brain 

directly under the skull to gather rhythmic neural activity created by a large group of neurons 

in the cerebral cortex (Donoghue, 2007). The cortical potentials recorded by ECoG led to 

higher spatial resolution, broader band width, higher signal to noise ratio and less sensitivity 

to motional artifacts compared to recordings from the scalp (Schalk, 2010). This fascinating 

technology is usually used to identify epileptogenic zones in patients (Palmini, 2006) but in 

the future these signals could be targeted as the input to a Brain Computer Interface (BCI) 

(Jackson, 2012). Achieving higher reliability and accuracy is the agenda for designing and 

developing these new generations of HMIs. Signals recorded within the cortex would be 

better candidates to encode more information and might support BMI systems that require 

shorter training than EEG-based systems (Schalk, 2010), however in practice this issue 

demands more medical and technical consideration (Graimann et al, 2010). Current research 

targets their immediate use to augment the control abilities of amputees to steer the movement 

of a prosthetic hand and its fingers (Hochberg, et al., 2006). 

 

(a)                                                                     (b) 

Figure 1.6: (a) A cut of protective layers of the Meninges: dura, arachnoid and pia matter are common recording 

domains (Schalk, 2011).  (b) Three different approaches to detect the brain’s electrical activity: EEG, ECoG, and 

intracortical recordings (Graimann et al, 2010) 

Almost four decades ago, the first BMI experimental endeavor was undertaken by 

implementing an electrode on the motor cortex of monkeys (Fetz, et al., 1975) and training 

the brain to be able to control the external limb. Later on, similar research was done on rats 

(Nicolelis, 2001) to teach rats to access a sip of water by thinking about pushing a lever. This 
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group recently introduced a closed-loop BMI for the first time, in which macaques were able 

to steer a robotic hand to grasp an object and simultaneously get tactile feedback (O'Doherty 

et al., 2011). The two dimensional movement of cursors or robotic arms were also 

successfully achieved by using the electrical signals captured form implanted electrodes in the 

rats or monkeys cortex (Carmena et al., 2003) (Lebdev et al., 2006). In 2003, as Science 

reported, a grid of 100 electrodes was surgically implanted into the brain of a young 

quadriplegic man. After establishing the BMI connection and performing the training session, 

he was able to check his emails or choose a TV channel by controlling his thoughts 

(Wickelgren, 2003). In 2007, a BCI based on an electrode implanted into the motor cortex of 

the human brain was successfully developed (Schwartz, 2007). One year later, Pistohl et al. 

reported the early stage development of neural interface systems (NISs), which was based on 

an intracortical microelectrode sensor. The initial human test was carried on paralyzed people 

where their motor cortex derived the control signals (Pistohl et al., 2008).  

Invasive approaches without doubt lead to better signal quality, but at the cost of 

increases surgery risks and long-term safety considerations (Blakely et al., 2009). Ethical 

concerns, financial considerations and risk of neurosurgery usually prohibit the ECoG 

implementation for healthy BCI subjects and make it impractical for normal people (Blakely 

et al., 2009). Most research has been done on subjects who undergo neurosurgery for other 

purposes, such as treatment of epilepsy. These patients typically wear an ECoG system for a 

short time before it is removed, hence really efficient training and long-term studies are not 

possible (Graimann et al, 2010). A recent study from the University of Pittsburg reports a 

successful implementation of an ECoG BCI on a volunteer paraplegic patient, who achieved a 

satisfactory result in her hand control actions (Hochberg et al., 2012).  

When it comes to potential BCI applications for everyday use, despite the benefits of 

ECoG recording, EEG has clear advantages. It provides a unique opportunity in terms of 

wearability and cost with acceptable temporal resolution, compared to other neuroimaging 

techniques. For these reasons, the field of Brain Computer Interfacing is largely based on 

EEG (Lebdev et al., 2006). EEG is also used extensively in other research areas such as 

neuroscience, cognitive science, and cognitive psychology (Society of Neuroscience, 2008). 

Special attention must be paid to the acquisition, analysis and processing of brain signals, 

since numerous clinical diagnoses and real-world applications rely on the information 

provided by the processing system (NaitAli, 2009). 
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1.5.2. Brain signal processing 

Brain signals are believed to contain useful information not only about the brain but also 

about the entire body. Both EEG and ECoG deliver quite complex signals for processing, 

which spreads out the cumulative sum of dendritic activity and postsynaptic potentials from 

millions of neurons working together (Society of Neuroscience, 2008). Within these 

synchronized sources, ones that modulate movement activities or motor behavior are of most 

interest to be isolated and applied in an indirect control application (Wolpaw, 2012). However 

working with these signals is similar to try to perceive the result of a soccer match by just 

listening to the applause of audiences. In order to extract the hidden information in the brain 

signal many sophisticated acquisition and processing algorithm are required. This is the main 

impetuses behind applying advanced digital signal processing algorithms to the 

electroencephalogram signals measured from the brains of human subjects.  

In order to record EEG brain activity, scalp electrodes are often mounted according to 

the standard 10-20 system. It is an internationally recognized and widely accepted measuring 

standard for EEG recording which was introduced in (Binnie et al., 1982). The scheme was 

developed to ensure standardized reproducibility for comparable studies over time and over 

different subjects (Dornhege et al., 2007). It is based on the proportional distances over the 

scalp, accounting for subjects head shapes and sizes. So the total distances for front-to-back 

and the right-to-left of the skull are first measured and the actual distances between neighbor 

electrodes are set to the segments of either 10% or 20% of those measures in each direction 

(NaitAli, 2009). Electrodes are usually identified by a letter indicating the recorded site 

followed by a letter indicating its position on the hemisphere. The first letter of each 

anatomical lobe, i.e. frontal, temporal, central, parietal, and occipital has been selected for this 

purpose. The letter "C" is used for identifying the central area and when electrodes are placed 

on the midline the letter "z" (zero) is added to their names. Electrode positions on the right 

hemisphere end in even numbers (2, 4 …) while the electrode positions on the left hemisphere 

end in odd numbers (1, 3 …). Moreover, the letter codes Fp and A identify the frontal polar 

and earlobes sites, respectively (Binnie et al., 1982). Often the earlobe electrode is called the 

reference electrode (NaitAli, 2009). Electrodes positioned over the frontal head are usually 

used to record eye blink or eye movement artifacts (Tatum et al., 2011). The number of 

electrodes required for signal acquisition depends on the application. Figure 1.7 gives a three 

and two dimensional view of the most commonly used electrode positions (Sanei, 2007).  



Chapter 1: Overview and introduction 

 

15 

 

In order to render the faint scalp signal suitable for further processing and visualization, it has 

to first pass through the amplification stage. The digital computing will be applied when the 

amplified signal passes through an analog to digital (ADC) circuit.  

 

Figure 1.7: A diagrammatic representation of the 10–20 system (representing the three-dimensional measures) 

for EEG electrode positions including the reference electrodes: (a) shows the position of electrodes on the left 

side of the head, and the right side, (b) shows the view from above the head, and (c) shows a two-dimensional 

electrode configuration for 64 electrodes (Sanei, 2007).  

 

Filtering could be applied either before or after this step to enhance the quality of the signal 

and to improve the signal to noise ratio (SNR). Different kinds of artifacts, either biological e. 

g. breathing and Electrocardiogram (ECG), electro-occulogram (EOG) or non-biological such 

as power supply and device noise, could affect the brain signal analysis. Electronic or digital 

filters, however, are intended to clean up these changes without adding any extra distortion or 

undesired changes to the signal. A low-pass filter with a cut-off frequency below 70Hz is 

usually applied to reduce the power of high frequency noise. High-pass filters with a cut-off 
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frequency of approximately less than 0.5 Hz are used to reduce the very low frequency 

components of DC lines and breathing artifacts. The dominant 50 Hz power supply noise can 

be perfectly eliminated by using a notch filter with a null frequency of around 50 Hz or 60 Hz 

depending on the country. Figure 1.8 depicts 5s record of EEG signals in this project during a 

mental task gathered from 8 different electrode positions bases on10-20 system. A blink 

artifact is seen in the middle of recording. 

 

Figure 1.8: A sample of recorded signals in this project- a 5s record of normal EEG signals during a mental task 

gathered from 8 different electrode positions using the 10-20 system. 

1.5.3. EEG Power Spectrum  

The power spectral density describes “How much energy is contained at which 

frequency?”  This method, however, assumes the signal does not change with time, i. e. it is 

stationary (Haykin, et al., 2007). The spectrum can only present the average power 

distribution in frequency domain but it is blind to the information in time domain. A fast 

method called Fast Fourier transform (FFT) was introduced in 1965 by Cooley and Tukey to 

compute power spectral analysis. Since then the FFT algorithm has become the most common 

approach to quantify the power distribution in EEG (Zhou-Yan, 2003) and to apply its 

frequency analysis on digital computers (Sanei, 2007). Brainwaves can be thought to consist 

of sinusoidal waves in specific bands of frequency or ranges. The power of each frequency 

band is proportional to the number of synchronized neurons working with that particular 

frequency (Pfurtscheller, 2006). Based on these frequency activities the spectrum of the brain 

signal can be segmented. This segmentation is not unique and might be described divergently 

in various documents (Sanei, 2007). By applying the power spectral analysis to the brain 
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signal and filtering the different frequency ranges, the general rhythmic activity of the brain 

can be observed. Band power features are the most common and successful features used in 

the BCI field  (Townsend, et al., 2006). They are also very common and successful in clinical 

applications (Niedermeyer et al., 1999). The spectrum of brain waves ranges from 0.5 to 500 

Hz (Sanei, 2007), but usually the frequencies above 100Hz are not considered for analysis 

(Townsend, et al., 2006).  

Important frequency bands waveforms are commonly divided  in  five  major  groups of  

frequency  ranges  (Townsend, et al., 2006) that  are  more  clinically  relevant (Niedermeyer 

et al., 1999). Typical dominant normal rhythms in EEG signals consist of: the delta (0.5-4 

Hz), the theta (4-8 Hz), the alpha (8-13 Hz), the beta (13-30 Hz), and the gamma (30-70 Hz). 

There are other waveforms introduced by researchers based on different research interests but 

they are usually bonded to a particular task (Sanei, 2007). Among them: phi (less than 4 Hz) 

(Silbert et al., 1995), chi (11-17 Hz) (Silbert et al., 1995) and sleep spindles (11-15 Hz) 

(Hubel, 1979) are particularly popular (Sanei, 2007).  

The power and amplitude of these bands change over time and are location dependent 

too. These spatio-temporal changes can be considered signs of brain activity or mental state 

such as attention, concentration, sensory stimulation, movement action and also some 

neurological or mental diseases (McFarland et al., 1997) (McFarland et al., 2006). Delta (δ) 

rhythm (0.5-4 Hz) is a high amplitude brain wave which is normally seen during deep sleep in 

adults as well as in infants and children (Niedermeyer et al., 1999). A strong presence of this 

band in awake adults can be a sign of an underlying brain lesion or may be indicative of a 

mental disorder (Blume et al., 1999). Theta (θ) waves (4-8 Hz) are typically a sign for low 

levels of alertness and mostly can be seen during waking up/falling asleep states (hypnagogic 

states). They are generated from the interaction between frontal and temporal lobes (Sanei, 

2007).  It is assumed that the predominance of these waveforms can be associated with 

thinking, memory consolidation and image-based and creative-intuitive activities 

(Niedermeyer et al., 1999) (Society of Neuroscience, 2008). Alpha (α) rhythm amplitude (8-

13 Hz) is generated normally during the rest or relaxed state and it is attenuated when eyes are 

open or the individual becomes alert (Sanei, 2007). This band which has a center frequency 

around 10Hz is traditionally associated with pure awareness without processing and can be 

detected primarily in the occipital lobe (Berger, 1933). Beta (β) rhythm is seen in humans 

during concentration or mental activity (Blume et al., 1999) in the frontal and parietal lobes 

(Lytton, 2002). There are strong evidences that both alpha and beta rhythms are important for 

characterizing the imagination of the tongue, feet, left or right hand movements in the motor 
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cortex area (Pfurtscheller et al., 1997). Mu (µ) (8-12 Hz) or beta (15-25 Hz) rhythm amplitude 

can be easily controlled by trained subjects (Pfurtscheller, et al., 2000). Beta band is divided 

into two sub bands: Beta1 (15-18 or 16-20 Hz) and Beta2 (20-38 Hz). Beta1 is more 

associated with the body presence and can be observed during the physical stillness. The 

upper frequency sub band in the Beta is associated with the active alert state including 

learning, task completion, and staying focused (Durka PJ., 2006) (Parasuraman, 2007). 

Gamma (γ) rhythm (also called fast beta wave) has a frequency above 30 Hz and is associated 

with hyper-vigilance or a highly focused state and to some extent has been correlated with 

anxious rumination (Graimann et al, 2010). Figure 1.9 (a) shows a typical demonstration of 

rhythmic activity of EEG. Each band has a specific spectral pattern over the scalp (Figure 1.9 

(b)).  

        

Figure 1.9: (a) A typical demonstration of frequency bands in EEG signals; Delta, Theta, Alpha and Beta.  

Aside from these rhythms, there are some transient fluctuations which can be recorded 

over the scalp during mental activities or external stimulation. 

1.5.4. Evoked potentials and event related potentials 

Evoked potentials (EP) are elicited by any physical stimulus, consisting of a series of 

positive and negative deflections, largest at scalp sites overlying the modality-specific cortex: 

lateral occipital sites for visual stimuli, temporal and central sites for auditory stimuli, centro-

parietal sites for somatosensory stimuli. Some researchers suggest that they are a result of the 

reorganization of the phases in ongoing EEG (Graimann et al, 2010). The term "event-related 

potential" (ERP) was coined to cover components of the EP that go beyond the mere 

reflection of physical attributes of a stimulus (and consequently do not have a modality-
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specific scalp distribution any more). The first published ERP component was the above-

mentioned CNV (Walter et al., 1964). The most well-known ERP component is the P300, 

which is a positive change in EEG signal that occurs around 300 milliseconds after a relevant 

and/or infrequent stimulus, usually largest at parietal midline sites (Nijboer, 2008). P300 has 

been used successfully for developing a group of BCIs (Graimann et al, 2010).  

Of particular relevance in the present context are movement-related ERPs. The 

Bereitschaftspotential (BP) (or "readiness potential", RP) has been first described by 

Kornhuber and Deecke (1965). Usually when no external stimulus is provided and the 

subjects are asked to repeat movement tasks in their pace for several times, BPs are good 

evaluation method. The decision making phase can be seen in the first period of BPs, while 

the period related to the preparation for the movement is joined with the second phase of BPs. 

Each phase affects different brain areas. In the first phase, mainly a large negativity can be 

observed over the supplementary motor area with the maximum at the center point Cz, and 

during the second phase the larger negativity is generated over the lateral motor cortex 

M1with stronger negativity in contralateral compared to the ipsilateral area of the involved 

hand (review: Shibasaki & Hallett, 2006). In the case that the experimental paradigm 

determines the pace of the movement through an external trigger, the first phase might be 

disappeared (Waszak et al., 2005) (Baker, Piriyapunyaporn, & Cunnington, 2012) and the 

second phase is called lateralized readiness potential (LRP) (Coles, 1989). 

1.5.5. Event-Related Synchronization/ Desynchronization (ERS/ERD)  

In order to analyze the changes related to sensory stimulation and motor behavior in the 

electrical activity of the cortex two different approaches are applied. In the first approach, i.e. 

ERP method, both time-locked and phase-locked changes are extracted from the ongoing 

EEG activity by applying averaging or other simple linear methods. This method is not proper 

for the induced changes which are time-locked but not phase-locked. In contrast to the ERP 

averaging, non-linear algorithms such as power spectral analysis or envelope detection should 

be applied to extract  these changes (Pfurtscheller, 1992) (Graimann et al, 2010).  

The fact about the time- and phase-locked responses can be explained in terms of the 

response of a stationary system and a non-stationary system. It can be assumed that an 

external stimulus induces existing neuronal networks of the cortex which will be both time- 

and phase-locked. In contrast, a change in the ongoing activity can be induced by applying the 

changes in the functional connectivity within the cortex. Consequently a class of BCI systems 

exists, that is based on the changes in the power of EEG rhythms corresponding to an event 
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(Karat et al., 2010). These changes, called Event-Related Desynchronization (ERD) and 

Event-Related Synchronization (ERS), can usually be seen in alpha and beta band during or 

right before a movement is executed (Pfurtscheller et al., 1993). Desynchronization yields a 

decrease in the power of the EEG rhythm during or before an event occurs. Conversely, 

Synchronization causes an increase in amplitude of an EEG pattern corresponding to the 

event. To assess either a decrease or an increase in brain power at a given frequency, one 

needs to compare brief reference periods like some few seconds before a movement takes 

place. ERD and ERS are usually used as features to detect the mental tasks related to the limb 

movements (McFarland, et al., 2000). Beta ERS occurs immediately after movement 

(Pfurtscheller et al., 1997). Gamma oscillation (30-45 Hz) in the form of ERS has been seen 

before movement binding to sensory and motor information (Pfurtscheller, 1992). It is 

assumed to be a carrier for the alpha and lower beta oscillations (Cheron, et al., 2007). It has 

been reported that alpha ERD represents the motor-related cortical activity more clearly than 

beta ERD does (Pfurtscheller, et al., 1999) (Durka PJ., 2006). During imagination of 

movement, amplitude attenuation happens in µ (8-13Hz) and central β (13-24Hz) oscillations 

at the contralateral sensorimotor area (Pfurtscheller et al., 2001). Amplitude enhancement also 

happens within the gamma band at the ipsilateral hemisphere (Pfurtscheller et al., 1997). 

1.5.6. Event-related Spectral Perturbation (ERSP) 

Makeig introduced a new method based on non phase-locked computation of a series of 

trials (Makeig, 1993). The aspect of information revealed by ERSP is not attainable while 

using ERP average of the same response epochs (Makeig, 1993). ERSP is a measure of event–

related brain dynamics which is in principle a generalization of the ERD (Makeig, 1993). The 

ERD analysis is typically applied to a narrow band EEG. The full-spectrum ERSP, in contrast, 

covers the broad-band EEG frequency and presents the information over time. Consequently, 

it may yield to the better understanding of brain dynamics. The average relative changes in 

the dynamic of the EEG signal, can be captured by ERSP locked to a certain time point or the 

experimental event. The algorithm measures the amplitude of the EEG spectrum regarding an 

experimental event. It is assumed that similar experimental events induce fluctuations in the 

EEG spectrum that can be measured in average by ERSP (Cheron, et al., 2007). 

The first step in computing an ERSP is calculating the baseline. The EEG signal 

preceding each event is used to calculate the baseline for each frequency. Then the 

overlapping windows scan the epoch data and the corresponding amplitude spectra passes 

through a moving average filter. In the next step, each filtered spectral transform is 
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normalized regards to its corresponding mean baseline spectra. Finally, all normalized 

responses calculated from different trials are averaged to generate the ERSP, which is usually 

plotted as a time-frequency plane showing the log amplitude of relative spectral values 

(Makeig, 1993) (Bradley, et al., 2009). 

These characteristics have a wide use in developing some of the recent BCI systems 

(Karat et al., 2010). Event-related potential (ERP) (Pfurtscheller et al., 2001), steady state 

visual evoked potential (SSVEP) (Kelly et al., 2005), slow cortical potential (Birbaumer et al., 

2000), and P300 (Nijboer, 2008) are some famous and meaningful patterns among others 

(Allison, 2012). 

1.6. Mental strategies for BCI 

BCIs at the current stage of development are able only to decipher particular patterns in 

the brain signal which correspond to specific events or a limited number of predefined mental 

tasks for the subject (Sanei, 2007). From this point of view, each BCI can be categorized 

under a subgroup according to the mental strategy it employs (McFarland et al., 2006) (Karat 

et al., 2010). The mental strategy is the foundation for building the other elements of BCIs. It 

determines the experimental strategy and the design approach. More specifically, the task 

required to be accomplished by the subject, the amount of training that the subject has had and 

the design selection of both hardware and software are all affected by this factor (Sepulveda et 

al., 2004). In order to develop such a system various strategies were employed (Mason et al., 

2005) (McFarland et al., 2006). Motor imagery, steady state visual evoked potentials and 

P300 are common approaches (Nijboer, 2008). Two new branches of BCI, known as affective 

BCI and cognitive BCI (Daly I., 2012), respectively work based on emotional and cognitive 

states of the subject. Figure 1.12 demonstrates an overview on available BCI design 

strategies. 

1.6.1. P300-based BCIs 

P300-based BCIs form a popular class of BCIs which works based on selective attention 

in an oddball experiment paradigm. In this group of BCIs, the user should explicitly focus his 

gaze and pay attention to the external stimuli. When the preselected number or character is 

shown on the screen, an evoked potential called P300 appears in the brain signal (Mason et 

al., 2005). A screen shot of a typical P300 speller can be seen in Figure 1.10.  

This BCI setup can be exhaustive in long-term usage, since the subject is constantly 

confronted with stimuli. Furthermore, some patient groups might have problems in focusing 
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their gaze properly and therefore communication based on visual evoked potentials will not be 

reliable. Virtual keyboards or Yes/No questions are examples of this type of BCIs 

(Schouenborg, 2011) (Nijboer, 2008). Most of the people are able to control a BCI with this 

method (Guger, et al., 2009). P300-based BCIs are currently a popular topic in gaming and 

assistive technology development (Kaplan et al., 2013) (Halder, et al., 2013). 

             

(a) 

 

(b) 

Figure 1.10: (a) A screen shot of a typical P300 speller. The user should select the Letter H. Each row and 

column blinks in a random order. In every trial all rows and columns are intensified. (b) P300 amplitude at 

300ms and the activation of P300 at centro-parietal regions of brain (Schouenborg, 2011). 

1.6.2. Steady State Visual Evoked Potential (SSVEP) based BCIs 

SSVEP-based BCI systems work based on an external visual stimulus which has a 

constant flickering frequency. SSVEP is elicited by repetitive visual stimuli (Dornhege et al., 

2007). Using this paradigm, the BCI user needs to focus his gaze for several seconds at the 

flickering option on the screen. The structure of the test is designed in such a way that usually 



Chapter 1: Overview and introduction 

 

23 

 

up to four different frequencies between 8 and 20Hz are selected. The brain signal usually 

follows the dominant frequency and shows the higher power for the observed frequency in the 

power spectrum (Kelly et al., 2005). The same frequency and its second and third harmonics 

can be detected in the power spectrum (Bin G. et al., 2009). Fig. 1.11 shows a screen shot of a 

typical SSVEP experiment. 

 

Figure 1.11: (a) A screen shot of a typical SSVEP experiment. (b) Power spectrum of the signal recorded during 

the experiment, when the subject looked at a button flicking in 8Hz. 

1.6.3. Slow Cortical Potential (SCP) based BCI 

This class of BCIs relies on changes in cortical potential below 2 Hz. SCPs are the 

voluntary production of negative and positive potential shifts in EEG (Hinterberger et al., 

2003). Through feedback training subjects are able to control their SCP after a long training 

period of several months (Hinterberger et al., 2003). Positive and Negative SCPs correspond 

respectively to increase and decrease in cortical excitability. Employed by the BCI research 

group in Tübingen (Nijboer, 2008) a virtual keyboard called Thought-Translation-Device 

(TTD) was designed for totally paralyzed locked-in patients (Birbaumer et al., 2000).    

1.6.4. Imagination of movement based BCIs 

In the 90’s some impressive studies discovered the correlations between EEG signals 

and mental tasks (Pfurtscheller et al., 1997) (McFarland et al., 1997) and the fact that the 

actual and imagined movements affect the EEG signal in a similar way (Pfurtscheller et al., 

2001). In imaginary-based BCI experiments subjects are asked to perform several types of 

motor tasks, i.e. imagination of moving of the various body limbs, during the experiment 

(Pfurtscheller et al., 1997) (Graimann et al, 2010).  At the contra-lateral and ipsi-lateral 

hemispheres sensori-motor representation area, imagination of either a left or right hand, 

tongue or feet movement results in amplitude attenuation or amplification in specific bands 

(Pfurtscheller et al., 1997). These changes can be applied as characteristics for classification 

of mental tasks (Vuckovic et al., 2006).  
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Movement imagery and the selective attention-based BCIs are among the most common 

mental strategies applied in BCI development (Mason et al., 2005) (Karat et al., 2010) 

(Vansteensel, et al., 2010) (Kaplan et al., 2013).  

1.6.5. Emotional/Cognitive BCI 

A relatively new group of BCI strategies are based on emotional or cognitive tasks, such 

as counting, calculation, mental rotation of an object or recalling a pleasant memory, done by 

the user during the experiment (Curran E et al., 2004) (Mason et al., 2005). By recognizing 

emotions a BCI will be able to provide a more natural way for a user to exert control and 

potentially lead to a higher information transfer rate (Molina, et al., 2009). If the user’s 

emotional state is detected through brain activity patterns, it presents a more robust BCI to 

noise and signal deviations (Vansteensel, et al., 2010). In the following, we focus on BCI 

systems which work based on intentional control in a synchronized structure. Imagination of 

movement is the essential part of our EEG-based communication system. 

1.7. Research groups 

 The number of active laboratories involved in BCI research is growing (Graimann et al, 

2010). Many of the active BCI research groups worldwide are focused on “their” signal 

paradigm. Pioneers in developing BCIs among them are: 

Prof. Gert Pfurtscheller (1999) and his Graz BCI team utilized the power of imagination 

to develop a cursor-control system. Using the same approach, they demonstrated the control 

of a hand prosthesis through the imagination of right and left hand movements by a totally 

paralyzed subject. Left or right hand movements will cause, for instance, ERD in the 

contralateral hemisphere of the brain over the motor cortex (Pfurtscheller et al., 2001) 

(Pfurtscheller, 2006). They found out that the brain cannot differentiate between reality and 

imagination. The neural activity during the imagination inside the brain is more or less similar 

to the one induced by the outside world (Pfurtscheller et al., 2001) (Graimann et al, 2010).  

In 2003, Prof. Niels Birbaumer and his team at University of Tübingen, Germany 

developed the Thought Translation Device (TTD). The device is based on slow cortical 

potentials. The TTD users succeeded to compose their own phrases or sentences and also to 

search the web purely by thinking about it (Donoghue, 2007). Biofeedback is a core feature of 

some of these systems. It gives the information about the biological brain state back to the 

subject in an online mode. Using it patients can learn to control their state of mind to control 

and observe the output of the system (Birbaumer et al., 2000).  
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Prof. John Wolpaw’s research group in Albany focuses on classification of EEG signals 

of real or imaginary movements and usually extracts features related to event-related 

desynchronization (ERD) of the mu rhythm (8-12 Hz) in their system (Wolpaw et al., 2000) 

(Wolpaw et al., 2002). 

The Berlin BCI (BBCI) group supervised by Prof. Klaus-Robert Müller and Prof Curio 

is an active group in the area of minimizing the level of required subject training in BCI 

designs. Since 2000, they developed sophisticated algorithms based on machine learning to 

transfer the effort of training from the human subject to the machine and hence to reduce the 

inter-subject variability of BCI (Blankertz et al., 2006) (Blankertz et al., 2007).  

1.8. BCI literature 

During the last three decades, noninvasive recording of brain activities has been widely 

applied as a useful source of data for medical diagnosis and clinical applications (LeVan et 

al., 2006) (Barbati et al., 2004), as well as recent research on brain computer interfacing 

(Wolpaw et al., 2002). Past studies have demonstrated the ability of using EEG signals to 

control a computer or restore hand orthosis (Birbaumer et al., 2000) (Pfurtscheller, et al., 

2000) (Pfurtscheler, 2003). For example, the 2000 article by Pfurtscheller et al. demonstrated 

the use of an EEG-based BCI to control an orthotic device to restore hand function in a 

tetraplegic patient (Pfurtscheller, et al., 2000). The prosthetic devices were controlled with the 

same motor imagery as the computer cursor, and did not require additional training 

(Pfurtscheller, et al., 2000). The patient, who could only move his upper left arm, restored 

some left hand functions with that technology. The orthotic hand device was controlled by 

motor imagery of the right hand and both feet. Motor imagery of the left hand was not used to 

avoid classification errors due to physical movement of the upper left arm. The BCI device 

used signals recorded from pairs of electrodes at the C4, C3 and Cz locations (Pfurtscheller, et 

al., 2000). Pfurtscheller et al. continued their work with this patient, and in 2003 reported the 

successful restoration of the patient’s hand grasp using functional electrical stimulation (FES) 

controlled by the BCI system (Pfurtscheler, 2003). FES surface electrodes were used to 

stimulate the appropriate muscles to control the patient’s hand without requiring an orthotic 

device. Only two pairs of EEG electrodes, located at the C3 and Cz locations, were necessary 

to control the BCI system using foot motor imagery. Closed, open, and relaxed hand states 

were cycled through by repetitions of foot motor imagery. The foot movement imaginations 

caused large beta oscillations that could potentially be detected by simple thresholding, 

without requiring a classifier. The major limitations of this work are the limited degrees of 
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freedom, which may be improved by multi-channel EEG recordings, and lack of sensory 

feedback (beyond visual feedback), which can most likely only be provided by implantable 

systems (Pfurtscheler, 2003). Recently a hybrid BCI design was introduced by the same group 

(Pfurtscheller, et al., 2010). 

Research with EEG-based BCI systems has since expanded to other applications such as 

robotics. A 2008 article describes the high-level control by BCI of a small robot, which could 

potentially function as a “helper robot” for disabled persons. Subjects controlled the robot by 

focusing on particular choices presented on a computer screen as they flashed, causing a 

strong P300 response. This type of response requires little training, but it is coupled to 

stimulus presentation, and therefore is most likely not suitable for prosthetic control. This 

study focused on automating most actions of the robot, and only requiring high-level decision 

commands from the user. This allows the system to work well despite the low bandwidth of 

EEG (Bell, et al., 2008).  

Based on prior research, it is clear that a protocol for controlling a prosthetic hand with 

an EEG-based BCI system should start with only a few simple motor imagery-triggered BCI 

commands (Obermaier et al., 2001) (Vuckovic et al., 2006). The system should be able to 

autonomously complete motions, only requiring general high-level commands from the user. 

For example, particular movement imaginations could command the system to open or close 

the hand, without requiring the user to continuously control the precise state of the hand or 

separate fingers. After a simple system such as this is developed, experiments with multi-

channel EEG may lead to finer control and more degrees of freedom. Such an improvement 

will likely require more user training and may lead to an increase in classification errors, 

which will also need to be addressed. There is only a minute variation in spatial distribution 

between ERD/ERS of the same limb doing different tasks (Vuckovic et al., 2008), so 

movement imaginations should also be selected carefully. This research is a good example of 

noninvasive BCI which is based on a two-level classifier in order to distinguish between the 

wrist flexion and extension movements of the same limb and also between movements of 

different limbs (Vuckovic et al., 2006). When the discrimination between movements of 

different limbs is desired, differences in spatial and temporal distribution between significant 

ERD/ERS of two different movements can be more obvious 

1.9. Our Brain Machine Interface 

Typically the first step in developing a BCI system is to explore the measurable 

characteristics in the brain signal which are controllable by the subject’s mind (Karat et al., 
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2010). Different brain strategies have been used to date for BCI design, e.g. motor imagery, 

steady state visual evoked potentials and P300. Essentially it is much more complicated than a 

typical ML setup, because in BCI both human brain and the computer are subjects to learning 

(Coates, 2008). In the computer side a learning phase is mandatory and it is achieved when 

the subject is instructed to perform a series of predefined mental activities (MAs) (Karat et al., 

2010) and meanwhile the computer algorithm learns to extract the EEG patterns associated 

with mental states. These brain states hereafter are termed “classes”. 

Our proposed BCI system relied on imagined movement. It is known that the brain 

activity associated with imagined movement produces reliable changes in the EEG which are 

similar to the brain activities produces with real movement. EEG signals recorded in an 

imagination-based BCI usually are not phase-locked to the onset of stimuli and averaging 

across trials tends to cancel out the changes. We improved and applied time-frequency 

domain approaches to extract features. Essentially the main role of BCI systems starts after 

the training phase is fulfilled. At this point the computer should be able to differentiate 

between mental states (classes) received from the subject’s thoughts using the ongoing brain 

signals. Before delving into the details of the project, we define the essential elements of the 

system.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12:  BCI design strategies according to the type of brain activity. In the current project the motor 

imagery is selected as the foundation of the BCI design. 

1.10. Ergonomic design 
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humans and computers. At first this meant simple mouse, keyboard and joystick devices 

Motor 

imagery 

Operant 

conditioning 

Selective 

attention 

Flickering 

light 

SSVEP 

Oddball 

experiment 
Neuro feedback 

training 

Imagination 

of movement 

P300 ERD/ERS SCP Spiking 

activity 

BCI Design 

Strategy 

Control the 

level of power 

Brain   

pattern 
Emotion 

/cognition 

Perform 

mental tasks 

EEG 

Patterns 



Chapter 1: Overview and introduction 

 

28 

 

which emerged several decades ago. These were followed in the recent years by more natural 

and less restricted solutions such as bionics and BCIs (Allison, 2012). Ergonomics, or human 

engineering, is an expression in applied science which refers to the concept of maximizing the 

productivity and minimizing the operator fatigue and discomfort in these interfaces 

(Tangermann, et al., 2011). Ergonomic design as defined in (Carrol, 1997) as any interface 

that meets certain conditions such as being easy to use, easy to remember, effective to use, 

efficient to use, safe to use and finally enjoyable to use. The new interaction methods with 

higher quality and productivity should be designed to lessen the risk of error, discomfort 

fatigue, as well as injury (Coates, 2008). BCIs in long-term should be considered ergonomic 

devices and be designed according to ergonomic standards. In our primary design we tried to 

follow some important aspects of ergonomic design by making it easy, safe and effective to 

use in a rather fun environment (Tangermann, et al., 2011). 

1.11. Online vs. Offline strategy 

Typically a BCI consists of two major steps. The first step, offline mode, can be done 

when for each subject a sufficient amount of data (trials) is collected through experiments. 

The system then tries to extract a rule in order to determine the unseen signal in online mode. 

In online mode, as opposed to offline mode, the biofeedback is provided to the subject. Figure 

1.14 displays and compares these two strategies. 

 

Figure 1.14: Offline and Online strategies in developing a brain computer interface 
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several researchers in this area (Hinterberger et al., 2003). Repetition of experiments in 

different sessions may help to improve the functionality of the system and to enhance the 

subject’s brain in governing the control with his brain signals (Blakely et al., 2009). We refer 

to this concept in Chapter 5 to explain our proposed BCI system. 

1.12. Cue-paced (Synchronous) vs. self-paced (Asynchronous) strategy 

In an ideal BCI system, the subject is able to control an artifact with the BCI system 

whenever he wishes. This type of BCI is called “self-paced” or “asynchronous” and until 

recently was not possible to implement (Mason, 2006). The emerging class of self-paced BCI 

systems introduced in (Mason et al., 2000) is still in its infancy and the related experiments 

are usually performed in intensely restricted conditions (Sanei, 2007). In practice and due to 

the sources of signals, most BCI paradigms added timing restrictions to the system. Hence 

processing the signal and consequently the decision was done in predefined time intervals. 

This is known as synchronized BCI (Allison, 2012). Figure 1.15 is a rough demonstration of a 

self-paced paradigm (Mason, 2006). The aim of a BCI system is to detect the brain activities 

associated with physical or cognitive events and to translate them to the commands of interest. 

The detection will be easier when the timing information of those events is known. The 

conventional synchronous BCIs are based on the evoked responses which occur when the 

neuronal activity changes due to the presentation of a stimulus (Karat et al., 2010).  

 

 

 

 

 

Figure 1.15: In a self-paced BCI, as long as the BCI system is in the ON state, the user’s signal is processed and 

the system presents the corresponding feedback. In synchronized BCI, this can be done just in predefined 

intervals. 

The expression endogenous BCI system is used when a spontaneous brain activity 

affected by thinking about the particular mental task runs BCI. When the BCI system depends 

on external stimuli or evoked activity is called exogenous system (Graimann et al, 2010). 

1.13. Issues 

Although the last several years of research have produced numerous kinds of BCIs with 

as many patients and promising results, several fundamental challenges still remain in this 
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field (Allison, 2012). In order to leave the state of laboratory systems, the accuracy, 

information transfer rate, usability, and reliability of BCIs have to be improved significantly 

(Graimann et al, 2010). 

Reported success stories usually are limited to specific subjects under controlled studies 

in laboratories with expensive and time consuming experimental setups (Allison, 2012) 

(Mason, 2006). Each research group seems to follow its own strategy, paradigm and 

instrumentation to collect and analyze the data, although some cutting-edge researchers have 

tried to design general purpose and extendable frameworks to encourage others to follow a 

predefined structure. BCI2000 and Open VIBE are the most famous examples of these 

frameworks (Schalk, 2010) (Renard, et al., 2010). 

Another important issue in designing a BCI system is coping with significant subject to 

subject and day to day variations which leads to instability in the results (Blankertz et al., 

2006). Physiological aspects of brain activities are not completely understood. The nature of 

the original sources and the characteristics of the medium affect the process in an unknown 

manner and consequently cause different results even under comparable restricted conditions. 

Communication rates and accuracy might also vary with mood, emotional state and the degree 

of fatigue or concentration of the user (Thomas, 2008). Sought for control signals are usually 

merged with the background EEG and separating them from each other is another important 

step in systematic design (Sanei, 2007). Meanwhile, removing artifacts in the EEG is a 

continuous challenge and a consensus method for fully efficient computational is still missing 

(Tatum et al., 2011). There are even more issues when dealing with the EEG-based BCIs 

online, because of the limitation in time and storage space. From the computational and 

processing point of view, advanced machine learning algorithms and well-designed interfaces 

could improve the acceptance and functionality of the available systems.  

“BCI illiteracy” is a recent concept proposed by Blankertz et al. as a phenomenon in 

which approximately one fifth of individuals cannot learn to gain BCI control independent of 

their training or concentration level (Blankertz et al., 2006) (Vidaurre et al., 2010). Thus not 

only experience and learned adaptation but psychological and neurophysiological factors may 

modulate the ability to use a BCI. Hence it is important to be selective to prevent potentially 

unproductive or unnecessary training sessions (Allison, 2012).  

1.14. Overview of the dissertation 

Each BCI is tailored for a specific application regarding the hardware employed and the 

computational techniques and algorithmic approaches used to form its elements. In this 
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dissertation novel mathematical methods as well as design considerations are combined to 

shape the imaginary-based BCI for control applications. The current chapter of this research 

essay presented a discussion on the significance and capability of EEG signals as a diagnostic 

tool for application in modern healthcare. It also illustrated a general definition of brain-

computer interfacing for users not familiar with this relatively novel field of research. An 

overview of all required components is presented in the next chapter and then in each 

following chapter a standalone BCI application is described and evaluated. 

1.14.1. The main structure of BCI 

In order to gain insight into details, chapter 2 discusses the elements of a BCI system. 

Technically, BCI can be considered as a machine-learning system since the computer should 

learn how to decipher the associated EEG patterns. The relationships between given EEG 

patterns and the execution of the desired actions by the computer construct a pattern 

recognition or machine learning problem. Next chapter introduces the framework of the brain 

computer interface and addresses the theoretical design and machine learning aspects. The 

rest of this chapter covers the preprocessing techniques, features extraction approaches and 

classification methods proposed or employed in this dissertation. The first section discusses 

issues and challenges in processing brain signals and presents some solutions. The first 

section starts with an introduction to this concept. The functionality of the entire BCI system 

mostly depends on the choice of appropriate features and classifiers. I categorized each 

feature set based on the mathematical background and concepts. The first group consists of 

features based on power bands and spatio-temporal characteristics of the EEG signal. The 

next groups of features introduced in this chapter are statistical moments based on fractal 

components analysis, higher order statistics, and matching pursuit, which hold rather physical 

interpretations. In the following methods for classification of mental states are discussed. 

Popular classification techniques such as LDA, QDA and SVMs are explained and the idea of 

ensemble classification in introduced. Chapter 2 covers their background. This build the 

foundation of classifier employed in the next chapters.  

1.14.2. BCI Applications 

The next four chapters investigate Chapters 3 and 4 deal with BCI applications for hand 

grasp. These chapters use the previously recorded data to evaluate new signal processing 

algorithms for BCI. Chapter 3 presents an offline study to investigate fractal features over 6 

subjects. On the preprocessing section of this chapter I propose an online ocular artifact 

reduction based on independent component analysis (ICA) and higher order statistic in BCI. 
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The proposed method were evaluated its performance using the datasets in the chapters 3 and 

5. Results demonstrate that the proposed structure is a suitable alternative for online rejection 

of ocular artifacts from EEG signals without using an extra channel. ICA has, however, 

inherently some disadvantages. In chapter 4, I implement and evaluate an information-based 

method for online recognition and removal of ocular artifacts. This is a new kernel-based 

approach. Correntropy, a localized similarity measure, was used to evaluate the performance 

of the second method. We use the same method in chapter 6. 

In chapter 4 a simulated hand and a custom built robotic arm (LAnDRoH) are controlled by 

receiving commands from our BCI system. Employing scientific game-based therapies and 

technologies also constructs another aspect of new BCI generation. In chapter 5 we report our 

designed game based BCIs for robot control and chapter 6 describes a BCI for navigating an 

avatar in virtual world interfaces. The last chapter summarizes the prevalent foundation of this 

research field, looks to the future, and considers possible challenges. These systems were 

evaluated using different criteria such as sensitivity, accuracy and information transfer rate. In 

each chapter we apply common statistical tests to evaluate our proposed methods. 



Chapter 2 

BCI Design and the main structure of 

its elements 

 

 

2.1. BCI design 

Over the last four decades, progress in the field of brain computer interfacing research 

was increasingly reported and several research groups and organizations conducted new and 

advanced strategies to setup BCI studies. Advances in artificial intelligence techniques and 

development of robotics and bioengineering paved the way for realizing these kinds of 

systems in everyday life. From the computational side of view, a typical BCI structure is 

depicted in Figure 2.1. In the design of the BCI system the following modules are required: (i) 

data acquisition, (ii) preprocessing and artifact reduction, (iii) data analysis, (iv) decision 

making, and (v) performance evaluation of the system (McFarland et al., 2006).  

 

 

 

 

 

 

Figure 2.1: BCI chain: Typical structure for a brain computer interface. For the design of a BCI system the 

following modules are required: data acquisition, preprocessing and artifact reduction, data analysis, decision 

making, and performance evaluation of the system. 

2.2. BCI : A Machine learning problem  

The relationships between given EEG patterns and the execution of the desired actions 

by the computer construct a pattern recognition or Machine Learning (ML) problem 
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(Vuckovic et al., 2006) (Zhang, 2010). In the following we will have a closer look at the BCI 

design and its elements. By innovating and improving data analysis algorithms, EEG-based 

BCIs could be made a promising tool in many real world applications (Allison, 2012).  

2.2.1. Machine learning 

Learning is a general and widely used concept in the scientific literature (Zhang, 2010). 

According to the Britannica Concise Encyclopedia, it can be defined as a “process of 

acquiring modifications in existing knowledge, skills, habits, or tendencies through 

experience, practice, or exercise.” The formulation of a learning metaphor plays an important 

role in machine learning and specifies the type or the degree of intelligence (Zhang, 2010). 

Chris Argyris, the Harvard Business school psychologist, delineates the concept of learning as 

“detection and correction of error”, which in that “error” means “any mismatch between our 

intention and what actually happens” (Sepulveda et al., 2004). As Simon (1983), the winner 

of the Nobel Prize in Economic Sciences in 1978, states: “Learning denotes changes in the 

system that are adaptive in the sense that they enable the system to do the same task or tasks 

drawn from the same population more efficiently and more effectively the next time” (Zhang, 

2010). The majority of learning techniques deal with static systems, whose characteristics do 

not change over time (Lotte et al., 2007). However, a few advanced methods handle time 

varying systems (McFarland et al., 2006). In order to establish a rational framework of 

biomedical signal and image analysis, we consider this factor in a wide sense: Techniques 

developed to acquire knowledge artificially and to apply this knowledge in the future. Based 

on this approach a computer is taught to simulate a child’s brain instead of being programmed 

as an adult brain. This underpins the concept of machine learning.  

Statistical learning theory or machine learning is a computational science which deals 

with establishing a logical-functional relation between the finite set of inputs and 

corresponding outputs from an unknown but assumed system. Machine learning, which 

originated from a conference under that name held at Carnegie-Mellon in 1980, is nowadays a 

rich and progressing area of research (Vuckovic et al., 2006). In essence, a machine learning 

algorithm takes the input data and finds a fitted model or structure, statistically or 

probabilistically, which has some minimized predefined cost function over the trained data 

(Zhang, 2010). In this model intelligence or knowledge is extracted from the training data. 

Machine learning has a wide scope of applications including predicting outcomes or simply 

mining knowledge from the data. It employs a variety of techniques spanning from feature 

extraction and feature selection techniques to regression and classification approaches for a 
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wide set of algorithms such as support vector machines (Zhang, 2010), neural networks (Lotte 

et al., 2007), and genetic algorithms (Corralejo, et al., 2011). The topic is so rapidly growing 

that covering all literature available and all aspects in detail is not possible in this essay.   

2.2.2. State of the art 

Technically, BCI can be considered as a machine-learning system since the computer 

should learn how to decipher the associated EEG patterns. Several reviews and survey papers 

have been published to cover the widespread scope of machine learning in BCI (McFarland et 

al., 2006) (Graimann et al, 2010). Figure 2.2 shows four important steps of designing a BCI as 

a ML scenario.  

 

 

 

Figure 2.2: BCI as a machine learning problem consists of four steps. Signal processing starts with filtering and 

signal enhancement methods like artifact reduction, followed by the machine learning algorithm proper that 

includes 1) feature extraction, 2) feature selection, 3) classification, and 4) decision making techniques. The 

decision making step can be more advanced than just applying the output of the classifier directly to the external 

device.  

Some studies showed that the performance of EEG-based BCIs can be higher than it 

was expected at the beginning. However the achievements highly depend on the extensive 

subject training and it is not stable over time. Therefore similar to other ML problems a 

training phase has to be accomplished to estimate the required parameters. In this phase the 

subject is asked to follow the instructions and to perform the prescribed mental activities 

(Mason et al., 2005). Data should be collected in such a sufficient amount that the main 

assumption of machine learning is fulfilled (Steinwart et al., 2008). The available input and 

output sets should be able to describe the structure of relations in a sufficient way (Vapnik, 

1999). It is worth noting that in many other fields the challenge has shifted from this to 
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gaining insight from the bulky amount of data which has been already collected (Zhang, 

2010). The main goal, however, is not to decipher the system itself but to infer a valid 

mathematical relation or meaningful pattern which can be used for the prediction of future or 

unseen data (Steinwart et al., 2008).  

Research has shown that new neural circuitry might be created when the brain 

encounters new problems and challenges (Jones et al., 2008). In some BCI designs the output 

of the system is presented to the user as biofeedback in order to improve the functionality of 

the entire system (Velliste et al., 2008). This makes the BCI model more complicated, since 

with existence of the biofeedback, the entire system should be scrutinized mathematically as 

two adaptive interactive systems (Vidaurre, et al., 2011). Here we take the simplified mode 

into consideration.  

2.3. Main elements of a BCI 

In the current chapter the state-of-the-art on structure of a BCI system is introduced. 

After the preprocessing step, feature extraction, feature selection and classification techniques 

for BCI will be presented. Techniques are presented in details in the next chapters when they 

are applied to each application. In each chapter I will go through one BCI application. It will 

be noticed that although the façade of each system is different the main structure is still 

similar. 

2.3.1. Preprocessing 

Like other biomedical signals, EEG signals are susceptible to a large range of artifacts 

and noise such as muscle movements, eye movement and blinking, cardiac activity, breathing 

movements and equipment interference (Ramoser et al., 2000) (McFarland et al., 2006). 

Artifacts are defined as undesired changes in measured EEG signals that originate from other 

sources than the subject’s Central Nervous System (CNS) (Barlow, 1986). In general, artifacts 

can alter the shape of a neurological phenomenon or mimic any kind of electro cerebral 

activity (Verleger, 1991) that may drive an EEG-based system or make decision making or 

diagnostic interpretation difficult. Artifacts are the main source of quantitative miscalculation 

and misinterpretation during EEG analysis. Therefore, one of the first steps in analyzing EEG 

signals in context of BCI and mental state monitoring applications is to clean up the 

contaminated EEG signal by applying filtering, de-noising and artifact reduction methods 

categorized under preprocessing. In Figure 2.3 a normal EEG signal (a) and some common 

noise and artifactual distortions are depicted (McFarland et al., 2006). 
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Figure 2.3: A typical demonstration of (a) normal EEG signals, (b) EEG affected by eye-blinking artifact, (c) 

EEG affected by eye movement (d) EEG affected by the 50Hz power line noise, (e) EEG affected by EMG, (f) 

EEG affected by ECG noise. 

Generally artifacts are divided into the two groups of physiologic and extra-physiologic 

artifacts (Sethi et al., 2007). Physiologic artifacts arise from sources other than the brain but 

they are sill generated from the human body. They may be caused by eye blinks, vertical or 

horizontal eye movements, and muscle activity of different part of the body and in particular 

of vicinity of the head (e.g. tongue, jaws, face muscles) (Goncharova et al., 2003), respiration, 

rhythmic cardiac activity, and transpiration. Extra-physiologic artifacts originate from sources 

outside the body such as equipment and environment (Sethi et al., 2007)  (e.g., power-line 

noise (50/60 Hz), changes in electrode impedances, line humming or equipment interferences) 

(Barlow, 1986) (Ramoser et al., 2000).  

2.3.1.1. Filtering 

In those lucky cases, when noise originates from sources with distinct, but recognizable 

frequency contents, it may be suppressed by appropriately filtered attenuation. The desired 

signal thus becomes more prominent above the noise level. From the signal processing point 

of view, a filter is a mathematical operation applied to the original signal in order to extract 

the desired (selected) information from it (Diniz, 2008). Notch filters are common to reduce 

power line noise (50 Hz or 60 Hz). We used both Butterworth and Chebyshev filters, as 

classical IIR filter designs, in our BCI systems. Butterworth has maximum flatness in the 

pass-band and thus it restricts the other parameters in designing the filter. Chebyshev filters 

are optimum in the sense that their error between the ideal and the actual filter characteristics 

is minimized over the range of the filter; it has steeper roll-off at the price of more ripples. 

Elliptic filter design allows for ripples in both the pass-band and the stop-band, therefore has 

maximum degrees of freedom. The degree of freedom is higher in Chebyshev filters, since the 
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ripples might happen in the pass-band (for Chebyshev type I) or the stop-band (for Chebyshev 

type II). Indeed, both Butterworth and Chebyshev filters are special cases of the elliptic filter. 

For the purpose of comparison with other linear filters. Figure 2.4 (b) shows the general 

frequency responses of the four common filters using the same filter order (number of 

coefficients). 

 

(a) 

 

 

(b) 

Figure 2.4: a) Ideal low-pass filter (red hashed line) and a typical filter and its specifications, b) General 

frequency responses of four common filters. Filter type determines the general form of the frequency response. 

Other parameters like order of the filter, cut-off frequency, pass band and stop band ripples also affect the 

frequency response. 
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In EEG signal processing high-pass filter is usually used to remove drift due to sweating 

and low-pass filtering is the common approach for eliminating the interference from the 

power line. In all of our BCI application we applied band-pass Butterworth and Chebyshev 

filtering between a low frequency value (under 0.5) and a high frequency value less than 45 

Hz. These filters don’t have perfectly linear phase, but they are robust and have relatively 

small group delay. 

2.3.1.2. EMG artifact filtering 

In contrast to the non-physiological artifacts, physiological ones such as 

Electrooculogram (EOG) and Electromyogram (EMG) have generally undetermined shapes 

and therefore, they are far more difficult to deal with. Moreover, controlling them during 

signal acquisition is not easy (Goncharova et al., 2003). The two physiological artifacts that 

have been examined most are ocular (EOG) and muscle (EMG) artifacts (Ramoser et al., 

2000) (McFarland et al., 2006). Fortunately, the latter type of artifacts can usually be 

minimized by proper filtering, shielding, etc. Any body movement including head, jaw or 

even tongue movements can cause EMG disturbances in the brain signal. EMG artifacts have 

a broad frequency range, with maximum frequency higher than 30 Hz (Anderer et al., 1999). 

In a BCI system a direct relationship exists between the task difficulty and the amount of 

EMG artifacts produced by movement of facial muscles (Waterink et al., 1994).  

2.3.1.3. Eye blink artifact reduction 

EOG artifacts are patterns with high amplitude in the theta range mainly caused by 

blinking or floating movements of the eyeball in closed eyes (Anderer et al., 1999), or high-

frequency patterns in the gamma range of large or small amplitudes when eyes are open 

caused by goal-directed eye movements ("saccades") (Keren et al., 2010) (Plöchl et al., 2012). 

They in particular are inevitable in long-term EEG recordings and can alter the electrical field 

around the eyes and consequently propagate over the scalp and mislead the diagnosis in 

clinical applications (Woestenburg et al., 1983) (Tatum et al., 2011). Since the artifacts can 

mimic any kind of electro cerebral activity, they may easily deflect the functionality of 

systems based on EEG analysis (Waterink et al., 1994). They can also erroneously yield to an 

unintentional control of the device (Wolpaw et al., 2002). From this point of view, artifacts 

seriously impede the concept of applying EEG as a control source for BCI. In online BCI 

systems, artifacts can impact the performance, precision, and reliability of the system either 

during Intentionally control (IC) periods by wiping out the shape of the desired neurological 
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event or during the Nonintentional control (NC) by mocking the properties of the neurological 

aspect (Erfanian et al., 2005) (McFarland et al., 2006). There are various methods of handling 

artifacts in offline analysis published, ranging from simple avoidance to automatic rejection 

(Ramoser et al., 2000), auto-regression (Anderer et al., 1999) and Independent Component 

Analysis (ICA) (Barbati et al., 2004) (Makeig et al., 1996). But dealing with real world online 

BCI scenarios demands more efforts. Finding a robust and fully reliable solution, especially in 

online and long term recordings, is still a challenging problem (McFarland et al., 2006) (Sethi 

et al., 2007) (Tatum et al., 2011). The targeted artifacts in signals have to be removed 

completely and the related neurological phenomenon should not be distorted by the artifact-

removal algorithm (Fitzgibbon et al., 2007) 

2.3.1.3.1. Conventional methods of dealing with ocular artifacts  

Artifact avoidance is the primary method in that during the experiments users have to 

avoid moving their bodies or blinking (Anderer et al., 1999). It has obviously the advantage of 

creating the minimum number of artifacts during data collection and consequently demanding 

the least computational load among all the artifact handling methods. However, it has two 

drawbacks. First, because of the long period of experiments in an online BCI system, it is 

usually very difficult to collect the sufficient amount of data without occurrence of any 

artifacts. Second, it is possible that extra attention to avoid artifacts causes an additional 

cognitive task for the individual. For instance, there are studies that show the amplitude of 

some evoked potentials are affected when the subjects intentionally refrained from eye 

blinking (Verleger, 1991) (Ochoa & Polich, 2000).  

Manual artifact rejection could be considered as the simplest way of handling brain 

signals contaminated with artifacts. It refers to the process of rejecting that part of signals 

which is affected by artifacts. Compared to the previous method, subjects can take part in the 

experiments and perform the required tasks with more convenience. As the artifacts have 

distinguishable patterns carried in the EEG signal, thus, they can detected visually based on 

their topographic and spectral properties by experts (Barlow, 1986). Manual rejection of 

artifact-contaminated epochs has been very popular for offline analysis in EEG signal 

processing and also in the BCI field (Vaughan et al., 2003). Each normal person usually 

blinks around 20 times per minute and each blink has lasts between 300 and 500 milliseconds 

(Stern et al., 1984) (Iwasaki et al., 2005). This method is not applicable in online BCI 

recording at all and comes at the cost expense of exhaustive human labor and the selection of 

contaminated trials can be in some extent subjective.   
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Using an automatic rejection algorithm, the BCI system automatically discards the EEG 

trials contaminated with predefined types of artifact. For instance, by setting a predetermined 

threshold, the system considers the epoch as the artifact-contaminated one, when its amplitude 

exceeds the threshold and automatically rejects the epoch (Barlow, 1986). Since the rejection 

algorithms are usually based on a simple criterion, they can recognize and exclude the epochs 

only with a strong presence of artifacts. Consequently the artifacts may still sustain in the so-

called clean data. This fact poses a huge drawback for online applications of a BCI system 

(Ramoser et al., 2000) (Romero et al., 2008). 

The second disadvantage of the artifact rejection is the extensive data loss it causes. 

Extracting and removing artifacteous signals puts quite a computational load on the system 

and in addition because of eliminating the contaminated signals will render it unusable for 

real-time and online BCI control (Romero et al., 2008). 

In order to overcome the problem, artifact correction has been introduced (Berg et al., 

1994). This method is applicable in online BCI recording and can also be determined due to 

extracted information either from EOG or directly from EEG channels.  

In most reported BCI systems in literature the employed artifact reduction techniques 

are not reported or are limited to calculating a predefined threshold (Fatourechi et al., 2007). 

However, there have been suggestions for online correction of contaminated data in order to 

not ignore a considerable part of recorded data during the experiment due to artifacts 

(Ramoser et al., 2000) (Erfanian et al., 2005). Some studies are focused on automatic artifact 

reduction by exploring the effect of feature extraction techniques (Winkler et al., 2011), blind 

source separation methods (Fitzgibbon et al., 2007), regression methods (Ng et al., 2008) and 

adaptive techniques (Romero et al., 2008). In this dissertation two different methods will be 

applied. In the first section I will propose a method based on independent component analysis 

(ICA) and higher order statistic and evaluate its performance in chapters 3 and 5. In the 

second approach I will introduce and evaluate an information-based method for online 

recognition and removal of ocular artifacts and apply them for BCI application in chapters 4 

and 6.   

2.3.1.3.2. Automatic Artifact correction with ICA 

Approaches based on independent component analysis (ICA) have proved to be useful 

tools for artifact reduction in EEG signals (Makeig et al., 1996) (Delorme et al., 2001) (LeVan 

et al., 2006) (Winkler et al., 2011). Makeig introduced the applicability of independent 

component analysis for EEG signals with the assumption that artifact sources are independent 

from EEG sources (Makeig et al., 1996). ICA is a statistical technique for transforming an 
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observed multidimensional signal into its components (Makeig et al., 1996), which can be 

categorized under blind source separation (BSS) group of algorithms. ICA tried to decompose 

a multivariate signal into all its additive subcomponents, which are as much as possible 

statistically independent from each other (Makeig et al., 1996). The “Cocktail party problem” 

is a classic example of ICA (Haykin, et al., 2007), where data is recorded form microphones 

mounted inside a room and components are speech signals of people talking simultaneously in 

the room. In the typical ICA scheme for artifact removal the original signal is decomposed to 

its Independent Components (IC), among these components those which better represent the 

dynamics of artifacts are visually or automatically distinguished and rejected (Makeig et al., 

1996). Finally the remaining ICs are remixed to form an artifact free signal (Ng et al., 2008) 

or used for classification purposes (Graimann et al, 2010) (Winkler et al., 2011).  

Assume � = (��, ��, … , ��)
 is an observed zero-mean m-dimensional random variable and y 

is the result of its projection by �( .) : 	 = �(��. ��) . Among all possible functions we 

consider a linear transform. Assume � = (��, ��, … , ��)
  is an n-dimensional matrix 

including the independent components of x.  

� = �. � = ���
�

���
. ��																																																												(2.1) 

The mixing matrix A includes basic vectors	a� . Mathematical calculation is done by 

adaptively estimating the optimum ω�	vectors and sources simultaneously, where � = ���. 

Onton and Makeig (2006) described a method based on ICA to minimize eye blinking 

artifact (Onton et al., 2006). They suggested that the spatial localization of the components is 

important for recognizing the component containing EOG artifacts. By observing each 

component they selected the IC which includes the strongest blinking artifacts. This 

component is then set to zero before inverting the data to the EEG domain. Figure 2.5 

describes the process. They also reported that the EOG artifact in lower frequencies (0–2 Hz) 

may not be corrected completely after this process and significant statistically differences can 

be observed in signals before and after artifact reduction. The cost function is defined either 

based on maximizing the nongaussianity of s components or based on minimizing their 

mutual information (Sanei, 2007). Mutual information is minimized when the entropy of the 

elements of u are maximized making them as independent as possible (Graimann et al, 2010). 
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Figure 2.5: ICA decomposition: The procedure of artifact reduction using independent component analysis. First the 

multichannel EEG signal is transformed to components which are statistically as independent as possible. The component 

that shows artifact waveform is set to zero. The components are then mixed again to build artifact-free signals (Reprinted 

from (Makeig et al., 1996)). 

The sources are then recovered by u� = ω! ∗ x. In the over complete case that n % & 

there is still a solution which can be calculated by pseudo inverse techniques (Makeig et al., 

1996). Blind source separation by Independent Component Analysis is thought to give good 

results on demixing signals, as long as the independence assumption holds true. Principally 

ICA performance depends on the length of the data (Makeig et al., 1996). ICA has inherently 

some disadvantages. Despite all attempts on this realm, in most cases the algorithm is not 

suitable for a robust online and adaptive scheme. The method cannot identify the actual 

number of source signals, nor a uniquely correct ordering of the source signals, nor the proper 

scaling or sign of the source signals. As an alternative we implemented an adaptive 
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information filter and its performance was compared to a LMS adaptive filter and the ICA-

based approach.  

2.3.1.3.3. Automatic Artifact correction using Adaptive filter 

 
Originally suggested by Wiener an adaptive filter optimally recovers the original 

message from a signal contaminated by noise for control and prediction applications (Haykin, 

1996). An adaptive filter (AF) is a supervised learning system which requires two inputs, the 

desired signal and the reference input (Haykin, 1996). An adaptive noise cancellation has a 

very similar structure. Based on a reference signal, it adaptively eliminates the noisy part of 

the input signal, which is assumed to be highly correlated with the noise signal (Diniz, 2008).  

Based on adaptive filtering theory, conventional adaptive noise cancelling systems exploit a 

criterion called mean square error (MSE) in order to adapt the filter weights. Remove the 

noise component is achieved when the weights converge to an optimum solution in the 

available data space (Haykin, 1996). Figure 2.6 demonstrates the structure of a typical noise 

canceller. The error signal is the difference between the outputs and the desired signal (Diniz, 

2008).  

 

Figure 2.6: Adaptive filter with the application of noise cancellation is a well-known method in communication to reduce 

noise from the signal. 

For many practical applications, the efficiency of MSE as the optimum criteria can be 

argued (Principe, 2010), especially, where the target signal is non-stationary and non-

Gaussian signal such as EEG (Arndt, 2001). Indeed, the MSE minimization is just optimum 

for Gaussian distributed errors, since it only can explore the second-order moment of the error 

distribution. In cases where the assumption of Gaussianity is not valid for the error 

distribution, study of alternate cost functions for adaptation makes complete sense (Principe, 

2010). In this dissertation we consider an approach based on information-theoretical concepts, 

and consider the error entropy criterion (EEC). Error entropy is an analytical expression that 

involves the probability density function (PDF) of the error. The function is able to capture all 
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the underlying dynamics of the adaptive system which we are coping with. In order to 

eliminate as much artifact information as possible from the EEG signal, we also consider an 

adaptive scheme for this problem (LeVan et al., 2006). In chapter 4 we will describe the 

implementation of an entropy-based adaptive noise canceller for eye blink artifact reduction 

and present the results obtained while testing the filter on pre-recorded data in a simulated 

online paradigm. The later method is up to 5 times faster than an ICA-based approach. Since 

the technique used is based on information theoretic learning, we borrowed the metric 

correntropy from information theory (Weifeng et al., 2006) to measure the performance of our 

proposed system. Correntropy is defined based on kernel methods and information theoretic 

learning and is a measure for the localized similarity. 

2.3.2. Feature extraction 

Selecting the appropriate features and classifiers affects recognition rate and the 

efficiency of BCI systems (Lotte et al., 2007). This section aims to cover the major ideas in 

this important era in modern science and nails it down in more advanced issues of feature 

extraction and selection in BCI. In order to map the brain activity to motor behavior, the main 

key is to extract the appropriate spatiotemporal and spectral features. In the following we 

present a comprehensive overview of each method employed in our work. Literally each 

brain-computer interaction is a unique problem to be solved. Here our attempt is to extract an 

appropriate feature set and classification approach to solve this marvel. We exploited several 

feature extraction schemes for the current BCI project. Fractal components, higher order 

statistics, and time-frequency analysis have been applied. 

Features describe the relevant information embedded in the EEG signals. The problem 

of unknown parameters or possible features that could be extracted from the brain signal to 

show the exact brain state is one of the main difficulties in design of BCI systems. Despite the 

large number of features that were sought previously in the field of BCI design (Koprinska, 

2009), current EEG-based BCI systems are still not in at a satisfactory level. Thus the BCI 

community has invited research groups to explore quantification methods and to investigate 

alternative and meaningful features to improve the performance and reliability of BCIs 

(McFarland et al., 2006). Due to the nature of brain physiology, each person has a unique 

brain mapping affected by his/her genetics, environment and training during life. For 

example, folding of cortex differs between any two persons (even identical twins) (Sanei, 

2007).  
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In addition relevant functional mapping differs in each individual across different 

experimental sessions and even sensor locations differ across recording sessions. The fact that 

the features extracted from brain signals are person-specific, task-specific, and hardware-

specific (Lotte et al., 2007), makes the finding of a unique solution of best features for BCI 

rather complicated and cumbersome. Hitherto several different feature groups have been 

exploited in the context of BCI. According to the type and strategy of BCI design different 

feature sets are extracted and employed (Boostani, et al., 2004) (Koprinska, 2009) (Corralejo, 

et al., 2011). The method for constructing the feature space is highly tentative (Schouenborg, 

2011). The final goal is to improve the classification results (Alpaydin E., 2004). Table 2.1 

summarizes popular feature extraction methods proposed by different research groups for 

each specific application.  

Table 2.1: A summary of feature sets applied in BCI research 

Research 

group 

 

Strategy 

 

Features 

 

Application 

 

Reference 

 

 

Berlin BCI 

 

Imagination of 

movement, P300 
Time-frequency Gaming, Car control 

(Blankertz et al., 2002) 

(Dornhege et al., 2007) 

(Haufe et al., 2011) 

 

Graz BCI 

 

Imagination of 

movement 
Power band, AAR 

Prosthesis, 

wheelchair control 

(Pfurtscheller et al., 2001) 

(Vidaurre, et al., 2005) 

(Graimann et al, 2010) 

 

Wadsworth 

 

SSVEP, 

Cognitive 

 

Power band 
Cursor control 

(Schalk et al., 2007) 

(Allison et al., 2008) 

 

Tübingen 

 

SCP, 

P300 
Time-frequency 

Virtual keyboard, 

TTD 

(Birbaumer et al., 2000) 

(Hinterberger et al., 2003) 

Freiburg 

BCCN 

Limb movement 

ECoG 

 

Time-frequency 

 

Arm and finger 

movement 

prediction 

(Mehring, et al., 2003) 

(Ball, et al., 2004) 

 

British 

Columbia 

 

Self-paced 
Time-frequency 

 
Cursor control (Mason, 2006) 

 

Warsaw 

 

Cognitive Wavelet, HOS Control (Daly I., 2012) 

 

Amsterdam 

 

 

Emotions 
Time-frequency 

 

Control 

(Molina, et al., 2009) 

(Curran E et al., 2004) 

 

Here I categorize each feature set which I suggested in my PhD study, based on the 

mathematical background and concepts and in each following chapter I will combine these 

sets of features with different classifiers to evaluate the entire system in an online scheme. It 

is worth adding that some of these feature sets have been used for offline studies by other 
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groups but the innovation in my work is to implement fast algorithms in order to extract them 

from ongoing brain signals in an online BCI.  

The first group consists of features based on power bands (Townsend, et al., 2006) and 

spatio-temporal characteristics of the EEG signal (Ramoser et al., 2000). The next groups of 

features introduced in this dissertation are statistical moments based on higher order statistics 

(Johansen, et al., 2000) (Kołodziej, et al., 2011). Fractal components analysis (Pereda, et al., 

1998) (Boostani, et al., 2004) and matching pursuit (Mallat, et al., 1993) will also be 

investigated, which hold rather physical interpretations.  

2.3.2.1. Feature extraction based on joint time-frequency analysis 

EEG waveforms can be categorized according to their amplitude, frequency and shape. 

Several features based on time, frequency or space domains have been examined in BCI 

research (McFarland et al., 2006) (Koprinska, 2009) (Corralejo, et al., 2011). Recently some 

review papers presented a comprehensive description and detailed mathematical formulation 

for each method applied in the corresponding BCI literature (Huan, et al., 2008) (Koprinska, 

2009). These methods usually consider one or two dimensions of the whole space. The 

common feature groups in time and frequency domains can be listed as: Amplitude values of 

EEG, band power (Vidaurre, et al., 2005), autoregressive and adaptive autoregressive (AAR) 

parameters estimated with recursive least square (RLS) (Dornhege et al., 2007) (Sanei, 2007), 

inverse model-based features and energy density maps (McFarland et al., 2006). 

The spatio-temporal oscillations in EEG waves are indicative of brain functional 

activity (Society of Neuroscience, 2008). Both rhythmical and transient features exist in the 

EEG signal (Sanei, 2007). Time-frequency features such as power spectral density (PSD) 

values show promising results in BCI applications (Pfurtscheller, et al., 2000). Furthermore, 

the topography of the electrodes on the scalp from where the data is recorded contains spatial 

information (Binnie et al., 1982). Most atomic decompositions applied on the EEG signals 

consider only two out of the three inherent dimensions available in the data, e.g. space–time 

decompositions by principal component analysis (PCA)(Lagerlund, et al., 1997), independent 

component analysis (ICA) (Koprinska, 2009), and spatial filters (Townsend, et al., 2006), 

time–frequency analysis with the use of windowed Fourier transform (Nicolas-Alonso, et al., 

2012), wavelet transformation (Kołodziej, et al., 2011) and matching pursuit algorithm, just to 

name a few (Mallat, et al., 1993). Recently, new attempts at finding a multidimensional 

(space–time–frequency) atomic decomposition of the EEG have been made (Cheron, et al., 

2007) in the way of having a complete description of the electrical activity of the underlying 
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neural masses (Qian, et al., 1996). In any time-frequency signal analysis, estimating the 

energy density suffers from a trade-off between the time and frequency resolution, which is 

also known as uncertainty principle (NaitAli, 2009). A promising alternative for time-

frequency analysis of EEG signal is matching pursuit (MP). In the MP algorithm, in contrast 

to conventional approaches such as the short time Fourier transform (STFT) (Cheron, et al., 

2007) or wavelet transform. (Kołodziej, et al., 2011), local features are sought out of a 

dictionary to be locally adapted a time-frequency trade-off to the structure of analyzed signal. 

MP can provide better time-frequency resolution thanks to its local adaptation to transient 

patterns in the signal (Sanei, 2007).  

2.3.2.2. Feature extraction based on higher order statistics 

The conventional techniques of statistics rely on the first and second moments of the 

sample, e.g. arithmetic mean and variance (Fukunaga, 1990). The idea of applying higher 

order statistics to analyze EEG signal was originally proposed by Kim and Power (1979). The 

impetus behind this is that the traditional second-order measures are not sufficient to model 

most of the natural processes such as biomedical signals. For instance the autocorrelation 

function and its Fourier Transform (FT), known as power spectrum (Wiener-Khintchine 

theorem), are not able to capture all information hidden in the signal. Unlike power spectrum, 

higher order spectra contain information about random processes. 

The brain activity in different biological and physiological situations may combine the 

local sources in a different scheme and cause the entire black box to act as a nonlinear system. 

The EEG signal is a result or unnatural output of this mixing system. Although the 

assumptions of stationarity, Gaussianity and linearity have been applied successfully on some 

practical problems regarding EEG signals (Allison, 2012), it may lead to better or more 

accurate estimations when nonlinearity concerns or higher order statistics are considered in 

the solution (Greb, et al., 1988) (Johansen, et al., 2000). EEGs are quasistationarity signals. It 

means, they can be considered stationary only within short periods of the data. In addition, the 

Gaussian assumption is valid only during the normal brain states and it may not be valid 

anymore when the person has intensive mental and physical activities (Sanei, 2007).  

Greb and Rusbridge presented a detailed report on the non-linear interactions between 

different modes of oscillation using bispectrum and bicoherence (Greb, et al., 1988) which 

can be applied on visually evoked potentials (Johansen, et al., 2000) or used as features for 

BCI (Kołodziej, et al., 2011). Bispectrum analysis was applied on focal ischemic cerebral 
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EEG signal using third-order recursion method (Zhang, et al., 2000). In chapter 3 we will 

propose and evaluate a set of features based on these definitions. 

2.3.2.3. Feature extraction based on fractal components 

In the absence of the external stimulation, brain activity is typically unpredictable and 

aperiodic. However, the question of whether or not the brain activity is truly chaotic cannot be 

answered based on a mathematically stringent proof (Krasner, 1990). Yet, it eminently has 

been claimed that EEG signals are examples of fractal geometry (Boostani, et al., 2004) 

(Phothisonothai, et al., 2007). If a variable as a function of time undergoes characteristic 

changes that are similar regardless of the time interval over which the observations are made 

the underlying process is defined as a fractal (Mandelbrot, et al., 1968). The existence of 

natural self-similarity in different scales of systems is referred as chaotic. Many definitions 

including geometric and dynamical measures have been developed to describe fractal 

systems, e.g., Mandelbrot and van Ness set (Mandelbrot, et al., 1968), Hausdorf dimension, 

Higuchi’s fractal dimension (Higuchi, 1988), Hurst exponent, largest Lyapunov exponent 

(LLD), and correlation dimension (CD) (Mandelbrot, 1982). The fractal dimension is a 

popular and informative parameter to characterize a chaotic system. Finding the fractal 

dimension from data observations is usually done by analyzing of time series (Elbert et al., 

1994) (Boostani, et al., 2004). Fractal dimension is a common mean to estimate the scale 

independent complexity and also irregularity in the biological system over either space or 

time (Phothisonothai, et al., 2007) (Georgiev, et al., 2009). Esteller et al. reported a 

comprehensive comparison amongst several well-known approaches using both intracranial 

EEG and synthetic data (Esteller, et al., 2001).  

Chaos theory or chaotic computation is an advanced and effective method especially to 

describe and predict the complex self-organizing systems and natural phenomena as 

encountered in astronomy, weather forecast and biomedical signal processing. There are some 

measures defined based on chaos theory which can represent the nonlinear behavior of EEG 

signals. One of the most important dynamical invariants is the Lyapunov exponent (Sanei, 

2007). Multifractal cumulants and predictive complexity of the EEG time series are 

introduced and compared to the power band features as the most common feature set in for 

EEG based BCIs (Brodu, et al., 2012). The first new feature, multifractal cumulants measures 

the signal regularity and is a statistical measure for inter-frequency band relations. On the 

other hand, predictive complexity determines how complex the signal is by measuring the 

difficulty in predicting the future of the signal knowing its past (Brodu, et al., 2012). A new 
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method for extracting the fractal components in the frequency domain was used in chapter 4 

as a feature set for BCI. 

2.3.3. Feature selection techniques 

The goal of this element in BCI design is to find a set of features or attributes out of the 

EEG signal which contain the most useful information about the brain state. The combination 

of different feature sets with different classifiers may lead to better results in BCIs (Lotte et 

al., 2007). In the following we will present relevant feature selection tools. Applying the 

feature selection method significantly shrinks the feature space and may improve the 

classification results. 

Any classification method uses a set of attributes or features relevant to the task to 

categorize the input data. The dimension of this feature set can rapidly increase depending on 

the number of attributes extracted from the data (Dash, 1997). It is recommended that the 

number of training samples per class exceeds the dimension of the dataset by ten (Alpaydin 

E., 2004) (Zhang, 2010). This is however not applicable in real-time problems. The "curse of 

dimensionality" is a serious problem in machine learning (Cortes, et al., 1995). Thus, feature 

selection plays a critical role in pattern recognition problems (Dash, 1997). In BCI 

applications the feature space grows very fast by adding the recorded data from multichannel 

recording. Feature selection or variable subset selection is a technique to determine the 

optimum subset of features for constructing the most robust and efficient learning model. The 

approach is more effective when the number of features or attributes is much higher than the 

number of data samples. If the dataset is large, it is reasonable to apply the feature selection 

algorithm and remove the irrelevant and redundant features from the data. It not only helps to 

mitigate the effect of the curse of dimensionality and to speed up the learning, but also it may 

boost the generalization capability and improve the performance of learning models. 

Several methods have been proposed to estimate the usefulness of a feature set for 

predicting the target variable in data mining and machine learning (Dash, 1997) (Huan, et al., 

2008). Among them are correlation-based feature selection (CFS) (Huan, et al., 2008), Relief 

(Huan, et al., 2008), information gain ranking (IG) (Dash, 1997), genetic algorithm 

(Corralejo, et al., 2011) and Maximum relevance minimum redundancy (mRMR) (Peng et al., 

2005) all of which have been applied successfully on different feature spaces extracted from 

EEG signals (Koprinska, 2009). There are two general schemes for the feature selection. In 

the Filter evaluation method, features or feature subsets are evaluated independently of the 

classification algorithm. In the Wrapper evaluation technique, feature subsets are evaluated 
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based on a particular target classification algorithm (Koprinska, 2009). So the filter and 

wrapper schemes differs exclusively their relation with the classification algorithm. To 

identify the most prominent features, the state-of–the-art method, mRMR, will be investigated 

over our datasets. By altering the number of features, we selected several feature subsets. The 

performance of each subset was then evaluated. We applied the introduced feature selection 

method to reduce the feature space and meanwhile to improve the classification results. 

Figure 2.7 shows an interesting example of how irrelevant features may lead to 

misclassification and why feature selection is critical to minimize the classification error. 

Shapes with a small circle inside belong to one class and the ones without a circle belong to 

another class. Existence of other irrelevant or redundant information can cause 

misinterpretation by the classifier (Koprinska, 2009) (Peng et al., 2005). 

 

Figure 2.7: An example of impurity based feature evaluation (Adopted from (Huan, et al., 2008)) 

 

2.3.4. Classification 

The techniques related to the feature space and their properties as they pertain to BCI 

application were covered in the previous section for a subset of potential feature extraction 

methods. In the current section, we draw our attention to the next important step in the 

machine learning problem. The performance of machine learning systems depends on both the 

feature extraction and the classification algorithm employed (Lotte et al., 2007).  

Many algorithms of varying complexity have been reported for the purpose of 

classification in BCI literature (Sanei, 2007). Lotte et al. present a comprehensive overview 

on theoretical aspects of classifiers employed in the BCI field until 2006 (Lotte et al., 2007). 

Based on the No-Free-Lunch theorem there is always a tradeoff between bias and variance, 

hence the generalization of a classifier cannot be determined without considering the entire 

feature space. It means, in practice, there is no such best classifier and the relative better 
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classification accuracy is calculated only on a predefined set of data, which can be examined 

experimentally (Soria Frisch, 2012) (Zhang, 2010). In our BCI applications we considered 

stable classifiers which in theory have a high bias and low variance (Lotte et al., 2007). 

2.3.4.1. Bias-variance tradeoff 

The major impetus behind the classification section of each BCI is to estimate a certain 

aspect of cognitive state from the brain signal (McFarland et al., 2006). In order to recognize 

and classify the different cognitive states, it is important to define each state carefully and 

determine if it is compatible with the task during the EEG measurements. This can pave the 

way for finding the best solution in a certain situation. The question is what method works 

best and what accuracies can be achieved. Let’s assume that a mathematical model with 

function (�, ') maps an observation x in D dimensional feature space to a discrete label 

∈ 	 )1,⋯ , +, , where C represents the label of classes. The values for parameters w of the 

model are estimated using N observations along with their respective label )�-, '-,	, . =
1, … , / called the training set. The inferred model should possess predictive, descriptive and 

generalizing properties. If 0	is the output of the classifier and �(�)	is the label, the Mean 

Square Error (MSE) of classification outcomes can be decomposed in three terms (Breiman, 

1998) (Friedman, 1997): 

123 = 3�(�(�) − 0	)�	�																																																																	(2.2) 
= 3 560 − �7(�) + �7(�) − 3��(�)� + 3��(�)� − �(�)9�: 

= 3;(0 − �7(�))�< + 3;(�7(�) − 3��(�)�)�< + 3�(3��(�)� − �(�))�� 
= /=.>?� + @.�>�(�(�)) + A�B(�(�)) 

MSE can be broken down into three components that are familiar: squared noise, variance and 

squared bias. Such decomposition is always possible (Hastie et al., 2008) and the equation 

shows three possible sources of classification error: 

• Noise: The first term represents the noise within the system.  

• Bias: The second term is known as the divergence between the estimated and the best 

mapping.  

• Variance: The last term reflects the sensitivity to the training set used. 

In the above equation, the noise term is an irreducible error, because it arises from the 

inherent structure of the system. Therefore, both the Bias and the variance have to be kept low 

in order to minimize the overall classification error. Nevertheless, it is logically not attainable 

because of the natural bias-variance trade-off in each classifier structure (Hastie et al., 2008) 
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(Zhang, 2010). The bias component is the squared difference between the true mean and the 

expected value of the estimate, 3;(�7(�) − 3��(�)�)�< , and depends on the type of the 

function f (linear, quadratic . . .). The expectation demonstrates the averages of randomness in 

the training data (Alpaydin E., 2004). The fact is that high variance classifiers tend to be 

unstable, while high bias and low variance classifiers are usually the stable ones (Soria Frisch, 

2012). When the model complexity increases, the training error tends to decrease and it means 

we try harder to fit the data to the model. The error in the test set should always be 

comparable to the error in the training set (Principe, 2010). However, over-fitting will happen 

when the model adapts itself too closely to the training data. In this case, the test error gets 

larger and generalization decreases (Figure 2.8). Under-fitting, in contrast, happens when the 

model is too simple to extract the structure of the data (Friedman, 1997). 

 

Figure 2.8: In order to minimize the classification error on the test samples the bias-variance trade-off should be 

considered.  Models with higher complexity tend to have lower bias and higher variance (Adopted from (Hastie 

et al., 2008)). 

For the same reason, in some cases reported in literature, simple classifiers often 

outperform the more complex ones for BCI application (Lotte et al., 2007). Training sets 

collected in different sessions are plausible to be rather different. Therefore, for BCI systems 

a low variance classifier can be an appropriate solution to cope with the variability of input 

data. Combination of classifiers (Breiman, 1998) and regularization are two techniques to 

improve stabilization and decrease the variance (Lotte et al., 2007). Recently, ensemble 

classifiers have attracted the attention of machine learning researchers and in the BCI field a 

chapter in a very recently published book from (Allison, 2012) introduces an extensive 

overview on this concept (Soria Frisch, 2012). Taking inspiration from this overview, I 

applied some selected methods successfully in my BCI designs. In the following, I will 

initially focus on some materials that are commonly applied in brain signal analysis for BCI 
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classification purposes. The concept of the combination of classifiers known as ensemble 

classifier is explored in the last section of the chapter. My contribution is then described, 

where the ensemble classification is used to enhance the performance of the BCI system 

2.3.4.2. Supervised and unsupervised learning methods 

Generally there are two types of learning for classifiers: with or without supervision. 

Supervision is an important factor that influences learning. The existence of a tutor or 

supervisor enables direct feed-back about correct answers usually in each step of training to 

improve the performance (Steinwart et al., 2008). In supervised learning, the supervised 

discrimination or classification is based on past observations with specific class information 

known as a label. Supervised classifiers such as Fisher’s linear discriminant analysis (Müller 

et al., 2003), regularized discriminant analysis (Blankertz et al., 2002), and support vector 

machines (SVMs) (Cortes, et al., 1995) have been employed widely in developing BCI 

systems. In the BCI structure, a supervised learning paradigm includes a cue from the 

program side to give the user hints. So the subject is not intentionally free to think about the 

desired command. A classifier that does not use any class label is considered an unsupervised 

learner. This type of classifier clusters the feature space based on the common attributes they 

share. The unsupervised classification algorithms used in BCI research are self-organizing 

feature maps (SOFM) (Liu, et al., 2005), and principal component analysis (PCA) (Jung T-P. 

et al., 1998), the hidden Markov model (HMM) (Argunsah, et al., 2010), logistic regression 

(Soria Frisch, 2012), and hierarchical clustering (Soria Frisch, 2012). Information theoretic 

principles play an important role in many of the unsupervised learning methods (Principe, 

2010). Other popular classification techniques have variations in both supervised and 

unsupervised fashions; K-nearest-neighbors (KNN) (Manocha et al., 2007), artificial neural 

networks (Breiman, 1998) (Rakotomamonjy et al., 2005) and Bayesian classifiers 

(Pfurtscheller et al., 1993) (Lotte et al., 2007) to name a few (Fukunaga, 1990). 

Real-time classification and pattern recognition is an issue in biomedical signal 

processing, and many research groups attempt to apply adaptive approaches. Neural networks 

(Bishop, 1995) and adaptive Bayesian classifiers (Tipping M., 2001) (Lawrence et al., 2001) 

are very common. In this dissertation, five classification algorithms, representing different 

learning paradigms, will be employed. These algorithms are SVM and LDA (2.3.4.3), QDA, 

and RFD. 
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2.3.4.3. Well-known classifiers: SVM and LDA 

As earlier discussed, minimizing the error of training alone (also called empirical risk) 

does not guarantee the design of an optimum classifier. Regularization techniques were used 

since the year 1960 to establish a compromise between the complexity of the model and its 

aptitude for generalization (Cortes, et al., 1995).  The theory was initially formalized by 

Vladimir Vapnik and Cortes in the first introduction of the support vector machine (SVM) 

idea in 1995. In the 1990s, many researchers greatly developed the idea (Friedman, 1997) 

(Vapnik, 1999) (Chang et al., 2001). SVM is a mathematical technique with attractive features 

and seems to have promising empirical performance in a wide variety of applications (Sanei, 

2007) (Liang, et al., 2011). Its success due to its delicate mathematical foundation which is 

based on four factors: feature space, separating hyper-plane, kernel function, and optimization 

problem  (Liang, et al., 2011). Support Vector Machines (SVMs) are generalizations of linear 

decision boundaries. When the data is not linearly separable or overlaps, linear separating 

hyperplanes cannot provide an optimal solution for the problem. The optimal decision 

function is the one that minimizes the test error (Lutz, 2009). SVM constructs nonlinear 

boundaries by making linear ones in an extended transformed feature space (Steinwart et al., 

2008). The main drawback, however, is finding the optimum parameters which should be 

discovered by trial and error (Rakotomamonjy, 2003).   

The literature available for choosing the kernel function is still in the primary level and 

is based on trial and error for most practical works (Hastie et al., 2008). Kernel-based 

techniques represent an efficient and attractive field in machine learning (Alpaydin E., 2004). 

Other kernel–based classifiers such as kernel fisher discriminant (KFD) were also suggested 

to improve the classification accuracy in many applications (Mika, et al., 2001). A nonlinear 

version of support vector machines was used successfully for classification of the EEG data 

for a BCI speller program (Krusienski, et al., 2006). 

SVM in general is a very powerful method for classification. It is appropriate for 

practical purposes, where high transfer rates are required along with least amount of data 

(Meinicke et al., 2003). Its strong mathematical background, good generalization performance 

and the existence of unique solutions triggered researchers to use SVM in many applications 

(Mika, et al., 2001) (Liang, et al., 2011). It has been applied successfully to EEG signals for 

the detection of epileptic seizures (Gonzalez, et al., 2003), and the detection of evoked 

potentials (EPs) (Sanei, 2007), the removal of the eye-blinking artifact (Shoker, et al., 2005), 

and classification of left and right finger movements in BCI (Shoker, et al., 2005) (Lotte et al., 

2007). SVM performs in most applications with satisfactory results, but still suffers from 
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some practical drawbacks. To cope with the real-time application, we should consider the 

training time to find the optimum parameters (Steinwart et al., 2008) (Lutz, 2009). 

From the mathematical point of view the aim of each classification algorithm is to 

define a function for the decision boundary between two or more classes. In a 

multidimensional feature space the decision boundary is indeed a separating hyper-plane 

(Hastie et al., 2008). The main purpose of classification is finding the optimum hyper-plane 

with maximum distance from all classes (Sanei, 2007). When these decision boundaries are 

linear; methods for classification are linear. Linear classifiers were initially developed before 

the advent of the computer era. But because of their simplicity and performance they are still 

employed extensively in classification and prediction problems, especially when the amount 

of training data is limited or the input signal is very noisy (Hastie et al., 2008) (Zhang, 2010). 

Linear discriminant analysis (LDA) is a classic classifier, as its name suggests, with a linear 

decision surface (Hastie et al., 2008). In 1990, Fukunaga presented a mathematical solution 

for LDA problems (Fukunaga, 1990). 

LDA is based on the assumption that the classes have a common covariance matrix. It is 

likely in practice, though, that this assumption does not hold (Zhang, 2010). Decision 

boundaries in LDA can be easily extended to quadratic boundaries in QDA.  By including the 

square values and cross products of the variable set C��, C��, … , C�C�, … linear functions in the 

augmented space can be mapped to quadratic ones in the original space. Pattern recognition 

theory states that Fisher’s discriminant is able to classify the data with minimum probability 

of misclassification, when the data has known normal distributions and a Gaussian covariance 

matrix (Alpaydin E., 2004). This assumption is usually made, when LDA is used for 

classification of brain signals (Müller et al., 2003).  

Both LDA and QDA classifiers are parameter-free and easy to compute because of their 

closed form solutions. This feature along with their inherently multi-class structure makes 

them attractive and practical for plenty of machine learning problems  (Blankertz et al., 2002) 

(Zhang, 2010).  

In both methods the class conditional distribution of the data,D(C| = F), have to be 

modeled for each class k. The predictions can be calculated  according to Bayesian rule.  

D( = F|C) = D(C| = F). D�() D(C) =⁄ D(C|). D(H) (�D(C|I)
JK

. L(I))									(2.3)N  

Where D�()  is the prior probability of class k that satisfies ∑ L(I)JK =1. Usually in 

discriminant analysis, either the linear or the quadratic case, a Gaussian distribution model is 
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selected to model		P(X|y). In the LDA algorithm, we assume that the Gaussian distributions 

for each class have the same covariance matrix. In this case, a linear decision surface suffices 

for discrimination and the log-probability ratios are constant (Hastie et al., 2008). Nonlinear 

decision boundaries can be achieved by using mixtures of Gaussians (Hastie et al., 2008) if 

we assume that each class density is a multivariate Gaussian function: 

D(C = �| = F) = 1
(2S)T �U |∑�|T �U

?���(V�WX)Y∑XZ[(V�WX)																	(2.4) 

In order to derive the mathematical criteria, a log-ratio between two classes (k=1, 2) 

conditional distribution is calculated: 

 

logD( = 1|C = �)
D( = 2|C = �) = `=a D(C| = 1)

D(C| = 2) + `=a D�()D�()																																														(2.5) 

= −1
2 (c� + c�)
∑��(c� − c�) + �
∑��(c� − c�) + `=a D�()D�() 

In the case of LDA the normalization factors, as well as the quadratic part in the exponents is 

canceled out by covariance matrices being equal (Mika, et al., 2001), which implies that the 

decision boundary between two classes is a linear function of x. In practice the parameters of 

Gaussian distributions should be estimated from the training data (Hastie et al., 2008):	/� is 

the number of observations from class k with the mean of ĉ�. 
∑e =� � (�- −-��

ĉ�)
f

���
(�- − ĉ�)
/(/ − h)																									(2.6) 

D�() = /�//	,    ĉ� = ∑ �-//�-��     

Sample x belongs to class k when its linear discriminant functions have a greater value 

compared to the other class. 

	J-jklmnooopq�(�) = −1
2c�


∑��c� + �
∑��c� + `=aD�()																								(2.7) 

Classification is fulfilled according to the largest probability of occurrence of “sample x” 

among all classes, F ∈ s (Hastie et al., 2008). 

s(�) = 	�Ba&���∈t	q�(�)																																																				(2.8) 
There is a subtle note that might come up here: How can we describe the situation that a 

student outperforms his teacher based of information theory? Is it related to the other 

information sources or mentors? In other words, is it not more rational to use more than one 

expert or supervisor in the machine learning problems? The answer to these questions will be 
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discussed in the following section. The idea of ensemble classification will be introduced. 

This will build the foundation of the classifier employed in the next chapters. 

2.3.5. Theoretical aspects of ensemble classification 

There are several methods in the literature for improving weak classifiers (Alpaydin E., 

2004). Ensemble learning can provide a solution or modification for these problems (Soria 

Frisch, 2012). It uses multiple models to obtain higher accuracy in classification than could be 

obtained from any of the constituent models. The general idea of ensemble (also known as 

jury or committee) learning has an intrinsic connection to our daily life experience (Hastie et 

al., 2008) (Liang, et al., 2011). In decision making situations we ask experts about their 

opinions and try to make the best decision based on the degree of the deftness of a particular 

expert. In machine learning, this concept refers to a finite and preselected collection of 

alternative models (Opitz, et al., 1999) which has so far shown to improve several practical 

classification problems (Liang, et al., 2011). It seems that the combination of similar 

classifiers is plausible to outperform each single classifier. In fact, the combining classifiers 

can reduce the variance (Zhang, 2010) and accordingly will lessen the classification error 

(Alpaydin E., 2004) (Hastie et al., 2008). The concept of combining several classifiers has 

received other names in the literature (Soria Frisch, 2012) such as mixture of experts, 

classifier fusion, collective recognition method, “divide and conquer” classifier, and voting 

pool of classifiers, to name some.  

In an ensemble classification, the fusion level is the stage at which processing chains are 

combined to yield of a group of classifiers. In the next step they are evaluated and weighted. 

Classifier ensembles in particular can be discussed in four regimes (Soria Frisch, 2012). 

Possible structures are shown in Figure 2.9. Soria-Frisch discusses different design principles 

as a guideline to ensemble classification in BCIs which can help a new user to identify the 

optimum solution when encountering a new paradigm (Soria Frisch, 2012). It means the 

decision making step in figure 2.9 can be more advanced than just applying the output of the 

classifier directly to the external device. Different types of ensemble classifiers exist in the 

literature including boosting, “Adaboost”, “bagging”, “stacking”, and “random forest”, which 

form four powerful and popular representatives (Breiman L., 2001) (Sun, et al., 2007). The 

ensemble strategy can be based on different classifiers like KNN, linear SVM and decision 

trees (Soria Frisch, 2012). Decision trees such as random forest (RF), along with classification 

and regression trees (CARTs) are some of the most efficient methods (Alpaydin E., 2004).  
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Figure 2.9: Different approaches for integration through (a) Separate operation (b) Fusion at classification level 

(c) Concatenation (d) Feature concatenation 
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The increasing interest in using ensemble classifiers among the machine learning 

community sparked the idea of employing this principle for BCI applications (Shoaie 

Shirehjini et al., 2009). In (Lotte et al., 2007) authors characterized the group of classifier 

ensembles as one of the best alternatives for designing BCI systems which are not biased by a 

particular database or application. Using the BCI competition data, a P300 BCI system was 

used to exemplify this concept (Rakotomamonjy et al., 2005). The idea was used in the early 

stage of BCI research (Pfurtscheller et al., 1993) but was not completely analyzed and 

mathematically scrutinized (Soria Frisch, 2012). Ensemble classification may cope with 

variability in EEG signals and leads to a more reliable and robust classification accuracy 

(Rakotomamonjy et al., 2005). Inspired by these works and after some investigation on the 

classifier techniques in BCI applications, we have considered some ensemble algorithms and 

investigate their advantages over the traditional single classifiers for our BCI systems. 

2.4. Our contributions 

In this chapter several aspects of EEG signal processing and the concepts of learning 

and machine learning were introduced. Algorithms developed in literature for this purpose are 

enormously diverse and covering all available methods is not possible in a single chapter. The 

methods introduced in this chapter provide a fundamental step in building the BCI structure 

for the following applications. Table 2.2 presents a summary of BCI applications described in 

the following chapters. 

Table 2.2: A summary of BCI application contributions in the dissertation. Two types of applications are 

investigated: Movement control and gaming  
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Chapter 3 

An offline study on classification of 

hand movement1 

 

 

3.1. Introduction 

In the last two chapters we have mainly focused on the theoretical aspects and the basic 

knowledge of elements of brain computer interfacing. After building the theoretical 

foundation, one would like to investigate the experimental advantage and to evaluate the 

performance of the entire system, while dealing with the real data and environments. 

Therefore the main theme of this chapter and the next four chapters is to evaluate the designed 

BCI system over different datasets in movement control applications.  

In the current chapter an offline study on the classification of hand movement is 

fulfilled. The expression “offline” is used when the dataset has been already collected during 

the associated online experiments. The primary purpose and focus of this study is to 

investigate whether a new feature set can provide higher classification accuracy while using 

the similar paradigm and dataset. Control of sequence of hand grasping and holding is a 

critical issue in developing an EEG-based hand control (Carmena et al., 2003) (Hochberg et 

al., 2012). In addition, for the purpose of man-machine interface consistency, there should be 

some coherence between the intended movement and the task which the subject literally 

imagines. To this end, I designed and implemented an online synchronous BCI paradigm 

based on the imagination of hand grasping and resting states which had one-to-one 

consistency with the provided feedback (Hazrati et al., 2008). The goal of that research was to 

develop an interaction technique that allows the BCI user effectively to control hand grasp in 

real-world scenarios. Using data collected in these series of experiments, I will study now 

                                                           
1  Part of this work was published in : M. Kh. Hazrati, A. Erfanian and U. G. Hofmann,” Fractal Components From 

Electroencephalogram Provide Features For Brain Computer Interface”, 20th Biennial International EURASIP, Biosignal, 

June 2010. 
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whether an alternative feature selection method can improve the accuracy of the system. So an 

analogous online paradigm was developed and the data recorded from the previous work was 

applied to evaluate the proposed scheme.  

3.2. Experimental Setup 

Experiments were conducted in the BCI Laboratory, Neural Technology Center (NTC), 

Departments of Electronic Engineering at Iran University of science and technology (IUST) 

in Tehran. The experiments were carried out with six healthy university students (2 male, 4 

female, mean age: 24.3) who volunteered for the study. The participants had no previous 

experience in working with BCI systems. When questioned after the experiments, subjects 

asserted that they enjoyed the experiment session. However, it was strenuous for them to 

concentrate and considerable efforts were needed to perform the mental task. We have 

designed a special scenario which contains two states of brain activity. The data was collected 

and classified to two classes of the relaxation and the imagination of hand movement. During 

the experiments, the users had to interact with a virtual reality environment. In this BCI 

system subjects tried to control their attention according to a predefined paradigm in 

imagination of hand movement and relaxation periods. At the start of trial, a blank screen was 

shown to the subject for 1 s. Then the subject observed an opened hand on the screen which 

indicates the onset of the relaxation phase. In this period the subject should not perform any 

specific mental task but to try keeping the hand open for 5 s. Following the relaxation phase, 

as displayed in Figure 3.1, the hand re-opened again (in case it was partially closed before) a 

ball began to fall and by reaching the virtual palm the second phase of the trial started.  

                        

 

Figure 3.1: The appearance of a red ball on the palm cues the onset of imagination for the hold and grasps mental 

states which each lasts 5 s. Transition phase between relaxation and imagination during a trial is shown in 

details. The cue (ball touching the hand) marks the start of the second 5 s phase. The bottom part of the figure 

shows two consequence processing window (with 75% overlap), lines on x-axis mark 2 s intervals.  
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This transient phase was fixed and consisted of four images displaying every 0.5 second 

(total of 2 s). This phase was considered as a cue for conveying the message that the 

imagination section is about to start. At 7 s after onset of the trial, an active feedback phase 

was started. The entire feedback phase lasted 5 s. Users were asked to imagine of hand-grasp 

action by grasping the ball (i.e., closing phase). In the online experiment biofeedback was 

provided every 0.5 second in both holding and closing phases based on the results of a binary 

neural-network based classifier (Hazrati et al., 2008). The closing sequence was controlled by 

the output of a decision maker which was calculated as a simple logical majority vote function 

between outputs of classifiers trained over different channels (except Fp1). Two schemes of 

classification process were used for virtual hand grasp control: adaptive and static 

classification. In contrast to the static classifier, the adaptive classifier was continuously 

updated during the experiment. Adaptive scheme was used to train the classifier on-line 

during the first sessions. In some sessions, the adaptive classifier was used during the first five 

runs and static for the next subsequent runs (Hazrati et al., 2008).  

Thus, during the experiment each subject observed the sequence of hand grasp uniquely based 

on his/her mental activity and the result of the classifier. The output of the binary classifier 

determined whether the next image should be displayed or the previous one should remain on 

the screen. Upon detection of motor imagery by the classifier during the trial, the hand was 

being closed gradually. So during the relaxed phase, the detection of movement-type EEG 

activity by the classifier led to the biofeedback corresponding to the closing hand movement. 

Similar to the imagination phase, it consisted of ten separate steps of closing the hand (Fig. 

4.2). If for instance the classifier detected three movements during the relaxed phase then the 

third image was shown on the screen and 70% accuracy for this phase was recorded.  

       

     

Figure 3.2: Subject observed an empty hand for 5 s (1280 points of data) in each trial. During this period, the 

result of the online classification was displayed to the subject as bio-feedback. It consisted of ten separate steps 

of closing the hand. If the classifier recognized the relaxed class all over 5 s, the first image of an open hand is 

kept till the end of the trial.  
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In the cases that the subject was successful during the entire trial, i.e., the classifier 

recognized a holding phase for the entire first 5 s (0 to 5 s) and a closing phase for the entire 

second 5 s (7 to 12 s) 100% classification accuracy was recorded. Thus, experimental control 

and bio-feedback were identical in the first and second 5 s period, except that the hand was 

holding a ball in the second period and participants' goal was opposite in the two phases: 

Keeping the virtual hand open for the first 5 s and making it close completely at the end of the 

second 5 s. The first run of each session was recorded without feedback. The data of this run 

was used to initialize the classifier and to calculate the normalization and artifact reduction 

parameters. Figure 3.2 shows some steps of virtual hand grasp control.  

3.3. Implementation 

Optimized computer software was required to implement the virtual reality environment 

for hand grasp control on a PC within the BCI. In our case, I used MATLAB Simulink (THE 

MATHWORKS, 1998–2000), Real-Time Workshop (THE MATHWORKS, 1999–2000), and 

Real-Time Windows Target for Windows XP for on-line data acquisition, filtering and real-

time ocular artifact suppression, feature extraction, classification within an interactive virtual 

reality environment. Each block was written in C-code using the S-function technique which 

is supported by Real-time workshop in MATLAB environment. So the entire system is able to 

read the EEG data from the hardware and to process and provide feedback within some 

millisecond delay (Figure 3.3). 

 

Figure 3.3: The general structure of real-time Workshop in MATLAB. Each block was written in C-code using 

the S-function technique. 
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Data recorded during each run of experiment was saved automatically at the end of the 

experiment in separate MATLAB files in format (*.mat) containing variables:  

OnlineData =  

o time: [30721x1 double] 

o signals: [1x8 struct] 

o blockName: [1x58 char] 

The EEG data signals were recorded using a g.tec amplifier (Guger Technologies, Graz, 

Austria) at a sampling rate of 256 samples/s from positions Fp1, F3, C3, F4, C4, Fz, Cz and 

Pz by Ag/AgCl scalp electrodes mounted according to the 10-20 international standard and 

were band-pass filtered with a cutoff of 0.1-45 Hz using Chebychev II filter order ten.  

 

 

Figure 3.4: (a) Experimental setup for hand grasp application. Six subjects participated in online sessions for 

control of hand grasp and hold. Each subject participated in at least ten sessions of recording. Each session was 

recorded on a different day. (b) Epoched data for the last 7 s of each trial (preparation for movement + 

imagination section) recorded from 8 channels. Each segment shows 1792 (7 � 256) data points, units on x-axis 

are ms, (c) A 2D and 3D image of channel location used for the recording of EEG during the experiments.  
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All recording channels were referenced to the right earlobe and a ground electrode at the 

left earlobe. Eye blinks and vertical eye movements were recorded from Fp1 electrode site 

located on the forehead exactly above the left eyebrow. The subjects sat on a relaxing chair 

with armrests. In the preparation phase and before the start of the experiment, the impedance 

of each electrode path was measured. The experiment started when satisfactory values were 

obtained. The value of impedance measured in the connection of electrode tip and scalp 

should be set below 10 kΩ. Nu Prep™ Electrode prepping gel and Ten20™ conductive EEG 

paste were used to prepare the scalp skin and to decrease the impedance value. During the 

experiments EEG signals were continuously collected and processed. Subjects were free to 

move slightly their eyes or blink. The experiment for each individual consisted of different 

sessions and each session was conducted on a different day. Each session consisted of at least 

10 runs and each run consisted of 10 trials with online feedback. A resting period of about 2-5 

minutes was enforced between every two runs.  

3.4. Evaluation of the recorded data 

3.4.1 Evoked potentials 

In order to evaluate the recorded data, some further offline analyses have been accomplished.  

The grand average ERPs for this dataset are presented in Figure 3.6 and Figure 3.7 for the 

imagination and relaxed phases, respectively. In Figure 3.6 units on x-axis are ms which 

represent the last 7 s of the entire trial starting from the point when the red ball appears on the 

screen till the end of imagination trial. The first deflections happen at about -1750 ms, 

consisting of a negative peak followed by a positive peak all over recorded sites. These peaks 

generally decrease from parietal sites to the frontal sites and decay at Fp1. In Cz negative 

peak maximizes with -2.3 µV at -1750 ms and positive peak reaches to +2.4 µV at -1550 ms. 

In general the deflection reaches its extremes a few millisecond earlier at Pz. These values are 

measured at Pz with the maximum -3.3 µV negative peak at -1770 ms and +5.1 µV positive 

peak at -1580 ms.  Evidently this is the potential evoked by the event at -2000 ms, which is 

the time that the red ball appears on the screen. At Fp1, F3, F4, and Fz, this bipolar evoked 

potential is followed by a 2.0 µV peak at -1300 ms and a -1.2 µV peak at -1000 ms. Being 

maximum at Fp1 with 2.2 µV peak, the cerebral origin of this potential is not certain: It might 

be due to systematic upward eye movements induced by the stimulus. These are followed by a 

potential evoked by the start of the imagination trial (the ball touching the hand), consisting of 

a -2 µV negative peak at +200 ms maximum at Pz and a 4.5 µV peak at +400 ms.  
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The duration varies in each channel but usually it lasts till 500ms, since it is broader than the 

previous corresponding peak evoked by the -2000 event, it may include a P300. The 

maximum amplitude decreases from parietal to frontal sites and reaches 2.2 µV in F4 

location. In the last second of trial, there is a similar waveform with a 3.5 µV peak at +4300 

ms maximum in Pz.  

 

 

 

 

Figure 3.6: The grand average over 8 recorded channels (positions Fp1, F3, F4, Fz, C3, C4, Cz and Pz) in this 

dataset. Units on x-axis are ms which represent the last 7 s of the entire trial starting from the point when the red 

ball appears on the screen till the end of imagination trial. Time zero shows the start of imagination trials. 
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 It can be also seen at the same time at Cz, C3, C4 and Fz with 2.1 µV, 1.8 µV, 2.5 µV and 

1.5 µV respectively. Apparently, this is another evoked potential, which is quite surprising 

since no fixed event was scheduled to happen at +4000 ms. However, considering the 

experimental paradigm, the highest concentration was usually achieved in the last two 

seconds of the experiment, such that a positive biofeedback became most probable in the final 

second of the experiment. This can be the reason for the late appearance of the third evoked 

potential in this dataset. 

 Figure 3.7 shows the grand average in the relaxation phase. The signal/noise ratio 

appears to be worse than in the imagination phase. The negative peak of the potential evoked 

by presentation of the opened hand is hardly seen. Rather, the first deflection is the positive 

peak of the evoked potential, consisting of a 4.1 µV peak at about 300 ms, maximum at Pz 

and C4. The maximum amplitude decreases from parietal to frontal sites and reaches 2.2 µV 

in F4 location. Especially at Pz and Cz electrode locations, the grand average shows another 

positive peak after 500 ms, most probably a P300 component according to its timing and 

topography. This is followed by a -5.2 µV negative peak 1500 ms after the start of the 

relaxation phase, maximum at Pz. This may be the result of observing some movement in the 

displayed hand (biofeedback) which happened usually in the beginning of the relaxation 

phase for the majority of subjects. This might have been the start of some slow potentials that 

might have accompanied movement observation or imagination. But note that such slow 

potentials were here largely filtered out, due to the lower frequency limit of the amplifier at 

0.1 Hz.  

 The appearance of biofeedback varied widely in this interval across trials and 

participants. Some subjects where totally successful in keeping the hand open all during the 

trial and for the others it was not a trivial task. Thus it is likely that the happening of the 

movement biofeedback was not time-locked to the cue for all subjects and over all trials. Still 

there are some noticeable changes in the EEG signal in this phase.  
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Figure 3.7: The grand average over 8 recorded channels (positions Fp1, F3, F4, Fz, C3, C4, Cz and Pz) in this 

dataset. Time zero shows the start of relaxed phase.  

3.4.2 Power band analysis 

Figure 3.8 illustrates the power band spectrum averaged over all trials and subjects. The 

EEG power was computed over 8 channels. The amplitude is calculated in log10 (��/��) 
unit. Band power features were depicted for the imagination and relaxation signals acquired 

from each individual channel. The discrete Fourier transform of the imagination and the 

relaxation signals were computed for each trial and positive integer frequencies. The signals 

were first padded with zeros up from 1280 samples to 12800 samples to increase the 

resolution of the Fourier transform. Magnitudes of the Fourier transform were squared and the 

10-base logarithm was obtained.  

Values of the EEG power in delta band (1-3 Hz) of imagination phase were found to be 

noticeably higher than those in relaxation phase at Fz, F3 and C3. The Delta ERS topography 

can be correlated to the brain activity in SMA (supplementary motor area) and M1 (Primary 
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motor cortex) which is represented by C3-F3 and Fz, respectively. Due to its low frequency it 

might represent some kind of slow motor potential similar to Bereitschaftspotential 

(Pfurtscheller et al., 2001). In C4 and F4 the difference is smaller.  There is a slight increase in 

the power of theta band in relaxation phase over all recording sites except Fp1 and F4.  
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Cz      Pz 

Figure 3.8: Average power band over the entire dataset for two different brain states demonstrated over Fp1, F3, 

F4, Fz, C3, C4, Cz and Pz - Unit on x-axis is Hz, unit on y-axis is ��/��. 

In general, a selective enhancement of alpha (8-13 Hz) power is seen during rest and 

imagination and the average power in alpha band is higher in the relaxation phase in 

comparison to the imagination phase at C4, F4 and Pz. Also another increase in gamma band 

(30-45 Hz) can be seen in C3, F4, Fz and Pz. Also at Fp1 a small Gamma peak exists. This 

can be the effect of a degraded movement of subjects in some trials. 

3.4.3 Time-Frequency analysis and event-related oscillations 

While calculating frequency spectrum using FFT, information is integrated across time. 

To overcome this shortage, an offline time-frequency analysis was applied to investigate the 

ERD/ERS changes in this dataset. For calculating the ERD in a particular band the following 

steps are used (Makeig, 1993): 

• Band-pass filtering of all trials 

• Obtaining power samples by squaring the amplitude of each sample 

• Averaging the above values (power samples) across the entire trials 

• Smoothing the data by averaging over time 

 

By repeating the above calculations for each particular frequency band ERSP changes 

over the entire dataset is calculated. Figure 3.9 demonstrates the grand average of the results 

of ERSP analysis for different channels before and during the imagination phase. Unit on x-

axis is seconds, unit on y-axis is dB. The first 2 s of data is considered as baseline for the rest 

of the trial. It means the average power between -2 s and zero point are averaged and 

subtracted from the entire processing data. The baselines are calculated for discrete values of 
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frequencies over the entire spectrum. Using this technique, time-frequency changes can be 

seen more accurately in a wide range of frequencies and time intervals.  

The first time-frequency fluctuation in figure 3.9 is an ERD in delta and theta bands that 

happens between -1.5 s to -1 s. At the same time a short lasting alpha ERS is observed which 

reaches its maximum at Pz. Following this an ERS in delta and theta bands starts at -1 s and 

lasts for 0.5 s. Again the maximum power is seen at Pz. The power decreases when moving 

from Pz towards frontal sites. Before the start of imagination phase another ERD in Theta and 

Beta bands is observed clearly around -0.5 s in all recording sites. There is also an alpha-band 

ERD visible before the start of the imagination phase between -0.5 s to -0.2 s on Pz and in 

some extent in C4, C3 and Cz.  
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Figure 3.9: Time-Frequency analysis based on ERSP during and before the imagination phase. Event related 

desynchronization (ERD) and event-related synchronization (ERS) in different frequency bands over all subjects 

depicted for all recording sites. These fluctuations can be seen in either alpha and beta bands during or right 

before a movement is executed. (Negative values represent ERD and positive values represent ERS)- Unit on x-

axis is milliseconds, unit on y-axis is Hertz. The color bar represents the absolute values of ERSP in dB.  Zero 

point indicates the start of hand movement imagination by the subject. 

Following this baseline phase, delta and theta ERD are seen from the onset of the 

imagination phase till 3 s all over channels, particularly at Pz, Cz, C3 and C4. From 3 s till the 

end of the trial an ERS can be seen in these bands. Alpha ERS starts at 1 s and lasts till the 

end of the trial over all recording sites and reaches its maximum at Pz. All over channels an 

ERS in Gamma is also seen after 3 s of the onset of the imagination phase. The increase was 

most prominent in the central region towards right hemisphere at Pz and C4. The Theta and 

Gamma ERS at the end of the imagination phase is also strong at Fp1 and can be the results of 

a movement artifact. 

Figure 3.10 shows the similar analysis for the relaxation phase. No baseline is defined in 

the current analysis, so the ERSP powers are referred to the average of the entire trial. Delta 

and theta ERS exists in the first one and half second of this phase. Simultaneously an alpha-

band ERD is visible over all channels. Staring from the onset of the trial, this Alpha ERD 

diminishes at 2 s. At C3 and C4 it lasts longer till 3 s. In the first 1.5 s, an ERD in Beta band 

is also seen clearly at C3, C4, Cz and Pz, when possibly the subjects were struggling to keep 

themselves in the relaxed state. It is followed by a Beta ERS which can be observed between 

1.5 s to 2 s and also 3 s to 4.5 s in Cz, Fz and to some extent in C3 and C4 and frontal sites. 

Around 3 s after the onset of the relaxed state at F3, C3, Cz, and Pz an strong alpha-band ERS 

starts. All over channels sparse Gamma band ERD can be seen. The decrease is most 

prominent in the central region at Cz and Fz.  
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Figure 3.10: Time-Frequency analysis based on ERSP in relaxation phase. Unit on x-axis is milliseconds, unit on 

y-axis is Hertz. The color bar represents the absolute values of ERSP in dB.  Zero point indicates the onset of the 

relaxed trial. 
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In this section we applied some offline analysis, the ERP grand average, ERD/ERS and 

the ERSP analysis, to evaluate the recorded data. These data show that the imagination of 

moving one’s hand elicited ERD and ERS in different EEG power bands which can be used 

as a feature for detecting this mental task in BCI. Having the main structure of the BCI in 

mind, in the following I will go through all BCI components individually in order to construct 

the entire system. These elements are listed as: Preprocessing (filtering and artifact reduction), 

feature extraction, classification and decision making. 

3.5. Materials and Methods 

In the following I will explain each element of BCI thoroughly. The recorded EEG 

signal was treated as a simulated online scenario. The ongoing EEG in each trial of 

experiment is processed in two-second windows, overlapping with 75% overlap. In the first 

step an artifact correction and filtering technique was applied on this window. Then 

normalized power band features as well as proposed fractal features were calculated from 

each window and classified. The classification accuracy was measured based on the number 

of correct binary outputs of an ensemble classifier. 

3.5.1 Automatic Online Ocular Artifact Removal based on FastICA 

 For automatic and online EOG artifact correction in this dataset a technique based on 

ICA was applied. The proposed method is based on the combination of FastICA and higher 

order statistics in an online scheme without using an extra channel for artifact recording. 

Although ICA has been applied broadly for artifact reduction and there were several studies 

done on automatic detection of artifact component (Frank & Frishkoff, 2007), (Viola et al., 

2009) two major challenges remain. These methods are often not suitable for automatic 

detection and recognition of the artifact component in an online application. Furthermore 

there is also a need to use the information of the eye blink signal.  

In fact there are common independent components between each two EEG channels. 

That nourishes the idea that the artifact information of EOG channels is already available in 

other recorded EEG channels. The correction methodology using EEG signals is similar to the 

one using artifact channels, however in this case the EEG signal is used instead of an EOG 

signal to extract the artifact components (Winkler et al., 2011). This approach has the 

advantage of being independent of an additional EOG channel, and is useful if the EOG signal 

is not recorded during data collection (Ng et al., 2008). The idea of not using the reference 

channel for artifact correction was used in offline studies (Delorme et al., 2001) (Barbati et 
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al., 2004).  However, it is completely innovative to apply this method for an online 

application. For this dataset, Fp1 channel was already recorded. But in our current study 

artifacts are extracted and rejected automatically by using an online technique based on 

fastICA without using the reference channel.  

3.5.1.1 FastICA algorithm 

FastICA algorithm developed by Hyvärinen et al. is a version of ICA with optimized 

programming to shorten the time of calculating the components (Hyvärinen, 1999). The 

number of components is usually selected equal to number of recording channels (Fatourechi 

et al., 2007). FastICA is based on fixed-point iterative method that uses maximizing non 

Gaussianity as a measure of independence. The data should be centered and whitened before 

the main algorithm can be applied. Centering the data means removing the mean from each 

segment of the signal � ←	� −	{�} and whitening is a linear transforming scheme that makes 

the new components uncorrelated with variance one {��. ���} = �. PCA (Principal component 

analysis) is used as preprocessing step for the purpose of whitening the signal in FastICA 

algorithm. After whitening the data, the next step in ICA algorithm is the axes rotation. The 

idea is to minimize the Gaussianity of each projection on its corresponding axes. Here, unlike 

PCA approach, axes do not need to be orthogonal to each other. The FastICA algorithm 

iteratively searches for the direction of weights ω which maximizes the non-Gaussianity of 

the projection	��� (Hyvärinen, 1999). Table I contains the pseudo code for the single unit 

case.  �(. ) is a nonquadratic nonlinear function and �(. ) and ��(�) are the first and second 

derivatives of �(. ), respectively.  

Table I: FastICA pseudo code- Single unit 

1. Randomize the initial weight vector w 

2. Let �� ← 		{��(���)} − 	{��(���)}� 

3. Let � ← ��/‖��‖ 

4. If not converged, go back to 2 

 

This algorithm only estimates one of the independent components. Hyvärinen proposed 

several methods for the construction of multi units weight vector (Hyvärinen, 1999). Table II 

presents a simple pseudo code for it, where C is the number of the components, � ∈ � 	!	" 

represents the input samples.  
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Table II: FastICA pseudo code- Multiple units 

For p= 1: C repeat the following: 
 Randomize the initial weight vector �# 

   While �# changes: �# ← 1%��&�#��' − 1%��&�#��'1�# 

�# ← �# −(�#��)�)#*+
),+  

�# ← �#/-�#- 

 

The output is calculated as . = /�, where  / ∈ �0	!	  is the un-mixing matrix. Each 

row of this matrix projects X into independent components. It makes the independent 

components matrix . ∈ �0	!	". Some general purpose and robust values for	f(. ) are 

(Hyvärinen, 1999): 

�(�) = log cosh(�);	 �(�) = tanh(�);	 ��(�) = 1 cosh�(�)< 																							(3.2) 
�(�) = −?*@A �⁄ ; 		�(�) = �?*@A �⁄ ; 		��(�) = (1 − ��)?*@A �⁄ 																					(3.3) 

Modified ICA algorithms have been developed rapidly over the past years in order to 

handle the biological signals where a linear combination of independent non-Gaussian sources 

form the signal. Some researchers suggested that there is a consistent and clear-cut 

relationship between ICA sources and some physiological or behavior signals (Barbati et al., 

2004). It is suggested that recording the biomedical phenomenon simultaneously from 

multiple sensors or different locations might facilitate the computation and increase the 

accuracy (Ng et al., 2008). The dimension of the input signal, from the mathematical 

viewpoint, will not affect the functionality of the ICA algorithm. Indeed, the functionality is 

related to the statistical distributions of the temporary independent and spatially fixed 

concurrent electromagnetic activities. In general, it can be assumed that ICA components 

have (one or more) distributed sources in brain networks (Makeig, 1993). 

3.5.1.2 Implementation  

 In order to implement my suggested method, I investigated the changing in the value of 

kurtosis of each independent component (IC) and it seems that this value can be an 

appropriate criterion for artifact recognition. Furthermore information pertaining to artifacts 

was directly extracted from the EEG data. Results demonstrate that the proposed structure is a 
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suitable alternative for online rejection of ocular artifacts from EEG signals without using an 

extra channel.  

We used the modified FastICA toolbox and kurtosis function in MATLAB and executed 

the computational processing in a simulated online scenario. When the mixing matrix adapts 

slowly over time, the true sources can be calculated almost online and at the time of 

recording. This characteristic of artifacts yields a contingency for correcting EEG signals. It 

should be considered that the artifact sources differ from artifact channels. Especially in the 

case of EOG, a combination of EOG and EEG sources are recorded over the same channel. It 

is necessary to extract the independent artifact sources in order to eliminate their imposed 

changes in EEG channels. Figure 3.11 summarizes the proposed scheme. Delorme et al. 

proposed the kurtosis and entropy as markers calculated based on the distribution of the 

signals, to measure unexpected and also transient events in the EEG signal (Delorme et al., 

2001).  

 

 

 

 

 

 

Figure 3.11: The structure of the proposed method for automatic artifact.  The artifact component is selected 

automatically. 

Considering artifact component we make the selection based on measured Kurtosis 

value of all independent components (ICs) using FastICA algorithm in an online 

implementation. In a similar work this value has been used for offline artifact rejection (Greco 

et al., 2005). Independent Components are extracted from the sliding 2 s windowed EEG 

signal with the sampling rate 256 samples/s over each recording channel. In order to 

automatically extract artifact components, we calculate the value of kurtosis for all extracted 

components in each window. The combination of ICA and higher order statistics has been 

already employed for artifact correction (Delorme et al., 2001) (Greco et al., 2005), however, 

it is limited to offline applications. Goal of ICA is to find components which have maximum 

kurtosis. The higher kurtosis, the sharper is the data distribution compared to the normal 

distribution. It is mathematically defined as the value of 4
th

 cumulant divided by the square of 

FastICA 

Artifact 
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the 2
nd

 cumulant. Fourth and second cumulants are the fourth moment around the mean and 

the square of the variance, respectively. It is summarized by the following equation:  

C = DED�� − 3 = 	(� − F)EGE 																																																														(3.4) 
Where x is the recorded signal, µ is the mean of x, σ is the standard deviation of x, and 

E(x) represents the expected value of the quantity x. Kurtosis is a measure of how much a 

distribution is outlier-prone. In some literature the kurtosis of the normal distribution is 

defined to be 3 instead of zero (Delorme et al., 2001). Consequently, outlier-prone 

distributions (compared to the normal distribution) have kurtosis greater than 3 and, on the 

contrary, the kurtosis of distributions with less outlier is less than 3. Among all extracted 

components, we consider the one with the highest kurtosis as the artifact component, as it is 

known that the ocular artifact has peakedness compared to the ordinary EEG signals. We used 

the K=kurtosis (X) function in MATLAB for this purpose. It returns the sample kurtosis of 

values in X. In this definition, for vector input X, K is the fourth central moment of X, divided 

by fourth power of its standard deviation. With the present dataset, the average value of 

kurtosis for artifact free signals was measured less than 2.5 averaged over all subjects, 

however this increased in contaminated EEG signal up to 7.38. By applying the proposed 

method, the independent component related to artifact is selected automatically by setting a 

threshold of 5.5, which was selected by trial and error. In practice the optimum value for 

threshold should be selected individually for each subject. The data recorded from the probe 

run in the beginning of each experiment has been used to predict the threshold value. The data 

was normalized for each subject before applying the method. Over 92% contaminated data 

could be cleaned using this method. Figure 3.12 demonstrates the recorded signal and its 

corresponding independent components and the Artifact-free EEG. In Figure 3.12 units on x-

axis are ms and units on y-axis are µV. In the bottom figure red and black legends represents 

the original signals and the signal after artifact rejection. This particular artifact is probably a 

blink, as may be seen from the behavior of the uncorrected EEG; It has its maximum at F3 

and F4 and diminishes noticeably at Pz. 2D plot of ICs over the scalp is provided to locate the 

artifact component in this interval.  
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(b) 

Figure 3.12: (a) Artifact rejection in a 7s window - contaminated EEG signal (red line) and artifact free signal 

(black line). Unit on y-axis is µV and unit on x-axis is s. Artifact Components for the same interval (IC1 is 

recognized as artifact component K=6.9), (b) 2D plot of independent components over the scalp. The color bar 

represents the power distribution.   

The correctness of automatic selection was first validated offline for six subjects in the 

current. There are some practical concerns applying the current method. First of all there 

would be a delay of around 2 s between the corrected version of data and the raw data which 

is inevitable due to the inherent structure of the ICA method. In some cases the algorithm 

does not converge after a predefined iteration (n=1000). No artifact correction will take place 

if the calculated components are less than the number of channels. Figure 3.13 illustrates 10 

seconds of data recorded from C3 and C4 of Subject 3 in this dataset, where the artifact free 

signal has similar dynamics all over the interval except the contaminated intervals (1 s - 2 s) 

and (7 s - 8 s).  

The assumption of independency of artifactual signals from the EEG signals is 

compulsory for employing ICA (Makeig et al., 1996). Other critical assumptions consist of 

linear mixture of independent components, prior knowledge about the number of components, 

and stationarity of the sources and the mixture (LeVan P et al., 2006) (Park, et al., 2002). In 

practice these assumption are debatable. Computational timing varies for each segment and 

depends upon the number of independent components extracted from the signal. In average it 

takes around 85 ms to apply the algorithm and to generate the artifact free signals. So I have 

proposed and implemented another online ocular correction method which is considerably 

faster than current approach. It has been applied to the other BCI setups in my dissertation. 
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Figure 3.13: Ten seconds of data recorded from C3 (Ch1) and C4 (Ch2) of Subject 3 in the current dataset, 

where the artifact free signal has similar dynamics all over the interval except the contaminated intervals (1 s - 

2 s) and (7 s - 8 s). Using online artifact correction methods each EEG channel can be cleaned from the eye blink 

online for further processing. By applying the proposed method, the independent component related to artifact is 

selected automatically by setting a threshold 5.5. ICs are extracted from the sliding 2s windowed EEG signal. 

Unit on y-axis is µV and unit on x-axis is s. 

3.5.2 Feature Space 

The first feature group consists of normalized band power features which were extracted 

from the segmented EEG signal. It is assumed that for each segment, which lasts between 2s 

to 5s, the signal is considered stationary (McFarland et al., 2006); meaning the statistical 

properties of the signal do not change over time (Haykin, et al., 2007). In Figure 3.14, power 

band features have been calculated in 2s-windows with 90% overlap after applying a band 

pass filter (0.1 - 45 Hz) and the EOG artifact correction as described before. Five major 

groups of frequency ranges were extracted from each channel of data and normalized in each 

window and used as a feature for the classification. The average power in Theta band is 

higher than in other frequency bands and it shows around 10% decrease during the 

imagination interval (7 s - 12 s in Figure 3.14). In Beta and Gamma band a short-term power 

increase is seen at the start of the imagination interval. In Beta1 the increase happened in the 

beginning of both imagination and relaxed phases (1.5 - 2 s and 7.5 - 8.5 s).  
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Figure 3.14: Changes of different EEG frequency bands over time of a subject in one trial of the experiment. 

Unit on x axis is seconds and unit of y-axis is normalized band power. For the first five seconds of recording  

(1 s - 5 s) the subject is instructed to be in a relaxed state. After a 2s transition, the next five second segment   

(7 s -12 s) is recorded in which the subject is asked to imagine movement.   

 

3.5.2.1 Feature extraction based on fractal components 

In this section I introduce a new class of features based on fractal components for BCI. 

An application of nonlinear science to investigate the alteration of EEG signals in two brain 

states, i.e. idle state and imagination of movement. Based on Coarse Graining Spectrum 

analysis (GCSA) we extract fractal components from the recorded EEG signal in the 

frequency domain.  

The proposed method is based on the calculation of fractal exponents from the power 

spectral density in signals characterized by a frequency power law. Biological signals may 

possess periodic components in addition to  1 �I⁄  , and which is also a well-known 

phenomenon in EEG signal (Yamamoto, et al., 1993). CGSA was introduced to separate 

simple harmonic and fractal components from each other in the frequency domain. It is based 

on the spectral analysis of windowed signals using a Fast Fourier transformation partially 

modified according to (Yamamoto, et al., 1993). If the total spectral power of a signal consists 

of both harmonic and non-harmonic (fractal) components, it is possible to isolate the latter, 

because the fractal component is scale- invariant when rescaled. It will still retain its power 

when cross correlated with the original data (Pereda, et al., 1998). The non-linear nature of 

EEG exhibits random fractal structure with 1 �I⁄  spectrum (1<	β<3) (Kobayashi, et al., 

1982). In contrast, rescaling of harmonic components causes a complete loss of spectral 

power when cross-correlated with the original signal. Here, K can be obtained as a negative 
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slope of the fractal power versus frequency, in a log-log scale (Pereda, et al., 1998). Here the 

frequency range of 4 - 45 Hz was considered, where the spectrum presents the clearest 1 �⁄ − 	K dependence within it. As the processing was done on 2 s ongoing EEG data and in 

order to be equivalent with the first feature set slow frequencies (Delta band) were not 

considered in this study. 

3.5.2.2 Coarse Graining Spectral Analysis (CGSA) 

According to the definition introduced by Mandelbrot and van Ness (Mandelbrot, et al., 

1968), fractal time series �(L) satisfy the equation (4.5) for any ℎ > 0 and LP , where ≝  

implies that the distribution function is equal on both sides and H is the Hurst exponent 

(Yamamoto, et al., 1993). It explicitly demonstrates the nature of random fractal time series, 

where changing the time scale doesn’t affect the dynamic of the signal. 

 �(ℎL + LP) − �(LP) ≝ ℎS{�(L + LP) − �(LP)}																																					(3.5) 
Without loss of generality, we assume	x(tP) = 0, thus we have �(ℎL + LP) = �ℎ(L, L0). That 

means the original time series is related to its renormalized version (Yamamoto, et al., 1993), 

consequently the discrete version of this relationship can be defined as: 

 �W(X, XP) = �(ℎX, XP) ≝ 	ℎS�+(X, XP)																																																				(3.6) 
Where �(X) is the discrete version of �(L). The new time series �W(X, XP) is called the “coarse 

grained” subset and the new sequence is formed by selecting every h sample from the original 

time series. An auto power spectrum and cross power spectrum from	.!!(Z) and 	.!![(Z) 
then can be calculated as: 

	.!!(Z) = 1\]@^]_` ( a 1\bc`c . ( �+(C, XP). ?*)�def  ghih< ghih*+
e,P a jkljmi

no 										(3.7) 
Where Z = 0, 1,… ,\bc`c − 1 and \]@^]_` is the number of different XP chosen from a given time 

series.  

	.!![(Z) = + jkljmi∑ s + ghih . ∑ �+(C, XP). ?*)�def  ghih< ghih*+e,P �
t + ghih . ∑ �W(C, XP). ?*)�def  ghih< ghih*+e,P u∗w														(3.8)	 jkljmino   
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In a simple harmonic signal the value of 	.!![(Z) that is equivalent to Fourier transform 

of the cross correlation function between two orthogonal sinusoid, tended to be zero when \_z{L{ → ∞. On the other hand, it is proven that the corresponding value in a fractal motion 

defined in the equation (3.6) never goes to zero. Indeed it could be concluded that -	.!![(Z)-/ℎS  can be considered as a fractal component in the auto power spectrum without 

contribution of simple harmonic motions (Yamamoto, et al., 1993). For random fractals, the 

spectral exponent β is linked to H with the relationship of: K = 2� + 1																																																																									(3.9) 
We extracted and measured the linear correlation between CD and β in both relaxation 

and imagination of movement states. Features computed in this fashion represent the fractal 

part of EEG signal, which is reported in Figure 3.15 for recorded channels. The spectrum 

shows some course changes in lower frequency bands. Especially there are noticeable 

differences between spectrum calculated over imagination and relaxation states in C3, Fz, Cz 

and Pz. The changes are distinguishable in lower frequencies corresponding to theta and alpha 

bands.  
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Figure 3.15: Grand average of EEG fractal power spectra obtained from CGSA in relaxed (solid) and 

imaginary (dashed) states.  

An increase of power in Beta1 is observed in C3 during the movement imagination. In 

general fractal power spectrum shows similar fluctuations in comparison to the band power 

spectrum (Figure 3.8, above). 

In this section by calculating fractal component (K) via CGSA from EEG signal, a new 

set of features for classification of two different brain states was introduced. In order to assess 

the quality of features, a machine leaning technique should be applied where the computer 

learns a decision function based on the training dataset. Soft Margin SVM was used to 

classify extracted features from the recorded EEG, distinguishing between two classes, motor 

imagination and relaxation. 

3.5.3 Soft Margin Support Vector Machine 

The main structure of a support vector machine was introduced earlier in chapter 2. A 

SVM q-norm soft margin classifier is used to handle the high dimensional classification 

problems where the data are not linearly separable (Steinwart et al., 2008). The difference 
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between the standard approach and the soft margin method is that the latter allows making a 

few mistakes and placing some points inside or on the opposite side of the margin in order to 

remedy for noise, outliers or nonlinearity in the data structure. Mathematically the existence 

of misclassified samples should be paid by modifying the cost function by subtracting the 

distance between the real data point and the margin requirement, which can be seen in 

Equation 4.10. This can be implemented by adding slack variables  ξ~. The formulation of the 

SVM under the condition for the optimal hyper-plane can be modified by including an extra 

term: 

�n(�n�/+ �) ≥ 1 − ξn	,					X = 1,… ,D																																				(3.10)	
 

For minimum error, ξ~ 	≥ 0	should be minimized as well as ‖/‖, and the objective function 

becomes:  

min	 		/�/ + �( ξn�
�
n,+ 																																																														(3.11)	

Subject to: 

�n(�n�/ + �) ≥ 1 − ξn	, {Zz		ξn ≥ 0; 				X = 1, … ,D 

Here C is a free but fixed parameter. It is called the regularization parameter and 

controls the trade-off between maximizing the margin and minimizing the training error 

(Hastie et al., 2008). The small value of C tends to emphasize the margin while ignoring the 

outliers in the training data, whereas large C may overfit the training data (Vapnik, 1999).  

Note that the condition ξ~ 	≥ 0		is dropped, as if Zξ~ 	< 0, we can set it to zero and the 

objective function is further reduced. Alternatively, if we let k =1, the problem can be 

formulated as: 

min	 		/�/ + �( ξn
�
n,+ 																																																														(3.12)	

Subject to: �n(�n�/ + �) ≥ 1 − ξn	, {Zz		ξn ≥ 0; 				X = 1, … ,D 

This is called the 1-norm soft margin problem. The algorithm based on the 1-norm 

setup, when compared to a higher-norm algorithm, is less sensitive to outliers in training data 

(Zhang, 2010). When the data is noisy, the 1-norm method should be used to ignore outliers. 

The support vectors are normally selected out of a small part of the training data. But under 

certain circumstances, e.g. for the nonlinear case or for problems which are non-separable or 

has a narrow margin, each non-zero data point within the margin which is misclassified 
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should be added to the set and consequently the set of support vectors grows very fast. Large 

set of points will lead to the SVM slowdown during the test time. The generalization 

capability is directly related to the size of the margin. As shown in Figure 3.16 the positive 

and the negative samples are separated by a hyperplane illustrates. The points x, that lie on the 

hyperplane should satisfy		��K + KP = 0. Here K is the vertical distance from the hyperplane 

to the origin, which is normalized to the hyperplane KP ‖K‖⁄  (‖K‖ is the Euclidean norm of 

K). When the problem is linearly separable, the algorithm simply searches for the separating 

hyperplane with the maximum margin. In fact, it is a convex optimization problem which 

under linear inequality constraints minimizes the quadratic function (Meyer et al., 2003) 

(Steinwart et al., 2008). Figure 3.16 shows the concept of slack variables, when the problem is 

not linearly separable. The maximum margin is set to 2% � 2 ‖K‖⁄ . The points on the wrong 

side of the margin are labeled ξ� and are calculated as	�)
∗ � %�). The points on the correct 

side have  �)
∗ � 0 . Thus the value ∑�)

∗ represents the total distance of all points on the wrong 

side (Steinwart et al., 2008). It measures the overlap in relative distance, which changes with 

the width of the margin M. By adjusting the parameters we can improve the quality of BCI 

systems. 

 

Figure 3.16: Support Vector Classifier: The solid line represents the decision boundary and the hashed lines 

represent the maximum margins  2% � 2
‖K‖<  . (a) In a separable case, all the trained dataset are classified 

correctly (b) The right graph shows the non-separable case and the concept of slack variables (adopted from 

(Hastie et al., 2008)). 

3.5.4 Decision making: Bagging approach  

At this section we apply the concept of ensemble classification, which was introduced in 

Chapter 2. Bagging (Bagg), shortly for bootstrap aggregating was employed for decision 

making section. It is an ensemble (jury) of classifiers.  Random sampling with replacement is 
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used to generate training sets for each classifier. Decisions are finally made by majority vote 

(Grandvalet, 2004).  As described in Table III, the algorithm repeats in M iterations to train 

classifiers. 

Table III - Bagging algorithm 

1. for m= 1to M   

a) Select .� bootstrap samples out of the data (with replacement) 

b) Train the classifier �� from .�  

2. For each test example 

a) Try all classifiers �� 

b) Predict the class that receives the highest number of votes 

 

 

 

 

 

Figure 3.17: Decision making was based on the Bagging algorithm. A subset of feature set is used to train a 

classifier; the final decision is made with the majority of votes. 

3.6. Statistical measures of performance 

In this dissertation we used several statistical measures of the performance of a binary 

decision maker. True negative (TN) is when the test makes a negative result (relaxed state 

prediction) and the subject actually intended it. Similarly, true positive (TP) is when both test 

and the subject has positive results (here imagination of the hand movement). False positive is 

incorrect rejection of a positive result and false negative is the failure to reject a false result 

(Hastie et al., 2008). False positive (FP) and false negative (FN) are called error type I and II 

respectively (Hastie et al., 2008). 

3.6.1 Classification accuracy 

Accuracy is the most common evaluation measure in classification problems. It is 

defined as the sum of all correctly recognized samples divided by the total number of samples 

in an experiment. It is a general measure of how well a classifier can classify the samples. We 

used this measure in order to evaluate our algorithms. 

 

						�����{�� �
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3.7. Results 

The mean values and standard deviation (SD) of the classification accuracy during 

different runs of the experiment averaged over all sessions are illustrated in Figure 3.17 for 

each individual. Results presented in Figure 3.17 were achieved using the simulated online 

scheme, where the classification was done for each single segment of the ongoing EEG.  

Two different combinations of feature extraction and classification were applied on this 

dataset. The first group was comprised of 35 power band features from the spectral power of 

EEG signal in theta, alpha, lower beta, upper beta, and gamma frequency bands of 7 channels 

(all except Fp1) and the soft SVM classifier. The corresponding results are shown in the left 

column of Figure 3.17. The right column shows the results achieved by employing the second 

group of features (n=35) included fractal components calculated by the CGSA method and the 

same classifier. The black line reports the classification accuracy in average, which presents 

the general performance of each subject. The red and green lines depict the result for 

relaxation and movement trials, respectively.  

For power-band features, in average the classifier for the majority of participants (all 

except S4) was more toward choosing the relaxation class. The relaxation accuracy (red line) 

is higher than movement accuracy (green line) for S1, S2, S3, and S5. For S6 only in the first 

five runs of the experiment relaxation accuracy is higher. Finally for S4, movement accuracy 

is higher all during the experiment. S4 was not very good in keeping himself relaxed during 

the experiments and his total performance was measured around random in this simulation. 

S3, S5 and S6 were able to increase their performance over the time. Despite of the increase 

in performance, S6 seems to be in average less relaxed in the last five runs of the experiment.  

Assuming that the fractal features extract another kind of information from EEG 

signals, which are not available (or partly available) in power band features, the changing 

patterns are not completely similar for two groups.  

Using fractal features, in general a fewer number of participants show the classification 

biased towards relaxation phase in comparison with power-band features. Moreover, both 

features results in similar changing pattern in some subjects but highly dissimilar in other 

subjects. For fractal features, relaxation accuracy (red line) is higher than movement accuracy 

(green line) for S3 and S6. For S5, movement accuracy is higher in the beginning of the 

experiment but decreases after run 3. Results from S1 and S2 are almost equally distributed 

between two classes over different runs. For S4 relaxation accuracy decreases in the first four 

runs and then starts to increase till the end of the experiment. In particular using the fractal 

features for S4 caused a decrease in his relaxation percentage in the middle of the experiment 
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which led to slightly higher classification accuracy in general. The final decision was made 

based on the output of seven classifiers trained for each channel separately. In each session 

the classifier parameters were calculated using data recorded in the probe run. Thus, the entire 

structure including both proposed algorithms are highly nonlinear and the wide range of 

variations, seen in the results, are due to the combination of the multidimensional feature 

space with the nonlinear classifiers.  

Power band features 

(a) 

Fractal spectrum features 

(b) 
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Figure 3.17: The averaged classification accuracy over different sessions for each subject in a simulated online 

paradigm using (a) power band and (b) fractal features and the 1-norm soft margin SVM as classifier 

 

The above results were achieved in as simulated online paradigm. For calculating the 

classification accuracy in an offline scheme, as can be seen in Figure 3.18 and Table 3.2, we 

considered 80% of the data as training data for each subject and repeated the calculation over 

each training group of data following the cross validation scheme to verify the results. The 

grid search was done using a 5-fold cross-validation. For this purpose the dataset was 

randomly split into five subsets. The training and validation was carried out five times for 
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each subset and the remaining four for training. Figure 3.18 depicts the average classification 

accuracy and its variance for each subject using power band and fractal power spectra as 

feature set and 1-norm soft margin support vector machine as classifier. Results were given as 

the average over all sessions for each subject. Here also an improvement is seen in the result 

achieved from data collected from S2, S3 and S6 after employing the fractal features. The 

average classification accuracy is low for S4 in both cases (<70%). Only in one case, S5, 

recruiting the new features did not yield some improvement on average; the variance was 

lower when using fractal features.  

                  
(a)      (b) 

Figure 3.18: Average classification accuracy for each subject using power band (a) and fractal power spectra (b) 

as feature and 1-norm soft margin support vector machine as classifier 

As reported in Table 3.2 the performance of the model is consistent for all subjects. In 

order to investigate the effect of the feature selection method, in both cases the classifier was 

kept fixed. Applying these components as features to a soft margin SVM classifier, enables us 

to evaluate how informative the fractal based attributes are.  

Table 3.2: The average classification accuracy using three different feature spaces. In Average, the combination 

of two feature groups led to slightly higher classification accuracy. 

 

Classification accuracy (%) 
Power band 

Features 

Fractal 

components 

Combination of two 

Feature groups 

S1 67.50 73.72 72.14 

S2 75.48 84.59 85.90 

S3 80.06 87.95 88.73 

S4 69.33 71.90 73.01 

S5 79.36 79.54 78.45 

S6 83.72 90.01 91.32 

Average 75.90 81.30 81.52 
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 An average accuracy of 75.9% and 81.3 % in classification over the entire sessions for 

all six subjects was achieved using the band power and fractal features, respectively. Results 

show the performance in six subjects, corroborating the idea that the nature of this brain 

activity can be considered as chaotic.  

 In order to analyze the results in a statistical scheme we performed a matched pair t-test 

to investigate the overall statistical differences between two conditions, across all subjects (5 

degree of freedom (df)). A statistical test, e.g. t-test, is usually applied to the sets of data in 

order to determine the degree of significantly difference that exists between them (Zhang, 

2010). In this application we define these two sets as the feature space extracted from relaxed 

state and imagination state, respectively. Commands [h, p]= ttest(x) in MATLAB were used 

to calculate the p-value of the matched pairs test and the value of h which determines the 

acceptance or rejection of the null hypothesis. The result of the test is returned the probability 

of p, which is indeed the probability of observation of extreme values in the test under the null 

hypothesis (Parasuraman, 2007). The t-test performs a null hypothesis at the 5% significant 

level that data in the vector x are random samples from a normal distribution with zero mean 

and unknown variance, against the alternative that the mean is not zero.  

The averaged classification accuracy was lower in imagination than in relaxation states using 

power band features (p =.041) but not in fractal based features (p = .23) with df = 5 and the t-

values 2.72 and 1.34, respectively. For the combined features space t-test results in not 

statistically significant bias toward any of two classes; p = .35 with t-values = 1.02.  

 Combined accuracy over the two states, as compiled in Table 3.2, was higher for the 

fractal based features than for the power band features (t = 3.9, p = .011). As Table 3.2 shows, 

the combination of fractal and power features yielded slightly higher accuracy on average 

than the fractal features alone. However this difference was far from significant (t  =  0.57,  p 

 =  .58).  

Thus, the experimental results show that the extracted fractal components using GCSA 

are suitable discriminators of EEG signals. They are able to extract significant differences 

between two predefined brain states for all subjects.  

 

3.8. Discussion  

It can be assumed that the complexity or predictability of the EEG signal differs in 

different brain states including before and during the performance of a mental task (e.g., 

motor imagery) (Phothisonothai, et al., 2007). The change of fractal attributes has been 

discussed in several studies like cognitive tasks, sleep, and different types of diseases as well 
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as mental states. For instance in (Georgiev, et al., 2009), a higher dimensionality, i.e. 

complexity, of imaginary EEG states was recorded as compared to actual perceptual 

processing. However in most cases, biological signals do not consist solely of fractal 

dynamics. They include well-defined harmonic oscillations as well  (Yamamoto, et al., 1993) 

(Pereda, et al., 1998) (Adlakha, 2002) discussed that in the natural signals the value of index β 

is very similar in linearly correlated noise and chaotic systems. Both CD and LLE have been 

demonstrated to act as poor indices to discern between different mental tasks (Theiler, et al., 

1996).  In the frequency domain, these oscillations are recognized as relatively sharp peaks in 

the power spectra although the peaks are usually superimposed on some type of noise 

spectrum which has been thought to reflect the underlying fractal dynamics (Kobayashi, et al., 

1982). The capability of using fractal based features in a BCI system has been proposed in 

(Adlakha, 2002).  

Considering this fact, we employed a novel method called Coarse Graining Spectral 

Analysis (CGSA) (Yamamoto, et al., 1993) to calculate random fractal components in the 

frequency domain of human EEG signals set to two different brain states. The method is 

capable of separating simple harmonic and fractal components from each other in the 

frequency domain (Yamamoto, et al., 1993). An EEG-based Brain Computer Interface could 

benefit from this remarkable property. By analyzing the EEG signal, we investigated the 

applicability of extracted features using CGSA in distinguishing the predefined brain states.  

  The fractal components extracted from the logarithmic power spectrum have been used 

as an index of the complexity of the signal, demonstrating the non-linear nature of EEG signal 

or the non linear dynamic of the brain. An application of chaos and fractal properties, which 

are one of the essential tools in nonlinear analysis, has been presented in analyzing two 

different brain states including idle state and imagination of hand movement in the human 

EEG. We extracted and measure the linear correlation between CD and K in these two states. 

However due to its lower computational cost, use of K is more appropriate in online 

applications. In order to investigate the demand of using real EEG data, we extracted the 

fractal components in the frequency domain and compared the effects of imagination of motor 

activation tasks of the human EEG compared to relaxed state, where a lucid frequency power 

dependency is visible and fractal components appeared to be lower in movement imagination 

compared to the baseline condition. In general it is concluded that fractal analysis could be a 

powerful method in investigating brain activities during motor movements and is a promising 

option for the design of BCI systems.  
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 In a multidimensional feature space we compared the classification accuracy over 

different combinations of feature groups including the power band features, fractal 

components and their combination. With combining the extracted features with common 

oscillatory features in a high dimensional space, we tried to mine maximum information 

related to brain state hidden in EEG signal. The combined features did not lead to the 

significant higher classification accuracy in comparison to the power band features or the 

fractal features alone. A possible speculation is that, as the grand averages in the Figure 3.8 

and Figure 3.15 suggest, the two feature sets have common characteristics or redundant 

information which makes them more similar to each other in a higher dimensional space than 

expected. This is a serious issue in each machine learning problem. Simply adding new 

features does not lead to the better classification results. We applied the concept of features 

selection in the structure of the next BCI applications in order to avoid this inconsistency. By 

applying a feature selection techniques the best m features under the criterion of minimum 

mutual information are selected, which in principle results in higher classification accuracy in 

lieu of smaller feature space. 

Looking at the current results a possible reason why the classifier accuracy was lower 

during the imagination phase than in the relaxation phase could be the overall concentration 

of subjects and their tendency towards relaxation state during the experiment. The reason 

could be also sought in the weaker classifier performance during the imagination phase. SVM 

classifier is an optimum margin classifier. In our soft SVM classifier the concept of slack 

variables was used, where a limited number of misclassification during the training is 

allowed. It may lead to a slight imbalance behavior of the classifier in multi-dimensional 

space. As discussed in Chapter 2, in theory there is an unavoidable trade-off between bias and 

variance of the classifier. High bias and low variance classifiers are usually the stable ones, 

but not necessary leads to the highest classification accuracy over test data. Here a nonlinear 

classifier has been trained and tested over feature space. It is interesting that the results 

achieved using the combined feature spaces were less biased toward any of two classes. 

Questions of robustness of the method and data requirements could be yet discussed. 

 

 

 

 

 



 

 

 

Chapter 4 

Controlling a hand prosthesis using 

brain signals – A simulation study1 

 

 

 

4.1. Introduction 

With the advancement of technology neuroprosthetics can become an applicable 

solution for paralyzed people. The design of neural-machine interfaces for prosthesis, 

however, is limited in academia due to the shortage of affordable robotic hand availability and 

the overall accuracy of the system. Commercial hands are able to mimic the human hand with 

a good resolution but they are bulky, large and expensive (Oung, et al., 2012). “At the 

University of Lübeck, institute for signal processing (ISIP) researchers developed a new low-

cost anthropomorphic robotic hand. The project is envisioned to be a new cost-effective 

robotic hand that can initially serve as a research tool for neuroprosthetic engineers.  With the 

ability to be fully as dexterous as the human hand, it let us effectively develop new and 

innovative interfaces that will allow users to control a robotic hand intuitively”
2
. We applied 

such a concept to prosthetic control, which could handle many tasks autonomously, only 

requiring high-level commands from the user. This chapter, thereby, presents an application 

based on motor imaginary BCI systems with artificial hand control for simulated hold, grasp 

and open a hand using a previously collected dataset. The focus of this project was to 

establish the robust hardware connection between the BCI and the already developed 

anthropomorphic robotic hand and at the same time to investigate a new and reliable machine 

learning approach for this setup. In order to reveal non-Gaussian characteristics of the EEG 

signal we applied higher order statistics momentums along with power band features to create 

                                                           
1 Part of this work was published in : M. Kh. Hazrati, and A. Erfanian, ” An On-line BCI Without Training for Controlling 

the Sequence of Hand Grasping, Opening, and Holding Using Adaptive Probabilistic Neural Network ,” Journal of Medical 

Engineering and Physics, April 2010. 
2 Stephen Oung, Design and Development of a tendon-based anthropomorphic robotic hand”, Master thesis, 2012 
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feature space for this application. Considering the nonlinear and chaotic behavior of brain 

signals, we hypothesize that these features are able to distinguish between two states of the 

brain which are of our interest in this application. To my knowledge using the proposed 

parameters were not investigated in any online BCI application so far.  

4.2. Project specifications 

4.2.1. Robotic hand configurations 

Figure 4.1 shows Lübeck’s anthropomorphically designed robotic hand (LAnDRoH). 

The main motivation to design LAnDRoH was to provide of a cost-effective, fully dexterous, 

and lightweight robotic hand (Oung et al., 2012). The entire hand was bolted onto a solid base 

to prevent shifting of the hand during flexion. The initial work, shown in Figure 4.1, was 

focused on the electromechanical design and control. Thus the preliminary test bed was 

designed to perform initial measurements of the control algorithms. The robotic hand 

implemented an N+1 flexible link actuation system that allowed independent control of each 

of the 20 degrees of freedom. The system was controlled using an ATmega2560 

microcontroller (SmartProjects Italy), which allowed control from either a haptic glove or a 

computer. An adult human hand only weighs 530g but is capable of exerting a flexion speed 

of 40 rad/s and a grip grasp with an exertion force of 540N (Oung, et al., 2012). Although the 

maximum speed is remarkably high, studies have shown that for performing the majority of 

activities of daily living (ADLs) the human hand only requires speeds of 3-4 rad/s (Bundhoo 

et al., 2005). Higher speeds are only required for specialized tasks such as catching a thrown 

object. The average speeds of the robotic fingers for extension and flexion are comparable to 

current robotic hands and prostheses (Bundhoo et al., 2005).  

 

Figure 4.1: (a) The main motivation to setup the Lübeck's anthropomorphically designed robotic hand 

(LAnDRoH) was to provide of a cost-effective, fully dexterous, and lightweight robotic hand. The entire hand 

was bolted onto a solid base to prevent shifting of the hand during flexion. The average time to fully flex a finger 

was recorded at 0.64 s (
~ 

2.8 rad/s). 
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The average time to fully flex a finger was recorded at 0.64 s. This translates to an 

average flexion speed of 2.8 rad/s. Although this is only a fraction of the speed capable of the 

human hand, it is comparable to current robotic hands and prostheses. The construction details 

can be found in Oung’s master thesis. 

4.2.2. Lübeck BCI design 

The Lübeck brain computer interface (LBCI) was designed based on a MATLAB 

graphical interface connected to the robotic hand and with the option of connecting to a 

g.USBamp (Guger Technologies, Graz, Austria). The connection with robot was established 

using a direct SSC-32 connection and a serial object from MATLAB and Real-Time 

Windows Target for Windows XP. An initialization command was sent to the robot hand to 

set its status to fully open before the start of the experiment. Written m-file function 

Fingermove tests the connection and set the joint angle by sending the predefined speed and 

direction values to servomotors (GWS, Taiwan) with maximum speed 360°/1.28 s. The 

position is controlled by a pulse width modulation (PWM). The initial home position is 

determined with a PWM of 1500 µs and a full rotation is given by an increase or decrease of 

1000 µs (Oung et al., 2012). 

      

Figure 4.2: (a) Experimental setup for hand prosthesis control. BCI paradigm consisted of a GUI interface to 

demonstrate the virtual hand and a link to the robotic hand. (b) 3D rendering of Robotic Hand, each finger 

requires a specific control command. 

 

The interface consists of both offline and online modes. In the current configuration a 

separate command will be sent to each finger leading to one step “Grasp”, “Hold” or 

“Release” actions. I modified the BCI set-up described in the previous chapter (Hazrati et al., 

2011) and linked it to the LAnDRoH (Oung et al., 2012). In the following we investigate how 

a BCI can use the same framework as in the “virtual hand movement” and benefits from the 
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hardware connection established between the artificial hand custom while both interactive 

virtual reality environment and LAnDRoH are controlled by advanced machine learning 

algorithms. The system is able to read the data in a real-time scheme from a data set 

previously recorded. It means that in our current evaluation system a data pool was used 

instead of an actual recording system. The result of the classification was fed to the robot 

system in order to control the artificial hand and simultaneously a feedback was displayed on 

the screen. In the following the primary experimental setup and the implementation of the 

entire system are explained.  

4.2.3. Data Collection and Primary experimental paradigm 

Data collection experiments were conducted in the BCI Laboratory, Neural Technology 

Center (NTC), Departments of Electronic Engineering at Iran University of science and 

technology (IUST) in Tehran. Ten healthy volunteer subjects (Five male, Five female, mean 

age: 27.6) participated in the experiments of this study. All subjects except S5 were right 

handed. The subjects were naïve without any previous experience for BCI experiments. 

Monopolar EEG signals were recorded by means of a g.USBamp at the sampling rate of 256 

(samples/s) from positions F3, F4, Fz, C3, C4, Cz, and Pz by Ag/AgCl scalp electrodes 

mounted according to the 10-20 system and then were low-pass filtered with a cutoff of 45 Hz 

using Butterworth filter order 10.  During the experiments impedances were kept below 5 kΩ. 

Each epoch of 3840 points comprised 26 Hanning-windowed, 512-point data windows with 

75% overlap. An electrode was placed above the left eyebrow line to record the eye blinks. 

All channels were recorded with the reference electrode located on the right earlobe and a 

ground electrode at the left earlobe. A resting period of about 5 minutes was enforced 

between each run.  The experiment for each individual consisted of different sessions and 

each session was conducted on a different day. Each session consisted of at least 10 runs and 

each run consisted of 10 trials with online feedback. 

To classify two states of brain activity, relaxation and imagination of hand movement 

(close and open), a scenario containing those states for data collection was designed. In this 

BCI paradigm subjects tried to control their attention and follow the instruction for the 

imagination of predefined hand movement and relaxation modes. At the start of trial, a blank 

screen was shown to the subject for 1 s. Then the subject observed an opened hand on the 

screen which indicates the onset of the relaxation phase. In this period the subject should not 

perform any specific mental task but to try keeping the hand open for 5 s. Following the 

relaxation phase, as displayed in Figure 4.3, the hand re-opened again (in case it was partially 
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closed before) a ball began to fall and by reaching the virtual palm the second phase of the 

trial started. This transient phase was fixed and consisted of four images displaying every 0.5 

second (total of 2 s). This was considered as a cue to convey the message of starting the 

imagination. At 7 s after onset of the trial, an active feedback phase was started. The entire 

feedback phase lasted 10 s. In the first 5 s, the user was asked to imagine of hand grasp action 

by grasping the ball (i.e., closing phase). Independent of the subject’s success in this part a 

closed hand holding a green ball appeared on the screen at 5 s and cued the subject to imagine 

the opening hand. During the next 5 s interval which represented the last 5 s of the entire trial 

the subject was asked to open the hand by corresponding imagination of hand opening. 

Starting from the point when the red ball appeared on the screen till the end of imagination 

trial was treated as a single class during the recording experiments; meaning that a single 

binary classifier was responsible to distinguish between the relaxed and movement classes. 

 

Figure 4.3: Experimental set up for virtual hand grasp and open control. Ten subjects participated in online 

sessions. Each trial lasted 17s and consisted of 5s idle state, 2s preparation for imagination followed by 5s of 

imagination of hand grasp and 5s of imagination of opening the hand.  

Data recorded during each run of experiment was saved automatically at the end of the 

experiment in separate MATLAB files in format (*.mat) containing variables:  

OnlineData =  

o time: [43560x1 double] 

o signals: [1x8 struct] 

o blockName: [1x58 char] 

Using data collected in these series of experiments, we extended our previous BCI 

paradigm to an EEG-based BCI for online control of hand grasping and holding and opening 

in a virtual reality environment as well as simultaneously by the robot hand. In this study we 

defined a binary problem for classifying between the relaxation and the imagination of 

movement (both closing and opening as one class). Therefore results are presented for 5 s of 

the relaxation and 10 s of the imagination of movement intervals. 
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4.3. Evaluation of the recorded EEG data 

4.3.1. Averaged potentials 

 Similar to the previous chapter signal averaging was used to enhance the signal-to-noise 

ratio. Grand-mean EEG waveforms (i.e., mean over trials and over participants) for this 

dataset are presented in Figure 4.4 for the relaxation and imagination phases. Here we 

consider the entire trial which last 17 s, starting from the onset of relaxation trial at -7 s. The 

time point -2 s is when the red ball appears on the screen and 2 s later at the zero point the 

imagination phase for closing the hand starts. In Figure 4.4 units on x-axis are ms and unit on 

y-axis are µV. The first 5 s of recording (relaxation phase) was considered as the baseline. 

Looking at the data after baseline removal reveals the fact that the imagination phase has 

lower average in comparison to the relaxed phase. 

 The first evoked potential happened at -6800 ms with negative peak followed by a 

positive peak at -6700 ms maximum at Pz. This large positive peak is most probably a P300 

component according to its timing and topography. It decreases from parietal to frontal lobes.  

  In the middle of the relaxed phase at -4500 ms regular fluctuations, possibly due to 

evoked activity, can be seen over F3 and F4. This fluctuation exists rather weaker in the other 

recoding locations. 

 Another positive peak can be seen at -2400 ms close to the end of the relaxation phase 

(which is at -2000 ms) maximum at F4. The reason for it is not clear and can be the results of 

an artifact, eye movement, with stronger pattern over the frontal lobe. This is followed by a 

positive peak -1700 ms maximum at Pz, which is the evoked potential of the event at -2000 

ms and probably a P300 (happened 300 ms after the red ball appears). The maximum 

amplitude decreases from parietal to frontal sites. 

 After the start of the imagination phase at 200 ms, the negative peak of the evoked 

potential, maximum at Pz and C4, is followed, especially at Pz and Cz, by another positive 

peak after 500 ms, most probably a P300 component according to its timing and topography. 

It can be seen over all recoding sites and has its maximum at Pz. 

At 4300 ms another evoked potential exists which maximizes at F4 and reaches its peak 

somewhat later at Fz and F3, at 4520 ms. 

 Two late deflections, consisting of peaks at about 6300 ms and 8400 ms, maximum at 

Pz and C4, can be observed during the imagination of opening hand phase. These are 

probably positive peaks of two evoked potentials at 6 s and 8 s from the biofeedback. 
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Figure 4.4: Grand mean waveforms for all 10 participants at all electrode locations (positions Fp1, F3, F4, Fz, 

C3, C4, Cz and Pz). y-axis range from -9 µV (bottom) to +9 µV (top). ). At -7000 ms, the relaxation phase 

started when the picture of an empty hand appeared on the screen. After 5 s, at -2000 ms, the transient phase 

started when the red ball appeared on the screen. Imagination of the closing hand commenced at 0 ms and after 5 

s the imagination of the opening hand started (at +5000 ms). 
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4.3.2. Power band spectrum 

The average power band spectrum was depicted for the imagination and relaxation signals 

acquired from each individual channel in Figure 4.5. The amplitude is calculated in log10 

(��/��) unit. The calculation is similar to the one described in 3.5.  

In the current dataset values of the EEG power in delta (1-3 Hz) and alpha bands (8-12 Hz) 

of relaxation phase were found to be noticeably higher than those in imagination phase over 

all recording sites. The alpha peak has tendency to the lower border at Fp1 and F3 and the 

peak is seen in the lower frequency (around 8 Hz) in the data corresponding to relaxation in 

comparison to the imagination. The maximum exists at 10 Hz at Pz, as expected.  

For theta band (4-8 Hz) a wide range ERD is seen during the imagination from recording 

sites overlying the primary hand-motor cortex (M1) (at C3 and C4) as well as at parietal site 

(Pz). The theta ERD topography changes over channels. At C3, C4 and Cz it differs in a wider 

range of frequencies between the two conditions. There is a slight decrease in the power of 

beta band in imagination phase over C3, C4 and Pz. No distinguishable changes can be seen 

in the gamma band (30-45 Hz) in average. However, it could be seen sparsely in some 

individuals for some session of experiments. 
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Figure 4.5: Average power band over the entire dataset for two different brain states demonstrated over Fp1, F3, 

F4, Fz, C3, C4, Cz and Pz - Unit on x-axis is Hz, unit on y-axis is ��/��. 

4.3.3. Time-Frequency analysis employing ERSP procedure 

Figure 4.6 depicts ERSP analysis for all recorded electrodes averaged over all trials and 

subjects for this BCI experiment. Unit on x-axis is seconds. It starts from the onset of the 

relaxation phase at -7 s till the end of the imagination phase at 10 s. Unit on y-axis is Hz and 

varies between 0 to 45 Hz. The first 7 s of data is considered as baseline for the rest of the 

trial. The first and last one second of data was truncated because of processing distortions.  

 The first time-frequency fluctuation in Figure 4.6 is an ERS in alpha and upper Beta 

bands that happens between -6 s to -4 s almost continuously in Pz and over central but 

sparsely over frontal sites. It cannot be observed in Fp1. Sporadic Beta ERS starts later at -5 s. 

Delta and theta ERS can be seen between -3 s and -1.5 s, when the falling red ball appeared 

on the screen. 

 The most distinguishable fluctuation in Figure 4.6 is an alpha ERD that starts from -1 s 

and lasts till the end of the entire trial, all over the hand movement imagination phase.

 Sparse ERD in beta band exists simultaneously over all recording sites. At +3 s an 

increase of power around 12 Hz can be observed maximum at Pz. There is also a theta ERS 
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between 5 s and 7 s all over channels with maximum at Fp1. It can be the result of switching 

between opening and closing hand segments. A gamma ERS can also be observed in C3, Cz, 

F3 and Fz between 6 s and 8 s. It occurred after the start of imagination of opening hand at 

+5 s. 

 The global ERS in alpha band, as seen in Figure 4.6 in the previous section, is the result 

of absolute value of the alpha band. However, by applying ERSP method we can observe 

ERSs and ERPs for each frequency proportional to the baselines. Blue and green curves 

below ERSP diagrams are averaged values of ERSP over frequency with and without 

considering the baseline corrections, respectively.  
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Figure 4.6: Time-Frequency analysis based on ERSP during relaxation and imagination phases. Zero point 

indicates the start of hand movement imagination by the subject. Unit on x-axis is s, unit on y-axis is Hz. The 

color bar represents the absolute values of ERSP in dB.  Left and below diagrams are averaged values of ERSP, 

over time and frequency, respectively. Green line corresponds to the values before subtracting the baseline. 

Plotted using EEGLab toolbox in MATLAB. 

4.4. Materials and Methods of BCI 

The main structure of the current BCI consists of five major elements: Preprocessing 

(artifact reduction and filtering), feature extraction, feature selection, classification and 

decision making. The recorded EEG signal was treated as a simulated online scenario. The 

ongoing EEG in each trial of the experiment is processed in two-second windows, 

overlapping with 75% overlap. In the first step an artifact correction and filtering technique 

was applied on this window. Here we propose a novel information-based adaptive filter for 

the artifact reduction. A similarity index is introduced to evaluate the method and to choose 

the optimum parameters for the online setup. Then a feature vector was calculated using 

normalized power band features along with higher order statistic features. A feature selection 

algorithm was then used in order to select the more informative features for each channel. In 

this simulation study we compared two classification approaches. In the first method all 

selected features were fed to a single SVM classifier and the binary decision was made based 

on the output of this classifier. In the second approach again one single SVM classifier was 

used, but separately for each channel, and the final decision was made based on the voting 

technique. The classification accuracy was calculated regarding the number of correct binary 

outputs of the ensemble classifier. In the following I will explain each element of BCI 

thoroughly. At the end the result are presented and discussed. 

4.4.1. Online Ocular Artifact Removal by Information-Based Adaptive 

Filtering 

In order to implement an artifact removal system online, we used an adaptive filter 

approach in the time domain. We applied this method as an alternative to an ICA-based 
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approach, expecting that its computation would be considerably faster, thereby qualifying as a 

suitable alternative for online schemes.  

As depicted in Figure 4.7 an adaptive system requires two inputs, one being the 

reference input and the other being the desired signal. In ocular artifact removal from EEG, 

the desired signal input is the EEG recorded from the required site. The signal recorded from 

the Fp1 electrode is used as the reference input. In the current setup, it is the closest electrode 

to the eye and with the left-ear reference it mainly captures the ocular artifacts related to 

vertical eye movements. The reference input is low-pass filtered by passing through a moving 

average filter and then is applied to the adaptive filter.  

 

 

 

 

 

 

 

Figure 4.7: A general block diagram of an adaptive noise canceller (Principe, 2010) 

Minimizing the error entropy in fact minimizes the distance between the probability density 

functions (PDFs) of the input and output of the adaptive system (Principe, 2010). In the 

proposed approach we apply Renyi’s Entropy (Renyi, 1960) instead of Shannon’s definition 

of entropy since it needs less computational effort to be estimated directly from samples. For 

a random variable X whose PDF is given by ��	
�	Renyi's entropy of order α is given by: 

�	�� = 1
1 − � ��� � ��	
��


�

��
= 1
1 − � �� �	�������	
���																	4.1�	 

For � = 2 the equation reduces to: 

��	�� = −�� �	�����	
���																																															4.2� 
The argument of the logarithm is called the information potential (IP). It is easier to estimate 

and work with the information potential rather than the entropy itself. A recursive equation for 
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estimating the IP directly from the samples of a non-stationary signal can be calculated  

(Wolpaw, et al., 1998) as: 

�!"� = 	1 − #��! + #
% & '(	
!"� − 
)�

!

)*!�+"�
																																	4.3� 

Here λ is the forgetfulness factor and L is the length of the window of the past samples taken 

into consideration. '(	
� is an even symmetric kernel function whose kernel size is .. We 

have then implemented a linear adaptive filter, which means the intermediate output is given 

by: 

�	
/, 122/� = 122/3
/																																																																			4.4� 

/	 is the contaminated input signal, and 122/ is the weight vector. The error signal is the 

difference between the desired signal and the intermediate output of the filter: 

	4	5� = �	5� − 122/3
/																																																																4.5� 
The error entropy is computed using the estimator described in the previous section. The filter 

weight update recursion is given by: 

122/!"� = 122/! − 7 8�!
8122/! 																																																												4.6� 

Where (Jian-Wu, et al., 2003), 

8�!
8122/! = 	1 − #� 8�!��8122/! + #

%&'(: 	4! − 4)�
!��

)*�
;84!8122/! −

84)
8122/!<																		4.7� 

The quantity 
>?@AB
>C22/@  can be approximated by 

>?@AB
>C22/@AB and in the case of the linear adaptive filter 

the quantity 
>D@
>C22/@ −

>DE
>C22/@  can be approximated by 
/! − 
/) .  

The parameters involved are filter order, forgetfulness factor (λ), window length (L), 

kernel (κ), kernel size (σ), and learning rate (µ). All these parameters were optimized before 

the proposed algorithm has been applied in our online BCI experiment. The optimum values 

of these parameters using the current dataset can be seen in Table 4.1. 
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4.4.1.1.   Implementation 

The critical factor in the implementation of the adaptive filter is the choice of the kernel 

and hence, the kernel parameters. In order to investigate the effect of each element, the filter 

was implemented with two different kernels, Gaussian F(	
�and Gabor G(,H	
�. Both were 

implemented with and without adaptation of their kernel parameters.  

F(	
� = 1
.√2J 4

� KL
�(L 																																																							4.8� 

G(,H	
� = 1
.√2J 4

� KL
�(L cos 2J�
 																																							4.9� 

The adaptive filter was implemented with and without the adaptation of the kernel parameters. 

Adaptation of kernel parameters was carried out using a regression method. 

.	5 + 1� = .	5� + R 8ST+	.	5��8.	5� 																																								4.10� 

The cost function used was the Kullback-Leibler (KL)-divergence between the estimated PDF 

of the error and the true PDF of the error signal.	R  is the learning rate. 

 ST+	.� = �
V∑ ��� X�V∑ G(Y4) − 4Z[VZ*� \V)*� 																																4.11� 

The results varied depending upon the training sample upon which the filter was 

applied. However some general trends could be seen. It was observed that the Gabor kernel 

performed better than the Gaussian kernel on average. This could probably be due to the fact 

that the shape of the Gabor kernel is similar to that of the artifact which was mostly produced 

by blinking. The effects of the non-kernel parameters on performance of the filter were also 

studied. Since EEG is a non-stationary signal, it is not advisable to set the window length to a 

large value and include too much prior data to estimate the PDF of the error signal. This is 

also why without . adaptation the forgetfulness factor should be close to 1. As expected, it 

was observed that the performance increased with higher values of the forgetfulness factor 

(λ). Increasing window length (L) not only increased the computation time by a large amount, 

but also reduced the performance of the filter. Large computation time is not desirable for an 

online adaptive filter so L was set to 16 data points for all cases. Similarly, adaptation of 

kernel parameters also slows down the filter. Even though there is an increase in performance, 

it is not so much for being worth compromising the response time of the filter. 



Chapter 4: A simulation study 

 

 

112 

 

Table 4.1: The parameter values used in different methods of the adaptive filtering for artifact suppression. For 

the adaptive cases the noted value is the initial value of that parameter. L is set to 16 data points for all cases. 

 

Method 

  Parameters    

λ ] Kernel 

frequency 

^ Iteration MA order Filter order 

Gabor kernel filter with 

sigma update 
0.7 16 0.1 0.05 20000 40 10 

Gabor kernel filter without 

sigma update 
0.99 16 0.5 0.5 20000 40 10 

Gaussian kernel filter with 

sigma update 
0.4 70 - 0.05 20000 40 10 

Gaussian kernel filter 

without sigma update 

0.99 70 - 0.5 20000 40 10 

       

 

Figure 4.8 demonstrates the output of the algorithm in each step, where the input is the 

EEG recording from F3 and the reference signal is Fp1. The artifact-free data is depicted in 

red. Changes in the value of intermediate output start at 7 s and continue till the fluctuation in 

the main signal exists. As can be seen, the method does not distort the data when no artifact 

exists. The same procedure was applied simultaneously to the other recording sites.  

  

Figure 4.8: Gabor filter with the sigma update over the time applied in 10 s ongoing EEG data. The output of the 

adaptive filter is the artifact-free EEG. The upper panel shows the measured signal at F3 in black, and the 

corrected signal in red (output of the adaptive filter). The reference signal (input to the adaptive filter) is the 

signal recorded from Fp1 smoothed by a moving-average filter. 
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4.4.1.2.   Validation 

One of the main concerns in artifact correction is the validation step. The contaminated 

part of the signal which is corrected by the computational method needs to be compared to an 

original source which is latent. In order to overcome this issue we introduce a criterion based 

on the similarity of the information between the clean and artifact segments before and after 

artifact correction. In order to evaluate the performance of the information theoretic filter as 

compared to the least-squares filter, we use correntropy (Principe, 2010) as the similarity 

criterion. The correntropy of two signals X and Y is given by: 

�	�, a� = 1
b&G	
) −

V

)*�
c)�																																																						4.12� 

Here G	
� is a kernel function (usually Gaussian). The correntropy is highest when the two 

signals are closest to each other (Weifeng et al., 2006). The performances of the different 

implementations of this filter were compared to those of a LMS adaptive filter. The general 

similarity measure used was the correntropy of the output of the filter 4	5� and the desired 

signal �	5�. 
defe�gheic = �	4jkjlm, �jkjlm�%																																								4.13� 

Similarity values and the total computational time can be seen in Table 4.2 for each method 

using the signal depicted in Figure 4.8.  However, in order to evaluate the performance of the 

method in details we defined an overall performance measure as the proportion of the sum of 

correntropy calculated for the signal divided by the sum of correntropy calculated for artifact 

segments. The reason is that because performance does not intuitively depend upon the 

similarity of output and the desired signal in areas where artifacts are present, the signal and 

artifact regions of the EEG recording had to be distinguished.  

o�hh45ih�pcq)rslm = �Y4sks�ltj)Hluj, �sks�ltj)Hluj[																															4.14� 

o�hh45ih�pcltj)Hluj = �Y4ltj)Hluj, �ltj)Hluj[																																		4.15� 

p4h��hfg5o4 = o�hh45ih�pcq)rslm
o�hh45ih�pcltj)Hluj 																																						4.16� 

Table 4.3 summarizes these calculations for the current dataset. Artifacts were 

considered those segments of the signal where the output of the adaptive filter differs more 

than 10% from the input signal. 
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Table 4.2: Comparison between our proposed method and two commonly used approaches for artifact reduction  

Evaluation 

method 

 

Comparison 

Similarity % Computational 

timing 

 

Entropy-based 

Gabor kernel with 	
] adaptation 

78.96 34 ms 

 

Entropy-based 

Gabor kernel  

74.24 20 ms 

 

Entropy-based 

Gaussian kernel with 	
] adaptation 

75.65 28 ms 

 
Entropy-based 

Gaussian kernel  

72.14 17 ms 

 

ICA 

 

77.80 120 ms 

LMS 

 
69.33 15 ms 

 

Table 4.3: Evaluation of the proposed method based on the averaged comparison between our proposed method 

and LMS based on the performance factor for the current dataset. 

 

The information filter performed up to 1.2 times better than the LMS adaptive filter 

with respect to the signal performance measure. This means the information filter preserves 

the original EEG signal in the regions where there is no artifact present. The LMS filter 

however distorts the signal where there is no artifact. Even though the performance on the 

artifact correntropy parameter is good for the LMS adaptive filter, which means that the filter 

removes artifacts satisfactorily, the distortion of the original signal information overrides the 

 Evaluation method 

Correntropy 

signal 

Correntropy 

artifact 

Performance 

Gabor kernel filter with 	
]   adaptation 

0.8996 

 

0.1256 

 

7.162 

 

Gabor kernel filter without 	
]   adaptation 

 

0.7508 

 

0.1208 

 

6.215 

 

Gaussian  kernel filter with 	
]  adaptation 

 

0.6984 

 

0.1053 

 

6.635 

 

Gaussian kernel filter without 	
]  adaptation 

 

0.8747 

  

 

0.1263 

 

6.925 

 

LMS 0.5585 0.092 6.071 
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effective artifact removal. The increment in performance between the Gabor and Gaussian 

information-based adaptive filters was not reliably greater over all training examples. In any 

case, Gaussian or Gabor, with or without adaptation of kernel size, the information filter 

employing Renyi’s entropy as the cost function performed on average 20% better than the 

LMS adaptive filter on the training samples with respect to the correntropy parameter (Table 

4.3). In our online setup, the Gabor filter with sigma adaptation was used. 

4.4.2. Feature extraction based on higher order statistics (HOS)  

The term higher-order statistics (HOS) describes the functions of third or higher order 

(Petropulu, 2000). The higher-order spectrum as an extension of the Fourier spectrum uses 

higher moments for spectral estimates. By eliminating the effects of Gaussian random 

processes, HOS is able to reveal non-Gaussian and nonlinear characteristics in complex 

patterns such as EEG time series (Mendel, 1991). In what follows we employ higher-order 

spectrum for the extracting of the hidden attributes of EEG signals. Based on this analysis a 

multidimensional feature space for the current BCI application is proposed. 

4.4.2.1.    Higher order momentums and cumulants 

Moments are quantitative measures to describe the distribution of data points. In the 

one-dimensional case, the ith central moment of the signal 
	5� is defined as: f){
	5�} =
�{	
	5� − 7�)}, where �{. } denotes the ensemble expectation operator and 7 is the mean of 

the random process. For reasons of mathematical convenience, specific nonlinear 

combinations of these moments, called cumulants, are often used instead of moments 

(Mendel, 1991). The first-order and the second-order cumulants are the mean and the auto 

covariance sequence of the process. Under the assumption of a stationary real-valued process 

with zero mean, the first-, second-, third- and fourth-order cumulants can be expressed by 

following equations  (Petropulu, 2000) , where 5) denotes the timing lag in each equation. 

x�K = �{
	5�} 
x�K	5�� = �{
	5�
	5 + 5��} = y�K	5��       

xzK	5�, 5�� = �{
	5�
	5 + 5��
	5 + 5��}             	4.17� 
x{K	5�, 5�, 5z�

= �{
	5�
	5 + 5��
	5 + 5��
	5 + 5z�} − x�K	5��x�K	5� − 5z�
− x�K	5��x�K	5� − 5z� − x�K	5z�x�K	5� − 5�� 
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For calculating the third-order moment two independent lags 5� and 5� should be set. The 

formulation of higher order moments is done by adding lag terms in a similar way. The zero-

lag cumulants have special names: x�K	0�	is the variance and the normalized quantities of 

xzK	0,0� and x{K	0,0,0� are usually referred to as skewness and kurtosis (Zhang, 2010).  

dG4154dd = fz�
	5��
.z 							,			G|hi = f{�
	5��

f���
	5�� − 3																													4.18� 

Skewness is a measure of symmetry of the distribution of the data set. A symmetric 

distribution looks the same in the both sides of the mean point. Skewness is negative if the 

distribution is more to the right of the mean point (Mendel, 1991). As defined earlier in 

chapter 3, kurtosis is a measure of Gaussianity. A Gaussian distribution has zero kurtosis (but 

not vice versa), positive kurtosis implies a sparse distribution, “super-Gaussian” 

(leptokurtotic). We used these two parameters as features for the current BCI setup. 

4.4.2.2.    Bispectrum and Bicoherence 

Any Gaussian signal can be thoroughly defined by its first and second order statistics 

i.e., mean and variance. So the higher order spectrum of Gaussian signals either contains 

redundant information or has zero moments. For instance, a Gaussian signal has zero for the 

3rd order or higher moments (Mendel, 1991). Phase information is not present in the second-

order measures (such as the autocorrelation functions or the power spectrum). For this reason, 

those phase coupling that are associated with nonlinearities cannot be correctly identified by 

second-order statistics (Maclaughlin et al., 1995-add) (Petropulu, 2000). The autocorrelation 

function is the second-order cumulant, as defined above (Eq. 4.17), and its Fourier transform 

is the power spectrum of the signal. Similarly, bispectrum is the Fourier transform of the 

third-order cumulant (Petropulu, 2000). In bispectrum and bicoherence	}	~�, ~�	� the prefix 

bi- is used to indicate the relation between two frequencies of a single signal, ω1 and ω2 which 

differs from the coherence relation between two time series. 

}	~�, ~�	� = & & 
	5�
	5 + 5��
	5 + 5��
"�

sL*��

"�

sB*��
			4�Z	sB�B"sL�L�																 

≅ 1
b&�)	~���)	~���)	~� + ~��

V

)*�
																																					4.19� 

Here the discrete Fourier transform of the ith section of the EEG signal is shown by	�)	~� 
(Sanei, 2007). At coordinate point 	~�, ~��, the magnitude of the bispectrum calculates the 
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degree of phase coherence between the three frequency components	~�, ~� and		~� + ~�. So 

the magnitude of the joint Fourier spectrum also affects the magnitude of 

bispectrum	|}	~�, ~��|�. The normalized bispectrum, also called bicoherence, is defined 

upon the following relationship: 

��	~�, ~�� = |}	~�, ~��|�
�	~���	~���	~�, ~��																																																					4.20� 

Where �	~� ≅ 	 �V 	∑ �)	~�V)*� 	�)	~�	∗  is the power spectrum of the signal	
	5�. In principle, 

HOS can be a powerful tool in distinguishing the biological signal and the Gaussian 

background noise from each other. The reason is that the majority of biological signals have 

non-Gaussian distributions, but measurement noises have usually Gaussian distributions. For 

this purpose, the second-order measures cannot be as effective as HOS, because they cannot 

capture the differences and therefore they are more affected by the background noise. In the 

present BCI application, six features based on HOS characteristics of the EEG signal were 

calculated using modified functions of HOSA toolbox in MATLAB. Figure 4.10 illustrates 

the estimation of bispectrum averaged over the dataset. Phase coupling during the imagination 

interval happens in lower frequencies, but during the relaxation it shows a wider distribution 

and reaches its maximum in the alpha and beta bands. The red color shows the maximum 

value of the bispectrum which can be seen in the lower frequency during the imagination 

phase.  

Figure 4.10: Estimated parametric bispectrum demonstrates the higher order dependency in different brain states 

(Imagination of movement state vs. relaxation state) in the current dataset. Units on x- and y-axis are frequency 

(Hz). Colors show the magnitude of bispectrum in �z/��� , with blue =  2	 × 10�z, and red = 200. White areas 

between the isolines show interpolated values. 
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Figure 4.11 shows the extended bicoherence estimation via direct FFT method for the 

relaxation state (left column) and the imagination state (right column) averaged over all 

subjects and trials. 

   

Figure 4.11: A contour demonstration of the bicoherence estimated for the relaxation state (left panel) and the 

imagination state (right panel) averaged over all subjects and trials. Units on x- and y-axis are frequency (Hz). 

Negative frequencies are interpreted as negative phase shifts. Colors show the normalized magnitude of 

bicoherence, with blue = 0, and red = 1. White areas between the isolines show interpolated values. 

The results of this analysis show that the distribution of EEG signal bispectra on the 

bi-frequency planes is smaller during imagination than relaxation and the distribution during 

relaxation tends more to be more chaotic as may be seen from the coupling between different 

frequencies in Figure 4.10. It means, there is more frequency coupling during the relaxation 

state in comparison to the movement state. Plots are symmetric regarding the frequency axes. 

In order to construct a feature set based on the higher order spectrum, six characteristics 

were extracted from each EEG trial: Maximum and minimum values of bicoherence, average 

power and the distance from the center (maximum frequency coherence) along with kurtosis 

and skewness values (cf. Figure 4.12 for an illustration). These six bispectrum estimates were 

extracted from each of the 7 EEG channels (= 42 features) along with 4 broad-band 

parameters from the power spectrum (theta, alpha, beta, gamma bands, × 7 = 28). Figure 4.12 

shows an example of the segmented signal during the imagination and relaxation states 

recorded for S1 while working with the online BCI system (left panels in first and third rows). 

Its corresponding normalized power spectrum is depicted below the signal (left panels I 

second and forth row). The right panel shoes third-order cumulant distributions with different 

lags (first and third rows), and the calculated bicoherence (second and forth row). Color bars 

show the magnitude of cumulants (�z) and bicoherence (�z/���). Lags for calculating the 

third-order cumulant theoretically may vary from -∞ to +∞, but the range is restricted to -100 
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ms to +100 ms in Figure 4.12, which directly affects the resolution of the corresponding 

bicoherence (its Fourier transform) in range of –50 Hz to 50 Hz.  

 

 

Figure 4.11: A sample of the segmented signal, normalized power spectrum, third-order cumulant distribution 

and bicoherence magnitude for the imagination state (upper four subplots) and the relaxation state (lower four 

subplots). Units were inserted for each subplot separately. 
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In our analysis selecting greater lag values up to 1000 ms for each segmented EEG is 

possible but it has direct effect on the increasing the speed of computation, which is not 

desired in our BCI setup. These displayed cumulant distributions show smoother connections 

in the relaxation state than in the imagination state. The values of the six extracted parameters 

are in this example for the imagination and relaxation states: Maximum bicoherence value 

0.852 vs.0.772, minimum bicoherence value 0.09 vs. 0.02 (considering non-zero values in the 

positive frequencies), average power 0.264 vs. 0.093, max frequency coherence 18 Hz vs. 7 

Hz (visible as red dots in the positive frequencies in the bicoherence plots distance of the dark 

red squares from the zero point). Skewness was calculated as normalized value in the center 

of the third-order cumulant distribution and amounted to 1.74 vs. -1.52. Kurtosis values for 

the two signals amounted to 3.12 vs. 2.71 respectively. Empirically the kurtosis value of a 

distribution is linearly proportional to its squared of skewness (Schopflocher & Sullivan, 

2005), therefore these two values are not independent. 

The constructed 70-dimensional feature space was fed to a feature selection module 

(4.4.3) and the selected features finally were used in our BCI to send a control command to a 

robotic hand. Averaged HOS extracted features for the imagination state calculated for the ten 

subjects can be seen in Table 4.2. 

 

Table 4.2: Averaged HOS extracted features from EEG signals calculated for the ten subjects for the imagination 

state. 

 

Subject 
  

 

Max and min 

values 

of bicoherence  

 

Max 

frequency 

coherence 

 

Average 

Power  

 

Kurtosis 

 

Skewness 

S1 0.737, 0.335 18 0. 625 4.32 1.98 

S2  0.726, 0.407 27 0.633 3.15 2.25 

S3  0.899, 0.501 15 0.747 4.50 2.07 

S4  0.938,  0.678 22 0.820 3.91 2.16 

S5 0.990, 0.631 21 0.755 3.42 2.12 

S6  0.834, 0.551 16 0.711 4.57 1.92 

S7 0.375 ,0.805 12 0.606 2.73  2.06  

S8 0.466 ,0.912 15 0.615 3.06  1.72  

S9 0.560 ,0.972 11 0.846 4.13 1.73 

S10 0.365 ,0.885 14 0.645 4.62 1.84 

 

The two most effective features out of 10 features were selected by the mRMR selection 

algorithm for each channel during the training mode. The output command is formed from the 
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7-channel EEG signal every 0.5 s using a 2 s data segment with 75% overlap on the preceding 

and following segments. 

4.4.3. Feature selection: Maximum relevance minimum redundancy  

Selecting a subset of superior features using the maximal statistical dependency 

criterion is a well-known feature selection method in machine learning (Koprinska, 2009). 

The Max-Dependency criterion is based on mutual information but is mathematically difficult 

to calculate in a real-world application. An alternative approach for selecting features based 

on the maximal relevance minimum redundancy criterion is the mRMR algorithm which has 

been evaluated by extensive experimental comparison of the proposed algorithm and other 

methods using different classifiers and different data sets (Peng et al., 2005). The results 

confirm that mRMR leads to promising improvement on feature selection and consequently 

increasing the classification accuracy (Peng et al., 2005). In the mRMR approach, M features 

are selected based on the maximum mutual information calculated between each two features 

and also between each feature and the class labels. The criterion is to find, at the same time, 

the minimal redundancy amongst features and the maximal relevance to the class labels. Peng 

et al. reported a detailed description of the mRMR algorithm (Peng et al., 2005). Based on 

their formulation, the algorithm first finds Max-Relevance or	D	S, c� satisfying Eq. 4.21. The 

equation is calculated based on an approximation all mutual information �	
); o�	between 

individual feature 
) and class c and then the mean is calculated over the feature space: 

max�	�, o� , � = 1
|�| . & �	
); o�																																														4.21�

KE∈�
 

It is likely that features selected according to Max-Relevance could have rich redundancy, i.e., 

the dependency among these features could be large. Therefore, removing or adding one of 

them will not alter the respective classification accuracy. Peng et al. proposed the second step 

in their algorithm and added the minimal redundancy (Min-Redundancy) condition. Eq. 4.22 

selects mutually exclusive features when the sum of mutual information between each two is 

minimized (Peng et al., 2005): 

min�	�� , � = 1
|�|� . & �Y
); 
Z[																																						4.22�

KE,K�∈�
 

We used the mRMR method for the current BCI paradigms in order to decrease the 

feature space to the two most relevant features (total of 14 features). Selection of the most 

appropriate features based on mRMR increased the classification accuracy in our current and 
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following BCI applications. Table 4.3 shows the selected features for each classifier trained 

on the data of each recording channel. The two most informative features based on mRMR 

selection contain both HOS and power band features. 

Table 4.3: The two most informative features selected for each EEG channel during the training phase of S1. 

 

4.4.4. Classification 

For this application after selecting the features we employed a kernel-based support 

vector machine (SVM) classifier in order to deal with non-linearity of the new feature space 

(N=2 × 7). SVMs are used with kernel functions as transformation function of the input data 

to the higher dimension feature space (Müller et al., 2003). By exploiting the idea of a kernel, 

the linear maximum margin classifier, described in Chapter 2, can be extended to nonlinear 

classifiers. Furthermore in the case that the transported features in the new space are not 

balanced, they are practically separable by adjusting the parameters of a maximum margin 

classifier. This transformation of the input data to the feature space is done without explicitly 

specifying the transformer (Vapnik, 1999). Figure 4.12 depicts the steps of the algorithm. It 

consists of three essential parts: the dual form of linear algorithms, nonlinear mapping and the 

kernel function (Liang, et al., 2011). There are some commonly used kernels: 

o Linear kernel: 	�Y
) , 
Z[ = g�
)j
Z + �  

o Radial basis function (RBF): �Y
) , 
Z[ = 4
p	 − �. �
) − 
Z��� 
o Sigmoid kernel:	�Y
) , 
Z[ = tanhY	g�
)j
Z + �[ 

 

 

 

 

Figure 4.12: The kernel-based SVM model comprises three essential steps. The low dimensional input space X is 

projected to a high dimensional feature space K by using a kernel trick. After that the optimization problem is 

solved in order to find the maximum margins (Liang, et al., 2011). 
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We employed LIBSVM as a standard MATLAB package for computing the SVM 

(Chang et al., 2001). A grid search was used to determine the optimized values for parameters 

of the RBF kernel, i.e. the kernel parameter γ and the regularization parameter C. The 

parameter C indicates a tradeoff between the training error and the model complexity. If the C 

value is small, it means that the model is simple and also there is a small deviation between 

the test error and the training error. But the training error might be large per se. On the other 

hand, a large C value guarantees that the training error is small.  It should be noted that larger  

C values leads to higher complexity of the model. It is also more probable that the increase in 

test error exceeds significantly the increase in the training error. Hard-margin SVM is the 

extreme case when the value of C goes to infinity (Schouenborg et al., 2010). Various pairs 

(C,	γ ) values were tried and the one with the best cross-validation accuracy was picked for 

each channel. As proposed in the literature, we tried exponentially growing sequences of C 

and γ which is a fast and practical approach to identify the best parameters. We swept the 

range between 2�z and 2��	to find the optimum C and γ in our dataset. Optimized values of 

SVM classifiers calculated for each EEG channel were used in an ensemble scheme to 

produce the final command to the hand prosthesis. 

Table 4.4: Optimized value of SVM classifier calculated for each EEG channel. 

 

4.4.5. Ensemble classification for decision making 

A way to reduce the influence of signal variability in the classification problem is to use 

an ensemble of classifiers approach. Indeed, averaging of the classifier outputs is known to be 

an efficient technique to soften the classifier variability. The simplest way to combine 

different classifiers in a process of decision making is voting. It is fast and efficient to 

implement and usually has a satisfactory result in the practical problems (Kuncheva, 2004). In 

this method a predefined set of classifiers is trained using a subset of the dataset. In our 

application for hand prosthesis control, each classifier is trained using the features extracted 

from an EEG channel. The final decision is made based on the highest number of classifiers 

which predicted the specific class. As an alternative we compared the results in an offline 

 Channels EEG  

F3 F4 Fz C3 C4 Cz Pz 

C 

 

2z 2� 2� 2� 2� 2{ 2  

γ 2�{ 2�z 2�z 2�� 2�z 2�� 2�{ 
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study for fusion and concatenation strategies for decision making. Figure 4.13 depicts the 

block diagram for each method. 

 

 

 

 

 

(a) 

 

 

     …  

 

 

(b) 

Figure 4.13: Two different strategies for ensemble classification employed on this BCI application, (a) Fusion at 

classification level, (b) Concatenation: A single feature vector was fed to different classifiers and the voting 

technique was applied for the decision making. 

4.5. Assessment : Statistical measures of performance 

 In order to evaluate the generalization capability of our system, we have calculated 

specificity, sensitivity, and Matthew’s correlation coefficients (MCC) besides the popular 

accuracy concept in this dataset (Altman, et al., 1994) (Krishna et al., 2012). These concepts 

are based on some primary definitions: True negative (TN) is when the test yields a negative 

result (here: predicts the relaxation state) and relaxation was indeed required. Similarly, true 

positive (TP) is when the test results in positive (+1 value as the output of the classifier) and 

the hand movement imagination was indeed required. False negative is incorrect rejection of a 

positive result and false positive is the failure to reject a false result (Hastie et al., 2008). False 

positive (FP) and false negative (FN) are called error type I and II respectively (Hastie et al., 

2008). Table 4.5 summarizes these definitions based on the relation between the condition and 

the result outcome.  

4.5.1. Sensitivity and Specificity 

Sensitivity is a measure of evaluation which measures the percentage of TP divided by 

the sum of TP and FN.  
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Specificity is a measure of evaluation which measures the percentage of TN divided by the 

sum of TN and FP. 

�p4oe�eic = ¢b
¢b + £�																																																										4.24� 

 

Table 4.5: A summary of evaluation parameters based on the test outcome 

  
Condition 

 

  Condition positive Condition negative Predictive value 

 

Test outcome 

 

Test outcome 

positive 

 

True Positive 

 

 

False Positive 

(Type I error) 

 

 

Positive  

 

Test outcome 

negative 

 

False Negative 

(Type II error) 

 

 

True Negative 

 

 

Negative  

  

 

Sensitivity 
 

Specificity 

 

 

The terms sensitivity and specificity are employed to characterize a rule in medical 

classification problems. They are defined as the probability of predicting disease given a true 

state of disease and the probability of predicting non-disease given a true state of non-disease 

respectively (Hastie et al., 2008). In the BCI application we can assume movement and a 

relaxation brain state as the presence and absence of disease in the medical problem.  

4.5.2. Matthew’s correlation coefficient  

Matthew’s correlation coefficient is a measure of the quality of binary classification and 

ranges from –1 ≤ MCC ≤ 1. The best possible prediction is achieved when the MCC value is 

equal to 1 and the anti-correlation or the worst possible prediction happens when MCC = -1. 

Random prediction results would be expected by MCC = 0. We used this measure in order to 

evaluate our current BCI system. 

 

		yxx = 	¢� ∗ ¢b − £� ∗ £b�
¤	¢� + £��	¢b + £b�	¢� + £b�	¢b + £��																										4.25� 
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4.5.3. Applying ANOVA (ANalysis Of VAriance) test 

By using several statistical measures the performance of the binary classifiers and the 

feature selection method were evaluated by parametrical statistical tests: t-test and ANOVA. 

There are two types of these tests, depending on whether the measurements to be compared 

were taken in different subjects or were taken in the same subjects (as in the present 

application). In the latter case, the measures are correlated, and therefore what is actually 

tested is the difference between the measures. In the case of 2-level variables, t-test and one-

way ANOVA provide identical p-values (Hastie et al., 2008). The advantage of ANOVA is 

that the effects of several independent variables on one dependent one may be simultaneously 

measured. We used SPSS statistical software (IBM SPSS statistics, version 20) for this 

analysis.  

4.6. Results 

We tested the feasibility of the entire system for real-time execution. Figure 4.14 shows 

the averaged classification accuracy for all subjects employing both single SVM (all features 

+ one classifier) and ensemble SVM (classifier per channel + voting) classification 

techniques. 

 

Figure 4.14: The averaged classification accuracy for all subjects employing both single SVM (all features + one 

classifier) and ensemble SVM (classifier per channel + voting) classification techniques 

Presented results in this section were achieved by running the system in a simulated mode, in 

which EEG signals were read in a simulated online scheme from our previously recorded 

database. The time scale on which commands are sent to the robot should be congruent with 
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the BCI paradigm and hardware limitations, which is every 0.5 s. Figure 4.15 shows the 

averaged classification accuracy for all subjects over different experimental sessions using the 

ensemble classifier technique. S2 showed the highest classification accuracy among the ten 

subjects but at the same time shows more variation in comparison to the results calculated for 

the other subjects. The classification accuracy during the relaxation phase is higher for this 

subject. For S5 the accuracy for relaxation is lower than for imagination. In the latter case two 

phases of progress can be seen from first to third run and from fourth to eighth run. Most 

subjects (all except S1 and S9) showed an increase in the classification result from the first 

run of the experiment till the end of the experiment. For S2 the averaged classification 

accuracy increased in the first three runs and then it was almost robust till the end of the 

experiment. S3, S6 and S10 have a continuous improvement pattern with low variance 

between classes. Comparing the accuracy values in the first and last runs of the experiment 

show a significant progress for all subjects (df=9, t=5.22; p < .001) 
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Figure 4.15: The classification accuracy for all subjects averaged over different experimental sessions. "Event" 

in the panel legends refers to the imagination state. 

In this offline study we applied a single SVM classifier fed by the entire feature vector 

in order to investigate the effect of ensemble classification. It differs from the online 

processing policy, when the BCI system only has to compute a few relevant features for the 
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control. We compared both classification techniques using MCC and ITR factors. In this 

experiment commands are issued every 0.5 seconds. Therefore maximum ITR can be 

theoretically 120 BITS/min with 100% accuracy. For the two mental tasks (relaxation and 

imagination of the movement) according to Figure 4.2 the information transfer rate in this 

experiment was found between 24 and 72 bits/min in average with a maximum of 80 bits/min, 

not far from maximum reported ITR of 90 bits/min (Gao X. et al., 2003). Table 4.6 shows the 

averaged classification accuracy, MCC, and bit rate for each participant with each paradigm. 

Simulated online accuracy was significantly higher for the ensemble SVM, 71.24%, than for 

the simple SVM, 66.56%, t(9) = 4.78, p = 0.001. 

 False negative (FN) commands were minimized by using an ensemble SVM classifier 

based on the bagging algorithm, which is designed based on the selected features from those 

channels with more than 70% accuracy during the training mode. Finally the majority of 

classifiers vote for the command to be sent to the robot. This provides a more robust decision 

making scenario. For example, for subject S2 using the single SVM vs. ensemble SVM 

specificity, sensitivity and MCC are calculated as: 
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Figure 4.16: The voting algorithm in time and space ("ensemble SVM") improves on average the TP and TN 

values and leads to higher ITR. The left diagram shows the average values of the accuracy measurement across 

all trials in detail for S2 for the single SVM method. The right diagram shows the similar calculations when the 

ensemble technique was employed. 
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Table 4.6: Evaluation of the classification techniques applied on the current dataset. 

   

Single SVM 

  

Ensemble SVM 

 

Subject 

  

  

Accuracy  

% 

 

MCC 

 

ITR 

BITS/min 

  

Accuracy  

%  

 

MCC 

 

ITR 

BITS/min 

S1 56.7  0.12  51 64.9 0.47 73 

S2  74.6 0.28 54 78.1 0.58 80 

S3  65.8  0.18  49 72.9 0.41 68 

S4  64.5 0.22 42 66.3 0.48 53 

S5 67.1 0.36 35 71.8 0.45 44 

S6  63.2 0.41 38 72.9 0.47 48 

S7 66.6 0.28 25  67.1 0.33 24  

S8 64.2 0.33 41  69.6 0.48 57  

S9 70.4 0.40 55 75.5 0.51 72 

S10 72.5 0.32 39 73.3 0.49 54 

 

The voting algorithm on average improved the TP and TN values and, consequently, the 

MCC factor and led to higher ITRs. Figure 4.17 demonstrates the MCC values from Table 

4.6. Ensemble classification has higher MCC values in all subjects with smaller inter-subject 

variation (mean=0.467, var=.0042) in comparison to single SVM (mean=0.29, var=.0089). 

The result shows the higher robustness for the proposed method. 

  

Figure 4.17: A graphical view of averaged MCC values for the current dataset calculated for ten subjects using 

two different classification techniques.   

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
0.1

0.2

0.3

0.4

0.5

0.6

M
a

tt
h

e
w

’s
 c

o
rr

e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t 

 

 

Ensemble SVM

Single SVM



Chapter 4: A simulation study 

 

 

131 

 

As described above, each feature vector was composed of the 4 power spectral and 6 

HOS values, for each recorded channel. Here, using the feature selection technique we have 

pruned the original feature set by eliminating the possible redundant features. The word 

"redundant" means that the final classification performance will not be remarkably influenced 

by adding or removing them to/from the feature set. Therefore, we extracted and classified 

several feature groups in a reasonable range in order to find the optimum feature set for 

employing in the simulated online experiment. Different feature vectors were extracted based 

on mRMR algorithm using 1, 2, 5 or 10 features from each of the 7 channels (= 7, 14, 35, or 

70 features). Table 4.7 shows different evaluation parameters for this study. Both the 

classification accuracy and MCC factor are maximized when the 14-feature subset was 

applied. The classification accuracy drops both in training and test by adding more features. 

Thus the extra features either contain redundant information or are not appropriate candidates 

for this application. 

Table 4.7: Averaged classification accuracy for different feature selection techniques applied on the current 

dataset. 

 Ensemble SVM 

 

Total number of 

Feature subset 

  

  

Sensitivity 

% 

 

Specificity 

% 

  

MCC 

  

Test Accuracy 

%  

  

Training Accuracy 

%  

7 features 68.18  82.29  0.51 74.80  77.59  

14 features 69.23  85.71  0.52 75.25  78.15  

35 features  66.67 82.35 0.46 72.60  77.10  

All features  64.18  78.79  0.40 69.45 75.66 

 

4.7. Discussion 

In this chapter we introduced a practical BCI system for hand prosthesis control. The 

system was evaluated using a combined features space (power band and HOS features). The 

effect of a feature selection technique was investigated, which has two important advantages 

for designing every BCI. The new feature space has lower dimension and thus reduces the 

computational cost and at the same time improves the classification accuracy by ignoring the 

irrelevant features. Here the final feature subset was selected based on mRMR algorithm in an 

offline study. On the one hand the mRMR technique searches for the most independent 

features by minimizing the mutual information between the features and on the other hand it 
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finds the most informative feature which leads to the higher classification accuracy. HOS 

features were mostly selected as the first or the second important features in each channel. It 

can be argued that these features along with common power band features are appropriate 

candidates for designing BCI systems. 

For the classification purposes an ensemble classifier was proposed. By applying this 

method the combination of robot and the BCI system achieved a higher information transfer 

rate (ITR) and MCC. For a few number of subjects (S2, S4 and S5) the classifier tends to be 

biased towards a class. In general, the classifier has low variance in different runs, which 

shows the robustness of the entire system. The results suggest that the proposed system may 

be feasible for real life applications. 



 

 

Chapter 5 

BCI for gaming:  

A four class BCI for Robot control1 

 

 

 
5.1. BCI for gaming 

The previous chapters explored BCIs which can be applied to assistive applications. 

Here we delve into another popular application of the BCI. In the past few years, emerging 

simple and cheap EEG recorders opened up the market and made BCI appealing for a new 

and large group of people who initially started to use BCI for fun and entertainment purposes 

(Brutsch et al., 2011). The main purpose of the new generation of BCIs is to expand the 

limited BCI application to more applicable scenarios in everyday life. The purpose of using 

BCI in the lives of healthy people is to render it a useful tool in the situations that the normal 

and conventional interfacing means such as a mouse, keyboard or joystick cannot be an 

option, i.e. space, military or marine projects (Bradley, et al., 2009) or to improve attention, 

concentration or motivation (Schuler et al., 2011). As an example, virtual keyboards allow 

users to compose phrases and sentences just by thinking, mouse control might facilitate the 

interaction with the computer programs and enable the subject to access the internet (Schalk 

et al., 2007) (Daly I., 2012). To date a few BCI prototypes are available in the domain of 

gaming and entertainment (Krepkiy, 2008) (Debener S. et al., 2012) (Kaplan et al., 2013). 

These systems use brain signals in addition to traditional physical and mental abilities to adapt 

and to control a game environment.  

5.2. Multi-Class BCIs 

One of the first steps in designing a BCI based on imagination is to select the number 

and the type of mental tasks that subjects should practice. It was found that classification 

                                                           
1 Part of this work was published in: M. Kh. Hazrati, V. Subramanian and U. G. Hofmann,” A Four-Class Brain Computer 
Interface for Robot Control”, ISSNIP Biosignals and Biorobotic Conference, Vitoria, Brazil, January 2011 
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accuracy is affected by the type of mental task and is subject-dependent (Pfurtscheller et al., 

1997). Physiological signals originating from thoughts corresponding to natural intent are 

preferable. Different mental tasks have been used in existing BCIs including relaxation, 

imagination of left hand, right hand, and foot movements, calculation, and spatial rotation 

(Naeem, et al., 2006). One of the first experiments done in this field was a simple application 

for moving a cursor on a monitor in two- (Vidal, 1973) and later in three-dimensional space 

(Taylor, 2002). The simple one-dimensional control can be interpreted as steering a robot 

vertically or horizontally. One of the first instances of robot control using a BCI was 

presented in 2004 by Millán et al. This three-class asynchronous BCI allowed users to give 

commands to a robot in real-time (Millan et al., 2004). Another three-class asynchronous BCI 

was used by Geng et al. to control a software-simulated robot (Geng et al., 2007). In 2008 the 

same group reported a four-class BCI based on two binary linear discriminant analysis (LDA) 

classifiers (Geng, et al., 2008). Bell et al. presented a noninvasive BCI to control a humanoid 

robot (Bell, et al., 2008). Similarly, a new concept the classification of the left and the right 

wrists in a four-class imaginary-based BCI was presented by (Vuckovic et al., 2006). This 

noninvasive BCI combines two binary classifiers. First, it classifies movements of left and 

right wrists, and then it classifies movements of wrist flexion and extension of the selected 

hand. Noninvasive methods however will probably have limited use of fine controlling; this 

could be compensated by combining with the robot intelligence (Taylor, 2002) (Lange et al., 

2011). In the next section we investigate theoretically how the number of classes affects a 

BCI system in terms of information transfer rate (ITR) or signal to noise ratio (SNR) 

parameters and whether it is reasonable in practice to design multi class BCIs. Then our 

proposed BCI system is explained. 

5.2.1 Multi class BCI and Information transfer rate (ITR) 

It is estimated that the brain can handle over four hundred billion bits of information per 

second while using its peripheral nervous system which is directly affected by fatigue and 

mood (Dispenza, 2008). Raw EEG data obviously comprises much less information because it 

is the outcome of synchronized activity of diverse and random sources inside the brain. Based 

on some previous research reports, the amount of information decreases down to approx. 5 to 

25 bits/min when one tries to extract mental tasks form EEG signals (Wolpaw et al., 2000). 

Some sparse reports in the literature, under restricted conditions and paradigms, report BCIs 

with high ITR (also called throughput) ranging from 30 bits/min (Blankertz et al., 2007) to 
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slightly above 60 bits/min (Friman et al., 2007) or even 90 bits/min in a steady state visual 

evoked potential paradigm (Gao X. et al., 2003).  

The binary decision structure is one of the most popular structures in designing BCIs, 

when only two tasks at each level are classified (Kronegg, et al., 2005) (Moore-Jackson et al., 

2005)(Geng, et al., 2008). Moving from a binary decision to higher class systems is a logical 

approach to speed up the system by providing more choices for the user (Obermaier et al., 

2001). Moreover the number of mental tasks used in similar research studies is limited to 5 

(Schlögl et al., 2002). Obermaier et al. reported that by increasing the number of mental tasks, 

the classification accuracy decreases (Obermaier et al., 2001). Mason et al. categorized BCI in 

two major groups of synchronized and self-paced systems. In the first group, in which the 

majority of available systems are included, the number of tasks that the subject is asked to 

perform is limited (N) and is time lagged by the computer. Here we are interested in the 

information rate that can be transferred by synchronized BCI.  

In Pierce’s book (1980) “Introduction to information theory”, the number of bits 

transmitted B was computed based on the number of possible targets N and the probability of 

hitting the target P (Arndt, 2001). 

� = ����� + 	����	 + 
1 − 	���� �1 − 	
� − 1�																																		
5.1 

Here bit rate (bits/min), can be computed by dividing B by the trial duration in min. Based on 

this formulation, a common assessment of performance accepted by the BCI community is 

presented (Wolpaw et al., 2000). It is based on the assumption of unbiased BCI, in that all 

classes have the same probability (equiprobable classes) (McFarland, et al., 2003). 

Wolpaw et al. modified the formula in Eq. (5.1) by multiplying V, the application speed in 

trials/second. This assessment is not appropriate for self-paced BCIs (Moore-Jackson et al., 

2005), but covers a wide range of BCI systems including imaginary-based BCI setups, where 

V can be tuned easily and represents the number of thoughts that can be recognized per 

second.  

� = � ������ + 	����	 + 
1 − 	���� �1 − 	
� − 1��																											
5.2 

According to this formula BCI performance may increase by increasing N which indirectly 

decreases the probability of hitting each target. Kronegg et al. have shown that Wolpaw’s ITR 

is very close to Shannons’s ITR when the number of targets, e. g. mental tasks, is smaller than 

five (Kronegg, et al., 2005). The results from previous studies indicate that there is a tradeoff 

between the two parameters P and N. Dornhege et al. also studied the effect of the error rate 
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and the number of commands in ITR. Based on their finding, ITR depends on the number of 

targets as well as on the error rate; however the effect of the first parameter (N) is not 

noticeable compared to the accuracy measure (Dornhege et al., 2003). Schlögl et al. derived 

an equation to calculate the information rate in a BCI system which worked with two-class 

movement imaginary data. They applied the entropy difference as a measure of the 

separability of two classes of EEG patterns using a linear classifier LDA (Schlögl et al., 

2002). The authors stated that one cause of unsuccessful BCI is an insufficient amount of 

information from feedback, i.e., from the output of the classifier.  

McFarland et al. discussed the selection of effective parameters in a cursor control 

paradigm (McFarland et al., 1997). His group carried out an experiment over 6 subjects with 

different target numbers and variable trial durations. The results show that a greater number of 

targets could increase system performance, since more targets provide more information. At 

the same time, a greater number of targets could decrease system performance by decreasing 

accuracy (McFarland, et al., 2003). Figure 5.1 demonstrates the theoretical relation between 

the information transfer rate B and different accuracies with more than chance levels (100/N) 

for various numbers of classes based on Eq. 5.2. Here V was set to 1 trials/second. Later in 

this chapter, we will calculate the ITR in our BCI application in a similar way.  

  

Figure 5.1: Information transfer rate versus accuracy in a BCI system for (N =2 to 6) mental tasks (imagination 
of movement) according to Eq. (5.2) 

It is clear that every additional EEG pattern to be classified decreases the chance level 

(100/N). Increasing the number of mental tasks or classes, however, also decreases the 

reliability of classification (Obermaier et al., 2001). This might be due to increasing areas of 

overlap features in the feature space which increases the probability of misclassification 

(Obermaier et al., 2001).  
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In their cursor control experiment, Obermaier et al. achieved information transfer rates 

varying from 0.42 to 0.81 bits per trial and concluded that the upper limit of different mental 

tasks for a BCI system is three (Obermaier et al., 2001). They measured the highest 

classification accuracy for two classes of control (N=2). Kronegg et al. presented a model ITR 

in an EEG-based synchronized BCI (Kronegg, et al., 2005). Based on their model and an 

experimental validation, they concluded that the ITR improvement in BCI is not significant 

from N=2 to � = ���� and the optimal number of mental tasks ����	depends on the BCI 

design and user experience. Therefore the modified formula is proposed as: 

���� = ��. � ��������� + 	����	 + 
1 − 	����  1 − 	
���� − 1!"																											
5.3 

Where �� is the subject specific performance which varies between 0 and 1 and ���� is the 

maximum bit rate achievable for the subject. �� = 0 can describe the users who are 

categorized under  “BCI illiteracy” (Vidaurre et al., 2010). 

5.2.2 Multi class BCI and Signal-to-noise ratio (SNR)  

Considering N-class BCI applications, one can claim that in each trial the output of the 

classifier in a BCI system contains two kinds of information. The first element is entirely 

dependent on the process of mental task ("signal") and the second part is independent or 

irrelevant to that process ("noise") (McFarland, et al., 2003). In a BCI system, the main goal 

of signal analysis is to maximize the SNR in the EEG or more accurately to find the best set 

of feature vectors and classifiers to discover the user’s thought (Kronegg, et al., 2005). Based 

on this assumption, the synchronized BCI can be modeled as depicted in Fig. 2.13.  

Features are extracted from EEG data in each trial. If we assume that p features are 

extracted from the time segment t related to class %&, then 	'�(& = [*&,�(&, *�,�(& , … , *�,�(& ] is a 

vector of features for this segment. The set of contaminated features of interest in the receiver 

.� is the summation of original features plus the unwanted signal, .� = /� + 0�, which reflects 

the side effect of background activity of the brain in the EEG signal in addition to the effect of 

external noise. We can assume that the channel noise �~�
0, 23� is a white Gaussian noise 

(WGN). Therefore the probability of a correct decision according to the features extracted 

from x5 is defined as Gaussian distribution 	6
.�|0	(Eq. 5.4). Although in practice not every 

feature set is distributed Gaussian, this assumption is widely accepted in the BCI community 

(Schlögl et al., 2002) (Obermaier et al., 2001). 
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6
.�|0 = 1
√29. 23 2

:
�;:�<=>?= 																																										
5.4 
So over the decision space	AB, the probability of a mental task to be recognized is: 

6
%1|'�(& = C 6
.�|0 D.
.
EF

																																																				
5.5 
 

Consequently the mean of all possible feature-classifier sets constitutes the SNR formulation 

(Schlögl et al., 2002): 

G�A = −10	���&H  2�
�

23�!																																																								
5.6 
SNR is an important parameter in Shannon’s calculation of information. In Wolpaw's ITR, the 

value of SNR significantly affects the acceptable number of mental tasks in a BCI system. As 

depicted in Fig. 5.2, N may rapidly grow with a higher information rate, when SNR is 

increasing. Schlögl et al. calculated SNR at each time segment t for a two-class BCI (left 

versus right hand imagination) (Schlögl et al., 2002) as follows: 

	
G�A� = 2 ∗ /*K
L�(&M(�/*K
L�(& + /*K
L�(� − 1																																							
5.7 

 

Figure 5.2: Contour plot of Wolpaw's ITR in bits/trial depending on SNR and number of mental tasks (Kronegg, 
et al., 2005) 

Here I generalize the above concept in order to derive a formulation for multi-feature 

space. Assuming L�(& is the discrimination function for data related to the class C1 and it is 

directly the result of the classifier. In the ideal case, it contains all the segments assigned to 
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this class but in practice due to noise and misclassification it may have some segments which 

are not directly related to the class.  In the general case we have: 

L�(&,(�,…,(O = P
Q*&,�(&, *�,�(& , … , *�,�(& , *&,�(�, *�,�(� , … , *�,�(� , … , *&,�(O , *�,�(O , … , *�,�(OR,ST							
5.8 
Output D is a time-varying function of features and classifier parameters ST and indicates 

information about the classifier’s decision. Hence, mutual information can be calculated 

between the BCI output and D. The mutual information I is determined by calculating the 

difference between the entropy for the total variance and the within-class variance of D: 

	V = W
. − W
., %. The entropy of a Gaussian process is (Arndt, 2001): W�
X = −2 ∗
�Y
29Z2�. For each time segment of data this information can be calculated using the 

following equation (Schlögl et al., 2002): 

V� = 0.5 ∗ �Y	
1 + G�A�																																																			
5.9 
In the case of the two-class BCI discrimination, 100 % accuracy (0 % error) would 

provide one bit of information when there is no noise input to the system (Schlögl et al., 

2002). Consequently using the channel model (see Figure 2.14), we can expect that an 

increase in the number of mental tasks N results in an increase of the ITR, subject to the 

sufficiently high SNR (Kronegg, et al., 2005). It implies that only BCIs with high SNR, i.e., 

good accuracy, will noticeably benefit from an increase of the number of mental tasks 

(Kronegg, et al., 2005). 

5.3. Project description 

Our first games-based BCI is a four-class control application for steering a miniature 

educational robot. The main goal of this project is to develop an interactive environment that 

allows the user to freely decide which action she/he wishes the robot to perform. The robot 

executes commands online and navigates accordingly and is able to send the information 

(gyro and images) to a computer. Based on the past success of differentiation between 

movement imagination classes and the convenience and practicality (Millan et al., 2004) 

(Naeem, et al., 2006), we have chosen to implement a four-class BCI in which subjects steer a 

robot to a destination by performing limb imaginations. Each mental state corresponds to a 

different robot command: left hand movement to turning left, right hand movement to turning 

right, foot movement to moving forward, and an idle state to stopping. In the following 

elements of the proposed system are described and finally the functionality of the entire 

system is evaluated.  
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5.3.1 EEG recording Hardware and Software 

To implement robot control by BCI, appropriate and optimized computer software is 

required. In our case, we used a gUSBamp (g.tec, Guger Technologies, Graz, Austria) 

MATLAB® application programming interface under Microsoft® Windows XP for online 

data acquisition. MATLAB® R2009b (The Mathworks, Inc.) was used for filtering and ocular 

artifact suppression, feature extraction, feature selection and classification. BlueSoleil 

Bluetooth® drivers were used to communicate with a miniature e-puck robot (Mondada et al., 

2009), and a self-developed graphical user interface (GUI) provided an interactive 

environment. EEG signals were recorded with an EEG-amplifier at a sampling rate of 128 Hz. 

Data collection experiments were conducted in the institute for signal processing (ISIP) at 

University of Lübeck, Germany.  

5.3.2 Experimental Paradigm 

Experimental runs were carried out with three able-bodied volunteer subjects (two male, 

one female). In preparation for each run, subjects were seated 0.7 meters from a computer 

monitor with arms in front and palms flat and facing down on a desk in front of them. A 

65-position EEG cap (g.EEGcap, Guger Technologies, Graz, Austria) was fixed on the 

subject’s head, and eight gold electrodes (g.EEGelectrode Au, Guger Technologies, Graz, 

Austria) were placed in the following locations according to the International 10-20 system: 

C3, C4, Cz, C5, C1, C6, C2, and Fp1. The electrode for recording eye-blink artifacts were 

placed at the Fp1 position (on the forehead) above the left eyebrow line. All recording 

channels were referenced to the right earlobe. 

Our experimental paradigm consisted of one offline classifier training run followed by 

two online classifier evaluations / robot control runs (Figure 5.3). The offline run consisted of 

50 feedback trials. Each trial lasted ten seconds, the first five devoted to the imagination of a 

particular limb movement and the last five to relaxation. During each trial an image of a black 

circle was continuously displayed for use as a visual fixation point to prevent eye movement 

artifacts. Prior to the start of each trial, a four-second-countdown cue was given to the subject 

signaling that the imagination stage was about to begin. One of three images – a left arrow, a 

right arrow, or a drawing of a foot – was shown for five seconds, and the subject was asked to 

perform a corresponding imagination – left hand movement, right hand movement, or right 

foot movement. After five seconds, the picture disappeared, and a screen with only the focal 

point was shown, indicating that the subject should relax. The information derived from 
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offline experimentation was used to initialize our online setup. Shortening the training time is 

one of the concerns in designing a BCI. In our design subjects were asked after every 2 

minutes of the training phase if they were willing to continue training. This question was 

embedded in this way to prevent collecting data while the subject is tired or for any other 

reason an interruption was needed. 

 Two types of online tests were performed to determine how accurate the training was 

and how well the user could control the robot. In the first setup, the subject was given a visual 

cue to begin imagining one of the four actions for which he or she was trained. He or she was 

given five seconds to imagine the mental state and was instructed to maintain the same 

thought for the length of the trial. The subject was then given five seconds to relax during 

which processing of signals was performed and the execution of the robot action took place. 

The commands in this experiment were set in a logical order to move the robot from point A 

to point B in an 8-shape grid surface shown in Figure 5.4. For each participant 50 online trials 

in this type of online test were recorded. In the last session of the experiment for each subject, 

we used a part of the online data (2 s window from the middle of every trial) to continuously 

update and improve the classifiers’ parameters, which are C and γ for the SVM classifier. The 

adaptation was continued during all 50 trials of the first online test. 

In the second setup, the subject was asked to navigate from point A to point B along the 

grid on his own. Similar to the first setup, the user was shown a black focal point and was 

given five seconds to imagine the mental state corresponding to the action he or she wished 

the robot to perform. After these five seconds, the robot would execute a command while the 

user was given five seconds to relax. The robot continued to execute the command for five 

seconds. The data recorded in these series of experiments are not analyzed in this work. 

 

Figure 5.3: Experimental paradigm of offline and online robot control runs. Electrode locations C5, C3, C1, Cz, 
C2, C4, C6 and Fp1. 

C5 C3 C1 Cz C2 C4 C6 

Fp1

Channel locations
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Biofeedback was provided during all online experiments, which helped the subjects to 

learn how to modify their brainwave activity to improve attention. Here the direct output of 

the decision making module was sent to the robot. 

5.3.3 E-Puck Robot control  

The e-puck mini mobile robot (about 7 cm diameter) was originally developed at École 

Polytechnique Fédérale de Lausanne (EPFL) for teaching purposes. The e-puck was designed 

under open source hardware and software policy. It means that the user has access to every 

electronic part and will be able to modify or extend the device.  

According to the official e-puck community website (www.e-puck.org), the e-puck 

robot contains several sensors and actuators and its configuration can be listed as following: A 

Bluetooth interface, a remote control IR receiver, a VGA camera, 9 LEDs, 8 infra-red sensors, 

two stepper motor wheels, 3 microphones, a speaker, a 3D accelerometer, and a 16 position 

switch. A commercial development environment called WebotsTc has been released for the 

purpose of simulating, programming and modeling the mobile robots and supports the e-puck 

robot. We have used a free version of this software for fast prototyping and simulation of the 

robot. During the online experiments, the ePic2 framework for MATLAB provided 

interaction with the e-puck. 

             

Figure 5.4: (a) A close view of the E-puck robot used in the BCI setup, (b) the subject was asked to navigate 
from Point A to Point B along an 8-shape grid 

In the current project E-puck was set to receive continuous commands through 

Bluetooth from the computer. Four different codes corresponding to the three different 

movements and the stop command were set. A wink command was used in the beginning of 

the experiment to check the connection between the computer and E-Puck. Here is the 

MATLAB code for setting the speed of the robot in each case. 
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%Assuming one case for each of 3 classifiers, give a command to the robot. 
    switch command 
        case 1 %left 
            ePic = set(ePic,'speed', [0 50]); 
            ePic = update(ePic); 
        case 2 %right 
            ePic = set(ePic,'speed', [50 0]); 
            ePic = update(ePic); 
        case 3 %foot 
            ePic = set(ePic,'speed', [50 50]); 
            ePic = update(ePic); 
        otherwise %idle 
            ePic = set(ePic,'speed', [0 0]); 
            ePic = update(ePic); 
    end 
     

Both advanced robotic and machine learning techniques are required for humans to 

continuously control a mobile robot. For example in our setup, the robot does not execute the 

forward command if a barrier is detected. It was set to record and send a photo to the 

computer in this situation. 

5.4. Evaluation of the recorded data 

5.4.1 Averaged potentials 

Figure 5.5 demonstrates grand average ERPs calculated for the current dataset during 

the offline experiments using EEGLab toolbox. Each color represents a different class of 

trials. Here we consider the entire offline trial which lasted 14 s, starting with a countdown 

cue at zero point, counting back from 3 to 0. The onset of the imagination trial is at 4 s. At 

this time point an arrow or the foot picture appeared and remained on the screen for 5 s. At 

time point 9 s the relaxation phase started when the previous image was substituted by a gray 

square. In Figure 5.5, units on x-axis are ms and units on y-axis are µV. The first fluctuation 

is a positive peak at around +300 ms, which can be seen over all recording sites possibly due 

to the appearance of the first number on the screen. It reached its maximum at C5 with 3.1 

µV. The second evoked potential happened at +4550 ms for both hand movement 

imaginations; it reached its maximum at Cz with 7.2 µV and 6.5 µV for trials with the right 

and left arrows as cue, respectively. In all recording sites the evoked potentials related to the 

left hand imagination show similar timing and have larger amplitude in comparison to the 

corresponding right hand or foot trials. For foot imagination trials, the corresponding evoked 

potential happened earlier at 4380 ms with smaller amplitude of 6.1 µV, again maximum at 

Cz followed by a negative peak at around 5 s.  

 The third evoked potential in Figure 5.5 is a positive peak at 9250 ms for the foot 

imagination trials and at 9500 ms and 9700 ms for the right and left hand imagination trials. 
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This time the maximum is larger for the right hand imagination trials over the entire recording 

locations. These two large positive peaks are most probably a P300 component according to 

their topography.  

 

Fig. 5.5: Grand average ERPs averaged over all trials for imagination limb movements calculated for C5, C3, 
C1, Cz, C2, C4, C6 and Fp1. A countdown started at the beginning of each trial (displaying the numbers 3-2-1-
0). At 4 s a cue appeared on the screen showing randomly one of the images corresponding to the imagination of 
movement. The entire dataset includes imagination of right hand, left hand and foot movements. At 9 s a gray 
square appeared on the screen as a sign for the relaxation interval which lasted 5 s (9 s – 14 s). Amplitude units 
are µV, x-axes range from 0 ms (left) to 14000 ms (right).  
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 At Fp1 all positive peaks are smaller in comparison to the central recording sites. In the 

middle of the relaxation phase for the foot imagination trials, there is another positive peak 

happening around 11.5 s after the start of the trial, which could be due to an artifact (or even 

due to the actual robot movement).  This fluctuation exists over all recoding locations. Since 

the recording sites were not diversely distributed in this experiment the ERP figures seem to 

be more similar over all recording locations, i.e. C5, C3, C1, Cz, C2, C4, C6 and Fp1 . 

5.4.2 Power band spectrum 

The average power band spectrum is depicted for all four conditions in Figure 5.6. 

Signals were acquired from each individual channel, including eight recording sites over the 

motor cortex C5, C3, C1, Cz, C2, C4, C6 and Fp1. The amplitude is calculated in log10 

(��/We) unit. Data from relaxation states are presented in black and data from movement 

imagination states are presented in color (blue, red and green). In general there are more 

fluctuations in Figure 5.6 in comparison with similar analysis on the previous datasets. The 

reason is the lower number of trials available in this dataset (N=3 subjects ×	3 sessions × 50 

offline trials). The calculation is similar to the one described in 3.5. The alpha peak can be 

seen over all recorded sites. In the current dataset, values of the EEG power in delta (1-3 Hz) 

and alpha bands (8-12 Hz) of the different imagination phases are comparable to each other 

over all recording sites. Similar to the previous datasets, in the current dataset values of the 

EEG power in delta (1-3 Hz) and alpha bands (8-12 Hz) of relaxation phase were found to be 

slightly higher than those in imagination phases over all recording sites. The alpha peak is not 

strong at Fp1. The maximum exists at 10 Hz at Cz for the relaxation phase. Over C3, C4 and 

C4 another peak can be seen in the higher frequency (around 13 Hz) in the data corresponding 

to relaxation in comparison to the imagination trials. Over C3 and Cz imagination of foot has 

higher magnitude in delta band. There is a slight increase in the power of beta band (around 

25 Hz) in the imagination phases over C3, C4. No distinguishable changes can be seen in the 

gamma band (30-40 Hz) in average.  
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Figure 5.6: Average power band over the entire dataset for the three different imagination tasks and the 
relaxation state, displayed for C5, C3, C1, Cz, C2, C4, C6 and Fp1. Unit on x-axis is Hz, unit on y-axis is ��/
We. 

5.4.3 ERSP: Time-Frequency analysis 

Figure 5.7 depicts ERSP analysis for some selected electrodes (C3, C4, Cz and Fp1) 

averaged over all trials and subjects of the current BCI experiment. Three groups of ERSP 

plots are depicted in Figure 5.7; each is calculated using the trials for the imagination of 

different limb movement. In the first group of subplots the ERSP analyses for imagination of 

right hand movement can be seen. An increase in power of theta and alpha band exists over 

all four plotted channels from the start of the trial till the onset of the imagination of 

movement at 4 s. Some sparse increases can also be seen in higher frequency bands at this 

period. At time point 4 s, when the cue was displayed on the screen till around 10 s, a 

noticeable decrease in theta bands over all channels and also in alpha band in C3 and C4 can 

be observed (overlying left and right hand-motor cortices). At 9 s the cue disappeared and a 

black dot remained on the screen for another 5 s. A pattern similar to the first 4 s of the trial 

can be observed at this interval in all ERSP plots. The second four subplots in Figure 5.7 

show the similar analyses for the imagination of left hand movement. Here the ERD in C4 

(overlying right hand-motor cortex) is clearer than the corresponding one in the first group, in 

accordance with the contralateral organization of movement control. Gamma ERS before the 

start of the movement imagination exists in all channels. It has its maximum at Fp1 and is 

probably due to an artifact. ERSP plots related to the imagination of foot movement can be 

seen in the last four subplots. The ERD and ERS fluctuations are not as clean and the first and 

the second group. In C4, an alpha ERS exists at 4 s followed by ERD in alpha and beta band 

between 5 s and 10 s. An ERS in the theta band can be seen at the beginning of the trial at 1 s 

and also at time point 10 s over all four depicted sites. An alpha ERD between 4 s and 10 s 
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exists at C4. A shorter Beta ERD starts at 4 s and lasts till 8 s. By the start of the relaxation 

phase in this group a theta ERS (9 s – 11 s) and another alpha ERS (in the last second) can be 

seen over are presented channels. There is no clear difference between left and right scalp 

sites in this case, among others simply for the reason that participants were free in imagining 

movements of either their left or their right foot. 

 

Imagination of right hand movement 

 

 

Imagination of left hand movement 
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Imagination of foot movement 

 

 

Fig. 5.7: Grand average- ERSP averaged over all trials for imagination of the limb movements calculated for C3, 
C4, Cz, and Fp1. A countdown started at the beginning of the trial. At 4 s a cue appeared on the screen showing 
randomly one of the images corresponding to the imagination of movement. Each four subplots correspond to 
the imagination of right hand, left hand and foot movements, respectively. At 9 s a gray square appeared on the 
screen as a sign for the relaxation interval which lasted 5 s (9 s – 14 s). Amplitude units are µV, x-axes range 
from 0 ms (left) to 14000 ms (right). Unit on x-axis is ms, unit on y-axis is Hz. The color bar represents the 
absolute values of ERSP in dB. 
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5.5. Materials and methods 

For this application we combined the methods of simple feature extraction and 

ensemble classification. Preprocessing consists of filtering and automatic artifact removal. In 

contrast to the previous simulated studies feature selection was done solely in space-

frequency domain. In this study, we demonstrated that by use of modern machine learning 

techniques even untrained subjects could achieve the satisfying BCI performance. 

5.5.1 Preprocessing the data 

Preprocessing consisted of filtering and artifact removal. The signals were filtered using 

a 10th-order zero-phase Chebyshev low-pass filter with a cutoff frequency of 40 Hz. In each 

trial the mean values over time of the imagination and relaxation signals were calculated and 

subtracted from each respective signal. Similar to the first application described in chapter 3, 

eye blink artifacts were removed using the fastICA algorithm in an online scheme. In this 

experiment we included the eyeblink artifact information detected by the electrode at Fp1. 

The reason was the topography of electrodes that were covering only the motor area, so it was 

assumed that the method without direct EOG recording cannot possibly extract enough 

independent sources from the brain activity. After independent components were retrieved, 

the component with the largest kurtosis value was removed as long as it exceeded a preset 

threshold value defined for each individual as described in chapter 3. The threshold values 

were set at 5.7, 6.5 and 6 for the three subjects estimated from the offline experiment data. 

Once the blink artifacts were removed, the remaining components were recombined, 

representing the artifact-free signals for each trial. Figure 5.8 shows a sample of EEG 

recorded during a 14 s trial contaminated with artifacts at 7 s and 10 s. Cleaned data using 

fastICA algorithm is plotted in black. Figure 5.8 (b) shows the spatial distribution of 

independent components for this trial. The first IC with kurtosis 7.3 was selected as artifact 

component. 
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Figure 5.8: Artifact rejection in a 14 s window. (a) Contaminated EEG signal (red line) and artifact free signal 
(black line). Unit on y-axis is gV and unit on x-axis is s. (b) Artifact components for the same interval (IC1 is 
recognized as artifact component K=7.3), unit on y-axis is gV (c) 2D plot of independent components over the 
scalp. (The Fp1 site is on the circle that symbolizes the scalp, left from the nose). Scale is minimum-maximum 
for each plot, with red and blue denoting the two polarity extremes.  

 

5.5.2 Feature extraction and feature selection 

Band power features were extracted for each trial from the imagination and relaxation 

signals acquired from each individual channel excluding Fp1, which was not processed. The 

discrete Fourier transform of the imagination and the relaxation signals were computed for 

each trial, with a frequency resolution of  0.086 Hz, given by the analog-digital conversion rate 

of 128 sample/s and the 5 s length of the analyzed epoch, and the power in positive integer 

frequencies from 1 Hz to 35 Hz was extracted. The signals were first padded with zeros up 

from 640 (5×128) samples to 8192 (2&h) samples to increase the resolution of the Fourier 

transform. Magnitudes of the Fourier transform were squared and the logarithm was obtained. 

Similar research has already been done in extracting these features to distinguish between the 

three classes we are using and idle (Pfurtscheller et al., 1997). The amplitudes of the EEG 

signals in selected frequency bands are measured and translated into a device command, in this 

case right, left, forward, and stop commands. For each channel the magnitudes of the power of 

the 35 frequencies were normalized in the range of 0 to 1. Prior to the construction of 

classifiers, the continuous (non-integer) feature values of each class in the six pair-wise 

comparisons of the 4 classes shown in Figure 5.3 (left arrow, right arrow, foot, relaxation) 

were input as arguments to the minimum Redundancy Maximum Relevance (mRMR) feature 

selection algorithm (Peng et al., 2005). Eight features were selected for each channel, and of 

those, the top five were selected to generate SVM classifiers. The five most informative 

features selected for each subject from each EEG channel during the training phase of right 
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hand imagination vs. relaxation are listed in Table 5.1. The values are the frequencies in the 

power band selected out of 35 features (1 Hz – 35 Hz) using mRMR method. As can be seen, 

the set of selected features is subject- specific and varies over spatial recording sites. 

Table 5.1: The five most informative features selected for each subject from each EEG channel during the 
training phase (right hand imagination vs. relaxation). The values are in Hz. 

 

5.5.3 Classifier construction, voting algorithm and output to robot 

Features selected for each two classes were fed to an algorithm used to generate 

classifiers. One SVM classifier was generated for each possible comparison of features and 

for each channel, yielding a total of forty-two classifiers (six comparisons and seven 

channels). For optimization, a grid search was used to loop over values of the SVM cost 

parameter C and the gamma parameter. Classifiers, their accuracies, and the selected 

frequency bands were exported from the offline setup to be used in the online evaluation. The 

accuracies of SVMs were determined by two-fold cross validation.  

To provide biological feedback during the online setup, the miniature e-puck robot 

described above (5.3) was used. The connection between the robot and MATLAB was 

established by Bluetooth. After signal processing, features were extracted and classified into 

one of the four classes. A prediction (either 0 or 1) was first obtained from each binary 

classifier.  Instead of relying on a single “best guess,” the output was generated by weighted 

voting over a whole space of guesses. A threshold was then applied to each of the 

comparisons across all the channels. To improve the classification accuracy, classifiers that 

were below 70% accuracy were eliminated; furthermore, classifiers discriminating between 

relaxed state and any other class were eliminated if less than 90% accurate. Matrices 

containing the predictions of the classifiers and the accuracies of the classifiers were 

multiplied element by element. Columns were summed to obtain a prediction that reflected 

the choice and the accuracy of all the channels for a particular classification.  

 EEG channels 

C5 C3 C1 Cz C2 C4 C6 

 
S1 
 

2, 10, 12, 
 13, 34 

3, 10, 12, 
14, 32 

2, 3,10, 
 12, 17 

2, 4, 11, 
 15, 22 

7, 9, 14, 
 19, 23 

5, 10, 12, 
16, 24 

7, 9, 11, 
14, 27 

 
S2 
 

4, 12, 14, 
 29, 33 

2, 12, 15, 
14, 33 

3, 4,12, 
 14, 21 

3, 4, 13, 
 16, 27 

5, 11, 13, 
 20, 25 

5, 9, 14,  
21, 27 

5, 9, 12, 
16, 31 

 
S3 
 

2, 11, 13, 
 17, 30 

3, 10, 12, 
14, 30 

4, 9,12, 
 18, 26 

4, 6, 14, 
 15, 24 

5, 10, 12, 
 16, 24 

4, 11, 12, 
16, 25 

7, 10, 14, 
18, 25 
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Figure 5.9: The structure of the ensemble classifier applied in the robot control project. One SVM classifier was 
generated for each possible comparison of features and for each channel, yielding a total of forty-two classifiers 
(six comparisons and seven channels), called SVM1 to SVM42. To improve the classification accuracy, 
classifiers that were below 70% accurate were eliminated. 

Based on the numerical value contained in each position of the sum vector and the number 

of classifiers that contributed to that particular value, a final value was obtained that reflected 

the “strength” of each class. The strengths were ranked in order of magnitude and the class 

with the highest strength was determined to be the class imagined during that trial.  

5.5.4 Alternative classifiers 

In an offline study a comparisons between classifiers were done by applying LDA and 

QDA and RFD classifiers to the same dataset. We adjusted our model to extract the features 

and to classify the mental patterns using these classifiers.  

5.5.4.1. Linear Discriminant Analysis (LDA) 

A SVM performs classification by constructing an N-dimensional hyper-plane that 

optimally separates the data into two categories (Steinwart et al., 2008). The LDA approach is 

based on finding the best linear hyper-plane for separating the data of the different classes 

(Hastie et al., 2008).  Figure 5.10 demonstrates a typical two-dimension boundary solution for 

the depicted dataset. In a two-class problem the line iH + iT. = 0 forms the boundary. 

Assume Gj is the between-class variance matrix and Gk is the within-class variance matrix for 

classes %& and %�. These parameters can be calculated as follows: 

Gj = lmno −mn=plmno −mn=pT																																																	
5.10 
Gk = q
. −mno
. − mnoT

�∈no
+ q
. −mn=
. − mn=T

�∈n=
																
5.11 

SVM.1 

… 

SVM.2 

SVM.42 

 

Feature 

extraction 

 

Classifier 

selection 

 

 

Decision 

making 
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The optimal solution is based on finding the optimum weight vector ω so that the mean of 

two classes has maximum distance from each other and the variance between each class is 

minimized. It is then calculated as the eigenvector corresponding to the maximum eigenvalue 

of  Gk:&Gj (Fukunaga, 1990). 

J
w = ωvSxωωSyω 																																																															
5.12 
After calculating the training feature vector, each test feature vector can be classified 

employing a simple decision rule such as a sign function (Alpaydin E., 2004). 

 

Figure 5.10: Fisher’s LDA is a simple linear classifier based on finding the hyper-plane to separate the data 
representing the different classes. 

5.5.4.2. Quadratic Discriminant Analysis (QDA) 

LDA is based on the assumption that the classes have a common covariance matrix. It is 

likely in practice that this assumption does not meet the problem (Zhang, 2010). Decision 

boundaries in LDA can be easily extended to quadratic boundaries in QDA.  By including the 

square values and cross products of the variable set X&�, X��, … , X&X�, … linear functions in the 

augmented space can be mapped to quadratic ones in the original space. In the case of QDA it 

is assumed that the covariance matrices in each class can be different. Without applying the 

Gaussianity assumption the decision surface can be estimated in a quadratic shape (Hastie et 

al., 2008). Figure 5.11 shows decision boundaries for LDA and QDA for the same problem. 

Quadratic decision boundaries were obtained by finding linear boundaries in the five-

dimensional space		X&, X�, X&X�, X&�, X��. 
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Figure 5.11:  Decision boundaries for Linear and Quadratic discrimination. Data from two classes are shown in 
red and blue circles. Left panel shows linear decision boundaries found by linear discriminant analysis. Left 
panel shows the boundaries found by LDA method both for data with fixed covariance (Top) and with varying 
covariance (Bottom). The bottom row shows that the LDA algorithm learns only linear boundaries, but the QDA 
method will learn quadratic boundaries if the data covariance is not the same and therefore it is more flexible 
(produced by Scikit-learn (Pedregosa et al., 2011)). 

 

5.5.4.3. Regularized Fisher’s Discriminant (RFD) 

Regularized classifier is a general concept and it is used when the complexity of a 

classifier is tuned in order to prevent overfitting (Krepkiy, 2008). Regularized LDA proposed 

by Friedman is a variation of the LDA classifier (Friedman, 1989) with interesting properties. 

This method allows separate covariances in QDA to be merged to a single covariance matrix. 

∑{  is the pooled covariance matrix similar to the one used in LDA and � ∈ [0,1] regulates the 

transient between two models and is determined practically based on the performance of the 

model on the test data.  

∑{|
� = �∑{| + 
1 − �∑{																																																									
5.13 
 

In order to calculate the classifier parameters i in RFD a quadratic optimization should be 

solved mathematically. Mika et al. proposed the following formulation (Mika, et al., 2001): 

         Linear Discriminant Analysis (LDA)       vs.      Quadratic Discriminant Analysis (QDA) 
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min	 		12STS + %
mq ξB

�

B�&
																																																							
5.14) 

Subject to: 

�B(XB
TS + �) = 1 − ξ

B
	, *YD		ξ

B
≥ 0; 				� = 1,… ,m 

Here m is the number of data points that are allowed to be classified incorrectly. The RFD 

approach searches for an optimized hyperplane as a solution for ω	which minimizes the 

variance within each class and meanwhile makes the maximum distance between means of 

distributions of the data from each class. This technique has low computational requirements 

and, thus, is suitable for online BCIs. It has been used successfully in some BCI applications 

such as motor imagery based BCI (Kalcher et al., 1993) (Blankertz et al., 2006), P300 

applications (Kaplan et al., 2013), and asynchronous BCI (Scherer et al., 2004). We applied 

these three classification methods as alternatives to the SVM classifier that was used in our 

online experiments. 

The exploration of novel methods for improving the classification accuracy in BCI has 

attracted much attention in recent years. In this application we applied the “average” of 

multiple classifiers which showed better results than any individual one in the previous 

applications.  Another way to improve classification accuracy is based on the notion of 

adaptive classification. Recruiting an adaptive intelligent system can highly increase the bit 

rate and reliability of the whole system. Classifier adaptation can be considered as an effective 

effort to solve the underlying issue of disparate distributions between the training and testing 

data (Alpaydin E., 2004).  

In the last session of the experiment for each subject, after the offline training, the 

adaptation of the best classifiers continued during the online test. In these sessions we steered 

the robot by developing an adaptively trained BCI. The information extracted from the middle 

window in each trial was used to change the margin parameters. We were inspired by a 2007 

paper by Yang et al., who used a set of adaptive support vector machines (ASVM) for the 

video detection (Yang et al., 2007). If the new sample was classified correctly by the available 

classifier, it was added to the train data set to change the SVM parameters slightly, i.e., 

%�M& = %� + �n and γ�M& = γ� + �� where �n and �� are less than 1% of the calculated values 

from the offline session. The applied change was in the direction of maximizing the posterior 

class probability. Spüler et al. reported a small MATLAB library for adaptive SVM 

calculation and applied it to a MEG-based BCI. The idea is relatively new for single SVM in 

BCI applications (Spüler et al., 2012).  
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5.6. Results 

5.6.1 Classification accuracy 

 Online tests were used to assess the accuracy and the precision of classifiers generated 

during offline training runs. In order to evaluate the real-time robot navigation, we calculated 

the classification accuracy in each run. After five offline runs in each session, two types of 

online tests were performed to determine how precise the classifiers were and how well the 

user could control the robot. During the first online test, the accuracy was measured based on 

how many predefined actions the robot was able to perform in sequence. In other words the 

subject received an instruction consisting of 10 commands before the start of each run of the 

experiment. These 10 commands included all four possible conditions and led the robot from 

point A to point B in the 8-shape grid. EEG biofeedback was provided during online 

experiments. The robot was placed on a table in front of the subject on the 8-shape grid 

surface which was plotted on cardboard. The goal was to follow the instructed commands in 

order. The final evaluation was calculated by the number of correctly performed commands. 

Each of the offline and online sessions consisted of 5 runs and each run consisted of 10 trials. 

In the second online test subjects were free to select the commands on their own and the 

general performance was evaluated. Here we only report the results of the first online 

experiment.  

 Table 5.2 shows the averaged classification accuracies for each subject in different 

sessions of the experiment. Experimental evaluation on the three naive subjects demonstrated 

that an average classification accuracy of 76.6% was obtained during the first experiment 

session (day) after about 10 min training using the offline BCI setup. For the first online test 

the average classification accuracy was 71.3%. The evaluated offline results are better than 

the online ones, which is to be expected because criteria were developed in the "offline" data.  

Table 5.2: The average classification accuracy over all experimental runs calculated for each participant and in 
each session of the experiment using ensemble SVM. 

 Experimental 

sessions 
Classification accuracy % 

Training Test 
 

S1  

Session 1 69.66 68.06 
Session 2 76.51 72.70 
Session 3 79.04 75.85 

 

S2  

Session 1 79.28 73.80 
Session 2 80.12 75.25 
Session 3 84.05 79.24 

 

S3 

Session 1 80.76 72.04 
Session 2 78.46 73.90 
Session 3 79.92 76.17 
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The left panel in Table 5.2 contains accuracies during the offline experiments, when the 

commands were sent to robot and biofeedback was provided. The values were averaged over 

the results achieved from the four classes of interest. If the class label was recognized 

correctly by the classifier +1 was noted otherwise for the misclassification case 0 was noted. 

The final percentage was calculated as the classification accuracy for that particular class. The 

right column shows the average accuracy during the online experiment. The results obtained 

from 450 trials (3 participants × 3 sessions × 5 runs × 10 trials) on the recorded data show 

that the proposed algorithm could perform robustly over different sessions and runs of the 

experiment.  

Figure 5.12 shows the average classification accuracy accuracies for each subject in 

different runs of the experiment separately (averaged across sessions). In general a positive 

trend can be seen in classification accuracies from the first run to the last run of the offline 

session. The reason can be the effect of the training on the subject. The values drop by the 

start of the online experiments, but the positive trend with more variation can be also 

observed during this set of experiments for all three participants.  

 

Figure 5.12: Average classification accuracy for the three subjects S1, S2 and S3 over three sessions of the 
offline and online experiment. Each offline and online session consisted of 5 runs (shown separately) and each 
run consisted of 10 trials (averaged). The data recorded from offline runs were used to initiate the classifier 
parameters for the online test. 

An online BCI system should be designed in such a way that can cope with subject-to-

subject or day-to-day variations. As described, each subject participated in three experiment 

sessions. We improved the classifier structure to the adaptive scheme in the last (third) session 

of the experiment. The online performance was slightly affected as can be seen in Table 5.2. 
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5.6.2 Information transfer rate 

The average ITRs of the different experimental sessions for all three participants are 

shown in Table 5.3. For all subjects there was an increasing trend in ITR across sessions of 

the experiment. It is also clear that there is a decrease in ITR when using the online BCI 

paradigm. It can be also observed that applying the adaptive SVM method in the last session 

improved ITR in particular for the online test. 

Table 5.3: The average ITR of the different experimental sessions calculated for each participant and in each 
session of the experiment. 

 Experimental 

sessions 
Information transfer rate 

(BITS/min)  

Training Test 
 

S1  

Session 1 16 12 
Session 2 20 16 
Session 3 21 18 

 

S2  

Session 1 18 12 
Session 2 22 15 
Session 3 23 19 

 

S3 

Session 1 15 11 
Session 2 19 14 
Session 3 22 17 

 

In Eq. 5.3 regarding our BCI design, our proposed �� was set to 10 for all subjects, 

V=0.2 trials/second, and N=4.  The ITR graph in our BCI application can be seen in Figure 

5.13. Theoretically, by keeping the same specifications, the maximum ITR in 95% 

classification accuracy can reach to 32 with maximum SNR. The maximum ITR for this BCI 

application, as achieved by S2, amounted to 19 during the online experiments. Figure 5.13 

illustrates the theoretical ITR curves for three- and four-class BCIs and the empirical values 

calculated in our experiments.  

 
Figure 5.13: Theoretical information transfer rate for three and four class BCIs depicted by the blue and green 
curves, respectively. Circles show the empirical values from Table 5.3 for ITR and from Table 5.2 for accuracy. 
Red circles are the averaged values for the test runs and blue circles are the values for the training runs. 
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5.6.3 Other classifiers: An offline study 

We used the recorded data from this experiment and applied other classification 

methods (LDA, QDA and RFD) in order to investigate the effect of classifier approach for 

this BCI application. For RFD model � was set to 0.5. Figure 5.14 shows the results achieved 

after ten-fold cross validation applied to the offline data. Here the same voting structure was 

applied for each classification method. As an alternative to the SVM classifier, LDA 

improved the accuracy in the first and third session noticeably, but in the second session had 

the lower average accuracy. Thus, it seems like a linear threshold may be sufficient in most 

cases to discriminate between each pair of classes. RFD performance was similar to SVM. 

This classifier is also the most robust one with the lowest variance in all three sessions. QDA 

performed well over the third session, but in average it was weaker than LDA. The 

improvement from SVM to LDA method was not statistically significant over the few studied 

subjects (df=2, t=2.10, p=.17). Considering the lower load of computation for LDA, we 

applied this classifier to our next paradigm for navigating an avatar in the virtual world.  

 

Figure 5.14: Average classification accuracies of the different classification methods over the recorded data of 
the three participants. 

5.7. Discussion 

This chapter presented a heuristic online single-trial EEG-based BCI for steering a robot 

vertically or horizontally in a simple two-dimensional environment. We investigated whether 

subjects could achieve satisfactory performance online with short-time offline training. The 

feedback was provided to the subjects all during the controlling endeavor, from the onset of 

the experiments to the end.  Band power features were extracted from the EEG followed by 

mRMR feature selection to train and optimize an ensemble classifier. A distinguishing 
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characteristic of our work is the creation of a unique classifier for each of seven channels and 

each of six possible feature space comparisons, yielding a total of forty-two classifiers.  

The results after processing were verified as satisfactory. Predictions made by support 

vector machines whose accuracy was greater than 70% were weighted, and a command was 

given to the robot after voting. This strategy had a positive effect on the final results, thus, the 

online computation was limited to the classifiers whose performances were higher during the 

offline test. Non-stationary characteristic of the brain signal makes it difficult to use the same 

classifier of the previous session in the next session again, so we decided on a short training 

phase in every session.  The preset 10 min training phase at the beginning of each session 

makes the classifier noticeably more robust to the non-stationary changes of brain activity. 

The SVM classifier is sensitive to the selection of parameters and the under-fitting may 

happen when not sufficient data is available. We hypothesized that a simpler classifier like 

LDA might results in comparable results with lower computational effort. Using the recorded 

dataset we investigated whether alternative classification techniques may lead to higher or 

more robust results. LDA, QDA and RFD were tested. The statistical test suggests that an 

ensemble LDA can be a suitable option for designing BCI because of its accuracy and 

simplicity for online calculations. The major problem with LDA compared to SVM classifier 

is that it is more sensitive to outliers. QDA is more robust and less sensitive than LDA, but 

may perform weak on particular data because of the misclassification rate, e.g., the first 

session data of the current application. Both LDA and QDA showed a wide dispersion in the 

second session, which can be due to outliers. Probably due to the same reason, LDA has also 

more variation compared to other methods in the last session.  

In order to assess the performance of the entire BCI system, several factors should be 

considered. Among them the number of commands (mental tasks), reliability and accuracy 

and information transfer rate are the most important parameters. Considering both the 

hardware and software limitations, in this application, we decided on a four class BCI. Adding 

the number of mental tasks would have increased the entire training time as well as the online 

computational time which is not desirable for an online BCI. A general assessment shows that 

the presented results for this application indeed are better than the classification in the 

previous applications. Average accuracy in the current application was calculated 75.52 for 

the offline analysis and 71.61 for the online test. In the first application using fractal features 

the average accuracy of 81.3 was achieved, in the second application using a combination of 

power band and higher order features the accuracy of 71.24 in average was obtained. 

Considering that the chance probability is only 25% for the four-class BCI compared to 50% 
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for the two-class BCI, the proposed BCI in this chapter with 73.56 % classification accuracy 

in average outperforms not only the second application (71.24%) but also the first one 

(81.3%). One interpretation for this rather high performance is the design of the experimental 

paradigm, including both offline and online steps. The second and more important reason 

could the structure of the ensemble classifier that was applied on this project. In 

essence instead of using a single four-class classifier, we implemented six separate binary 

classifiers for each single channel. Those classifiers which had the high performance on the 

recorded data were selected for the final implementation. The ultimate decision was made 

based on the voting strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: A four class BCI for robot control 
 

164 

 

 

 

 

 

 

 



 

 

Chapter 6 

Avatar Navigation in "Second Life" 

using Brain Signals1 

 

 

 

6.1. Introduction 

In this chapter an online single-trial EEG-based BCI linked into an interactive 

virtual world environment (VWE) is presented. The purpose of this interdisciplinary project 

was to conduct an innovative approach to establish a connection between a human brain and a 

virtual world illustration using a simple game paradigm. Development of the interaction 

technique allows the users to freely decide which action they wish the avatar to perform. 

Similar to the BCI described in the previous chapter, the system was trained for some 

predefined movements. The control can be accomplished by online processing of single-trial 

EEG signal which is recorded using an EPOC headset from Emotiv. Our online BCI was 

developed as a navigating game in a 3D virtual environment for controlling an avatar. The 

initial idea was to employ virtual reality for physical rehabilitation. So not only healthy 

people, but also people with handicaps could benefit from this new technology. 

6.2. Virtual Reality for fun and rehabilitation 

Virtual social worlds (e.g., "Second Life") are becoming more accessible for people 

from different generations and social groups. Morton Heilig has originally implemented the 

initial idea of a “Virtual Reality” (VR) in 1956 in a fully interactive device called Sensorama 

(Brooks, 1999). VR is a general concept to describe any scenario created virtually by the 

computer software which is equipped with the user-interaction feature (Brooks, 1999). The 

                                                           
1 Part of this work was published in: M. Kh. Hazrati, and U. G. Hofmann, Avatar Navigation in Second Life using Brain 

Signals, 8th IEEE international symposium on intelligent signal processing (WISP), 2013. 

 



Chapter 6: Avatar Navigation using BCI 

 

166 

 

virtual world is usually designed in the three-dimension scheme in such a way that users feel 

themselves as a part of the scene (Keshner, 2004).  

Using the VR design gives the researcher or the therapist the potential to simulate the 

complex physical problems in a high degree controlled environment without any reductionism 

(Brooks, 1999). Second Life’s virtual world is a well-known web-based interaction 

environment (Au, 2008). Employing scientific game-based therapies and technologies also 

constructs another aspect of new BCI generation. Impairment in motor function leads to 

difficulties in individual and social interactions and will diminish the quality of life in a wide 

range of patients. According to the literature, VR technology has been applied to many 

different applications such as entertainment and physical rehabilitation (Gil-Gomez et al., 

2011) (Brutsch et al., 2011). Paralyzed people not only suffer from physical inability but also 

from psychological aspects of inability, which is most of the time the worse issue for them. 

Neuroplasticity improves with motivation (Jones et al., 2008). Elderly people with stroke and 

children with sensorimotor disorders may also gain from interactive computer play for 

rehabilitation purposes (Sandlund et al., 2009) (Rabin et al., 2011). Providing a fun and 

attractive interface can provoke the user’s intention in a more effective way (Schuler et al., 

2011). The effectiveness of the Wii system has also been tested for balance rehabilitation in 

patients with acquired brain injury (Gil-Gomez et al., 2011). A recent research extends the 

usage of the rehabilitation robot called “Lokomat®” from boring and monotonous physical 

practice sessions to an exciting game controller for children (Sandlund et al., 2009) (Schuler 

et al., 2011).  

6.3. Project Description 

For the current BCI application we combined the VR interface technique with the 

advancement of wireless electronics technology. Patients as well as healthy people could 

benefit from increased mobility when the restrictions imposed by cables and wires are 

removed (Debener S. et al., 2012). This renders the proposed application a possible portable 

solution for healthcare purposes.  

The advent of tiny low cost and low power electronic chips propelled the electronic 

design forward. It has opened up new doors to the future of BCI. Just in the recent five years 

several electronic headsets have been presented to the market and the revolution of 

inexpensive wireless EEG device has enormously affected the field of BCI. Therefore, EEG 

data used in this application were recorded by commercial EEG amplifiers. 
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6.3.1. EEG recording Hardware and Software 

The EEG acquisition machine was Emotiv EPOC headset from Emotiv (Australia). The 

EPOC headset is a low-cost revolutionary EEG cap, with dry electrodes. It is easy to wear and 

use and is equipped with continuous Bluetooth connectivity to the computer. Since 2007, the 

Emotiv EPOC has been available in the market. Recently it found great attention from 

researchers for BCI based games (Debener S. et al., 2012) (Kaplan et al., 2013). The sampling 

rate is 128 Hz (2048 Hz internal) and the resolution is 14 bits, 1 LSB=0.51 �V (16 bit analog 

to digital amplifier, 2 bits instrumental noise floor discarded). Its dynamic range is up to 

8400	�V (peak to peak), which is equivalent to 78 dB (20 log�	
�� 	�⁄ �). EPOC also 

includes gyroscopes (X and Y axis). Figure 6.1 shows the headset and positions of electrodes 

covered by it. The headset is equipped with 14 dry sensors according to the International 

10-20 system at AF3, F7, FC5, F3, AF4, F8, FC6, F4, T7, T8, P7, P8, O1, and O2. Two 

reference channels (CMS and DRL) in addition to 14 EEG channels are approximately 

positioned at P3 and P4, called CMS and DRL, respectively. The headset is fully wireless and 

the battery can hold a charge for around 12 hours as announced by the company. Emotiv 

licensing model is based on providing access to different level of data depending on license. 

Only a research license provides access to raw EEG data. http://www.emotiv.com/ 

Before the start of experiment a saline was used to wet the electrodes. The EPOC EEG 

cap was then fixed on the subject’s head, and electrodes were placed in their positions. In the 

normal use, no sensors are directly placed over the motor cortex, so motor imagery tasks 

might be a challenge for EPOC.  

     

Figure 6.1:  EPOC headset and corresponding electrode locations. The headset is equipped with 14 dry sensors 

according to the International 10-20 system at AF3, F7, FC5, F3, AF4, F8, FC6, F4, T7, T8, P7, P8, O1, and O2. 

To implement the avatar control by BCI, appropriate and optimized computer software 

was required. In our case, we used a C++ programming interface under Microsoft® Windows 

Vista for online data acquisition. The Emotiv connection protocol is responsible for recording 
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the raw brain signal. A Bluetooth® driver was used to communicate with the EPOC EEG cap 

and the computer (Debener S. et al., 2012).  

A self-developed C++ graphical user interface (GUI) connected to second life provided 

the interactive environment. User-written MATLAB scripts were finally converted to stand-

alone applications using MATLAB Compiler version 4.11. Therefore, they can be executed 

independent of the MATLAB environment. MATLAB Compiler Runtime (MCR) version 

7.11 should be installed on the computer while executing the interface. It is a standalone set of 

shared libraries that enable the execution of M-files.  

6.3.2. Experimental Paradigm 

This experiment was performed in the Computational Neuro-Engineering Laboratory 

and the Digital worlds institute at the University of Florida. Experimental runs were carried 

out with three able-bodied volunteer subjects (one female, two males; mean age: 27.3). In 

preparation for each run, subjects were seated 0.5 meters from a computer monitor with arms 

in front and palms flat and facing down on a desk in front of them. The experimental 

paradigm consisted of 4 offline training runs followed by 6 online evaluations / avatar control 

runs (Figure 6.2). Each offline and online run consisted of 12 trials which yield to the total 48 

offline and 72 (6�12) online trials. During the controlling endeavor in online experiments 

subjects received feedback on the screen. Each online trial lasted ten seconds, the first five 

devoted to the imagination of movement and the last five to relaxation.  

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Offline experiment (training sessions): The subject is trained by observing right and left and up 

arrows at the center of the screen. An image of a black circle was continuously displayed for use as a visual 

fixation point. 
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During each trial, similar to the previous application (Chapter 5), an image of a black 

circle was continuously displayed as a visual fixation point for the user, to reduce eye 

movement artifacts. Since all cues were displayed in the middle of the screen for all choices, 

it is assumed that possible induced eye movements were independent from the indicated 

targets. In the offline session visual stimuli indicated which of the following three motor 

imageries the subject should perform. One of three images – a left arrow, a right arrow, and 

an upward arrow – was shown for five seconds, and the subject was asked to perform a 

corresponding brain activity, i.e., imagination of moving the left hand, right hand, or foot 

(either left or right one). The type of movement was not specified beforehand, however, the 

subjects reported that they preferably imagined sideward movements. After five seconds, the 

picture disappeared, and a screen with only the focal point was shown, indicating that the 

subject should relax. The black circle was visible on the screen for 5 s. The black circle was 

extinguished for periods of random length, between 2 s and 3 s, and then the next trial started 

with presentation of an arrow. Before the start of the online experiment, the parameters of the 

classifier were initialized using information derived from offline experiments. The goal was to 

investigate whether subjects could achieve satisfactory performance online with short-time 

offline training followed by adaptive online training. 

Here also two types of online tests were performed. In the first setup, the subjects were 

given a visual cue (i.e., one of the three arrows or the black circle) to begin imagining one of 

the actions (or relaxation) for which they had been trained. The subjects were then given five 

seconds to imagine the required mental state. Processing of signals was performed online and 

two commands were sent to the avatar during each trial (after 2.5 s and 5 s of the onset of the 

trial); the execution of the avatar action took place accordingly. The subjects were then given 

random length between 2 to 3 s to relax. The online performance was recorded to determine 

how accurate the training was and how well the user could control the avatar. In the second 

setup similar to our previous experiment (Chapter 5), the subjects were asked to navigate from 

the start point to the end point as shown in Figure 6.3. They were shown a black focal point 

and were given five seconds to imagine the mental state corresponding to the action they 

wished the avatar to perform. The avatar status was updated after 2.5 s had passed. Here we 

will only consider the data recorded from the first online test for the evaluation. 
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Figure 6.3: A snapshot of the user interface for the online experiment. The subject was trained to send a 

command to the avatar by thinking about the direction commands: Left, right and forward. During the test 

section users should navigate their avatar from point A to point B.  

6.3.3. Second Life interaction software 

 Users can explore the Second Life’s (SL) virtual world willingly and steer their avatar 

to the target point normally with mouse or arrow keys. Recently BCIs have been used to 

control Second Life, but for a different navigation design (Kaplan et al., 2013). Here we 

developed a sophisticated new brain-computer interface based on the functionality of this 

environment. MathGL and OpenGL were used for handling the graphics and computation. 

Instead of arrow keys on a keyboard for controlling the avatar, commands were sent directly 

to the interface. It let users explore the virtual world and steer their avatar within the 3D 

environment. 

The interface was developed in C++ including Emotiv SDK Developer Edition. It passes 

the arguments to the main interface using keybd_event() Win32 API function which 

 synthesizes a keystroke. The keyboard driver's interrupt handler calls 

the keybd_event function. Using this function one can send a virtual key (VK_XXX), which 

has been already defined in the header file winuser.h. The function returns a flag for denoting 

the key type, e.g. KeyDown, KeyUp. It can also be set to return a state for indicating an 

extended key. The first input of this function is another function called VkKeyScan(). The 

latter is used to translate normal characters with type Char into virtual keys with type Word 

denoting a VK. The KEYEVENTF_KEYUP flag should be updated to terminate the key 

pressed command. A part of the code can be seen in the next page: 

B 

A 
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void MyKeyEvent(std::string text)  

{  

  for(int i = 0; i < text.length(); ++i)  

  {  
//Press key 

    keybd_event(VkKeyScan(text[i]),0x9e, 0 , 0); 

…  

//Stop pressing key 

    keybd_event(VkKeyScan(text[i]),0x9e, 0 ,KEYEVENTF_KEYUP);  

  }  
} 

#include <iostream>  

#include <windows.h>  

using namespace std;  

   
int main()  

{  

    cout << "Simulated key Pressed " << endl;  

    getchar();  

    Sleep(1000);  

    POINT p;  
    GetCursorPos(&p);  

    HWND Right_Arrow=WindowFromPoint(p);  

    cout<<"HWND: "<<Right_Arrow<<endl;  

    PostMessage (Right_Arrow,WM_KEYDOWN, 0, 'H');  

    Sleep(1000);         
} 

//LeftArrow  E0 4B 

//RightArrow E0 4D 

//UpArrow    E0 48 

//DownArrow  E0 50 

In order to record sufficient data a preset 10 min offline phase was assigned. Here we 

selected six classifiers (six pair-wise comparisons of the 4 classes) using the information of all 

channels. After the training phase ten-fold cross-validation was used to assess each classifier. 

For the first online test with a cue-paced interface, the subjects were restricted to perform 

predefined (trained) mental tasks in intervals and tried to steer an avatar on the screen. In the 

second online test the paradigm was similar to the first online test, but this time the subject 

was free to select the type of mental task. In the latter study subjects steered their avatar to a 

final destination through an arbitrary path only by imagining four movements.  

6.4. Evaluation of the Data 

6.4.1. Evoked potentials 

In order to evaluate the recorded data, some further time and frequency analyses have 

been accomplished. Figure 6.4 presents grand average ERPs for all subjects recorded from 

AF3, AF4, F4, F3, FC5, FC6, P7, P8, O1 and O2 for trials associated to the right, left and 

forward arrow and the following stop (idle state). Units on x-axis are s which represent the 

entire trial starting from the point when the arrow appeared on the screen at the start of each 



Chapter 6: Avatar Navigation using BCI 

 

172 

 

trial till 10 s. At time point 5 s the relaxation phase started when the arrow image disappeared 

from the screen.  

The first deflection is the positive peak of the evoked potential, consisting of a 5.8 µV at 

about 480 ms for forward command trials maximum at O1 and O2 and 4.9 µV and 4.2 µV at 

the same time for right and left commands. The maximum amplitude decreases from occipital 

to frontal sites and reached a minimum of 3 µV at AF3. Another positive peak with the 

amplitude of +4.1 µV can be seen at 5560 ms after the start of the trial. The disappearance of 

the arrow and the display of the black dot on the screen might have caused this evoked 

potential.  

The positive peaks differ in shape and duration for different imagination trials. 

Especially for the upward arrow the topography is more similar to a P300 component with 

maximize at O2. In general there are more fluctuations in the ERPs calculated for this data 

set, which can be due to the low number of the trials and the specification of the recording 

system. But it is pleasing to see that there were no gross side differences between AF3 and 

AF4 (which are near to the eyes) for right- vs. left-pointing arrows, which confirms the 

expectation that no systematic eye movements were induced by arrow direction. 
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Figure 6.4:  Grand average ERP calculated for the current data set. Data were averaged over all trials and 

subjects separately for AF3, AF4, F7, F3, F4, F8, FC5, FC6, T7, T8, P7, P8, O1, and O2. At onset of the trial an 

arrow appeared on the screen showing randomly one of the images corresponding to the imagination of 

movement. At 5 s a black dot appeared on the screen as a sign for the relaxation interval which lasted 5 s (5 s – 

10 s). Amplitude units are µV, x-axes range from 0 s (left) to 10 s (right). 

 

6.4.2. Power band spectrum 

Figure 6.5 demonstrates the average power band spectrum for the current dataset. The 

amplitude is calculated in 10�log10 (	�/��) unit. Data from relaxation states are presented 

in black and data from movement imagination states are presented in color (blue, red and 

green). Due to the lower number of trials available in this dataset (N=3 subjects � 48 offline 

trials), some local fluctuations can be seen in Figure 6.5.  
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Figure 6.5: Average power band over the entire dataset for two different brain states demonstrated over AF3, 

AF4, F7, F3, F4, F8, FC5, FC6, T7, T8, P7, P8, O1, O2. - Unit on x-axis is Hz, unit on y-axis is log10 (	�/���. 
The alpha peak can be observed from 8 Hz to 12 Hz and is stronger during the 

relaxation and foot imagination trials. In the power spectrum calculated from right hand 
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imagination trials another peak exists in gamma band, which is stronger at F8 and AF4 sites. 

In AF3, F7 and FC5 a late alpha peak at 13 Hz can be observed. The alpha peak in left hand 

imagination trials is smaller in comparison to other imagination states and the alpha peak can 

be seen earlier compared to the other states. The power spectrum computed for the left hand 

imagination (green) is larger than the one for the right hand imagination (red) over the 

electrodes positioned on the right hemisphere. For the left-side electrodes the green curve has 

smaller values than the red one. Thus the side specific ERD occurred.  

6.4.3. ERSP time-frequency analysis 

Figure 6.6 shows some time-frequency analysis using ERSP approach on this dataset. 

Lacking electrodes over the motor cortex, here the averaged ERSP over subjects is depicted 

for two selected channels as close to the motor cortex as possible. Three groups of ERSP plots 

are depicted in Figure 6.6; each is calculated using the trials for the imagination of different 

limb movement. In the first group of subplots the ERSP analyses for imagination of right 

hand movement can be seen. A clear theta ERD can be seen over all four plotted figures. 

Like Figure 6.4, this Figure 6.6 shows the time range from time point 0 s, when the 

arrow was displayed on the screen until 10 s , the end of the relaxation phase. However, the 

first five seconds were defined as baseline for ERSP computation, so the time axis is shifted 

by five s, with -5 s in Figure 6.6 denoting the start of the imagination phase, and 0 s denoting 

start of the relaxation phase. In the first 5 s, a noticeable decrease in delta band over all 

conditions in FC5 and FC6 (overlying right and left hand-motor cortex) can be observed. At 

0 s the cue disappeared and a black dot remained on the screen for another 5 s. An increase in 

power of theta and alpha bands exists over all four plotted channels. Increases in gamma band 

can also be seen at this period too. The second four subplots in Figure 6.6 show the similar 

analyses for the imagination of left hand movement. Here the ERS in FC6 is clearer than FC5, 

in accordance with the contralateral organization of movement control. Gamma ERS in this 

period might be due to artifacts.  

The third group of figures is related to foot movement imagination. Some sparse gamma 

and theta ERS can be seen during the imagination of movement phase from the start of the 

trial till the onset of the relaxation phase at 5 s. Gamma ERS exist in trials for imagination of 

foot which is probably due to residue effect of artifacts. A sparse beta and gamma ERS starts 

at 2 s and lasts till 5 s. A strong theta ERS at zero point can be the effect of ERPs in all 

subplots. Interestingly some sparse gamma ERD can be observed in FC6. 

 



Chapter 6: Avatar Navigation using BCI 

 

178 

 

Imagination of right hand movement 

 

 

Imagination of left hand movement 

 

 

ERSP(dB)

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
-10

10

Time (ms)

d
B

5

10

15

20

25

30

35

40

45

-20 20

F
re

q
u
e
n
c
y
 (

H
z
)

dB

FC5
ERSP(dB)

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

-10

10

Time (ms)

d
B

5

10

15

20

25

30

35

40

45

-20 20

F
re

q
u
e
n

c
y
 (

H
z

)

dB

FC6

ERSP(dB)

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

-10

10

Time (ms)

d
B

5

10

15

20

25

30

35

40

45

-20 40

F
re

q
u
e
n

c
y
 (

H
z
)

dB

F3 ERSP(dB)

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

-10

10

Time (ms)

d
B

5

10

15

20

25

30

35

40

45

-20 40

F
re

q
u
e
n
c
y
 (

H
z
)

dB

F4

ERSP(dB)

-15

-10

-5

0

5

10

15

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

0

40

Time (ms)

d
B

5

10

15

20

25

30

35

40

45

-20 20

F
re

q
u
e
n
c
y
 (

H
z
)

dB

FC5 ERSP(dB)

-15

-10

-5

0

5

10

15

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
-20

40

Time (ms)

d
B

5

10

15

20

25

30

35

40

45

-20 20

F
re

q
u
e
n
c
y
 (

H
z
)

dB

FC6

ERSP(dB)

-15

-10

-5

0

5

10

15

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
-20

40

Time (ms)

d
B

5

10

15

20

25

30

35

40

45

-20 40

F
re

q
u
e
n
c
y
 (

H
z
)

dB

F3

ERSP(dB)

-15

-10

-5

0

5

10

15

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
-20

40

Time (ms)

d
B

5

10

15

20

25

30

35

40

45

-20 40

F
re

q
u
e
n
c
y
 (

H
z
)

dB

F4



Chapter 6: Avatar Navigation using BCI 

 

179 

 

Imagination of foot movement 

 

 

Figure 6.6: Grand average- - ERSP averaged over all trials for imagination of the limb movements calculated for 

FC5 (left) and FC6 (right)- At onset of the trial an arrow appeared on the screen showing randomly one of the 

images corresponding to the imagination of movement. Each four subplots correspond to the imagination of right 

hand, left hand and foot movements, respectively. At 0 s a black dot appeared on the screen as a sign for the 

relaxation interval which lasted 5 s (0 s – 5 s). Amplitude units are µV, x-axes range from 0 ms (left) to 10000 

ms (right). Unit on x-axis is ms, unit on y-axis is Hz. The color bar represents the absolute values of ERSP in dB. 

By the start of the relaxation phase in this group a delta ERS (0 s – 5 s) can be seen over 

all presented channels and another alpha ERS (in the last second) at FC6. (The timing of the 

delta ERS appears peculiar, starting before the event at 0 s. This is most probably an effect of 

windowing in the ERSP method where time denotes the start of the window rather than its 

midpoint). There is no clear difference between left and right scalp sites in this case, among 

others simply for the reason that participants were free in imagining movements of either their 

left or their right foot. 

6.5. Materials and Methods for BCI 

6.5.1. Preprocessing the data 

Preprocessing consisted of filtering and artifact removal. The hardware is equipped with 

a band-pass filter between 0.2 Hz and 45 Hz and two notch filters at 50 Hz and 60Hz to 
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remove power line noise. In each trial the mean values over time of the imagination and 

relaxation signals were calculated and subtracted from each respective signal.  

6.5.2. Artifact Suppression:  Adaptive Filter 

In this application an adaptive artifact reduction approach was used which in principle is 

similar to the one introduced in Chapter 5. In the current application the positions used for 

artifact reduction were recorded from AF3 and AF4 which is in contrast to previous 

applications and enabled us to measure horizontal eye movements, which is assumed to be 

essential in these BCI setups where arrows point left and right. AF3 and AF4 are not ideal, 

each one being situated above one eye. More lateral sites would have been a much better 

choice, e.g., AF7 and AF8, or, best, electrodes placed at the outer rims of the eyes, but the 

commercial hardware used in this setup restricted our choice. Data from AF3 and AF4 were 

used as inputs to a series of adaptive filters in order to eliminate the effect of artifacts recorded 

in these channels. Figure 6.7 shows a sample of the analysis on this dataset for channel F4. In 

Table 6.1 the calculated parameters are reported. 

 

Figure 6.7 Artifact reduction using information based adaptive filter with Gabor filter with the sigma update over 

the time applied in 10 s ongoing EEG data. The output of the adaptive filter is the artifact-free EEG. The upper 

panel shows the measured signal at F4 in black, and the corrected signal in red (output of the adaptive filter). The 

reference signal (input to the adaptive filter) is the signal recorded from AF3 and AF4 smoothed by a moving-

average filter. 
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Table 6.1: Averaged correntropy values over 12 channels (all except AF3 and AF4) for the three subjects using 

adaptive filter method for the current dataset. 

 

6.5.3. Feature Extraction using the Matching Pursuit approach 

Matching pursuit (MP) was initially introduced by Mallat and Zhang and to date there 

are several extensions to the original formulation (Mallat, et al., 1993) (Durka PJ., 2006). MP 

algorithm is rather intuitive and simple. It is, in fact, a greedy decomposition of signals into a 

set of basic waveforms which are selected from a large and redundant dictionary of functions 

(Sanei, 2007). The robustness of the algorithm depends on the complexity of the combination 

of the dictionary’s functions (Durka, et al., 2001)(Sanei, 2007). It forms an adaptive time-

frequency representation of the signal and is based on an over-complete dictionary (Mallat, et 

al., 1993). Each iteration of the algorithm searches for the most informative projection, 

yielding an estimate that is basically free from arbitrary settings.  

In other words, the MP algorithm tried to find the optimum projection of the input data 

onto an over-complete dictionary which matches best to the original data. The signal will be 

then presented as weighted sum of functions (atoms) ��� selected from the dictionary. A 

Common choice for functions ��� is the Gabor function, which is a sinusoidal modulated by a 

Gaussian. 

1
2����� exp !"

#�
2��� "

$�
2���% cos�(# " )�																																�6.2� 

 

Figure 6.8: A sample of atoms used in the matching pursuit method. It is generated by changing the Gabor 

function parameters in order to generate a complete dictionary. 
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Mallat proposed that any signal  -�.� can be decomposed as following (Mallat, et al., 1993): 

-�.� = 01�. ����.�
23

�45
																																																									�6.3� 

here the n index represents the chosen atom, and  1� is the corresponding weight of that atom. 

Within a fixed dictionary, the MP algorithm starts to search for the atom having the greatest 

inner product with the input signal. In the next step the contribution of the first atom 

(17. ��8�.�) is subtracted from the signal. In an iteration scheme, the process continues until 

the point that the residue can be ignored (Durka, et al., 2001). We are interested in using a 

dictionary D= {g9:} n=1…N that provides the lowest entropy of the weights {1�}, which is 

equivalent that the most intrinsic properties are extracted from the signal. Unfortunately, no 

universal recipe is available to date for such a prior choice.  

The algorithm can be summarized in the following table. -(.) and dictionary D are inputs, 

and the output is the list of coefficients	(1�, ���). 

Table I: Algorithm of Matching Pursuit 

1.Initialization:  

<7 ← -(.) 
> ← 1 

2. Find  ��� ∈ @ with maximum inner product 〈<�, ���〉 
3. Let 1� ← 〈<�, ���〉 
4. Let <�27 ← <� − 1���� 

5.Let > ← > + 1 

4. If not converged (‖<�‖ < FℎHIJℎKLM), go back to 2 

 

Several signal analysis approaches search for a linear expansion of the unknown 

signal -(.) in terms of summation of basic functions. Sinusoidal basis functions construct the 

smallest possible complete dictionary and the algorithm results in the Fourier series 

representation of the signal. Fourier analysis reveals only global features of signals which 

does not adopt completely for the signal. A set of Gabor functions is a commonly used 

dictionary for the biological signals and in particular for the brain signals (Durka, et al., 

2001). Real and imaginary features were extracted in time-frequency domain using the Gabor 

transform to visualize the differences between two motor tasks (Vuckovic et al., 2008). Real 

and imaginary parts of the Gabor coefficients were employed in a similar research 

(Miwakeichi, 2004).  

It is claimed that the by employing the redundant dictionary, the multichannel matching 

pursuit approach can find an adaptive suboptimal solution to the problem of signal 
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approximation (Mallat, et al., 1993). This approach might provide a sparse representation of 

the coefficients which is desirable for reduction of the signal analysis as well as coding and 

compression (Tipping M., 2001) 

In the current application we used the multichannel matching pursuit algorithm in order 

to decompose the EEG recordings into a sum of atoms, each being the product of spatial 

(topographic) signature and waveforms having determined time–frequency localization.We 

consider the calculated weights N1�O and center frequency of the functions {���} as features 

for the BCI system. Figure 6.9 shows a set of features extracted using this method. The top 

plot presents the atoms used in the matching pursuit method. It is generated by changing the 

Gabor function parameters in order to generate a complete dictionary. Middle figure: The 

recorded and the approximated signal calculated by MP decomposition for one EEG channel 

(F4-5s) recorded from S2. Bottom figure: the feature set consists of values of 50 non-zero 

weights of used Gabor atoms. In order to decrease calculation time during the online 

experiment we applied a feature selection method to increase both the speed and the accuracy 

of the system.  

 

Figure 6.9: Top plot: Atoms used in the matching pursuit method. They are generated by changing the Gabor 

function parameters in order to generate a complete dictionary. Middle figure: The recorded and the 

approximated signal calculated by matching pursuit decomposition for one EEG channel (F4 – 5 s) recorded 

from S2. Bottom figure: the feature set consists of values of 50 non-zero weights of used Gabor atoms. 

6.5.4. Feature selection: mRMR 

We used the mRMR method described in chapter 4 for this BCI paradigm in order to 

decrease the dimension of the feature space. The method calculates the mean value of all 
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mutual information values between any individual feature and any class over the offline 

dataset. The features are then selected if they fulfill the minimal redundancy and maximal 

relevance criterion at the same time. In the current BCI application, we used the mRMR 

method in order to decrease the feature space to 10 features as the input of each classifier. We 

treated all the features extracted from all recorded channels (excluding AF3 and AF4) 

equivalently. Using mRMR the best five features (weighting coefficients) extracted from each 

channel were used as features in BCI, excluding AF3 and AF4, yielding 5 x 12 = 60 features.  

6.5.5. Classification: Ensemble LDA 

Based on the offline analysis applied on the previous datasets and the lower 

computational effort we used LDA classifiers in this application. Similar to the previous 

applications we exploited the concept of combination of several classifiers on this BCI. 

Features extracted from each channel were fed to a group of classifiers. The final decision 

was made based on the combination of the outputs. Three LDA classifiers for each channel 

were estimated (Left, Right, Forward vs. Relax).  

 

 

 

 

 

 

 

 

 

 

Figure 6.10: The idea of ensemble classification for different channel and decision making based voting 

Time-frequency features with combination of an ensemble LDA classifier were used for 

decision making. The command is extracted from all channels (except AF3 and AF4) each 

second. A boosting algorithm was implemented for the decision making section. 

6.5.5.1. Boosting 

Overtraining happens when more data is fed to the classifier than is needed to construct 

the classifier. It usually leads to decreasing the generalization accuracy for classifiers. In the 

boosting method, later classifiers focus on the samples that were misclassified by earlier 

classifiers and each classifier is weighted with the error that it made. Boosting is a popular 
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classifier for ensembling and it is unlikely to result in overtraining. The algorithm repeats in 

M iterations (Soria Frisch, 2012). 

Table I - Boosting algorithm 

1. Initialize example weights P = 1
QR , S = 1,… ,Q 

2. For m= 1 to M 

a. Learn a classifier UV using the current example weights 

b. Compute a weighted error estimate 

IHHV =
∑P 	1LL	S>XKHHIX.L$	XL1JJS-SIM	

∑ P
Y
47

 

 

c. Compute the current classifier weight  

ZV =
1

2
LK�	((1 − IHHV)/IHHV) 

 

d. For all correctly classified examples I: P 	← 	PI
[\] 

e. For all incorrectly classified examples I: P 	← 	PI
2\] 

f. Normalizes the weights ∑ P
Y
47 = 1 

 

3. For each test example 

a. Calculate the output of all classifiers ( U7 to UV) for the test sample 

b. Predict the class that has the largest sum of weights ZV 

 

6.6. Results  

6.6.1. Classification accuracy 

After the offline phase, we applied the trained classifiers during the online experiments. 

Training was repeated for 4 runs, each run containing 12 trials for three movement 

imaginations. An average classification accuracy of 79.06% was obtained. For the online test 

the average classification accuracy was 72.71%. Table 6.2 summarizes the average of error 

rate and accuracy of the classification in training and test sessions for the three subjects.  

Table 6.2: The average error rate using the test and the training data while applying different feature extraction 
techniques for S1. Also compiled are sensitivity, specificity, and Matthew’s correlation coefficient using the 
offline data. 

 Ensemble LDA 

 

Subjects/ 

Evaluation 

technique  

 

Sensitivity 

% 

 

Specificity 

% 

 

MCC 

 

Training Accuracy% 

(offline) 

 

Test Accuracy% 

(online) 

S1 84.09 72.88 0.604 77.62 76.45 

S2 76.00 76.00 0.520 78.51 64.57 

S3 78.43 75.59 0.580 81.05 77.04 

Average 79.50 74.82 0.568 79.06 72.71 
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As the table shows, averaged sensitivity, specificity and MCC values were maximized 

for offline commands by using the ensemble classifier. Figure 6.11 illustrates the average 

classification accuracy during the online test for each subject. Training was repeated for 4 

runs, each containing 12 trials for three movement imaginations. As can be seen, performance 

increased in the first three runs of the training phase for S2 and S3. The average classification 

accuracy is higher for all three subjects in this phase. During the online test, S1 and S3 show a 

positive trend. This may indicate that the interactive virtual reality had a positive effect on 

subjects' performance. 

 

Figure 6.11: Performance of S1, S2 and S3 in several runs of the offline and online experiment. The red line 

corresponds to the stop command and the green line shows the classification accuracy in average for move 

commands (Right, Left or Forward). The Black line demonstrates the average performance for all four classes. 

The classification accuracy follows a smooth graph. This can be the proof for the robustness of the proposed 

classification method. 

In the previous chapter the formula to measure the performance of a BCI system based 

on ITR was presented. Figure 6.12 depicts the theoretical ITR curves for three- and four-class 

BCIs and the empirical values of the ITR graph for this BCI application. For a four-class BCI 

problem, the maximum ITR in 95% classification accuracy can reach to 32 with maximum 

SNR. Empirically, in the avatar control online test, S3 achieved the highest ITR, amounting to 

15. 

Table 6.3: The average of information transfer rate in training and test session for three subjects. 

LDA  

Method 

ITR (Bit/min)  

      Training                      Test 

 

S1 

 

13 

 

11 

 

S2 

 

11 

 

9 

 

S3 

 

15 
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Figure 6.12: Theoretical information transfer rate for three and four class BCIs depicted by the blue and green 

curves, respectively. Circles show the empirical values from Table 6.3 for ITR and from Table 6.2 for accuracy. 

Red circles are the averaged values for the test runs and blue circles are the values for the training runs. 

6.6.2. An offline study 

Hitherto, it was unclear to what extent the accuracy of a BCI depends on the applied 

feature set and the classification approach. We applied an offline investigation on this dataset 

using all the methods suggested in this dissertation in order to evaluate the classification 

accuracies. The offline evaluation of different classifiers is reported for the training and test 

sessions for the three subjects. Figure 6.13 compares these methods with respect to average 

classification accuracy while applying different feature extraction and classification 

techniques.  

 

Figure 6.13: A general comparison between different integration methods using LDA, QDA and SVM classifiers 

and three different feature spaces extracted from the current dataset. 
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The MP method combined with LDA resulted in higher classification accuracy in 

comparison with band power and HOS features. In general Soft SVM with combination of 

fractal components shows stable and high classification accuracies. Both HOS features and 

power band features fed to ensemble SVM show lower performance; however, it varies over 

subjects. LDA has higher variance, similar to the previous application (Chapter 5) but its 

mean accuracy is comparable to the first group (soft SVM+ fractal components). 

6.7. Discussion 

In this project heuristic interaction techniques were developed that allow the user to 

freely control the robot or their avatar in the Second Life virtual environment by using mental 

activities. Systems are trained for some predefined movements. The training phase can be 

repeated until the desired classification accuracy is achieved. The simulated online 

implementation can help to improve the machine learning elements of the experiments.  

Control was accomplished by online processing of single-trial EEG signals which were 

recorded using the EPOC headset from Emotiv. This is one of the first times the latest BCI 

technology and web-based virtual reality technology and online gaming are merged together. 

Our proposed method used a commercial EEG cap to pick up brain signals, and translated 

them into commands that were relayed to control the virtual avatar in a simple gaming 

scenario. It can be combined with a real world environment too: turning on and off the 

computer and opening other web pages or answering the phone are potential applications. 

The quality of the recorded signal was lower than in the previous application. This can 

be due to the differences between recording systems, i.e., g.tec vs. Emotiv. A recent paper 

compared the performance of the Emotiv Epoc headset for P300 applications and a medical-

grade system, the ANT device. The results suggest that the Emotiv headset performs 

significantly worse than the medical device (Duvinage et al., 2013). 

We applied several criteria to evaluate our BCIs during the offline and online tests. The 

evaluation or comparison of the different BCI paradigms is not directly possible, because of 

enormous variety of factors that affected performance. For instance, the subjects participating 

in each experiment were not identical. However, the proposed evaluation methods like MCC 

and ITR can assess the system in a more advanced and general sense. In general, these 

principles can be applied to figure out which tasks or channels are optimal for conveying the 

desired message in a BCI setup. A long term study and more number of subjects are required 

to prove the generalization of the proposed methods. 



Chapter 7 

Conclusion and outlook 

 

 

7.1. Perspective  

The ultimate goal of the BCI system is to form a direct, reliable and robust 

communication channel between a human brain and a computer, bypassing the natural 

muscular and nervous pathways (McFarland, et al., 1988). Controlling a computer or 

communicating with external devices without error in daily situations purely by using 

thoughts seems yet a futuristic and fictional notion. Over the past four decades, several 

research groups worldwide have sought a reliable and robust methodology to realize the idea 

(Pfurtscheller et al., 1993) (Birbaumer et al., 2000) (Wolpaw, 2012). The vast research 

enthusiasm may enable us to reconnect the brain to a paralyzed limb or a robotic arm without 

surgery in order to add a new dimension and enhance the communication ability of humans 

(Blankertz et al., 2007) (Iturrate, et al., 2009). Such a possibility seemed remote when people 

originally started to apply noise like EEG signals from massive amplifier devices to run a 

binary control system with nearly random results (Berger, 1933)(Sanei, 2007). However the 

fast progress both in electromechanical engineering and machine learning science all over the 

world provoked the desire once again (Graimann et al, 2010). The original and still prevalent 

motivation for developing neural interfaces and neuro-prosthetics is to help disabled people 

and patients for rehabilitation and restoration of their lost functions (Allison, 2012). The very 

recent impetus behind developing BCIs is not only to help disabled individuals to recover or 

substitute their motor functions substitution, but also to provide a gaming modality to 

entertain healthy users (Brunner et al., 2011). We are witnessing certain technical trends that 

might affect drastically the fashion we interact with each other and also with our environment. 

Diverting the goal to design an easy wearable headset which remotely sends commands to an 

external device and offering the technology to the public for gaming and entertainment 

purposes opened up a new era of brain-machine interface research (Debener, 2012). 
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The proliferation of sophisticated communication and electronic devices may pave the 

way for a renaissance in brain computer interfacing (Wolpaw, 2012). In the near future BCIs 

may become publicly available machines which enhance the quality of life for everybody and 

in particular bring benefit to the elderly and disabled. 

7.2. General discussion 

 Brain computer interface is a fascinating theme of research. During my PhD research I 

pursued both hardware and software investigations in this scope. In our team two alternative 

electrodes for brain signal recording were developed; near infrared recording and capacitive 

sensors (see the publication list in my resume). However, presented results in the dissertation 

are related to the EEG signals recorded with commercial devices.  

I have proposed and evaluated several state-of-the-art algorithms for constructing the 

BCI elements in this dissertation. After building the theoretical foundation, I then designed 

prototype BCI scenarios. In essence, all proposed BCI paradigms have a uniform foundation 

which consists of imagination of movement as the main mental strategy. In the first 

application group (chapter 3 and 4) hand grasp control in both real and virtual environments 

were evaluated. In the gaming part (chapter 5 and 6), robot control and avatar control were 

tried.  

I investigated several mathematical and advanced signal processing techniques to find 

the appropriate set of features in order to distinguish imaginations of limb movements from 

each other and from the relaxation state of the brain. The combinations of these features were 

evaluated with well-known classification techniques such as LDA and SVM but in an 

ensemble scheme. The distinguished idea of ensemble classification was implemented for 

several applications and the evaluation showed a significant increase both in the accuracy and 

in the speed of the entire system over several datasets. Self-recorded EEG data were exploited 

to compare the proffered schemes and to evaluate the performance of the entire system. 

Nonlinear mathematical analyses have been applied to both offline and online BCI studies. 

With future refinement, this work can serve as a low-cost research tool that can be 

controlled by complex interfaces. Continued development yields to increase the range of 

movements the system can detect. I tried to critically evaluate the applied methods and the 

achieved results, thereby making clear whether the present approach should be further 

pursued, where the approach might be corrected etc. 
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7.3. Modifications 

Current BCI research strives for increased accuracy and enhanced information transfer 

rate. There are several ways to achieve this goal. However, meeting one challenge may raise 

other challenges. The following solutions can be considered: 

1- Long-term training of BCI users up to 300 hours to improve the classification 

accuracy 

2- Improving advanced signal processing and machine learning algorithms 

3- Extending the BCI system to multi classes 

4- Designing faster trial-based BCIs 

5- Applying invasive approaches for the recording of brain signals  

Essential modifications and developments in both software and hardware technologies are 

required in order to make the BCI a daily practical technology: 

Switch on/off strategy: In order to achieve a robust and reliable system on command, I 

suggest the closed eye strategy for more than 5s. Two characteristics, 1- no eye blink and 2- a 

strong alpha band power are measured to insure the command. This is a toggle command and 

is used to switch off the system. 

Error correction is an interesting feature that can be implemented in the BCI paradigm and 

helps to improve the accuracy and the robustness of the entire system. 

Since gaining BCI experience is a tedious, time consuming and error prone process, an easy to 

wear EEG cap is definitely preferred. A wireless connection is also very attractive because the 

wired system is more prone to noise. A comb shaped easy to wear EEG cap equipped with dry 

electrodes would be an ideal choice. 

Improvement in the speed of the BCI system (bit/min) and long-term validation of results are 

needed. BCI technology should be validated in long-term studies for stability and from this 

point of view it is yet in a rudimentary stage of development. 

The average classification accuracy for BCIs based on imagination of movement 

crossed the chance level, but is still far from being totally reliable. This fact limits the use of 

BCI in real-life without using robot intelligence. Error correction techniques based on mental 

task are not 100% accurate. It can be, however, an excellent option for gaming applications. A 
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solution can be network BCIs when more than one person would try to use a single BCI 

system simultaneously, by generalizing the idea of the ensemble decision making.  

7.4. Epilogue 

David H. Hubel, the Nobel Prize winner, in 1982 stated, “in short, the brain can be 

studied, just as the kidney can.” After around twenty years, integrating technology with our 

biological systems seems more like an inevitable progression but the human brain remains as 

a mystery. The medias sometimes claim that scientists can already read the human mind. It is 

to some extent true but mostly absurd at this stage of development. By considering the current 

technical achievements, we catch a glimpse of what the future might hold. It is possible now 

to decipher certain functions, for instance moving arms or feet, with rather satisfactory 

accuracy in some subjects. However reading what one’s thinking about is not possible … yet. 

If this happens, one can imagine numerous applications. I anticipate the day that each 

electronic device around us has an identification label and we will need a password to work 

with them through our brains. It would solve the current problem and establish the ultimate 

interface, but would also bring along lots of sophisticated issues. 

 

 

 

 

You never start completely from scratch! 

 



193 
 

References 
 

Adlakha A. 2002. Single trial EEG classification. Tech. Rep., Swiss Federal Institute of Technology. 2002. 

Allison B. Z., McFarland D. J., Schalk G., Zheng S. D., Jackson M. M., and Wolpaw J. R. 2008. Towards an 

independent brain-computer interface using steady state visual evoked potentials. Clin Neurophysiol. 2008, pp. 399-408. 

Allison Brendan Z. 2012. Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World 

Applications. s.l. : Springer, 2012. 

Alpaydin E. 2004. Introduction to Machine Learning. Cambridge, MA : The MIT Press, 2004. 

Altman D. G and Bland, J. M. 1994. Diagnostic tests. 1: Sensitivity and specificity. BMJ. 1994, vol. 308, no. 6943. 

Anderer A. 1999. Artifact processing in computerized analysis of sleep EEG - a review. Neuropsychobiolog. Sep 1999, vol. 

40, no.3, pp. 150-157. 

Argunsah A. O. and Cetin M. 2010. A brain-computer interface algorithm based on Hidden Markov models and 

dimensionality reduction. Signal Processing and Communications Applications Conference, IEEE 18th. 2010, pp. 93-96. 

Arndt C. 2001. Information measures, Information and its description in science and engineering. s.l. : Springer, 2001. 

Attwood H. L., and MacKay W. A. 1989. Essentials of Neurophysiology. Canada : B. C. Decker, Hamilton, 1989. 

Au Wagner James. 2008. The Making of Second Life. New York : Collins. ISBN978-0-06-135320-8, 2008. 

Baker K. S., Piriyapunyaporn T., and Cunnington R. 2012. Neural activity in readiness for incidental and explicitly timed 

actions Neuropsychologia. vol. 50, no. 5, pp. 715-22. 

Ball T., et al. 2004. Towards a brain-machine interface based on epicortical field potentials. Biomedical Engineering 

(Berlin). 2004, 49 (Suppl. 2), pp. 756-759. 

Ball T., et al. 2009. Signal quality of simultaneously recorded invasive and non-invasive EEG. Neuroimage. 2009, vol. 46, 

pp. 708-716. 

Barbati G., Porcaro C., Zappasodi F., Rossini P. M., and Tecchio F. 2004. Optimization of an independent component 

analysis approach for artifact identification and removal in magneto encephalographic signals. Clinical Neurophysiology. 

2004, pp. 1220-1232. 

Barlow H. B. 1958. Sensory Mechanisms, the Reduction of Redundancy, and Intelligence. The Mechanization of Thought 

Processes. 1958, pp. 537-559. National Physical Laboratory Symposium. 

Barlow J. S. 1986. Artifact processing (rejection and minimization) in EEG data processing. Handbook of 

Electroencephalography and Clinical Neurophysiology (Revised Series Ed.). Amsterdam : Elsevier, 1986, pp. 15-62. 

Bear Mark, and Paradiso M.  2007. Exploring the Brain. Neuroscience. 2007. 

Bell C. J. et al. 2008. Control of a humanoid robot by a noninvasive brain-computer interface in humans. Journal of Neural 

Engineering. 2008, vol 5, no. 2, pp. 214-220. 

Berg P., and Scherg M. 1994. A multiple source approach to the correction of eye artifacts. Electroenceph. Clinical 

Neurophysiology. 1994, pp. 229-241. 

Berg  P.,  and  Davies,  M. B. 1988.  Eyeblink-related  potentials.  Electroencephalography  and  Clinical  Neurophysiology 

vol. 69, pp.1-5 

Berger H. 1930. On the Electroencephalogram of Man. Journal fur Psychologie und Neurologie. 1930, vol. 40, pp. 60-179. 

Berger H. 1933. Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten. 1933, vol. 

99, no. 1, pp. 555-574. 



194 
 

Berger T. 2003. Living information theory: The 2002 Shannon Lecture. IEEE Information Theory Society Newsletter. March 

2003, vol. 53, no. 1. 

Bin G., Gao X., Yan Z., Hong B., and Gao S. 2009. An online multi-channel SSVEP-based brain computer interface using 

a canonical correlation analysis method. Joural of Neural Engineering. August 2009, vol. 6. 

BinAb R., Rani, M.S., bt.Mansor, W. 2009. Detection of eye blinks from EEG signals for home lighting system activation. 

ISMA '09. 6th International Symposium on Mechatronics and its Applications. March 2009, vol. 1, no. 4, pp. 23-26. 

Binnie C. D., Dekker E., Smit A. and Van der Linden G. 1982. Practical considerations in the positioning of EEG 

electrodes. Electroenceph. Clin. Neurophysiol. 1982, vol. 53, pp. 453-458. 

Birbaumer N., Kübler A., Ghanayim, N., Hinterberger T., Perelmouter J., Kaiser J., Iversen I., Kotchoubey B., 

Neumann N., Flor H. 2000. The Thought Translation Device (TTD) for Completely Paralyzed Patients. IEEE Transactions 

on Rehabilitation 2000, vol. 8, no. 2, pp. 190-193. 

Bishop C. M. 1995. Neural Networks for Pattern Recognition. Oxford : Oxford University Press, 1995. 

Blakely T, Miller K. J., Zanos S. P., Rao R. P., Ojemann J. G. Robust 2009. long-term control of an electrocorticographic 

brain-computer interface with fixed parameters. Neurosurg Focus. 2009. 

Blankertz et al. 2006. The Berlin brain-computer interface: EEG-based communication without subject training. IEEE 

Trans. on Rehabilitation Engineering. 2006, pp. 147-152. 

Blankertz B., Curio G. , Müller K. R. 2002. Classifying single trial EEG: towards brain computer interfacing. Adv. Neural 

Inf. Process. Syst. (NIPS 01). 2002, pp. 157-164. 

Blankertz B. , Dornhege G., Krauledat M., Müller K., and Curio G. 2007. The non-invasive Berlin Brain-Computer 

Interface: fast acquisition of effective performance in untrained subjects. NeuroImage. August 2007, vol. 37, pp. 539-550. 

Blume W. T., Kaibara M. 1999. Atlas of Pediatric Electroencephalography. Philadelphia:2nd ed. : Lippincott-Raven, 1999. 

Bogdanov A. V. 2008. Neuroinspired architecture for robust classifier fusion of multisensory imagery. IEEE Trans Geosci. 

Remore Sens. 2008, pp. 1467-1487. 

Boostani R., and Moradi M. 2004. A new approach in the BCI research based on fractal dimension as feature and Adaboost 

a classifier. Journal Neural Eng. 2004, pp. 212-217. 

Boser B. E., Guyon I. and Vapnik, V. 1992. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth 

Annual ACM Workshop on Computational Learning Theory. 1992, ACM, Madison, WI, pp. 144-152. 

Bougrain Laurent and Liang Nanying. 2009. Band-specific features improve Finger Flexion Prediction from ECoG. 

Jornadas Argentinas sobre Interfaces Cerebro Computadora, JAICC. 2009. 

Bradley, Ronald J. and Harris, Adron R. 2009. International review of neurobiology. London : Elsevier, 2009. vol. 86. 

Breiman L. 1998. Arcing classifiers. The Annals of Statistics. 1998, pp. 801-849. 

Breiman L. 2001. Random Forests. Machine Learning. 2001, p. 32. 

Brodu Nicolas, Lotte Fabien and Lécuyer Anatole. 2012. Exploring Two Novel Features for EEG-based Brain-Computer 

Interfaces: Multifractal Cumulants and Predictive Complexity. Neurocomputing 79. 2012, pp. 87-94. 

Brooks Jr., F. P.  1999. What's Real About Virtual Reality? IEEE Computer Graphics And Applications. 1999, vol. 19, no. 

6, 16. 

Brunner P., Bianchi L., Guger C., Cincotti F., and Schalk G. 2011. Current trends in hardware and software for brain–

computer interfaces (BCIs). Journal of Neural Eng. 2011, vol. 8, p. 025001 7 pages. 

Brutsch et al., 2011. VR for enhancement of robot-assisted. Journal of Rehabilitation Med. vol. 43. pp. 493-499, 2011. 

Bundhoo, V. 2005. Design of an artificial muscle actuated finger towards biomimetic prosthetic hands. IEEE. 2005. 



195 
 

Campos  Viola,  F.,  Thorne,  J.,  Edmonds,  B.,  Schneider,  T.,  Eichele,  T.,  and  Debener,  S.  2009.    Semi- automatic  

identification  of  independent  components  representing  EEG  artifact.  Clinical  Neurophysiology, vol. 120, pp. 868-877. 

Cannan James, and Huosheng Hu. 2010. Human machine interaction (HMI): A survey,. s.l. : Technical report:CES-508, 

2010. 

Carmena J . M., Lebdev M. A., Crist R.E., O'Doherty J. E., Santucci D. M., Dimitrov D. F., Patil P. G., Henriques C., 

and Nicolelis M. A. 2003. Learning to control a brain-machine interface for reaching and grasping by primates. PLOS 

Biology. 2003, vol. 1, no. 2, pp. 193-208. 

Carrol J. M. 1997. Human-Computer Interaction: Psychology as a Science of Design. Annu. Rev. Psyc. 1997, 48, pp. 61-83. 

Cauchy, Pradhan, et al. 2012. Higher-Order Spectrum in Understanding Nonlinearity in EEG Rhythms. Computational and 

Mathematical Methods in Medicine. 2012, Article ID 206857. 

Chang C. C., Lin C. J. 2001. LIBSVM: A Library for Support Vector Machines. [Online] 2001. 

www.csie.ntu.edu.tw/~cjlin/libsvm . 

Chao Z. C., Nagasaka, Y. and Fujii, N. 2010. Long-term asynchronous decoding of arm motion using electrocorticographic 

signals in monkeys . Frontiers Neuroengineering. 2010, vol. 3, no. 3. 

Chapin J. K. 1999. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature 

Neuroscience. 1999, vol. 2, pp. 664 -670. 

Cheron G., et al. 2007. Pure phase-locking of beta/gamma oscillation contributes to the N30 frontal component of 

somatosensory evoked potentials. BMC Neuroscience. 2007, pp. 8-75. 

Chomsky N. 2006. Language and mind. s.l. : Massachusetts Institute of Technology,Third edition, 2006. 

Clausen J. 2009. Man, machine and in between. Nature. 2009, vol. 457, pp. 1080-1081. 

Clausius Rudolf. 1865. Mechanical theory of heat. 1865. 

Coates Thomas D., et al. 2008. Neural Interfacing: Forging the Human-Machine Connection. s.l. : Morgan & Claypool 

Publishers series, 2008. 

Corralejo R., Hornero R. and Alvarez D. 2011. Feature selection using a genetic algorithm in a motor imagery-based Brain 

Computer Interface. Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the 

IEEE . 2011, pp. 7703-7706. 

Cortes C. and Vapnik V. 1995. Support vector networks. Machine Learning. 1995, vol. 20, pp. 1-25. 

Coyle, S., et al. 2004. On the suitability of near infrared (NIR) systems for next-generation brain-computer interfaces. 

Physiological Measures. 2004, vol. 25, no. 4, pp. 815-822. 

Coyle, Shirley, Ward, Tomás, Markham, Charles. 2010. Brain computer interfaces- A review. 2010. 

Crespo-Garcia M., Atienza M., LCantero J. 2008. Muscle artifact removal from human sleep EEG by using independent 

component analysis. AnnBiomed Eng. 2008, pp. 467-475. 

Croft R. J., Barry R. J. 2000. Removal of ocular artifact from EEG: a review. Neurophysiol Clin. Feb. 2000, vol. 30, no.1, 

pp. 5-19. 

Coles Michael G. H. 1989. Modern Mind-Brain Reading: Psychophysiology, Physiology and Cognition, Psychophisiology, 

vol. 26, no. 3, 1989. 

Curran E., Sykacek P., Stokes M., Roberts S. J., Penny. W., Johnsrude I. 2004. Cognitive tasks for driving a brain–

computer interfacing system: a pilot study. IEEE Trans Neural Syst Rehabil Eng. 2004, pp. 48-54. 

Daly I., Nasuto S.J. and Warwick K. 2012. Brain computer interface control via functional connectivity dynamics. Pattern 

Recognition. 2012, pp. 2123-2136. 

Dash M., and Liu H. 1997. Feature Selection for Classification. Intelligent Data Analysis. 1997, 1, pp. 131-156. 



196 
 

Dayan Peter, Abbott L. F. 2001. Theoretical neuroscience: Computational and Mathematical Modeling of Neural Systems. 

s.l. : Massachusetts Institute of Technology, 2001. 

Debener Stefan, Minow Falk, Emkes Reiner, Gandras Katharina, Maarten de Vos 2012. How about taking a low-cost, 

small, and wireless EEG for a walk? Psychophysiology, PMID 23013047. 2012, vol. 49, no. 11, pp. 1617-21. 

Delorme A., Makeig S., Sejnowski T. 2001. Automatic artifact rejection for EEG data using high-order statistics and 

independent component analysis. Proceedings of the 3rd International Workshop on ICA. Dec. 2001, pp. 457-462. 

Dennett D. C. 1992. Consciousness explained. s.l. : Back Bay Books, Lippincott Williams & Wilkins, 1992. 

Diez Pablo F., et al. 2009. Application of the Empirical Mode Decomposition to the Extraction of Features from EEG 

Signals for Mental Task Classification. 31st Annual International Conference of the IEEE EMBS. 2009, pp. 2579-2582. 

Diniz V. 2008. Adaptive Filtering. s.l. : Springer Science+Business Media, LLC, 2008. DOI: 10.1007/978-0-387-68606-6_1. 

Dispenza J. 2008. Evolve Your Brain: The Science of Changing Your Mind. 2008. 

Donoghue, John P. 2007. Assistive technology and robotic control using motor cortex ensemble-based neural interface 

systems in humans with tetraplegia. Journal of Physiol 579.3 , pp, 2007. 2007, vol. 579, no. 3, pp. 603-611. 

Dornhege G., Blankertz B., Curio G., and Muller K.-R. 2003. Increase information transfer rates in BCI by CSP extension 

to multiclass. Advances in Neural Inf. Proc. Sys. (NIPS03). 2003. 

Dornhege G., Millan J. del R., Hinter-berger T., McFarland D. J., Muller K.-R. 2007. Toward Brain-Computer 

Interfacing. s.l. : The MIT Press, Massachusetts Institute of Technology, 2007. 

Durka P. J., Dobieslaw, I. and and Blinowska, K. J. 2001. Stochastic time–frequency dictionaries for matching pursuit. 

IEEE Trans. Signal Process. March 2001, vol. 49, no. 3. 

Durka P. J. 2006. Time–frequency microstructure and statistical significance of ERD and ERS. Prog Brain Res, 159. 2006, 

159, pp. 121-133. 

Duvinage Matthieu, Castermans Thierry, Petieau Mathieu, Hoellinger Thomas,Guy Cheron, and Thierry Dutoit, 

2013. Performance of the Emotiv Epoc headset for P300-based applications Biomed Eng Online. 2013; vol. 12, no. 56. 

Elbert T., Ray W. J. Kowalik Z.J., Skinner J. E., Graf K. E. and Birbaumer N. 1994. Chaos and Physiology: 

Deterministic Chaos in Excitable Cell Assemblies. Phys.Rev. 74 1994, pp. 1-47. 

Erfanian A., and Mahmoudi B. 2005. Real-time ocular artifact suppression using recurrent neural network for electro-

encephalogram based brain–computer interface. Med. Biol. Eng. Comput. 2005, pp. 296-305. 

Esteller R., et al. 2001. A Comparison of Waveform Fractal Dimension Algorithms. IEEE Trans. On Circuits and Systems-I: 

Fundamental Theory and Application. February 2001, vol. 48, no. 2, pp. 177-183. 

Farwell L.A. and Donchin E. 1986. The brain detector: P300 in the detection of deception. Psychophysiology . 1986, vol. 

24, no. 434. 

Farwell L. A. and Donchin E. 1988. Talking off the top of your head: toward a mental prosthesis utilizing event-related 

brain potentials. Electroencephalography and Clinical. 1988. 

Fatourechi M., Bashashati A., Ward R. K., Birch G. E. 2007. EOG and EMG Artifacts in Brain Interface Systems: a 

Survey. Clinical Neurophysiology. March 2007, vol. 118, no. 3, pp. 480-494. 

Fausett Laurene. 2010. Fundamentals of Neural Networks: Architecture، Algorithms and Application. 2010? 

Fetz E. E. and Finicchio D. V. 1975. Correlations between activity of motor cortex cells and arm muscles during operantly 

conditioned response patterns. 1975, , vol. 23, no. 3, pp. 217-240. 

Fisher R. A. 1936. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics. 1936, vol. 7, no. 2, pp. 

179-188. 



197 
 

Fitzgibbon S. P., Powers D. M. W., Pope K. J., and Clark C. R. 2007. Removal of EEG Noise and Artifact Using Blind 

Source Separation. Clinical Neurophysiology. 2007, pp. 232-243. 

Flamary R., and Rakotomamonjy A. 2012. Decoding finger movements from ECoG signals using switching linear models. 

Frontiers in Neuroscience. 2012, vol 6, no. 29. 

Fleischl V., Marxow E. 1890. Mittheilung, betreffend die Physiologie der Hirnrinde. Central bl Physiol. 1890, 4, pp. 537- 

540. 

Frank, R.M., and Frishkoff, G. 2007. Automated protocol for evaluation of electromagnetic component  separation 

(APECS): Application of a framework for evaluating statistical methods of blink extraction from multichannel EEG. Clinical 

Neurophysiology 118, pp. 80-97. 

Fraser A. M. and Swinney H. L. 1986. Independent coordinates for strange attractors from mutual information. Physics. 

Review 1986, A 33, p. 1134. 

Friedman J. H. K. 1997. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge 

Discovery. 1997. 

Friedman J. H. 1989. Regularized Discriminant Analysis. Journal of the American Statistical Association (American 

Statistical Association). 1989, vol. 84, no. 405, pp. 165-175. 

Friman O., Volosyak I., and Gräser A. 2007. Multiple channel detection of steady-state visual evoked potentials for brain-

computer interfaces. IEEE Trans Bio-Med Eng. April 2007, vol. 54, pp. 742-750. 

Fukunaga K. 1990. Statistical Pattern Recognition. New York: : Academic, 2nd edition, 1990. 

Gao X., Xu D., Cheng M., Gao S. 2003. A BCI-based environmental controller for the motion-disabled. IEEE Trans Neural 

Syst Rehabil Eng. June 2003, vol. 11, pp. 137-140. 

Geng T., Dyson M., Tsui CS., Gan JQ..2007. A 3-class asynchronous BCI controlling a simulated mobile robot. Conf Proc 

IEEE Eng Med Biol. Soc. 2007, pp. 2524-7. 

Geng T., et al. 2008. A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks. 

Computational Intelligence and Neuroscience. 2008, pp. 1-5. 

Georgiev S., et al. 2009. EEG Fractal Dimension Measurement before and after Human Auditory Stimulation. Bio 

Automation. 2009, vol. 12, pp. 70-81. 

Gilden D., Thornton, T. and Mallown, M. 1995. 1/f Noise in Human Cognition. Science, 267. 1995, pp. 1837-1839. 

Gil-Gomez et al. 2011. Effectiveness of Wii balance board system for balance rehabilitation in patients with acquired brain 

injury. Journal of NeuroEngineering and Rehabilitation. 2011, vol. 8 no. 30. 

Goncharova I. I., McFarland D. J., Vaughan T. M. and Wolpaw J. R. 2003. EMG contamination of EEG: spectral and 

topographical characteristics. Clinical Neurophysiology. Sep. vol. 114, no.9, 2003, pp. 1580-1593. 

Gonzalez B., and Sanei, S. and and Chambers, J.,. 2003. Support vector machines for seizure detection. Proceedings of the 

IEEE ISSPIT. December 2003, pp. 126-129. 

Graimann B., Allison Brendan, Pfurtscheller, Gert. 2010. Brain-Computer Interfaces:Revolutionizing Human–Computer 

Interaction. s.l. : Springer-Verlag Berlin Heidelberg, 2010, 2010. 

Grandvalet Y. 2004. Bagging equalizes influence. Machine Learning. 2004, vol. 55, no. 3, pp. 251-270. 

Greb U. and Rusbridge M. G. 1988. The interpretation of the bispectrum and bicoherence for non-linear interactions of 

continuous spectra. Plasma Phys. Control. Fusion. 1988, vol. 30, no. 5, pp. 537-549. 

Greco A., Mammone N., Morabito F. M. , Versaci M. 2005. Semi-Automatic Artifact Rejection Procedure based on 

Kurtosis, Renyi’s Entropy and Independent Component Scalp Maps. World Academy of Science, Engineering and 

Technology. 2005, pp. 22-26. 



198 
 

Greiner M., Pfeiffer, D and and Smith, R. D. 2000. Principles and practical application of the receiver-operating 

characteristic analysis for diagnostic tests. Preventive Veterinary Medicine. 2000, vol. 45, pp. 23-41. 

Guger C., et al. 2009. How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Letter, 

462. Oct. 2009, pp. 94-98. 

Halder S., et al. 2013. Prediction of auditory and visual P300 brain-computer interface aptitude. PLoS ONE. 2013, vol. 8. 

Hartley R. V. L. 1928. Transmission of Information. Bell System Technical Journal. July 1928, p. 535. 

Hastie T., Tibshirani R., Friedman J. 2008. The Elements of Statistical Learning. 2008. 

Haufe S., Treder M. S., Gugler M. F., Sagebaum M., Curio G., Blankertz B. 2011. EEG potentials predict upcoming 

emergency brakings during simulated driving. Journal of neural engineering. 2011, vol. 8, no. 5. 

Haykin, Simon. 1996. Adaptive Filter Theory. s.l. : Prentice-Hall, Eaglewood Cliffs, 3rd edition, 1996. 

Haykin S., et al. 2007. New Directions in Statistical Signal Processing: From systems to brains. Cambridge, Massachusetts : 

The MIT Press, Massachusetts Institute of Technology,, 2007. 

Hazrati M. Kh. , Erfanian A. 2008. An On-line BCI for Control of Hand Grasping Sequence and Holding Using Adaptive 

Probabilistic Neural Network. 2008. 

Hazrati M. Kh., Subramanian V., Hofmann U. G. 2011. A Four-Class Brain Computer Interface for Robot Control. 

ISSNIP. 2011. 

Hazrati, M. Kh., and Erfanian A. 2008. An On-line BCI for Control of Hand Grasping Sequence and Holding Using 

Adaptive Probabilistic Neural Network. 2008, pp. 1009-12. 

Heussen, Yana, Ferdinand Binkofski, Jacob Jolij. 2010. The semantics of the lying face - An EEG Study. Internation 

Journal of Psychophysiology. Jan 2010, vol. 77, no. 3. 206. 

Higuchi T. 1988. Approach to an Irregular Time Series on the Basis of the Fractal Theory. Physica D: Nonlinear 

Phenomena,. 1988, vol. 31, pp. 277-283. 

Hinterberger et al. 2003. Brain-Computer Communication and Slow Cortical Potentials. TBME-00279. 2003. 

Ho T. K. 1988. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 

1988, vol. 20, no. 8, pp. 832-844. 

Hochberg Leigh R. 2012. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012, 

485, pp. 372-375. 

Hochberg L. R, et al. 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006, 

442, pp. 164-171. 

Howell, David. 2002. Statistical methods for Psychology. Duxbury. 2002, pp. 324-325. 

Huan, Liu and Motoda, Hiroshi. 2008. Computational methods of feature selection. s.l. : Taylor & Francis Group, LLC, 

2008. 

Huang. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series 

analysis. Proc. of the Royal Society London,. 1998, Ser. A, vol. 454, pp. 903-995. 

Hubel D. 1979. The Brain. Scientific American. 1979, vol. 241, no. 3, pp. 45-53. 

Hyvärinen A. 1999. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on 

Neural Networks. 1999, pp. 626-634. 

Iturrate, Inaki and Antelis, Javier, A. K. and Minguez, J. 2009. A Noninvasive Brain-Actuated Wheelchair Based on a 

P300. Neurophysiological Protocol and Automated Navigation. 2009. 



199 
 

Iwasaki, M, Kellinghaus C, Alexopoulos AV. 2005. Effects of eyelid closure, blinks, and eye movements on the 

electroencephalogram. Clinical Neurophysiology. 2005, pp. 878-885. 

Jackson, Andrew. 2012. Neuroscience: Brain-controlled robot grabs attention. Nature. 2012, 485, pp. 317-318. 

Jain A. K., and Chandrasekaran B. 1982. Dimensionality and sample size considerations in pattern recognition practice, 

Handbook of Statistics. 1982. 

James C. J., and Gibson O. J. 2003. Temporally constrained ICA: An application to artifact rejection in electromagnetic 

brain signal analysis. IEEE Trans. Biomed. Eng. 2003, pp. 1108-1116. 

Jian-Wu, Xu, et al. 2003. Recursive Renyi's entropy estimator for adaptive filtering. Proceedings of the 3rd IEEE 

International Symposium on Signal Processing and Information Technology. Dec. 2003, pp. 134-137. 

Johansen, J. W. and Sebel P. S. 2000. Development and clinical application of electroencephalographic bispectrum 

monitoring. Anesthesiology. No. 2000, vo. 93, no. 5, pp. 1336-1344. 

Jones, Kleim. 2008. Neuroplasticity. 2008. 

Joyce C. A., Gorodnitsky I. F. and Kutas M. 2004. Automatic removal of eye movement and blink artifacts from EEG data 

using blind component separation. Psychophysiology. 2004, pp. 313-325. 

Jung T-P., Makeig S, Humphries C, Lee T-W, Mckeown M J, Iragui V and Sejnowski T J. 2000. Removing 

electroencephalographic artifacts by blind source separation. Psychophysiology. 2000, pp. 163-78. 

Jung T-P., Humphries C., Lee M., Iragui V., Makeig S., Sejnowski T. 1998. Removing electroencephalographic artifacts: 

Comparison between ICA and PCA. IEEE International Workshop on Neural Networks for Signal Processing. 1998, pp. 63-

72.  

Kalcher J., Flotzinger D., Pfurtscheller G. 1993. Graz brain-computer interface: an EEG-based cursor control system. 

1993, pp. 1264-1265. 

Kaplan, Alexander Y. 2013. Adapting the P300-based brain-computer interface for gaming: a review. , IEEE Transactions 

on Computational Intelligence and AI in Games (Special Issue on Brain/Neuronal-Computer Games Interfaces and 

Interaction). 2013, in press. 

Karat, John,Vanderdonckt, Jean. 2010. Brain-Computer Interfaces: Applying our minds to Human-Computer Interaction. 

London  : Springer-Verlag, 2010. 

Kato P. M., Cole S. W., Bradlyn A. S., Pollock B. H. 2008. Pediatrics. A video game improves behavioral outcomes in 

adolescents and young adults with cancer: a randomized trial. 2008, vol. 122, no. 2, pp. 305-317. 

Kelly S. P., Lalor E. C., Reilly R. B., Foxe J. J. 2005. Visual spatial attention trackingusing high-density SSVEP data for 

independent brain-computer communication. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 

vol. 3, no. 2, pp. 172-178. 

Kempe L., 2010. Serious Games für die Gesundheit: Spielen für eine ernste Sache. Dtsch Arztebl. 2010, vol. 107, no. 38. 

Kennedy, P.R., Bakay, R.A.E., Moore, M.M., Adams,K., Gold waithe, J.,. 2000. Direct Control of a Computer from the 

Human Central Nervous System. IEEE Transactions on Rehabilitation Engineering. 2000, vol. 8, no. 2, pp. 198-202. 

Keren, A.S., Yuval-Greenberg, S., & Deouell, L.Y. 2010. Saccadic spike potentials in gamma-band EEG: Characterization, 

detection and suppression. NeuroImage vol. 49, pp: 2248-2263. 

Keshner, Emily A,. 2004. Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool?, 

Journal of Neuroengineering and rehabilitation. 2004, vol. 1, no. 8. 

Klass, DW. 1995. The continuing challenge of artifacts in the EEG. Journal of EEG Technology. 1995, pp. 239-269. 

Kobayashi, M., Musha, T. 1982. 1/f fluctuation of heart beat period. IEEE Transactions on Biomedical Engineering. 1982, 

29, pp. 456-457. 



200 
 

Kołodziej, Marcin, Majkowski, Andrzej and and Rak, Remigiusz J. 2011. A New Method of EEG Classification for BCI 

with Feature Extraction Based on Higher Order Statistics of Wavelet Components and Selection with Genetic Algorithms. 

ICANNGA'11 Proceedings of the 10th international conference on Adaptive and natural computing . 2011, pp. 280-289. 

Koprinska, Irena. 2009. Comparison of Feature Selection Methods for Classification of Brain-Computer Interface Data. 

Workshop on Advances and Issues in Biomedical Data Mining . 2009, pp. 41-50. 

Kornhuber H. H., and Deecke L. 1965. Changes in the brain potential in voluntary movements and passive movements in 

man: Readiness potential and reafferent potentials Pflugers Archiv fur die gesamte Physiologie, vol 284, no. 1.  

Krasner, S. 1990. The ubiquity of chaos. American Association for the Advancement of Science. 1990. 

Krepkiy, Roman. 2008. Brain-Computer interface: Design and implementation of an online BCI system for the control in 

gaming application an virtual limb. s.l. : VDM Verlag Dr Muller, 2008. 

Kronegg J., Voloshynovskiy S. and Pun T. 2005. Analysis of bit-rate definitions for Brain-Computer Interfaces. presented 

at Int. Conf. on Human-computer Interaction (HCI'05). 2005. 

Kronegg Julien, Voloshynovskiy Sviatoslav and Pun Thierry. 2005. Information-transfer rate modeling of EEG-based 

synchronized brain-computer interfaces. Technical Report 0503,. December 20 2005. http://vision.unige.ch/publications/. 

Krusienski Dean J., SellersEric W. and Cabestaing Francois. 2006. A comparison of classification techniques for the 

P300 Speller . Journal of Neural Engineering. December 2006, vol. 3, no. 4., pp. 299-305. 

Kübler A. , Neumann N. 2005. Brain-computer interfaces- the key for the conscious brain locked into a paralyzed body. 

Progress in Brain Research. 2005, pp. 513-525. 

Kuebler A. , Kotchoubey B., Kaiser J., Wolpaw J. R., and Birbaumer N. 2001. Brain-computer communication: 

unlocking the locked in. Psychology Bulletin. 2001, pp. 358-375. 

Kuncheva, L. I. 2004. Combining pattern classifiers: Methods and algorithms. Hoboken, New Jersey : Wiley, 2004. 

Lagerlund T. D., Sharbrough F. W. and and Busacker N. E. 1997. Spatial filtering of multichannel 

electroencephalographic recordings through principal component analysis by singular value decomposition. J. Clin. 

Neurophysiol. 1997, vol. 14, no. 1, pp. 73-82. 

Lange et al. 2011. PrimeSense camera and game for upper extremity function. 2011. 

Lawrence N. D., Herbrich R. 2001. A sparse Bayesian compression scheme - the informative vector machine. Neural 

Information Processing Systems Workshop on Kernel Methods,. Dec. 2001. 

Lebdev M. A., and Nicolelis, M. A. L. 2006. Brain-Machine Interfaces: past, present and future. Trends in Neuroscience. 

2006, vol. 29, no. 9, pp. 536-545. 

Leuthardt E. C., et al. 2004. Brain–computer interface using electrocorticographic signals in humans. Journal of Neural 

Engineering. 2004, pp. 63-71. 

LeVan P., Urrestarazu E. and Gotman J. 2006. A system for automatic artifact removal in ictal scalp EEG based on 

independent component analysis and Bayesian classification. Clinical Neurophysiology. 2006, pp. 912-927. 

Liang Yizeng and Xu Qing-Song. 2011. Support vector machines and their application in chemistry and biochemistry. s.l. : 

CRC press, 2011. 

Liu Hailong, Wang Jue and Zheng Chongxun. 2005. Using Self-organizing Map for Mental Tasks Classification in Brain-

Computer Interface. Advances in Neural Networks – ISNN 2005 , Lecture Notes in Computer Science. 2005, vol. 3497, pp. pp 

327-332. 

Liu, Y., Zhou, Z., and Hu, D. 2011. Gaze independent brain-computer speller with covert visual search tasks. Clinical 

Neurophysiology 122, pp. 1127-1136 

LooAlfred W. 2003. The future of peer-to-peer computing. Commun. ACM 46. September 9, 2003, pp. 56-61. 

Loong T. 2003. Understanding sensitivity and specificity with the right side of the brain. BMJ 327 . 2003, 7417, pp. 716-719. 



201 
 

Lotte F., Congedo M., Lécuyer A., Lamarche F., Arnaldi B. 2007. A review of classification algorithms for EEG-based 

brain-computer interfaces. J Neural Eng. 4 2, 2007, pp. R1-R13. 

Lutz H. Hamel. 2009. Knowledge discovery with support vector machines. s.l. : John Wiley& Sons, 2009. 

Lytton William W. 2002. From Computer to Brain: Foundations of Computational Neuroscience. New York Inc., : 

Springer-Verlag, 2002. 

Makeig S., Bell A. J., Jung T-P, and Sejnowski T. J. 1996. Independent component analysis of Electroencephalographic 

data. Advances in Neural Information Processing Systems. 1996, pp. 145-151. 

Makeig Scott. 1993. Auditory Event-Related Dynamics of the EEG Spectrum and Effects of Exposure to Tones. 

Electroencephalography and Clinical Neurophysiology. 1993, vol. 86, pp. 283-293. 

Mallat S. G. and Zhang, Z. 1993. Matching Pursuits with Time-Frequency Dictionaries. IEEE Transactions on Signal 

Processing. December 1993, pp. 3397-3415. 

Mandelbrot B. B. 1982. The fractal Geometry of Nature. New York : Freeman, 1982. 

Mandelbrot B.B. and and Van Ness J. W. 1968. Self-affine fractals and fractal dimension. SIAM Rev., 10. 1968, pp. 422-

436. 

Manocha, S., and Girolami M. A. 2007. An empirical analysis of the probabilistic k-nearest neighbor classifier. Pattern 

Recognition Letters. Oct. vol. 28, no. 13, 2007, pp. 1818-1824. 

Mason S. G. , Bashashati A., Fatourechi M., Navarro K. F., Birch G. E. 2005. A Comprehensive Survey of Brain 

Interface Technology Designs. Annals of Biomedical Engineering. 2005. 

Mason S. G. andBirch G. E. 2000. A brain-controlled switch for asynchronous control applications. IEEE Transactions on 

Biomedical Engineering,. 2000. 

Mason S. G., Kronegg J., Huggins J., Fatourechi M., Navarro K., Birch G. E. 2006. valuating the performance of self-

paced brain computer interface technology. 2006. 

Matsuoka, Yoky and P. A. and OH., M. 2006. On the design of robotic hands for brain machine interface. 2006. 

McFarland et al. 1997. Design and operation of an EEG-based brain-computer interface with digital signal processing 

technology. Behav. Res. Meth. Inst. Comp. 1997, vol. 29, pp. 337-345. 

McFarland D. J., Anderson C. W., Muller K.-R., Schloegl A., and Krusienski D. J. 2006. BCI meeting 2005-workshop 

on BCI signal processing: feature extraction and translation. IEEE Transactions on Neural Systems and Rehabilitation 

Engineering. 14 2006, pp. 135-138. 

McFarland D. J., McCane L. M., David S. V., and Wolpaw J. R. 1997. Spatial filter selection for EEG-based 

communication. Electroenceph. Clin. Neurophysiol. Sept. 1997, vol. 103, no. 3, pp. 386-394. 

McFarland D. J., Sarnacki W. A., Vaughan T. M. and Wolpaw J. R. 2006. Brain-computer interface (BCI) operation: 

signal and noise during early training sessions . Clinical Neurophysiology. Jan. vol. 116, no.1, 2006, pp. 56-62. 

McFarland D, et al. 2000. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 

2000, vol. 12, no. 3, pp. 177-186. 

McFarland D. J., McCane, L. M. and and Wolpaw J. R. 1988. EEG-Based communication and control: short-term role of 

feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering. March 1988, vol. 6, no. 1, pp. 7-11. 

McFarland D. J. and Krusienski D. ,W. S. and Wolpaw J. R. 2008. Emulation of computer mouse control with a 

noninvasive brain computer interface. 2008. 

McFarland Dennis J., Sarnacki William A., and Wolpaw Jonathan R. 2003. Brain computer interface (BCI) operation: 

optimizing information transfer rates. Biological Psychology 63. 2003, pp. 237-251. 

Mehring C. and Ball T. 2003. Decoding of movement direction from electrocorticographic (ECoG) recordings in human 

sensorimotor cortex - a potential basis for a brain-machine interface. Ladislav Tauc Conference in Neurobiology. 2003, 49. 



202 
 

Meinicke P, Kaper M., Hoppe F., Heumann M., Ritter H. 2003. Improving transfer rates in brain computer interfacing: a 

case study. 2003, pp. 1131-1138. 

Mendel J. M. 1991. Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results 

and some applications. Proceedings of the IEEE. 1991, vol. 79, no. 3, pp. 278-305. 

Meyer D., Leisch F., andHornik K. 2003. The support vector machine under test. Neurocomputing. Sept. vol. 55, no. 1-2, 

2003, pp. 169-186. 

Mika S., Smola A. J. and Schölkopf B. 2001. An improved training algorithm for kernel fisher discriminants. In 

Proceedings AISTATS, Morgan Kaufmann. 2001. 

Mika Sebastian, Rätsch Gunnar and Müller Klaus-Robert. 2001. A Mathematical Programming Approach to the Kernel 

Fisher Algorithm. 2001. 

Millan J. R., Renkens F., Mourino J., and Gerstner W. 2004. Noninvasive brain-actuated control of a mobile robot by 

human EEG. IEEE Transactions on Biomedical Engineering. 2004, vol. 51, no. 6, pp. 1026-33. 

Molina G.G., Tsoneva T. and Nijholt A. 2009. Emotional brain-computer interfaces. 3rd International Conference on 

Affective Computing and Intelligent Interaction and Workshops, ACII 2009. Sep. 2009, pp. 1-9. 

Mondada F., Bonani M., Raemy X., Pugh J., Cianci C., Klaptocz A., Magnenat S., Zufferey J. C., Floreano D., and 

Martinoli A. 2009. The e-puck, a Robot Designed for Education in Engineering. Proceedings of the 9th Conference on 

Autonomous Robot Systems and Competitions. 2009, vol. 1, pp. 59-65. 

Moore-Jackson M. M., Mason S. G., and Birch G. E. 2005. Analyzing Trends in Brain Interface Technology: A Method to 

Compare Studies. Annals of Biomedical Engineering. 2005. 

Müller K. R., Anderson C. W., and Birch G. E. 2003. Linear and nonlinear methods for brain-computer interfaces. IEEE 

Trans. on Rehabilitation Engineering. 2003, pp. 165-169. 

Münßinger, J. I., et al. 2010. Brain Painting: first evaluation of a new brain-computer interface application with ALS-

patients and healthy volunteers. Frontiers in Neuroscience. 2010, vol.4, no. 182, pp. 1-11. 

Naeem, M, et al. 2006. Separability of four-class motor imagery data using independent component analysis. Journal of 

Neur Eng. March 2006, vol 3, pp. 208-216. 

NaitAli A. 2009. Advanced signal processing. Berlin Heidelberg : Springer-Verlag, 2009. 

Ng S.C., and Raveendran P. 2008. Removal of EOG Artifacts Using ICA Regression Method. 2008, pp. 226-229. 

Nicolas-Alonso, Luis Fernando and Gomez-Gil, Jaime. 2012. Brain Computer Interfaces, a Review. Sensors. 2012, vol. 

12, pp. 1211-1279. 

Nicolelis M. A. L. 2001. Actions from thoughts. Nature 2001, vol. 409, pp. 403-407 . 

Niedermeyer E., and Lopes da Silva F. H. 1999. Electroencephalography: Basic principles, clinical applications and 

related fields. Baltimore, MD,  : Williams and Wilkins, 1999. 

Nijboer. 2008. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol. 

119(8) 2008, pp. 1909-1916. 

Nunez P. L., Srinivasan R. 1981. Electric fields of the brain: The neurophysics of EEG. s.l. : Oxford University Press, 1981. 

Ochoa, C.J., Polich, J. 2000. P300 and blink instructions. Clinical Neurophysiology 2000. vol. 111, pp. 93-98. 

O’Doherty Joseph E. et al., 2011. Active tactile exploration using a brain–machine–brain interface. Nature. Nov. 2011, 479, 

pp. 228-231. 

O’Doherty Joseph E. , Lebedev Mikhail A., Ifft Peter J., Zhuang Katie Z., Shokur Solaiman, Bleuler Hannes, Miguel 

Nicolelis A. L. 2011. Active tactile exploration using a brain–machine–brain interface. Nature letter. 2011, 10489. 



203 
 

Obermaier, Bernhard , Neuper Christa, Guger Christoph, and Pfurtscheller Gert. 2001. Information Transfer Rate in a 

Five-Classes Brain–Computer Interface. IEEE Transactions on neural systems and rehabilitation. September 2001, vol. 9, 

no. 3, pp. 283-287. 

O'Doherty J. E., Lebdev M. A., Hanson T. L., Fitzsimmons N. A., Nicolelis M. A. L. 2009. A brain-machine interface 

instructed by direct intracortical microstimulation. Frontiers in Integrative Neuroscience. 2009, vol. 3, no. 20. 

Onton J., Makeig S. 2006. Information-based modeling of event-related brain dynamics. Prog Brain Res. 2006, pp. 99-134. 

Opitz D. and Maclin R.  1999. Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research 

11. 1999, pp. 169-198. 

Oskoei, M. A., Gan, J. Q., and Huosheng Hu 2009. "Adaptive schemes applied to online SVM for BCI data 

classification," Engineering in Medicine and Biology Society, IEEE EMBS, 2009, pp: 2600-2603. 

Oung, S., Pohl, B. M. and U. G. Hofmann. 2012. Preliminary Design of a Tendon-Based Anthropomorphic Robotic Hand. 

BMT, 2012. 

Palmini, Andre. 2006. The concept of the epileptogenic zone: a modern look at Penfield and Jasper’s views on the role of 

interictal spikes. Epileptic Disorders. 2006, 8, pp. 10-15. 

Parasuraman Raja, Rizzo Matthew. 2007. Neuroergodics: The brain at work. s.l. : Oxford university press, 2007. 

Park Hyung-Min and Oh Sang-Hoon , and Lee Soo-Young. 2002. On adaptive noise cancelling based on independent 

component analysis. Electronics Letters. 2002, vol. 38, no. 15, pp. 832-833 . 

Pedregosa F. et al., .Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011 

 
Peng H, Long F., and Din Ch. 2005. Feature selection based on mutual information: criteria of max-dependency, max-

relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005, vol. 27, no. 8, pp. 

1226-1238. 

Pereda E., et al. 1998. Non-linear behavior of human EEG: fractal exponent versus correlation dimension in awake and 

sleep stages. Neuroscience Letter. 1998, 250, pp. 91-94. 

Petropulu A. P. 2000. Higher-Order Spectral Analysis. [book auth.] Boca Raton Ed. Joseph D. Bronzino. The Biomedical 

Engineering Handbook Second Edition. s.l. : CRC Press LLC, 2000. 

Pfurtscheler G. 2003. "Thought" – Control of Functional Electrical Stimulation to Restore Hand Grasp in a Patient with 

Tetraplegia. Neuroscience Letters. 2003, vol. 351, pp. 33-36. 

Pfurtscheller G. Neuper C., Flotzinger D., and Pregenzer M. 1997. EEG-based discrimination between imagination of 

right and left hand movement. Electroencephalography and Clinical Neurophysiology. 1997, vol. 103, pp. 642-651. 

Pfurtscheller G, and  Neuper C. 2001. Motor Imagery and Direct Brain– Computer Communication. IEEE Proc.,, pp. , Jul. 

2001. Jul. vol. 89, no.7, 2001, pp. 1123-1134. 

Pfurtscheller G. , Flotzinger Doris, Kalcher Joachim. 1993. Brain-Computer Interface—a new communication device for 

handicapped persons. Journal of Microcomputer Applications. 1993, pp. 293-299. 

Pfurtscheller G, et al. 2000. Brain oscillations control hand orthosis in a tetraplegic. Neuroscience Letters. 2000, vol. 292, 

no. 3, pp. 211-214. 

Pfurtscheller G, et al. 2010. The hybrid BCI Front. Frontiers Neuroscience. 2010, vol. 4, no. 42. 

Pfurtscheller G., and Lopes da Silva, F. H. 1999. Event related EEG/EMG synchronization and desynchronizations: Basic 

principals. Invented review in clinical neurophysiology. 1999, 110, pp. 1842-1857. 

Pfurtscheller G. 1992. Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. 

Electroenceph. clin. Neurophysiol. 1992, vol. 83, no.4, pp. 62-69. 



204 
 

Pfurtscheller G.,and Neuper C. 2006. Future prospects of ERD/ERS in the context of brain–computer interface (BCI) 

developments. Progress in Brain Research. 2006, vol 159, pp. 433-437. 

Pham, T. T. H., Croft, R. J., Cadusch, P. J., and Barry, R. J. 2011.  A test of four EOG correction methods using an 

improved validation technique. International Journal of Psychophysiology 79:203-210 

Phothisonothai M. and and Nakagawa M. 2007. Fractal-Based EEG Data Analysis of Body Parts Movement Imagery 

Tasks. J. Physiol. Science. August 2007, vol. 57, no. 4, pp. 217-226. 

Pierce J. R. 1980. An Introduction to Information Theory. Dover, New York. 1980, pp. 145-165. 

Pistohl T., Ball T., Schulze-Bonhage A., Aertsen A., Mehring C. 2008. Prediction of arm movement trajectories from 

ECoG-recordings in humans. Journal of Neuroscience Methods. 2008, vol. 167, no. 1, pp. 105-114. 

Plöchl M, Ossandón JP, König P. 2012. Combining EEG and eye tracking: identification, characterization, and correction 

of eye movement artifacts in electroencephalographic data. Front Hum Neuroscience. 6:278, 2012. 

Poree F., et al. 2006. Blind source separation for ambulatory sleep recording. IEEE Trans. InformationTechnol. Biomed. 

2006, vol. 10 no. 2, pp. 293-301. 

Principe Jose C. 2010. Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives. New York : Springer, 

2010. 

Qian S. and Chen D. 1996. Joint Time-Frequency Analysis: Methods and Applications. s.l. : Prentice-Hall, 1996. 

Rabin et al. 2011. Integrative rehabilitation of eldery stroke survivors. 2011. 

Rakotomamonjy A., Guigue V., Mallet G., and Alvarado V. 2005. Ensemble of svms for improving brain computer 

interface p300 speller performances. International Conference on Artificial Neural Networks. 2005. 

Rakotomamonjy A. 2003. Variable selection using SVM-based criteria. Journal of Machine Learning Research. 2003, vol. 

3, pp. 1357-1370. 

Ramoser H., Muller-Gerking J. and Pfurtscheller G. 2000. Optimal Spatial Filtering of Single Trial EEG during Imagined 

Hand Movement. IEEE Trans. Rehab. Eng. Dec. vol. 8, no.4, 2000, pp. 441-446. 

Rapp P. E., et al. 1993. Filtered noise can mimic low-dimensional chaotic attractors. Physics Rev. E; 47. 1993, pp. 2289-

2297. 

Raudys S. J. and Jain, A. K. 1991. Small sample size effects in statistical pattern recognition: Recommendations for 

practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991, vol. 13. no. 3, pp. 252-264. 

Renard Y., et al. 2010. OpenViBE: an open-source software platform to design, test and use brain–computer interfaces in 

real and virtual environments. Presence Teleoperators Virtual Environment. 2010. 

Renyi A. 1960. On measures of entropy and information. 1960, p. 547. 

Rodgers J. L., Nicewander W. A. 1988. Thirteen ways to look at the correlation coefficient. The American Statistician. 

February 1988, vol. 42, no. 1, pp. 59-66. 

Romero, S, Mañanas M. A. and Barbanoj M. J. 2008. A comparative study of automatic techniques for ocular artifact 

reduction in spontaneous EEG signals based on clinical target variables: A simulation case. Comput. Biol. Med. 2008, pp. 348 

-360. 

Rosenbaum M., Raz D. Denial. locus of control and depression among physically disabled and nondisabled men. 

Psychodynamics and Psychopathology. vol. 33, no. 3, pp. 672-676. 

Rothwell J. C. 2001. First studies of the organization of the human motor cortex. [book auth.] Eds. M. L. Latash and V. M. 

Zatisiorsky. Classics in Movement Science. Champaign, IL : Human Kinetics, 2001, pp. 273-288. 

Sandlund M., McDonough S., Häger-Ross C. 2009. Interactive computer play in rehabilitation of children with 

sensorimotor disorders: a systematic review. Dev Med Child Neurol. Epub, March 2009, vol. 51, no. 3, pp. 173-179. 



205 
 

Sanei Saeid and Chambers J. A. 2007. EEG signal processing. s.l. : John Wiley & Sons Ltd., 2007. 

Scarabino T., Salvolini U., Di Salle F., Duver H. 2003. Atlas of morphology and functional anatomy of the brain. s.l. : 

Springer, 2003. 

Schalk G., Kubanek, J., Miller, K.J., Anderson, N.R., Leuthardt, E.C., Ojemann, J.G., Limbrick, D., Moran, D.W., 

Gerhardt, L.A., and Wolpaw J. R. 2007. Decoding Two-Dimensional Movement Trajectories Using Electrocortico-graphic 

Signals in Humans. Journal of Neural Enginering. 2007, 4, pp. 264-275. 

Schalk G., Leuthardt E. C. 2011. Brain-computer interfaces using electrocorticographic signals. IEEE Rev Biomed Eng. 

2011, vol. 4, pp. 140-154. 

Schalk G., Mellinger J. 2010. A Practical Guide to Brain–Computer Interfacing with BCI2000. 1st edition, Berlin : 

Springer, 2010. 

Schalk G. 2010. Can electrocorticography (ECoG) support robust and powerful brain–computer interfaces? Frontiers in 

Neuroengineering. June 2010, vol. 3, no. 9. 

Scherer R., Müller G. R., Neuper C., Graimann B., and Pfurtscheller G. 2004. An asynchronously controlled EEG-based 

virtual keyboard: improvement of the spelling rate. IEEE Trans. Biomed. Eng. Jun. 2004, pp. 979-984. 

Schlogl A. et al. 2002. Estimating the mutual information of an EEG-based brain-computer interface. Biomed Tech. 2002, 

pp. 3-8. 

Schlogl A, Lee F., Bischof H., and Pfurtscheller G. 2005. Characterization of four-class motor imagery EEG data for the 

BCI-competition. Journal of Neural Engineering. 2005. 

Schoelg A, Neuper C., Pfurtscheller G. 2002. Estimating the Mutual Information of an EEG-based Brain-Computer 

Interface. BioMed technique. 2002, vol. 47, pp. 3-8. 

Schopflocher T. P., and Sullivan P. J., 2005. The Relationship between Skewness and Kurtosis of a diffusing Scalar, 

Boundary-Layer Meteorol. vol 115, no. 3 pp. 341-358. 

Schouenborg Jens, Garwicz Martin, Danielsen Nils. 2011. Brain Machine Interfaces: Implications for Science, Clinical 

Practice and society, Elsevier, 2011. 

Schuler T., Brutsch K., Muller R., Hvan Hedel U. J., Meyer-Heim A. 2011. Virtual realities as motivational tools for 

robotic assisted gait training in children: A surface electromyography study. Neuro Rehabilitation. 2011, vol. 28, no. 4, pp. 

401-411. 

Schwartz A. B., Taylor, D. M., and Helms Tillery, S. I.  2001. Extraction Algorithms for cortical control of arm 

prosthetics. Current Opinions in Neurobiology. 2001, 11, pp. 701-707. 

Schwartz A.B. 2007. Cortical Neural Prosthetics. Annual Review of Neuroscience. 2007, 27, pp. 487-507. 

Semlitsch H. V., Anderer P. 1986. A solution for reliable and valid reduction of Ocular Artefacts, applied to the P300 ERP. 

Psychophisiolohgy. 1986, pp. 695-703. 

Sepulveda F., Meckes M. and Conway B. A. 2004. Cluster separation Index suggests usefulness of EEG non-motor 

channels in detecting wrist movement direction intention. 2004, pp. 943-947. 

Sethi N., Sethi P., Torgovnick J., Arsura E. 2007. Physiological and non-physiological EEG artifacts. The Internet Journal 

of Neuromonitoring. 2007. 

Shannon and Weaver. 1963. The mathematical theory of communication. UrbanaIL: Univ of Ill Press. 1963. 

Shannon C. E. 1948. A Mathematical Theory of Communication. Bell Syst. Tech. J. July and October 1948, vol. 27, pp. 379-

423, 623-656. 

Shawe-Taylor J., and Cristanini N. 2000. An introduction to Support Vector Machine. Cambridge : Cambridge University 

Press, 2000. 

Shibasaki H., and Hallett M. 2006. What is the Bereitschaftspotential? Clinical Neurophysiology. vol. 117. pp: 2341-2356. 



206 
 

Shoaie Shirehjini Z. Bagheri Shouraki S. Esmailee M. 2009. Variant combination of Multiple Classifiers Methods for 

Classification the EEG signals in Brain-Computer Interface. s.l. : Springer, 2009, Vol. 9, 59, pp. 477-484. 

Shoker L., Sanei S. and Chambers J. 2005. Artifact removal from electroencephalograms using a hybrid BSS-SVM 

algorithm. IEEE Signal Process. Lett. October 2005, vol.12, no. 10. 

Shoker L., Sanei S. and Sumich A. 2005. Distinguishing between left and right finger movement from EEG using SVM. 

Proceedings of the IEEE EMBS. September 2005, pp. 5420-5423. 

Silbert P. L., Radhakrishnan K., Johnson J., and Class D. W. 1995. The significance of the phi rhythm. Electroenceph. 

Clin. Neurophysiol. 1995, vol. 95, pp. 71-76. 

Society of Neuroscience. 2008. Brain facts: A primer on the brain and nervous system. 2008. 

Soria Frisch Aureli. 2012. A critical review on the usage of ensembles for BCI. [book auth.] Brendan Z. Allison. Towards 

Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications. Berlin,New York : 

Springer, 2012, pp. 41-65. 

Spüler 2012. Adaptive SVM-based classification increases performance of a MEG-based BCI, 2012 

Steinwart I., Christmann A. 2008. Support vector machines. Springer 2008. 

Stern, J. A., Walrath, L.C., and Goldstein, R. 1984. The endogenous eyeblink. Psychophysiology vol. no. 21, pp. 22-33 

Stern J. M. and Engel J. 2004. An Atlas of EEG Patterns. Philadelphia: Lippincott : Williams & Wilkins, 2004. 

Sun Shiliang, Zhang Changshui and Zhang Dan. 2007. An experimental evaluation of ensemble methods for EEG signal 

classification, . Elsevier, Pattern recognition letters. 2007. 

Syed A. 2012. Flex Sensor Based Robotic Arm Controller Using Micro Controller. Journal of Software Engineering and 

Applications. 2012, vol. 5, pp. 364-366. 

Tangermann Michael, et al. 2011. Data Driven Neuroergonomic Optimization of BCI Stimuli. Pattern Analysis Statistical 

Modelling & Computational Learning, . 2011. 

Tatum W. O., Dworetzky B., Schomer D. 2011. Artifact and Recording Concepts in EEG. Journal Clin Neurophysiol. 

2011, pp. 252-263. 

Taylor D. M., Helms Tillery  S. I., and Schwartz A. B. 2002. Direct cortical control of 3D neuroprosthetic devices. 

Science. 2002, vol. 296, pp. 1829-1832. 

Theiler J. and Rapp P. 1996. Re-examination of the evidence for low-dimensional, nonlinear structure in the human 

electroencephalogram. Electroenceph. clin. Neurophysiologty. 1996, vol. 98, pp. 213-222. 

Thomas D., Coates Jr. 2008. Neural Interfacing: Forging the Human-Machine Connection. s.l. : Morgan & Claypool 

Publishers series, 2008. 

Tipping M. 2001. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research. Sept. 

vol. 1, 2001, pp. 211-244. 

Tomasello M. 2008. Origins of Human Communication. s.l. : Massachusetts Institute of Technology, 2008. 

Torrance Steve. 1984. The mind and the machine, philosophical aspects of artificial intelligence. s.l. : Elis Horwood series 

Artificial Intelligence, 1984. 

Torrance S., Horwood E. 1984. The mind and the machine, philosophical aspects of artificial intelligence. s.l. : series 

Artificial Intelligence, 1984. 

Touw W. G. and Bayjanov J. R. 2012. Data mining in the Life Sciences with Random Forest: a walk in the park or lost in 

the jungle. Brief. Bioinformatics. 2012. 



207 
 

Townsend G., Graimann B. and Pfurtscheller G. 2006. A comparison of common spatial patterns with complex band 

power features in a four-class BCI experiment. IEEE Transactions on Biomedical Engineering. 2006, vol. 53, no. 4, pp. 642-

651. 

Townsend G., et al. 2010. A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond 

rows and columns. Clinical Neurophysiology. 2010, vol. 121, no. 7, pp. 1109-1120. 

Turing, Alan M. 1950. Computing machinery and intelligence. Mind. 1950, pp. 433-460. 

Vallabhaneni A., Wang T., and He B. 2005. Brain-Computer interface. Neural engineering, 

bioelectricengineering,Springer. 2005, p. 85:121. 

Vansteensel M. J., et al. 2010. Brain-computer interfacing based on cognitive control. Annals of Neurology. vol. 67, no, 6. 

Vapnik, V. 1999. The nature of statistical learning theory . New York : springer, 1999. 

Vaughan T. M., Heetderks W. J., Trejo L. J., Rymer W. Z., Weinrich M., Moore M. M., Kubler A., Dobkin B. H., 

Birbaumer N., Donchin E., Wolpaw E. W. and Wolpaw J. R. 2003. Brain-computer interface technology: a review of the 

Second International Meeting”, . IEEE Trans. Neural Syst. Rehabil. Eng. 11 2, 2003, pp. 94-109. 

Velliste M., Perel S., Spalding M. C., Witford A. S., and Schwartz A. B. 2008. Cortical control of a prosthetic arm for 

self-feeding. Nature. 2008, vol. 453, no. 7198, pp. 1093-1101. 

Verleger R. 1991. The instruction to refrain from blinking affects auditory P3 and N1 amplitudes. Electroencephalogr. Clin. 

Neurophysiol. 1991, pp. 240-251. 

Vidal J. 1973. Toward Direct Brain-Computer Communication. Annual Review of Biophysics and Bioengineering. 1973, pp. 

157-180. 

Vidaurre C., Blankertz B. 2010. Towards a Cure for BCI Illiteracy. Open Access, Brain Topogr. 2010, pp. 194-198. 

Vidaurre C., et al. 2005. Adaptive online classification for EEG-based brain computer interfaces with AAR parameters and 

band power estimates. Biomedizinische Technik . 2005, vol. 50, no. 11, pp. 350-354. 

Vidaurre C., et al. 2011. Co-adaptive calibration to improve BCI efficiency. Journal of neural engineering 8. 2011, no.2, 

Art. 025009. 

Vuckovic A., Sepulveda F. 2006. EEG-Based Eight-Class, Single Trial Classification of Imaginary Wrist Movements. 

IEEE. 2006. 

Vuckovic A., and Sepulveda F. 2008. Quantification and visualisation of differences between two motor tasks based on 

energy density maps for brain–computer interface applications. Clinical Neurophysiology. 2008, vol. 119, pp. 446-458. 

Walter W. G., Cooper R., Aldridge V. J. and McCallum W. C.  1964. Contingent negative variation: An electric sign of 

sensorimotor association and expectancy in the human brain, Nature. 

Waszak F., Hommel B., Allport A.  2005. Interaction of task readiness and automatic retrieval in task switching: negative 

priming and competitor priming, Mem Cognit. vol. 33, no. 4, pp: 595-610 

Waterink W. and Boxtel A. van. 1994. Facial and jaw-elevator EMG activity in relation to changes in performance level 

during a sustained information processing task. Biol. Psychol. Jul. vol. 37, no.3, 1994, pp. 183-198. 

Watson, Andrew. 1997. Why can't a computer be more like a brain? Science 26. September 1997, vol. 277 no. 5334, pp. 

1934-1936. 

Weifeng Liu, Pokharel P. P., Principe J. C. 2006. Correntropy: A Localized Similarity Measure. Neural Networks, IJCNN 

'06. International Joint Conference on Neural Networks. 2006, pp. 4919- 4924. 

Weinberg H., Walter W. G. , and Crow J. H. 1970. Intra cerebral events in Humans related to imaginary stimuli, 

Electroencephalography and Clinical Neurophysiology, vol. 29 pp. 1-9.  

Wessburg J., Stambaugh, C. R., Kralik, J. D., Beck, P. D., Srinivasan, M. A., and Nicholelis, M. A. L. 2000. Real-time 

predition of hand trajectory by ensembles of cortical neurons in primates. Nature. 2000, 408, pp. 361-365. 



208 
 

White J. R., Levy T., Bishop W., and Beaty J. D. 2010. Realtime decision fusion for multimodel neural prosthetic devices. 

PLoS ONE. 2010. 

Wickelgren, Ingrid. 2003. Tapping the mind. Science 24. 2003, vol. 299 no. 5606, pp. 496-499. 

Williams RW, Herrup K. 1988. The control of neuron number. Annual Review of Neuroscience. 1988, vol. 11, no. 42353. 

Winkler I., Haufe S., and Tangermann M. 2011. Automatic Classification of Artifactual ICA-Components for Artifact 

Removal in EEG Signals. Behavioral and Brain Functions. 2011. 

Woestenburg J. C., Verbaten M. N. and Slangen J. L. 1983. The removal of the eye-movement artifact from the EEG by 

regression analysis in the frequency domain. Biol. Psychol. 1983, pp. 127-147. 

Wolpaw J. R., McFarland, D. and Pfurtscheller G. 1998. EEG-based communication: Improved accuracy by response 

verification. IEEE Transactions on Rehabilitation Engineering. 1998, vol. 6, no. 3, pp. 326-333. 

Wolpaw J. R. , Birbaumer N., Heetderks W. J., McFarland D. J., Hunter Peckham P., Schalk G., Donchin E., 

Quatrano L. A., Robinson C. J., and Vaughan T. M. 2000. Brain-Computer Interface Technology: A Review of the First 

International Meeting. IEEE Transactions on Rehabilitation Engineering. 2000, vol. 8, pp. 164-173. 

Wolpaw J. R., McFarland, D. J., and Vaughan, T. M. 2000. Brain–computer interface research at the Wadsworth Centre. 

IEEE Trans. Neural System Rehabil. Engng. 2000, vol. 8, pp. 222-226. 

Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G., Vaughan T. M. 2002. Brain-computer interfaces for 

communication and control. Clinical Neurophysiolgy. 113 2002, pp. 767-792. 

Wolpaw J. R., McFarland, D. J. 2004. Control of a two-dimensional movement signal by a noninvasive brain-computer 

interface in humans. Proc. Natl Acad. Sci. 2004, vol. 101, pp. 17849-17854. 

Wolpaw J. R., Wolpaw E. W. 2012. Brain-Computer Interfaces: Principles and Practice. New York : Oxford University 

Press, 2012. 

Yamamoto Y., and Hughson R.L. 1991. Coarse-graining spectral analysis: new method for studying heart rate variability, 

The American Physiological Society 1991, vol. 71, no. 1143. 

 
Yamamoto Y. and and Hughson, R. L. 1993. Extracting fractal components from time series. Physica. 1993, vol. 68, pp. 

250-264. 

Yang Y., Yan R., Hauptmann A. 2007. Cross-Domain video concept detection using Adaptive SVMs. ACM Multimedia. 

Zarzoso V., Phlypo R., Meste O., Comon P. 2009. Signal extraction in multisensory biomedical recordings. in Advances in 

Biomedical Engineering. Oxford, UK : Elsevier BV, , 2009, pp. 95-143. 

Zecca M., Micera S., Carrozza M. C., Dario, P.  2002. Control of multifunctional prosthetic hands by processing the 

electromyographic signal. Crit. Rev. Biomed. Eng. 2002, pp. 459-485. 

Zhang J. W., Zheng, C. X. and Xie, A. 2000. Bispectrum Analysis of focal Ischemic Cerebral EEG Signal Using Third-

Order Recursion Method,. IEEE Trans. Biomed. Eng. 2000, vol. 47, no. 3. 

Zhang Yagang. 2010. Application of Machine Learning.  InTech 2010. 

Zhao Chunyu, Tianshuang Qiu. 2011. An Automatic Ocular Artifacts Removal Method Based On Wavelet-Enhanced 

Canonical Correlation Analysis. IEEE EMBS. 2011. 

Zhou-Yan Feng. 2003. Analysis of Rat EEG during Sleep Using Wavelet Transform. ACTA BIOCHIMICA et BIOPHYSICA 

SINICA,. 2003, vol. 35, no. 8, pp. 741-746. 

Zweig M. H. and Campbell G. 1993. Receiver-Operating Characteristic (ROC) plots: A fundamental evaluation tool in 

clinical medicine. Clinical Chemistry. 1993, vol. 39, no. 4, pp. 561-577. 

 



209 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



210 
 

List of Abbreviations 

 

ADC Analogue-to-digital converter 

AE Approximate entropy 

AEP Auditory evoked potential 

AF Adaptive filter 

Ag–AgCl Silver–silver chloride 
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x ∈ Rd x belongs to the d-dimensional space of real values 

Z Z-transform 

��	 Inverse Z-transform 

α Alpha brain rhythm 

α Penalty term 

α�	and	β� Nonlinear model coefficients 
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