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Director: Prof. Dr. rer. nat. T. M. Buzug

and

The Graduate School for Computing

in Medicine and Life Sciences

Three-Dimensional

Digital Tomosynthesis

Iterative reconstruction, artifact reduction

and alternative acquisition geometry

Dissertation

for Fulfillment of

Requirements

for the Doctoral Degree

of the University of Lübeck
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It has been said that something as small as the flutter of a butterfly’s wing

can ultimately cause a typhoon halfway around the world - Chaos Theory

“The Butterfly Effect” (film)
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November 2013, Lübeck Yulia Levakhina



Abstract

Digital tomosynthesis (DT) is an X-ray based limited angle imaging technique. It is a

non-invasive and non-destructive method for three-dimensional visualization of the inner

structures of an object. Tomosynthesis is historically the first X-ray based tomographic

technique. However, it has been forgotten with the development of computed tomography

(CT). Only recently, developments in the field of digital X-ray detectors and computer

technologies have led to a renewed interest in this technique. A high in-plane resolution,

three-dimensionality and a low radiation dose make DT an attractive alternative to

CT in many imaging applications. The most widely used DT application in medical

imaging is breast imaging. In this thesis an alternative application of tomosynthesis for

imaging of hands is considered.

In contrast to CT, the DT projection dataset is incomplete, because the X-ray source

and the detector do not completely rotate around the patient. The incompleteness of

the dataset violates the tomographic sufficiency conditions and results in limited angle

artifacts in the reconstructed images. Although DT is a volumetric imaging technique

and provides dimensional information about the location of structures, the complete

three-dimensional information about the object cannot be reconstructed. Therefore,

one of the major issues is the improvement of the tomosynthesis image quality.

This thesis addresses the connection of the reconstruction problem and the incom-

pleteness of the DT dataset. The main aim is to understand the factors, which cause the

formation of limited angle artifacts and, thus, to account for them in order to improve

the image quality and the axial resolution.

A thorough literature review on the tomosynthesis topic is presented in each chapter.

A three-dimensional tomosynthesis reconstruction framework including fast and accurate

forward- and backprojectors and flexible geometry, has been developed to study several
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aspects of DT. All experimental studies presented in this thesis use simulated data and

real clinical data of hands.

Two conceptually different strategies for improving the image quality are investigated.

The first strategy deals with reconstruction algorithms. Within this strategy a non-linear

backprojection is used in the simultaneous algebraic reconstruction technique (SART).

The non-linear backprojection is based on a spatially-adaptive weighting scheme which

is designed to reduce out-of-focus artifacts caused by high-absorption structures. The

novel concepts of the backprojected space representation and a dissimilarity degree

are proposed to construct this weighting scheme. It will be shown that the weighted

SART reduces contribution of high-absorption structures to the formation of artifacts

on out-of-focus slices while preserving these features in the in-focus slices.

The second strategy is based on the assumption that the incompleteness degree

of the dataset can be reduced by using more appropriate acquisition geometry. The

impact of several acquisition parameters to the tomosynthesis image quality for the

standard geometry used in clinics is studied. In the presented study the limitations

of the standard geometry will be demonstrated. Although the image quality can be

improved by acquiring data over a wider angular range, above a certain threshold

this becomes infeasible. Therefore, the results motivate to search for an alternative

acquisition geometry. A novel dual-axis acquisition geometry with a tiltable platform

will be proposed. The data in the original direction are acquired using the X-ray tube

movement and the data in the additional perpendicular direction are acquired by tilting

the object. The projection data acquired along two axes have less incompleteness. Based

on a simulation study it will be shown that such acquisition geometry results in less

artifacts and improves the axial resolution.

The findings and conclusions of this work have a number of important implications for

future research, therefore, the suggestions for further work are given for each addressed

topic.



Zusammenfassung

Die digitale Tomosynthese ist ein röntgenbasiertes bildgebendes Verfahren, bei dem

aus wenigen Projektionsaufnahmen ein dreidimensionales Volumen rekonstruiert wird.

Damit erlaubt es die nichtinvasive und zerstörungsfreie Untersuchung von einem Objekt

oder einem Patient. Die Tomosynthese ist zwar das älteste Verfahren dieser Art, aber es

geriet durch die Entwicklung der modernen Computertomographie (CT) in Vergessenheit.

Erst mit der Entwicklung von digitalen Röntgendetektoren und schnellen Computern

wurde es wieder für die Forschung und den klinischen Einsatz interessant.

Eine hohe Auflösung in der xy-Ebene, ein einfacher mechanischer Aufbau und eine

geringe Strahlenbelastung machen die DT für einige Anwendungen zu einer attraktiven

Alternative zu CT. Die am meisten verbreitete klinische Anwendung für DT ist die

Untersuchung der weiblichen Brust, in dieser Arbeit wird jedoch die Untersuchung von

Händen vorgestellt.

Im Gegensatz zur CT ist bei der DT der aufgenommene Projektionsdatensatz

nicht vollständig, da sich die Röhre und der Detektor nicht komplett um das zu

untersuchende Objekt drehen. Diese Unvollständigkeit verletzt mehrere tomographische

Suffizienzkriterien und resultiert deswegen in Artefakten im rekonstruierten Bild. Obwohl

es sich generell bei der DT um ein volumetrisches bildgebendes Verfahren handelt, das

räumliche Informationen über Strukturen im Objekt bereitstellt, ist es nicht möglich,

alle räumlichen Informationen zu rekonstruieren. Deswegen ist die Verbesserung der

Bildqualität ein wichtiges Forschungsgebiet der DT.

Die vorliegende Arbeit behandelt die Verbindung zwischen der Unvollständigkeit der

Daten und dem Rekonstruktionsproblem. Das Hauptziel der Arbeit ist es zu verstehen,

wie Artefakte durch den beschränkten Aufnahmewinkel entstehen und wie sie reduziert

werden können. Dies führt zu einer Verbesserung der Bildqualität und einer höheren

axialen Auflösung.



xii Zusammenfassung

In jedem Kapitel gibt es eine einleitende und umfassende Literaturrecherche zu

dem jeweiligen Thema. Ein dreidimensionales Rekonstruktionsframework für Tomosyn-

thesedaten inklusive einer schnellen und genauen Vorwärts- und Rückwärtsprojektion

und einer flexiblen Geometrie wird vorgestellt. Alle experimentellen Untersuchungen

basieren auf diesem Framework und wurden mit simulierten Daten und realen Daten

einer echten Hand durchgeführt.

In der Arbeit werden zwei unterschiedliche Strategien zur Bildverbesserung durch

Reduktion der Bildartefakte vorgestellt. Im ersten Teil geht es um den Einfluss der

Rekonstruktionsalgorithmen. Hierfür wurde eine nichtlineare Rückprojektion für die

Simultaneous Algebraic Reconstruction Technique (SART) entwickelt. Die nichtlineare

Rückprojektion basiert auf einem räumlich-adaptiven Gewichtungsverfahren, welches

durch stark schwächende Strukturen hervorgerufene Artefakte reduziert. Die Gewichtung

basiert auf einem neuen Konzept namens Backprojected Space und einem Unähnlichkeits-

maß, welches in diesem Raum berechnet wird. Es wird gezeigt, dass durch die neue

gewichtete Rückprojektion der Einfluss von Kanten mit hohem Kontrast in Schichten

außerhalb der Fokusebene reduziert wird, ohne dass es in der Fokusebene zu einem

Verlust von Details kommt.

Die zweite Strategie basiert auf der Annahme, dass die Unvollständigkeit der Daten

durch eine verbesserte Aufnahmegeometrie reduziert werden kann. Dafür wird zuerst

der Einfluss verschiedener Aufnahmeparameter auf die Bildqualität für die Standard-

geometrie klinischer Geräte untersucht. Es wird gezeigt, dass die Standardgeometrie

limitiert ist. Obwohl es generell durch eine Vergrößerung des Aufnahmewinkels zu einer

Verbesserung der Bildqualität kommt, macht dieser Ansatz oberhalb eines gewissen

Winkels aufgrund mechanischer Problemen keinen Sinn. Motiviert durch diese Erkennt-

nisse wird eine neuartige Zweiachsen-Aufnahmegeometrie mit einer kippbaren Plattform

vorgestellt. Die Daten in der ursprünglichen Richtung werden durch die normale Röhren-

bewegung aufgenommen. Zusätzlich wird das Objekt während der Aufnahme mehrmals

gekippt. Durch die zusätzlichen Aufnahmen aus der neuen Richtung sind die Daten

vollständiger als bei der Standardaufnahme. Simulationsstudien belegen, dass diese

neue Geometrie die Artefakte reduziert und die axiale Auflösung erhöht.

Basierend auf den Erkenntnissen, die in dieser Arbeit gewonnen werden, werden

Hinweise für zukünftige Arbeiten gegeben.
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1.1 X-ray imaging and tomosynthesis

X-ray based imaging techniques are already the subject of active research for almost

130 years starting right after the discovery of X-rays by Wilhelm Conrad Röntgen in

1895 (Roentgen 1895a, Roentgen 1895b) up to the present. The nature of X-rays to

penetrate the object which has been used to visualize the inner structures of opaque

objects have changed the world in medical and non-medical application fields. It opened

new opportunities in recognition and understanding of human diseases without surgical

intervention and in non-destructive material testing (NDT). Although the human body

is “transparent” for X-rays and can be visualized using X-rays, a single X-ray image

contains only the projective overlap of all structures in the body. The three-dimensional

information about the structure locations can be recovered only by using the principle

of tomography. For this, a set of X-ray images from different sides must be measured

and the inverse problem of image reconstruction must be solved.

Historically, the first X-ray imaging modality which aims to visualize an object in

three-dimensions was tomosynthesis. In tomosynthesis projection images are acquired

over a limited angular range. In general, this is not enough to reconstruct the object
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exactly. However, some three-dimensional information can still be recovered but the

image quality is degraded by blurring out-of-focus artifacts. Back in the 1930s to 1970s,

tomosynthesis was a promising imaging modality and a lot of effort was given to improve

its performance in terms of speed and to obtain images with less artifacts. A lack of

digital X-ray detector technology was the main stopping factor in the development

of tomosynthesis. With the development of the true tomographic principle in 1972

(Hounsfield 1973, Ambrose 1973), in which the data is obtained over the 360o angular

range, tomosynthesis was abandoned because of the clear advantages of CT to produce

slices of an object without typical tomosynthesis blurring artifacts. Tomosynthesis has

regained scientific interest in the beginning of the 21st century because of technological

advances. The combination of fast digital flat-panel X-ray detectors and improved

computer technologies offered a solution to the problem of long examination time

and long processing time. It made tomosynthesis practically feasible. Nowadays,

tomosynthesis is one of the “hot topics” in the field of X-ray based tomographic imaging

(Sechopoulos 2013a, Sechopoulos 2013b). The main field of tomosynthesis application

is breast imaging. Alternative applications also exist. The focus of this thesis is

tomosynthesis with application to the imaging of human hands. Tomosynthesis is an

attractive alternative to CT and computed radiography (CR) for imaging of hands

because DT combines the simplicity, high resolution and low dose of CR and the

three-dimensionality of CT.

1.2 Contribution of this work

With the development of advanced detectors and PC, digital tomosynthesis is again

of great interest among scientists. However, the problem of data incompleteness of

the projection dataset does not disappear. The incompleteness of the data violates

tomographic sufficiency conditions and results in images with artifacts and limits the

in-depth resolution. This makes an accurate image reconstruction a very challenging

task.

The main goals of this work are to understand what influences the tomosynthesis

performance in terms of image quality and artifacts and to propose methods to improve

the tomosynthesis performance. An understanding of the tomosynthesis topic in general

is important, therefore an intensive literature review on tomosynthesis history, existing

methodology, the state of the art and open problems will be presented. Additionally,

the study of the related CT subjects and the adaptation of several CT algorithms for

tomosynthesis will be given.
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Two different approaches to improve tomosynthesis performance will be proposed

in this work. The first approach is based on the optimization of the reconstruction

strategy for the given limited data. Given the measured tomosynthesis data, a suitable

reconstruction algorithm is required to provide images with less artifacts and better

quality. This includes the choice of the reconstruction algorithm and its parameters as

well as an accurate implementation. The second approach is based on the acquisition of

more reliable data using an adapted acquisition geometry. It can improve the image

quality and resolution because the acquisition parameters and geometry influence the

incompleteness degree of the obtained data. If the data incompleteness is reduced, the

image quality and resolution will be improved. As such geometry, a novel dual-axis

acquisition geometry will be proposed.

The contributions of this work are following

• A topical review which includes a thorough literature review on tomosynthesis

and a comparison of the state of the art tomosynthesis device with CT and

micro-CT devices. Since tomosynthesis and CT are closely related, also the review

of CT literature is necessary for several topics. The obtained knowledge, then, is

adapted and applied for tomosynthesis.

• A short summary of limited angle tomography which explains where the

limited angle artifacts come from.

• Implementation the reconstruction toolbox for three-dimensional tomosyn-

thesis from the scratch using the knowledge from CT. Each chapter of this thesis

(if applicable) contains corresponding consideration regarding practical implemen-

tation of algorithms in MATLAB® and C++ (mex). The toolbox includes

– fast and accurate forward- and backprojector (FB and BP) for two- and

three-dimensions [2 - 4], [15];

– several standard iterative algebraic (SART) and statistical reconstruction

algorithms with the possibility to vary parameters (number of iterations,

initial guess, projection access order) [1], [4], [5];

– a weighted version of simple backprojection (ωBP) and a weighted algebraic

reconstruction (ωSART) with an adaptive weighting scheme and a flexible

control of the weighting parameters for tomosynthesis and CT [6 - 8], [11];

– a flexible geometry with the possibility to change the acquisition parameters

(number of projections, the angular range and the angular step size), distances

(source-to-object, source-to-detector, source-to-isocenter) and the X-ray tube

trajectory [9], [10];
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– methods to construct the backprojected space representation in two- and

three-dimensions [6 - 8], [11].

• Finding an optimal implementation of every single component of the recon-

struction toolbox. It includes

– a study of the advantages and drawbacks, accuracy, complexity and possibility

of fast implementation of FB and BP methods for CT [3];

– fast and accurate implementation of the distance-driven projector for CT

and tomosynthesis with only one loop for all angular cases [3], [4];

– a method for an optimal memory handling for processing large tomosynthesis

datasets [3], [4];

– a method to address a large number of variables from different datasets

(reconstruction and projections) [3], [4].

• A parameter optimization analysis which includes

– a discussion of basis functions for image representation and interpolation

strategy for FP and BP [2], [3];

– a parameter optimization for SART on the example of the projection access

order [5], [14];

– a study on parameters for the dissimilarity-based weighting scheme for

tomosynthesis and additionally for metal artifact reduction in CT;

– a study in the impact of the geometry acquisition parameters on tomosynthesis

performance [10], [12], [13].

• Novel ideas which include

– a usage of the distance-driven FP and BP algorithm for tomosynthesis and

benefit from the fixed detector geometry [3], [4];

– a novel data-based projection access order for SART based on the minimum

correlation [5], [14];

– the backprojected space representation as a generalization of the stackgram

approach [6 - 8], [11];

– data dissimilarity coefficients in BP-space [6 - 8], [11];

– a weighing scheme for tomosynthesis based on the dissimilarity in BP space

for simple backprojection and for SART [6 - 8], [11];

– BP-space for metal artifact reduction in CT;

– a novel dual-axis acquisition geometry for tomosynthesis [9], [10].
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1.3 Outline of the thesis

This doctoral dissertation consists of seven chapters and an appendix. This chapter

is an introduction to this work. The next chapter gives an extensive overview on the

tomosynthesis topic, including the historical development of tomosynthesis technology

and its reconstruction algorithms. A state of the art tomosynthesis device will be

compared with the CT and micro-CT devices in terms of technical parameters and the

obtained images. Theoretical aspects of image reconstruction from limited data will be

given, with focus on the explanation of why limited data is not enough and to which

problems it leads.

The problem of efficient forward and backprojection algorithms will be addressed

in chapter 3. A discrete image implementation using series expansion and the choice

of the basis functions will be discussed. The literature review on the forward- and

backprojector will be given for two common choices of basis functions: square pixels

and spherically symmetric Kaiser-Bessel functions (blobs). The state of the art distance-

driven algorithm will be discussed in detail and an efficient implementation for both, the

pixels and the blobs basis functions for two-dimensional fan beam CT will be proposed.

The discussion of the implementation strategy will be extended to the three-dimensional

cone-beam CT and adapted for tomosynthesis geometry with a fixed detector. This

way, FP and BP, which are necessary for iterative reconstruction, can be implemented

accurate and fast in two- and three-dimensions.

The formulation of the reconstruction problem as an optimization problem, leading

to iterative schemes will be given in chapter 4. Two types of iterative reconstruction

will be mentioned, namely algebraic and statistical reconstruction. The focus of the

rest of the thesis will be on the SART algorithm. An efficient implementation strategies

of SART for three-dimensional tomosynthesis will be discussed with respect to the

problem of data handling, memory and computational costs. The problem of projection

access order for SART will be discussed, including a review of existing methods which

can be found in CT literature and adaptation of them for tomosynthesis. A novel

data-based minimum correlation approach which uses the object-related information

will be proposed. The methods will be compared using a simulation study with the

application to tomosynthesis.

In chapter 5, a backprojected space representation will be proposed. Its main

application is to construct a data-based weighting scheme, which will be included in

the backprojection operator for tomosynthesis. The resulting non-linear backprojection

algorithm is designed to reduce tomosynthesis artifacts from high attenuating structures.

Moreover, the ωBP can be included into the SART reconstruction to use the weighting
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scheme more efficiently. The second presented application of the BP-space is metal

artifact reduction in CT. The weighted scheme proposed for tomosynthesis will be

extended to the 360 degree CT data. It will be shown that metal artifacts can be reduced

if the weighting parameters are chosen properly. Additionally, the BP-representation

offers an easy method to follow the sinogram flow, which, as it will be shown, can be

used for sinogram interpolation. Experiments are based on real tomosynthesis and CT

data.

In addition to the reconstruction strategy to reduce artifacts, one can try to obtain

more meaningful data, taking into account that the acquisition parameters must be also

optimized. In chapter 6 the tomosynthesis geometry will be analyzed with respect to

the improvement of tomosynthesis performance. First, the impact of the acquisition

parameters will be studied and the state of the art findings will be compared with

the simulation results for tomosynthesis imaging of hands. The main role of chapter 6

is to introduce an alternative acquisition geometry using a tiltable platform. In this

geometry, the projection data are acquired along two axes instead of one axis. This way,

the degree of data incompleteness and therefore the artifacts can be reduced and the

axial resolution can be improved.

The last chapter summarizes the conclusions and gives suggestions for further work

for each addressed topic.

All presented results are based on software phantom simulations and real measured

data1. The simulation and reconstruction framework is written in Matlab/C++.

1.4 Publications

The presented work resulted in several publications as a first author which include a

number of conference contributions [1 - 5] and [7 - 9] as well as two journal papers [10,

11] and a patent application [6]. Other work has been published in cooperation with

other colleagues as a co-author [12 - 20]. For each publication the page number is given

(if applicable) where it has been cited in this dissertation.

First author

[1] Y. M. Levakhina and T. M. Buzug. Algebraic reconstruction versus statistical

reconstruction methods in CT. In World Congress on Medical Physics and Biomed-

1The human cadavers - respectively bodies/heads/arms/legs feet etc. as parts of cadavers - were
used and dissected in this examination under permission of the ”Gesetz über das Leichen-, Bestattungs-
und Friedhofswesen (Bestattungsgesetz) des Landes Schleswig-Holstein vom 04.02.2005, Abschnitt
II, 9 (Leichenöffnung, anatomisch)”. In this case it is allowed to dissect the bodies of the donators
(Körperspender/in) for scientific and/or educational purposes.
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ical Engineering, Springer IFMBE Series, volume 25, Post-Deadline Poster 37,

Munich, Germany, September 2009.
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For many centuries physicians wished for a method to look inside patient without

the need for a surgical intervention. The level of recognition of human diseases would

have greatly increased if there was a way to make a human body “transparent”. Nobody

could have even imagined that this dream can come true. With the discovery of X-rays

by Wilhelm Conrad Röntgen in 1895 (Roentgen 1895a, Roentgen 1895b) it became

possible.

Nowadays, X-ray based imaging techniques include a variety of implementations

and applications. Computed radiography (CR)and digital radiography (DR)are used for

planar imaging when a three-dimensional object is mapped onto a two-dimensional plane.

Variations of computed tomography (CT), such as clinical CT, C-arm, tomosynthesis,

micro-CT and industrial CT are used to “cut” an object into a stack of tomographic

slices. These X-ray based imaging methods are widely used not only for diagnostics

and assistance in clinical practice but also for screening in security applications and for

non-destructive material testing in industry, archeology and material sciences.
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The aim of this chapter is to give an introduction into a modern X-ray based imaging

technique, called digital tomosynthesis (DT). First, the basic principles will be explained.

Second, a historical overview of the imaging principle and the reconstruction algorithms

will be given. Afterwards, a comparison of state-of-the-art devices will be presented.

Finally, the theoretical aspects of DT will be discussed and open questions and problems

will be summarized.

2.1 Tomosynthesis basics

The basics of the tomosynthesis imaging technique will be given in this section.

2.1.1 Introduction

DT is an X-ray based tomographic imaging technique. It is a non-invasive and non-

destructive method for the three-dimensional visualization of the inner structures of

an object. DT is known as an attractive low-dose alternative to CT in medical and

non-medical imaging applications, when the data acquisition over the full angular range

is impossible or infeasible if object is too large or if only a small part of the object is of

interest. The primary application of DT is the screening for breast cancer. Here it is

used together with traditional mammography for the detection of microcalcifications and

tumors (Niklason 1997, Park 2007, Baker 2011). Further medical application fields in-

clude pulmonary nodules detection in chest imaging (e.g. Dobbins 2008, Tingberg 2010),

dental imaging (Ogawa 2010) and musculoskeletal imaging of hands (Duryea 2003). Non-

medical applications of tomosynthesis include security luggage screening in airports

(Reid 2011) and non-destructive material testing in industrial imaging (Huang 2004).

A DT data acquisition includes measuring a limited number of low-dose two-

dimensional projections of an object. This is done by moving a detector and/or an X-ray

tube around the object within a limited angular range. Each measured two-dimensional

intensity image I (u, θ) represents the decreased signal. The decrease is caused by

photon-matter interactions (photoelectric absorption, scatter). If no object is present,

the initial intensity I0 will be measured. The model of tomosynthesis measurements is

based on the Beer-Lambert absorption law for a polyenergetic spectrum of the X-ray

tube and additionally includes a scatter term r (u, θ) and the detector efficiency ε(E)

I (u, θ) =

∫
Emax

ε(E)I0 (E) e−
∫
L µ(x,E)dxdE + r (u, θ) . (2.1)
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Here, L is a path through the object, depending on the direction of the beam θ, u is

a vector describing a point on the detector and µ (x, E) is the distribution of X-ray

attenuation coefficients (measured in cm−1) in dependency of position x within the

imaged volume and the energy E (measured in kilo electron volts keV). For simplicity,

the scatter term and the detector efficiency term are usually not taken into account. As

a further simplification, it can be assumed that the X-ray spectrum is a monoenergetic

spectrum. Thus, the dependency of µ on the energy can be omitted. The resulting

model is the well known exponential Beer-Lambert law for a monoenergetic spectrum

I (u, θ) = I0e
−
∫
L µ(x)dx. (2.2)

A projection image p (u, θ) has a linear relation to the attenuation coefficients µ (x)

and is defined as the log-transform

p (u, θ) = −log
(
I (u, θ)

I0

)
=

∫
L
µ (x) dx. (2.3)

Two exemplary images of a hand measured using a medical tomosynthesis device are

shown in Fig. 2.1a (intensity image) and Fig. 2.1b (projection image). Tomosynthesis

projection images can also be post-processed for a better visual perception (see Fig. 2.1c).

The task of DT is to reconstruct an unknown distribution of X-ray attenuation

coefficients µ (x) within the imaged object based on the limited set of measured line

integrals p (u, θ), i.e. to solve an ill-posed inverse problem. Depending on the type

of reconstruction algorithm, either intensity images or projection images are used for

reconstruction. In DT the reconstructed slices are typically parallel to the detector, see

Fig 2.2a and Fig. 2.2b. Reconstructed tomosynthesis slices of an apple and of a hand

at different heights are shown in Fig. 2.2c-Fig. 2.2h. Three reconstructed slices of an

apple at 20 mm, 30 mm and 40 mm heights show different cuts through the seeds of

the apple. The reconstructed slices of the hand show that different regions of bone are

sharp at different heights (marked by ellipses). Regions with distal phalanges are shown

at 10 mm. A region with proximal phalanges and a region with carpal bones are shown

at 20 mm and a region with metacarpal bones is shown at 28 mm.

Reconstructed images show that despite the fact that a tomosynthesis dataset

consists only of a limited number of projections acquired over a limited angular range,

the reconstruction of structures at their correct geometrical location is possible.
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(a) intensity image

(b) projection image

(c) processed projection image for better visual perception

Figure 2.1: Tomosynthesis raw-data of a hand acquired using Siemens Mammomat Inspi-
ration device. (a) intensity image; (b) projection image; (c) post-processed
projection image for better visual perception.
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(f) hand, slice at 10 mm (g) hand, slice at 20 mm (h) hand, slice at 28 mm

Figure 2.2: Orientation of slices in tomosynthesis (a-b) and tomosynthesis reconstruction
results of an apple (c-e) and a hand (f-h). The total height of the apple is
60 mm (60 slices). The total height of the hand is 35 mm (35 slices). Slices at
different heights show different (anatomical) structures.
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2.1.2 Tomosynthesis technology

2.1.2.1 Acquisition geometry

A tomosynthesis device typically consists of an X-ray tube and a flat-panel detector.

During a tomosynthesis acquisition they are moved along a pre-defined trajectory.

Several types of motion are possible: a parallel path, a full and a partial isocentric and

a circular geometry. In the linear path geometry (Fig. 2.3a) the X-ray tube and the

detector are synchronously moved along a line in opposite directions. This geometry

corresponds historically to the analogue conventional geometric tomography, see e.g.

(Ziedses des Plantes 1932). In the full isocentric geometry (Fig. 2.3b) the X-ray tube

and the detector are moved along an arc trajectory around a common origin. If the tube

and the detector are moved over 360o, this geometry describes a cone-beam tomographic

system. In the partial isocentric geometry the X-ray tube is moved along an arc while

the detector is moved along a line (Fig. 2.3c) or stays fixed (Fig. 2.3d). The partial

isocentric geometry with the fixed detector is typically used for breast imaging. In

the circular geometry (Fig. 2.3e) the tube and the detector are moved in parallel

planes along a circular trajectory. Such a geometry is also known from early works

on tomosynthesis (Grant 1972) and is nowadays used in industrial applications. More

information about geometries of motion in tomosynthesis can be found e.g. in the review

paper by J. T. Dobbins (Dobbins 2003).

2.1.2.2 Geometry parameters

The tomosynthesis geometry parameters include the angular range, the number of

projections and the angular step size (a projection density). Parameters for the geometry

with a fixed detector and an X-ray tube moving along an arc trajectory are shown

schematically in Fig. 2.3f. The angular range of the X-ray tube rotation or the sweep

angle is denoted by θ. In case of a partial isocenter geometry it is defined as the size of

the total arc around the rotation center and is described by the X-ray tube position

from the first measured projection to the last measured projection. In case of a circular

trajectory it is defined as a two-dimensional angle in a three-dimensional space (solid

angle) drawn by the X-ray tube. The angular range in clinical applications is typically

between 20o and 50o. The number of projections, denoted by Nproj , is the number of

measured X-ray images acquired over the angular range θ. The number of projections

in clinical applications is typically between 10 and 30. The angular step size, denoted

by ∆θ, is defined as the total angular range divided by the number of projections

and is described as the angle between the current and the next position of the X-ray

tube. Sometimes an inverse measure, called the projection density, can be found in
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Focal plane 

(a) linear (b) full isocentric (c) partial isocentric
with moving detector

(d) partial isocentric
with fixed detector

(e) circular

θ 

Nproj 

Δθ 

(f) geometry
parameters

Figure 2.3: (a)-(e) Tomosynthesis geometries; (f) a schematic illustration of parameters
for a device with a fixed detector and an X-ray tube moving along an arc
trajectory. The following parameters are shown: the angular range θ, number
of projections Nproj and the angular step ∆θ.

the literature (Deller 2007, Machida 2010). The projection density is the number of

projections divided by the angular range. Another parameter, which is not directly

related to the technical parameters of the device but can be seen as a geometry parameter,

is the object orientation in the detector xy-plane. It plays an important role and

influences the image quality (Cordes 2011, Cordes 2012a, Cordes 2012b, Cordes 2013).

2.1.3 DICOM format

The Digital Imaging and Communications in Medicine (DICOM) standard is a global

information-technology standard created by the National Electrical Manufacturers

Association (NEMA). DICOM is used for distributing and viewing any kind of medical

images worldwide (webNEMA 2013). A DICOM file contains the image data and

additionally a file header with supplementary information on the patient, the study,
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the device, the physician and the image. There is a number of free DICOM viewers

available to open DICOM files, visualize two-dimensional and three-dimensional data

and read the header information, among them are ImageJ, Sante DICOM viewer and

Agnosco DICOM Viewer. The interested reader can refer, e.g. to the web-page of Chris

Rorden (Rorden, C. 2013) for a list of links to free DICOM viewers. There are three

build-in MATLAB® commands to read and to save DICOM data and DICOM header

automatically: dicomread, dicominfo and dicomwrite.

Typically, the tomosynthesis raw-data and reconstructed images can be exported as

a set of DICOM files. If tomosynthesis raw-data are available as DICOM, all necessary

information for simulation and reconstruction can be found in the header, see Table 2.1.

A DICOM header is comprised of DICOM elements. A DICOM element has a tag, a

data type, a length and a value. The tag uniquely defines the properties of an element. It

consists of two groups of four digits (sometimes letters), separated by comma and called

a Group and an Element. Each attribute has also a name. Typically attribute names

are self explaining. A lookup table with the explanation of DICOM attribute names

and the corresponding tag numbers can be found, e.g. at (webDICOMLOOKUP 2013).

According to the table, e.g. the tag (0018,1110) has the attribute name Distance Source

to Detector and denotes the distance in mm from the source to the detector center.

Table 2.1: Important tomosynthesis-related DICOM tags.

Tag Attribute name

(0018,0050) Slice Thickness

(0018,11A0) Body Part Thickness (object height)

(0018,1110) Distance Source to Detector

(0018,1111) Distance Source to Patient

(0018,1530) Detector Primary Angle (X-ray tube angle)

(0018,7026) Detector Active Dimension(s)

(0028, 0010) Rows (detector)

(0028, 0011) Columns (detector)

2.2 From radiostereoscopy to digital tomosynthesis

The principle of stereoscopy has been proposed even before the discovery of X-rays.

In 1838 Sir Charles Wheatstone demonstrated the physics of binocular vision and

proposed a novel device which he called a stereoscope (Wheatstone 1838). The device

was designed to present two images with a slight angular offset separately to the left
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and the right eye of an observer and by this to create a three-dimensional impression of

the presented scene. Moreover, Sir Wheatstone also mentioned in his paper that the

discussion on the different visual impression of an object itself and a painting of this

object can be already found in the Trattato della Pittura (Treasure of Paining, 1721) of

Leonardo da Vinci. The stereoscopy principle was used in the very early development

of radiology applications (e.g. Thomson 1896). Apparently, one can draw a connection

between the stereoscopy and modern tomosynthesis imaging principle.

The actual history of X-ray imaging starts in 1985 when Wilhelm Conrad Rönt-

gen discovered a new kind of radiation which he called “X-rays” (Roentgen 1895a,

Roentgen 1895b). It was a breakthrough invention, which made possible the visualiza-

tion of inner details of a human body without a surgical intervention. Already shortly

after the discovery of X-rays, the harmful effect of ionizing radiation was observed,

which cause radiation injury (Upton 1992). Despite all the risks, the X-ray imaging still

offers very attractive opportunities.

A simple radiograph contains the superposition of all three-dimensional structures

in an object as a two-dimensional shadow. As a consequence, it is impossible to recover

the information from which exact three-dimensional position any particular feature

(e.g. tumor) originates. In the beginning of the 1920s there were many attempts to

erase superimposed shadows from X-ray images and to benefit from the use of X-rays

for imaging of the human body. This resulted in a number of patent applications,

e.g. in 1922 from the French scientist A. E. M. Bocage (Bocage 1822) and in 1927

from the German scientist E. Pohl (Pohl 1927). A work from the Franco-American

technologist J. Kieffer (Kieffer 1929) was also patented and later was commercialized.

Besides patents, there was also a number of papers published, among them e.g. in

1914 by the Polish scientist K. Mayer (Mayer 1916), in 1930 by the Italian scientist

A. Vallebona (Vallebona 1932) and in 1932 by the Dutch engineer B. G. Ziedses des

Plantes (Ziedses des Plantes 1932). Owing to the fact that the communication between

researchers from different countries was very limited at that time, all those scientists

rediscovered similar concepts. As a summary, all those works deal with the same imaging

technique, in which the X-ray tube and the detector are moved in two parallel planes.

The goal was to display the plane in focus very sharp and to blur the planes that are out

of focus. This technique became known under several names: it was called a stratigrafia

by A. Vallebona, a laminography by J. Kieffer and a planigraphy by A. E. M. Bocage

and B. G. Ziedses des Plantes. In 1935 G. Grossmann presented a device which he

called a tomograph (Grossmann 1935a, Grossmann 1935b). It should be noted that the

Grossmann’s tomograph had nothing to do with the modern tomographic devices but it

was also based on the abovementioned principle. More information can be found e.g. in
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the historical article written by the curator of the Belgian Museum of Radiology R. van

Tiggelen (Van Tiggelen 2002).

The next evolutionary step was the implementation of a device, that enabled

the storage of each measured radiograph as a set of separate analogue images. The

stored images were processed after the examination instead of doing an integration

of measurements directly on the film. Using a set of measured radiographs, it is

possible to generate an arbitrary number of planes (Garrison 1969) or laminograms

(Miller 1971) through the object. The total radiation dose can thus be reduced because

 A. E. M. Bocage, 1922. 

G. Ziedses Des Plantes, 1931 A. Vallebona, 1930 G. Grossmann, 1935 

J.B. Garrison, 1969. 

Figure 2.4: A photo collage showing photos of A. E. M. Bocade, G. Ziedses des Plantes,
A. Vallebona, G. Grossmann and sketches of early works on tomosynthe-
sis. (Photos courtesy of R. van Tiggelen. Schematical illustrations from
(Garrison 1969) are reprinted with permission from the American Journal of
Roentgenography.)
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only one examination is needed to produce images of the whole volume. This is

essentially the main idea of the modern tomosynthesis as it is know nowadays. The word

tomosynthesis itself has been introduced a year later in 1972 by D. G. Grant (Grant 1972).

Figure 2.4 shows some sketches from the first papers on conventional tomography and

tomosynthesis and a collage with photos of A. E. M. Bocade, G. Ziedses des Plantes,

A. Vallebona, G. Grossmann. A number of further improvements of tomosynthesis has

been proposed during the 1970s and 1980s. It resulted in different variations, including,

e.g. ectomography and flashing tomosynthesis. All changes concerned mainly the

improvement of the image quality to suppress out-of-plane details and the shortening

the acquisition time. Review papers by Dobbins give a detailed overview over the

tomosynthesis research at that time (Dobbins 2003, Dobbins 2009).

In the same year (1972) another significant event took place. Sir Godfrey Hounsfield

and James Ambrose gave a talk on “Computerised Axial Tomography” at the 32nd

Congress of the British Institute of Radiology. They presented first tomographic

clinical scans acquired using the head scanner named after the company Electric and

Musical Instruments (EMI). The images were produced using the “true” tomographic

principle with a full rotation around the patient as it is known nowadays. For more

information about the EMI head scanner see the original papers from G. Hounsfield

(Hounsfield 1973) and J. Ambrose (Ambrose 1973) and e.g. the following review papers

(Beckmann 2006, Gould 2009). This development resulted in a decrease of the interest

in the tomosynthesis technology due to the obvious advantages of CT over conventional

tomography and tomosynthesis. According to J. T. Dobbins, tomosynthesis was forgotten

in the late 1980s with the development of spiral CT. Table 2.2 summarizes the milestones

in development of analogue tomosynthesis from radio-stereometery to the spiral CT.

Tomosynthesis has gained a renewed interest in the beginning of the 21st century due

to advances in digital flat-panel detector technologies (Dobbins 2009). The combination

of fast and large digital flat-panel detectors and improved computer technologies offered

an attractive solution to the problem of long examination and processing time in

tomosynthesis and brought this technique into focus of research again. The number of

papers on tomosynthesis indexed in PubMed (webPUBMED 2013) per year is growing

almost exponentially (see Fig. 2.5). In February 2011 the first tomosynthesis device

Selenia Dimensions 3D System by Hologic, Inc. has been approved by the U. S. Food

and Drug Administration (FDA) (webFDA 2013). Siemens and other manufacturers

are currently waiting for approval.
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Table 2.2: Out of the shadows - first paper on tomosynthesis.

Year Name Technique

1915 C. Baese radio-stereometer

1921 P. A. Bocage radiographic stereoscopy

1921 B. G. Ziedses Des Plantes planigraphy

1928 J. Kieffer laminagraphy

1930 A. Vallebona stratigraphy

1934 H. Chaoul, G. Grossmann tomography

1947 R. Sans and J. Porcher polytome

1969 J. B. Garrison, E. R. Miller
infinite number

of laminograms

1972 D. G. Grant tomosynthesis

1972 G. Hounsfield and J. Ambrose
Computerised Axial Tomography

(EMI scanner)

1989 W. Kalender Spiral CT
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Figure 2.5: Trend in tomosynthesis research: Number of scientific papers on tomosynthesis
indexed in PubMed (webPUBMED 2013) per year. The MATLAB® code for
PubMed trend search is presented in Appendix.
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2.3 Evolution of reconstruction algorithms

In contrast to CT, an accurate image reconstruction in DT is a challenging task because

only a limited number of projections acquired over a limited angular range is available.

Thus, limited angle artifacts are unavoidable. They appear as blurred copies of objects

located in other slices. The artifacts decrease the diagnostic relevance of the DT images.

Various reconstruction approaches to reduce artifacts in tomosynthesis images have

been proposed so far.

The historically first tomosynthesis system did not require any reconstruction algo-

rithms because the image was formed directly on film cassettes during the measurement

process. In 1965 J. B. Garrison, E. R. Miller and D. G. Grant proposed to store

the projection images separately and post-process them using a backprojection-like

algorithm, named playback geometry, see e.g. (Garrison 1969). Regardless of the

acquisition type, it was possible to focus on a certain plane and obtain it sharp. The

focusing was done mechanically by positioning the X-ray tube and the image receptor

before the measurement process begins or afterwards using a semitransparent mirror

in a reprojection system. Objects, which belong to this plane are always projected

onto the same location and therefore coincide and appear sharp, while details from the

out-of-focus planes are superimposed and blurred. This method was based on a simple

geometrical principle and had an inherent backprojection blur. The geometry of motion

defined the degree and the direction of the blur. The main role of the blur was the

effacement of unwanted details outside the focal plane while preserving the details of

the in-focus plane (Littleton 1965). In fact, blurring cannot accomplish this task and

is always seen by the human eye as a disturbing component. Therefore, a variety of

tomosynthesis deblurring methods has been proposed.

The most simple deblurring strategy was developed by P. R. Edholm in 1969 for

analogue images (Edholm 1969). He proposed to subtract the blur using a blurred

transparent negative photographic copy of the original image. His formula is easily

understandable

(measured image) + (blurred negative copy) = (improved image);

(sharp details + blur) + (- blur) = (sharp details).
(2.4)

Later, the same method was applied by D. P. Chakraborty to digital tomosynthesis

and was called self-masking subtraction tomosynthesis (Chakraborty 1984). It was,

in general, identical to the one-dimensional high-pass spatial frequency filtering. The

suppression of the low frequencies reduces not only the blur but also the low frequencies
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from the object itself. Therefore, there was an attempt to use a band-pass filter

(Sone 1991a) or to apply an additional two-dimensional unsharp mask (Sone 1991b).

U. E. Ruttiman (Ruttimann 1984, van der Stelt 1986) proposed a novel concept to

use planes adjacent to the plane of interest and an iterative spatial deconvolution. Since

blur is produced by the features in out-of-focus planes, a set of properly convolved

(blurred) adjacent planes can be subtracted from the plane of interest to remove an

undesired contribution of details lying outside the target plane. A similar approach, called

selective plane removal, was proposed by Gosh Roy in 1985 (Roy 1985). The blurring

function (point spread function) must be considered to develop the relevant equation

for eliminating distortions from the closely adjacent planes. Another approach, which

was also called selective plane removal (Kolitsi 1993), uses a preliminary reconstructed

volume (a set of planes) to reproduce the blur on the target plane, arising from the

other reconstructed planes. Each plane is reprojected onto the target plane for each

view in order to synthesize the blur from the unrelated structures and eliminate it. An

extended approach, called matrix inversion tomosynthesis (MITS) (Godfrey 2006), uses

linear algebra to solve the blurring problem in each plane.

A non-linear reconstruction method, called extreme-value decoding, was proposed

for task-specific applications, for example in angiography, when only the projection

with the largest or smallest value is used (Haaker 1985a, Haaker 1985b, Stiel 1993).

A voting strategy, which rejects the projections that include too high values, was

used together with Maximum Likelihood (ML) algorithms (Wu 2006) for the reduction

of artifacts caused by a metal needle in breast tomosynthesis. This method works

only if high-attenuation features can be detected and accurately segmented. Other

methods to reduce blurring use wavelets (Badea 1998) or three-dimensional anisotropic

diffusion filtering (Sun 2007). An empirical adaptive weighting scheme which allows for

the simple backprojection blur reduction in musculoskeletal tomosynthesis has been

presented recently (Levakhina 2012a). As a conclusion, simple backprojection algorithms

are computationally inexpensive and provide images with good noise properties but

poor contrast. They are typically combined with different post-filtering and deblurring

algorithms. Alternatively, non-linear backprojections have also been proposed.

Filtering is applied not only in the image domain but also in the projection do-

main before the summation is done. This is actually equivalent to the well-known

filtered backprojection (FBP) algorithm. For example, the ectomography method, pre-

sented by P. R. Edholm, C. U. Petersson and H. E. Knutsson in 1980 (Edholm 1980,

Petersson 1980, Knutsson 1980) applies a high-pass and a low-pass filter to the projection

images in perpendicular directions before summation. Nowadays, the FBP is widely used
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reconstruction method in clinical routine in full angle CT. This algorithm has the advan-

tage of the high computational performance. In the limited angle case, however, it suffers

from the missing regions in the Fourier space. A number of papers are exploring the idea

of improving the sampling in Fourier space or designing a proper filter for the tomosynthe-

sis projections (Matsuo 1993, Lauritsch 1998, Stevens 2001, Claus 2006, Ludwig 2008).

Iterative reconstruction algorithms have also been adopted from CT. One major

benefit of iterative methods over FBP is the possibility to include prior knowledge

(a positivity constraint, an object extend, a noise model) into the reconstruction

process. Iterative methods can be easily adapted to a new imaging geometry, e.g.

non-circular X-ray tube trajectories, non-uniform angular spacing or a fixed detector.

While only forward- and backprojectors must be adapted for iterative reconstruction,

a new appropriate filter must be derived analytically for FBP for each geometry.

Both, algebraic and statistical iterative reconstruction algorithms provide acceptable

image quality in breast tomosynthesis when the reconstruction parameters are properly

chosen (Zhang 2006b). In (Levakhina 2011a) and (Levakhina 2011b) it was shown that

algebraic reconstruction is capable of suppressing some structural noise caused by

bone tissue and results in a improved reconstruction for hand imaging. Despite these

advantages, the problem of data insufficiency still remains for iterative reconstruction

algorithms. A detailed review of reconstruction methods as well as pre- and post-

processing algorithms for tomosynthesis can be found in literature (Dobbins 2003). A

detailed comparison of reconstruction algorithms can be found e.g. in (Wu 2004) and

(Zhang 2006b).

To sum up, a list of reconstruction algorithms for tomosynthesis is given below:

1. Deblurring algorithms

• 1D high-pass or band-pass spatial frequency filtering in image space;

• reproducing blur from adjacent planes (selective plane removal, constrained

iteration method);

• Matrix Inversion Tomosynthesis (MITS);

• task-dependent: extreme value decoding, voting strategy;

• wavelets-based deblurring;

• three-dimensional anisotropic diffusion filtering.

2. FBP

• ectomography;

• filter adaptation;

• completion of Fourier space;

3. Iterative algorithms.
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2.4 CT and tomosynthesis today: practical comparison

As has been mentioned in previous sections, DT and CT are closely related. They

share the common physical principle and reconstruction algorithms. However, there

are a number of major differences when it comes to the comparison of the actual

devices. The aim of this section is to compare a state-of-the-art breast tomosynthesis

device with a clinical CT device and a micro-CT device based on the example of the

Siemens Mammomat Inspiration, Siemens Somatom Definition AC and the Skyscan

1172 micro-CT. Photos of those devices are shown in Fig. 2.6. They will be compared

in terms of technical parameters and reconstructed images. Some images acquired with

a CR device will be shown as well for an additional comparison.

2.4.1 Technical parameters

The tomosynthesis Siemens Mammomat Inspiration device is equipped with a half-cone

X-ray tube, a fixed detector, an object-support table and a compression paddle. The

tube path, the iso-center and the chest-side of the detector are located in one plane,

which is oriented perpendicular to the detector plane. The rotation iso-center is located

close to the detector, which results in a magnification factor slightly larger than one.

This is used to avoid truncation artifacts caused by a large magnification factor when

the object is projected outside the detector sensitive area. The compression paddle

is needed to compress the examined breast and to avoid motion blur. During an

acquisition the X-ray tube moves along a 50o-arc and the stationary detector acquires

25 low-dose projection images with 2o angular step size. The whole acquisition takes

approximately 30 seconds. The side and the front views of the imaging geometry are

shown in Fig. 2.7. A three-dimensional schematic illustration of the Siemens Mammomat

Inspiration geometry is shown in Fig. 2.8.

In CT, in contrast to DT, a full angular dataset is acquired. This is done by rotating

either the gantry in a clinical CT or the object in a micro-CT. The typical number

of acquired projections is more than a thousand and the angular step size is smaller

than 0.3o. The acquisition time varies from less than one second in CT to up to several

hours in micro-CT. The total radiation dose is higher than in the DT case. A curved

multi-row detector is used in CT, while a flat-panel detector is used in both, micro-CT

and DT devices. The resulting DT raw dataset is about 0.5 GB and it can be up to

several GB in CT and micro-CT. A list of technical parameters is given in Table 2.3.
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(a) Siemens Somatom
definition AS (CT)

(b) Siemens Mammomat
Inspiration (DT)

(c) Skyscan 1172 (micro-CT)

Figure 2.6: Photos of the Siemens Somatom definition AS CT device (a), the Siemens
Mammomat Inspiration tomosynthesis device (b) and the Skyscan 1172 micro-
CT device (c). ((a) and (b) Source: Siemens Healthcare).

2.4.2 Reconstructed images

In full angle tomographic applications, slices are reconstructed perpendicular to the

detector plane, while in DT slices are typically reconstructed parallel to the detector

plane. The slice orientation direction in DT is due to the fact that the limited angular

range limits the in-depth resolution of the reconstructed images. The clinical CT

provides an isotropic resolution (0.6×0.6×0.6 mm), which is not high enough to resolve

microcalcifications in breast imaging or fine trabecular bone structures in the imaging of
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Figure 2.7: A schematic illustration of the tomosynthesis Siemens Mammomat Inspiration
imaging geometry. The detector is fixed and the X-ray tube moves along an
arc trajectory. The orientation of the reconstructed slices is parallel to the
detector. Front and side views of the device are shown.
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Figure 2.8: Three-dimensional schematic drawing of the Siemens Mammomat Inspiration
geometry.

hands. The micro-CT also provides an isotropic resolution up to 20× 20× 20 µm, which

is better than the resolution of CT. Hoverer, the Skyscan 1172 micro-CT is not suitable

for in-vivo imaging because of the long acquisition time and the limited maximum object

size (4 cm3)1. DT provides anisotropic resolution, i.e. the in-plane resolution is high

(0.085× 0.085 mm), while the axial resolution is limited (1 mm). Besides tomographic

1micro-CT devices exist, which are suitable for in-vivo animal imaging, e.g. SkyScan 1076
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techniques, a two-dimensional CR can be used for structure visualization inside an

object. It has the same high in-plane resolution as tomosynthesis but has a poor contrast

and provides no three-dimensional information because of the averaging process. A

schematic illustration of the resolution comparison of CR, DT and CT is shown in

Fig. 2.9.
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y 

(a) CR,
0.085 × 0.085 × ∞

mm

x 

z 
y 

(b) Tomosynthesis,
0.085 × 0.085 × 1

mm

x 

z 
y 

(c) CT,
0.6 × 0.6 × 0.6

mm

Figure 2.9: Illustration showing a resolution comparison of CR (a), DT (b) and CT (c).
CR and DT have a high in-plane resolution. CR provides no three-dimensional
information and DT has a non-isotropic resolution with a limited z-resolution.
CT has isotropic resolution.

The images of a hand produced using CR, CT and DT are shown in Fig. 2.10. In

Fig. 2.10b-Fig. 2.10d a finger region of interest (ROI) is shown and in Fig. 2.10f-Fig. 2.10h

a carpal bone (wrist) ROI is shown. The images confirm visually the abovemetioned

effect of the resolution and contrast. The resolution of the CT images (Fig. 2.10d and

Fig. 2.10h) is not high enough to clearly visualize fine trabecular structures and bone

margins. Images produced using CR (Fig. 2.10b and Fig. 2.10f) and DT (Fig. 2.10c and

Fig. 2.10g) have the same resolution, but CR images have a worse contrast. Additionally,

some limited angle artifacts are present on DT images, which will be discussed later.

Another comparison of reconstructed images is shown in Fig. 2.11. Here, three

micro-CT slices (Fig. 2.11b-Fig. 2.11d) and DT slices (Fig. 2.11e-Fig. 2.11g) of a dried

finger bone are shown. The presented slices are located at approximately the same

height. The micro-CT slices have been averaged to the slice thickness of 1 mm in

order to make them visually comparable to the DT slices. Despite the limited in-depth

resolution of DT, structures are reconstructed in their correct locations. Almost all

structures, which are presented in micro-CT images can be recognized in DT images.

A comparison of the image reconstruction parameters of CT, micro-CT and DT is

presented in Table 2.4.
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(e) ROI carpals (f) CR (g) Tomosynthesis (h) CT

Figure 2.10: Comparison of CR, DT and CT images for region of interest containing fingers
(b)-(d) and carpal bones (wrist) (f-h).
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(a) photo of a finger bone

(b) micro-CT,
slice at 7 mm

(c) micro-CT,
slice at 8 mm

(d) micro-CT,
slice at 9 mm

(e) Tomosynthesis,
slice at 7 mm

(f) Tomosynthesis,
slice at 8 mm

(g) Tomosynthesis,
slice at 9 mm

Figure 2.11: Reconstruction of a finger bone. Comparison of tomosynthesis and micro-CT
slices, which are located at 7 mm, 8 mm and 9 mm height.
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Table 2.3: Technical parameters of the Siemens Somatom Definition clinical CT device,
the Skyscan 1172 Micro-CT device and the Siemens Mammomat Inspiration
DT device.

Parameter CT Micro-CT Tomosynthesis

Angular range θ / deg 360 360 ±25

Angular step size ∆θ / deg 0.3 0.3-0.9 2

Number of projections Nproj > 1000 > 1000 25

Acquisition time / sec 0.1-1 > 3600 30

X-ray tube small cone angle cone-beam half-cone

Trajectory spiral circle arc

Voltage / kV 140 20-100 ≤35

Filter -
Al, Cu, Al+Cu, Rhodium

selected by user (0.05 mm)

Current / mA 100-500 20-100 100-500

Detector type curved, multi-row flat-panel flat-panel

Detector size / mm 2400 54×22 240×300

Detector element size / mm 3 0.022 0.085

Detector size / pix (736× 2)× 16 1280×1280 3584×2816

Raw-data / GB > 1 > 0.5 0.5

Table 2.4: Reconstruction parameters of the Siemens Somatom Definition clinical CT device,
the Skyscan 1172 Micro-CT device and the Siemens Mammomat Inspiration
DT device.

Parameter CT Micro-CT Tomosynthesis

Object size / mm human body 4× 4× 4 200× 300× 100

Number of images (slices) > 1000 > 1000 30-100

Image size / pixels 512×512 1280×1280 3584×2816

Slice thicknes / mm 0.6 0.02 1

Voxel size / mm 0.6× 0.6× 0.6 0.02× 0.02× 0.02 0.085× 0.085× 1

Resolution isotropic isotropic
non-isotropic,

limited in-depth

Image orientation
perpendicular perpendicular parallel

to the detector to the detector to the detector

Reconstruction time / sec real time > 3600 60

Reconstruction / GB 0.1-1 1-10 > 0.8
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2.5 Problems of limited data tomography

A tomosynthesis data acquisition results in an incomplete dataset. In this section several

theoretical aspects of image reconstruction in case of limited data will be discussed.

The tomographic reconstruction problem can be formulated as follows. Let Ω denote

the support of the object (the set of points over which it is nonzero). The non-negative

function µ describes the X-ray attenuation coefficients and is zero outside Ω. If an ideal

infinitely thin monoenergetic X-ray beam with initial intensity I0 passes through the

object along a straight line l, then the measured intensity I after passing the object

will be

I = I0e
−
∫
l µ(s)ds. (2.5)

If we define fL = −ln (I/I0) and assume that L is the set of all lines in Ω, then

fL =

∫
L
µ (s) ds, (2.6)

where s denotes a measure along L. The reconstruction problem is to recover the

unknown function µ based on the set of line integrals fL (Radon 1917, Cormack 1963,

Cormack 1964).

2.5.1 Types of limited data problems

Four types of limited data problems exist, according to the classification by T. Quinto

(Quinto 2012).

? 

(a) exterior CT

? 

(b) limited angle

? ? 

(c) ROI CT

? ? ? 

(d) limited angle
ROI CT

Figure 2.12: Types of limited data according to T. Quinto (Quinto 2012).

The first type is called the exterior CT problem (Fig. 2.12a). Here, only the data

outside an excluded region (marked by a circle) are measured. The task is to recover the
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object outside this region. The second type is called the limited angle CT (Fig. 2.12b).

Only the data within a limited angular range are available. A unique solution exists

but it is very unstable. The third type is called the ROI CT, where measurements are

done within a limited region of interest (marked by a circle). Because of the overlapping

principle of the CT measurements, also the contribution from the object outside the ROI

is included into the measured data. Nevertheless, only the reconstruction of the selected

region of interest is required (Fig. 2.12c). No unique solution exists (Noninjectivity

Theorem). The fourth type is called the limited angle ROI CT. It is a combination of

the second and the third type (Fig. 2.12d). The tomosynthesis problem can be classified

as the second type of limited data problem.

2.5.2 Radon transform and singularities

The Radon transform is the most important transform in the mathematical theory

of tomography. Johann Radon proposed a mathematical technique how to determine

a function based on its line integrals in 1917 (Radon 1917). This paper was later

translated to English (Radon 1986). Allan M. Cormack independently studied the same

problem and published two papers in 1963 and 1964 (Cormack 1963, Cormack 1964).

As he mentioned in the Nobel lecture (Cormack 1979), he learned only fourteen years

later that Radon already had solved this problem in 1917.

Let a direction vector θ belong to a unit sphere θ ∈ Sn−1 and Θ⊥ = {tθ⊥ : t ∈ R} be

a hyperplane through the origin perpendicular to θ. The Radon transform R of a function

f ∈ L1 (Rn) is defined by a line integral over a hyperplane which is perpendicular to

the direction θ with signed distance s from the origin

Rf (θ, s) = Rθf (s) =

∫
Θ⊥

f (x+ sθ) dx, s ∈ R. (2.7)

The X-ray transform P of a function f ∈ L1 (Rn) is defined by a line integral over a line

l (θ, y) which is parallel to the direction θ and which passes through a point y ∈ Θ⊥

Pf (θ, y) = Pθf (s) =

∫
R
f (x+ yθ) dx, y ∈ Θ⊥. (2.8)

In two dimensions, the Radon transform and the X-ray transform differ from each other

only in the parameterization, i.e. they are both defined as a line integral. In three

dimensions, the Radon transform is an integral over a plane and cannot be used to

model tomographic acquisition. The X-ray transform is described as a line integral for

any dimension, and, therefore, is used for modeling. For the properties of the Radon
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and X-ray transforms see e.g. the papers from A. Faridani (Faridani 2003) and E. T.

Quinto (Quinto 2006).

The tomographic reconstruction problem in two dimensions is to find a good approxi-

mation of the function f based on Rf acquired over a unit sphere S1. The tomosynthesis

reconstruction problem is to reconstruct the function f based on Rf acquired on a

restricted subset of a unit sphere S1
θ . Uniqueness of the solution requires an infinite

number of lines be measured. In practice, only a finite number of lines can be measured.

Reconstruction from the limited angle data is more ill-posed than reconstruction from

complete data (Quinto 1993). A unique solution exists but it is unstable. Only certain

features of the object can be reconstructed.

A Singularity of the object is defined as a density jump between material µ1 and µ2

or a boundary between regions with different tissues, i.e. where the density function is

not smooth. Following the works by T. Quinto (Quinto 1993, Quinto 2007) only some

singularities can be stably reconstructed from the limited data. More specific, only

those boundaries of the object can be reconstructed, which can be “seen” by the source.

In other words, there must be an integral measured along a line, which is perpendicular

to the singularity n in the current point, see Fig. 2.13a. Other singularities are called

invisible and cannot be stably reconstructed, see Fig. 2.13b.

μ1 μ2 

Detector 

Visible  
singularity 

n 

(a) visible singularity

μ1 
μ2 

Detector 

Invisible 
singularity 

n 

(b) invisible singularity

Figure 2.13: Illustration of a visible (a) and an invisible (b) singularities of an object.

Based on this principle, it can be demonstrated, which features are reconstructible

in tomosynthesis. Let us consider a virtual two-dimensional phantom, which consists
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of two circles, see Fig. 2.14. The fan-beam X-ray tube is moved along an arc from the

position A to the position B. At each X-ray tube position, it casts two visible points

on each circle. Based on the acquisition measured in the position A, singularities of

the left sphere in points A1 and A2 can be reconstructed, see Fig. 2.14a. Accordingly,

singularities in points B1 and B2 can be restored based on the acquisition from the

position B. The complete movement from A to B makes singularities on circle segments

A1B1 and A2B2 visible. It is important to note, that on each circle a unique set of

points is visible, compare A1B1, A2B2 and A3B3, A4B4.

A B 
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A2 

arc θ 

x 

A3 

A4 

(a) Acquisition in position A

A B 

A1 

A2 

B2 

B1 

θ 

arc θ 

x 

A3 

A4 

B4   

B3   

(b) Complete acquisition from A
to B

Figure 2.14: Illustration of visible and invisible singularities for a two-dimentional to-
mosynthesis fan-beam geometry. (a) The X-ray tube in position A makes
singularities A1 and A2 visible. (b) The acquisition over the arc from A to B
makes singularities A1B1 and A2B2 visible. Different parts of the left and
the right spheres are visible.

In the three-dimensional case, the X-ray tube casts a visible ring on a sphere object.

The orientation of visible rings depends on the position (x, y) and height z of the sphere.

2.5.3 Incomplete Fourier space

The Fourier transform is another major transform in the field of image reconstruction.

The Fourier transform F̂ (ω) of a real or a complex-valued n-dimensional function f(x)
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is defined as the integral

F̂ (ω) =

(
1

2π

)n
2
∫
Rn

f (x)e−iωxdx, (2.9)

and its inverse is defined as

f (x) =

(
1

2π

)n
2
∫
Rn

F̂ (ω)eiωxdω. (2.10)

An alternative definition of the Fourier transform exists, in which the coefficient 2π

is inside the exponent in the integral. This is equivalent to the definition in terms of

ordinary frequency u instead of angular frequency ω

F̂ (u) =

∫
Rn

f (x)e−2πiuxdx, (2.11)

and its inverse is

f (x) =

∫
Rn

F̂ (u)e2πiωxdu. (2.12)

It is also possible to exchange the signs in front of the exponent or to introduce a

coefficient only in front of one equation instead of splitting it symmetrically. Different

definitions in terms of frequencies are possible because of the scaling property of the

Fourier transform which states that the Fourier transform of f (αx) is (1/|α|) F̂ (u/α).

More information about the Fourier transform and its properties can be found e.g. in

(Papoulis 1962).

The Fourier transform is the basis for the Fourier Slice Theorem (FST) (Bracewell 1956,

Merserea 1974), which states that a one-dimensional Fourier transform of measured

projection data F1 {p (ξ)θ} under the direction view θ lies on a line, which crosses the

origin of the two-dimensional Fourier transform of the image F2 {f (x, y)}θ

F2 {f (x, y)}θ = F1 {p (ξ)θ} . (2.13)

A schematic representation of the tomosynthesis measurement process and the filling

of the Fourier space according to the FST are shown in Fig. 2.15. The tomosynthesis

acquisition with an X-ray tube trajectory along an arc θx = ∠AOB covers only the

limited wedge θx = ∠AOB = ∠AωOωBω in the Fourier domain. The incompleteness of

the Fourier domain results in artifacts in the reconstructed images, because information

about features oriented along certain directions is unavailable.
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2.5.4 Tuy-Smith sufficiency condition

Tuy and Smith independently in 1983 and 1985 derived a sufficiency condition for an

object reconstruction (Tuy 1983, Smith 1985). The sufficiency condition states that one

can reconstruct the object exactly if on every plane that intersects the support of the

object Ω there exists at least one X-ray source point. Examples of trajectories which

fulfill the condition are: two orthogonal circles, a spiral or two parallel circles connected

by a line(Buzug 2008). A circular trajectory, which is usually used in micro-CT does

not fulfill the conditions and neither does the tomosynthesis limited angle acquisition

geometry. However, one can find some planes which fulfill the condition, compare

Fig. 2.16.

y 
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θx= ∠AOB x 

A B 

O 

(a) image domain

ωz 

ωx 

Aω 

B ω 

Oω 

(b) Fourier domain

Figure 2.15: Illustration of the incomplete Fourier domain. Only the limited wedge
θx = ∠AOB = ∠AωOωBω is filled during tomosynthesis acquisition along an
arc trajectory.

2.5.5 Artifacts and limited resolution

Although tomosynthesis is a volumetric imaging technique and provides dimensional

information about structures, the complete three-dimensional information about the

object cannot be reconstructed. As it was discussed in the previous section, the

incompleteness of the tomosynthesis projection data results in a missed wedge in the

Fourier space and lost singularities of the Radon transform (Quinto 1993). Furthermore,

the Tuy-Smith sufficiency condition (Tuy 1983, Smith 1985) are not fulfilled. Therefore,
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(b) plane does not fulfill the condition

Figure 2.16: Illustration of a plane which fulfills the Tuy-Smith sufficiency condition (a)
and doesn’t fullfill the condition (b) in tomosynthesis acquisition along an
arc trajectory.

an accurate reconstruction in tomosynthesis is a challenging task. The incompleteness of

the projection data results in artifacts and limits the axial resolution of the reconstructed

volume. Thus, tomosynthesis yields images with an anisotropic resolution.

In the xy-planes artifacts corrupt the appearance of boundaries and might hide fine

structures. Another appearance of limited angle artifacts is that shapes appear distorted

in axial slices and features are surrounded by a sandglass-shaped halo in z-direction. It

is known that the intensity and an artifact spread in z-direction is proportional to the

size and density of the artifact-causing features (Svahn 2007, Reiser 2007, Hu 2008a).

One appearance of limited angle artifacts are out-of-focus artifacts (also called

structural noise) which appear on the target plane and are produced by structures

located above or below the current plane. The formation and propagation of such

artifacts through the volume is shown in Fig. 2.17. The object is an apple with several

metal needles inserted into it parallel to the detector with a 10 mm spacing. At a height

of 48 mm two needles are inserted. On the two-dimensional projection image all six

needles are visible, but the information about their location in z-direction is lost. The

reconstructed results show that all needles are reconstructed on their correct positions,

see the slice at 11 mm (Fig. 2.17c) and the slice at 48 mm (Fig. 2.17e). At the same

time, strong out-of-focus artifacts are presented in the slice at 25 mm (Fig. 2.17e) as
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multiple ghosting copies of needles from slices above and below.

An example of out-of-focus artifacts in clinical images of a hand is shown in Fig. 2.18b.

These artifacts are highlighted by arrows. The structures in the axial slices have a

distorted shape and are surrounded by a triangle-shaped halo (Fig. 2.18c).

Limited angle artifacts limit the diagnostic value of DT images. Therefore a lot of

effort is made to investigate how to improve tomosynthesis performance and obtain

images with better quality.

x 

z 
y 

(a) an apple with metal needles (b) projection image

(c) slice at 11 mm, with
one needle

(d) slice at 25 mm, no
needles

(e) slice at 48 mm, with
two needles

Figure 2.17: Tomosynthesis raw-data and reconstructed slices (Siemens FBP) of an apple
with five needles, 10 mm spacing. Images illustrate a propagation of the
out-of-focus artifacts produced by high-attenuation objects (needles).
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Figure 2.18: The reconstructed volume of a hand shows artifacts in tomosynthesis. (b)
in-plane appearance; (c) axial appearance
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The forward projection (FP) operation is the mathematical model of the physical data

acquisition process in computed tomography and tomosynthesis. The backprojection

(BP) operation is the corresponding reverse model. The forward- and backprojection pair

is a key module in reconstruction algorithms. In any iterative reconstruction algorithm

this pair is used during each iteration at least once, therefore an optimal practical

implementation is required to be fast, accurate and memory efficient. For the practical

numerical implementation of the forward and backprojections, a continuous object has

to be discretized, i.e. it has to be represented by a finite number of parameters.

This chapter addresses three problems: how to model the discrete representation of

the continuous object, how to model the forward and backprojections operation and how

to practically implement it efficiently and accurately. First, an image representation

using square non-overlapping pixels and overlapping spherically symmetric Kaiser-Bessel
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functions (blobs) will be discussed in this chapter. Second, a literature review of

existing forward and backprojection models for both types of basis functions will be

presented. Finally, a practical implementation strategy for a state-of-the-art algorithm

called distance-driven will be given. First, the implementation will be discussed for

two-dimensional fan-beam CT geometry for pixels and blobs. Then, the algorithm for

pixels will be extended to the three-dimensional cone-beam CT geometry and adapted

for the tomosynthesis with the fixed detector.

3.1 Discrete image representation using series expansion

For a numerical implementation of the iterative reconstruction algorithms a continuous

object has to be discretized, i.e. represented as a finite set of points. The choice of the

representation model is important because it influences the accuracy of the reconstructed

image and the speed and the computational complexity of the algorithm. For example,

the set of points fi can be a set of sampling points. A value at any arbitrary position

is calculated using an interpolation operator. Alternatively, the set of points can be a

set of series expansion coefficients (Hanson 1985). In many works on CT the discrete

image representation is not discussed. In fact, it has been overseen that the choice of

the discrete image representation has its own contribution to the reconstructed image

quality. The focus of this chapter is the series expansion approach using basis function.

Let f̂ (x) be a discrete approximation of a continuous three-dimensional distribution

of the X-ray attenuation coefficients f (x). The discrete approximation is defined at the

spatial positions x. It can be represented as a linear combination of scaled and shifted

copies of some basis functions

f (x) = f̂ (x) ≈
N∑
i=1

cibi (x− xi) . (3.1)

Here, {ci}Ni=1 is a set of expansion coefficients, {b (x)}Ni=1 is set of known basis functions,

arranged on the a three-dimensional grid with N total number of grid points xi. It is

important to note that especially in case of overlapping basis functions, the expansion

coefficients c are not equal to the sampling values of the function f .

Based on a classification with respect to the spatial support, two different kinds

of basis functions exist. Basis functions with an unlimited support are called global

basis functions, for example exponential basis functions of the Fourier series expansion.

Another type of basis functions are local basis functions. They are localized in space

and are zero-valued outside a limited support. The focus of the further discussion will
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be only on the local basis functions. Several different choices of the local basis functions

exist. This choice will define the complexity of the involved mathematical calculations

and, therefore, the speed of the algorithm. Contrary, a simple model could be fast but

it might lack high accuracy.

A traditional choice for basis functions are non-overlapping pixels or voxels for the

two-dimensional and the three-dimensional case, respectively. A pixel basis function has

a value equals one inside a square and zero outside. Another choice may be generalized

Kaiser-Bessel functions, also known as blobs (Lewitt 1992). They are localized in space

as are voxels. A smooth bell-shaped radial profile and the overlapping nature of blobs

allows for creating a smooth representation of naturally smooth biological objects. The

X-ray integrals of blobs can be calculated analytically. The spherical symmetry of blobs

and their X-ray transforms allows for efficient calculation of line integrals. At the same

time, the overlapping degree increases the computational complexity.

R. M. Lewitt (Lewitt 1992) mentioned that the spherical Gaussian function have

also a number of attractive properties: its Fourier transform and its projection are

Gaussian. However, this function is not completely localized in space and must be

truncated for the practical implementations. The truncated version of the Gaussian

function does not have abovementioned properties anymore. Another alternative choice

of the basis function may be b-splines (Entezari 2012). For the comparison of the bias

introduced by blobs and b-spline basis functions see (Schmitt 2012). In the rest of the

chapter the discussion will be limited by considering only the pixels and the blob basis

functions.

Not only the choice of the basis functions is important. It is also important to

choose the model how to evaluate the basis functions in forward- and backprojection

operations. A realistic modeling provides better image quality but, at the same time, it

increases the complexity of algorithm. Both, the choice of the basis function type and

the choice of the evaluation method is always a compromise between the accuracy and

complexity of practical implementation.

3.2 Pixel basis functions

Let a grid be a three-dimensional regular uniform Cartesian grid (simple cubic grid)

with a grid increment ∆. A pixel basis function is non-zero only in the local region,

described by the corresponding spatial location. It can be described as

b (x) =

{
1, |x| < ∆/2

0, otherwise
. (3.2)
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A profile of the basis function is shown in Fig. 3.1a. A function approximated by pixels is

piece-wise constant, see Fig. 3.1b. In general, an image approximation by square pixels

in terms of series expansion is equivalent to the nearest neighborhood interpolation.
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Figure 3.1: Pixel basis function. (a) a profile of a pixel; (b) a signal approximation using
pixels.

An analytical formula of the Radon transform of the pixel basis function is given by
g (ρ, θ) = 0, x1 > 0

g (ρ, θ) =
√

22 + (x1 − x−1)2 = 2
cos θ , x1 < 1 and x−1 < 1

g (ρ, θ) =
√

(1− x1)2 + (1− x−1)2, x1 < 1 and x−1 > 1

(3.3)

where x1 and x−1 are intersections between boundaries y = −1, y = 1 with the line

p = x cos θ−y sin θ. The detailed derivation of this formula can be found in the appendix

B of (Toft 1996). The pixel basis function is the easiest and most popular choice for basis

functions for the image representation and modeling of the forward and backprojection

operators in many tomographic imaging techniques.

3.3 FP/BP algorithms for pixel basis functions

The importance of a fast and efficient implementation of the forward- and backpro-

jection algorithms was recognized quite soon after the establishment of the computed

tomography. One of the first projector routines mentioned in the literature can be found

in the RECLBL Library Package (Huesmanand 1977), namely the pixel-driven and the

ray-driven approaches. These two approaches have mostly remained as the basis for all

subsequent versions.
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The pixel-driven principle is the simplest algorithm (Peters 1981). Each pixel is

visited in a loop and the center of each pixel is projected on the detector according to

the geometry, see Fig. 3.2a. For the pixel-driven forward projection a contribution of

the pixel is split between two neighboring detector elements using typically a linear

interpolation, or more complex interpolation schemes, e.g. bicubic spline interpolation

(Harauz 1983). Fessler et al. (Fessler 1997a) proved the equivalence of the pixel-driven

and a rotation-based approaches. This paper was rejected by IEEE Transactions on

Medical Imaging as being “too obvious”. The pixel-driven forward projection is rarely

used because it tends to introduce high-frequency artifacts to the sinogram. If the

detector element size is much smaller than the pixel element size, there is a danger to have

detector elements in which no value is written. In a similar manner, in the pixel-driven

backprojection, each pixel element is updated based on the value which is obtained from

the neighboring detector elements, typically using linear interpolation. The pixel-driven

backprojection is preferred for FBP reconstruction. The variations of the pixel-driven

method exist, e.g. when each pixel is divided into four sub-pixels for higher accuracy.

Alternatively, a technique called splatting has been developed to reduce aliasing artifacts

by means of casting a smooth footprint for each pixel (Mueller 1998b, Birkfellner 005).

Typically, all modifications introduced into the original algorithm result in higher

computational costs.
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Figure 3.2: Models of forward and backprojectors for pixel basis functions. (a) pixel-driven;
(b) ray casting; (c) distance-driven; (d) trapezoid footprint.

In the ray-driven (ray casting) approach the X-ray source and the detector elements

are connected by straight lines according to the acquisition geometry, see Fig. 3.2b.

The projection value is calculated as a weighted sum of all pixels that lie on the
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line. The backprojection operator can be defined as the transpose of the forward

projection operator. A value from the detector element is back-distributed along the line

using some weighting. The exact type of the weighting varies with different methods,

but mainly intersection length between each pixel and the ray is considered, see e.g.

(Gullberg 1985). The ray-driven backprojection typically results in high-frequency

artifacts in the image (the Moire pattern). Two classical ray-driven approaches are

Joseph’s algorithm (Joseph 1982) and Siddon’s algorithm (Siddon 1985). P. M. Joseph

proposed to use the linear interpolation between pixels in the ray to increase the accuracy

of the projectors. R. L. Siddon developed the exact fast algorithm for calculating the path

length of the ray through each pixel by considering that the volume can be described as

an intersection of orthogonal sets of parallel planes. Recent works improve the Siddon’s

method by accelerating it (Jacobs 1998, Christiaens 1999, Zhao 2003, Gao 2012).

A variant of the ray casting algorithm is a strip-integral based method. The ray

is assumed to have some width which is typically equal to the detector element size.

The contribution from a pixel to the detector element is equal to an integral over the

strip-shaped intersection area between the beam and the pixel, see e.g. (Lo 1988). The

authors proposed to use a triangle subtraction method for the calculation of the strip

integral.

Iterative reconstruction methods require that the forward and backprojection meth-

ods are the transposed of each other. This is called a matched projector pair. However,

both methods, the pixel-driven and the ray-driven, introduce artifacts either in the

sinogram or in the image domain. Those artifacts might be amplified through each

iteration. This leads to an idea to combine the pixel-driven backprojector and ray-driven

projector resulting in an unmatched projector pair. It was shown that in some cases

the unmatched pair has better performance than the matched pair. For the analysis of

the effects of usage the unmatched pairs is used see e.g. (Zeng 2000, Guedouar 2010).

Alternative projectors include Fourier-based methods (Tabei 1992), the “natural”

pixel decomposition (Buonocore 1981, Bevilacqua 2007), projectors with different inter-

polation methods (Xu 2006) and the usage of the projection matrices (Galigekere 2003).

A fundamentally different approach called distance-driven was proposed by B. De Man

for two dimensions in 2002 (De Man 2002, De Man 2003) and was afterwards extended

to the third dimension (De Man 2004). In this approach the pixel footprint is approxi-

mated by a rectangle, see Fig. 3.2c. The pixel boundaries and the detector boundaries

are considered in this approach instead of the pixel and the detector centers. The bound-

aries are projected onto a common axis according to the acquisition geometry and the

overlap length is used as a weighting coefficient. The distance-driven approach has low
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arithmetic costs and avoids high-frequency artifacts in both, the forward- and backpro-

jectors. The distance-driven approach has the most inaccuracy at 45o because the pixel

footprint is rather a triangle than a rectangle at this view. In order to take into account

a more accurate pixel footprint shape, Long et al. (Long 2010a, Long 2010b, Long 2011)

proposed an algorithm based on the separable trapezoid footprints, Fig. 3.2d. A GPU

acceleration of this projector can be found in (Wu 2011). The distance-driven and the

separable trapezoid footprints algorithms are two state-of-the art algorithms.

3.4 Kaiser-Bessel basis functions (blobs)

The Kaiser-Bessel basis functions (blobs) are known as an attractive alternative to the

pixel basis functions. They have been introduced into the field of medical imaging

by R. M. Lewitt (Lewitt 1990). They are used in electron microscopy (Marabini 1998,

Garduno 2004), positron emission tomography (PET) (Chlewicki 2004, Jacobs 1999b),

single-photon emission tomography (SPECT) (Yendiki 2004, Wang 2004) and transmis-

sion tomographic techniques such as CT (Jacobs 1999a, Carvalho 2003, Zbijewski 2006,

Isola 2008) and breast tomosynthesis (Wu 2010). Alternatively, one can find an ap-

plication of a blob-shaped window function for the post-backprojection filtering to

improve the pixel-based reconstruction (Zhang 2006a). One of the latest application of

blobs is a derivation of the differential forward operator for the phase contrast imaging

(Köhler 2011).

3.4.1 Properties of the blobs

The generalized Kaiser-Bessel basis function is a spherically symmetric basis function

with a local support, see Fig. 3.3. It is defined as

b (r)m,α,a =


Im

(
α
√

1−( ra)
2
)

Im(α)

(√
1−

(
r
a

)2)m
, 0 ≤ r ≤ a

0, otherwise

, (3.4)

where Im is a modified Kaiser-Bessel function of the order m and r is the radial distance

from the center of the blob. An image approximated by blobs is smooth, see Fig. 3.3b.

The taper parameter a defines the support size (radius) of the blob, see Fig. 3.4a. The

blob radius is measured in the grid size step units. Blobs with larger radius have an

overlap with more neighboring blobs. The larger the area of overlap, the larger the

computational demand. The parameter α controls the shape of the blob bell. The

smaller the value of this parameter, the wider the shape of the blob, see Fig. 3.4b. The
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Figure 3.3: Different representations of a blob basis function with parameters a = 2, m = 2,
α = 10.8. (a) a profile of the blob; (b) a signal approximation approximation
using blobs; (c) representation of the blob as an image; (d) representation of
the blob as a surface.

order of the Kaiser-Bessel function m defines the continuity of the resulting image and

its derivatives. It has also an influence on the shape of the bell, see Fig. 3.4c. But this

effect is less significant than the influence of the parameter α.

For the special case of the rotationally symmetric function bmn , the n-dimensional

Fourier transform b̂mn can be expressed as the Hankel relation (Lewitt 1990)

b̂mn (R) =
2π

Rn/2−1

∫ ∞
0

bmn (r)Jn/2−1 (2πRr) rn/2dr. (3.5)

A substitution of the integration variable from θ to r = a cos θ and taking into account

the relation between Bessel functions

Iv (z) = e−iv2π/2Jv (iz) (3.6)
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Figure 3.4: Influence of the blob parameters on the shape and size of the blob. (a) a controls
the radius; (b) α controls the bell wideness; (c) m controls the continuity order
of the image and the bell wideness.

lead to an integral which, according to R. M. Lewitt, has a form of “Sonine’s second

finite integral”

b̂mn (R) =
2πi−m

Im (α)

an/2+1

Rn/2−1

π/2∫
0

Jm (iα sin θ) Jn/2−1 (2πaR cos θ) cos θn/2 sin θm+1dθ. (3.7)

The resulting expression of the Fourier transform obtained from this integral is

b̂mn (R) =


(2π)n/2anαm

Im(α)

In/2+m

[√
α2−(2πaR)2

]1/2
{
[α2−(2πaR)2]

1/2
}n/2+m , 2πaR ≤ α

(2π)n/2anαm

Im(α)

Jn/2+m[(2πaR)2−α2]
1/2{

[(2πaR)2−α2]
1/2
}n/2+m , 2πaR ≥ α.

(3.8)

The obtained Fourier transform of the blob basis functions is rotationally symmetric.

The parameter m controls the decay rate and the parameter α controls the amplitude of

the Fourier transform. The one-dimensional case with parameters m = 0, n = 1, α = 0

simplifies the blob function to the well-known rect function. The Fourier transform

(equation 3.8) derived in terms of the definition of the blob function (equation 3.4) is

simplified to the well-known Fourier transform of the rect function

b̂m=0
n=1 (R) ∝ sinx

x
(3.9)



52 Chapter 3. Forward and backprojections

if the following relation

J1/2 (z) =

√
2

πz
sin z (3.10)

is taken into account (Lewitt 1990).

The function is called effectively band limited within a spectral radius A at the level

ε if the following equality holds (Lewitt 1990, Jacobs 1999a)

∫
‖R‖<A

∥∥∥b̂ (R)
∥∥∥2
dR∫

‖R‖<∞

∥∥∥b̂ (R)
∥∥∥2
dR

= 1− ε. (3.11)

The two-dimensional Fourier transform of a two-dimensional blob function with

parameters m = 2, a = 2, α = 10.83 is shown in Fig. 3.5a at a logarithmic scale. A

radial line profile of the Fourier transform is shown in Fig. 3.5b. The Fourier transform
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Figure 3.5: Two-dimensional Fourier transform of a two-dimensional blob function with
parameters: m = 2, a = 2, α = 10.83. (a) representation as an image at a
logarithmic scale; (b) the radial line profile

of this blob (m = 2, a = 2, α = 10.83) is effectively band limited within the spectral

radius of A = 1 at the level ε = 0.008.

The X-ray transform of a blob basis function is given by

p (s) = 2

∫ (a2−s2)
1/2

0
bmn

[(
s2 − t2

)1/2]
dt. (3.12)
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R. M. Lewitt (Lewitt 1990) shows that the resulting expression is

p (s) =
a

Im (α)

(
2π

α

)1/2 [√
1− (s/a)2

]m+1/2

Im+1/2

[
α

√
1− (s/a)2

]
, (3.13)

where s is a distance from the blob center to the X-ray and
√
a2 − s2 is one half of

the intersection length between the blob and the ray, see Fig. 3.6a. This is typically

called the footprint of a blob. The projection value through the blob depends only on

the distance s and does not depend on the angular direction. A radial profile of the

X-ray transform of the blob basis functions for m = 2, a = 2 and varying parameter α

is shown in Fig. 3.6b. Further discussion on the blob basis functions can be found in

(Lewitt 1990).
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Figure 3.6: X-ray transform of the blob basis function. (a) a schematic representation
of an intersection of an X-ray and a blob; (b) a radial profile of the X-ray
transform (projections) of the blob basis functions for m = 2, a = 2 and
varying parameter α.

3.4.2 Finding the optimal parameters a, α, m

The shape of the blob must be optimized for the practical implementation. One

optimization strategy is based on the constraint function representation (Matej 1996).

It is logically to assume, that the blob shape should be selected in a way to represent a

constant function with the minimum error

f (x, y) = const =

N∑
i=1

cibi (x− xi, y − yi) . (3.14)
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Let a uniform function f(x, y) be discretized using a two-dimensional grid of 30 × 30

nodes with a node spacing ∆image=1. Let us construct a series expansion representation

of this function using blob basis functions. Typically, it is desired to have a continuous

image with the continuous derivative, therefore the parameter n = 2 is chosen. The

radius of the blob defines the overlap area with neighboring blobs and is selected in

a way, that the FWHM of the blob is not larger than the data resolution. For the

numerical implementation, blobs also have to be discretized. Let blobs be discretized

on a finer grid with node spacing ∆blob = 0.05. The superposition of too narrow blobs

(m = 2, a = 2, α = 15) results in an image with gaps, see Fig. 3.7a. Too wide blobs

(m = 2, a = 2, α = 3) also result in oscillations in the image, see Fig. 3.7c. At the same

time, if parameters are optimal m = 2, a = 2, α = 10.8, the representation of a uniform

function is close to a constant value, see Fig. 3.7b.
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Figure 3.7: Constant function representation using (a) a narrow blow m = 2, a = 2, α = 15;
(b) an optimal blob m = 2, a = 2, α = 10.8; (c) a wide blob m = 2, a = 2,
α = 3

The contour representation of the root mean squared error in percent between the

constant-valued function and its approximation is shown in Fig. 3.8. The blobs with

m=2 and selected pairs (α, a) were used as basis functions. Based on this plot, the

optimal blob taper parameters for the radius a = 2 is α = 10.8.

Another strategy to find optimal parameters for blobs is based on the Fourier

transform (Matej 1996). It is known, that the Fourier transform of a constraint-valued

function is an impulse at the origin. If ∆image is the lattice interval of the periodic grid,

then the Fourier transform of the basis function must be zero for the radial frequency

R = 1/∆image. Apparently, the blob with parameters found based on the constant

function representation fulfills this condition, see Fig. 3.5b.
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Figure 3.8: The contour representation of the root mean squared error in percent between
the constant-valued function and its approximation using the blob (m=2) as
basis functions. The optimal blob taper parameters for the radius a = 2 is
α = 10.8.

Another problem which must be addressed is the optimal grid layout for blobs. The

Cartesian grid, which is natural for cubic voxels, is not natural for blobs. The different

distances between the nodes in the horizontal/vertical and the diagonal directions

make this grid inefficient in case of blobs. The alternative body-centered and face-

centered cubic grids might be better suitable for image representation using blobs

because they have a better packing efficiency1 and a smaller number of blobs is required

(Lewitt 1992, Garduno 2004). In general, the question of efficient packing of spheres,

called Kepler conjecture (Marchal 2011) is still unproved and in dimensions bigger than

three is still unsolved.

3.5 FP/BP algorithms for blob basis functions

3.5.1 Ray tracing through grid of blobs

A first design of the forward/backprojection operation for blobs was proposed in 1996

by S. Matej and R. M. Lewitt (Matej 1996). The authors discussed two methods, the

ray-driven and the blob-driven. Later, Popescu et. al (Popescu 2004) proposed two

different methods for ray tracing through a grid of blobs: without direct tracking of the

distance along the ray and with tracking of the distance along the ray.

The ray-driven forward- and backprojector for blobs are also based on drawing a

beam from the X-ray source to each detector element. The difference to the ray-driven

1regarding the sphere packing the reader might be referred to the solid-state physics topic
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algorithms for pixel basis functions is that not the intersection length is of interest

but the distance between the ray and the center of each visited blob. Because of the

overlapping property, more blob elements will contribute to the selected ray compared

to the number of pixel elements in the similar case. All blobs which belong to a cylinder

centered around the beam will contribute to that beam (Matej 1996), see Fig. 3.9.

y 
x 

(a) 2D grid of blobs

x 
z 

y 

(b) 3D grid of blobs

Figure 3.9: Ray tracing through grid of blobs in (a) 2D and (b) 3D. Blobs which contribute
to the beam are lying within a rectangle in 2D and a cylinder in 3D.

To use a lookup table of X-ray integrals, a fast algorithm to compute the distance

s between the ray and each visited blob is required. The algorithm without direct

tracking of the distance works as follows. If the ray direction is described by a point

a = [a1, a2, a3] and the direction u = [u1, u2, u3], |u| = 1, then the squared distance r2

to any blob center located at xi1,i2,i3 is defined as a squared cross-product

r2 = [(x− a) ,×u]2 =

∣∣∣∣∣∣∣
e1 e2 e3

x1 − a1 x2 − a2 x3 − a3

u1 u2 u3

∣∣∣∣∣∣∣
2

=

r2
23 + r2

32 + r2
12,

(3.15)

where

ri1,i2 = (xi1 − ai1 )ui2 − (xi2 − ai2 )ui1 = di1 i2 − di2 i1 (3.16)

with

di1i2 = (xi1 − ai1 )ui2 . (3.17)
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Each grid point x can be described as x = x0 + ∆xi. Then di1i2 has two components: a

constant component (x01 − a1)u2 and the incremental component ∆xu2.

Alternatively, based on the distance-driven algorithm for pixels, one can create a

similar algorithm for blobs, resulting in an efficient implementation of strip-integral

based algorithms (Levakhina 2010, Bippus 2011). The three-dimensional version of the

blob-based forward and backprojection operators for blobs in the divergent cone-beam

geometry using separable footprints was proposed by Ziegler et al. (Ziegler 2006). In

the blob-driven approach, each blob is processed sequentially and the projections values

are updated by adding the contribution from each corresponding blob (all projections

lines which intersect the blob). Nowadays it is the state-of-the-art algorithm. Recently,

several GPU accelerated implementations of the projectors for blob basis functions have

been proposed (Wang 2010, Bippus 2011).

3.5.2 Lookup table calculation

A line integral through the blob basis function depends only on the distance s from the

blob center to the integration line and has no dependency on the projection angle, see

equation 3.13. The attractive spherical symmetry property allows for the pre-calculation

of X-ray integrals and storing p(s) as a look-up table (LUT) on a pre-selected fine grid of

distances s ∈ [0, a]. For the ray-driven approach a LUT of line X-ray integrals is needed.

For the strip-integral based approach (distance-driven approach) the LUT of areas of

x-ray integral is needed. In the practical case, the line integral can be calculated using

the analytical expression given in equation 3.13. Alternatively, it can be numerically

approximated using equation 3.12. This can be done in MATLAB® e.g. using an

adaptive Simpson quadrature which is implemented as a build-in function quad, see

Listing 3.1. The LUT for area integrals can be easily calculated using the LUT of line

integrals and the area rectangle method, trapezoidal rule, Simpson’s rule or any other

method for numerical integration. Using area integrals parea(t), where parameter t

defines all possible distances to the blob center

parea(t) =

∫ t

−∞
p(s)ds, t = −(a, a) (3.18)

a particular strip integral pstrip from t1 to t2 can be calculated as a difference of two

corresponding area integrals

pstrip =

∫ t2

−t1
p(s)ds = parea(t2)− parea(t1). (3.19)
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Listing 3.1: MATLAB® code for an approximation of the x-ray integral through the blob

using quad function

1 function [xray integral] = do xray integral(m, a, alpha blob, s)

2 % tthis function evaluates a line integral through a blob basis ...

function at a distance s from the blob center.

3 quad blob = 2 * quad(@define blob,0,sqrt(aˆ2−sˆ2));
4 function y=define blob(t) % define a blob formula

5 Im1 = besseli(m,alpha blob);

6 r=sqrt(s.ˆ2+t.ˆ2);

7 arg = sqrt(1−(r/a).ˆ2);
8 Im2 = besseli(m,alpha blob*arg);

9 y =Im2./Im1.*((arg).ˆm);

10 end

11 end

3.6 Efficient distance-driven projector in 2D

In this section an efficient implementation of the distance-driven projector in two-

dimensions will be described. The implementation is designed for MATLAB®.

3.6.1 General strategy

For simplicity, the implementation is described in the image coordinate system and not

in the world coordinate system. All coordinates and lengths are given in image pixels

and not in millimeters. The recalculation between the world coordinate system and the

image coordinate system are trivial and not discussed here. Only the implementation of

the forward projection will be given. The backprojection is defined to be adjoint1 to

the forward projection, i.e. it uses the same weighting coefficients.

The image is located in the first quadrant of the Cartesian coordinate system. The

center of the left bottom pixel is located at (1, 1)2 and the bottom left pixel boundary

(corner) is located at (0.5, 0.5). It is assumed that the geometry of the detector is known

and the coordinates of the detector boundaries are pre-calculated and saved as two

vectors. Furthermore, the starting position of the X-ray tube, the geometry of the

rotation and the image size and the detector size are know. Additionally, for the blob

basis the blob parameters are known and the LUT of area integrals is pre-calculated.

1The corresponding system matrix is transpose of the forward projection system matrix A.
2This is done because matrix indexing in MATLAB® starts at (1,1). In other languages (e.g. C++)

it might be (0,0).
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All in all, it is assumed that the following parameters are given or pre-calculated based

on the acquisition geometry:

• (xstartt , ystartt ) are coordinates of the X-ray tube in the starting position;

• (xstartd , ystartd ) are vectors of the detector boundaries in the starting position;

• Np is the number of pixels in a row (column) in the image;

• Ndet is the number of detector elements;

• (xiso, yiso) are the coordinates of the rotation iso-center;

• θ is an angle between x-axis and the normal vector of the x-ray beam;

• lut area blob is the lookup table of the blob area integrals.

Before the distance-driven algorithm for the current view can start, the tube and the

detector must be rotated around the iso-center by angle θ (e.g. anticlockwise){
x =

((
xstart − xiso

)
cos θ −

(
ystart − yiso

)
sin θ

)
+ xiso

y =
((
xstart − xiso

)
sin θ −

(
ystart − yiso

)
cos θ

)
+ yiso.

(3.20)

In MATLAB® the vector of the detector boundaries can be efficiently rotated using

the vectorized implementation.

Basically, the distance-driven routine for pixels consists of mapping the pixel and

detector boundaries onto a common axis (Fig. 3.10a) resulting in a set of mapped pixel

boundaries {pj} and a set of mapped detector boundaries {di}.The overlap length is

used as a weighting for the contribution of the pixel pj1j2 into the detector entry di1i2{
d12 = p12(d2−p1)

(d2−d1) L

d23 = p12(p2−d2)+p23(d3−p2)
(d3−d2) L

. (3.21)

The algorithm for blobs is similar to the algorithm for pixels, however, some

modifications have to be done. A LUT of line integrals must be pre-calculated and the

overlapping nature of blobs has to be taken into account (Fig. 3.10b). Instead of the

simple intersection length, a k-th subarea S
bj
k of the blob bj is used as the weighting

coefficient of the contribution of the blob bj into a detector entry di1i2 d12 =
S
b1
1 b1

(d2−d1)

d23 =
S
b1
2 b1+S

b2
1 b2

(d3−d2)

. (3.22)

The pixel-based and blob-based distance-driven forward projector is summarized in

algorithm 3.1 and algorithm 3.2.



60 Chapter 3. Forward and backprojections

p12 p23 

θ α x 

d1 d2 d3 p1 p2 

L 

(a) pixel

b2 

x 

b1 b1
1S

b1
2S

(b) blob

Figure 3.10: The distance-driven principle for (a) pixel basis function; (b) blob basis
function.

Algorithm 3.1: Two dimensional distance-driven forward projector for pixel basis
functions

Input: image, geometry description
Output: sinogram

1 for all angular views θ do
2 rotate the detector and the X-ray tube to the new position;
3 map detector boundaries onto the common axis;
4 for all image rows do
5 map pixel boundaries onto the axis;
6 for for all projected points do
7 find the length of each overlap ;
8 write the weighted pixel value into the detector element;

3.6.2 Unification of four angular cases

The choice of the common axis for boundaries mapping depends on the angular view θ
case 1 : 7π

4 ≤ θ ≤ π
4 map to x-axis;

case 2 : π
4 < θ < 3π

4 map to y-axis;

case 3 : 3π
4 ≤ θ ≤ 5π

4 map to x-axis;

case 4 : 5π
4 < θ < 7π

4 map to y-axis.

(3.23)

Instead of implementation of four different code parts for each case, the algorithm can

be generalized. In this subsection a trick will be shown how this generalization can
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Algorithm 3.2: Two dimensional distance-driven forward projector for blob basis
function

Input: image, geometry description, blob parameters, LUT
Output: sinogram

1 for all angular views θ do
2 rotate the detector and the X-ray tube to the new position;
3 map detector boundaries onto the common axis;
4 for all image rows do

// take into account the overlap of blobs ;
5 map left boundaries onto the axis;
6 map blob centers onto the axis;
7 map right boundaries onto the axis;
8 for for all projected points do
9 find the length of each overlap and its location with respect to the blob

center ;
10 retrieve the x-ray integral from the LUT ;
11 write the weighted pixel value into the detector element;

be implemented. Depending on the chosen axis, the calculations of all intersection

points and the distance-driven routine require different formulas. However, it is possible

to reduce the computation to a set of general formulas, which can be used in each

case with properly adapted parameters. For the calculations two images are used:

the original image img for the case of x-axis and the transposed and flipped image

img y=flipud(fliplr(img')) for the case of y-axis. Two mapping functions are

defined mapp2x and mapp2y, see Listing 3.2. The mapping functions have to be used

in the similar way to map the detector boundaries detx=mapp(xt,yt,xd,yd) and

pixel boundaries pix=mapp(xt,yt,xp,yp). Here, (xt, yt) is the X-ray tube position,

(xp, yp) are vectors with the pixel boundaries coordinates and (xd, yd) are vectors

with coordinates of the detector elements boundaries.

Listing 3.2: Matlab code for mapping function to x-axis and y-axis

1 function [y] = mapp2y(x1,y1,x2,y2)

2 y=y1−x1.*(y1−y2)./(x1−x2);
3 end

4 function [x] = mapp2x(x1,y1,x2,y2)

5 x=−(y1).*(x1−x2)./(y1−y2)+x1;
6 end

These functions construct a line connecting the X-ray source (xt, yt) and the detector
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(pixels) boundaries and extend this line until it intersects the x-axis (y-axis). The

output of the functions (detx, pix) are vectors with those intersection points. This

way, boundaries are mapped onto the axis.

The interception length L between the ray defined by θ and the image row is{
L = ∆p

cos θ , if case 1 or case 3;

L = ∆p
sin θ , if case 2 or case 4.

(3.24)

For the fan-beam geometry, beside the intersection length L of the central beam, the

divergence has to be taken into account. For each beam in the fan a different intersection

length must be calculated, see Listing 3.3.

Listing 3.3: Correction of the intersection length L for the divergent geometry

1 if case x==true

2 for idx =1:ndet;

3 L1(idx)=sqrt((xt−detx(center det)).ˆ2+(yt−0).ˆ2)...
4 /sqrt((xt−detx(idx)).ˆ2+(yt−0).ˆ2);
5 end

6 elseif case y==true

7 for id =1:ndet;

8 L1(idx)=sqrt((xt−0).ˆ2+(yt1−detx(center det)).ˆ2)...

9 /sqrt((xt−0).ˆ2+(yt1−detx(idx)).ˆ2);
10 end

11 end

12 L=L./L1; % a correction is different for each beam in the fan

Beside the choice of the mapping axis and the length through the pixel L, the

difference between those four cases is the order of the projected detector elements. In

case 3 and case 4, the order of projected detector boundaries is reversed with respect to

the order of projected pixel boundaries. The order of projected pixel boundaries always

coincides with the positive direction of the common axis, while the order of the detector

boundaries in the case 3 and the case 4 is opposite to the positive direction of the axis,

see Fig. 3.11. Therefore, when running a loop over all intercepts1, the starting detector

index det idx start and the increment of the detector index det idx inc depend on

the angular case{
det idx start = 1, det idx inc = +1, if case 1 or case 2;

det idx start = N det, det idx inc = −1, if case 3 or case 4.
(3.25)

1The term intercept has been used by Bruno de Man in his original paper (De Man 2004)
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The starting pixel index and the increment of the pixel index are always equal one

pix idx start = 1, pix idx inc = +1.

It is defined that the index of the current detector corresponds to the index of its

projected left boundary. However, in case 3 and case 4, the geometry is flipped and the

starting boundary is the very right boundary. Therefore, in order to correct for this,

two an additional parameters c1 and c2 are needed{
c1 = 0, c2 = 1 if case 1 or case 2

c1 = 1, c2 = 0 if case 3 or case 4
. (3.26)

Their role will be shown in the next subsection.

1 2 3 4 

7π/4 π/4 

1 2 3 1 2 3 x 

Image row 

(a) case 1

y 

1 

2 

3 

4 

π/4 

3π/4 

1 

2 

3 

1 

2 

3 

Im
ag

e 
co

lu
m

n
 

(b) case 2

1 2 3 4 

3 2 1 3 2 1 

3π/4 5π/4 

x 

(c) case 3

3 

2 

1 

3 

2 

1 

5π/4 

y 

(d) case 4

Figure 3.11: Drawings of four angular cases. The axis for mapping is the x-axis in the
case 1 and case 3 and the y-axis in the case 2 and case 4. In case 3 and case
4, the order of projected detector boundaries is reversed with respect to the
order of projected pixel boundaries and the positive direction of the axis.

3.6.3 The sweep line principle for pixels

The result of the mapping of the pixel boundaries and detector boundaries onto a

common axis is two vectors of values, rowx and detx, correspondingly. To run a loop

over the projected pixel boundaries and detector boundaries i.e. through all intersects,

these two vectors must be merged together, i.e. via pre-sorting. In order to run the loop

on-the-fly without pre-sorting, a concept of the sweep line or the moving left boundary

is proposed. This line separates processed and non-processed mapped values. It always

points to the left-hand side coordinate of the current overlapping interval. At each

loop step, the running left boundary is either moved to the value of the pixel-related

vector rowx or to the value of the detector-related vector detx. The decision where to

move the line is done based on the relationships between the boundaries of the previous,
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current, and next pixel and the previous, current, and next detector. In the following

the initialization of the sweep line and the moving algorithm will be described.

For the initialization of the sweep line, the first meaningful intercept must be detected.

There are two cases possible: some detector boundaries mapped where no pixels are

present (Fig. 3.12a) or some pixel boundaries are mapped outside the detector area

(Fig. 3.12b).

x 
p1 d1 

(a) detectors are outside

x 
p1 d1 

(b) pixels are outside

Figure 3.12: Two cases after mapping the boundaries (a) some detector boundaries mapped
where no pixels are present ; (b) some pixel boundaries are mapped outside
detector area.

To identify these cases the distance between the first mapped detector boundary

d1=detx(det idx start) and the first mapped pixel boundary p1=rowx(pix idx) is

calculated d1 − p1. If the distance is negative and its absolute value is larger than the

size of a mapped detector element, then there is no overlap between any pixel and the

current detector element. The sequential search through all mapped detector boundaries

must be done until the first overlapping is detected and the |d1 − p1| becomes smaller

than the size of a mapped detector element, see Listing 3.4.

Listing 3.4: Moving left boundary is the left detector boundary

1 det idx=det idx start; % start with ``first'' detector

2 if (detx(det idx+c)−rowx(pix idx))<−∆ detx

3 while (detx(det idx+c)−rowx(pix idx))<−∆ detx % no overlap

4 det idx=det idx+det idx inc; % go to next detector

5 end

6 end

Alternatively, if the distance d1 − p1 is positive and larger than one, it means that a

sequential search through all pixel mapped boundaries is needed. The first overlap in
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this case will be when d1 − p1 becomes smaller than the size of projected pixel element,

see Listing 3.5.

Listing 3.5: Moving left boundary is the left pixel boundary

1 pix idx=1;%start with first pixel

2 if (detx(det idx start+c)−rowx(pix idx))>∆ pix

3 while (detx(det idx start+c)−rowx(pix idx))>∆ pix % no overlap

4 pix idx=pix idx+1;% go to next pixel

5 end

6 end

After the index of the pixel and the detector in the first overlap is found, the value of

running left boundary can be assigned, depending which mapped boundary (detector

or pixel) has a smaller coordinate, see Listing 3.6.

Listing 3.6: Moving left boundary is the left pixel boundary

1 if detx(in det count+c1)≤rowx(pix idx)

2 moving left boundary=rowx(pix idx);

3 else

4 moving left boundary=detx(det idx+c1);

5 end

After the start parameter of the moving left boundary is identified, the line can

be moved through all intercept sequentially until all pixel boundaries and detector

boundaries will be processed. While scanning though all mapped boundaries, either the

detector index or the pixel index should be incremented. The sweep line always points to

the left coordinate of the overlap. The next value of the sweep line is either the detector

boundary or pixel boundary, depending which boundary is closer of the current position

of the sweep line. Two cases are possible. In the first case, the still “unprocessed” part

of the contribution of the current pixel is split between the current and next detector

element(s), (Fig. 3.13a). The pixel index stays fixed, but the detector index in moved

to the next detector element d′. The left boundary of d′ is assigned to the value of

the moving left boundary. In the second case, more than one pixel contribute to the

current detector element, (Fig. 3.13b). The detector index stays fixed, but the pixel

index is moved to the next pixel p′. The left boundary of p′ is assigned to the value

of the moving left boundary. The current position of the moving left boundary in

Fig. 3.13 is depicted by a bold line and is in the position (1). The next position of the

moving left boundary is the position (2). In order to account for the flipped detector,
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Figure 3.13: While scanning though all mapped boundaries, two cases are possible which
boundary will be the next moving left boundary. (a) it is moved to the
next detector element; (b) it is moved to the next pixel

when θ is larger than 3π
4 , and still being able to have only one routine for the moving

left boundary approach, the parameters c1 and c2, defined in the previous subsection,

are used as it is shown in Listing 3.7.

Listing 3.7: Moving left boundary approach to scan through the mapped boundaries

1 while ((pix idx<Np)&&(det idx<Ndet)&&(det idx≥0))

2 if (detx(det idx+c2)≤rowx(pix idx+1))

3 % case A! we stay in the pixel, but move to next detector

4 o=detx(det idx+c2)−left boundary; % overlap length

5 sino(det idx)=sino(det idx)+o*img(pix idx);% collect value

6 det idx=det idx+det idx inc;% go to next detector

7 moving left boundary=detx(det idx+c1);

8 else % case B! we stay in the detector but move to next pixel

9 o=rowx(pix idx+1)−left boundary;% overlap length

10 sino(det idx)=sino(det idx)+o*img(pix idx); % collect value

11 pix idx=pix idx+1; % go to next pixel

12 moving left boundary=rowx(pix idx);

13 end

14 end

In this routine

• pix idx is an index of the current pixel (its left boundary);

• det idx is an index of the current detector element (its left boundary);

• N p, N det are total number of pixels and detector elements;

• N p+1, N det+1 is the total number of pixel and detector boundaries, respectively;
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• rowx, detx is the mapped pixel row and detector boundaries, respectively;

• moving left boundary is the sweep line;

• o is the calculated overlap length;

• c1, c2 are parameters which accounts for all four angular cases;

3.6.4 The sweep line principle for blobs

The sweep line principle for pixels can be used with minor modifications for blob basis

functions as well. In contrast to the pixel case, where the right boundary of pixel pi

coincides with the left boundary of the next pixel pi+1,the left and right boundaries of

the blob do not have such symmetry and have to be addressed separately. The mapping

of the blobs results in three vectors blobx left, blobx ritgh and blobx cntr, which

are the mapped left boundaries, the mapped right boundaries and the mapped blob

centers, accordingly. The mapped blob centers are needed to retrieve the area projection

integral from the pre-calculated LUT. This can be done, e.g. using the nearest neighbor

interpolation.

To find the first value of the moving left boundary, the vector of left blob bound-

aries must be compared with the vector of detector boundaries similar to Listing 3.4

and Listing 3.5. Then, the same as in the algorithm for pixel basis functions, two

cases are possible: the detector index is incremented or the pixel index is incremented.

The algorithmic part for moving to the next detector is identical to the pixel case.

The algorithm for moving to the next blob must be modified taking into account the

overlapping nature of blobs. From the detector point of view, moving to the next blob

means moving backwards in the detector index, because the left boundary of the next

blob is on the left-hand side with respect to the right boundary of the blob, which is

just left. A MATLAB® code for the modified moving left boundary approach is given

in Listing 3.8.
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Listing 3.8: Modified moving left boundary approach for blobs

1 det sub idx=det idx; % start with first detector

2 while (pix idx<Np)&&(det sub idx≤Ndet)&&(det idx≤Ndet)&&...

3 (det sub idx≥1)&&(det idx≥1)

4 % scaling factor from projected blob size to original blob size

5 shrink=(2*basis param.blob radius/shift pix test(pix idx));

6 if detx(det sub idx+c2)≤blobx right(pix idx)

7 % case A! we stay in the blob, but move to the next detector

8 % right−side ditance to the blob center

9 right idx=(detx(det sub idx+c2)−blobx cntr(pix idx))*shrink;

10 % left−side ditance to the blob center

11 left idx=(running left boundary−blobx cntr(pix idx))*shrink;

12 % transform distances to index from LUT, e.g. nearest neighbor

13 right idx from lut=fix((right idx+blob radius)/∆ lut)+1;

14 left idx from lut=fix((left idx+blob radius)/∆ lut)+1;

15 % retrieve values from LUT

16 left area=lut area blob(up idx from lut);

17 right area=lut area blob(low idx from lut);

18 o=right area−left area; % strip area

19 sino(det idx)=sino(det idx)+o*img(pix idx); % collect value;

20 det sub idx=det sub idx+det idc inc; % go to next detector

21 running left boundary=detx(det sub idx+c);

22 else % case B! we stay in the detector but hmove to next blob

23 % Calulate the overlapping area 'o' as it is shown in case A

24 right idx=(detx(det sub idx+c2)−blobx cntr(pix idx))*shrink;

25 left idx=(running left boundary−blobx cntr(pix idx))*shrink;

26 right idx from lut=fix((right idx+blob radius)/∆ lut)+1;

27 left idx from lut=fix((left idx+blob radius)/∆ lut)+1;

28 left area=lut area blob(up idx from lut);

29 right area=lut area blob(low idx from lut);

30 o=right area−left area;

31 sino(det idx)=sino(det idx)+o*img(pix idx); % collect value;

32 pix idx=pix idx+1;% go to next pixel

33 running left boundary=blobx left(pix idx+s);

34 while detx(det idx+c2)≤rowx left(pix idx)

35 % go backwards to the "first detector" for current blob

36 det idx=det idx+det idc inc;

37 end

38 det sub idx=det idx; % go back to "1st" sub−detector
39 end

40 end
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3.7 Efficient distance-driven projector in 3D

3.7.1 General strategy

The distance-driven forward projector and backprojector can be efficiently extended to

the third dimension. In the first step of the three-dimensional distance-driven projector,

all voxel and detector element boundaries are mapped onto a common plane, e.g. xz-

plane according to the imaging geometry, see Fig. 3.14a. In practice, pixels and detector

elements are mapped through their horizontal and vertical boundaries approximating

their shape as a rectangle. Pixel and detector boundaries in x-direction and z-direction

are mapped separately. Pixels are processed plane-by-plane. The area of an overlap

is given by the multiplication of the overlap in x- and z-axis. The area of the overlap

is used as the weighting coefficient for the contribution of the j-th voxel to the i-th

detector in forward- and backprojectors, see algorithm 3.3. The assumptions from the

two-dimensional case regarding the acquisition geometry and known parameters are

valid. The coordinates of the starting position of the X-ray tube are known and the

coordinates of the detector boundaries are pre-computed based on the detector type.

z 
x 

y 

(a) cone-beam CT (b) Tomosynthesis

Figure 3.14: Distance-driven projector in three dimensions. (a) in cone-beam CT pixel and
detector boundaries are mapped onto a common plane; (b) in tomosynthesis
with fixed-detector geometry, the detector plane can be used as a common
plane and only pixel boundaries must be mapped.

Moreover, the distance-driven approach can benefit from the tomosynthesis geometry

with a fixed detector. Here, the detector plane can be used as the common plane for
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the mapping. In Fig. 3.14b one can see that the detector lies in the xz-plane. The

mapping of the detector element boundaries is not needed anymore, which makes the

projector computationally more efficient, see algorithm 3.4. Mapping of the pixels may

be considered as an isotropic stretch operator, while no change in the shape occurs i.e.

the mapped pixels remain square. Therefore, the mapping operation can be replaced by

the less expensive incremental operation.

Algorithm 3.3: Three-dimensional distance-driven forward projector for pixel
basis functions and cone-beam CT geometry.

Input: image, geometry description
Output: sinogram

1 for all angular views θ do
2 rotate the detector and the X-ray tube to the new position;
3 map detector x-boundaries onto the common plane;
4 map detector z-boundaries onto the common plane;
5 for all image y-planes do
6 map pixel x-boundaries onto the common plane;
7 map pixel z-boundaries onto the common plane;
8 for for all projected points do
9 find the length of x-overlap;

10 find the length of z-overlap;
11 find the area of overlap;
12 write the weighted pixel value into the detector element;

Algorithm 3.4: Three-dimensional distance-driven forward projector for pixel
basis functions and digital tomosynthesis geometry with fixed flat-panel detector.

Input: image, geometry description
Output: sinogram

1 for all angular views θ do
2 rotate the the X-ray tube to the new position;
3 for all image y-planes do
4 map pixel x-boundaries onto the detector plane;
5 map pixel z-boundaries onto the detector plane;
6 for for all projected points do
7 find the length of x-overlap;
8 find the length of z-overlap;
9 find the area of overlap;

10 write the weighted pixel value into the detector element;
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3.7.2 Unification of the angular cases

The choice of the common plane in general case depends on the angle between the

middle ray in the cone and y-axis (similarly to 2D case)


case 1 : 7π

4 ≤ θ ≤ π
4 map to xz-plane;

case 2 : π
4 < θ < 3π

4 map to yz-plane;

case 3 : 3π
4 ≤ θ ≤ 5π

4 map to xz-plane;

case 4 : 5π
4 < θ < 7π

4 map to yz-plane.

(3.27)

The mapping functions can be unified (Listing 3.9) and used e.g. to map de-

tector boundaries as [detx,detz] = mapp(xt,yt,zt,xd,yd,zd). For the further

explanations, all variables related to the projected detector boundaries, e.g. detx

and dety will be noted by the ending x, meaning it is accounted for projection to

both, xz- and yz-planes by adjusting the parameters in the preamble of the algorithm.

Listing 3.9: Vectorized MATLAB® code for the mapping function to the xz-plane and

the yz-plane in three dimensions

1 function [x,z] = mapp2xz(x1,y1,z1,x2,y2,z2)

2 x=(−y1).*(x2−x1)./(y2−y1)+x1;
3 z=(−y1).*(z2−z1)./(y2−y1)+z1;
4 end

5 function [y,z] = mapp2yz(x1,y1,z1,x2,y2,z2)

6 y=(−x1).*(y2−y1)./(x2−x1)+y1;
7 z=(−x1).*(z2−z1)./(x2−x1)+z1;
8 end

To account for the “flip” of detector boundaries in case 3 and case 4, the value of the

starting detector index det idx x start and the increment of this index det idx x inc

must be chosen based on the angular view{
det idx x start = 1, det idx x inc = +1, if case 1 or case 2;

det idx x start = N detx, det idx x inc = −1, if case 3 or case 4.
(3.28)

There is no detector boundary flip in z-direction, therefore the starting detector index

det idx z start and its increment det idx z inc are always equal one.

Additionally, the same as in the two-dimensional case, several additional parameters
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are needed to account for the reverse of the boundaries order in x-direction{
cx1 = 0, cx2 = 1, cz1 = 0, cz2 = 1 if case 1 or case 2;

cx1 = 1, cx2 = 0, cz1 = 0, cz2 = 1 if case 3 or case 4.
(3.29)

Boundary order in z-direction stays always the same, but the z-related parameters cz1

and cz2 are also introduced to make the algorithm symmetrical.

For tomosynthesis limited angle geometry the parameters from the case 1 are

applicable.

3.7.3 Sweep line in three dimensions

The mapping of pixel boundaries and detector boundaries in the general three-dimensional

case results in four vectors: detx, rowx, detz and rowz. To run a loop over all inter-

cepts, we extend the concept of the sweep line is extended to the third dimension and

two running boundaries are used simultaneously.

The variables left boundaryX, left boundaryZ describes the sweep line in x-

direction and in z-direction, correspondingly. The loop over the x-intercepts is nested

into the loop over z-intercepts. First of all, the first value for two running boundaries

must be identified. The algorithms from Listing 3.5 and Listing 3.4 for the two-

dimensional case can be directly applied for both, x- and z-directions. The algorithm

for the moving boundary to scan through all mapped boundaries can also be directly

taken from the two-dimensional case, see Listing 3.7. It results in the following routine

for a distance-driven projector in three dimensions, see Listing 3.10.
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Listing 3.10: The distance-driven routine for three dimensional cone-beam CT. The

sub-routine for the z-axis is in Listing 3.11

1 % Initialization of x−axis−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>>
2 pix idx x=1;det idx x=det idx x start;

3 if (detx(det idx x)−rowx(pix idx x))>pix size x

4 while ((detx(det idx x)−rowx(pix idx x))>pix size x)

5 pix idx x=pix idx x+1;

6 end

7 end

8 if (detx(det idx x)−rowx(pix idx x))<−det size x

9 while (detx(det idx x)−rowx(pix idx x))<−det size x

10 det idx x=det idx x+det idx x inc;

11 end

12 end

13 if detx(det idx x)<rowx(pix idx x)

14 left boundaryX=rowx(pix idx x);

15 else

16 left boundaryX=detx(det idx x+sx);

17 end

18 %Loop over x−axis−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>>
19 while ((pix idx x<Nx)&&(det idx x<ndetz)&&(det idx x≥det idx x start))

20 if (detx(det idx x+c2x)<rowx(pix idx x+1)) %A!

21 oX=(detx(det idx x+c2x)−left boundaryX)/det size x;

22 else %B!

23 oX=(rowx(pix idx x+1)−left boundaryX)/det size x;

24 end

25

26 % <The sub−routine for z−axis is here>

27

28 if (detx(det idx x+c2x)≤rowx(pix idx x+1)) %A!

29 det idx x=det idx x+det idx x inc;

30 left boundaryX=detx(det idx x);

31 else %B!

32 pix idx x=pix idx x+1;

33 left boundaryX=rowx(pix idx x);

34 end

35 end
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Listing 3.11: MATLAB® sub-routine for the z-axis. It is a part of the Listing 3.10.

1 % Initialization of z−axis−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>>
2 pix idx z=0;det idx z=det idx z start;

3 if (((detz(det idx z)−rowz(pix idx z)))>pix size z)

4 while (((detz(det idx z)−rowz(pix idx z)))>pix size z)

5 pix idx z=pix idx z+1;% go to next pixel column

6 end

7 end

8 if (detz(det idx z)−rowz(pix idx z))<−det size z

9 while (detz(det idx z)−rowz(pix idx z))<−det size z

10 det idx z=det idx z+go to next detz;% go to next z−detector
11 end

12 end

13 if detz(det idx z+sz)<rowz(pix idx z)

14 left boundaryZ=rowz(pix idx z);

15 else

16 left boundaryZ=detz(det idx z);

17 end

18 %Loop over z−axis−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>>
19 while (pix idx z<nz)&&(det idx z<ndetz)&&(det idx z≥det idx z start)

20 if (detz(det idx z+c2z)≤rowz(pix idx z+1))% A!

21 oZ=(detz(det idx z+c2z)−left boundaryZ)/det size z;

22 sino(det idx x*ndetz+det idx z)=...

23 sino(det idx x*ndetz+det idx z)+...

24 oZ*oX*slice y(pix idx x*nz+pix idx z);

25 det idx z=det idx z+go to next detz;%% go to the next detector

26 left boundaryZ=detz(det idx z);% save where did we come from

27 else %% B!

28 oZ=(rowz(pix idx z+1)−left boundaryZ)/det size z;

29 sino(det idx x*ndetz+det idx z)=...

30 sino(det idx x*ndetz+det idx z)+...

31 oZ*oX*slice y(pix idx x*n3+pix idx z);

32 pix idx z=pix idx z+1;%% go to the next pixel

33 left boundaryZ=rowz(pix idx z);% save where did we come from

34 end

35 end



Chapter 4
Iterative image reconstruction

for tomosynthesis

Contents

4.1 Discrete model of the physical system . . . . . . . . . . . . . 76

4.2 Iterative reconstruction schemes . . . . . . . . . . . . . . . . 77

4.3 Considerations for practical implementation of SART . . . 82

4.4 Projection access order for SART . . . . . . . . . . . . . . . 87

The task of the tomographic reconstruction algorithm is to recover the unknown

distribution of the X-ray attenuation coefficients based on the measured data. In this

chapter a family of iterative reconstruction algorithms will be discussed. First, the

formulation of the discrete model will be introduced and the reconstruction problem will

be formulated as an optimization problem. Second, two types of iterative reconstruction

algorithms, namely algebraic and statistical reconstruction will be presented.

The main focus of this chapter will be put on the simultaneous algebraic recon-

struction technique (SART) with application to tomosynthesis data. Considerations

for the practical implementation, will be given, including the data handling strategy

and memory and computation costs. Finally, the projection access order for SART will

be discussed. A novel correlation-based scheme will be presented. It will be compared

with existing schemes using a simulation study.
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4.1 Discrete model of the physical system

As it has been mentioned in Chapter 2, the measurement p through a continuous object

µ (x) along a line L defined by the direction θ can be written as a line integral

p(θ) =

∫
L(θ)

f (x) dx. (4.1)

The continuous object has to be discretized. This can be done using a set of a finite

number of coefficients ci and basis functions bi(x− xi), as it has been discussed in

Chapter 3

f (x) ≈
N∑
i=1

cibi (x− xi) . (4.2)

Combining equation 4.1 and equation 4.2 leads to

pj =

∫
L(θj)

N∑
i=1

cibi (x− xi) dx, (4.3)

where j is an index of the measured beam. The order of the integration and the

summation can be changed and the coefficients ci can be taken out of the integral as

constants

pj =

N∑
i=1

ci

∫
L(θj)

bi (x− xi) dx. (4.4)

The line integral through the basis functions bi can be pre-computed or calculated

on-the-fly. This results in the discrete model of the measurements

pj =
N∑
i=1

ciaij with aij =

∫
L(θj)

bi (x− xi) dx. (4.5)

If this is done for all measured beams, the complete measurement process can be written

as a system of linear equations

p = Af . (4.6)

Here, f = (f1, ..., fN )T ∈ RN is a discrete representation of the three-dimensional

spatial distribution of the X-ray linear attenuation coefficients within the imaged volume,

p = (p1, ..., pM )T ∈ RM is a vector of the measured projection data and A ∈ RMxN is

a system matrix. N is the total number of image volume elements (voxels) and M is

the total number of measured beams. M is equal to the number of detector elements

(dexels) Nd multiplied by the number of views Nθ. The system matrix A describes
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the measurement process and the acquisition geometry and represents line integrals

though the basis functions. It is a flexible way to describe any arbitrary acquisition

geometry setup. A system matrix element aij represents the contribution of the i-th

voxel fi to the j-th beam pj , i.e. it models the discrete forward operator, see Chapter 3.

The transpose of system matrix AT describes the discrete backprojection operator. In

practice, the system matrix is very large and sparse.

4.2 Iterative reconstruction schemes

It is important to note that although the line integrals p are measured, the image f is

of interest

f = A−1p. (4.7)

However, the direct matrix inversion of this equations is practically infeasible (Kak 1984)

due to the large size of the equation system. Moreover, in the case of limited angle

tomosynthesis acquisition geometry, this system is severely under-determined. This

leads to the need of an alternative algorithm. One such approach is to formulate an

optimization problem, which minimizes some pre-defined cost function Ψ to find the

“best” solution x̂

x̂ = argmin
x≥0

Ψ(x). (4.8)

The cost function is constructed of two components: a data-mismatch term and a

regularization or a penalty term with a regularization parameter β

Ψ(x) = DataMismatch(p,Ax) + β Regularization(x). (4.9)

One could solve the minimization problem analytically by zeroing the gradient of Ψ(x).

Unfortunately, even if the non-negativity constraint and the penalty term are omitted,

there are usually no closed-form solutions (Fessler 2000). Thus, the minimization prob-

lem must be solved iteratively. Under the ideal conditions the cost function completely

defines the resulting image and independent of the choice of a minimization algorithm

(De Man 2005). Two common minimization approaches are the conjugate gradient (CG)

method (Mumcuoglu 1994, Piccolomini 1999, Fessler 1999) and the iterative coordinate

descent (ICG) (Sauer 1993). The CG updates all pixels simultaneously, while the ICG

updates one pixel at a time. It is expected that the global minimum of the cost function

should be found regardless of the minimization approach, however, some algorithms

could get stuck in a limit cycle behavior (local minimum) (De Man 2005).
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4.2.1 Algebraic reconstruction

The algebraic reconstruction technique (ART) was first introduced to the field of image

reconstruction by Gordon et. al. in 1970 (Gordon 1970)1 for the application of the

three-dimensional electron microscopy. ART is mathematically similar to the Kaczmarz

algorithm for solving a system of linear equations (Kaczmarz 1937). An alternative

method called simultaneous iterative reconstruction technique (SIRT) was proposed by

P. Gilbert in 1972 (Gilbert 1972). Later, A. H. Anderson and A. C. Kak (Andersen 1984)

proposed a superior version of ART and called it simultaneous algebraic reconstruction

technique. Later, the authors applied SART to limited view CT (Andersen 1989).

The ART algorithm typically results in noisy images while the SIRT has good noise

properties but slow convergence. The SART algorithm results in the reduction of the

noise associated with ART-type methods, while it preserves the convergence speed of

ART-type methods.

All algebraic algorithms iteratively minimize the residual error between the measured

data and the calculated forward projection of the estimated image.

A single update step of ART is given by

f (n+1) = f (n) +
aj

T

aT
j aj

(
pj − p̂j

(
f (n)

))
p̂ (f) = Af

(4.10)

and one update of SART is given by

f
(n+1)
i = f

(n)
i + 1

Ai,+

∑
j∈Jθ

ai,j
A+,j

(
pj − p̂j

(
f (n)

))
Ai,+ =

∑
j∈Jθ

ai,j

A+,j =
N∑
i=1

ai,j

p̂ (f) = Af .

(4.11)

Here, p (f) is the forward projection of the current estimated image, aj is a column of

the matrix A, which describes j-th measured beam, Ai,+ is a normalization for numbers

of rays intersecting each voxel, A+,j is a normalization for the path through all pixels in

the current ray. In the n-th iteration a forward projection of the current estimated image

is calculated. Then, it is compared with the measured data. Based on this, an updating

term is calculated. Afterwards, the updating term is homogeneously backprojected

into the image domain according to the system matrix A. The ART updating term

1However, it is also believed that G. Hounsfield also used ART in his scanner (Mueller 1998a)
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is applied for all pixels which contribute to the j-th ray, the SART updating term is

applied for all pixels in the image considering one projection view j ∈ Jθ.
It can be shown, that SART minimizes a weighted least squares (WLS) functional,

but without taking into account any data noise models (Jiang 2003a)

L (f) =
M∑
j=1

1

A+,j

(
pj − p̂j

(
f (n)

))2
= ‖p−Af‖2w (4.12)

The weighting term w = 1
A+,j

is in terms of system matrix elements and does not take

any statistics into account. Papers which address the convergence of algebraic recon-

struction technique include (Jiang 2003b, Wang 2007, Qu 2009). Further papers which

address algebraic reconstruction methods include (Kak 1988, Toft 1996, Mueller 1998a,

van de Sompel 2007, Nikazad 2008).

4.2.2 Statistical Reconstruction

Statistical reconstruction algorithms are based on statistical models and are equivalent

to an optimization problem

reconstructed image = argmax
image

[ P (image|measurements) + P (image)]. (4.13)

The first term is a likelihood term. It defines the probability to obtain the measurements

given the image. It is supposed, that the actual measured number of photons yj include

the noise and deviate from their expected values ŷj . The image is defined by the physical

model of the measurement means

ŷj = I0e
−p̂j , where p̂j =

∑
j

aijfi. (4.14)

The joint probability of all measurements is given by

P (image|measurements) =
∏
j

P (yj |ŷj) (4.15)

The log-likelihood is given by

logP (image|measurements) = log
∏
j

P (yj |ŷj) =
∑

logP (yj |ŷj). (4.16)

The second term in equation 4.13 is called the prior term. The prior term controls the
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smoothness of the reconstructed image. Without the prior information, this optimization

problem is called the maximum likelihood (ML) approach. With the prior term, this

optimization problem is referred to as the maximum a posteriori (MAP) approach.

The task is to find the image, which maximizes the probability to obtain the given

set of measured data. The likelihood term of the cost function is derived based on the

noise model. Two common choices for the noise models are the Gaussian model and the

Poisson model.

For the logarithmically processed data a Gaussian noise model is used. The Gaussian

noise model is given by

P (pj |p̂j)Gaussian =
1√

2πσj
exp

(
−(pj − p̂j)2

2σ2
j

)
, (4.17)

where σ is the standard deviation. Suppose, the value p̂j is the expected projection value,

which is calculated based on the physical model of measurements (Beer-Lambert-Law).

However, because of noise a value pj is measured. The probability to measure any

particular value pj is described by the Gaussian distribution. Then, the log-likelihood

term for Gaussian noise model is given by

logL(f, p) =
M∑
j=1

log(P (pj |p̂j)Gaussian), (4.18)

where

log(P (pj |p̂j)Gaussian) = log(
√

2πσj)−
1

2

(pj − p̂j)2

σ2
j

. (4.19)

The constant term can be ignored. This leads to the weighted least-squares cost function

which has to be minimized

ΨWLS =
1

2

M∑
j=1

wj (pj − pj)2 with wj = 1
/
σj . (4.20)

The weights wj are represented by the reciprocal of the variance 1/σ2
j of the log-data.

However, in contrast to algebraic WLS, the weighting here takes into account the data

statistics.

Another choice for the noise model is the Poisson noise model

P (yj |ŷj)Poisson) =
e−ŷj ŷj

yj

yj !
, (4.21)
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where ŷj is the expected number of photons and yj is the actual number of measured

photons. The data mismatch term, or the the log-likelihood in this case is

log(L(yj |ŷj)) =
M∑
j=1

hj([Af ]j), (4.22)

where

hj = log(P (yj |ŷj)Poisson), (4.23)

which results in

hj = log(e−ŷj ŷj
yj )− log(yj !)

= −ŷj + yj log(ŷj)− log(yj !)).
(4.24)

According to J. Fessler (Fessler 2000) the expectation maximization (EM) algorithm

derived for emission tomography (Shepp 1982) is not very suitable for the Poisson

transmission reconstruction problem (Lange 1984). Transmission EM-algorithms have

slow convergence rate and high computation costs because of the large of number of

exponential terms.

As an example, the formula of the ordered subset ML algorithm for transmission

tomography (OS-MLTR) proposed by J. Nuyts (Nuyts 1997) is given by

f
(n+1)
i = f

(n)
i +

∑
j∈subset

aij (ŷj − yj)∑
j∈subset

aij ŷj
∑
k

akj
. (4.25)

The formula of ordered subset separable paraboloidal surrogates (OS-SPS) algorithm

proposed by J. Fessler (Fessler 1997b, Erdogan 1999) is given by

f
(n+1)
i = f

(n)
i +

∑
j∈subset

aij (ŷj − yj)∑
j∈subset

aijyj
∑
k

akj
. (4.26)

For a detailed discussion of the EM-algorithms for transmission tomography as well

as more efficient algorithms for direct likelihood maximization (Nuyts 1997) such as

coordinate-ascent (Fessler 1997b) and paraboloidal surrogates algorithms see the chap-

ter 1 from the Handbook of medical imaging written by J. Fessler (Fessler 2000).
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4.3 Considerations for practical implementation of SART

In the previous section algebraic and statistical reconstruction algorithms have been

introduced. As the work from Zhand et al. (Zhang 2006b) shows, in practice, the

differences in image quality between two types of algorithms are not large. However

the statistical reconstruction algorithms usually need ten to twenty iterations, while

the algebraic reconstruction provides acceptable image quality already after a few

iterations. It was decided to use the SART algorithm in this thesis for reasons of

simplicity and especially of the convergence speed. This section presents several aspects

of the practical implementation of the SART algorithm in MATLAB® for three-

dimensional tomosynthesis data. First, a dictionary approach and a base workspace

will be discussed. Second, the memory costs and the computation complexity of SART

will be approximated.

4.3.1 How to address tomosynthesis datasets: a dictionary approach

A tomosynthesis acquisition results in Nθ two-dimensional projections and a tomosyn-

thesis reconstruction results in Nslices two-dimensional images. A procedure which can

address automatically any of the projection images and reconstructed images is required.

Any set of two-dimensional images can be stacked in MATLAB® into a volume resulting

in a three-dimensional variable. Then, each slice from this set can be easily addressed

using the corresponding index. Taking into account the size of tomosynthesis data

(several GB) and typical available RAM memory of a PC (4−16 GB), stacking all images

into a volume becomes infeasible due to memory limitations. Storing each projection

and each reconstructed image as a separate variable provides more flexibility in terms

of memory because one part of the dataset (e.g. a single slice) can be loaded, processed

at a time and then saved on the disc and deleted from RAM afterwards to free memory

for the next portion of data. Addressing large number of variables automatically can be

done using a dictionary approach. A dictionary contains a list of all variable names. It

is created once and then can be used to address any variable. To each projection and

reconstruction dataset a name is assigned. The number of each projection (slice) image

is not an index of volume anymore but it is stored as a part of the name of variable.

Each projection (image) name in the dictionary consist of the dataset name and the

corresponding number. An example of the dictionary function for reconstructed images

is presented in Listing 4.1.
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Listing 4.1: MATLAB® function for creating a dictionary

1 function dict=make dictionary for slices(slice name, nx, ny, nz max)

2 dict=cell(nz max,1);

3 for nz=1:nz max

4 if nz≥1&&nz≤9

5 dict{nz}=sprintf('%s %g %g slice00%g', slice name, nx, ny, nz);

6 elseif nz≥10&&nz≤99

7 dict{nz}=sprintf('%s %g %g slice0%g', slice name,nx, ny, nz);

8 elseif ny≥100&&nz≤999

9 dict{nz}=sprintf('%s %g %g slice%g', slice name, nx, ny, nz);

10 end

11 end

A typical task is to access an i-th image, to perform some calculations and to save

the result into the same variable. The name of the variable can be obtained from the

dictionary based on the dataset name and the the value of the index i. Reading a

variable, which name is saved as a string, can be done using the MATLAB® function

eval. To perform the calculations, the obtained value of the variable should be saved in

a temporary variable. After calculations are done, the value of the temporary variable

has to be written back into the slice variable. This also can be done using the function

eval, see Listing 4.2.

Listing 4.2: MATLAB® code for using a dictionary and function eval

1 slice name = dict reco name{i}; % get the name from dictionary

2 f = eval(slice name); % write slice into a temporary variable f

3 f = ...% do some calculatins

4 eval([slice name ' = f'])% save result f into the slice variable name

4.3.2 Memory handling in MATLAB®: the base workspace

All variables which have been created during a MATLAB® session are stored in a

workspace. The variables, which have been created using a command line or the

scripts are stored in the base workspace. When an arbitrary function func is called in

MATLAB®, then all passed to the function variables are duplicated in a temporary

workspace corresponding to this function. After all calculations are done and function

returns its output, the temporary workspace is deleted. When processing tomosynthesis

data, it is desired to avoid creating unnecessary copies of data in order to use most

of the memory efficient. This can be done using the functions assignin and evalin
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which are used to access variables from the base workspace when a function func is

executing, see Listing 4.3.

Listing 4.3: MATLAB® code for using the functions evalin and assignin

1 slice name = dict reco name{i}; % get the name from dictionary

2 f = evalin('base',slice name); % write slice into a temporary ...

variable f

3 f = ...% do some calculatins

4 assignin('base', v, f); % save result in base workspase

Now, the forward- and backprojection operation can be implemented as follows, see

algorithm 4.1. The projection data is loaded into the base workspace and only the name

of the dataset is given to the backprojection function. Inside this function a dictionary

for the projection data and the volume slices is created. Then, for each angular view

θ, the projection data is accessed from the base workspace, processed according to the

backprojection algorithm and the result is written back to the base workspace using the

dictionary for volume slices. It allows for working with twice larger datasets compared

Algorithm 4.1: Implementation of backprojection for tomosynthesis using the
base workspace and a dictionary

Input: load sino(θ), θ ∈ Θ from disc to base workspace
Output: Reconstructed volume slice(z), z ∈ V in base workspace

1 Initialization : dictionaries for sino name, ∀θ ∈ Θ and slice name, ∀z ∈ V ;
2 for θ ∈ Θ do
3 get sino name(θ) from the dictionary;
4 read sino(θ) from base workspace;
5 for z ∈ Z do
6 slice = BP(sino(θ));
7 get slice name(z) from the dictionary;
8 write slice into base workspace;

to the method with direct passing variables to a function and thus creating copies of

those variables.

4.3.3 Memory costs

The size of the projection dataset and the three-dimensionality of the reconstructed

tomosynthesis volume require special implementation strategy of any iterative recon-

struction algorithm. The implementation has to be adjusted for the optimal usage of

available memory and desired speed. There is always a trade-off between the memory
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costs and the reconstruction time. The memory costs of the SART algorithm will be dis-

cussed based on the size of the data acquired using the Siemens Mammomat Inspiration

device. The projection dataset contains Nθ = 25 two-dimensional projections. A typical

reconstructed volume contains about Nslices = 40 reconstructed slices. Both, the projec-

tion images and the reconstructed images have size of Nx ×Ny = 3584× 2816 elements.

The memory required to store the tomosynthesis projection dataset is proportional to

Nx ×Ny ×Nθ. It requires about 0.9 GB memory if saved as single precision floats. A

memory required to store the tomosynthesis reconstructed volume is proportional to

Nx ×Ny ×Nslices. It requires about 1.7 GB memory if saved as single precision floats.

One iteration of the SART algorithm (see algorithm 4.2) requires to keep in memory

the measured projection dataset and the reconstructed volume. Moreover, it is required

to store the simulated projection dataset (line 8) and the volume with the updating

term (line 10), which results in 2.6 GB of additional memory. Pre-calculation of the

normalization terms (line 4 and line 5) results in an additional projection dataset for A+,θ

and Nθ volumes of Az,+ requires 0.9+40×1.7 = 68 GB, which makes the pre-calculation

of Az,+ infeasible. If the normalization terms are calculated on-the-fly, they require

at least the memory of the reconstructed dataset according to the implementation in

algorithm 4.2.

Algorithm 4.2: Straightforward (but infeasible) SART implementation for to-
mosynthesis

Input: Projection data sino(θ), θ ∈ Θ
Output: Reconstructed volume slices, ∀z ∈ V

1 Initialization : dictionaries for sino name, sino upd name ∀θ ∈ Θ;
2 dictionaries for slice name, upd term name ∀z ∈ V ;
3 slices ∀z ∈ V ;
4 pre-compute A+,∀θ = FP (slice ones (∀z) ,∀θ);
5 pre-compute A∀z,+ = BP(sino ones(∀θ),∀z);
6 for θ ∈ Θ do
7 read sino name and sino upd name for given θ from dictionary;
8 sino upd(θ) = FP (slice (∀z) , θ);
9 sino upd(θ) = (sino upd(θ)− sino(θ)) /A+,θ;

10 upd term(∀z) = BP(sino upd(θ), ∀z);
11 slice(∀z) = slice(∀z)− (λ · upd term(∀z)) /A∀z,+;

A memory-saving but slower version of SART can be implemented, see (algorithm 4.3).

The backprojection operation can be done for each slice location z separately (line 11).

After applying the updating term (line 13), the memory is cleared (line 14). After the
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view θ is processed, the corresponding simulated projection sino upd is also cleared

from memory (line 15) because it is not needed anymore.

Algorithm 4.3: Memory-saving implementation of SART for tomosynthesis

Input: Projection data sino(θ), θ ∈ Θ
Output: Reconstructed volume slice(z), z ∈ V

1 Initialization : dictionaries for sino name, sino upd name ∀θ ∈ Θ;
2 dictionaries for slice name, upd term name ∀z ∈ V ;
3 slice ∀z ∈ V ;
4 for θ ∈ Θ do
5 read sino name and sino upd name for given θ from dictionary;
6 sino upd(θ) = FP (slice (∀z) , θ);
7 A+,θ = FP (slice ones (∀z) , θ);
8 sino upd(θ) = (sino upd(θ)− sino(θ)) /A+,θ;
9 for z ∈ V do

10 read upd term name and slice name for given z from dictionary;
11 upd term(z) = BP(sino upd(θ), z);
12 Az,+ = BP(sino ones(θ), z);
13 slice(z) = slice(z)− (λ · upd term(z)) /Az,+;
14 clear upd term(z), Az,+;

15 clear sino upd(θ), A+,θ;

4.3.4 Computational complexity

The forward- and backprojection steps require the most computational costs in the

SART algorithm. Two units for forward- and backprojection computation costs can be

defined: a UFP unit and a UBP unit. The UFP unit is a computation cost for a forward

projection operation done for one slice and one angular direction. The UBP unit is a

computation cost for a backprojection operation done for one slice and one angular

direction. Then, one iteration of SART requires the following computational operations.

First, the forward projection of the current guess is done, which is equivalent to Nslices

of UFP . This operation is done Nθ times for each view. Second, the backprojection of

an updating term requires the Nslices of UBP and this is done Nθ times. This results in

total of

Nθ ×Nslices × (UFP + UBP ) (4.27)

computational time units for one iteration of SART. The calculation of normalization

terms Ai,+ and A+,j requires additional Nθ × Nslices × (UFP + UBP ) computational

time, which doubles the total time for one iteration.
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In the distance-driven implementation, used in this work, the forward projection

unit UFP is 0.28 sec and the backprojection unit UBP is 0.25 sec. They have been

implemented in C++ on Intel(R) Core(TM) i5-2400 CPU @3.10 GHz. In terms of

projector costs one iteration of SART is about 530 sec.

4.4 Projection access order for SART

It is known that the order in which the projection data is selected for the iterative

scheme has strong influence on the reconstructed image quality and the convergence

speed (Guan 1998, Guan 1996, Wu 2008, Kong 2012). In literature, many schemes of

presumably optimal access order have been proposed. In this section, several projection

access orders found in CT literature will be presented and adapted for the tomosynthesis

limited angle case. Additionally, a novel projection access scheme based on total

correlation will be presented. All presented schemes will be compared in application to

tomosynthesis using a simulation study.

4.4.1 Literature review

It is important to note that in the early papers on various projection acces orders, classical

ART is considered, which is a ray-wise algorithm. In this section, simultaneous ART is

considered which is view-wise algorithm. Regardless if ART or SART is considered, each

discussed approach can be applied Mutatis mutandis to either view or rays ordering.

Two simplest methods to choose the projections are the sequential order and the

random permutation. It is known that the simple sequential projection access order is

not optimal (Mueller 1998a). Another simple choice to generate the projection order is

based on a constant angular increment, e.g. 66.0o or 73.8o. However the choice of the

angular increment is often not motivated and the increment is selected arbitrarily. An

example of the motivated choice can be found in the work of T. Kohler. He proposed to

use a concept of the golden ratio to calculate an optimal angular step (Kohler 2004).

In 1993 G. T. Herman and L. B. Meyer proposed a method based on the prime factors.

For PET applications it was superior to the random permutation (Herman 1993). In

the literature it is commonly called PND as an abbreviation of the “prime number

decomposition”. Another permutation scheme based on the prime numbers is the prime

number increment (PNI) scheme proposed in 2011 by H. Kong and J. Pan (Kong 2011).

In general, this scheme is a scheme with a constant angular step, where the angular

increment is selected based on a prime number.
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In 1994 H. Q. Guan and R. Gordon proposed a multilevel scheme (MLS) (Guan 1994),

which maximizes orthogonality between used projections in each step by minimizing

the geometrical correlation between them. Their further studies showed that the

MLS outperforms the sequential order and the random permutation order (Guan 1996,

Guan 1998).

Mueller et al. (Mueller 1997) have also recognized that it is important to maximize

the angular distance between consecutively used projections. The authors proposed the

weighted distance scheme (WDS) to heuristically optimize angular distance between

used projections and to take into account the relation to all previously used projections.

To conclude, all existing schemes either use simple methods such as random permuta-

tion and fixed angular increment, or minimizes the correlation between used projections

based on the angular view information.

4.4.2 Sequential order

In the sequential projection order πseq, all views are accessed sequentially as they have

been acquired from the first projection view to the last projection view

πseq(1) = 1;

πseq(i) = πseq(i− 1) + 1, i = 2 : Nγ ;

πseq = [1, 2, 3, ..., Nγ ].

(4.28)

If a limited number of projections Nproj = 25 is measured, the sequential projection

access order can be easily created. Due to non-symmetry of the acquired angular data

with respect to the 360o, the starting angle might also be an important parameter.

The sequential access is known to introduce artifacts to the reconstructed images

(Mueller 1998a). Almost no new information is introduced to the reconstructed image

by the next used projection. A large geometrical correlation between the neighbor views

slows the recovery of high frequency and, therefore, slows down the convergence rate. As

it was concluded by Guan et al. (Guan 1998), algebraic reconstruction with sequential

projection access order cannot reconstruct objects uniformly and symmetrically.

4.4.3 Random permutation

In the random permutation order πrnd each next view is selected arbitrarily, independent

of the total number of views. In MATLAB® the random projection access order can be

produced e.g. using the randperm build-in function. M.C.A. van Dijke concluded in

1992 in his PhD thesis (van Dijke 1992) that the random permutation is the best method
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among all methods which he tried. However, methods which are more controllable and

predictable are preferred (Mueller 1998a).

In equation 4.29 an example of the random permutation order for Nproj = 25 is

shown.

Nproj = 25;

πrnd = [19, 9, 21, 22, 3, 17, 20, 25, 15, 4, 1, 16, ...

8, 12, 24, 18, 14, 13, 6, 2, 23, 10, 5, 11, 7].

(4.29)

4.4.4 Golden ratio

The projection access order based on the golden ratio πgolden (Kohler 2004) uses a

constant angular increment. The choice of the increment is this scheme is inspired by

the way many plants position their new leafs, a so-called golden ratio

g =

√
5− 1

2
≈ 0.618. (4.30)

A new leaf is placed at an angle such that there is minimum overlap to prevent unwanted

shadow. The golden angular increment is 360og which is approximately 222.5o. T. Kohler

considered a parallel beam geometry, therefore his golden angle is 180og which is equal

111.24o. According to the results presented in his paper, this method performs better

than the random scheme and better or equal the prime number decomposition. In

addition, it is easier to implement than PND or WDS.

Extending this concept, a golden angle for the limited angle tomosynthesis geometry

can be found. If the total angular range is 50o, then the golden angle increment is 50og

which is equal to 30.9o. In equation 4.31 an example of the golden ratio sequence for

Nproj = 25 and the golden angular increment ∆θgolden = 30.9o is shown. If by applying

this angular increment the resulting value of angle is outside the valid region, the value

is wrapped around by using the modulo operation. Calculations are done based on the

angular information taken from the DICOM header of the real data acquired using the

Siemens Mammomat Inspiration scanner.

Nproj = 25; ∆θgolden = 30.9o

πgolden = [17, 7, 23, 13, 3, 19, 9, 1, 15, 5, 22, 12, ...

2, 18, 8, 24, 14, 4, 20, 10, 16, 6, 25, 21, 11].

(4.31)



90 Chapter 4. Iterative image reconstruction

4.4.5 Prime numbers decomposition (PND)

The permutation access order based on the prime numbers decomposition was proposed

by G. T. Herman and L. B. Meyer in 1993 (Herman 1993). In the following explanation

of the method, the notation from the original paper with some modifications is used.

Modifications are needed because the notations of the original paper might lead to

confusion. The symbol p and symbol u are used in their paper for different entities

throughout the text of the original paper.

Let K be the number of measured views. The prime number permutation τ(k) = k′

returns a new ordered sequence of projections k′. Let {pi}Ui=1 be an ascendingly sorted

set of prime factors of K with the total number U

K = p1 × p2 × ...× pU ;

p1 ≤ p2 ≤ ... ≤ pU .
(4.32)

Let us consider a set T of U -dimensional non-negative vectors t, which i-th component

ti is non-negative and less than the corresponding prime factor pi

t = {t1, t2, ..., tU} ∈ Z∗ = {0} ∪ Z+

0 ≤ ti ≤ pi.
(4.33)

Let us define a mapping

τ : [0, P )→ T

k 7→ t,
(4.34)

which maps an integer k into a vector t from T . The mapping τ is defined recursively.

The initialization for k = 0 is τ(0) = t(0) = [0, 0, ...0]. Then for each k > 0 an integer s

is assigned. The integer s is the smallest integer such that t
(k−1)
s 6= ps − 1, where ps is

the s-th prime factor of K. The i-th component of the vector t
(k)
i is

τ(k) : t
(k)
i =


0, if 1 ≤ i < s;

t
(k−1)
i + 1, if i = s;

t
(k−1)
i , if s < i ≤ U,

(4.35)

where i is from 1 to U .

Lets define another mapping

v : T → [0, P )

t 7→ k′,
(4.36)
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which maps a vector t from T onto an integer k′.

v(t) = (pU × pU−1 × ...× p2 × t1)

+(pU × pU−1 × ...× p3 × t2)

+...

+(pU × tU−1) + tU ;

(4.37)

Then, the permutation scheme π(k) is defined as v(t(k)) = v(τ(k)), see algorithm 4.4.

Algorithm 4.4: Prime numbers decomposition permutation

Input: number of measured views K
Output: new permutation order k′

// τ(k) and v(t) are calculated based on the prime factors of K ;
1 find p1...pU prime factors of K;

2 k = 0; t(0) = [0, 0, ...0] ; // an initialization

3 for k = 1 : K − 1 do
4 find a smalles integer s;

5 t(k) = τ(k) ; // assign a vector tk, see equation 4.35

6 k′ = π(k) = v(t(k)) = v(τ(k)) ; // find a new k’ based on the vector

tk, see equation 4.37

In the case of tomosynthesis geometry the number of projections is Np = 25, its

prime factors are p1 = p2 = 2, U = 2. The set of vectors is T = {t1, t2}; with t1 : 0 ≤
t1 ≤ 4; t2 : 0 ≤ t2 ≤ 4. Then, equation 4.35 can be rewritten as

t
(k)
1 =

{
t
(k−1)
1 + 1, ifs = 1

0, ifs = 2

t
(k)
2 =

{
t
(k−1)
2 =, ifs = 1

t
(k−1)
2 + 1, ifs = 2

(4.38)

Additionally, the equation 4.37 is simplified to v(t) = p2 × t1 + t2. The details of

producing the permutation for Np = 25 can be found in Table 4.1.
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Table 4.1: Prime numbers decomposition permutation access for Np = 25.
Prime factors are p1 = p2 = 5; U = 2; v(t) = p2 × t1 + t2, see equation 4.37.

k s t = τ(k, s) π(k)PND = v(t)

0 - (0, 0) 0

1 1 (1, 0) 5

2 1 (2, 0) 10

3 1 (3, 0) 15

4 1 (4, 0) 20

5 2 (0, 1) 1

6 1 (1, 1) 6

7 1 (2, 1) 11

8 1 (3, 1) 16

9 1 (4, 1) 21

10 2 (0, 2) 2

11 1 (1, 2) 7

12 1 (2, 2) 12

13 1 (3, 2) 17

14 1 (4, 2) 22

15 2 (0, 3) 3

16 1 (1, 3) 8

17 1 (2, 3) 13

18 1 (3, 3) 18

19 1 (4, 3) 23

20 2 (0, 4) 4

21 1 (1, 4) 9

22 1 (2, 4) 14

23 1 (3, 4) 17

24 1 (4, 4) 24



4.4 Projection access order for SART 93

4.4.6 Prime number increment (PNI)

Another algorithm which involves prime numbers was proposed by Kong (Kong 2011).

It works as the opposite of the PND algorithm. A prime number P is used, which is

not a prime factor of the number of measured views K

π(0) = 0;

π(k) = (π(k − 1) + P ) mod (K), 1 ≤ k ≤ K − 1.
(4.39)

The method is simple, however no advice how to choose an optimal P for given K is

given in the publication. In the equation 4.40 an example of a PNI sequence for K = 25

and P = 7 is shown.

K = 25; P = 7

πPNI = [0, 7, 14, 21, 3, 10, 17, 24, 6, 13, ...

20, 2, 9, 16, 23, 5, 12, 19, 1, 8, 15, 22, 4, 11, 18]

(4.40)

4.4.7 Multilevel scheme (MLS)

According to H. Q. Guan and R. Gordon (Guan 1994), a high geometrical correlations

between used projections makes the algebraic reconstruction slow in convergence. The

projections, which are 90o apart, have the minimum correlation and introduce the most

independent information into reconstruction. Based on the geometrical correlations of

projections the MLS scheme was developed. The MLS orders the projections to keep

the geometrical correlation to the last used projection and to the other already accessed

projections minimal.

The MLS organizes all projections in certain levels, denoted by l. It starts with view

number 0 (0o) and view Nproj/2 (90o) as they have the maximum orthogonality. The

second level includes projections Nproj/4 (45o) and 3Nproj/4 (0o). Starting from the

second level, the index is generated based on the previously used indexes at all previous

layers by adding a factor Nproj/2
l, see Table 4.2. The mapping from the index to the

projection view is done by πMLS = index× factor(l). Apparently, the number of used

projections in each level is equal to the 2(l−1) or the total number of the used in the

previous levels projection.

For example, the third level includes four projections because two projections were

used in the first level and two projections were used in the second level. The index

sequence of the third level can be calculated as

πMLS(l = 3) : [0× Nproj
2 , 1× Nproj

2 , 1× Nproj
4 , 3× Nproj

4 ] +
Nproj

23 =

1× Nproj
8 , 5× Nproj

8 , 3× Nproj
8 , 7× Nproj

8 .
(4.41)
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Table 4.2: Access order for MLS.

level l length 2(l−1) factor index

1 2 ×Nproj/2 [0, 1]

2 2 ×Nproj/4 [1, 3]

3 4 ×Nproj/8 [1, 5, 3, 7]

4 8 ×Nproj/16 [1, 9, 5, 13, 3, 11, 7, 15]

5 16 ×Nproj/32 [1, 17, 9, 25,...]

The MLS requires the number of projections Nproj be a power of two. If Nproj is not a

power of two, additional modifications including rounding the values to integers and

rejection of already used values, since the same numbers may appear more than once

before all projections are processed.

In equation 4.42 an example of an MLS sequence for Nproj = 25 is shown. The

repeating numbers have been ignored when creating this sequence.

Nproj = 25;

πMLS = [1, 13, 7, 19, 4, 16, 10, 22, 2, 15, 8, 21, ...

5, 18, 11, 24, 14, 20, 17, 23, 3, 9, 6, 12, 25].

(4.42)

4.4.8 Weighted distance scheme (WDS)

The WDS scheme proposed by Mueller et.al. (Mueller 1997) also minimizes the correla-

tion between used projections. This scheme consists of two phases, the initial filling and

the update phase. In the initial phase all projections are ordered as a circular queue

Θ. In the update phase old values in Θ are overwritten by new values. New values are

chosen based on the minimization of the weighted mean of repulsive forces between

projections and on the minimization of the weighted standard deviation of the distances

between projections. The WDS is not included into the current study.

4.4.9 Data-based minimum total correlation order

All projection access orders share a similar concept that the next applied projection

should bring as much new information as possible, i.e. to have small correlation with

the previously used projection(s). All schemes discussed above minimize the correlation

between selected projections by using only the information at which angle the projection

was measured. In this subsection, the minimum-correlation approach for construction
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the projection access order will be extended by using the object-related information

instead of only the angular information.

The main idea is to calculate explicitly the correlation between each projection

images and to find such projection order which results in the total minimal correction.

Correlation between each projection image can be represented as a matrix of Nproj×Nproj

size.

A correlation coefficient cj1j2 between two projection images pj1 and pj2 is given by

cj1j2 =

M∑
i

(
pj1 − pj1

) (
pj2 − pj2

)
√

M∑
i

(
pj1 − pj1

)2 M∑
i

(
pj2 − pj2

)2 , (4.43)

where pj1 and pj2 are the mean values. Then, a path in the matrix c is searched, which

leads to the minimum correlation. A simple nearest-neighbor approach can be used as

well as more sophisticated minimum path finding algorithms (Kiencke 2013a).

4.4.10 Simulation results

A comparison of several projection access orders for SART in application to tomosynthesis

geometry has been done. The sequential, random, PND, MLS, golden ratio and minimum

correlation approaches have been considered. The noiseless projection data have been

simulated using the geometry of the Siemens Mammomat Inspiration device. A phantom

contains the concentric small sphere of 5 mm radius and a cylinder with 50 mm radius.

To construct the minimum correlation order, first, the correlation matrix has been

calculated, see Fig. 4.1a. Then, the path has been found using the nearest neighbor

approach, also known as a greedy approach (Kiencke 2013b). The obtained order is

visually shown in Fig. 4.1b.

A plot showing the costs to move from the current projection to the next projection

is shown in Fig. 4.2. It can be seen, that the sequential order has the highest costs for

each step. Some pattern can be recognized in the curve for PND. The costs for random,

MLS and golden orders are scattered. The costs for the minimum correlation order

increase with each step, starting from small values and ending up with the costs similar

to the sequential approach. This behavior can be explained by the used path search

algorithm. The nearest neighbor method finds some paths, but it is not guaranteed that

it is the absolute minimum path. The comparison of the total path length is shown in

Table 4.3, first row. Among all, the minimum correlation order has the shortest path

length.
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Figure 4.1: The minimum correlation access order. (a) correlation matrix and (b) visual-
ization of the projection access order.

Table 4.3: Total length of the path in the correlation matrix and the total lengths including
the history of the previously used projections (one element).

order seq rnd pnd mls golden mincorr

length 23.57 16.37 16.19 13.49 12.16 10.52

length with history 44.36 29.93 28.00 30.47 26.01 33.13

Six volumes have been reconstructed using SART with zero-valued initial guess, 20

iterations and the abovementioned projection access orders. Reconstructed volumes

have been quantitatively compared with the original phantom using the normalized

root mean squared error (NRMSE). The NRMSE versus the iteration number is shown

in Fig. 4.3. Although, the minimum correlation order shows promising behavior in

the first iterations, the reconstruction process seems to stuck at a local minimum. It

can be explained by the fact, that the nearest-neighbor algorithm does not take into

account any history, which, in turn, might be important. If the currently used projection

pj has a small correlation to the previously used projection pj−1, but has a large

correlation to the projection pj−2, it will slow the convergence rate. The total path with

taking into account the history (one element, see Table 4.3, second row) shows that the

minimum correlation order, indeed, does not produce the smallest correlation. Therefore,

better algorithms for path searching, which include the history of the previously used

projections, are required (Kiencke 2013a).
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Backprojected space (BP-space) is a sinusoid-like decomposition of the projection

data. The BP-space is a four-dimensional space which connects the projection space and

the image space. It gives a new possibility to represent the backprojection operator and to

control it with more flexibility. It allows for introducing non-linear weighting coefficients

in the backprojection operator to control the contribution of each projection value

into each voxel individually. It can be used when the projection data are incomplete

or inconsistent to reduce the influence of incompleteness/inconsistency of the data.

Additionally, the BP-space offers a new methodology to follow the sinogram flow

without any segmentation or registration. This can be used for data interpolation.

This chapter includes a literature review of the stackgram representation which

is the BP-space in the two-dimensional case. The BP-space will be introduced as

generalization of the stackgram approach for the third dimension and the properties

of the BP-space will be discussed. Then, a motivation for a non-linear weighted
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backprojection for tomosynthesis will be given (Levakhina 2012a). The weighting

scheme will be discussed and reconstruction results will be shown. Afterwards, the

weighting scheme will be extended for the usage in the SART algorithm with some results

(Levakhina 2012c, Levakhina 2013b). As the last part of this chapter, unpublished work

regarding metal artifact reduction in CT using ωSART and interpolation in BP-space

will be presented.

5.1 Theory of backprojected space

In this section, the literature review and the properties of the stackgram representation

and the BP-space will be presented. To the best of our knowledge, the detailed properties

of the planes of different orientation in the stackgram and BP-space have never been

discussed in literature before.

5.1.1 Stackgram representation in literature

A concept of the stackgram representation has been introduced by A. Happonen in

2002 and summarized in 2005 in his PhD dissertation (Happonen 2005a). The stack-

gram is an intermediate three-dimensional domain between the two-dimensional image

domain and the two-dimensional sinogram domain. First, it has been proposed for

sinogram denoising of PET data. Data processing along sinusoidal curves has a potential

(Happonen 2002, Krestyannikov 2004a) and a superiority (Happonen 2005b) to other

sinogram filtering methods for this imaging modality. An application of stackgram

denoising to the attenuation-corrected PET data can be found in (Krestyannikov 2004b).

A study on exact formulation of filters can be found in (Peltonen 2010). A similar tech-

nique has also been proposed for noise reduction of low-dose CT data (Happonen 2007b).

The stackgram filtering was also used for denoising of SPECT data (Happonen 2007a).

A method based on a similarity comparison within the neighborhood of locus-signals

in stackgram has been proposed for alignment of tomographic data in dynamic PET

(Happonen 2003, Happonen 2004, Kostopoulos 2006). Another application of the stack-

gram, which can be found in literature, is an extrapolation of limited-angle data

(Happonen 2005c). A similar sinogram decomposition approach has been proposed

by A. Zamyatin for restoration of the truncated data (Zamyatin 2007). J. Caramelo

(Caramelo 2005) proposed a reconstruction method based on the sinogram decompo-

sition into single sinogram curves, which has similarities to the stackgram approach.

Another paper was published in 2012 which proposes an inpainting based on sinusiod-like

curve decomposition and uses an eigenvector-guided interpolation (Li 2012).
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In the next subsection the stackgram representation will be extended to the fully

three-dimensional case and its properties will be discussed in details.

5.1.2 Properties of BP-space

The BP-space is a generalization of the stackgram representation for dimensions higher

than two. Here, it will be addressed for the three-dimensional geometry. The BP-

space is constructed using a modified backprojection operator such that the summation

(integration in continuous case) is replaced by a stack operator.

In case of two-dimensional parallel-beam geometry, the stack operator S is defined

by equation 5.1. Here, D denotes the object support.

h (x, y, θ) = Sp (ξ, θ) = p (x cos θ + y sin θ, θ) ,

(x, y) ∈ D ⊂ R2, θ ∈ [0, 2π)
(5.1)

It maps each i-th sinogram row p (ξ, θ = θi) into the i-th plane in the BP-space for all

view directions, i.e. ∀i = 1 : Nθ. The resulting two-dimensional images are stacked

along the θ direction for each angular view. This results in a three-dimensional matrix

h (x, y, θ). To go back from the BP-space to the sinogram, a modified FP-operator

(equation 5.2) can be used, such that each plane of the BP-volume h (x, y, θ) is forward

projected according the corresponding angular view θ and results in a sinogram row.

Rows are combined together into a sinogram.

p (ξ)θ = FPθ [h (x, y, θ)] =

∫∫
D

hθ (x, y) δ (x cos θ + y sin θ − ξ) dxdy, θ ∈ [0, 2π) (5.2)

In practical applications only coordinates within the object support D are considered

and the result is referred to as a BP-volume. An example of the BP-volume representation

of an object consisting of a point-like feature is presented in Fig. 5.1a. It looks like a

stack of spokes with a single spoke lying in each theta-plane. Each spoke is rotated

by θ in xy-plane. All of them form a spiral pattern in the volume. In Fig. 5.1b an

example of the BP-volume of a lung slice from the XCAT phantom (Segars 010) is

shown. Each point in the image produces spiral spokes. Their superposition results in

the complex-looking structures.

An xy-plane of the BP-volume contains a set of lines, also known as ridge functions

(Logan 1975, Candes 1999). The lines in each plane have the corresponding θ orientation.

If no post-processing is applied, the information is redundant along each line. Examples

of the xy-plane of a PB-volume of a point-like object and a PB-volume of the lung slice

from the XCAT phantom are shown in Fig. 5.2.
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(a) point-like object (b) XCAT phantom lung slice

Figure 5.1: Backprojected volume of a point-like object (a) and a lung slice from XCAT
phantom (b). A Matlab jet colormap is used for better visualization, blue
color corresponds to zero gray value.

A vector hx0y0 (θ) contains all backprojected values, which contribute from all

angular views to the selected pixel (x0, y0). In the case when the image contains only

one point-like feature located in the pixel (x0, y0), the corresponding projection data

p (ξ, θ) will contain exactly one sinusoid-like curve. Lets consider an object with a set

of point-like features distributed along the line x = x0 and focus on a feature located at

(x0, y0), see Fig. 5.3a.
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/ m
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(a) xy, point-like object
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y 
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m

(b) xy, XCAT

Figure 5.2: An example of xy-planes with orientation angle θ = 0o. The information is
redundant along each line (ridge functions).
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Figure 5.3: Connection between the line in the image domain, the “peanut”-shape in the
sinogram domain and the corresponding coordinates in the BP-volume.
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The corresponding sinogram contains a peanut-like bunch of sinusoidal curves. The

curve produced by the feature (x0, y0) is marked by arrows. All sinusoidal curves cross

in one point, where the view direction θ0 is parallel to the x-axis, and the detector

coordinate ξ = y0, see Fig. 5.3b. Describing the situation vice-versa: the points,

which contribute to the sinogram value (ξ = y0, θ = 0) lie within a peanut-shape in

the sinogram. Using the concept of the BP-volume, we can easily move along each of

the sinusoids within the peanut shape region. If we move in the BP-volume along a

θ-vector located at (x0, y0), we are moving along the sinusoidal curve produced by the

corresponding pixel, see Fig. 5.3e.

If we select θ = 0, fix the coordinate x0, move along ridge line, select an arbitrary

value y and then move along the θ-vector, it is equivalent to the moving along a curve

in the peanut bunch. At the same time, an additional point (x0, y1) (see Fig. 5.3c) will

produce a curve, which does not belong to the abovementioned peanut-bunch (Fig. 5.3d)

and can be accessed via a θ-vector located at (x0, y1), see triangle marker in Fig. 5.3e.

The xθ- and yθ-planes represent a set of θ-vectors for the selected x or y coordinate,

respectively. Those planes contain information within peanut-like regions in the sinogram.

Consider a BP-volume for an image, which contains one point-like object. Then all

planes drawn through an arbitrary coordinate will contain some parts of the sinusoidal

trace, see Fig. 5.4a and Fig. 5.4c. If a plane passes through the coordinate of the feature,

it will contain a “singularity”, i.e. there will be a θ-vector present, where all entries

contain the values of the sinusoid curve associated with this feature, see Fig. 5.4b and

Fig. 5.4d. The same behavior is observed when a realistic image is considered, e.g. a

lung slice from the XCAT phantom. Hoverer, if no high-absorption features are present,

“singularities” are not obviously visible, see Fig. 5.4e - Fig. 5.4h. Both, xθ- and yθ-planes

can be seen as a decomposition of a profile of the point-spread function (PSF), or more

precisely the contribution into PSF before the summation operation is done.

In case of the three-dimensional imaging geometry, a similar operator S3D can be

defined, resulting in the four-dimensional backprojected space h3D (x, y, z, θ)

h3D (x, y, z, θ) = S3Dp (u, v, θ) . (5.3)

The angle θ describes the X-ray tube position and (u, v) are coordinates of a point

on the detector. The parameters (u, v) and θ are defined by the acquisition geometry.

In contrast to the two-dimensional parallel beam geometry where the S can easily be

defined (equation 5.1), in the three-dimensional case S3D cannot be described as a

general expression because it depends on the specific geometry of the scanner.
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Figure 5.4: A visualization of the θx- and θy-planes of a BP-volume. (a)-(d) correspond to
a point-like object and (e)-(h) correspond to a slice from the XCAT phantom.
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5.2 A weighting scheme based on dissimilarity

In this section a weighting scheme for tomosynthesis is presented. The weighting

is designed to reduce the out-of-focus tomosynthesis artifacts produced by the high-

attenuation features. The section is based on (Levakhina 2012a) and (Levakhina 2012c).

5.2.1 Motivation for weighting: tomosynthesis blur formation

The motivation for the proposed weighting scheme arises directly from the blur for-

mation principle in conventional tomosynthesis (conventional tomography), see e.g.

(Ziedses des Plantes 1932). In the conventional tomography one complete movement

of an X-ray sensitive film and an X-ray source resulted in one slice through the body.

During an acquisition the film and the tube were moved continuously in opposite direc-

tions across the patient. This brings into focus only one one plane, which contains the

iso-center of motion, The structures located in this plane appeared sharp. At the same

time, all other structures located above and below this plane appeared blurred due to the

inherent averaging process. In order to visualize another plane, the iso-center was moved

to the new position and a new acquisition was performed. The integration process was

done directly on the sensitive film. As it has been mentioned in the Chapter 2, a great

step forward was an idea to acquire the data as a sequence of analogue projection images,

rather than as one single analogue image. An infinite number of slices through the object

can be produced if the sequence of projection images is measured, see e.g. (Miller 1971).

A modern DT acquisition results in a sequence of digital images. The simple back-

projection operation includes the backprojection of each digital image and accumulating

the result as a volume. The BP-space representation offers a possibility to process the

contribution from each projection separately. In other words, the simple backprojection

can be subdivided into two steps: the backprojecting according to the geometry and

the summation of the result in each voxel. Consider a two-dimensional tomosynthesis

example with three measurement view directions. The measurement process is schemat-

ically shown in Fig. 5.5a and the simple backprojection is shown in Fig. 5.5b. The

selected plane of interest with a triangle feature is marked by a dashed line. A circle

feature, which is located below the plane of interest, will contribute to the blur. A

detailed look into the backprojecting step is shown in Fig. 5.5c. It can be seen, that

after the backprojection the triangle feature appears sharp in the selected plane. At

the same time, the circle feature appears as multiple ghosting copies, i.e. it produces

blur in this plane. This happens because the triangle belongs to the selected plane and

the corresponding projection values are always backprojected onto the correct location

(see Fig. 5.5c, voxel x1). The circle does not belong to the selected plane and, therefore,
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Figure 5.5: The principle of blur formation in tomosynthesis and a motivation for the
weighted backprojection.

it is always backprojected onto the wrong location (see Fig. 5.5c, e.g. voxel x2). Thus,

the blurring principle can be formulated as follows: because each measured projection

contains overlapping details of the object, structures lying in the plane of interest will

coincide in each backprojection after the backprojection step (Fig. 5.5c, voxel x1). At

the same time, structures located outside the plane will not coincide and thus will

contribute to an undesired blur (Fig. 5.5c, voxel x2).

Taking into account the information if a particular feature belongs to the plane of

interest or not, it is possible to introduce the weighting coefficients into backprojection.

One has to identify rays which contain contributions from out-of-focus structures and

assign a small weight for the selected plane. This can be done by a comparison of all

values, which contributes to the selected voxel. In Fig. 5.5c, all contributing values to

the voxel x1 are identical. Therefore, no weighting is needed. At the same time, in

the voxel x2 the contribution from the circle feature is noticeably larger than other

values. Therefore, a small weight has to be assigned to this contribution. This way, it is

possible to suppress contributions to artifacts from high-attenuation structures when

they are backprojected onto wrong geometrical locations and to preserve the in-focus

structures. As a result, the contributions to artifacts are suppressed and the in-focus

structures are preserved.
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5.2.2 Dissimilarity degree

In case when a volume contains only one point-like feature located in the voxel (x′, y′, z′),

the corresponding projection data p(u, v, θ) will contain exactly one three-dimensional

sinusoid-like curve. All entries of the corresponding θ-vector hx′y′ (θ) in the backprojected

space will have the same value. In the case when a volume contains two point-like features

(Fig. 5.6a), the corresponding projection data will contain two crossing sinusoid-like

curves (Fig. 5.6b) and the entries of the selected θ-vector in BP-space will contain not

only one constant value (star-shaped markers), but also a few outliers, which correspond

to those angular views, when two sinusoids are crossed (Fig. 5.6c).

In the case of medically relevant objects, the projection data contain a large number

of overlapping sinusoid-like curves and each entry in the θ-vector might have a different

value. When an object contains a high-absorption feature in the voxel (x′, y′, z′),

the sinusoidal-like curves produced by this feature will cross the sinusoidal-like curve

produced by the (x, y, z) point. The values on the crossing location will be relatively

large compared to the rest of the values. Here, one can assign a dissimilarity degree to

each value in the θ-vector and identify outliers. The dissimilarity degree is a positive

value less or equal than one, describing how far away the current value is from the

whole ensemble of values. The outliers come from the high-absorption features and

potentially produce artifacts. At the same time, the sinusoid-like curve produced by

the voxel (x′, y′, z′) will contain no outliers because all values will be similar with the

same relative large value. This allows for introducing the spatially-depended adaptive

weighting coefficients to suppress non-similar values based on their dissimilarity degree.
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Figure 5.6: (a) image with two point features; (b) sinusoid curve corresponding to pixel
(x, y) is marked with arrows; (c) values along the sinusoidal curve or θ-vector
in the BP-space (star-markers), outliers are marked by circle-shaped markers.
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5.2.3 Weighting scheme

The idea of the weighting scheme has been inspired by the following two algorithms.

The first algorithm is the extreme-value decoding, where only projection data with min-

imum or maximum value are used for the reconstruction (Haaker 1985a, Haaker 1985b,

Stiel 1993). The second algorithm is the voting strategy for statistical reconstruction in

breast tomosynthesis when projections with too high value are detected, segmented and

completely rejected (Wu 2006).

The dissimilarity degree can be used to correct for a too large contribution in the

simple backprojection when a backprojected contribution is calculated using a large

sinogram value and is back-distributed onto the wrong geometrical location. The

proposed algorithm does not use any segmentation or tissue-classification steps. The

detection and correction of values is done automatically.

First, for each voxel (x, y, z) within the set of volume points V the BP-volume

h (x, y, z, θ) is constructed using a stack operator S3D

∀ (x, y, z) ∈ V, ∀ θ ∈ Γ : h3D (x, y, z, θ) = Sp (u, v, θ) . (5.4)

The stack operator is defined by the geometry and imaging parameters of the device. A

schematic representation of θ-vector is shown in Fig. 5.7a. Then, for each element of

each θ-vector a dissimilarity degree dxyz (θ) is assigned

dxyz (θ) =
|hxyz (θ)−Mxyz|

range
, d ∈ (0, 1) . (5.5)

The dissimilarity is defined as the absolute difference to a reference value Mxyz, normal-

ized to the range of the projection data, excluding the high-attenuation features. The

range is defined as the difference between the largest and the smallest possible value.

The reference value can be chosen as the mean, minimum, median, pairwise distinction

or other values based on the statistics of the θ-vector. The largest dissimilarity coefficient

value is defined to be equal one. If some dissimilarity coefficient are larger than one,

they should be limited to one. It is important to note that the reference value M is not

considered as the expected solution and the algorithm does not converge to this value.

A schematic representation of the dissimilarity is shown in Fig. 5.7b. The reference

value M is shown as a dashed line and potential outliers with large distance to the

reference value are marked by triangle markers.

The weighting coefficients ωxyz (θ) are calculated as a function of dissimilarity. It is

reasonable to assume the relation between the dissimilarity and the weighting coefficients
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(a) θ-vector
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(b) values in θ-vector

Figure 5.7: A schematic representation of a θ-vector in BP-volume (a) and dissimilarity of
values of the θ-vector (b). Outliers are marked by triangle markers.

to be a non-increasing function

ω =

(
1− d

1 + αd

)β
, ω ∈ (0, 1) . (5.6)

This function is called a correction function. The parameters α and β control the

steepness of the correction curve, see Fig. 5.8a and Fig. 5.8b.

All weighting coefficients are less than or equal to one, i.e. they are damping
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Figure 5.8: The dependency of the weighting coefficients on the dissimilarity values is
called a correction curve. The influence of parameters α (a) and β (b) on the
steepness of the correction curve is shown.
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coefficients. An amplification of values is not possible. The contribution from all values

will be reduced, even from those values, which are smaller than the reference value and

potentially do not contribute to the artifacts.

It is important to note that if the relation between the dissimilarity and the weighting

coefficients are chosen as a step-function, the weighting scheme is simplified to a smart

voting strategy, which allows for seting a flexible threshold for each voxel to control if

the projection value is rejected. If Mxyz is chosen to be the same value for all voxels

and a step-function is used, the algorithm describes the classical voting strategy when

projection values larger than a certain absolute threshold are rejected and not used in

reconstruction algorithm.

5.3 Non-linear backprojection ωBP for tomosynthesis

The weighting scheme can used within the classical backprojection operator result-

ing in a novel non-linear backprojection operator. This section is also based on

(Levakhina 2012a).

5.3.1 Introducing weighting in the BP operator

The weighting is designed to suppress the contributions from high-absorption features

when they potentially contribute to out-of-focus artifacts. Coefficients are calculated

individually for each combination of voxel and projection value and are included into

the classical backprojection operator, see algorithm 5.1. The weighted version of

the backprojection algorithm is denoted by ωBP. The dissimilarity degree is used to

identify those voxels for which the given contribution will be “too large” and to assign

corresponding weighting coefficients. First, a BP-volume is calculated (line 1 - line 4).

Then, for each contribution from each θ-vector a reference value is calculated (line 7)

and a dissimilarity degree is assigned (line 8). Based on the dissimilarity degree the

weighting coefficients are calculated (line 9) and used within the backprojection operator

(line 10).

The BP-volume h(x, y, z, θ) in tomosynthesis is a four-dimensional space (x, y, z, θ).

The direct implementation of the BP-volume calculation for tomosynthesis is infeasible

because of size and dimensionality of the data. It is more natural to process the data

slice by slice. Additionally, the distance-driven projectors have also a slice-wise nature.

For the slice-wise implementation the following definitions are needed. A backpro-

jected view Pθ,z (x, y) is the result of a simple backprojection operation applied to one

projection image pθ(u, v), taken along the selected angular view θ ∈ Θ, where Θ is a set
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Algorithm 5.1: Weighted ωBP (direct implementation)

Input: Projection data pθ(u, v), θ ∈ Θ
Output: Reconstructed volume V (x, y, z)

1 for θ ∈ Θ do // construct BP-volume

2 select pθ(u, v);
3 use a stack operator;
4 add the contribution into the BP-volume h(x, y, z, θ);

5 for (x, y, z) ∈ V do // introduce weighting in BP

6 construct θ-vector hθ(x, y, z);
7 calculate reference value Mθ(x, y, z);
8 assign dissimilarity degree dθ(x, y, z);
9 calculate weighting coefficients ωθ(x, y, z);

10 V (x, y, z) = V (x, y, z) + ωθ(x, y, z) ·BP (pθ(u, v));

of all projection angles. The backprojection is done on a selected plane of interest z,

see equation (5.7). The plane is parallel to the detector plane. A backprojected view is

shown in Fig. 5.9a.

Pθ,z (x, y) = BPθ,z (pθ (u, v)) (5.7)

A backprojected slice Sz (x, y, θ), or a backprojected subvolume is the result of a simple

backprojection operation using the given set Θ and the selected coordinate z. The

backprojected subvolume Sz (x, y) is a stack of all backprojected views Pθ,z (x, y) for

the selected coordinate z, see equation (5.8).

Sz (x, y, θ) =
⋃
∀θ∈Θ

Pθ,z (x, y) (5.8)

A backprojected slice is shown in Fig. 5.9b.

A backprojected volume V (x, y, z, θ) is a four-dimensional stack of all backprojected

subvolumes Sz, which are located equidistantly for all z ∈ V see equation (5.9).

V (x, y, z, θ) =
⋃
∀z∈V

Sz (x, y, θ) =
⋃
∀θ∈Θ

⋃
∀z∈V

Pθ,z (x, y) (5.9)

The BP-volume in tomosynthesis is shown schematically in Fig, 5.9c.

The BP-subvolumes for each slice can be processed separately. Consequently, the

dissimilarity and the weighting coefficients can be calculated for each slice location z

independently. Weighted backprojection for tomosynthesis can also be done without

direct construction of the whole four-dimensional BP-volume at once, see algorithm 5.2.
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Figure 5.9: Schematic representation of (a) BP-view; (b) BP-subvolume; (c) BP-volume
for tomosynthesis geometry with a fixed detector.

Algorithm 5.2: Weighted ωBP (practically feasible slice-wise implementation)

Input: Projection data pθ(u, v), θ ∈ Θ
Output: Reconstructed slices slicez(x, y), z ∈ V

1 for z ∈ V do // pre-calculate a set of reference slices

2 calculate Mz(x, y) ;

3 for θ ∈ Θ do
4 select pθ(u, v);
5 for z ∈ V do
6 load reference slice Mz(x, y);
7 calucalate backprojected view Pθ,z (x, y);
8 assign dissimilarity degree dθ,z(x, y, );
9 calculate weighting coefficients ωθ,z(x, y);

10 slicez(x, y) = slicez(x, y) + ωθ,z(x, y) ·BPz (pθ(u, v));

For an assignment of a dissimilarity degree for a combination of a z-th slicez (x, y)

and an i-th view pθi (u, v) only an i-th BP-view Pθi,z (x, y) (line 7) and the reference

value Mz(x, y) are required. This way, the weighted backprojection can be easily

implemented slice-wise (line 6 - line 10). The reference value can be pre-calculated

(line 2).
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5.3.2 Demonstration of the dissimilarity and weighting

This subsection demonstrates how the dissimilarity and weighting coefficient images

look when the algorithm is applied to real data. Real measured data of a hand has

been acquired using the Siemens Mammmomat Inspiration device. The log-transform

to convert the intensity images into projection images is done by the device. The hand

is approximately 44 mm thick. The reconstructed slices have a spacing of 1 mm. The

reference value M is the min value and the correction curve parameters are α = 1 and

β = 1.

A dissimilarity and a weighting coefficients image for the slice at 24 mm and an

arbitrary view direction at -25o are shown in Fig. 5.10a and Fig. 5.10b. Both, the

dissimilarity image and the weighting image are shown with a full [0, 1] window. Bright

regions in dissimilarity image denote large dissimilarity degree values. It can be seen,

for example, that the region with metacarpal bones has a large dissimilarity (marked by

an ellipse). The selected region in the weighting image has relatively small values and is

denoted as a dark region, see Fig. 5.10b. Those bones are located outside the selected

slice and will contribute to the out-of-focus artifacts, see the unweighted BP-slice in

Fig. 5.10c. If the weighted backprojection is done, the contribution of those bones in

the current slice is decreased, see Fig. 5.10d.

A dissimilarity and a weighting image for the slice at 35 mm show that in contrast

to the slice at 24 mm, the metacarpal bones are in-focus in this slice, see Fig. 5.11a

and Fig. 5.11b. Those values contribute with the full contribution to the ωBP. The

thumb and the little finger are out-of-focus (marked by ellipses). Correspondingly, the

weighting coefficients are small for those regions. The contribution to ωBP of those

values is reduced, see Fig. 5.11d.

As a conclusion, the out-of-focus contributions are reduced and the in-plane contri-

butions are preserved when using the proposed weighting algorithm.
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(a) dissimilarity d (b) weighting ω

(c) BP-slice P (d) weighted BP-slice ωP

Figure 5.10: Demonstration of dissimilarity and weighting images, slice at 24 mm. The
metacarpal bones (marked by an ellipse) are out-of-focus. (a) dissimilarity
coefficients, [0 1]; (b) weighting coefficients, [0 1]; (c) an unweighted BP-slice;
(d) a weighted BP-slice. It can be seen that out-of-focus contributions from
bones are reduced.
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(a) dissimilarity d (b) weighting ω

(c) BP-slice P (d) weighted BP-slice ωP

Figure 5.11: Demonstration of dissimilarity and weighting images, slice at 35 mm. The
metacarpal bones are in-focus. The thumb and the little finger are out-of-
focus. (a) dissimilarity coefficients, [0 1]; (b) weighting coefficients, [0 1]; (c)
unweighted BP-slice; (d) weighted BP-slice. It can be seen that out-of-focus
contributions are reduced and the in-plane contributions are preserved.
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5.3.3 Reconstruction results

In this subsection the ωBP reconstruction results with varying parameters of the

correction function (M , α, β) will be shown.

The images reconstructed using the ωBP algorithm with the mean reference value

M are shown in Fig. 5.12a-Fig. 5.12d and the corresponding difference images to the

unweighted BP are shown in Fig. 5.12e - Fig. 5.13h. The reconstruction results obtained

using the min reference value M are shown in Fig. 5.13a-Fig. 5.13d and the corresponding

difference images to the unweighted BP are shown in Fig. 5.13e - Fig. 5.13h. The image

reconstructed using the unweighted BP is shown in Fig. 5.13a for a visual comparison.

All reconstructed images as well as the difference images are comparable with each

other, because they are shown using (correspondingly) the same window width and

window level.

It can be seen, that the blur is reduced in each image. The steepness of the correction

function controls the degree of blur reduction. The usage of the mean reference value

results in images with fuzzy bone boundaries. The contribution from bone, which is

located outside the selected slice is still present, see the left bone in Fig. 5.12. The

usage of the min reference value results in images with sharp bone boundaries. The

contribution from bone, which is located outside the selected slice is partially removed,

see Fig. 5.13. At the same time, it is known that the blurred contributions are produced

by the out-of-focus structures, which makes it possible to identify them visually. This

knowledge is lost when using min reference value. It is impossible to identify if the

triangle-shaped part of the bone is really in-plane or out-of-plane, but appears sharp

because of the chosen reference type.

A too steep correction curve (α = 2, β = 2) results in “over corrected” images. The

bone structures are surrounded by undershoot dark shadows for both cases, the mean

and the min reference values, see Fig. 5.12d and Fig. 5.13d. The image reconstructed

using the min reference value is more noisy because the noise in the projection data is

amplified.

As a conclusion, the degree of blur reduction depends on the steepness of the

correction function and on the choice of the reference value. The choice of the reference

value influences the appearance of the regions, which cannot be unblurred because

of incompleteness of the dataset. There is also always a trade-off between the blur

reduction and noise amplification.
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(a) BP (b) mean,
1− d

(c) mean,
α=1, β=1

(d) mean,
α=2, β=2

(e) BP - (BP) (f) BP - (mean, 1− d) (g) BP - (mean, α=1,
β=1)

(h) BP - (mean, α=2,
β=2)

Figure 5.12: Reconstruction of a hand slice located at 24 mm. (a) unweighted BP; (b)-
(d) ωBP with M as the mean value and varying α and β; (e)-(h) show the
difference between unweighted BP and ωBP with varying wighting parameters.
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(a) BP (b) min,
1− d

(c) min,
α=1, β=1

(d) min,
α=2, β=2

(e) BP - (BP) (f) BP - (min, 1− d) (g) BP - (min, α=1,
β=1)

(h) BP - (min, α=2,
β=2)

Figure 5.13: Reconstruction of a hand slice located at 24 mm. (a) unweighted BP; (b)-(d)
ωBP with M as the minimum value and varying α and β. (e)-(h) show the
difference between unweighted BP and ωBP with varying wighting parameters.
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5.4 Weighted ωSART for tomosynthesis

In this section, a non-linear backprojection operator is used within the SART reconstruc-

tion algorithm. The ωSART reconstruction results with varying weighting parameters

will be shown and compared to the non-weighted SART. More reconstruction results

and artifact reduction analysis ca be found in (Levakhina 2013b).

5.4.1 Introducing the non-linear BP into SART

In the presence of high absorption features, such as bones or metal, the corresponding

measured projection values will be relatively high. Consequently, the updating term in

SART 1 algorithm calculated based on these projection values will be too large for certain

voxels, contributing this way to the formation of the artifacts. The non-linear back-

distribution of the updating terms can be used to reduce a too large contribution when

the updating term is calculated using a large projection value and is back-distributed

onto the wrong geometrical location. The weights ωi,j are used to control the influence

of each beam to each voxel in the reconstruction. Weights are calculated using the BP-

space representation. The weighting coefficients are calculated based on a dissimilarity

measure, which is evaluated in this space. To derive this weighting, the measured

projection data is used. This results in a unique set of weighting coefficients for each set

of measurements. The SART algorithm with the proposed weighting scheme is denoted

as ωSART

f
(n+1)
i = f

(n)
i +

λ

Ai,+

∑
j∈Jθ

ωi,j
Ai,j
A+,j

(
pj − pj

(
f (n)

))
. (5.10)

5.4.2 Computational complexity and implementation strategy

The implementation of ωSART (see algorithm 5.3) is similar to the implementation of the

non-weighted SART. The slice-wise implementation strategy of the weight calculations

(see line 12 - line 15) can be directly taken from the ωBP algorithm. Weights are

produced based on the dissimilarity calculated in the BP-volume. The BP-volume is

constructed using the raw-data. The difference is that not the backprojected raw-data

is weighted, but the backprojected updating terms (line 19).

1It is not limited to the algebraic reconstruction and can potentially be included into various iterative
reconstruction algorithms with an additive updating strategy. Furthermore, the scheme is not limited
to tomosynthesis geometry, but can be extended to the full scan CT case and applied, for example, to
the metal artifact reduction problem.
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Compared to the unweighted SART algorithm, one iteration of the ωSART algorithm

requires an additional computation of the dissimilarity and the weighting coefficients.

This is equivalent to Nγ ×Nslices of UBP units (line 12). It results in total of

2 ·Nγ ×Nslices × (UFP + UBP ) +Nγ ×Nslices × (UBP ) (5.11)

computational costs for one iteration of ωSART. This means that one iteration of

ωSART is Nγ ×Nslices × UBP more expensive2 than one iteration of the non-weighted

SART. The reference slices M can be pre-computed (line 4). It requires additional

Nx ×Ny ×Nslices units of memory.

Algorithm 5.3: Slice-wise implementation of ωSART for tomosynthesis

Input: Projection data sino(θ), θ ∈ Θ
Output: Reconstructed volume slice(z), z ∈ V

1 Initialization : dictionaries for sino name, sino upd name ∀θ ∈ Θ;
2 dictionaries for slice name, upd term name ∀z ∈ V ;
3 slice ∀z ∈ V ;
4 dictionary for M name ∀z ∈ V ;
5 pre-compute reference slices M(z) ∀z ∈ V ;
6 for θ ∈ Θ do
7 read sino name and sino upd name for given θ from dictionary;
8 sino upd(θ) = FP (slice (∀z) , θ);
9 A+,θ = FP (slice ones (∀z) , θ);

10 sino upd(θ) = (sino upd(θ)− sino(θ)) /A+,θ;
11 for z ∈ V do
12 P(θ, z) = BPz (sino(θ));
13 read M name for given z from dictionary;
14 d(z) = (abs(P(θ, z)−M(z))/range);

15 ω(z) =
(

1−d(z)
1+αd(z)

)β
;

16 read upd term name and slice name for given z from dictionary;
17 upd term(z) = BP(sino upd(θ), z);
18 Az,+ = BP(sino ones(θ), z);
19 slice(z) = slice(z)− (λ · ω(z) · upd term(z)) /Az,+;
20 clear upd term(z), Az,+;

21 clear sino upd(θ), A+,θ;

2The UFP and UBP computational units have been introduced and described in chapter 4.
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5.4.3 Reconstruction results

Real measured data of a hand have been used for the reconstruction. The measured data

have been acquired using the Siemens Mammmomat Inspiration device. The intensity

images have been transformed into projection images using a log-transform and an

additional empty scan I0. The following reconstruction parameters have been used for

both, SART and ωSART algorithms: the iteration process has been stopped after 3

iterations, the relaxation parameter λ is 0.3, the initial guess is zero, the projection

access order is a random permutation and no roughness prior functions have been

involved. Practice has shown that those parameters result in acceptable images with

short computation time. For each object a stack of slices with 1 mm thickness has

been reconstructed. All images in the stack are parallel to the detector plane. The

reconstructed volume of the hand contains 44 slices. Window width and window level

have been adjusted in order to emphasize artifacts. The tube movement direction is

from the left to the right with respect to all presented tomosynthesis images. The

reconstructed images of the hand demonstrate artifact reduction in a clinical case.

The ωSART reconstruction results of the hand obtained using varying reference value

M and the parameters of the correction function are shown in Fig. 5.14b - Fig. 5.14g.

The shape of the correction function varies from a linear (α = 0, β = 1) to a non-linear

steep curve (α = 2, β = 2). The image, reconstructed using classical SART, is shown

for comparison in Fig. 5.14a. Out-of-focus artifacts appear as ghosting copies of the

artifact-causing features. High-absorption features at the in-plane slice are surrounded

by dark shadows. Artifacts are marked by white arrows. Slices reconstructed using the

ωSART method have less out-of-focus artifacts and they are less affected by the dark

shadows. The degree of artifacts reduction depends on the steepness of the correction

curve, which is similar to the simple ωBP. The reference value M = mean results

in better artifacts reduction compared to M = min with fixed α and β parameters.

However, M = min is also responsible for producing additional artifacts, see the region

of interest marked by an ellipse. In this region, the out-of-focus artifacts produced by

metacarpal bones are reduced. The boundaries of metacarpal bones are sharp, although

they do not belong to the shown slice.

The axial slices through the hand at y = 800 and y = 1700 are shown in Fig. 5.15.

The ωSART reconstruction (M = min, α = 2, β = 2) shows great reduction of the

limited angle artifacts also in z-direction. The streak-like artifacts and dark shadows

produced by bones (marked by white arrows) are reduced. However, the shape of features

in z-direction cannot be completely recovered and the triangle-shaped distortion of the

bones is still present.
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(a) SART

(b) ωSART, M=mean, α=0, β=1 (c) ωSART, M=min, α=0, β=1

(d) ωSART, M=mean, α=1, β=1 (e) ωSART, M=min, α=1, β=1

(f) ωSART, M=mean, α=2, β=2 (g) ωSART, M=min, α=2, β=2

Figure 5.14: SART and ωSART reconstruction of the hand. The shape of the correction
function varies from a linear (α = 0, β = 1) to a relatively steep curve
(α = 2, β = 2). White arrows point to the limited angle artifacts which are
reduced in ωSART reconstruction. The white ellipse points to artifacts which
are highlighted when M = min is used.
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(a) SART, y = 800

(b) ωSART, y = 800, M=min, α=2, β=2

(c) SART, y = 1700

(d) ωSART, y = 1700, M=min, α=2, β=2

Figure 5.15: SART and ωSART (M = min, α = 2, β = 2) reconstruction of the hand.
Axial cuts located at at y = 800 and y = 1700 are shown. White arrows point
to the limited angle artifacts which are reduced in ωSART reconstruction.
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5.5 Weighted ωSART for metal artifact reduction in CT

The ωSART algorithm can be extended for the full-angle 360o data and can be used

for the metal artifact reduction problem to correct for data inconsistency inside the

metal trace. The data inconsistency causes metal artifacts in the reconstructed images.

Usually, the metal-related data-samples are considered as invalid and are replaced

by the artificial data, produced by an interpolation (inpainting). Alternatively, a

reconstruction algorithm can be modified to ignore or to weight the inconsistent data,

see e.g. (Oehler 2007). For both types of approaches the metal segmentation step is

required in order to identify the metal-related projections. If the metal segmentation is

done in the image domain, a preliminary reconstructed image is needed. The accuracy

of the segmentation is influenced by the metal artifacts. The presence of a large amount

of metal makes it almost impossible to segment the metal accurately because of severe

artifacts. The segmentation in the sinogram domain cannot be done using simple

thresholding. It is time-consuming if it is done manually or computationally expensive

if it is done using dedicated registration algorithms. The weighting scheme presented

in the previous sections can be used to control the contribution of metal projections

without preliminary segmentation of the metal. The metal is preserved on its correct

location.

Some preliminary results of the ωSART reconstruction applied to the metal artifact

reduction problem will be shown below. The non-weighted SART reconstruction results

will be shown for the comparison. The reference value M is min for all shown results.

The projection data of a torso phantom with three metal rods and the projection data of

a patient with a hip implant have been acquired using the Siemens Somatom Definition

AS device.

5.5.1 Parameter γ

In tomosynthesis geometry the intersection length through the object is almost the

same for each pixel. Therefore, the variations in the projection data are caused only

by the material density. In case of clinical CT, the object dimensions might vary from

different sides, which means that the different rays will have different length through

the object. The projection values are influenced not only by density but also by the

the intersection length. Even in an ideal case of a homogeneous object, the measured

values might differ from each other, although rays travel through the same type os
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tissue. Therefore, a third parameter for the correction curve is needed to control what

degree of dissimilarity is still allowed without a weighting

ω =

(
1− d
γ + αd

)β
. (5.12)

The parameter γ is a new parameter compared to the tomosynthesis case. It controls

the weighting of the data with small dissimilarity degree (i.e. similar data). The smaller

γ, the larger the dissimilarity value at which the correction curve starts to drop down

from the value ω=1, see Fig. 5.16. The smaller γ, the larger amount of data will be

weighted with weighting ω ≥ 1;
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Figure 5.16: Influence of γ on the behavior of the correction curve ω(d)

Another difference is that the weighting coefficients are allowed to be larger than

1. It is important to check that the weighting does not result in an explosion of the

iteration process. Typically, the relaxation parameter range 0 < λ ≤ 2 is recommended

for non-weighted SART, therefore we assume that 0 < λ × ω ≤ 2 is a reasonable

limitation.

The histogram of the dissimilarity shows the data distribution visually, see Fig. 5.17.

The parameter range stretches the histogram. The smaller the parameter range the

wider the histogram. The range = 4.6 is a range of projections data without metal.

The range = 7.6 includes some portion of metal data. The correction curve with fixed

parameters results in different distributions of weighting coefficients for different range

values. The distribution of weighting coefficients is re-distributed closer to zero for

range = 4.6. It means that more contributions got smaller weighting coefficients.
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(c) weighting histogram
range = 4.6, α=1.5, β=2, γ=0.38
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(d) weighting histogram
range = 7.6, α=1.5, β=2, γ=0.38

Figure 5.17: The parameter range stretches a histogram of dissimilarity. The range = 4.6
is a range of projections data without metal. The range = 7.6 includes some
portion of metal data. The same parameters of correction curve results in
different distribution of weighting coefficients for different range values. For
range = 4.6, more weighting coefficients are concentrated close to zero.
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5.5.2 Reconstruction results

The results of the first sub-iterations of the iterative scheme for the phantom with three

metal rods are shown in Fig. 5.18. The number of used projections are 5, 15 and 65.

The SART images (Fig. 5.18a - Fig. 5.18c) show the homogeneous distribution of the

high-intensity metal-based updating term along the ray-lines. It potentially contributes

to the streak-like noise and metal artifacts. The weighted ωSART images show that

the contribution of the metal-based projections are reduced when those values are

backprojected outside the metal region.

(a) SART, 5 projections (b) SART, 15 projections (c) SART, 65 projections

(d) ωSART, 5 projections (e) ωSART, 15 projections (f) ωSART, 65 projections

Figure 5.18: Visual demonstration of the weighting scheme. The results of the SART and
ωSART iterative scheme using the first projections are shown.

The reconstruction results of SART and ωSART of the phantom with three metal

rods are in Fig. 5.19. The iteration process is stopped after 10 iterations. A non-

negativity constraint and a relaxation parameter λ = 0.15 were used. No smoothing

priors or additional data post- and pre-processing steps were included. The image

reconstructed using the unweighted SART reconstruction (Fig. 5.19a) shows typical

metal artifacts and streak-like noise. The ωSART (Fig. 5.19b - Fig. 5.19d) reduces
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metal artifacts and streaks. The images show that the degree of artifact reduction

depends on the chosen parameters. Almost no additional artifacts are introduced in

the reconstructed images. The optimal parameters for the weighting curve were found

empirically. Optimal parameters for the phantom are λ=0.15, α = 1.5, β = 2, γ = 0.38,

range = 17.

As an additional example, reconstructing results of a patient with a hip implant

are shown in Fig. 5.20. Two slices with different amount of metal have been chosen.

The images reconstructed using the unweighted SART algorithm also contains metal

artifacts and streak-like noise (Fig. 5.20a). The amount of artifacts and streaks depends

on the amount of metal. Metal artifacts hide an anatomy between and around implants.

In both cases the ωSART reconstruction (Fig. 5.20b, Fig. 5.20d) shows good ability to

suppress streak-like noise. The anatomy in the regions left, right and between the metals,

where dark shadows appeared in the unweighted SART reconstruction, is recovered.

This it can be seen especially in the second slice with the large amount of metal. At

the same time, some additional streak-like artifacts are introduced in the reconstructed

images. Those streaks have less intensity than metal artifacts and do not hide anatomy.

Nevertheless, they can be seen and corrupt the appearance of the images.

A comparison of the original sinogram of the hip and the simulated sinograms based

on the SART and ωSART reconstruction is shown in Fig. 5.21. The original sinogram of

the hip with metal implant, two simulated sinograms based on the SART and ωSART

reconstruction and their difference to the original sinogram are shown. The region of

visible data inconsistency, where two metal traces are crossed, is marked by an ellipse.

Due to the beam hardening effect, the measured sinogram does not represent a sum of

sinusoidal curves in this region as it is required by the Radon transform. The SART

reconstruction results in an object which “fits” into the inconsistent sinogram and

therefore has an artificial dark shadow strike between the metal implants. It can be

seen, that the ωSART algorithm is able to recover the intensity of the sum of sinusoidal

traces in this region, which results in less artifacts in the reconstructed images and large

values in the difference image in those regions. The overall difference excluding the

inconsistent regions is smaller for the ωSART simulated sinogram 1. The ωSART is

able to recover the intensity of sinusoidal traces in this region.

Although the ωSART reconstruction shows potential to reduce metal artifacts

successfully, it needs further investigation and optimization. The question how to select

optimal parameters is still open. Additionally, a comparison to classical metal artifact

reduction techniques (i.e. a linear interpolation) is required.

1The horizontal lines in the difference images are caused by the horizontal lines in the original data.
It might happen due to the X-ray current fluctuation in the acquisition.
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(a) SART, λ=0.15 (b) ωSART, λ=0.2, α=1.5, β=4, γ=0.68,
range=28.16

(c) λ=0.15, α=1.5, β=2, γ=0.38, range=17 (d) ωSART, λ=0.15, α=1.5, β=2, γ=0.38,
range=28

Figure 5.19: The unweighted SART reconstruction of a phantom with three metal rods
(a) shows typical metal artifacts and streak-like noise. The novel ωSART
(b-d) reduces the metal artifacts. The degree of artifact reduction depends on
chosen parameters. No additional data post- and pre-processing steps were
included in ωSART algorithm.



5.5 Weighted ωSART for metal artifact reduction in CT 131

(a) SART, λ=0.15 (b) ωSART, λ=0.15, α=1.5, β=2, γ=0.48,
range=28.16

(c) SART, λ=0.15 (d) ωSART, λ=0.15, α=2.5, β=2.2, γ=0.48,
range=28.16

Figure 5.20: The unweighted SART reconstruction of a hip with metal implants (a), (c)
shows typical metal artifacts and streak-like noise. The ωSART (b),(d)
reduces metal artifacts. The degree of artifact reduction depends on chosen
parameters. No additional data post- and pre-processing steps were included
in the ωSART algorithm.
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(a) original sinogram

(b) simulated sinogram, SART (c) simulated sinogram, ωSART

(d) difference to simulated sinogram, SART (e) difference to simulated sinogram, ωSART

Figure 5.21: Comparison of sinograms. (a) original sinogram of a hip with metal implant;
(b-c) simulated sinogram of SART and ωSART reconstruction; (c-d) difference
to the original sinogram. The region of visible data inconsistency, where two
metal traces are crossed, is marked by an ellipse. ωSART is able to recover
the intensity of sinusoidal traces in this region.
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5.6 Interpolation in BP-space for metal artifact reduction

in CT

As it has been mentioned in the previous section, the metal influenced data in the

sinogram can be considered as invalid and therefore can be removed from the dataset.

The resulting gap has to be filled with some artificial data. Interpolation for producing

artificial data instead of invalid metal data can be done not only in the sinogram domain

but also in the BP-space. The properties of BP-space offer new flexible opportunities

for data interpolation along the sinusoidal traces

5.6.1 θ-interpolation in BP-space

Lets consider a sinogram p(ξ, θ), θ ∈ [0, 2π). Consider that p(ξ, θ) contains one or

more sinusiod-like curves influenced by the metal object. Those metal traces can be

detected either by manual segmentation or by using the registration algorithms in

sinogram domain. Alternatively it can be done by creating a binary metal mask using

a preliminary reconstruction. Regardless of the detection method, after removing the

data from the sinogram, it will contain a gap with no data. The sinogram with the gap

can be transformed in the BP-space. Each xy-plane will contain some missing ridge

lines, produced by the gap, see Fig. 5.22a.

One dimensional interpolation in the xy-plane perpendicular to ridge lines is equiva-

lent to one-dimensional view-wise interpolation in ξ direction in the sinogram domain. It

can be performed fast and easily in sinogram domain and there is no need to construct

a BP-space in this case.

The advantage of BP-space representation for the interpolation purposes can be

seen when looking in θ-direction. As it has been presented in section 5.1, moving along

the ridge line and subsequently in θ-direction is equivalent to moving along all lines

within a peanut-shape. Similarly, gaps with missing data, which are parallel to the

ridge function in each xy-plane, can be used to navigate through the sinusoidal curves

in each peanut corresponding to each missing point. In other words, interpolation in

θ-direction is equivalent to interpolation along each sinusoidal curve which crosses the

selected point (ξ′, θ′), i.e. a set of curves within a peanut-shape of (ξ′, θ′).

For the interpolation a BP-volume of the data with a gap and a BP-volume of the

binary mask have to be constructed, see algorithm 5.4. Then, for each coordinate (x, y)

a corresponding θ-vector has to be selected. At some coordinate positions, the θ-vector

might contain missing values in the first nmissing or the last nmissing entries. It means

that no interpolation is possible because there is no data available on one side. The
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periodicity property of sinogram can be used to enable the interpolation in those cases.

The data in the θ-vector can be rearranged periodically in a way, that the gap (each

gap) will be surrounded by valid data, see algorithm 5.5.

Algorithm 5.4: Interpolation in BP-volume in θ-direction

Input: Projection data with a gap p(ξ, θ), θ ∈ Θ
binary mask of a gap mask(ξ, θ), θ ∈ Θ
Output: BP-volume with interpolated data in the gap hnew data(x, y, θ), θ ∈ Θ

1 create a BP-volume of the data with gap h(x, y, θ) = S(p(ξ, θ));
2 create a BP-volume of the binary mask m(x, y, θ) = S(mask(ξ, θ));
3 for (x, y) ∈ V do
4 select a data θ-vector hxy(θ);
5 select a mask θ-vector mxy(θ);
6 rearrange hxy(θ) periodically according to the gap mxy(θ);
7 do interpolation ofhxy(θ) in the gap;
8 write results in hnew data(x, y, θ);

Algorithm 5.5: Periodic rearrangement of hxy(θ) according to the longest subse-
quence in the gap mxy(θ)

Input: θ-vector of the data h
θ-vector of the mask m
Output: periodically re-arranged θ-vector h′

1 find the longest subsequence mlongest in the mask m;
2 find the index of the middle element imid of mlongest;
3 assign idxmid-th element of h as the first element: h′(1) = h(idxmid);
4 for i ∈ [1, Nθ − 1] do
5 idxnew = idxmid + i;
6 if idxnew > Nθ then // index is outside the range

7 idxnew = idxnew −Nθ;

8 h′(i+ 1) = h(idxnew);
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5.6.2 Preliminary results

For the simulation study of the θ-interpolation in BP-space the standard Shepp-Logan

phantom was used. It has a size of 300×300 pixels with a pixel size of 0.1 cm. The missing

data is arbitrary located at the lower left corner of the phantom at (xg = 108, yg = 233))

with the diameter of 1 cm (10 pixels).

The interpolation in θ-direction (algorithm 5.4) with data periodicity rearrangement

(algorithm 5.5) and a linear interpolation method has been performed in the gap. The

data with gap and interpolation results are shown in Fig. 5.22. An xy-plane (Fig. 5.22b)

shows that the interpolation works well in regions which are far away from the gap. The

interpolation in regions closer to the gap results in data which looks not fitting to the

rest of the data. The data in the gap is completely missed. It can be seen in Fig. 5.22c

and Fig. 5.22d that on the position of the gap there is no data available in θ-direction

for interpolation. Additionally, close to the region of the gap, interpolation does not

work competely. It results in vertical lines along the gap. The distance between points

in θ-direction is too large and interpolation is done between points in sinogram which

are located too far away from each other. At the same time, when the gap trace in

BP-space is parallel to the θ-axis, interpolation provides good results, see Fig. 5.22e

and Fig. 5.22f.

Obviously, the rest of the gap and the not-well fitting data will cause artifacts close

to the position of the “metal” which has been removed. At the same time, regions which

are far away from the metal position are filled with data which visually fits the rest of

the data. We can expect that in those regions no new artifacts will be introduced.

For further work, the interpolation in θ-direction can be combined with in-plane

interpolation in order fill the data points which are completely missed. Additionally,

the reconstruction strategies should be considered. The BP-space can be transformed

back to sinogram domain and reconstructed with any of the conventional reconstruction

algorithms. Hoverer, the averaging process in the inverse stack operator might result in

averaging of interpolation error and artifacts in the reconstructed images. Alternatively,

the reconstruction can be done directly in the BP-space. For this, the reconstruction

algorithms need to be adapted to usage in the BP-space or new algorithms need to be

developed.
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Figure 5.22: Illustration of the θ-interpolation in BP-space. (a), (c), (e) show planes with
a gap in BP-volume; (b), (d), (f) show the interpolated planes in BP-volume.
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This chapter is based on (Levakhina 2012b, Levakhina 2013a) and presents a novel

acquisition geometry for tomosynthesis imaging of hands.

The characteristics of the reconstructed images in tomosynthesis depend on several

factors. In chapter 3 it has been discussed that the practical implementation strategy

influences the accuracy of the reconstruction. The choice of the reconstruction algorithm

and its parameters, as it has been addressed in chapter 4 and chapter 5, influences the

appearance of the artifacts. In this chapter, the influence of several imaging system

parameters and the acquisition geometry on the tomosynthesis performance will be

discussed. The main focus of this chapter is to present a novel hybrid dual-axis tilt

acquisition geometry, which is superior to the standard acquisition geometry. In the

first part of this chapter, the potential and limitations of the standard geometry will

be discussed. The comprehensive understanding of the effect of system acquisition

parameters on the reconstructed image quality is very important, therefore, it includes

a literature review as well as a simulation study. In the second part of this chapter, the

alternative geometry will be presented. Its theoretical background will be discussed
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and software simulation results will be shown. Additionally, the effect of the object

orientation will be discussed and simulated. Results will be presented for both, the

standard and the novel dual-axis geometry. Finally, suggestions for the future work will

be given.

6.1 Tomosynthesis “mini” simulator

Most of the tomosynthesis performance studies, which can be found in literature, are

based on characteristics, which can be easily described mathematically. They are

typically measured using special phantoms rather than anthropomorphic phantoms.

For example, the resolution and the artifacts can be measured using a sharp edge and

described using the SNR, MTF, NPS, PSF and ASF. It is not straight-forward to apply

those metrics to imaging of clinically relevant objects. Sharp edges for MTF calculation

or large homogeneous regions for SNR calculation are not guaranteed to be present in

such objects. Typically, the reconstructed images of anthropomorphic phantoms and

real patients are evaluated only visually or based on observer studies. A simulation

software and digital phantoms allow for measuring image quality based on full-reference

metrics. It can be represented as one quantitative parameter, which is easy to interpret.

Clinically relevant objects can be used rather than simple geometrical phantoms. The

whole reconstructed volume can be used at once instead of a ROI or a specific feature

(e.g. an edge).

6.1.1 A finger bone software phantom

A high-resolution three-dimensional volume of a dried human finger bone has been used

as a software phantom. In order to create this phantom, the bone was measured using

the Skyscan1172 micro-CT and the reconstruction was done by the device using the

build-in Feldkamp reconstruction algorithm (FDK) (Feldkamp 1984). The reconstructed

volume has been post-processed using denoising and background removal. Slices in

z-direction have been averaged for the slice thickness of 0.2 mm. The resulting 30 slices

have been used for the simulation of projections and as a reference for the quantitative

evaluation of the reconstructed results.

Three orthogonal slices of the bone phantom are shown in the Fig. 6.1. The bone

phantom represents an anatomy of fine trabecular structures, which are of the interest

for tomosynthesis imaging of hands. The selected ROIs are marked by ellipses. The

ROI1 is located in an in-plane region without the tissue to show later the formation of
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the out-of-focus artifacts. The ROI2, ROI3 and ROI4 represent a bone boundary in the

in-plane slice and two orthogonal slices, respectively.

Figure 6.1: A bone software phantom based on the micro CT FDK reconstruction. Three
orthogonal slices are shown. Four regions of interests are marked with ellipses.
An orientation angle with respect to the X-ray tube rotation axis is 45o

For the study of the influence of the object orientation, the bone phantom can be

rotated in the xy-plane. The object orientation angle is defined as an angle between

the longest dimension of the object and the y-axis. In Fig. 6.1 the orientation angle of

the bone is 45o.

6.1.2 Simulation software

For this study, a software simulation framework (MATLAB/C++) for tomosynthesis

acquisition and reconstruction has been developed. The Siemens Mammomat Inspiration

device geometry has been used. The device is equipped with a large flat-panel detector

and a half-cone X-ray tube. The angular range of this device is 50o and the number of

the acquired projections is 25. The typical size of a hand is 220 x 130 mm2 and the

thickness is 30-50 mm. The size of the bone phantom is approximately 20 x 10 mm2

and the thickness is 6 mm. Therefore, the geometry of the device has been scaled down

to match physical dimensions of the detector and the used phantom. The scaling factor

equals five, see Fig. 6.2 and compare to Fig. 2.8. The orientation of the reconstructed

tomosynthesis slices is parallel to the detector plane. The reconstructed slice thickness

is 0.2 mm and the pixel element size is 0.017 mm. The imaging and reconstruction

parameters are summarized in the Table 6.1.

The main goal of the simulations was to investigate the tomosynthesis performance

in dependence of acquisition parameters. An ideal system was considered and no

physical limitations were taken into account. The X-ray source is a point source and the

spectrum is monoenergetic. Noiseless projections have been simulated. The forward- and
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Figure 6.2: Tomosynthesis “mini”-geometry. This geometry was used for the simulation of
projections and image reconstruction in the performance evaluation study.

Table 6.1: Tomosynthesis geometry and imaging parameters.

System parameter Value

Distances Source-to-Iso 121.7 mm

Iso-to-Table 8.2 mm

Table-to-Detector 4.8 mm

Detector Detector length x 60.9 mm

Detector length y 47.8 mm

Dexel size 0.017 mm

Reco Slice size 3584 x 2816

Pixel size 0.017 mm

Slice thickness 0.2 mm

backprojections have been modeled using the distance-driven method (De Man 2004)

adapted for the fixed-detector tomosynthesis geometry (Levakhina 2011a).

The simulator works in two modes: the standard acquisition mode and the dual-axis

tilt acquisition mode. The geometry with fixed detector, lying in the xy-plane and

the X-ray tube which moves along a one-dimensional arc around the x-axis above the

detector is referred to as the standard acquisition mode. The geometry, which acquires

data outside the one-dimensional arc, is referred to as the dual-axis tilt acquisition

mode. The detailed description of the dual-axis mode will be given in the section 6.3.
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The simulation of the dual-axis tilt acquisition geometry results in data acquired

over a non-standard acquisition trajectory. This data has to be reconstructed. The

well-known FBP reconstruction cannot be used in this study, because two different filter

kernels are required for two different geometries. The design of the filter influences

the image quality, which make the reconstruction results incomparable. The SART

algorithm was used in this study, because it can be applied to both geometries without

major modifications.

6.1.3 Image quality metrics for performance evaluation

The tomosynthesis performance in dependency of the imaging parameters and geometry

has been evaluated quantitatively and qualitatively.

6.1.3.1 Quantitative reference-based evaluation

The reconstructed image have been quantitatively compared using the well-known

Normalized Root Mean Squared Error (NRMSE). The NRMSE has been used to

measure the similarity degree between the software phantom volume and obtained

reconstructed volume. The NRMSE is given by equation 6.1. Here, the vector fref =(
f ref1 , ..., f refN

)T
∈ RN is the software phantom volume used as a reference, the vector

f = (f1, ..., fN )T ∈ RN is the reconstructed volume from the simulated projection.

NRMSE =

√√√√√√∑
i

(
fi − f refi

)2

(
f refi − f refi

)2 (6.1)

The smaller NRMSE, the smaller the difference between the given reconstructed volume

and the reference phantom volume.

6.1.3.2 Qualitative visual-based evaluation

Additionally, a qualitative visual-based inspection and comparison of the reconstructed

slices has been carried out. Qualitative visual inspection is an important assessment,

because it is difficult to capture the artifact specificity and to quantify the image quality

using only one number (e.g. Bian 2010). The overall visual inspection and comparison

of in-plane and two orthogonal axial slices has been performed with the attention on

the four selected ROIs, shown in the Fig. 6.1.
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6.2 Influence of the system acquisition parameters

The following acquisition parameters should be optimized in tomosynthesis: the angular

range, the number of projections and and the angular step size. In each of the following

subsections, first, a literature review on the impact of acquisition parameters to the

performance of tomosynthesis and the clinical image quality will be given. Second, for

each parameter, the state-of-the art conclusions will be compared with the simulation

results in application to the imaging of hands.

6.2.1 The impact of the angular range θ

6.2.1.1 Literature review

One of the first studies about the impact of the angular range on the image quality

in tomosynthesis was performed by Li et al. (Li 2004). The authors found, that an

increase in the angular range leads to an increase in z-resolution. The overall relationship

between the angular range and z-resolution was found to be non-linear with a linear

behavior in a 20o to 40o range. The authors used a shallow-angled ramp phantom to

measure the in-plane resolution defined by the MTF and to measure the slice thickness

defined by the slice sensitivity profile (SSP) (Li 2006). The results of the study showed

that an increase on the angular range has a small influence on the in-plane resolution but

significantly reduces the slice thickness. Deller at al. (Deller 2007) performed a study

using a resolution phantom and several anthropomorphic phantoms (chest, abdomen,

wrist and pelvis) and reported similar conclusions: the angular range has almost no

influence on the in-plane resolution and an increase in the angular range significantly

increases the depth resolution. A number of texture features such as skewness, coarseness

and contrast were used by Kontos et al. (Kontos 2008) to evaluate a reconstruction

of a simulated anthropomorphic breast phantom. It was shown, that an increase in

the angular range leads to more blurred out-of-focus artifacts and sharper in-focus

structures. Sechopoulos et al. (Sechopoulos 2009) describes the in-plane lesion visibility

and the axial resolution using the CNR and the ASF and included an empirical system

response characteristics into the computer simulation study, which showed that an

increase in the angular range always improves the axial resolution.

Using a three-dimensional cascaded linear system analysis with a realistic simulation

of several parameters (MTF of the detector, a focal spot blur, the source-detector

movement speed and the exposure) and a simulated thin tungsten wire and breast

tissue with calcifications and a tumor, Zhou et al. (Zhou 2007) found that the MTF

and NPS are mainly affected by the angular range. The second conclusion was, again,
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that the in-depth resolution is improved when the angular range is increased. Another

experiment showed that the MTF at low frequencies can be improved by increasing

the angular range (Zhao 2008). Further studies using the linear system approach were

performed by Hu et al. (Hu 2008a, Hu 2008b) who also belong to the abovementioned

research group. The authors compared their model of the MTF and PSF with real

measurements and concluded that an increase in the angular range narrows the PSF in

z-direction and significantly reduces the intensity of the artifacts. Mertelmeier et al.

(Mertelmeier 2008) also used the cascaded linear system model and reported that an

increase in the angular range increases the axial resolution and improves the visibility

of the low-frequency objects.

Tomosynthesis performance evaluation using an observer model-based measure of

lesion detectability showed that the performance is improved when the angular range is

increased (Chawla 2009). Investigation of tomosynthesis limitations in dependency of

scan parameters and quantum noise based on mathematical observer models showed

that the lesion detectability depends on the signal size (Reiser 2010). Increasing the

angular range increases the detectability for all signals. In summary, the detectability is

improved when the angular range is increased (Chawla 2009, Reiser 2010).

The recent works conclude that the imaging parameters should be adapted based

on the visualized anatomy. For the visualization of large body parts as an abdomen,

the angular range can be decreased, because the abdomen region does not contain fine

structures. The depth resolution in this case is not critical. For the visualization of fine

anatomy such as hands or feet, the angular range should be increased in order to improve

depth resolution and reduce the risk of missing some subtle structures (Machida 2010).

One of the recent works in these area discusses the quantitative analysis of the

imaging performance based on a simulation framework, a digital anthropomorphic breast

phantom and a cascaded system analysis (CSA) for system modeling. The NPS has been

used in this work to derive the figure of merits in terms of the accuracy and the precision

of reconstruction for detection of lesion area, volume and location. Results show that

decreasing angular range results in increased anatomical noise (out-of-focus artifacts).

At the same time, usage of a larger angular range shows an increase in quantum and

electronic noise. The precision performance was significantly dependent on the angular

range, showing improved performance with larger angles, while accuracy was found to

be independent of the angular range (Richard 2010b). One of the conclusions of their

further work (Richard 2010a) is that imaging performance optimization should be based

on the specific task. It might be challenging to optimize it for several different tasks at

the same time.
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6.2.1.2 Simulation results

The influence of the angular range has been studied for five fixed numbers of projections

Nproj = 6, Nproj = 12, Nproj = 25, Nproj = 50 and Nproj = 100. The angular range has

been varied from θ = ±5o to θ = ±75o. Angles larger than ±75o become infeasible,

because in the fixed detector geometry some parts of the object might be projected

outside the detector area.

The NRMSE between the reconstructed volume and the reference volume in depen-

dence of the angular range θ is presented in Fig. 6.3e. The curve with triangle markers

describes Nproj = 25, which is used in clinical applications today. The overall curve

behavior shows an improvement in the image quality when the angular range is increased.

The improvement is higher for a large number of projections (Nproj = 50− 100), than

for a small number of projections (Nproj = 6− 12). After a certain value of the angular

range, the image quality decreases again. This can be seen in the curves corresponding

to Nproj = 6 and Nproj = 12. Points of the NRMSE minimum are marked by short

vertical bars. The angular range value corresponding to the minimum is equal ±55o for

Nproj = 6 and ±60o for Nproj = 12. Increasing θ does not result in a dose increase if the

number of projections is fixed. However, if the number of projections is insufficient, the

image quality might decrease. Too large spacing between projections results in ripple

artifacts because the blurring of out-of-focus structures does not work anymore.

The reconstruction results for Nproj = 25 and θ = ±12, ±25, ±50, ±75 are shown in

Fig. 6.3a-6.3d. The images illustrate the image quality improvement when increasing the

angular range. The image obtained with θ = ±12o (Fig. 6.3a) shows blurring artifacts in

ROI1 and some lost bone boundaries in ROI2-ROI4. The image obtained with θ = ±75o

(Fig. 6.3a) shows great reduction of blur in the ROI1 and bone boundaries recovery

in both, the in-plane ROI2 and axial ROI3 and ROI4. The general appearance of the

image in Fig. 6.3a is very similar to the reference image (Fig. 6.1).

As a conclusion, the angular range θ plays an important role for the reconstructed

image quality, which is increasing with increasing θ. At the same time, when the spacing

between projections becomes too large, it results in the decrease of the image quality.
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(a) θ = ±12o (b) θ = ±25o
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Figure 6.3: Simulation results showing the influence of the angular range θ. The re-
constructed slices of the bone phantom for the fixed number of projections
Nproj = 25 and varying θ are shown in (a-d). The corresponding points are
marker by bold markers in the quantitative evaluation plot (e). The minimum
of NRMSE for Nproj = 6 and Nproj = 12 is marked by a vertical bars. The
values of the angular range, larger that those values results in the decrease in
the image quality because of the ripple artifacts.
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6.2.2 Influence of the number of projections Nproj

6.2.2.1 Literature review

An experimental and phantom study from Deller et al. (Deller 2007), showed that the

number of projections has only minor influence on the resolution and image noise. At the

same time, contrarily, Maidment et al. and Kontos et al. (Maidment 2006, Kontos 2008)

concluded that an increasing in the number of projections results in image artifacts

decrease, superior image quality and finer textures. However, maximizing the number

of projections while keeping the angular range fixed does not change the appearance of

the out-of-focus blurring (Kontos 2008). Ren et al. (Ren 2006) expect that in an ideal

system an increase in the number of projections results in the reduction of out-of-focus

artifacts. The authors performed a study with a tomosynthesis prototype system and

used the CNR peak value and a profile shape as the image quality metrics. They

concluded that adding more projections beyond a certain number, which depends on the

angular range, is unnecessary. Going above this number does not further improve the

image quality and axial resolution, but leads to an increase in the data size, processing

time and dose. Sechopoulos et al. (Sechopoulos 2009) also agree that the image quality

improvement effect in dependence of the number of projections tends to saturate.

Certain reconstruction algorithms, e.g. FBP and Matrix Inversion Tomosynthesis

(MITS) perform better when the number of projections is increased (Chen 2005). An

insufficient number of projections and large angular separation between views might

lead to the ringing in the ASF, but it also depends on the reconstruction algorithm

(Zhou 2007). Using less projections with the same angular range produces a similar

ASF. However, in slices further away (5 mm) from in-focus slice of interest this results

in an increase of ASF. A non-sufficient projection number results in the ripple artifacts

(Hu 2008a).

Increasing the projection number while keeping the overall clinically relevant dose

fixed means that a dose per exposure is decreased. It increases the noise and decrease

the detectability and tomosynthesis performance (Sechopoulos 2009, Chawla 2009).

Increasing the number of projections while keeping the dose per projection the same, i.e.

increasing the total dose, decreases image noise (Machida 2010). Therefore, the dose

and number of projections should be decreased for imaging thin objects such as hands

or feet to avoid the unnecessary radiation dose (Machida 2010).

As a conclusion it can be said that the number of projections plays a less important

role than the angular range. Improvement effects based on the larger projection number

tend to saturate. The number of projections mainly contributes to the dose and the

image noise but not to the appearance of the artifacts.
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6.2.2.2 Simulation results

The influence of the number of projections has been studied for three fixed angular ranges

with θ = ±12o, θ = ±25o and θ = ±50o. The number of projections has been varied

from Nproj = 5 to Nproj = 100. The NRMSE between the reconstructed volume and the

reference volume in dependence on the number of projections is presented in Fig. 6.4e.

Here, the curve with triangle markers corresponds to the angular range θ = ±25o, which

is used in clinics and is equivalent to the Siemens Mammomat Inspiration geometry.

The curves with diamond and circle markers describe the halved angular range value

θ = ±12o and the doubled angular range value θ = ±50o, correspondingly. The overall

behavior of curves shows an improvement in image quality when the projection number

is increased in the range of small number of projections. Above a certain threshold

there is a plateau and a further increase in the number of projections does not result in

a visible improvement. The saturation points are marked with short vertical bars. For

example, the saturation value for θ = ±25o is Nproj = 25.

Selected reconstruction results for θ = ±25o and Nproj = 3, Nproj = 12, Nproj = 25

and Nproj = 50 are shown in Fig. 6.4a - Fig. 6.4d. The corresponding points are marked

by bold markers in the evaluation plot Fig. 6.4e. The reconstructed images visually

illustrate the behavior of NRMSE curves. First, the image obtained with Nproj = 3,

shown in Fig. 6.4a, is blurry and contains only a few details. When the number of

projections is increased to Nproj = 12 (Fig. 6.4b) and then to Nproj = 25 (Fig. 6.4c),

more details become visible. However, no further improvement can be noticed when

the number of projections is increased from Nproj = 25 to Nproj = 50 (Fig. 6.4d). The

range of values Nproj = 25 to Nproj = 50 corresponds to the plateau region in the plot.

In summary, when increasing the number of projections, the out-of-focus artifacts in the

ROI1 are slightly reduced. The bone boundary in the in-plane ROI2 is better recovered,

however the bone boundaries in the axial slices in ROI3 and ROI4 are still blurred and

hardly recognizable. Additionally, in the clinical situation, the increase in number of

measured projections means an increase in the total dose if the dose per projection is

kept fixed. If the total dose is kept fixed it will result in more noise in each projection

and, potentially, noisier reconstruction.

As a conclusion, an increase in the number of projections is feasible only up to a

certain value, which depends on the angular range. This saturation value is between

Nproj = 15 and Nproj = 30 for the wide range of angular range values from θ = ±12o to

θ = ±50o.
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(a) Nproj = 3 (b) Nproj = 12

(c) Nproj = 25 (d) Nproj = 50
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Figure 6.4: Simulation results showing the influence of the number of projections Nproj .
The reconstructed slices of the bone for the fixed angular range θ = ±25o and
varying the number of projections are shown in (a)-(d). The corresponding
points are marked by bold markers in the quantitative evaluation plot (e). The
points of NRMSE saturation are marked by short vertical bars. An increase of
the number of projections larger than the saturation value does not increase
the image quality further.
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6.2.3 Influence of the angular step size ∆θ

6.2.3.1 Literature review

The angular step size is the relation between the angular range and the number of

projections. The angular step size plays a more important role for artifact formation

than the angular range and the number of projections separately. It is important to not

only use a reasonable angular range value (e.g. >30o) but also to limit the angular step

size to small values (e.g. <2o) (Hu 2008a).

Decreasing the angular step size with the fixed angular range helps to reduce ripple

artifacts (Deller 2007), to avoid streak artifacts (Mertelmeier 2008) and to improve

detectability (Reiser 2010). At the same time, the visibility of ripples also depends on

the imaged anatomy and particularly on the thickness of the tissue and on the distance

to the ripple-causing structures. There has been developed a formula for approximating

a distance D from structure to the ripple artifact (Deller 2007)

D = Nproj/ (2f tan (θ/2)) . (6.2)

Here, f is a cut-off frequency of the generalized filtered backprojection (GFBP). There-

fore, the angular step size should be decreased when imaging a thick body part, such as

chest with high-contrast objects (bones, ribs) to reduce the ripple artifacts. When a

thick body part is examined, the angular step size can be increased. An increase in the

value of angular range in this case will not lead to the formation of prominent ripple

artifacts. (Machida 2010).

6.2.3.2 Simulation results

The influence of the angular step size has been studied for different combinations of the

angular range from θ = ±5o to θ = ±50o and the number of projections from Nproj = 5

to Nproj = 50. It results in various angular step sizes from ∆θ = 5o to ∆θ = 15o. The

reconstructed results are shown in Fig. 6.5a - Fig. 6.5b. The dependence of the angular

step size on the chosen pair (θ, Nproj) is shown in Fig. 6.5d. The NRMSE between the

reconstructed volume and the reference volume for each chosen pair (θ, Nproj) is shown

in Fig. 6.5d. The results are represented as contour lines. When following a contour line

with fixed ∆θ, the image quality is increasing with increasing the angular range and the

number of projections. The overall behavior of the curves summarizes the conclusions

made in the previous two subsections. Increasing the number of projections with a fixed

angular range, i.e. using a smaller angular step size, helps to improve the image quality

for larger angular range values and has a saturation for the smaller angles. The angular
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(a) Nproj = 12,
θ = ±12o

(b) Nproj = 25,
θ = ±25o

(c) Nproj = 50,
θ = ±50o
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Figure 6.5: Simulation results showing the influence of the angular step ∆θ. The recon-
structed slices of the bone for the fixed angular step θ = 2o and varying θ
and Nproj are shown in (a)-(c). The corresponding points are marked by bold
markers in the quantitative evaluation plots (d) and (e).

range plays a more important role than the number of projections and an increase in

the angular range with the fixed number of projections increases the image quality.
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6.3 A novel geometry: hybrid dual-axis tilt acquisition

6.3.1 How to acquire more information of the object?

As it has been discussed in the previous section, the tomosynthesis performance can

be improved by adjusting the geometry parameters. The main conclusion is that the

more data about object is acquired, the better the obtained image quality. However,

the image quality improvement is limited by newly introduced artifacts, e.g. by the

ripple artifacts when the projection density is insufficient. This gives a motivation

to search an alternative acquisition scheme, which can acquire more information of

the object without introducing additional radiation dose or artifacts and, at the same

time, provides images with less artifacts. Apparently, beside increasing the number of

projections and the angular range, the acquisition geometry itself can be modified in

order to acquire more data of the object.

There are three main geometry components, which can be modified: the detector

orientation, the X-ray tube trajectory and the object orientation. An acquisition with

a tilted detector does not result in additional data as it is shown in Fig. 6.6. Here,

two projections, which differ from each other only by the detector orientation, can

Side view 

z 
x 

(a) tilt the detector

1p

p

2p

p

(b) stretching of the projection

Figure 6.6: Acquisition of the data by tilting the detector does not lead to an additional
information of the object. Acquired projections can be transformed to each
other by scaling and stretching operations.
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be transformed into each other by simple scaling and stretching transformations. In

theory, some improvements in the in-plane resolution can be gained (DiBianca 2000a,

DiBianca 2000b, Dahi 2008) because small features will be projected onto a larger

detector area when the detector is tilted, see Fig. 6.7b. Here, the feature of a size p

is projected into p′1 and p′2 in case of no tilt and tilt, respectively. As it can be seen,

p′1 is smaller than p′2, p′1 ≤ p′2. This kind of image resolution improvement will not be

discussed in this work, since it does not reduce artifacts.

Moving the X-ray tube over a two-dimensional trajectory with all other geometry

parameters being fixed allows for capturing the data from the sides (Zhang 2010) and

thus it improves the image quality. At the same time, it will result in additional patient

dose when the X-ray tube moves in the direction away (Fig. 6.7a) or toward (Fig. 6.7b)

to the patient. Additionally, a re-design of existing tomosythesis devices would be

needed for moving the tube in the orthogonal direction. Moving or rotating the object
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Figure 6.7: Acquisition of the data by tilting the X-ray tube might cause additional
radiation dose to the patient.

as it is done, e. g. in the micro-CT, is the third possibility to acquire more data. In the

tomosynthesis case the limitations occur because the human body and its parts cannot

be freely moved at any position and orientation.
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6.3.2 Theoretical background

A novel acquisition geometry is proposed, which has been inspired by a solid an-

gle tomosynthesis (Zhang 2010) and tomosynthesis with an array of X-ray tubes

(Maltz 2009, Qian 2012). In the solid angle tomosynthesis, the acquisition is done

by positioning the X-ray source in two perpendicular directions. Alternatively, spe-

cially designed compact multiple source X-ray tubes based on carbon nanotube field-

emission cold cathode technology (CNT) can be combined into a one-dimensional or

two-dimensional array. A similar dual axis acquisition approach is also known from the

scanning transmission electron microscopy (STEM) (Iancu 2005, Arslan 2006). In this

case an object is tilted in two perpendicular directions using a tiltable stage.

The hybrid approach addressed in this chapter is a composition of methods mentioned

above. The acquisition in one direction is still done by moving the tube along the

standard arc trajectory. The acquisition in the additional perpendicular direction is

done by tilting the object . The standard existing device configuration is extended using

an additional object-support tiltable platform, mounted on the detector. The platform

tilts the object in y-direction orthogonal to the X-ray tube rotation (x-axis). Instead of

taking one image, several images are measured at each X-ray tube position, differing

only in the tilt angle of the platform, see Fig. 6.8.
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Figure 6.8: A hybrid dual-axis tiltable acquisition geometry. Acquisition in original di-
rection is done by moving the tube, while acquisition in the perpendicular
direction is done by tilting the object.
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Tilting the object is geometrically equivalent to moving the X-ray tube outside the

standard arc trajectory. This way, for each position of the X-ray tube several projections

outside the standard arc can be acquired without additional movement of the tube

in the perpendicular direction. The total number of projections and, therefore, the

applied dose stays the same, because the number of projections in the original direction

is reduced.

The proposed geometry allows for capturing more singularities of the Radon trans-

form (Quinto 1993), filling more data in the Fourier Space and better approximating

the Tuy-Smith Conditions (Tuy 1983, Smith 1985). These three theoretical aspects of

tomographic imaging have been discussed in detail in Chapter 2. In the next subsection,

they will be discussed with respect to the novel geometry.

6.3.3 Singularities of Radon transform and limited data

A singularity of the object is a boundary between two tissues. Singularities of the object

are closely related to the singularities of the Radon transform. A singularity of the

object produces a singularity in the Radon transform only if there is a line integral

measured in the direction tangential to this singularity. Such singularities are called

visible and can be stably reconstructed. In the three-dimensional case, the X-ray tube at

each position casts a visible ring on a sphere object. The orientation of the visible ring

depends on the xy position and height z of the sphere. An arc acquisition trajectory

AB results in a set of visible rings, see Fig. 6.9a. All rings crosses in two opposite points.

All other points on the sphere, marked by dashed lines remain invisible and cannot be

reconstructed stably. If the X-ray tube is moved to the point C, which is located in

the perpendicular plane, a visible ring C1C2 with an essentially new orientation will

be produced, see Fig. 6.9b. To summarize, the dual-axis acquisition geometry allows

for capturing singularities which are located in perpendicular planes (i.e. in the plane

of new virtual X-ray tube movement) and would have stayed invisible in case of arc

trajectory.

6.3.4 Incomplete Fourier space

According to the well-known Fourier slice theorem, the limited angle tomosynthesis

acquisition along an arc θx covers only the limited wedge θx in the Fourier domain.

The dual-axis tilt acquisition allows for filling an additional wedge in the xz-plane. A

schematic representation of the measurement process and the Fourier space are shown

in Fig. 6.10.
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Figure 6.9: (a) An acquisition along the one-dimensional arc results in a set of visible
rings of singularities. (b) If the X-ray tube is moved to the point C, which is
located in the perpendicular plane, a visible ring C1C2 with an essentially new
orientation is produced.
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Figure 6.10: Illustration of the incomplete Fourier domain. The wedge θx = ∠AOB =
(∠AOB)ω corresponds to the standard acquisition mode. The wedges θx =
∠AOB = (∠AOB)ω and θy = ∠COD = (∠COD)ω correspond to the dual-
axis tilt acquisition.
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The arc AB and the wedge θx = ∠AOB = (∠AOB)ω correspond to the standard

acquisition mode. The additional arc CD and the wedge θy = ∠COD = (∠COD)ω
correspond to the dual-axis tilt acquisition. With the new geometry not only a wedge is

filled in the Fourier space, but a cylinder with a missing cone along the z-direction. It

shows that more data become available, which can be used for reconstruction.

6.3.5 Tuy-Smith sufficiency condition

The Tuy-Smith sufficiency condition (Tuy 1983, Smith 1985) states that if on every

plane that intersects the object there exists at least one cone-beam source point, then

one can reconstruct the object exactly. The standard tomosynthesis trajectory does not

fulfill this condition. With additional data acquired outside the standard arc trajectory,

more planes through the object intersects the X-ray tube trajectory (see Fig. 6.11b).

Therefore, the degree of violation of the Tuy-Smith sufficiency condition is decreased.
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(a) plane intersects the trajec-
tory of the standard 1D-arc

geometry;
condition fulfilled

y 
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x 

(b) plane does not intersects the trajectory of the
1D-arc geometry, but intersects the second arc

of the tiltable geometry;
condition fulfilled

Figure 6.11: Illustration of two planes which fulfill the Tuy Smith sufficiency conditions in
standard mode and in tiltable mode.
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6.3.6 Angle in x-direction and re-distribution of projections.

The influence of the angle in x-direction has been studied using an angular range

in the original direction θy = ±25o and the fixed number of projections. The angle

in x-direction has been varies from θx = ±2o to θx = ±25o. A fixed number of

projections can be re-distributed in two perpendicular directions in several fashions. If

the number of projections Nproj = 24, they can be re-distributed as following: Nproj,y

=6 and Nproj,x = 4, Nproj,y = 8 and Nproj,x = 3, Nproj,y = 12 and Nproj,x = 2.

Additionally, if the root of the total number of projection is a natural number, they

can be redistributed “symmetrically” Nproj,x = 5, Nproj,y = 5. We are aware of the

fact that for the “symmetrical” pattern Nproj is 25. However, we would like to test all

possible patterns and based on the experiments with standard geometry presented in the

previous section, we assume that the results obtained using Nproj = 24 and Nproj = 25

are fairly comparable with each other. For the comparison, the standard acquisition

geometry has been simulated using θ = ±25o, and Nproj = 25 based on the geometry of

the Siemens Mammomat Inspiration. The simulation results are presented in Fig. 6.12e.

THe horizontal line with ◦-markers corresponds to the standard mode with no additional

angle in x-direction. When the value of θx is small (±2o) and the Nproj,x = 2, the dual

axis geometry performs slightly better than the standard geometry. When the number of

projections in x-direction is increased, the image quality of the dual-axis mode becomes

even worse than the one standard geometry. It happens because an increase of Nproj,x

means decrease of Nproj,y, which, in turn leads to the decrease in image quality. This

effect can be clearly seen in the reconstructed images in Fig. 6.12a and Fig. 6.12b. In

both images the bone boundaries in ROI2-ROI4 are lost and out-of-focus blurring is

strongly present. All curves in the plot show the main tendency of improving the image

quality when larger θx is used for all projection re-distribution schemes. When θx is

relatively large (±25o) and it is value is equal θy, the “symmetrical” re-distribution

scheme performs the best, compare Fig. 6.12c and Fig. 6.13d. In both images the bone

boundaries in ROI2-ROI4 are recovered, however in Fig. 6.12c one can see the noticeable

residual blurring in ROI1. At the same time, multiple tilting steps of the object over

the wide angular range might be practically difficult.
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Figure 6.12: Simulation results for varying angular range in x-direction and different
re-distribution of projections for dual axis geometry. The reconstructed slices
of the finger bone (a)-(d) are highlighted with bold markers in the quantitative
evaluation plot (e). The ◦-markers correspond to the standard mode with no
angle in x-direction.
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6.3.7 Influence of number of projections

To evaluate the influence of number of projections, the best performance parameters

from the previous experiment (previous subsection) have been taken. The dual-axis

tilt mode has been simulated using θx = θy = ±25o and the symmetrical projection

re-distribution. Four different numbers of projections have been tested. The following

values have been selected Nproj = 16, 25, 36, 49, because their roots are natural numbers.

In the symmetrical projection re-distribution scheme the number of projection per each

axis in the tilt geometry is a root of the total number of projections in the standard

geometry. Therefore, the corresponding dual-axis tilt mode has been simulated using

θx = θy = ±25o and Nproj,x = Nproj,y = 4, 5, 6, 7 which is equivalent to a total projection

number Nproj of 16, 25, 36, 49 in standard mode

Nproj = Nproj,x ×Nproj,y. (6.3)

The simulation results are presented in Fig. 6.13e. The line with diamond markers

corresponds to data using standard acquisition mode and the line with triangle markers

correspond to data gained in dual-axis tilt acquisition mode. The NRMSE is much

smaller when using the dual-axis tilt acquisition mode in all tested cases compared to

the standard acquisition mode. The image quality is improved when more projections

are used for both acquisition modes.

The reconstruction results with Nproj = 16 and 25 in standard mode are presented

in Fig. 6.13a and 6.13c. This is equivalent to Nproj,y = Nproj,y = 4 and 5 in the dual-axis

mode. The corresponding images are presented in Fig. 6.13b and 6.13d. The images

illustrate notable image improvement when using dual-axis mode. The images obtained

with standard acquisition mode (Fig. 6.13b, Fig. 6.13c) are affected by blurring due to

out-of-focus artifacts in ROI1. Bone boundaries in in-plane ROI2 and axial ROI3 and

ROI4 are lost. The corresponding images obtained with the tiltable platform (Fig. 6.13b,

Fig. 6.13d) show less out-of-focus artifacts. The bone boundaries are recovered in

ROI2−ROI4.

As a conclusion, using the same number of projections (i.e. the fixed total dose),

the dual-axis geometry provides images with better quality compared to the standard

acquisition mode. The out-of-focus artifacts are reduced and the in-plane and axial

boundaries of the bone are restored.
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Figure 6.13: Simulation results for the standard acquisition and the acquisition with the
tiltable platform. The reconstructed slices of the bone are shown in (a)-(d).
The NRMSE plot is shown in (e). The standard mode parameters are: θx =
±25o, θy = 0. The dual-axis mode parameters are: θx = ±25o, θy = ±25o.
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6.4 Influence of the object orientation

It is known that the sweep direction should be chosen by taking into account the thickness

of the measured body part and the particular purposes of the study (Cordes 2011,

Cordes 2012a, Cordes 2012b, Cordes 2013). The image quality depends on the in-plane

object orientation with respect to the tube arc direction. Depending on the object

orientation, some features can appear distorted (Machida 2010).

The influence of the object orientation with respect to the X-ray tube rotation

axis has been studied for the standard mode and the dual-axis acquisition mode. The

standard acquisition mode parameters are: θ = ±25o, Nproj = 25. The dual-axis

acquisition mode parameters are: θx = θy = ±25o, Nproj,x = Nproj,y = 5. The NRMSE

curves measured for varying object orientations from 0o to 360o and two acquisition

modes are presented in Fig. 6.14.
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Figure 6.14: Varying the object orientation with respect to the X-ray tube rotation for
the standard and dual-axis tilt acquisition modes.

The curve corresponding to the standard mode is marked by diamond markers and

the curve corresponding to the dual axis mode is marked by triangle markers. In the

standard acquisition mode the image quality decreases when the orientation angle is

close to 90o or 270o. The loss of image quality manifests itself as peaks in Fig. 6.14,

indicated by arrows. The dual-axis acquisition mode does not show those peaks, and,

therefore, reduces the dependency of image quality on the object orientation. In addition,

the image quality for the dual-axis acquisition mode is better than in the standard mode

for all object orientations.





Chapter 7
Conclusions and suggestions

for further work

This doctoral thesis addresses the three-dimensional imaging modality called digital

tomosynthesis. It is an X-ray based limited angle tomographic technique for the

visualization of inner structures of an object with the advantage of high in-plane

resolution and low radiation dose. However, the data acquired along the limited angular

range are incomplete, which leads to artifacts in reconstructed images. The main

goal of this work is to improve tomosynthesis image quality by reducing the limited

angle artifacts. Based on the literature review, theoretical aspects and experimental

studies, it has been shown that this can be achieved either by using an improved

reconstruction technique or by using a more appropriate acquisition geometries. Two

main contributions of this work are a weighted reconstruction algorithm and a dual-axis

acquisition geometry.

In chapter 2, a review on tomosynthesis has been presented. It starts with an

introduction of basic principles and a historical development of the technology and the

reconstruction algorithms and includes a comparison of a state of the art tomosynthesis

device with CT and micro-CT devices in terms of technical parameters and reconstructed

images. The historical overview showed that tomosynthesis is a technology with a rich

and interesting history and which is strongly connected to CT. The comparison of

modern clinical CT, micro-CT and tomosynthesis devices showed that tomosynthesis is

an attractive alternative to the three-dimensional X-ray based imaging techniques. It

has been shown that tomosynthesis provides images with high in-plane resolution and

that the limited in-depth resolution of tomosynthesis images does not prevent structures

of being reconstructed at their correct locations. As the second part of chapter 2,
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the theoretical aspects of the image reconstruction from the limited data have been

discussed in terms of the Radon and Fourier transforms and the Tuy-Smith sufficiency

condition. If these assumptions and conditions are not fulfilled, this results in images

artifacts. Understanding of the underlying theory is important because it allows for a

deep insight into the artifacts formation, which, in turn, is important to understand for

the development of artifact reduction strategies. For future work, a more detailed study

on the artifact formation in tomosynthesis should be done. It might include the artifact

formation in dependency on certain shapes and tissue types of the artifact-causing

features, an influence of reconstruction algorithms, and device parameters (e.g. X-ray

tube, detector). The visualization of the reconstructed dataset (slice-by-slice, volume

rendering) is also an important aspect, which influences the subjective impression

caused by artifacts to observers and can be a subject of further studies. Additionally,

non-medical application of tomosynthesis with the two-dimensional circular trajectory

can be also considered for further studies.

In the third chapter, the forward- and backprojection algorithms, which are the key

part of any reconstruction algorithm, are discussed. The discussion includes the object

discretization using series expansion for a practical implementation, the choice of the

basis functions (pixel, blobs) with their properties and an evaluation model for line

integral calculation. Based on the literature review and practical experience, the state

of the art distance driven-projection algorithm has been chosen for the reconstruction

framework. An efficient practical implementation strategy for the distance-driven

algorithm has been proposed. It has been described in detail for pixels and blobs basis

functions for the two-dimensional fan-beam CT. The angular cases of the distance-

driven algorithm have been formulated as a single function without redundant “if-else”

construction and a sweep line principle has been used. The implementation has been

further extended for the three-dimensional tomosynthesis geometry. It has been shown

how the implementation of this algorithm in three-dimensions can benefit from the

fixed detector tomosynthesis geometry. Future work should include the implementation

of the algorithms within a C++ reconstruction framework and further acceleration

using a GPU. In general, the GPU-based implementation of any type of forward and

backprojections becomes more and more favorable (see e.g. the proceedings of the 3rd

workshop on High Performance Image Reconstruction (HPIR) (HPIR 2011)). Further

improvements might include the modeling of physical effects such as scatter, beam

hardening, the polyenergetic spectrum, the focal spot size, the detector efficiency, etc.

Additional questions are if tomosynthesis can benefit from a projector, which models the

pixel footprints more accurate or from the usage of overlapping basis functions (blobs,

b-splines). However, it is important to remember that there is always the trade-off
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between a realistic acquisition model and the speed of the projectors, which in turn

defines the speed of iterative reconstruction algorithms.

In chapter 4, the reconstruction problem from projections has been formulated as

an optimization problem. Two types of iterative reconstruction algorithms have been

mentioned: the algebraic and the statistical reconstruction. The main focus of this

chapter is the simultaneous algebraic reconstruction technique (SART) for tomosyn-

thesis. The discussion includes practical implementation details and the influence of

the projection access order parameter. A novel data-based projection access order has

been proposed, which minimizes total correlation between projections. This order has

been compared with several projection access order schemes known from CT theory

and adapted for tomosynthesis. The simulation study showed that in the limited angle

case the projection order influences the convergence rate and might lead the iteration

scheme to different solutions. The minimum correlation approach seem to have great

potential, however, a number of further improvements and experiments are required.

This includes the development of a path search algorithm, which is suitable for this

particular problem and further simulation and real-data studies. Additionally, other

iterative and non-iterative algorithms, which are outside the scope of this work may

also offer many opportunities for further investigations.

In chapter 5, the backprojected space (BP) representation has been proposed and

its properties have been discussed. A novel dissimilarity concept for tomosynthesis in

BP-space has been proposed. It was shown how dissimilarity can be used to construct a

weighting scheme, which can be included either in the simple backprojection or in the

algebraic reconstruction algorithm resulting in the non-linear ωBP and ωSART methods,

correspondingly. The weighting coefficients individually control the contribution of each

ray to each voxel in the reconstructed image and thus reduce the tomosynthesis artifacts

produced by high-absorption features. Preliminary reconstruction results of real hand

datasets confirm that the proposed weighting scheme reduces the out-of-focus artifacts.

Additionally, an application of BP-space representation for metal artifact reduction in

CT has been discussed, which includes an extension of the ωSART algorithm for the CT

geometry and a usage of the BP-space to follow a sinogram flow for the interpolation.

More information on the relation between the dissimilarity and the weighting and an

optimization of the weighting curve parameters would be helpful to achieve better

results. Further research might explore the usage of the BP-space for the metal artifact

problem in CT in more details and considerably more work will need to be done using

simulated and real data.

In contrast to chapters 3 - 5 where only reconstruction methods have been considered

for the tomosynthesis artifact reduction, in chapter 6, the acquisition geometry and
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parameters have been addressed. The impact of the acquisition parameters on the

tomosynthesis image quality has been studied using a simulation study and a realistic

bone phantom. This study has shown a good agreement with conclusions, which can be

found in literature on breast tomosynthesis. A novel dual-axis tilt acquisition geometry

based on a tiltable platform has been proposed. It has been proposed to acquire the

data outside the standard one-dimensional arc trajectory, which is typically used in

clinical practice. The proposed geometry allows for capturing more singularities of the

Radon transform, fill more data in the Fourier space and provide more planes, which

satisfy the Tuy-Smith condition. The simulation results showed that the dual-axis tilt

acquisition principle offer to reach better in-plane and axial image quality using the

same number of projections (i.e. the same dose) without major modification of the

existing tomosynthesis devices. The studies described in this chapter were based on a

simulation software. Results confirm the feasibility of the proposed acquisition geometry.

However, further work should be done in order to explore all potentials and limitations.

The parameters of the novel acquisition trajectory should be optimized. The

main question is how to efficiently re-distribute the acquired projections over the new

trajectory. Another aspect, which should be taken into account, is the influence of the

reconstruction algorithm. The task is to find a suitable reconstruction algorithm for

the limited angle data acquired over non-standard trajectory. Further efforts should be

made in an investigation of the potential problems of the motion artifacts introduced

by movement of the object. As an important next step, a hardware prototype should

be designed and implemented. Further validation studies based on real measured data,

which includes the qualitative and quantitative evaluation should be done. A validation

based on task-specific image quality measures has not been discussed in this chapter.

Therefore, it is important to carry out such studies. The patient dose issue has only

been slightly mentioned in this chapter. The proposed geometry offer not only image

quality improvement without patient dose increase but also a potential of the patient

dose reduction while keeping image quality constant.

To sum up, the proposed geometry concept would benefit from investigation studies

in the following areas:

• optimizing the geometry parameters;

• finding a suitable reconstruction algorithm for non-standard trajectories;

• investigating potential motion artifacts;

• studying dose issues;

• building a prototype;

• demonstrating the scheme on the real data.



Chapter 8
Appendix: MATLAB®

8.1 MATLAB® File Exchange

The following tools from the MATLAB® file exchange (webMATLAB 2013) have been

used to improve the visual representation of graphics created in MATLAB®:

• varycolor for maximum color variation for lines on plots;

• legend best fit to position automatically the existing legend inside the axes

to avoid covering the plotted data;

• legendflex for legend with more flexible positioning and labelling capabilities;

• ellipse to add ellipses to the current plot;

• save2pdf to save a figure as a PDF as it appears on the screen with the correct

page size;

• arrow to draw a line with an arrowhead.

Additionally, the mcode package has been used to include m-code fragments with

the highlighted syntax in the LaTeX documents.

http://www.mathworks.com/matlabcentral/fileexchange/21050
http://www.mathworks.com/matlabcentral/fileexchange/30220-legend-best-fit
http://www.mathworks.com/matlabcentral/fileexchange/31092
http://www.mathworks.com/matlabcentral/fileexchange/289
http://www.mathworks.nl/matlabcentral/fileexchange/16179
http://http://www.mathworks.com/matlabcentral/fileexchange/278
http://www.mathworks.com/matlabcentral/fileexchange/8015
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8.2 PubMed trend search

The source-code represents a MATLAB® function for PubMed trend search. An

alternative tool for PubMed trends search be found online here (Corlan 2004).

1 function trend=get pubmed trends(years, search term)

2 %function get pubmed trends returns occurance of published papers per ...

year for given search term

3 %

4 %the code is adapted from

5 %http://www.vollkornpapier.de/allgemeines/...

6 %...trends−fur−publikationen−zu−einem−thema−in−pubmed.html
7 %

8 %Example: trend=get pubmed trends(1972:2012, 'tomosynthesis')

9 %26/09/2012

10

11 trend=zeros(length(years),1); % memory preallocation for output

12 for j=1:length(years)

13 query=['http://eutils.ncbi.nlm.nih.gov/entrez/eutils/ ...

14 esearch.fcgi?db=pubmed&term=' urlencode(search term) ...

15 '[tiab]%20AND%20' num2str(years(j)) '[dp]&rettype=count'];

16 docNode = xmlread(query);

17 trend(j)=str2double(docNode.getElementsByTagName('Count').item(0). ...

...

18 getFirstChild.getNodeValue);

19 end
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