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Abstract

Although vision is an essential component of most human activities, the brain’s capacity to process

visual input is limited. In order to cope with the vast amount of stimuli available, visual information

is subjected to repeated processes of selection and integration along the visual pathway. A first

stage of selection occurs already at the level of the eye, where only about the 2 percent of the visual

information that is projected on the central part of the retina is sampled in full detail, while towards

the retinal periphery the resolution drops significantly. Because of this, the eyes move frequently

(2–3 times per second), while attentional mechanisms select the regions of the surrounding space

that need direct processing. However, cases in which this selection is not optimal do exist, and so,

unexpected events occurring in the periphery of the visual field can go unnoticed. In safety-critical

activities, such as driving, this can prove fatal. In situations of this kind, having an external system to

detect safety-critical events, and if needed, to guide the gaze and with it the attention of the observer

towards them, could be highly effective.

The primary goal of the present dissertation is to explore the effects of gaze guidance techniques

in driving situations, and also to investigate the issues posed by implementing such an augmented

vision system as part of a realistic driving assistance system.

Before delving into the actual subject of gaze guidance in driving, we take a look at several

issues related to guiding gaze itself. First, we investigate the influence of expertise on eye movement

strategies, by examining the eye movement patterns of a novice and an expert group controlling a

gaze-operated game. The differences we found between the two groups confirm the fact that eye

movement strategies employed by observers are optimized for performing the activity at hand, as

well as the fact that these strategies evolve as a function of experience. After this look at the task-

related components of gaze allocation, we switch to investigating the influence of the visual input on

eye movements. We build a computational framework to predict eye movements on complex stimuli

consisting of transparent, time-varying overlaid film clips. We show that eye movements tend to

avoid areas of the visual input that are redundant, and also that they can be accurately predicted

using low-level features of the visual input.

The main part of our work is focused on gaze guidance in driving, and aims at answering the

question whether it can be effective in helping motorists avoid accidents in critical driving situations.

We first set out to investigate whether gaze-contingent cues that highlight pedestrians involved

in safety-critical scenarios help subjects drive safer in a desktop driving simulator. The initial re-

sults were highly promising: drivers exposed to the gaze-contingent cues caused significantly less

accidents with the high-risk pedestrian. However, as it could be argued that pedestrian-centred gaze-

contingent markers are unnatural, and at the same time too difficult to implement in a real car, we

repeated the experiment using simpler cues. In this case, although as before, the cues were triggered

shortly prior to a safety-critical event, they only indicated the general horizontal direction fromwhich
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the pedestrian would emerge. The significant reduction in accident rates was confirmed.

The final step of our driving research aimed at transposing the previous results in the more realis-

tic setting of a high-fidelity, wide field-of-view driving simulator. We showed that cues implemented

with the help of LED arrays that were toggled on and off in a gaze contingent manner are effective

in directing the gaze of the driver towards desired locations, without disrupting the driving activity.

Overall, our results reveal gaze guidance to have great potential as an effective tool in future

advanced driving assistance systems.
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Zusammenfassung

Sehen ist ein wesentlicher Bestandteil fast aller menschlichen Aktivitäten. Da der Informationsver-

arbeitungskapazität des Gehirns Grenzen gesetzt sind, finden bei der Verarbeitung visueller Stimuli

entlang des Sehpfades wiederholt Auswahl- und Integrationsprozesse statt.

Eine erste Stufe der Auswahl lässt sich bereits im Auge finden. Nur ungefähr zwei Prozent der

visuellen Information, die auf die Netzhaut projiziert wird, werden mit maximaler Auflösung abge-

tastet, und die Auflösung nimmt zur Peripherie der Netzhaut hin dramatisch ab. Deswegen müssen

sich die Augen zwei- bis 3 mal pro Sekunde bewegen, um die jeweils relevanten Bereiche der vi-

suellen Umgebung seriell abzutasten. Der Mechanismus der Aufmerksamkeit entscheidet dabei,

wohin das Auge gerichtet wird. Hierbei kann es jedoch passieren, dass diese Selektion nicht op-

timal ist, und dass unvorhergesehene Ereignisse, die in die Peripherie des Sehfeldes gelangen, nicht

wahrgenommen werden. Bei sicherheitskritischen Aktivitäten, wie z.B. beim Autofahren, kann das

schwerwiegende Folgen haben. Unter derartigen Umständen wäre daher ein technisches System

wünschenswert, welches potentiell gefährliche Ereignisse detektieren kann, und, wenn nötig, den

Blick und damit die Aufmerksamkeit des Fahrers in diese Richtung lenkt.

Diese Dissertation untersucht Aspekte, die auf die Wirksamkeit, aber auch auf die praktische

Umsetzung eines solchen erweiterten Sehvermögens ausgerichtet ist, das sich fürs Autofahren eignet.

Bevor wir uns mit dem eigentlichen Thema der Blicksteuerung beim Autofahren beschäftigen,

schauen wir uns einige Aspekte an, die grundsätzlich mit Blicklenkung verbunden sind. Zuerst un-

tersuchten wir anhand eines blickgesteuerten Spiels, welchen Einfluss Erfahrung auf die Muster der

Augenbewegungen hat. Hierzu verglichenwir die Augenbewegungen einer Gruppe von untrainierten

Anfängern und einer Gruppe von erfahrenen Experten.

Die Unterschiede, die wir zwischen beiden Gruppen fanden, bestätigen, dass erfahrene Proban-

den während dieser Aktivität optimale Augenbewegungsstrategien verwenden, und dass sich diese

Strategien für Anfänger in einem Lernprozess verbessern lassen. Nach diesem Blick auf aufgaben-

bezogene Komponenten der Augenbewegungen gingen wir weiter und untersuchten den Einfluss

des visuellen Inputs auf die Blickmuster. Wir implementierten einen Algorithmus zur Vorhersage

von Augenbewegungen auf komplexen Stimuli; wir überlagerten zwei oder drei natürliche Video-

clips, so dass u.a. transparente Bewegungen resultierten. Wir zeigen, dass Augenbewegungen die

aus informationstheoretischer Sicht redundanten Regionen des visuellen Inputs meiden, und dass

Augenbewegungen allein durch einfache physikalische Attribute des Stimulus vorhergesagt werden

können.

Der Hauptteil der Dissertation konzentrierte sich auf die Blicklenkung beim Autofahren. Unser

Hauptziel war die Beantwortung einer grundsätzlichen Frage: Können Unfälle durch Blicklenkung

wirksam vermieden werden?

Zu Anfang untersuchten wir in einem PC-basierten Fahrsimulator, ob blickrichtungsabhängige
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Hinweise auf Fußgänger, die unerwartet vom Gehweg auf die Strasse treten, die Reaktionszeit der

Probanden und damit die Zahl der Unfälle reduzieren. Die Ergebnisse der ersten Versuche waren

vielversprechend: Probanden, denenmit blickrichtungsabhängigenHinweisen geholfenwurde, verur-

sachten statistisch signifikant weniger Unfälle. Eine Einschränkung dieser ersten Versuchsreihe war

jedoch, dass die verwendeten blickrichtungsabhängigen Hinweise nicht realistisch genug waren, um

sie tatsächlich in Autos einbauen zu können. Daher haben wir das Experiment noch einmal mit

einfacheren Hinweisen durchgeführt, die bloss die horizontale Richtung, nicht jedoch die genaue

Position des Fußgängers anzeigten. Auch in dieser Versuchsreihe führte Blicksteuerung zu einer

signifikant niedrigeren Unfallrate als in der Kontrollgruppe ohne Blicksteuerung.

Der letzte Schritt unserer Forschung zum Fahrverhalten galt der Validierung der PC-Simulator-

basierten Ergebnisse in einem wesentlich realistischeren Fahrsimulator. Die blickrichtungsabhängi-

gen Hinweise wurden hier nicht mehr direkt in die simulierte Graphik eingeblendet, sondern wie in

einem realen Fahrzeug durch programmierbare LEDs im Rahmen derWindschutzscheibe implemen-

tiert. Trotz der größeren Distanz zwischen Hinweis und sicherheitskritischem Objekt konnten wir

auch in dieser Versuchsreihe einen signifikanten Effekt der Blicksteuerung nachweisen.

Insgesamt zeigen unsere Ergebnisse ein großes Potenzial der Blicksteuerung für zukünftige Fahreras-

sistenzsysteme.
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1
Introduction

During all our daily activities we are significantly relying on a fact most often taken for granted: we

see. We effortlessly interpret and integrate the sensory information received from the visual system

into the task currently performed. We are able to recognize objects, people, and situations in the

complex world surrounding us, based on what appears to be solely eyesight. And all activities, from

simple ones, such asmoving through a room, or grasping an object, to complex and highly specialized

ones, such as reading, or driving a car, they all need visual information to a certain degree.

With this in mind, does vision need augmenting? Is there any reason, or any situation where we

would need help to see better, or more? And should the answer to the previous questions be “Yes”,

then how could such a system for augmenting vision be built?

The impression of having access every moment to a high-resolution, high-fidelity representation

of the surrounding environment is in fact only an elaborate illusion, the result of intensive brain

processing. In reality, every instant, only a small part, approximately the size of about two of the

approximately 180 degrees of visual field can be seen with full accuracy. In order to compensate for

the lack of detail in the periphery of the visual field, humans move their eyes in average two to three

times each second. The full-resolution map of the world that we are under the impression of seeing

is built fixation by fixation, through successive jumps from one item of interest to another.

Because of the inhomogeneous accuracy in the visual field, what is consciously perceived from

the outside world is conditioned by where one looks, as well as by the sequence in which one has

scanned the environment. In addition to that, what we expect to see shapes the way we perceive the

world. Because of this, events that occur “outside the fovea”, and that do not fit our expectation,

or better said, our model of the world at a certain moment, and that also are not salient enough to

attract attention, may easily go unnoticed. From this point of view, it could prove useful to have an

automated system that detects events needing to be attended, and then unobtrusively makes its users

direct their gaze towards them.

1



CHAPTER 1. INTRODUCTION

In this thesis we will approach the issue of vision augmentation through gaze guidance. Although

the main part of the dissertation will focus on augmenting vision in driving scenarios, we shall also

investigate several aspects that relate directly to guiding gaze, namely correlations between expertise

and visual strategies, and the prediction of eye movements.

The work we shall present has its premises in, and at the same time continues research carried out

in the context of the European project GazeCom. GazeCom, short for “Gaze-based Communication”

aimed to “(i) show that gaze guidance has a high impact on what is perceived and communicated

effectively; (ii) advance the level of understanding of the human visual system to the point where

gaze guidance becomes feasible, and (iii) build prototype systems that exploit these insights and

demonstrate the potential for applications”1.

1.1 Outline

The first two chapters of the thesis are designed to give an overview of the basic notions we used

throughout our work: Chapter 2 is an introduction into the basics of human vision, while Chapter 3

will introduce the reader to some of the techniques and the theoretical concepts that will be later used

in the practical experiments.

After the first two introductory chapters, in the remainder of the thesis, we shall tackle a series

of issues related to augmenting vision. First, Chapter 4 develops upon the correlation between a task

and the eye movements of the observer that performs it, emphasizing on the influence of expertise on

the eye movement strategies adopted by observers. In this context, we present a study that highlights

differences existing between the eye movement patterns of novices and of experts that play a gaze-

controlled game. Next, as a robust and yet simple framework that can predict eye movements is one

of the first requirements for implementing a system that can unobtrusively guide gaze, Chapter 5 will

offer a short look into the prediction of eye movements using low-level features of the visual input.

This chapter will describe our results on gaze prediction on complex visual stimuli.

In Chapter 6 we will directly approach the issue of augmenting gaze, and we will attempt to

build such a system adapted for driving a car. The first part of the chapter presents results obtained in

Lübeck, using fairly complex gaze-guiding cues in a simple desktop driving simulator. The final part

of the chapter will describe results obtained in a state-of-the-art, wide-field-of-view driving simulator,

using simpler gaze-contingent cues, that can be easily implemented in a real car. These final results

were obtained following an experiment conducted during a four month research stay in the laboratory

of Peter Bex, at the Schepens Eye Research Institute, of Harvard Medical School.

We will conclude the thesis in Chapter 7.

1www.gazecom.eu
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1.2. OVERVIEW OF MAIN CONTRIBUTIONS

As stated above, the work we will present in the following was at times based on results and

methods developed by others. For efficient video data representation and processing, as well as for

the recording and analysis of eye movement data we have used the complex software framework

developed by Michael Dorr. Also, an important part of the eye movement prediction section uses the

framework developed by Eleonora Vig.

Not last, the pilot study presented in Chapter 6 was run byMaria Schneider as part of her bachelor

thesis work.

1.2 Overview of main contributions
Several directions can be distinguished when summarizing the contributions of our research.

Our major contributions are concerned with the investigation of the effects of gaze guidance in

the context of driving. Effects both on eye movements and driving behaviour were explored, first

using the basic settings of a desktop driving simulator. Later, the first steps towards a generalization

of these results were taken, by extending both the gaze guiding cues, and the driving environment

to more realistic settings. One of the most important achievements of this series of experiments was

showing that gaze-contingent cues are effective in significantly reducing the number of accidents

with pedestrians in a driving simulator environment.

Second, we extended a general framework that used low-level features of the visual input to

predict eye movements on time-varying stimuli, to the more general case of transparent overlays of

multiple motions. We have shown that eye movements on such complex stimuli can be predicted

with a high accuracy using only the geometry of the visual input.

Finally, we studied the influence of expertise on eye movements in a gaze-controlled environ-

ment.

Our results on the effect of gaze guidance in driving, and on eye movement prediction on com-

plex stimuli have been made public in two journal articles [1, 2], as well as in several conference

proceedings [3, 4] and presentations [5, 6, 7].

Our conclusions on expertise and eye movement strategies can be found in [8].

3





2
A Short Introduction to Human Vision

Before delving into aspects of augmenting vision, a few basic notions about the human visual sys-

tem should to be understood. The way in which the human brain interprets visual information is of

particular interest, since it is what justifies the need for an augmented vision system.

There is a complex path between the photons reflected by objects around us and the final visual

perception that reaches consciousness. An impressive part of our brain is at all times occupied with

selecting, processing, and analysing visual information from the surrounding environment.

This chapter is meant as an attempt to a short introduction into the basic biology of vision. The

first section is conceived as a summary of both anatomical and physiological aspects of the human

visual system. The second section is focused on eyemovement types, while the last part of the chapter

will give a very short overview of visual attention.

2.1 The Human Visual System

On a very simplistic level, seeing is sometimes compared to photography. Although the eye could

indeed be likened to a camera – light rays projected from objects in the world pass through an aper-

ture of adjustable size, then through a lens which focuses them on a light sensitive surface, the retina

– most similarities between vision and photography end here. The retina is far more than a photosen-

sitive film, it is a part of the central nervous system, and it is where visual information goes through

a first stage of processing. The snapshot being projected onto the retina is not transmitted forward as

is: from the retina onward, it is subjected to multiple stages of information extraction and analysis

before it reaches the visual cortex. Only then, after undergoing further processing and integration,

visual information reaches awareness.

5



CHAPTER 2. A SHORT INTRODUCTION TO HUMAN VISION

Figure 2.1: A cross-section through the human eye. Light rays entering the eye pass through the transparent
anterior chamber and vitreous body, and are bundled on the light sensitive retina. The retinal area withmaximal
visual acuity is the pit-like structure called the fovea. Optical information, converted into neural signal by cells
in the retina leaves the eye via the optic nerve. (Illustration reproduced from Gray’s Anatomy).

2.1.1 The Eye

Light rays reflected by objects in the world enter the eye via the pupil and then travel through a

refractive medium that focuses them back into a clear image on the light-sensitive retina (Figure

2.1).

The first, and the most significant refraction occurs as light meets the curved surface of the

cornea. Light then travels through the anterior chamber of the eye and enters the internal chamber

through an opening in the iris, called the pupil. The pupil contracts or dilates depending on the

luminosity of the environment and thus controls how much light is allowed to enter the eye. A

secondary, much smaller refraction of the light rays occurs on the lens. The main role of the lens is

to bring objects nearby into focus, a role which it accomplishes through the fact that it can alter its

curvature, a characteristic known as accommodation [9].

From the lens, the light rays are projected onto the retina, where the photoreceptors transform

the incident photons into neural signals.

When viewed in cross-section, it can be observed that the retina has a laminar organization (Fig-

ure 2.2). The final output of the retina is the result of complex interactions between cells in all layers.

Of all the retinal cell layers, the photoreceptor level is the last, most likely because photoreceptors

need to be adjacent to the opaque pigment epithelium in order to access the enzymes needed for pig-

ment regeneration [10]. To compensate for this, as light must first pass through all the other retinal

cell bodies before reaching the photoreceptors, the superior layers are transparent.

Retinal structure varies spatially from the centre to the periphery. Relatively flat for the entire

surface, it presents a small depression near the centre, measuring about 1500µm in diameter [11].

6



2.1. THE HUMAN VISUAL SYSTEM

Figure 2.2: Transversal section through the retina. Light rays coming from above cross all retinal cell layers
to reach the photoreceptors situated below. Information from the photoreceptor layer is passed upwards to the
bipolar cell layer (the outer nuclear layer), and then to the ganglion cell layer. Horizontal and amacrine cells
perform a horizontal integration of the signal from neighbouring cells, accomplishing already in the retina a
basic processing of visual information. The axons of the ganglion cells provide the sole “output” as they carry
the resulting neural signal through the optic nerve to other visual areas of the brain. (Illustration reproduced
from Gray’s Anatomy).

This depression is the fovea, and it corresponds to the area of maximum visual acuity. Its pit-like

appearance is due to the lateral displacement of all retinal cells above the photoreceptor layer. The

optic nerve leaves the eye at a small circular spot near the fovea, called the optic disc or the blind-

spot. There are no photoreceptors in the blind spot, leaving it to higher visual areas to compensate

for the lack of visual information from that region.

There are two types of photoreceptors, each with different functions and properties. The majority

is constituted by rods, which with a count of approximately 120 million, outnumber the cones about

20 times. They are very sensitive to light, being able to detect even individual photons. Also, they

saturate at high light intensities, which makes them useful only in scotopic conditions, and therefore

responsible for vision under low light levels [12]. Cones operate only under photopic conditions

(daylight), and although much less sensitive to light than rods, they are extremely sensitive to small

intensity changes. There are three types of cones, each type responding to different light wavelengths

due to containing different photopigments. This fact makes cones entirely responsible for colour

vision [12].

Differences exist in the way photoreceptors are spatially distributed across the retina. The fovea

contains mostly cones, making it the centre for spatial acuity and colour vision. The peripheral retina

has a much higher ratio of rods to cones, and is therefore much more sensitive to light, but also

7



CHAPTER 2. A SHORT INTRODUCTION TO HUMAN VISION

essentially colour-blind [9].

Changes in photoreceptor membrane potential caused by responses to light are picked up by

bipolar, but also by horizontal cells. Each bipolar cell receives input both directly from one or more

photoreceptors and indirectly, via horizontal cells, from a group of neighbouring photoreceptors.

The area from which the bipolar cell receives direct input constitutes the centre of its receptive field,

while the area from which the cell receives indirect input constitutes its surround. The response of

the cell in the centre of the receptive field is opposite to that in the surround – for example, a bipolar

ON cell will be excited by light present in the centre of its receptive field, and it will be inhibited if

light is present in the surround of its receptive field; the opposite will happen for an OFF bipolar cell

[9]. This centre-surround receptive field organization lends the cell the ability to respond to contrast

existing in the visual field, which makes edge detection part of the retinal visual processing.

The size of bipolar cell receptive fields increases towards the periphery. In the fovea there usu-

ally is a one-to-one bipolar cell-cone correspondence; in the periphery, however, each bipolar cell

receives its input from a group of rods, a fact that in the end, because of several stages of spatial

integration leads to higher light sensitivity, but also to reduced spatial acuity in the peripheral retina.

Further up, ganglion cells receive their input either directly from bipolar cells, or indirectly, via

amacrine cells, in which case the received neural signal is subjected to some modulation. Several

types of ganglion cells can be distinguished: the M (magno) cells constitute approximately 5% of

the total, while the P (parvo) cells, counting about 90% of the total, constitute the majority. The

remaining bipolar cells are neither of type M or of type P. When compared to P type cells, M cells

have larger receptive fields, they are more sensitive to low-contrast stimuli, and they conduct action

potentials much faster. Also, their responses are transient bursts as opposed to the sustained activity

of P cells [9]. It is interesting to note that the output of P and M ganglion cells will be conducted

and processed along separate pathways in the central visual system, a fact that will be detailed in the

following section.

2.1.2 Visual Pathways in the Brain

Neural Pathways

The axons of the ganglion cells leave the eye via the optic nerve and conduct neural impulses to the

optic chiasm. Here, axons carrying information from the temporal area of the retinae of the two eyes

cross, so that visual information coming from the two halves of the visual field is divided between the

two cerebral hemispheres [10]. After the optic chiasm, the right optic tract will only carry information

from the left half of the visual field, while the left optic tract will only conduct information from the

right visual hemifield (Figure 2.3). Two pathways separate on each side from the optic tract after the

optic chiasm. The smaller one carries information to the brain stem, namely to the superior colliculus,

8
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Figure 2.3: Visual pathways. The visual information from each eye is conducted by the optic nerves to the optic
chiasm, where the neural fibres conducting the output of the nasal retinae cross. Because of this decussation,
after the optic chiasm, the optic tract will conduct information originating from the left half of the visual field
to the right hemisphere of the brain, and information from the right visual field to the left hemisphere. The
greater part of the optic tract information is conducted to the lateral geniculate nucleus (LGN), and from there
it reaches the visual cortex. (Illustration reproduced from Gray’s Anatomy).
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an area that appears to be involved in the control of eye movements [10]. The major pathway leads

to the thalamus, to an area that will be discussed in more detail below.

Lateral Geniculate Nucleus

The main target of the optical tract axons is situated in the thalamus – a structure called the lateral

geniculate nucleus (LGN). Interestingly, about 80% of the input of the LGN does not come from the

retina, but from the primary visual cortex [9], suggesting that there are also feedback processes that

take place at this level.

Visual information is entirely segregated at the level of the LGN, due to its laminar structure,

comprising 6 distinct layers. This segregation can be seen both in terms of the source eye for the

input, but also in terms of the type of the ganglion cell originating the input, as M-type cells project

their axons in different layers from P-type cells. The information from the two eyes will be kept

separate until the visual cortex. In fact, two separate magnocellular and parvocellular pathways

can be distinguished up until the visual cortex, with the magnocellular pathway exhibiting higher

conduction speed, and higher motion sensitivity [11], as well as higher spatial contrast sensitivity and

gain [13, 14, 15, 16], but lower spatial frequency sensitivity than the parvocellular system [11]. This

dual organization of the visual pathway suggests that one part of the visual stream will be processed

in such a manner as to rapidly detect transient stimuli, while the other will be processed focusing

on detail analysis and object identification – loose connection with the “vision for perception” and

“vision for action” theories that we will discuss later in more detail.

Visual Cortex

Neurons from the LGN project their axons to the occipital cortex, namely to the primary visual cortex

(V1).

An interesting fact about the visual pathways is that neighbouring ganglion cells in the retina

transmit the neural signal to neighbouring cells in the LGN, thus preserving an approximate two-

dimensional mapping of the retina onto the LGN. This retinotopic mapping is also maintained in

the primary visual cortex [9], and a certain degree of retinotopy remains also in other visual cortical

areas. The V1 representation of the visual field is however not symmetric [17]. The central area of

the retina (corresponding to the fovea) is highly overrepresented in V1, an effect known as cortical

magnification [18].

Similarly to the LGN, the striate cortex has a laminar structure and is anatomically divided in six

principal layers [9].

In a series of now classical experiments, DavidHubel and TorstenWieselmapped receptive fields

of V1 cells first in the cat [19], and then in the monkey brain [20]. Their experiments, continued well
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into the 70s, helped illustrate the physiology of the primate visual cortex. In the following, some of

the observations resulting from these experiments will be described.

As a function of the characteristics of their receptive field, they divided the cells they identified

in V1 in three types. Simple cells have elongated receptive fields, with ON or OFF central areas,

neighboured by an antagonistic surround either on one side (functioning akin to an edge detector)

or on both (line detector). In contrast, complex cells do not have distinct ON and OFF regions, are

highly nonlinear, are sensitive to motion, but not sensitive to the exact position of the stimulus in

their receptive field. Neurons from a third cell category, named by Hubel and Wiesel hypercomplex

cells, and known today as end-stopped neurons were tuned to lines up to a specific length. As a

short interlude, when viewing the low and mid-level cortical processes from the perspective of the

efficient coding of visual input, perspective that we will expand on in Chapter 5, the end-stopped

neurons correspond to i2D detectors – cells that respond to i2D stimuli [21].

As it can be inferred from the shape of the receptive fields, many neurons in V1 exhibit orienta-

tion selectivity, in other words they respond best to a bar of light with a specific vertical, horizontal,

or oblique orientation. Also, V1 cells are often direction selective, being tuned to a certain direction

of movement.

With regard to the origin of the input, some V1 cells respond to visual stimuli presented only

to the ipsilateral or the contralateral eye, while some have binocular receptive fields. Some of the

binocular cells, show various degrees of dominance of the input from one of the eyes.

Neurons with similar behaviour are often grouped together. Neurons with similar preferred ori-

entations are organized in orientation columns, perpendicular to the surface of the cortex. Similarly,

ocular dominance columns have been observed.

The main target of the primary visual cortex is constituted by areas in the extrastriate cortex (V2

to V5). Although it was originally thought that each area projects sequentially to the next, it is now

known that a large part of the cortical visual processing is performed in parallel, and also that each

visual area projects neural fibres to several others, leading to a complex interconnection network.

Moreover, these projections are often bidirectional; one can most of the time find both feedforward

and feedback connections between visual areas [10].

Although the initial theory of Mishkin et al. [22] stating the existence of a dorsal “where” path-

way, and a of ventral “what” pathway has proven to be controversial, it is widely accepted that the

two major cortical streams exist [23]. It is now believed that the dorsal stream, passing among other

areas through MT (V5) and MST appears to be involved in the analysis of motion offering the so-

called “vision for action”, while the ventral stream, passing through V4 and IT, has been deemed to

provide “vision for recognition” [24].

The role that MT and MST have in motion processing is undeniable; neurons in these areas

are motion selective neurons, and are tuned both to the direction and the velocity of the motion
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[25, 26, 27]. Coming back to the computational perspectivewe brieflymentioned above, thesemotion

selective cells can also be accurately modelled by the curvature-selective operators described in [21].

2.2 Eye Movements
As shown before, only a very small part of the retina samples the visual space in detail. Because of

that, the eyes need to constantlymove in order to supply a comprehensive sampling of the surrounding

world. In the following, we will provide an overview of the main types of ocular movements, along

with their roles.

The human oculomotor repertoire is fairly limited. Four main eye movement types are used,

either to stabilize the fovea onto certain regions, to track targets moving at low speed, or to quickly

shift gaze direction [28].

Saccades

Saccades are fast, ballistic eye movements that serve to rapidly redirect the gaze to regions of inter-

est. Although they can be triggered voluntarily, most times they occur automatically, without being

noticed by the observer. Humans can make up to 3 – 4 saccades every second [11]. During a saccade,

the eye accelerates to a peak velocity, then decelerates rapidly, before returning to a stable position

[29].

The amplitude of the gaze shift in a saccade is correlated with both the peak velocity and with

the total duration of the saccade. In fact, a linear relationship can be observed between the duration

and the amplitude of a saccade [30]. Although most saccades have small amplitudes of only a few

degrees, a wide range of amplitudes exists. The largest saccades can measure more than 50 degrees.

However, saccades this size are not that common as typically, for amplitudes larger than 20 – 30

degrees, head movements accompany the motion of the eye.

Another characteristic worth mentioning is the saccade latency – the time between the initiation

of a stimulus and the triggering of a saccade. The saccade latency ranges between 100 and 1000 ms

[29] and it is influenced by a number of factors, from the eccentricity of the stimulus, to its nature.

Despite peak velocities of up to 1000 deg/s [30], saccades do not interfere with the observer’s

stable perception of the surrounding world. The fact that no motion blur is consciously perceived

during the ocular displacement suggests an attenuation in the visual perception mechanisms just be-

fore and during a saccade. It is not yet fully known how the visual system maintains visual stability

during saccades. Some theories support the idea of saccadic suppression of the entire visual stream

[31, 32], or only of the channels processing low-frequency high-velocity stimuli [33]. Other theo-

ries propose that saccadic motion blur is not perceived because it is masked by the preceding and

subsequent fixations (this is the hypothesis of visual masking [34]), or that the motion blur is not

12



2.3. VISUAL ATTENTION

perceived because saccadic retinal image motion lies outside the spatio-temporal sensitivity of the

human visual system [35, 36, 37].

Fixational eye movements

Saccades alternate with fixations, time periods in which the eyes are relatively stationary. During

these periods, the information at the fixated location is being analysed, and the analysis takes place

at the same time with the selection of the next target of interest.

Even during fixations, the eye is not entirely still. Miniature eye movements such as a slow drift,

a more rapid tremor, or small amplitude jumps – microsaccades – can be observed. It has been shown

that when these small amplitude movements are eliminated by stabilizing the visual input with report

to the retina, the fixated scene gradually fades from perception. This suggests that the role of these

miniature eye movements is to counteract the effects of neural adaptation, by continually refreshing

the image projected on the retina (see [38] for a more detailed description).

Eye movements used in target tracking

Pursuit movements allow the smooth tracking of a target moving at low speed. If the speed of the

target is too high, the eye lags behind, and uses small amplitude saccades to “catch up” [39]. When

the target is moving towards, or away from the observer, vergence movements are used to adjust the

eye direction so that the target is fixated by both eyes.

2.3 Visual Attention

The highly optimized architecture of the human visual system suggests the existence of a set of

complex processes that are active in the background and decide which aspects of the surrounding

world need to be sampled at maximal resolution at a certain moment. It has come to be unanimously

accepted that this role is carried out by visual attention.

Attention has long been a controversial topic, and when discussing it, multiple questions and

theories need to be taken into consideration [40]. However, the following section will be limited to

a broad overview of two of the basic attention related aspects.

First, there is the obvious question of the relation between attention and eye movements. Studies

as early as that of [41] have shown that it is possible to shift attention independently of eye position.

But although such a covert manner of orienting attention is possible, in naturalistic tasks it is more

common for observers to direct their attention to the locations they fixate, in which case we talk about

overt attention. Consensus has not yet been reached on the exact connection between overt and covert

attention. However, it appears that saccade programming and visual attention are coupled [42], and
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there is strong evidence that attention shifts and eye movement control are correlated at a neural level

[43, 44]. In the end, most theories on overt and covert attention seem to converge on the fact that

there is a strong interconnection between the two, an interaction that can be briefly summarized as a

covert selection of the region to subsequently receive full processing resources [45, 46].

A second question is what exactly triggers an attention shift. Is the deployment of visual attention

driven solely by the content of the observed scene (bottom-up attention), or is it driven by the ex-

pectations and the current needs of the observer (top-down attention)? There is substantial evidence

supporting the fact that both hypotheses are partially true, and attention is guided by a combination

of top-down and bottom-up factors [47].

The voluntary component of visual attention has been highlighted by a large number of studies.

Experiments such as those of [41, 48], or [49] show among other things that it is in fact possible to

voluntarily shift the focus of attention. Beyond that though, the goal of the observer has a direct effect

on where their attention is directed. [50] has shown that subjects viewing various images focused

on areas of the scenes that were relevant for the tasks they were assigned. Also, there is extensive

research on the influence of task on visual behaviour, but this aspect will be reviewed in more detail

in the following chapter.

There are situations in which stimuli in the viewed scene seem to “pop out” from their sur-

roundings. In this case we talk about an attentional capture driven by the saliency of the stimulus.

Stimuli can trigger attentional capture either through visual attributes, such as colour, orientation,

or motion, attributes that differentiate them from surrounding items (feature singletons), or simply

through their sudden appearance in the scene (abrupt visual onsets). The two stimulus categories

have slightly different attentional capture properties [51]. Although feature singletons have been

shown to increase reaction times when presented as distractors in visual search tasks [52], there have

been studies showing that for a full attentional capture to occur, a transient stimulus is necessary

[53, 54, 55]. In addition to visual search tasks with artificial stimuli, there is a great body of research

on bottom-up attention investigating oculomotor behaviour in natural scene viewing, but we will

come back to this in Chapter 5.

2.4 Chapter conclusions

Everyday, we are confronted with a visual environment that is varied and rich in detail. Since it

would be impossible for a brain the size of ours to analyse at their full resolution all the visual stimuli

in the world around, several coping mechanisms are available.

First, the visual environment is not processed at its full resolution in all locations. Full-resolution

processing is restricted to the fovea, while the resolution drops dramatically only a few degrees into

the periphery. Also, rapid onsets, or motion in the periphery of our visual field reach the brain faster
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than information about spatial details. That is not everything: a second level of information selection

exists, as the visual system uses attentional mechanisms to restrict the overwhelming visual input to

a small set of stimuli needing immediate processing.

However, it can be argued that these selection mechanisms have been optimized for a world

much different than today’s over-urbanized environment. Indeed, as we will later show, there are

circumstances when the stimulus selection is not optimal and as a consequence, important aspects

of the surrounding world can be overlooked. It is in these loopholes of visual perception that an

augmented vision system could prove to be of uttermost importance. Over the following chapters we

will discuss designing such a system, adapted to an activity where optimal visual selection is critical.
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3
Basic Methods

In our work we have used an extensive amount of methods from statistics, signal processing, and

machine learning.

First, recording and analysing eye movement data constituted a crucial part of the research we

conducted over the last four years. During this time, three different eye tracking systems were used

for collecting the datasets that we will present in subsequent chapters. Also, because of specific

properties of gaze data, we used certain statistical measures and tests that are best suited for such

data.

Next, experiments regarding eye movement prediction on superimposed video clips brought the

need for an adequate representation of the time-varying visual stimuli, as well as for a way to de-

scribe their geometry. Finally, machine learning techniques were used for the actual eye movement

prediction part. Not last, programming tools were used to implement applications used when running

the experiments, or in the data analysis phases.

The current chapter is designed to be an overview of the above mentioned theoretical notions and

methods.

3.1 Eye tracking techniques

By the end of the XVIIth century, a relatively accurate representation of the anatomy of the eye was

already available, and eye movements as measures of cognitive processes were beginning to attract

scholarly interest. However, until the end of the XIXth century, direct observation albeit subjective

and highly unreliable, was the only method to determine how an observer’s eyes moved [56].

Modern eye tracking technologies can be divided in several categories.

The electro-oculograph devices measure potential differences between the inner and outer sides

of the retina, and between the sclera and the cornea, with the help of electrodes placed on the skin

near the eye. The method was introduced in the 1930s, and despite a lower accuracy, it is still widely
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used, especially in clinical studies [56].

Some of the oldest eye tracking devices are part of the category of attachment eye trackers.

These involve tightly fitting a device to the eye, usually with the help of a contact lens or a suction

cap that covers the cornea and part of the sclera in order to impede slippage [57]. In the earliest

versions, the recording mechanism was mechanical, usually a lever-like device that would mark the

movements of the eye onto a recording surface [56]. In other early devices, the eye position would

be detected by using the light reflected off small mirrors attached to the cornea [58, 50]. Also among

the attachment devices, the “scleral search coil” can be found. First introduced by Robinson [59],

in its earliest implementation it could only detect the presence of a movement of the eyes, but after

decades of improvement it is now perhaps the most accurate eye tracking method [56]. Its basic

principle consists in embedding two wire coils in each contact lens, and then placing the observer

within the magnetic field created by two large electromagnetic coils. Movements of the observer’s

eyes will cause variations in the potential difference in each coil. Despite its accuracy, the scleral

search coil has all the disadvantages of attachment devices: because of the need for a very tight

fit, wearing the device is highly invasive and uncomfortable, making sometimes the use of local

anaesthetic necessary [60].

A third category of eye trackers, the optical devices, are based on detecting in an image of the

eye the reflection of light rays on the cornea; based on this reflection, they can track the motion of

the eye [56]. In this category, as precursors of modern trackers, the devices developed by Dodge and

Cline [61] and Buswell [62] must be mentioned. Nowadays, due to the advances in computing and

in image capturing techniques, optical (video-oculography based) trackers are the most widely used.

Although a large variety of techniques exist, the basic idea can be summarized in a few words: a

video camera films the eyes of the observer; image processing techniques are used to detect in each

video frame the features used for tracking, while an algorithm converts in real time the position of

these features to gaze coordinates [56]. One of the features easiest to detect is the pupil. However,

using only the pupil for detection makes it impossible to separate eye movements from movements

of the head. For this reason, a thorough fixation of the head, usually through a bite bar, is necessary.

The most common method for compensating for head movements is to use the corneal reflex created

by one, or several fixed external light sources [63]. In order to interfere as little as possible with

the experiment itself, light sources emitting light in the infrared spectrum are used, together with

an infrared sensitive camera. In order to account for differences in the shapes of the corneas of

different observers, as well as for differences in the external conditions for each recording session,

a calibration of the device is necessary before recording. Through calibration, the actual mapping

function between orbital position and points in the observer’s field of view is obtained [63].

All three eye tracking systems that we used in our studies fit in the category of video-oculography

based trackers, and used as tracking features the dark pupil combined with one or several corneal
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reflexes [64, 65].

Both the experiments that wewill present in Chapters 4 and 5 required high eye tracking accuracy,

but without an imperative need to allow free head movements, as the experimental tasks were fully

static (the free viewing of film clips and using gaze to control a computer game). Therefore, for

the data recording, a SensoMotric Instruments (SMI) Hi Speed eye tracker was used. The device

provided a monocular sampling frequency of up to 1250 Hz, and a manufacturer-specified tracking

accuracy between 0.25 – 0.5 degrees; the system did not need a complete immobilization of the head

of the observer, that was stabilized with the help of an adjustable height chin rest 1.

The study described in the first part of Chapter 6 was set in a PC driving simulator, that was

integrated with a SMI RED250 remote eye tracker. In comparison to the HiSpeed, the RED offered

sampling rates of only up to 250 Hz, but it allowed for free movements of the head within a head box

of 40x20 cm, at 70 cm distance 2.

The final study that we will describe in Chapter 6, took place in a high-fidelity driving simulator

with a horizontal field of view of 225 deg. It was integrated with a Smart Eye Pro system that,

with a flexible setup of 6 cameras and 4 infrared diodes, could track eye movements on the entire

display of the simulator. The sampling frequency of the system was 60Hz, and with the restriction of

maintaining the eyes visible in at least two cameras simultaneously, the system allowed natural head

motion 3. In addition to the gaze calibration that was necessary for each of the three eye tracking

systems, because of the adjustable cameras, a camera calibration was also needed in the case of the

Smart Eye tracker.

3.2 Basic statistical methods

As previously said, measuring gaze data was indispensable for our work. For each study we con-

ducted, the eye movement recording phase resulted in large quantities of data to be examined and

interpreted. Just as an example, one minute of recording time on an eye tracker running at a sampling

frequency of 60Hz would result in more than 3500 gaze samples. Often, one of the most interesting

questions when analysing these data was whether different subject groups or conditions could be dis-

tinguished based on the recorded eye movement behaviour. Moreover, if these differences existed, it

had to be established whether they were statistically significant, or it was more likely they were due

to chance. In the following, a short summary of the main statistical tools we used in our analyses is

given. For a more detailed overview of these basic techniques, we refer the reader to the textbook of

[66].

2http://www.smivision.com/fileadmin/user_upload/downloads/product_flyer/prod_smi_red250_
techspecs.pdf

3http://www.smarteye.se/sites/smarteye/files/datasheets/smart_eye_pro.pdf
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Figure 3.1: Illustration of the use of the empirical cumulative distribution function (ECDF) for the distributions
of the saccade amplitudes over three different driving tasks. The plot of the ECDF highlights the differences
between the three conditions. In the free driving task (uppermost curve), the subjects performed more short
saccades, while in the search task (bottom curve) more large, exploratory, saccades were performed.

When using test of significance on eye movement data, several issues need to be kept in mind.

First, it is not possible to assign a specific probability distribution to the gaze “generator”, and there-

fore, non-parametric statistics need to be used.

Second, using significance testing on raw gaze data is risky, and can lead to an overestimation

of the significance level. Raw gaze coordinates do not constitute independent statistical samples,

since the same gaze “generator” will produce different population sizes depending on the sampling

frequency. The correlations in the data are also apparent when taking into consideration the fact that,

at a sampling frequency of 60Hz, the eye position would be sampled twice or three times during

an average length saccade. There are two straightforward methods to correct for the overestimation

of the sample size: either use an measure that is invariant to the sampling rate of the eye tracker,

such as the saccade end points, or perform an artificial subsampling to the raw gaze data. In our data

analysis, we have used both methods. More details on the latter will be given in Chapter 4.

A simple approach to visualizing the trend of a sample, or the differences between several is

to plot the empirical cumulative distribution function (ECDF). In non-parametric approaches, the

ECDF provides a simple estimate of the cumulative distribution function (CDF), in cases where

only minimal assumptions can be made about the probability distribution of the data. The CDF is

the integral of the probability density function; for a data point y, it denotes the proportion of data

samples with values smaller than or equal to y.
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For a discrete, random sample (x1, x2, . . . , xn) the ECDF is defined as

Pn(y) =
1

n

n∑
i=1

1y{xi}, (3.2.1)

where 1S is called an indicator function, and is defined as 1S{x} =

{
1, if x ∈ S

0, otherwise.
To better illustrate the practical interpretation of the ECDF we give a short example from one

of our studies, in which subjects drove through a simulated environment while performing several

cognitive tasks. The ECDFs of the distributions of saccade amplitudes for each task reveal the dif-

ferences between the conditions (Figure 3.1).

The ECDF stands at the base of a powerful non-parametric statistical significance test: the

Kolmogorov-Smirnov test. In its two-sample form, the Kolmogorov-Smirnov test computes the dis-

tance between the ECDFs of the two given samples, P1,n and P2,n, in other to decide whether they

stem from the same distribution:

Dn,n′ = sup
x
|P1,n(x)− P2,n′(x)| (3.2.2)

The null hypothesis is rejected at the level α if Dn,n′

√
nn′

n+n′ > Kα

3.3 Multiresolution image representations

One of the first requirements for any artificial system dealing with visual stimuli is to represent

the visual input in a manner that is convenient for the application it will be used in. There are many

available options, from simple pixel representations, where an image is represented as a matrix of real

numbers, to Fourier space, or to wavelet decompositions, each with its advantages and disadvantages

[67, 68].

We have been confronted with choosing an optimal image representation in the study that we

will describe in detail in Chapter 5; the practical part of the study involved recording and predicting

eye movements on overlays of dynamic natural scenes. Both when creating the overlaid stimuli,

and when extracting the features that were used in the prediction phase, for reasons we will later

emphasize, we decomposed the time-varying scenes using image pyramids.

Image pyramids were introduced to image processing and to computer graphics (as mipmaps)

around the beginning of the 80s [69, 70], and they can be considered one of the precursors of multi-

scale wavelet analysis [71].

The basic idea behind pyramid analysis is the representation of an image using a set of lower
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resolution versions of itself. This image set is created iteratively, so that each element is generated

by subsampling the previous one by a factor of two, which makes the sequence resemble a pyramid.

There is one important aspect that needs to be kept in mind when creating an image pyramid.

When sampling a signal, in order to be able to perfectly reconstruct the original from the samples

and to avoid the artificial introduction of additional frequency components (phenomenon known as

aliasing), a certain degree of oversampling is necessary. More precisely, according to the Shannon-

Nyquist sampling theorem [72], the sampling frequency must be greater than the Nyquist rate, value

equal to the double of the largest frequency contained by the original signal. Therefore, before each

subsampling, a low-pass filtering of the image is needed in order to eliminate frequencies higher than

the half of the Nyquist rate for the new image resolution.

Since each level of an image pyramid obtained in this manner is in fact a low-pass filtered ver-

sion of the original image, the structure is called a low-pass pyramid. Because often the filter used

resembles a Gaussian filter, it is common for a low-pass pyramid to be called a Gaussian pyramid.

In a paper that is now considered a classic of the field of image processing, Burt and Adelson [69]

introduce the concept of the Laplacian pyramid as a complete image code. Fundamentally similar

to the Gaussian, the Laplacian represents the decomposition of an image into a sequence of band-

pass components. In the same paper, the authors propose an algorithm for creating the Laplacian

pyramid starting from the Gaussian decomposition of the image, in addition to an efficient algorithm

for creating the Gaussian itself. In the following, we will go into the details of these algorithms, that

are also illustrated in Figure 3.2.

Gaussian pyramid

The generation of a Gaussian pyramid always starts from the original image, I , that also constitutes

g0, the first pyramid level. Each subsequent level l is obtained by convolving the previous level

l − 1 with an averaging kernel w, and then discarding every second row and column. For a 5-by-5

weighing kernel, the value for each pixel (x, y) from level l of the pyramid can be formally written

as

gl(x, y) =

2∑
m=−2

2∑
n=−2

w(m,n)gl−1(2x+m, 2y + n).

The size of the smoothing kernel is usually decided as a compromise between filtering amount and

computational cost. Additionally, several constraints are imposed on the kernel:

• first, to simplify the computations, the kernel should be separable

w(m,n) = ŵ(m)ŵ(n),
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Figure 3.2: The process of creating the Gaussian and the Laplacian pyramid decompositions of an image. The
original image constitutes the first level of the Gaussian pyramid (G0). Each subsequent level in the Gaussian
is obtained from the previous one by subsampling by a factor of two. Note that the last level of the Gaussian
has a size of one, and contains the mean pixel intensity of the original image (the DC component). Before the
subsampling, the image is smoothed to ensure all frequency components above the Nyquist rate for the new
sampling rate are eliminated. Each level in the Laplacian pyramid is the difference between two subsequent
levels of the Gaussian.
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• the coefficients of the kernel should be symmetric

ŵ(i) = ŵ(−i), for i = 0, 1, 2.

• to keep a constant energy per pixel, the coefficients of the kernel must be normalized:

2∑
m=−2

ŵ(m) = 1

• also, all pixels at a given level must contribute equally to pixels from the next level

According to this algorithm, at the same time with an iterative downsampling by a factor of two,

the bandwidth of the image is reduced by an octave at each pyramid level.

Laplacian pyramid

The procedure for creating a Gaussian pyramid can be reversed; in other words, a level l of the

Gaussian pyramid can be expanded to obtain the level immediately above. Similarly to the generation

process, the interpolation has two steps, this time in reverse order: first, each row and each column

are duplicated, and then the resulting image is smoothed. The filter used is the same used in the

downsampling process.

Each upsampled level ↑ gl is however only an approximation of the original gl level in the

Gaussian pyramid, and their difference represents the level l of the corresponding Laplacian pyramid:

Ll = gl− ↑ gl+1. (3.3.1)

The Laplacian pyramid is therefore a complete image representation, as by summing all its levels,

the original image is obtained:

g0 =
∑

Ll. (3.3.2)

More importantly, as the difference between two low-pass images, each level of the Laplacian

pyramid is in fact a band-pass image, and each level contains a different frequency range present in

the original image. Analogous to the Gaussian pyramid, between two subsequent levels, the central

frequency is reduced by an octave.

This brings us to the advantages offered by pyramid representations. While Gaussian pyramids

are a computationally efficient method to access information situated on different scales in an image,

Laplacian pyramids offer easy access to spatially-localized information from various frequency bands
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Figure 3.3: Illustration of a three level temporal pyramid. The figure also illustrates the size required for the
temporal buffering window: to compute a frame from the last level of the pyramid, three history, and three
lookahead frames are used in the first level of the pyramid.

in the image. This is a clear advantage when compared with the Fourier representation of an image,

where all spatial information is lost during the computation of the transform.

One application of the band-pass decomposition that we have used, and that had already been

suggested by Burt and Adelson [73] is the seamless merging of two images by separately equalizing

the contribution of each frequency band to the final addition.

Spatio-temporal image pyramids

However, the stimuli we used in our studies were not static images, but time-varying scenes. One

straightforward method to use pyramid analysis for movie clips is to decompose each frame sepa-

rately, as Perry and Geisler [74] have done. However, the concept of image pyramids can easily be

extended to the temporal domain, by adding to the classical spatial decomposition a temporal one

[75].

A temporal domain analogue of an image pyramid is built similarly to a spatial domain Gaussian

pyramid (Figure 3.3). While for a spatial pyramid at each level, every second pixel is eliminated, in

the case of a temporal pyramid, it is every second frame that is removed. In this manner, on each

pyramid level, the temporal resolution of the film is halved.

Of course, there are some implementation differences. Even if, due to the reduced resolution,

a pyramid does not substantially increase the memory used compared to that needed by the single

image (for example, storing a 5 level pyramid increases the memory load only with 0.33 compared

to the original image), keeping in the memory the entire pyramid for a video clip may not always

be feasible. Therefore, it is necessary to implement a buffering system, in which only the number

of “history” and “lookahead” frames needed to compute all levels of the pyramid corresponding to a

frame at one moment in time are analysed.

It is straightforward to combine the concepts of spatial and temporal pyramids and create a spatio-

temporal Gaussian pyramid: a video can be subsampled in the temporal domain, while at the same
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Figure 3.4: Spatio-temporal isotropic Gaussian pyramid with three levels. The concept of isotropy can be
easily understood as a symmetry of the degrees of downsampling degrees in the spatial, and temporal domains:
whenmoving “down” on the pyramid, both the temporal, and the spatial resolution decrease, so that levels with
low temporal resolution contain frames with low spatial resolution, while high spatial resolution corresponds
to high temporal resolution.
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Figure 3.5: Diagram of a spatio-temporal anisotropic Gaussian pyramid with three spatial, and three temporal
levels. The frames on each spatial level are further decomposed in the temporal domain. In the end, all temporal
resolutions will be paired with each spatial resolution, creating a much finer partition of the frequency space.

time being subsampled in the spatial domain, on a frame by frame basis. There are two ways in which

spatial and temporal filtering can be combined, and therefore, two large categories of spatio-temporal

pyramids can be distinguished. If space and time are downsampled at the same time, the result will be

an isotropic pyramid (Figure 3.4). If a spatial downsampling is performed first, and then each spatial

level is further downsampled into temporal levels, the resulting pyramid is an anisotropic pyramid

(Figure 3.5). The computational requirements for creating an anisotropic pyramid are larger than

for an isotropic pyramid, but an anisotropic decomposition has the advantage of offering access to a

much finer partition of the frequency spectrum.

A spatio-temporal Laplacian pyramid can be built similarlywith a spatial one, but again, incurring

substantial computational costs. Also, depending on how the subsampling is performed, spatio-

temporal Laplacian pyramids can be isotropic and anisotropic.
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3.4 Geometry of time-varying images

In the current section we will show how it is possible to describe local intensity variations in an

image sequence using the concept of intrinsic dimension, and methods from the field of differential

geometry.

Any time-varying image can be represented as a function f : R3 → R that maps the three-

dimensional set of spatial and temporal coordinates to the real values corresponding to the image

intensity.

According to Zetzsche and Barth [76], the variation of the image function f can be characterized

locally for any open regionΩ ∈ R3 in terms of its intrinsic dimension, or in other words, the number

of degrees of freedom that are used for each point (x, y, t) ∈ Ω. There are four possibilities:

• f(x, y, t) = c, the image is constant in all directions over Ω; this corresponds to 0 intrinsic

dimension (i0D)

• f(x, y, t) = g(ax+by+ct), the signal is constant in two directions, so the intrinsic dimension

is 1 (i1D)

• f(x, y, t) = g(a1x + b1y + c1t, a1x + b1y + c1t), the signal is constant in one direction,

therefore it has an intrinsic dimension equal to 2 (i2D)

• no constant direction can be distinguished; intrinsic dimension 3 (i3D).

To give a only a few examples, in practice, i0D signals are uniform and static image regions, i1D

regions correspond to stationary straight lines, or stationary straight edges, while stationary corners,

or time-varying edges are i2D regions. Transient corners, and motion that is not uniform constitute

examples of signals that have maximal intrinsic dimension (i3D).

Mota and Barth [77] have shown that i0D and i1D image regions are redundant, and also that

curved regions are unique, and sufficient for reconstructing the original image. That is of particular

interest, as i0D and i1D regions appear more frequently in natural images [78].

Below, we will give an overview of how the intrinsic dimension of an image sequence can be

estimated, as described in [79]. First, to formalize the concept of intrinsic dimension for a region

Ω of a time-varying image, let us chose the maximal linear subspace E ∈ R3 for which f has a

constant orientation:

f(x + v) = f(x), ∀x, v such that x, x + v ∈ Ω, with v ∈ E. (3.4.1)

In these conditions, the intrinsic dimension of f will be equal to 3− dim(E).
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Since the image sequence f(x, y, t) can also be viewed as a hypersurface defined by the image

intensity as a function of the spatio-temporal coordinates:

S(x, y, t) = x, y, t, f(x, y, t),

methods from differential geometry can be used to estimate its intrinsic dimension.

3.4.1 The structure tensor and the intrinsic dimension of image sequences

The equation 3.4.1 can be rewritten as

∂f

∂v
= 0, ∀v ∈ E. (3.4.2)

In this case, the subspaceE can be estimated as the subspace spanned by the set of unity vectors that

minimize the energy functional

ϵ(v) =
∫
Ω
∥∂f
∂v

∥dΩ = vTJ1v, (3.4.3)

where J1 is the structure tensor of f ([80, 81, 82]), and it is computed as:

J1 =

∫
Ω
∇f ⊗∇fdΩ =

∫
Ω
[fx, fy, ft]

T [fx, fy, ft]dΩ, (3.4.4)

with ⊗ being the tensor product, and fx, fy , ft are the partial derivatives of f (fx = ∂f
∂x , etc.).

Equation 3.4.4 can be alternatively written as

J1 = ω ∗

 f2
x fxy fxt

fyx f2
y fyt

ftx fty f2
t

 (3.4.5)

where ω is a low-pass spatio-temporal filtering kernel. In these conditions, E will be the subspace

associated with the smallest eigenvalue of J1, and the intrinsic dimension of f will correspond to the

rank of J1. This can either be obtained following an eigenvalue analysis of J1, or using its symmetric

invariants, H , S, and K ([83]).

H = 1
3 trace(J1) = λ1 + λ2 + λ3

S = M11 +M22 +M33 = λ1λ2 + λ2λ3 + λ1λ3

K = |J1| = λ1λ2λ3.

(3.4.6)

Mii are the minors of J1, and are obtained from the original matrix by eliminating the row 4− i and
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the column 4− i.

Based on the values of the invariants of J1, the intrinsic dimension of a region can be estimated:

regions where H > 0, are at least i1D, while regions with S > 0 are at least i2D. Finally, if

K > 0, then the region is i3D.

3.4.2 The generalized structure tensor and multiple orientations

The structure tensor gives an accurate description of regions that are unambiguously i2D, or i3D.

However, it fails to distinguish between various additive overlays [2]. For example, the superposition

of two i1D signals cannot be set apart from a pure i2D signal. The same happens when analysing

two overlaid i2D patterns, or the superposition of one i1D and one i2D: in both cases, the structure

tensor would have full rank (3), so maximal intrinsic dimension, which would make distinguishing

between the two regions, or between the two regions and a simple i3D signal impossible.

Nevertheless, it is possible to extend the definition of the structure tensor to generalized structure

tensors (J2 and J3), that are capable to distinguish between these superpositions. In the current

subsection, we will detail on how J2 can be built and used for intrinsic dimension analysis, following

the description given in [83] and [2].

J2 is defined as:

J2 =

∫
Ω
[fxx, fyy, fxy, fxt, fyt, ftt]

T [fxx, fyy, fxy, fxt, fyt, ftt]dΩ. (3.4.7)

As before, computing the integral in equation 3.4.7 amounts to computing the following convolution

J2 = ω ∗



f2
xx fxxfyy fxxfxy fxxfxt fxxfyt fxxftt

fyyfxx f2
yy fyyfxy fyyfxt fyyfyt fyyftt

fxyfxx fxyfyy f2
xy fxyfxt fxyfyt fxyftt

fxtfxx fxtfyy fxtfxy f2
xt fxtfyt fxtftt

fytfxx fytfyy fytfxy fytfxt f2
yt fytftt

fttfxx fttfyy fttfxy fttfxt fttfyt f2
tt


, (3.4.8)

where w is again a spatio-temporal, low-pass filtering kernel.

As before, the rank of J2 or equivalently, its geometric invariants can be used to characterize the

intrinsic dimension of a region in a time-varying imag. The invariants of J2 are computed similarly

to the invariants of J1, the main difference being that instead of three eigenvalues, six are available.

Thus, the “S” invariants of J2 are defined as the sum all possible products of 2, 3, 4, and 5 eigenval-

ues. For example S22 will be the sum of the 15 products of eigenvalue pairs, while S25 will be the

sum of the 6 products of 5 eigenvalues. TheH andK invariants constitute the extreme cases: H2 is
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Figure 3.6: Illustration of the basic support vector machine (SVM) principle, in the two-dimensional, separable
case. The goal of the classifier is to find the hyperplane that separates the two classes (represented by green,
and respectively black disks) in such a manner that its distance to the closest data points is maximal. The
highlighted data points represent the support vectors.

the sum of all 6 eigenvalues, where as K2 represents their product.

3.5 Support Vector Machines

When predicting eye movements on superimposed video stimuli (Chapter 5) we used a Support Vec-

tor Machine (SVM) to distinguish between the class of attended and non-attended video locations.

Over the next paragraphs, we shall briefly describe the basic idea behind maximummargin classifiers

in general, and SVM in particular. For a more in-depth description, we refer to textbooks such as

[84, 85], or [86].

In the simplest classification case, the two classes to be differentiated are linearly separable (Fig-

ure 3.6). If the classes are linearly separable, then a set of labelled training points

(y1, x1), . . . , (yl, xl), yi ∈ {−1, 1} (3.5.1)
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can be separated by a hyperplane defined as

w0 · x + b0 = 0 (3.5.2)

The optimal separating hyperplane has the property that it is situated at a maximal distance to the

nearest training vector in any of the two classes.

Considering the requirement that the margin should be maximal, the separating hyperplane can

be described by the following inequalities

w · xi + b ≥ 1 if yi = 1,

w · xi + b ≤ −1 if yi = −1
(3.5.3)

or equivalently by

yi(w · xi) ≥ 1, i = 1, . . . , l. (3.5.4)

Keeping in mind the constraint (3.5.4), finding the optimal hyperplane translates to maximizing the

expression
1

∥w∥
max
i
[yi(xi − b)], (3.5.5)

or to minimizing the functional

Φ(w) =
1

2
∥w∥2. (3.5.6)

In this case, the margin, defined by the support vectors (the points closest to the separating hyper-

plane) will be maximal, and it will equal 1/∥w∥.

If the two classes are not linearly separable, then no hyperplane that perfectly discriminates be-

tween them can be found without projecting the data to a higher dimensional space. A solution is

simply to allow that points are misclassified during training, and to find the hyperplane that mini-

mizes the classification error. Called soft margin SVM, this extension to the linearly separable case

was introduced by Cortes and Vapnik [87]. The classification error associated to each data point is

quantified with the help of the slack variables, ξi. The slack variables are non-negative values de-

fined as ξi = 0 for points that have been correctly classified, and are on the right side of the margin,

0 < ξi ≤ 1 for points that have been correctly classified, but are inside the margin, and ξi > 1 for

points that have been misclassified.

The algorithm for finding the optimal separation hyperplane can now be rewritten as minimizing

the functional

Φ(w) =
1

2
∥w∥2 + C

(
l∑

i=1

ξi

)
, (3.5.7)
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under the constraint

yi(wxi − b) ≥ 1− ξi. (3.5.8)

The constant C > 0 appearing in (3.5.7) is a parameter controlling the trade-off between a small

error penalty and a large margin.

For our analysis, we trained a soft-margin support vector machine with feature points obtained

according to the method described by Vig et al. [88], using the publicly available SVM implemen-

tation contained in the LIBSVM library [89].

3.6 Software framework
As briefly mentioned in Chapter 1, for the representation of visual stimuli and the recording of eye

movement data, we used an already available C++ framework. To this framework, we made several

additions.

First, we programmed software that computed the generalized structure tensor and its invariants,

the theoretical details of which have been described in Section 3.4. For every pixel of every frame of

the input video, this required computing the second order spatio-temporal image derivatives, followed

by an eigenvalue analysis of a 6-by-6 matrix. Moreover, these computations were performed on an

anisotropic spatio-temporal Gaussian pyramid, increasing manifold the computational overload, and

thus making indispensable the parallelization of the operations.

Second, we implemented a movie blender, that could seamlessly superimpose several input

movies, on a frame by frame basis. More details on the algorithm are given in Chapter 5. The

superposition was performed using anisotropic spatio-temporal Laplacian pyramids.

However, themost substantial software contribution of this thesis is constituted by the framework

used to operate the driving simulator experiment described in Section 6.3. The application functioned

both as a data recorder, and as a controller for the two LED arrays that were gaze-contingently toggled

as a function of the location of the subject-controlled car in the virtual world. The controller received

UDP streams coming from the eye tracker and the driving simulator. After analysing the packets

received from both streams, the controller decided whether an activation of the LEDs was necessary.

It was essential that the latency for this analysis-decision loop to beminimum, as the processes needed

to be run in real-time in order to make the LED response gaze contingent.

3.7 Chapter Conclusions
This chapter, together with the first, were designed to be a basic introduction to the theoretical con-

cepts and techniques we will use, or we will base our assumptions on in the present thesis. In addi-

tion to the eye tracking technologies we have used throughout our research, as well as the statistical
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measures we employed to characterize the recorded eye movement data, we briefly presented the the-

oretical methods behind the framework we used in Chapter 5 to predict eye movements on overlaid

movies.
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4
Expertise and Eye Movement Strategies

4.1 Introduction

As discussed in the previous chapter, eye movements can reveal where an observer’s attention is

engaged. That, combined with the strong top-down component of visual attention, results in eye

movement patterns that are strongly correlated with the task being performed by the observer.

In the context of his reading research, Émile Javal was one of the first to mention the correlation

between the observer’s sequence of fixations and the cognitive activity that was being performed [90].

Other examples of famous early studies that found connections between the scanpath adopted by the

subjects and the task assigned to them are those of Buswell [62] and of Yarbus [50]. Since then,

considerable research has been conducted on the specificity of eye movement patterns associated

with various tasks [91].

In the following, wewill elaborate on this with a few concrete examples. One of themost straight-

forward cases is that of reading, where gaze-contingent display studies have allowed a thorough map-

ping of the perceptual span (the area in which text can be recognized in one fixation), and of how the

eye moves to compensate for its narrowness [92, 93]. When reading, the observer shifts his gaze in

the reading direction with the help of small saccades (the size of 8–9 letter spaces), alternating with

fixations during which letters or whole words are recognized. Some words are altogether skipped,

while others are fixated more than once as a small part of the saccades are regressive [94]. The con-

nection between gaze and action remains unmistakable even in mundane everyday activities, such

as making a tea [95], or preparing a sandwich [96]. These two studies highlighted how the series of

fixations made by observers is linked step by step to the objects involved in executing the task; the

great majority of eye movements is directed to task-relevant objects, and moreover, gaze predicts

the succession of actions involved in the task model [97]. Driving is another good example: when

steering, drivers use the tangent point of the inside of bends to predict the curvature of the road [98].

Fixations to locations highly informative for the performed action are also evident in sports such as
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cricket [99], or soccer [100, 101], and we will discuss these in the following.

In the end, what all these results have in common is the fact that when a distinct task is being

executed, different observers employ a relatively consistent eye movement pattern, an eye movement

pattern that, one may argue, is optimal for that action: gaze is directed towards locations that prove to

bemost relevant for the requirements of the task at hand [102]. This raises the question of whether eye

movement strategies evolve with the learning of a task, and whether observers learn which locations

are important to attend to.

Numerous studies report differences between expert and novice gaze patterns. In the previously

mentioned cricket experiment, Land and McLeod find that although all players exhibit similar strate-

gies – an anticipatory saccade close to the point where the ball would bounce, and then rapid tracking

of the last part of the flight of the ball – experts show improved tracking abilities, combined with

smaller latencies when responding to the appearance of the ball [99].

Also according to Savelsbergh et al., expert goalkeepers are more accurate in predicting the

direction of penalty kicks, and they take their visual cues from different areas, such as the legs, or

the ball area [100].

Similarly, visual strategy differences can also be observed between novice and expert drivers [103,

104, 105, 106].

However, such a learning process is not only identifiable in active tasks. Expert chess players,

in addition to choosing the optimal move faster than novices, have been shown to make greater

amplitude saccades, combined with fewer fixations that were often directed towards empty squares

[107], suggesting that they are able to perceive more squares during one fixation [108].

The topic of evolving eye movement strategies can often be encountered also in medical imag-

ing. To stop at only one example, Kundel and La Follette [109] compare search patterns of laymen,

medical students, radiology residents, and experienced radiologists searching chest radiographs for

lung nodules. They find significant differences both in the scanpaths adopted by different observer

groups and in the number of fixations performed before deciding on the presence of the lesion. The

example of pulmonary radiography presents itself of special interest also because the initial findings

have generated relatively successful experiments aiming to find methods to improve detection per-

formance. We must mention here a group of experiments that investigated how visual feedback to

the observers’ eye movements influenced later detection tasks [110, 111]. Lichtfield et al. describe

an interesting study, in which under- and postgraduate radiographers searching pulmonary X-Rays

for nodules were provided also with a condition in which they were presented with a preview of an-

other radiographer’s eye movements [112]. The results of the study were promising, suggesting that

observers have benefited from the eye movement preview condition.

In a similar study, Dorr et al. [113] show that learning to classify fish locomotion patterns was

facilitated by the visualization of the eye movements that were recorded on instructional videos, and
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that belonged to an expert in the field.

4.2 Expert and novice eye movement strategies in a gaze-controlled
game

As listed above, there are many examples of activities containing an important visual component, for

which different eye movement patterns are employed by experienced and novice actors. However,

the question arises whether similar strategy contrasts would develop in an environment that is entirely

gaze-controlled.

In order to investigate this issue, we observed subjects with different expertise levels playing a gaze-

controlled computer game. For the experiment, we used an open source version of the popular game

Breakout that was already adapted for gaze control for a previous study on gaze interaction [114].

4.2.1 Methods

Gaze controlled breakout

Breakout is an arcade game inspired by one of the earliest video games, Pong a table tennis simula-

tion. The goal of the Breakout game is to eliminate several rows of bricks at the top of the screen by

bouncing a ball against them (see Figure 4.1). In addition to eliminating the bricks, the player must

also keep the ball from touching the bottom edge of the display by deflecting it using a mobile paddle

that can be shifted horizontally.

The one dimensional input method, combined with the simplicity of the game process makes

Breakout a perfect candidate for transforming it into a gaze-controlled game.

An instant hit when it appeared in the mid ’70s, Breakout has spawned over the next 35 years

a significant number of clones offering improved graphics and additional features. The clone used

in the study is LBreakout2, an open source version of the game that was published under the GNU

General Public License [115]. The GPL license allowed for modifications to be brought to the game

source code, with the condition that the result is also published under the same GPL license.

The game was modified to communicate with SensoMotric Instruments eye trackers. The mod-

ifications were fairly simple. As the eye tracker would send over UDP the position of the player’s

gaze on the display, it was enough to implement a unit that received the gaze data, and instead of set-

ting the paddle to the position of the mouse, it set it in absolute coordinates to the horizontal position

of the player’s gaze. A more detailed description of the necessary modifications, as well as of the

issues encountered when adapting LBreakout2 for gaze control can be found in the article of Dorr et

al. [114].
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Figure 4.1: LBreakout2 screen shot. The paddle that can be seen in the bottom lower side of the image can be
moved horizontally by the player. The ball, deflected by the paddle, or by the side walls of the screen causes
the bricks it impacts dissolve. When hit, in addition to disappearing, some bricks release extras that can be
collected with the paddle.

The experiment

We recorded data from nine volunteering observers that were playing the gaze-controlled LBreak-

out2. Five of them had considerable experience in playing the game, and thus constituted the expert

group. Two of the expert subjects were actually involved in adapting the game for gaze control, but

one of them was not aware of the purpose of the current experiment. The remaining four subjects

had never played a gaze-controlled game before, and therefore formed the novice group.

All subjects were instructed to play until the completion of the first level, while also trying to

maximize their game score – in other words to collect as many points as possible, while trying to

keep all their lives. If all lives were lost, the game continued, but the score was reset to 0. It was

considered that the level was complete either when all bricks were removed, or when too few bricks

remained to allow for a comfortable removal. This is one of the disadvantages that playing with the

gaze has: although reaction speed is improved, even small eye tracking noise, combined with the

difficulty to inhibit miniature eye movements can make the fine control of the paddle more difficult.

Because of this, aiming for bricks situated at extreme angles can be tedious. For all subjects, the trial

took between 5 – 7 minutes to finish.

The subjects had to remove 16 rows, each containing 14 bricks (see Figure 4.1 for a screen

shot). Of these, 22 randomly chosen bricks (approximately 10%) contained extra items, that could
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be collected with the paddle. Some extra items were “good”, for example they could bring extra score

points, or elongate the paddle, or bring an extra ball. Conversely, some were “bad”, and triggered

unpleasant effects such as shortening, or freezing the paddle. To avoid any bias, the types of extras

were chosen randomly at the beginning of the trial.

The subjects were seated 55 cm away from a screen with a width of 40 cm and a height of 30 cm.

Therefore, the game covered a visual angle of 40×30 degrees, and at the game resolution of 640×480

pixels, 1 degree of visual angle corresponded to 16 pixels on the screen.

In previous experiments involving the gaze-controlled Breakout, a remote eye tracker was used to

record the eye movements of the subjects, allowing for a more natural gaming experience. However,

for the current experiment, the much better accuracy of the head-fixed SMI HiSpeed eye tracker was

preferred over the comfortable experience offered by the remote SMI RED-X. Although the default

sampling rate of the HiSpeed was 1250Hz, for the current experiment, such a high frequency was

unnecessary. Moreover, the graphics of the display were updated at a frequency of only 120Hz. For

those reasons, the subjects’ eye movements were recorded at sampling rate of 500Hz. Before each

trial, an “in game” 9 point calibration of the eye tracker was performed.

Data preprocessing

In order to analyse the eye movement strategies adopted by the subjects, we looked at which game

items were mostly fixated, as well as at the distribution of the saccade landing points. We also

examined the distance kept by subjects between gaze and ball.

However, computing these measures needed several preprocessing stages.

First, especially since for subjects with little eye tracking experiments experience it is relatively

difficult to keep the head completely still for more than five minutes, a small degree of impulse

noise was present in the gaze data. This manifested itself through implausibly large variations in the

gaze position from one sample to another. To filter out the noise-affected samples, we computed the

sample-to-sample velocities, and we discarded the 2% highest velocity samples. This resulted into

eliminating samples with biologically implausible velocities, that often exceeded 1000 deg/s.

Secondly, when examining the gaze-to-item distance, problems arose when computing the test

statistic. The gaze position was sampled at 500Hz, a sampling rate much higher than that at which

significant eye movements actually occur. For example, the eye position would be sampled at least

10 times during an average length saccade. Because of this, the distance measurements were highly

correlated, a fact that violated the assumption of independent samples for statistical tests [116], and

the test statistic needed to be corrected for the overestimation of sample size. For the correction, we

evaluated where the autocorrelation function of the distributions dropped to 0.5, and we subsampled

the distance distributions by that factor, averaged over all 9 subjects.
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Figure 4.2: Proportion of time spent on various items in the game. The percentages are computed based on
the total time in which the item was present on the screen. Experts spend more time looking at the ball and at
the good extras than novices do. No differences can be seen in the case of bad extras.

4.2.2 Results

Distance between gaze and game items

Focus of fixations As a first step, we examined the time spent by subjects fixating various game

items (Figure 4.2). In order to determine which game item was fixated at each moment, we computed

the Euclidean distance between the gaze position on the screen and all items (balls and extras) visible

at that given time. An item was classified as fixated if the distance from the item to the subject’s

point of regard was smaller than 5 degrees of visual angle (80 pixels).

As expected, all players spent most of the time looking at the ball. Also, expert players spent

considerably more time fixating the ball than novice players did (71.8% of the total time in the case

of experts, compared to 61% in the case of novices). This tendency could also be observed in the

case of good extras, that were fixated by experts 15.3% of the time, and by novices 9.8%. However,

for bad extras, there were no obvious differences between experts and novices (7.6% vs. 8%). It

must also be noted that the percentages were computed relative to the time the item was visible on

the screen. While in the case of the ball the “visibility” time was in fact equivalent to the total game

time, in the case of extra items it was significantly smaller. To be more precise, for experts good

extras were present 18.9%, and bad extras 10.2% of the total game time, while for novices, good

extras were present 15.3%, and bad extras 9.2% of the total time.

Also, it can be noticed that for large periods of time, both for experts and for novices no obvi-

ous fixation target could be identified. Nevertheless, experts spent less time than novices looking
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Figure 4.3: Probability distribution for the distances between gaze and ball. The computed figures contain
only data for expert players, as the trend for the novice players was qualitatively similar. Note that more than
50% of the time, the subjects looked closer than 3 degrees to the ball.

nowhere in particular (24.5% vs 36.7% of the total time).

Gaze-to-ball distance We have previously shown that 71.8% of the time, expert players (61%

in the case of novice players) fixate the ball. However, the question of how closely they follow the

ball emerges. To answer that, we computed the Euclidean distance between the players’ gaze and the

position of the ball on the screen. In order to compensate for the bias caused by the non-independence

of the samples, the preprocessing steps previously described were applied.

From the probability distribution plot in Figure 4.3, it can be observed that 50% of the time,

experts gazed closer than 2.75 degrees from the ball (3.45 degrees in the case of novices). More than

that, 75% of the time, the experts’ point of regard was within 5.24 degrees to the ball (6.46 degrees

for novices).

The differences in the gaze-to-ball distance between experts and novices are highly significant

(Kolmogorov-Smirnov test, p << 10−10), novices constantly keeping their gaze at a larger distance

from the ball than experts (Figure 4.4).

This leaves the question of how the distance between the player’s gaze and the ball varied during

the game. One could expect this distance to decrease as the ball neared the lower part of the screen,

to reach its minimum when the paddle should hit the ball, right at the bottom of the screen. To

verify this hypothesis we plotted the horizontal distance gaze-to-ball as a function of the vertical

ball position (Figure 4.5). For novice players, the expected trend can be recognized. The horizontal

distance was maximal when the ball was at the top of the screen, and it decreased proportionally
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Figure 4.4: Empirical cumulative distribution of the distances between gaze and ball for expert and novice
players. The differences between the two distributions are highly significant (p << 10−10, corrected
Kolmogorov-Smirnov test)
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Figure 4.5: Horizontal distance between gaze and ball as a function of the vertical position of the ball on the
screen. Overall, it is once more confirmed that experts gazed closer to the ball than novices did. For novices,
the horizontal distance from gaze to ball decreased almost uniformly with the decrease of the vertical position
of the ball. However, in the case of experts, a particular pattern could be observed, suggesting that they adopted
a distinct strategy.
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Figure 4.6: No significant difference can be observed between the saccade rate of expert subjects and that of
novices.

to the vertical position of the ball, to reach its minimum when the ball was at the bottom of the

screen. Several observations can be made when comparing the pattern of the novice to that of the

expert horizontal gaze-to-ball distance curve. First, experts maintained throughout the game a smaller

horizontal distance between their gaze and the ball. Second, both for experts and for novices, the

distance was maximal when the ball was at the top of the screen. However, for experts, the distance

curve reached the minimum already when the ball was close to the centre of the screen, to peak again

when the ball was nearing the bottom, and finally to rapidly drop again to a minimum value when

the ball was at the very bottom of the screen. It must be noted that this pattern can be individually

observed for each expert subject, and it is completely absent in the case of novices. One possible

explanation for the dip in the distance curve in the central area of the screen could be that experts

were using the position of the ball when it was in the centre of the screen to predict where it would

be when reaching the critical bottom position. This explanation makes even more sense when taking

into consideration the fact that for a large part of the trial, the ball was deflected by bricks situated

in the central area of the screen, this making the central part an even more informative area for the

future trajectory of the ball. Lastly, the unusual distance peak just before the ball reaches the critical

point could be explained as an artifice used by players in order to control which side of the paddle

would hit the ball, thus controlling its future direction.

Saccades

Finally, we also extracted approximately 17,000 saccade points from the gaze data, after filtering it

using the method described in the preprocessing section.

Although there were no significant differences in the number of saccades performed by novices
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Figure 4.7: Empirical cumulative distribution function of the vertical components of the saccade landing
points for both groups. Experts make significantly more saccades towards the area just above the bottom
screen critical zone.

and experts (Figure 4.6), differences could be observed when analysing the vertical saccade landing

points for each group. The empirical cumulative distributions of the vertical components of the

saccadic landing points are visualised in Figure 4.7. Although both player groups perform a similar

number of saccades directed at the bottom of the screen, experts perform more saccades that land on

heights slightly above 100 pixels, so slightly above the critical bottom screen area. The differences

between the behaviours of the novice and the expert group are highly significant (p < 2.6 · 10−5,

Kolmogorov-Smirnov test). This result comes to support the previous observations, that experts

adopt a distinct strategy just before the ball reaches the paddle.

4.2.3 Conclusions

Observers engaged in playing a gaze-controlled version of the game Breakout display distinct eye

movement strategies depending on their experience in playing the game. This result confirms that in

gaze-controlled environments, just as in the case of other activities with an important visual compo-

nent such as drawing, driving, or reading, eye movement strategies change with expertise.

4.3 Chapter Conclusions

In this chapter we emphasized the fact that in many activities eye movements follow stable patterns

that have been optimized for accomplishing that particular activity. However, these eye movement

strategies are not available in their definite form from the first contact of the observer with the activity;

44



4.3. CHAPTER CONCLUSIONS

they evolve concurrently with the process of learning the task. This sets the premises for using gaze

guidance as an aid to learning an optimal eye movement strategy, but also as a safety net for the case

where the strategy employed by the observer proves inadequate to cope with the context at hand.
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5
Prediction of Eye Movements

At the end of Chapter 4, we proposed the hypothesis that guiding gaze could be used as an aid in

learning and performing tasks with complex visual components.

However, attempting to elaborate on this idea already unveils a first issue: an augmented vision

system capable of gaze guidance needs to be able to capture gaze efficiently, and also in a relatively

unobtrusive manner. The best way to accomplish that is by understanding what attracts eye move-

ments to certain locations under naturalistic conditions. In order for the gaze guidance system to

achieve unobtrusiveness, these natural mechanisms must later be emulated as closely as possible.

But even before that, the first step in guiding eye movements is being able to predict them.

As described in the previous chapter, top-down mechanisms have a strong influence on where

an observer fixates. Therefore, in the context of a well-defined task that is known to elicit a specific

eye movement behaviour, it is easy to narrow down the “interesting” locations that will be fixated.

Unfortunately, top-down mechanisms are most of the time difficult to study – it is not an easy task

to establish the observer’s internal agenda. However, above-chance eye movement prediction levels

can be obtained using only salient characteristics of the observed scene, and there is strong evidence

suggesting that in real life activities there is a strong interdependence between top-down and bottom-

up mechanisms, where the latter act as modulators for the former.

In the following, we will focus on bottom-up saliency, and its use for predicting eye movements.

After a very short overview of existing research on eye movements prediction on natural scenes, we

will present our results in predicting eye movements on superimposed video clips. More details on

our results can be found in [2, 5].

5.1 Introduction

As briefly discussed in Chapter 2, the characteristics of the viewed scene can influence eye move-

ments, and areas in the environment that are salient can attract the observer’s gaze. There is a wide-
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ranging body of research in the field of bottom-up gaze allocation. The following overview is de-

signed only to give an idea of the main research directions that exist in saliency modelling, and it is

not meant to be in any way exhaustive.

Many of today’s successful computational frameworks of bottom-up gaze allocation have a start-

ing point in the feature integration theory, proposed by Treisman and Gelade in [117]. This theory

hypothesizes that features such as colour, orientation, shape, or movement are analysed separately,

within parallel channels over the entire visual field. The feature analysis would occur automatically

in the early stages of visual processing, while object identification and more complex analyses would

take place at a later stage, in the presence of focused attention. Koch and Ullman introduce the notion

of the saliency map, that encodes the global saliency in a scene, and that is obtained by integrating

over the separate feature maps [118]. In their model, the location to be attended next is selected from

the saliency map using “winner-take-all” mechanisms. Subsequently, this model has been used as

a basis for many implementations and extensions. One of the first is that of Itti et al., who imple-

ment a neural network that can select attended locations from the saliency map built by combining

multiscale image features [119]. Parkhurst et al. use the saliency model introduced by Koch and

Ullman to investigate the correlation between computed stimulus salience and eye movement data

recorded on static natural and artificial scenes, under normal viewing conditions [120]. Their results

confirmed that the correlation between scene salience and eye movements was higher than chance.

Itti [121] extended the saliency map to the temporal domain, and using recorded gaze data concluded

that eye movements were more accurately predicted by areas with temporal changes than by colour

or intensity.

Other studies infer basic features by studying the characteristics of the patches fixated by ob-

servers freely viewing natural scenes. For example, Reinagel and Zador study image statistics at the

centre of gaze, and conclude that fixated patches show higher contrast and lower spatial correlations

[122]. In a similar manner, Tatler et al. show that fixated locations tend to exhibit higher spatial

frequencies, suggesting that contrast and edge information are preferentially fixated [123].

A slightly different approach stems from a set of hypotheses introduced in the context of the

development of information theory research in the fifties/early sixties by Attneave [124] and Barlow

[125]. These hypotheses view sensory systems as information-handling devices that therefore must

be built in a way that reduces redundancies that exist in their inputs. In terms of human vision,

this translates as the efficient coding hypothesis: the mechanism that drives eye movements selects

its targets in a scene in such a manner as to efficiently encode the visual input, by maximizing the

information gained following fixation.

One example in this category is the model developed by Bruce and Tsotsos [126], a model built

using computational constraints that have the purpose to maximize the sampled information.

Another example is the model for early visual coding proposed by Barth and Watson [21], and
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developed in [127, 79, 2]. This model is based on the intrinsic dimension of the visual input; areas

with low intrinsic dimensions, denoting uniform regions, or straight lines are deemed to be redundant,

and therefore suppressed by the visual system. This is the model we used in our eye movement

prediction research.

5.2 Eye movements on overlaid film clips
We stated in Chapter 1, that to a significant degree, our work continues and extends research con-

ducted within the GazeCom project. That is specifically the case of our eye movement prediction

research.

Attempting to create a simple saliency model, that makes as few a priori assumptions as possible,

Vig et al. have used the intrinsic dimension of the visual input to predict eye movements on movie

clips [128]. Their framework was based on the fact that a large number of video regions are uniform,

or vary in only one direction, and thus are highly redundant (see the theoretical overview in Chapter

3), while regions with local variations of the signal are informative, and attract eye movements.

They tested their framework on a large dataset of eye movements recorded on naturalistic movie

clips, and found that all three geometrical invariants of the structure tensor give good prediction

results. Invariant K, that segmented regions of the input signal where the intrinsic dimension was

maximal (i3D) was shown to result in significantly better prediction both when compared to the

other invariants, and when compared to state-of-the-art saliency models.

As we have mentioned in Section 3.4, the structure tensor can be extended to distinguish between

higher order signal variations caused by the overlays of transparent motions. In the experiment that

we will describe in the current chapter, we investigate how the transparent overlays influence eye

movements, and also whether the results obtained by Vig et al. [128] with the structure tensor can

be scaled on multiple motions with the help of the invariants of the generalized structure tensor.

5.2.1 Motivation

Although previously used in the lab as probing techniques for the mechanisms that handle motion

processing in the brain (see [129] for a comprehensive review), transparent overlays, occlusions, and

reflections are ubiquitous in nature. Leaves moving in the wind, layered clouds moving across the

sky, or reflections on a transparent window are simple and very common examples. Because of this,

eye movements on superimposed patterns constitute an interesting questions. In addition to increased

complexity, the semantic content of the scene formed by overlays is reduced compared to that of its

components. What we already know of the way multiple motions are perceived is that, as expected,

the observers’ performance in separating and recognizing overlaid patterns is lower than for single

motions. Mulligan [130, 131] reports that subjects are able to distinguish up to two superimposed
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moving patterns, while Andrews and Schluppeck show that with sufficiently large difference between

the movement directions, three superimposed patterns can be separated [132]. This is confirmed by

the results of Dorr et al. [133], who show that although difficult, it is still possible to distinguish

between 3 and 4 motions. Indeed, later studies show that the cost of perceiving multiple transparent

motions depends on the difference between the directions of the motion patterns [134].

5.2.2 Data recording

We recorded eye movements from subjects that viewed a set of superimposed video clips (see Figure

5.1 for an example). The 19 video clips were obtained by blendingmovie pairs randomly chosen from

a set of 14 high-resolution videos of outdoor scenes. The original clips are described in more detail

in Dorr et al. [135]. Each movie had a resolution of 1280 by 720 pixels, and a duration of 19 seconds.

They were recordings of natural dynamic scenes from various environments. Their content was fairly

diverse, and it ranged from scenes with large uniform spatial regions, combined with low temporal

variation, to scenes with high temporal and high spatial variation (such as pedestrians walking on a

busy street).

To compensate for the event in which two films with very different frequency content would

be paired, we equalized the contribution of each original clip to the final overlay, by performing

a separate weighted addition on each frequency band. A comparison of the superposition results

with, and without equalization is illustrated in Figure 5.2. Both component movies of a pair were

decomposed using a spatio-temporal anisotropic Laplacian pyramid with 5 temporal and 5 spatial

layers. The overlay was realized in two steps. First, the standard deviation for each frequency band

of each of the pairedmovies was computed. Then, the blending weights for each frequency bandwere

set separately, inversely proportional to the standard deviations computed in the first step. Only after

this, every layer of the two pyramids was added using the computed weights, and the final stimulus

movie was synthesised from the pyramid.

The duration of each of the final movies was 17 s, 2 seconds shorter than that of the originals

because of their creation on a spatio-temporal pyramid.

The videos were displayed on a 22” Iiyama Vison Master Pro 514 CRT display, with an actual

viewable diagonal of 20”. The subjects were seated 50 cm away from the display, and viewed the

stimuli under a 43 × 23 degrees angle. As the aspect ratio of the display did not match the one of

the videos, they were displayed in a “letterboxed” format, framed by black strips at the top and at the

bottom of the screen.

The 10 subjects that took part in the experiment were instructed to freely view the set of 19

movies. The observers were all volunteers, and had normal or corrected to normal vision. Their

eye movements were recorded using a SMI HiSpeed eye tracker running at a sampling frequency of

50



5.2. EYE MOVEMENTS ON OVERLAID FILM CLIPS

Figure 5.1: Still shot from one of the stimulus video clips. The stimuli were obtained by blending frame by
frame randomly selected pairs from a set of 14 high-resolution film clips of outdoor scenes.

(a) (b)

(c) (d)

Figure 5.2: Blending process: (a) and (b) show stills from the original component films. (c) illustrates the result
of a simple addition of the two component frames. The (b) clip visibly dominates the result of the addition. (d)
An anisotropic spatio-temporal Laplacian pyramid is used; each pyramid level is blended separately, and the
blending weights for each frequency band are inversely proportional to its standard deviation. The contribution
of the two clips in the superposition is now equal. The effect of the energy equalization is apparent when
observing the high-frequency foliage details corresponding to clip (b).
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Figure 5.3: The six geometric invariants of J2, computed for the still shown in Figure 5.1. From top left to
bottom right, their order isH2, S22, S23, S24, S25,K2. The first spatio-temporal level on the spatio-temporal
pyramid is shown. White areas denote regions where the value of the invariant is 0.

1250Hz. Before each trial, a full 9 point calibration of the eye tracker was performed. Also, after

each film clip a drift correction was run. After half the movies were displayed, the recording was

interrupted, and the subjects were allowed to take a break. Before resuming the experiment, a new

full calibration of the eye tracker was run. The movies were displayed for each subject in random

order.

From the recorded eye movement data, we extracted saccades using the two step velocity-based

algorithm described in Böhme et al. [136]. The resulting saccades were further filtered to eliminate

samples recorded during blinks. After the filtering, a dataset of over 10,000 remained. The extracted

saccade landing points were then used as test and training data in the prediction framework we will

describe in the following section.

5.2.3 Prediction framework

For the prediction, we used the methods developed by Vig et al. [88], in which we replaced the

invariants of the structure tensor (J1) with those of the generalized structure tensor (J2). Therefore,

with the exception of the steps required for computing the invariants, the algorithm and the parameters

we use are the same with those described in the previously mentioned paper.

Features

Invariants

To obtain representations on multiple spatio-temporal scales, we computed the invariants of J2
on each level of an anisotropic spatio-temporal Gaussian pyramidwith 5 spatial and 5 temporal levels.

The computation of J2 can be separated in three distinct stages.

• First, we created the second order derivatives. This was achieved iteratively: initially, we
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computed the first order derivatives by using one dimensional difference kernels of the type

[−1, 0, 1], on the input sequence that was previously smoothed with a 5-tap spatio-temporal

binomial kernel. Then, we repeated the procedure above on the formerly computed first deriva-

tive to obtain the second differentiation.

• Second, we computed the 21 partial derivative product terms that are used in Equation 3.4.8

to estimate J2.

• The last step was constituted by the convolution of the nonlinear product terms with a Gaussian

smoothing kernel ω.

From J2 it was then possible to obtain the invariants. We found during the implementation phase

that it was no longer computationally effective to compute the minors of the tensor. Instead, we used

a publicly available scientific library for C++ (gsl1) to perform the eigenvalue analysis on the tensor.

Afterwards, we computed the invariants of J2 as sums of products of eigenvalues, as described in

Section 3.4. It must be noted though, in order to equalize the differences between the six invariants,

instead of simply using products of eigenvalues, we used their geometric means. In Figure 5.3 we

illustrate the invariants of J2 for the same frame that is depicted in Figure 5.1.

In order to compare the prediction results obtained using the invariants of J2 with those obtained

using the invariants of J1, we computed also H1, S1, and K1 using the steps described in [88]. As

opposed to J2, in the case of J1 the eigenvalue analysis was not performed; instead, the invariants

were computed using the minors of the structure tensor.

Signal energy

From this stage, we could have fed directly the invariant data to the classification framework.

However, there are several reasons why it is more reasonable to use different features that, instead

of using raw pixel data, offer a measure of the selected window around a saccade landing points.

First, it is possible to have minor shifts in the eye movement data, caused both by eye tracker noise,

but also by the imprecision of saccade planning. Second, using all the pixels in a movie patch, in

addition to being computationally expensive, would lead to a huge increase of dimensionality of the

resulting feature space. For these reasons, instead of using raw pixel data, we computed the signal

energy in a spatio-temporal window around each saccade landing point (x, y):

es,t =

√√√√√ 1

w2
s

ws/2∑
i,j=−ws/2

I2s,t(xs − i, ys − j). (5.2.1)

In the previous equation, Is,t is the frame that corresponds to the spatial level s and the temporal

1http://www.gnu.org/software/gsl/
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level t of the pyramid decomposition of an invariant I . As with every spatial level of the pyramid,

the spatial resolution decreases by a factor of two, we have (xs, ys) = (x/2s, y/2s), and also

ws = w/2s. w0 was set to 64 pixels. Also, the time window was approximately one second.

Following the considerations described above, each feature vector corresponding to a saccade

landing point contained 25 components. Each of these components was the signal energy of the

chosen invariant at a particular spatio-temporal scale, in a window around the considered saccade

landing coordinate.

Data labelling and classification

From the computed feature data, we created a set of attended and a set of non-attended locations.

The set of attended movie patches was built around the landing points of saccades previously ex-

tracted, while for the set of non-attended patches we shuffled movies and scanpaths. In this manner,

the non-attended regions that corresponded to a movie were selected using attended locations that

corresponded to another. Although this method did not ensure that the two classes were 100% non-

overlapping, it guaranteed that the negative examples were also drawn from a distribution of specific

human scanpaths. In addition to this, it made sure that artefacts caused by the centre-fixation bias

([137]) were removed.

From the positive and negative datasets we separated a training and a test subset. The training

set contained data from two thirds of the ten subjects, recorded on all the movies, while the test set

contained the remaining third. We made sure that data from any subject is only found in one of the

two subsets. This way, in the test phase we could predict behaviour for “new” subjects.

For learning how to separate the attended and non-attended classes we used a soft-margin Support

Vector Machine, with a Gaussian kernel. We performed the above analyses on all invariants of J1
and J2, for 20 separate subdivisions of the data in test and training subsets (20 training and test

realizations).

5.2.4 Prediction results

In order to characterize the performance of our classifiers, we used the receiver operating character-

istic (ROC curve). The ROC curve is a statistic that estimates the range of ratios between the true

and false positive rates of a classifier. An ROC score of 0.5 means that the used classifier resembles

a random classifier, while perfect discrimination is equivalent to an ROC score of 1.

Figure 5.4 illustrates the box plots of the ROC scores for the invariants of J1 and of J2. We used

Wilcoxon’s signed rank test to verify the significance of the differences between the ROC scores of

various invariants. It can be noticed that K1 has a higher ROC score than both H1 and S1. These

differences are highly significant (p(H1, S1) = 0.0019, and p(S1,K1) = 0.0089). At the same
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time, the prediction rates are further improved in the case of the invariants of J2. These improvements

are highly significant starting from S24 (p(K1, S24) = 0.0014). All the invariants give very good

prediction rates (over 72%), and also, all the higher order invariants, including also K1 give median

prediction rates over 78%.
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Figure 5.4: Box plot that compares the ROC scores of the eye movement prediction obtained using the in-
variants of J1 and J2 on overlaid movies over 20 training/test set realizations. The median, the lower and
upper quartiles, as well as the minimum and the maximum value for a result set are shown in the plot. Outliers
are represented by filled circles. Note a general tendency for improvement of the ROC score when moving
towards the right on the horizontal scale, which also corresponds to an increase of the invariant order.

5.2.5 Discussion

Overall, the results confirm that the predictability of eye movements increases when features with a

higher intrinsic dimension are used. This is apparent when observing the prediction rates obtained

with the invariants of J1, but the same effect is visible for the invariants of J2. Moreover, the pre-

dictions based on the invariants of J2, are significantly better than those based on J1, confirming the

hypothesis that redundancies are suppressed even in the complex case of overlaid motions. Further

55



CHAPTER 5. PREDICTION OF EYE MOVEMENTS

details on this can be found in [2].

5.3 Chapter conclusions
In the current chapter we have shown that eye movements on natural overlaid stimuli can be accu-

rately predicted using the invariants of the generalized structure tensors and that higher order invari-

ants are significantly more predictive.
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6
Gaze Guidance in Driving

This chapter summarizes the main results of the current dissertation.

As discussed in detail in Chapter 4, there is a strong connection between the task performed at

a certain moment by an observer, and their eye movements. As a short summary: activities with a

strong visual component can very often be associated with very specific eye movement patterns that

are consistent for different observers, and that evolve towards an optimal pattern during the process

of learning that activity.

One of the best examples of a highly complex visually guided activity is driving. Every moment,

the driver must have an overview of the often busy and highly dynamic visual scene around the car.

From this, he must recognize and interpret the actions of other traffic participants, while at the same

time keeping track of traffic signs and road characteristics. Often, in addition to the driving itself,

the motorist is confronted to external distractions, such as conversations with a passenger in the car,

or the operation of various electronic devices.

With all this in mind, it is clear that the limited attentional resources of the driver have to be

optimally allocated. Even in “normal” driving conditions, decisions regarding various manoeuvres

have to be taken at a rapid rate, and in a constant manner. At the same time, the driver must be able to

immediately disrupt their normal course of driving, and to react in an adequate manner in the case of

any unexpected event. Such critical events are unfortunately not uncommon; a pedestrian suddenly

running in front of the vehicle, another car suddenly braking or changing direction are just a few

examples.

Here, we show that gaze guidance can be highly effective in helping drivers prevent accidents in

such critical conditions. The results, highlighted in Figure 6.5 are the first to show a clear beneficial

effect of a gaze-guiding system.
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6.1 Introduction

Over the last century, driving has become the main transportation modality in many countries, with

the number ofmotor vehicles per capita still increasing. However, through extensive safetymeasures,

it has been possible to achieve a significant reduction in traffic fatalities. A NHTSA research note

reports the year 2010 as having the lowest number of deaths resulting from vehicle crashes in the US

since 1949, a 2.9% decrease since the previous year. Nevertheless, this is the equivalent of 30,246

fatalities in the US only [138]. Also, according to the same note, more than 2,2 million have been

injured in traffic crashes over the year 2010; of these, approximately 130,000 were not occupants of

a motor vehicle.

Of the 33,883 fatalities registered in motor vehicle crashes in 2009, 16% occurred in accidents

for which driver distraction was cited as the main cause [139].

Among the distractions most often reported are the use of mobile phones, or that of in-car tech-

nology. According to Klauer et al. [140], it is enough for the driver not to look at the road for a

little over 2 seconds to significantly increase the risk of a collision. This verifies the fact that in-car

electronic devices that interfere, even briefly, with the driver visually monitoring the environment

have a strong impairing effect.

However, as Harbluk et al. [141] conclude following an on-road study, even when devices that

do not interfere with the visual behaviour of the driver (such as hands-free mobile phones) are used,

significant changes could be observed both in the visual scanning behaviour and in the driving be-

haviour of the drivers. This confirms that the additional cognitive load created by the use of in-car

electronic devices is in itself sufficient to affect driving safety. Substantial research exists on in-

creased cognitive load in driving. Some studies focus on investigating its effects on driving safety,

while others search for novel methods to assess the amount of cognitive load a driver is subjected to.

In the following, we will enumerate just a few examples. Recarte and Nunes [142] observed the in-

fluence of an increased cognitive load created by having subjects perform several mental tasks while

driving in naturalistic conditions. Following a study that combined instrumented vehicle recordings

with driving simulator experiments, Engström et al. [143] showed that increasing the cognitive load

led to less visual scanning, more precisely to the concentration of the subjects’ gaze towards the

centre of the road. In a more recent experiment, Brookhuis and de Waard [144] used physiological

measures such as heart rate and EEG data to estimate the drivers’ mental workload.

Driving errors can sometimes be caused by visual perception failures. Often after an accident,

phrases as “failed to look” and “looked but failed to see” are mentioned [145, 146]. It is common for

such accidents to occur at intersections. “Looked but failed to see” (LBFTS) errors, where the driver

fails to detect another traffic participant despite having scanned the area where that participant was,

have generated a vast amount of research over the last 30 years [147, 148]. One explanation for such
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perception errors can be found in the phenomenon of change blindness, phenomenon that consists in a

failure to recognize changes that occurred in a scene if they were accompanied by visual disruptions,

such as blinking, saccades, or short interruptions in the scene [149, 150]. McCarley et al. [151] and

Galpin et al. [152] investigate LBFTS driver errors from the perspective of the change blindness

paradigm. In a similar experiment in a driving simulator, Zheng and McConkie [153] showed that

local changes of the scene are frequently not noticed when accompanied by brief blankings (brief

intervals in which a grey frame is shown).

Another direction of research on safer driving deals with modalities to redirect a distracted

driver’s attention to the road. Ho and Spence [154], for example, have concluded that spatially

predictive auditory cues could be effective in capturing attention and signaling the fast approach of

another car. In a similar manner, Wang et al. [155] conducted a driving simulator study of the effects

and the interaction between a visual side collision-avoidance signal and an auditory cue. The visual

cue consisted of an arrow pointing either to the left or the right of the display, and coincided either

to the direction of the threat or with the direction of escape, while the auditory signal was triggered

before the appearance of a threatening vehicle. They showed that subjects’ responses to a visual

signal consistent with the direction of the threat were significantly quicker than for trials where the

location of the warning signal was incompatible with that of the threat. They also suggested that the

cueing signal may in fact only direct the attention of the drivers towards the location of the threat,

instead of triggering an immediate steering reaction.

With the latest advances in technology, higher-fidelity driving simulators started to become

widely available. The number of driving studies performed in a simulator has increased significantly

over the past decade [156]. Although driving simulators do have important disadvantages compared

to naturalistic studies [157], the advantages of a simulator experiment are undeniable. Studies on

distraction during driving can sometimes be problematic to perform. A study in naturalistic settings

might be impractical for collecting sufficient data in a reasonable amount of time, and also cannot

offer the same level of control on experimental parameters as an investigation performed in a labo-

ratory. Also, ethics and safety aspects cannot be overlooked. Experiments involving subjects with

visual impairments, such as the one performed by Bowers et al. [158] to determine how hemianopia

affects the detection of pedestrians in hazardous driving conditions, but also benign driving under in-

creased cognitive load experiments can potentially place both the subject and other traffic participants

at serious risk when performed in real traffic conditions.

Nevertheless, the research on safer driving has not remained only on a theoretical level. Over

recent years, more and more Advanced Driver Assistance Systems (ADAS) have been developed,

and have been included as features in real vehicles.

SomeADAS focus onmonitoring the driver and they issue warnings when he or she appears to be
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distracted or drowsy. Some systems use driving parameters (for example the steering behaviour) to

monitor whether the driver’s reactions are inconsistent with a safe driving pattern. Implementations

of such driver assistance systems are already commercially available1,2. Others can detect directly

when the driver’s head has been turned away from the driving direction for a certain period of time,

or when physiological measures, such as eyelid opening or blinking rate suggest that he or she is

sleepy. For example, a system developed by SAAB detects the driver’s eye and head direction, their

blinking rate, and their eyelid closure, and issues an audible warning when the driver appears tired

or distracted3. The Lexus driving monitoring system functions in a similar manner, and often comes

integrated with a pre-crash application, which can detect if there is an obstacle approaching the car.

If at the same time with the presence of an obstacle, the monitoring system concludes that the driver’s

head has been turned away for too long, warnings are triggered4.

Other driver assistance applications focus solely on monitoring the street, and warn the driver

when an immediate danger has been detected. AnADAS released by Volvo detects pedestrians ahead

of the vehicle and issues acoustic and visual warnings if pedestrians are about to walk in front of the

car; if no action is taken by the driver, the brakes are automatically applied5. The Subaru “EyeSight”

system operates similarly6.

Another direction in ADAS development focuses on creating enhanced-vision systems. Night

view systems constitute a good example of this category; they render, either on a display on the dash-

board, or directly on a portion of the windshield as a head-up display, an infrared view of the street

ahead, sometimes enhanced with pedestrian detection. Night view systems have already been im-

plemented using different technologies by car manufacturers such as Toyota, Mercedes or BMW7,8.

Finally, head-up displays (HUD) are becoming a common feature offered by the automotive indus-

try. Typically, they are used to display vehicle information such as speed or driving directions in

a small portion of the windshield9,10, but there are also attempts to extend HUDs to the use of the

entire windshield. In 2010, General Motors disclosed that research is currently conducted on such a

system; as envisioned use, they mention highlighting important aspects of the scene ahead of the car,

1http://www.daimler.com/technology-and-innovation/safety-technologies/driver
2http://corporate.ford.com/innovation/innovation-features/innovation-detail/

ford-new-lane-technology
3http://www.saabnet.com/tsn/press/071102.html
4http://www.lexus.eu/range/ls/key-features/safety/safety-driver-monitoring-system.aspx
5http://www.volvocars.com/en-ca/top/about/news-events/pages/default.aspx?itemid=17
6http://subaru.com.au/about/eyesight
7http://www.wired.com/science/discoveries/news/2006/02/70182?currentPage=1
8http://www.toyota-global.com/innovation/safety_technology_quality/safety_technology/

technology_file/active/night_view.html
9http://www.lexus.eu/range/rx/key-features/interior/interior-head-up-display.aspx

10http://www.bmw.com/com/en/insights/technology/connecteddrive/2010/safety/vision_assistance/
head_up_display_information.html#more
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such as the edges of the road, or traffic signs 11.

Nevertheless, there are downsides to the existing advanced driver assistance systems. Audible

warnings are often triggered without taking into consideration the driver’s intentions or the current

traffic context, and because of that they are perceived as annoying and are turned off. Visual warnings

add to an already significant existing visual demand, and even when they do not require the driver

to take their eyes off the road, by increasing the cognitive load the driver is subjected to, they risk

becoming a source of distraction themselves.

What we propose is to build enhanced-vision systems that can unobtrusively direct the drivers’

eyemovements towards critical events. Previouswork has already shown that by using gaze-contingent

interactive displays to render visual information with increased salience in selected regions, a gaze

guidance effect can be obtained [159, 160].

An early proposal to use unobtrusive gaze guidance for better driving was made in [161]. Mean-

while, a simple unobtrusive gaze guidance system has been demonstrated and implemented in a

prototype car 12 at the Volkswagen AG [162].

In the following sections, wewill describe experiments that took place in special, gaze-contingent

driving simulators, with the purpose to investigate how gaze guidance can be used to help drivers to

more efficiently distribute their attentional resources and drive more safely.

6.2 Gaze guidance in a desktop driving simulator

In order to investigate whether it is possible to guide gaze during a driving task, andmore importantly,

whether beneficial effects could be therewith obtained, we conducted a series of experiments in a PC-

based driving simulator. For more details, we refer the reader to [1, 3, 6, 7, 163].

In each of these experiments we used scenarios of normal driving in urban environments, in which

we introduced potentially critical events, namely pedestrians unexpectedly crossing the street. The

first study introduced drivers to gaze-contingent cues that highlighted directly the high-risk pedestri-

ans, while the following two attempted to extend the results to more general cue types.

6.2.1 Experimental setup

The desktop driving simulator in which the experiments took place was integrated with a high speed

remote eye tracker and allowed the gaze-contingent placing of gaze-capturing events (Figure 6.2).

11http://media.gm.com/content/media/us/en/news/news_detail.brand_gm.html/content/Pages/news/us/
en/2010/Mar/0317_hud

12http://www.spiegel.de/auto/aktuell/neue-warnsysteme-lichtorgel-statt-piepshow-a-562943.html
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Figure 6.1: The map of the virtual city. One of the courses used in the first experiment is traced in yellow.
The map was used when creating traffic scenarios to read the coordinates that defined all trajectories and event
triggering points.

Virtual environment

The simulated environment modelled an existing urban area (the city of Osnabrück) with its roads

and buildings. The virtual world was rendered under an angle of 73 degrees. The subjects viewed

the virtual city from a car driver’s perspective, and they controlled the car (the egocar) using a ped-

al/steering wheel system.

The graphical simulation provided a basic static content layer that consisted of streets, buildings,

and green areas. To the static layer it was possible to add dynamic content, that comprised pedestrians

and cars, road signs, and traffic lights. In addition to the traffic participants and the traffic regulation

items, it was also possible to add external overlays to the simulation. These overlays could be added to

the virtual environment, either relative to the simulator display, or “attached” to a traffic participant.

Such overlays were used during trials both as gaze-contingent cues, and to guide the drivers along

desired routes through the simulated city.

Pedestrians could be chosen from a set of eight distinct characters. The vehicle set comprised

ten items, but since both variations in type and colour were possible, a large available set could be

generated.

The traffic was guided and regulated with the help of a coherent traffic sign network. The avail-

able traffic sign set contained fifteen regulatory signs that controlled the right of way and the allowed

traffic direction. Although it was also possible to create a traffic light network, because of limitations

of the simulator engine, scenarios in which the subject was forced to stop at a red light could not be

created. Therefore, only a very limited number of light signals were added, and they were always

designed to turn green as soon as the subject approached.
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Both for pedestrians and for cars, their attributes as well as the trajectory they followed had to

be preprogrammed. Only the moment where a traffic participant would begin to move could be

controlled, as an event triggered either by a certain position of the egocar in the virtual world, or

by a certain position of the driver’s gaze. For that reason, it was not possible to alter the behaviour

of other traffic participants in response to specific actions of the egocar. Therefore their actions

were triggered as events, in response to the 2D position of the egocar on the map of the virtual city.

Because of this, all events were triggered in a similar fashion for all subjects, making the trials fully

comparable.

The trajectories for each traffic participant were specified in terms of start and end coordinates.

The coordinates were manually read from the 2Dmap of the virtual city (see Figure 6.1). The number

of traffic participants was not explicitly limited, but several factors played a role in restricting the

complexity of the planned scenarios. Tomention just a few such limitations: the process of specifying

the trajectories and event triggering points was in itself laborious and time consuming, and also, with

a large quantity of dynamic content delays appeared in the triggering of the events.

Another characteristic of the driving simulator that needs to be mentioned is that both the accel-

eration and the brake pedal were very sensitive, so it was extremely difficult to adjust the speed of

the egocar to an intermediate value. Although sometimes problematic for the drivers, due to this fact,

the speed of the egocar was relatively uniform between subjects, making it possible to synchronize

the event triggering from one driver to another. Otherwise, although all events were triggered at the

same distance from a fixed location, because of speed variations, they would not have encountered

the event-triggered pedestrian in the same position.

There were eight available speed levels, between which the subject or the experimenter could

switch manually, by pressing a key on the keyboard. Since it proved quite difficult for subjects

unacquainted to the driving simulator to control the egocar at higher speeds, the first experiment was

run entirely in the first “gear”, at a maximum speed of under 30 km/h. For subsequent experiments,

in which higher speed levels were used, an extensive training stage preceded the actual trials.

Physical setup

The setup consisted of two computer workstations: one ran and displayed the simulation, while the

other acted as a server controlling the events and the eye tracking device, a SensoMotoric Instruments

RED250 remote eye tracker (Figure 6.2). The server and the simulator communicated through a direct

ethernet interface, and the eye tracker was connected to the server via USB.

The participants were seated 70 cm away from the 22” display. The display had a spatial resolu-

tion of 1680x1050 pixels, and the viewing angle was approximately 38x24 degrees. The eye tracking

was running at a sampling frequency of 250Hz, and it was calibrated before each trial, using a 9 point
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Figure 6.2: Still shot from a simulator recording. The remote eye tracker that was integrated to the driving
simulator is visible below the screen. The subjects controlled the simulation using a pedal/steering wheel
system. The DS server, displaying the map of the simulated environment, is visible to the right of the image.

calibration.

6.2.2 First experiment: pedestrian-centred cues.

In the experiment that we will describe below, the first of a series of two, we investigated whether

distracted drivers are aided by gaze-contingent cues (GCCs) overlaid on high-risk pedestrians.

Methods

Subjects drove along pre-established courses inside the simulated city while performing additional

cognitive tasks. Three distinct routes were selected, each of them stretching on average over a dis-

tance of 900m. The drivers were guided along these routes by transparent directional arrows overlaid

on the road at intersections.

Amidst benign traffic scenarios, each route had four or five potentially critical sections consisting

of pedestrians unexpectedly crossing or coming close to the street. In total for the three routes,

seven of the fourteen potentially critical sections would result in a collision between the egocar and

a pedestrian in the absence of a prompt reaction from the driver.

The additional cognitive tasks were designed to act as a distractor, thus contributing to a more

realistic driving experience. In the first task, the subjects were instructed to count the floors on

all buildings along the route, and to remember the approximate location of the tallest one. In the

second task, they had to search for an item (e.g. a copy shop) on the route, and to report how many

occurrences of it they observed, and where they were located. In the last trials they were told to drive

freely, but they were verbally distracted.

An experiment consisted of nine trials resulting from the combination of each route with each
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Figure 6.3: Simulator scene. Because the driver is looking away (red 3D marker), the pedestrian beginning
to cross the street is highlighted with a gaze-contingent cue. Bottom right: gaze-contingent cue enlarged for
better visibility (not shown during the experiment.)

task. In other words, each subject drove each route three times, every time with a different cognitive

load. As the events on each course would repeat themselves in a very similar fashion, we tried

to minimize the habituation effect for each subject by maximizing the time interval between two

repetitions of the same route. Also, we made sure that the maximum level of distraction would be

attained during the first repetitions. To that end, the tasks were repeated in decreasing order of their

difficulty. In the first stage, all three routes were repeated with the counting task, in the second

stage the subjects drove again all three routes, this time performing the visual search task, while in

the last stage, they were allowed to drive freely, only with conversation acting as a distractor. The

task difficulty was assessed empirically during preliminary trials. The route sequence was always

presented in the same order.

Before the experiment, subjects were instructed to drive through the city following the directional

arrows, while acting as if they were driving a real car through an inhabited city. They were told that it

was of utmost importance to follow traffic regulations and to drive as safely as possible. Nonetheless,

they were not explicitly warned about the possibility of pedestrians attempting to unexpectedly cross

the street. All the experiments began with a short training route, in which the drivers were allowed

to drive freely in a remote part of the city. Only when the subject was able to drive safely on the

simulation road, the actual trials would begin. Including instructions and training, an experiment

lasted on average thirty minutes.

For one subject group, the potentially critical events were highlighted with gaze-contingent cues

(GCC) attached to the risk pedestrian and overlaid on the simulator scene. Several cue shapes, colours

and transparencies were tested in pilot experiments in order to select a cue as unobtrusive as possible

that would still be salient enough to capture the subjects’ gaze. The chosen cue material was a simple
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Figure 6.4: Empirical cumulative distribution function (ECDF) of the time needed by the subjects to first
fixate a critical scenario pedestrian. Gaze guidance subjects show decreased reaction times, meaning that they
fixate on the pedestrian sooner (mean/s.d. 0.375/0.37 s for GCC subjects, 0.487/0.72 s controls). The results
are significant (p = 0.011, Kolmogorov-Smirnov test).

red overlay shaped like four rays converging on the pedestrian (see Figure 6.3). The cue would be

triggered only when the subject was looking away from the danger element, and would be triggered

off as an immediate result of the subject looking at it. The control group was not exposed to any

GCCs.

We recorded data from thirty volunteering subjects with normal or corrected to normal vision

(ten female and twenty male, with ages between 20 - 55 years). All had a driving licence with at least

one year driving experience and variable computer gaming experience. Fifteen subjects were part of

the gaze guidance aided group, while the remaining fifteen were controls.

From the over 400 minutes of gaze data, more than 75,000 saccades were extracted using the

velocity-based algorithm described in [136]. The simulator also recorded driving parameters such as

speed, pedal position and steering wheel inclination at a frequency of 60 Hz.

Results

In the analysis of the influence of GCCs on the driving performance of the subjects, no distinction

was made between the different cognitive tasks. The data were pooled for each subject group over

all three conditions.

Reaction times
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Figure 6.5: Collision rate as a function of distance threshold. The collision rate was computed as the fraction
of critical event sequences where the minimum distance between the centre of the egocar and the critical
pedestrian was smaller than the collision threshold. These data show that the collision rate does not critically
depend on the distance threshold; for further analyses it was set to 1m.

We examined the reaction time measured between the triggering of a critical event (a pedestrian

crossing) and the first gaze hit on the pedestrian of interest, comparing the GCC and the control

group.

A tendency for shorter reaction times can be recognized for subjects aided by gaze guidance.

When examining the ECDF curves of the reaction times for the two subject groups, presented in

Figure 6.4, 80% (0.8 on the y-axis) of the control subjects (blue dashed curve) had a reaction time

of 650ms or less. For the gaze-guidance group (red solid curve), the 80% mark was reached earlier,

already at 500ms, i.e. gaze-guided subjects reacted faster. According to the Kolmogorov-Smirnov

test, the distance between the two curves is statistically significant, at D = 0.1291, p = 0.011.

Provoked accidents

As mentioned earlier, of the total number of events for which a GCC would be triggered if the

driver looked away, seven had the potential to lead to a collision of the subject-driven car with the

critical event pedestrian. To evaluate the subjects’ driving performance, we looked at the number of

accidents caused in the experiment.

Since the simulator did not provide any collision feedback, we used a distance-based algorithm

to detect pedestrian-egocar collisions. We computed the distances between the centre of the egocar

and the critical scenario pedestrian. Based on the dimensions of an average city car, we set the

distance threshold for a collision to 1m from the car centre. Nevertheless, the following result holds
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Figure 6.6: Maximum vertical distance between the ECDF curves of the egocar-pedestrian distance distribu-
tion (D statistic). The distance distribution in each time window contains data pooled from all seven potentially
critical events.

qualitatively also for other distance thresholds (Figure 6.5).

We computed the accident rate as the total number of accidents for the group, divided by the total

number of events which could have led to an accident for that group. We found that the accident rate

is strongly reduced for the gaze guidance subjects (0.026), being less than half of that of the controls

(0.068). This reduction is highly significant (99.8% confidence interval). In order to check whether

the significance of the accident rate reduction holds also for thresholds other than that of 1m, we

computed the 95% confidence intervals for all distances larger than 0.5m, up to 2m, in increments

of 10 cm. The results confirmed that for any of these thresholds, the collision rates for the two subject

groups were significantly different.

Because of the reduced sample size, the differences between accident rates for each task did not

reach statistical significance. However, it is interesting to note that for the control group, the largest

collision rate was registered during the counting task (0.10), followed by the free driving task (0.06).

The smallest collision rate was recorded for the search task (0.04). For the gaze guidance group, the

order of the accident rates over tasks was the same (counting task, 0.05; free driving, 0.02; search

0.01).

In the following, we attempted to establish whether the differences suggested by the collision

rates were consistent for the entire subject group, or whether they only apply for isolated cases which

came near the critical accident distance. We also sought for evidence of the effect of gaze guidance

in differences between the eye movement distributions of the two groups. To this end, we analysed

the data recorded during a four second interval from the triggering of the critical event, i.e. the
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Figure 6.7: Example of car-pedestrian distance and horizontal gaze position during a high-risk event (see text
for more details).
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interval corresponding to the entire duration of the event (after which the pedestrian had crossed the

street). We divided this interval into 200ms time windows, and for each event, we plotted all egocar-

pedestrian distances in the corresponding time window. To evaluate the eye movements performed

by the subjects during critical events, we also analysed the horizontal gaze component for the same

time intervals. A plot for a single event is shown in Figure 6.7. For better visualization, outliers have

not been plotted.

In order to check whether the differences between the distance distributions for control and for

gaze guidance subjects were significant, we pooled in each time window the data from all seven

potentially critical events and then for each time window we computed and plotted the D statistic

(Figure 6.6). The variation of the maximum distance between the two distributions confirms the

tendencies illustrated in Figure 6.8.

Because of the relatively short duration of a critical event (a maximum of 4 seconds), not enough

saccade samples were available to establish the statistical significance of the differences between the

eye movement distribution for each time window. That is why, concerning gaze distributions, we

will only describe tendencies.

There are slight variations from event to event, depending on various factors such as the direction

and the distance from which the pedestrian appears, or the characteristics of the scene at event onset.

Nevertheless, some observations remain valid for all events. For the first part of the event, the egocar-

pedestrian distance decreases in an approximately linear fashion for all subjects, and the variance

of the distance distributions is small. After approximately 1 s, typical reaction time, the egocar-

pedestrian distance stabilizes near a constant value which, depending on the nature of the event can

be close to the collision threshold. In this latter section, the distance tends to be larger for gaze

guidance subjects.

Certain tendencies can also be distinguished in the horizontal gaze distribution. The variability

of the gaze distributions for the first part of the event tends to be smaller for GG subjects. Also a

shift in gaze position between the two subject groups can be noticed for that interval.

Next, we analysed the cumulated data over all events. For each time window of each event,

we computed the difference between the medians of the distances, and also between the statistical

dispersion (see below) of the gaze positions (Figure 6.8).

We chose the median as a measure of the central tendency of the distance distributions because

of its resilience to outliers. The trend of the curve remains the same when using the mean instead of

the median. GG subjects maintain larger distances to the pedestrian; the effect is particularly strong

in time windows where accidents occur.

To quantify the statistical dispersion of the eye movement coordinates we also used a robust

measure with regard to outliers, specifically the median absolute deviation (MAD). The MAD is

computed as the median of all the absolute deviations from the sample’s median. In the time windows
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Figure 6.8: Analysis as in Figure 6.7 for aggregated data on all events. The top plot shows the difference
between the medians of the distance samples for each time window during a critical event. Crosses indicate
time windows where accidents took place. Note that cross size is proportional to the number of accidents in
the corresponding time window. The bottom plot illustrates the differences between the variabilities (median
absolute deviations - MAD) of the eye movement horizontal positions for the corresponding time windows.
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between 600ms and 12000ms, the variability of the gaze positions of the GG subjects is smaller than

that of controls. This time interval also corresponds to a local maximum in the distances between the

medians of the horizontal eye movement distributions of the two groups (plot not shown here).

Discussion

Subjects in the gaze guidance group showed shorter reaction times and looked at the critical events

sooner than control subjects. Still, as shown in Figure 6.4, approximately 60% of all subjects im-

mediately fixate the pedestrian. However, the gaze guidance did help reduce the upper bound of the

reaction time distribution, suggesting that for the 40% inattentive drivers, gaze guidance would have

made a significant difference in a real scenario. We would argue that compared to a real traffic scene,

the graphical environment of the simulation offers a relatively low number of cars and pedestrians,

no real street life, etc. and therefore, the subjects were more likely to look at the pedestrians anyway.

Also, the high frequency of “accident-generating scenarios” occurring during the trials increased sig-

nificantly the gaze-capturing potential of the pedestrians that walked into the street. In real driving

scenarios it is not likely that seven critical situations with pedestrians occur in less than 30 minutes

of driving. Should that nevertheless happen, the driver would allocate significantly more cognitive

resources to anticipating similar events. Therefore, we could expect an even stronger effect of the

gaze-capturing cues in real life situations.

A further gaze guidance effect that we found was that before a potential accident eye movements

were less variable in case of the GG group compared to the controls. Since the GG and the control

conditions differ only in the presence of the GCC, the reduced variability of the gaze positions must

be attributed to the GCC. We could further assume that the GG subjects were better focusing on the

pedestrians, but we cannot verify this assumption because the position of the pedestrian on the screen

is not precisely known.

The major finding, however, is that gaze guidance led to safer driving as GG subjects braked

earlier and thus maintained a larger distance to the pedestrian. It must be noted that this increased

safety zone cannot be observed during normal driving but just before the potential collisions. Overall

this change in driving behaviour due to gaze guidance led to a major reduction in the number of

accidents.

To conclude, we found that when safety-critical events were highlighted with briefly flashed,

gaze-contingent cues, drivers attended to these events more quickly. More importantly, such gaze

guidance led to a safer driving behaviour and a significantly reduced number of accidents, although

subjects reported that they were not distracted by the cues, part of which went unnoticed.
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Figure 6.9: Stillshot from the second experiment. The GCC highlights the direction from which the high-risk
pedestrian is walking. As before, the cues are only activated if the driver is not looking in the direction of the
critical event, and they disappear when the driver fixates the pedestrian in question.

6.2.3 Second experiment: directional cues

The results of the previously presented experiment (Section 6.2.2) showed a significant reduction

in the number of accidents for drivers aided by pedestrian-centred gaze-contingent cues. However,

following that study, a series of questions needed to be addressed.

First, it had been argued that the possibility to implement gaze-guiding cues in an actual car is cur-

rently limited; both sufficiently accurate pedestrian detection, as well as head-up displays advanced

enough for precise highlighting of traffic participants are not yet widely available.

Second, several issues regarding the methodology of the experiment, such as the division into

distinct control and gaze guidance subject groups, and the degree towhich the tasks influenced subject

driving behaviour, needed to be investigated.

In order to address these points, we devised a second study that focused on evaluating the impact

of simpler cues, that only indicated the horizontal direction of the critical event. Also, the cognitive

tasks were eliminated. Without additional cognitive load though, the driving scenarios combined

with the simulator driving conditions were not demanding enough for the subjects to justify the need

for any driving aid. The only available method to increase the complexity of the driving task was to

allow higher speeds of the egocar – as previously mentioned, in the first experiment, the maximum

speed of the egocar did not exceed 30 km/h. However, it was not clear whether, in combination with

the geometry of the simulated environment, controlling the car at higher speeds would not prove to

be too challenging for subjects.

Therefore, before the actual experiment, we conducted a pilot study to ensure that changing the

speed level would not substantially alter the driving behaviour of the subjects. The preliminary study

also tested what was the maximum speed for which the gaze-contingent cues were still effective, and
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explored issues that would arise in timing the triggering of the events with more speed variation

allowed.

In the following sections, we will describe this study, as well as the actual experiment, that was

planned and conducted using the results of the preliminary investigation.

Preliminary stage: driving with varying speed levels

The pilot experiment largely followed the structure of the main study. We selected two courses

through the simulated city. To give a realistic feel to the simulation, these courses were populated

with cars and pedestrians involved in everyday-like traffic scenarios. In total for the two routes, 21

of all the traffic scenarios were safety-critical, and, as before, consisted of pedestrians unexpectedly

crossing the street.

Each route was divided in three sections, each corresponding to a different driving gear. The

maximal egocar velocities for each gear were approximately 25 km/h, 38 km/h, and 50 km/h. The

gear was changed manually by the person conducting the experiment; the gear change points were

pre-established, and they coincided for all subjects. The routes measured on average 1.3 km, and the

subjects needed in total approximately 3.3 minutes to travel them. This trial duration included also

the stops that needed to be made along the course.

In addition to the two test routes, each recording began with a training session to help subjects

understand the mechanics of the simulator. The training route was much longer than the test routes,

and it did not contain any other traffic participants. In order to get accustomed with controlling the

car at higher speeds, the subjects drove sections of the training route in each of the three gears, and

also practised full-braking.

Again, a control and a gaze-guidance data set were recorded. The same ray-shaped markers as

before were used as gaze-contingent cues. However, in contrast to the first experiment, each of the 32

subjects contributed both to the control, and to the gaze guidance data set. More details on this aspect

will be given in the following section. At the end of the trial, each subject filled out a questionnaire

that, among other queries, asked for an evaluation of the perceived realism of the simulator, as well

as of the difficulties encountered in controlling the car.

Results of the pilot study

As expected, higher speeds significantly increased the difficulty of the driving task. The majority

of the subjects found controlling the car in the third gear to be considerably challenging. Although a

50 km/h speed would not pose any problems in controlling a real vehicle, the narrowness of the inter-

nal simulation field-of-view could explain why the speed was felt to be much higher than in reality.

The subjects performed well when driving in the first two gears. Also, a precise synchronization for

events met while driving in the third gear was extremely laborious.
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Concerning the effects of the GCCs, fewer accidents were caused with pedestrians that were

highlighted. This tendency was visible for each of the three gears. Surprisingly, more accidents

happened while the subjects were driving in the second gear (12, compared to 3 in the first gear, and

4 in the third).

Methods

The main idea of the second experiment was similar to that of studies ran before: subjects were

instructed to drive normally along predetermined routes inside the simulated environment, while

taking care to respect traffic regulations and to avoid causing any accident. As before, along the

routes, among normal traffic scenarios, potentially critical situations consisting in pedestrians coming

close to, or crossing the street, were created.

Minor differences existed in the planning of the routes and of the traffic scenarios. In order to

eliminate any bias that may be caused by cognitive tasks, or by learning effects due to the repetition

of the routes, each subject drove along the three courses only once, and without any additional tasks.

The courses were significantly longer (the average route length was 2850m, more than three times

the average length of the courses in the first experiment), and driving each route took on average 3.6

minutes. Also, to compensate for the absence of the additional tasks, all the courses were driven in

the second gear, creating a more realistic, and a more demanding driving experience. To minimize

any learning bias, the order in which the subjects drove the routes was randomly chosen.

We collected eye movements and driving data from 18 volunteering subjects. One trial consisted

of driving along all three distinct routes, each of them containing 16 critical scenarios. Another

difference to the first experiment was constituted by the way the control and the gaze guidance data

sets were created. For each route, a number of 8 randomly picked critical events were highlighted

using a gaze-contingent marker, while the remaining 8 were not cued, and served as control scenarios.

The subjects were paired, so that every second drove a route version where the cueing of the events

was mirrored with respect to the subject before. For example, if for the first driver, the first and

the fourth events were cued, then for the second driver, they were control events. This strategy was

used to eliminate potential differences in driving behaviour between subjects. The marker was a

temporally transient red horizontal line overlaid at the bottom of the screen, in the half of the display

corresponding to the direction from which the pedestrian was approaching (Figure 6.9).

After completing the experiment, each subject filled out a questionnaire, designed to explore

whether themarkers were immediately identified with the critical events andwhether theywere found

to be distracting, as well as how realistic the simulation and the driving scenarios were perceived.

The results of this were for the most part not relevant. However, they do hint to the fact that the

subjects were not disturbed by the markers, but also to the fact that there is a lack of realism in the
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Figure 6.10: The analysis of the time needed by each driver to fixate the ”risk” pedestrian shows a tendency
for shorter reaction times in the case of cued events (mean reaction time 0.583s for control, and 0.445 for GG
events).

simulator.

Results

In total, more than three hours of driving data were recorded. Of this, a data set containing 408 gaze

guidance, and 408 control events was built, and subjected to the same analyses as in the case of the

first experiment (Section 6.2.2).

Reaction times

The ECDFs of the distributions of the time needed by the subjects to fixate the high-risk pedes-

trian are shown in Figure 6.10. Again, when analysing the reaction times, a tendency for shorter

latencies can be observed in the case of GG events (mean/standard deviation: 0.583 s/1.21 s for con-

trol events, and 0.445 s/0.69 s). However, this time the significance threshold is not reached (p = 0.5,

Kolmogorov-Smirnov test).

Provoked accidents

The collisions of the egocarwith the high-risk pedestrianswere computed using the same distance-

based algorithm as before. The accident rates, expressed as the number of collisions in an event set,

over the total number of events in that set, are illustrated in Figure 6.11. A significant drop in the ac-

cident rate for gaze-guidance events can be noticed: 0.0522 in the case of control events, vs. 0.0287
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Figure 6.11: Collision rate as a function of the distance between the car and the pedestrian. With gaze guidance,
the probability of an accident is reduced by approximately 45% (the accident rate for controls is 0.0522, as
opposed to 0.0287 for gaze-guidance events). As before, the collision threshold was set to 1m, but as the
figure illustrates, the differences between accident rates remain qualitatively the same for different distance
thresholds.

in the case of GG events (confidence interval: [0.0313, 0.0757]).

We also analysed the driving and the eye movement behaviour immediately after the triggering

of a critical event. Although there are variations from event to event, several observations remain

generally valid (one such example is illustrated in Figure 6.12). For the first part of the event, the

egocar-pedestrian distance decreases in an approximately linear fashion, and the variance of both

distance distributions is small. After approximately one second, as the egocar approaches the accident

threshold, the distance egocar-pedestrian stabilizes near a constant value that tends to be larger in the

case of cued events.

When examining the eye movement behaviour, a shift in the direction of the cues can be noticed,

together with a tendency for a smaller variability for cued scenarios.

Discussion

Although the cues were not plainly connected to a traffic participant, drivers still had a tendency to

fixate the critical pedestrian sooner after a direction cue was visible. However, when comparing the

reaction times distributions between the group of cued and the group of control events, the differences

fail to reach the significance level. As noted in the previous section, this could in part be due to the

size of the dataset (approximately 600 samples for the first study, as opposed to approximately 400 for
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Figure 6.12: Example of eye movements and car-pedestrian distance during a critical event triggered from
the left side of the road. The eye-movement data end the car-pedestrian distances were analysed during a 2.8
second time interval after the beginning of the event.
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the current experiment). Also, as some of the subjects did not immediately recognize the connection

between the risk pedestrian and the cues, this may also contribute to the small differences between the

distributions of the reaction times. Nevertheless, when examining the number of accidents caused

with cued and non-cued pedestrians, there is a significant reduction in the collision rate when the

event was highlighted with a gaze contingent marker. Therefore it can be concluded that guiding the

gaze of the driver in the critical direction was already sufficient to induce a safer driving behaviour.

6.2.4 Gaze guidance in a desktop simulator – Conclusions

In the series of experiments presented above, we used a desktop driving simulator with integrated

eye tracking that offered the possibility to add gaze-contingent markers to its virtual environment.

Using the simulation engine, we designed driving scenarios in which normal driving situations were

intercalated with critical events consisting of pedestrians that unexpectedly crossed the street and

thus forced the driver to take immediate action in order to avoid an accident. We have shown that

gaze-contingent markers that were either overlaid on the high-risk traffic participants, or that merely

indicated the direction from the dangerous event would emerge are successful in significantly reduc-

ing the number of accidents with those high-risk pedestrians.

Although the pedestrian-centred cues had a clear gaze-capturing effect and were easily correlated

with the nature of the critical event, their implementation in a real car is challenging, even with the

technology advances available today. However, simpler cues also proved effective in reducing the

number of pedestrian accidents. It can also be argued that until more subtle gaze guidance techniques

are developed, such cues would be less distracting in a complex scene, as well as easier to implement.

6.3 Gaze guidance in a high-fidelity driving simulator

The results of the studies presented above were highly encouraging; they showed that gaze guidance

has indeed the potential of serving as an effective driving aid. However, because of limitations of

the experimental setup, these results cannot be easily generalized to real world environments. Some

of these limitations, such as the lack of complexity of the simulated environment, and a certain lack

of realism of the driving conditions were already described in more detail in the previous section.

Therefore, the main goal of the current study is to further investigate the usefulness of gaze-

contingent cues in the context of a realistic driving task performed in a wide field-of-view driving

simulator. The results of the study will be made public in [4].
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Figure 6.13: View of the state-of-the-art FAAC driving simulator. The system emulates the interior of a car,
in which the windshield, covering a 225 degrees horizontal field-of-view, is created using five LCD panels.
The simulator is integrated with a six-camera Smart Eye PRO eye tracking system.

6.3.1 Setup and data collection

The experiments took place in a state-of-the-art, wide field-of-view driving simulator. Unlike in the

case of the previously used desktop simulator, no modifications could be made directly to the virtual

environment, so an external solution for implementing gaze-contingent cues needed to be found.

In the current section we will first give an overview of the characteristics of the driving simulator

itself, and then we will describe the technical details of the warning implementation. In the end,

aspects connected to the planning of the experimental trials will be discussed.

Driving simulator

The study took place in a high-fidelity DE-1500 driving simulator (FAAC Inc, Ann Arbor, Mi).

FAAC is a privately held US company specialized in distributed interactive simulations and also in

motor vehicle simulations both for civil and military use13.

The DE-1500 simulator is composed of an “open air” driving station, illustrated in Figure 6.13.

The windshield was simulated by a multidisplay system composed of five wide-screen LCD displays,

and it covered a visual angle of approximately 225 by 38 degrees. Each LCD display had a resolution

of 1360× 768 pixels. The controls of the simulator reproduced those of an automatic transmission

vehicle. A real car – Ford Crown Victoria – was used to model the dashboard and the driving seat.

In addition to the visual component, the simulator also delivered auditory and haptic feedback.

13http://www.faac.com
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Figure 6.14: The map of the virtual environment. The map combines urban, suburban, and industrial areas
with hilly and desert terrain. A substantial highway stretch is also available at the exterior of the simulated
“city”.

A set of speakers reproduced sounds such as engine and road noise, tire skidding, or braking noises.

The force-feedback steering wheel offered variable resistance in function of the characteristics of the

simulated road. Tactile feedback was also provided on curb strikes. The driving seat attempted to

recreate the acceleration/deceleration feedback available in a real motor vehicle. Also, on collisions

with objects or persons in the virtual environment both auditory and haptic feedback was given. An

adjustable air flow originating from the dashboard lent a further degree of authenticity to the driving

experience.

The driving environment could be chosen from several available maps. We used the “Safety

City” (Figure 6.14), a general setting that included a variety of terrains and settlement types. Just

to give an example, the virtual world contained urban, suburban, industrial and rural areas. The

“inhabited” regions were encircled by a highway network. The terrain was at times flat, at times

hilly, with a set of mountain roads available in the north-east of the map. A section of the highway

crossed a desert area.

The basic layer of the virtual world contained roads, landscape elements, buildings, together with

some predefined cars and pedestrians, all static. To this fundamental layer, one could add actors from

several available categories such as vehicles, or walkers using a graphical interface – the “Scenario

Development Toolbox”. Each category contained a broad range of available actors. Besides adding
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active traffic participants, within the toolbox it was also possible to add supplementary static content

such as extra buildings, trees, animals, vehicles, or pedestrians. These would remain unchanged

throughout the trials, and serve as scenery, increasing the degree of complexity and realism of the

environment.

The simulator provided two approaches to adding traffic to the virtual environment. The first,

very similar to that available in the desktop simulator we first used, meant manually adding and

setting the behaviour of every traffic actor. Again, the actions of each participants needed to be

fully scripted. The trajectories and also the triggering events could be defined within the Scenario

Development Toolbox. The second approach was to use the preexistent autonomous traffic mode.

When the autonomous traffic option was activated, the simulator engine tended to populating the area

around the egocar with other moving vehicles. In autonomous traffic mode, all that needed to be set

were the density and the aggressiveness level of the autonomous vehicles. These could be varied on

a scale from 0 to 9. With some precautions, autonomous and scripted vehicles could be combined.

It was possible to externally manipulate the weather conditions in the virtual world. In addition

to the fundamental “clear day” setting, the other four available weather conditions were night, fog,

rain, snow, and dust. They could be added to the simulation using an intensity scale that varied from

0 to 8. Any number of these conditions could be combined, in order to obtain the desired result.

The eye movements of the subjects were recorded using a six-camera SmartEye Pro remote eye

tracking system, that covered the entire windshield. The eye tracker delivered the gaze position on

the multidisplay area at a sampling frequency of 60 Hz, and with a manufacturer-specified tracking

accuracy of 0.5 degrees.

The virtual world projected on each of the displays was created by five image-generator comput-

ers, that were in their turn controlled by a master computer that acted as the “brain” of the system,

and ran the simulation. The master unit also received and logged gaze data from the eye tracking PC,

which it integrated to its own stream of driving data. The driving data was recorded at a frequency

of approximately 30Hz, and it contained statistics such as coordinates in the virtual world, speed, or

acceleration.

Cue implementation

As previously mentioned, the virtual environment could not be externally modified, and also no

mechanism for adding textures or cues inside the simulation was available. However this suited

our intentions to explore realistic cues that could be implemented with minimal effort into an actual

vehicle. The Volkswagen prototype mentioned in the introductory section of the current chapter

implements warnings using a row of lights underneath the windshield. The LEDs can be selectively

turned on. According to press reports, they appear to already lead to a guiding effect, and after some
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Figure 6.15: LED strip mounted on aluminium profiles across the bottom edge of the simulated windshield.
Thumb image: the breakout board used to connect the LED array to the controller unit.

time, as the driver learns to consciously ignore them, they become mostly unobtrusive.

We decided to take a similar approach, and use light-emitting diode (LED) arrays to implement

horizontal directional cues similar to the ones used in the second desktop simulator study. Unfortu-

nately, the simulation engine resembled a black box as it only allowed access to the data contained

in the output driving stream. This contained no information about the scene visible in the virtual

environment, and therefore, it was impossible to connect the position of the egocar with what was

being projected on the simulator display. Because of that, it was difficult to correlate the warnings

with specific events involving other traffic participants.

For this reason, unlike in the first series of experiments, the cues were not correlated to any traf-

fic event in the simulation. Instead, we chose to cue specific locations in the environment, namely

intersections. As earlier discussed, intersections are recognized to be sites with higher risk exposure

for non-motorised traffic participants such as cyclists or pedestrians, but also for the motorists them-

selves. Many accidents taking place at crossroads are caused by the driver’s failure to properly scan

all directions from which oncoming traffic might arrive, and thus fail to identify potential threats.

We planned the warnings in such a manner so that in each intersection they would cue the driver

towards a predetermined direction, left or right, but only if the driver is not already looking in cued

direction.

In order to implement the gaze-contingent warnings, the simulator was outfitted with two arrays

of light-emitting diodes, one at the bottom of the windshield, covering the central 150 degrees of the

visual field, and one at its top, covering only the 67 degrees corresponding to the centre screen. The

arrays were mounted on a set of 80/20 T-slotted aluminium profiles fitted transversally across the

two vertically-set side displays (see Figure 6.15).

To create the LED arrays, we used 3 addressable RGB LED strips of one meter length, each with
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Figure 6.16: A visible cue to the left during a data recording session. The subject was driving in an urban
environment, in combined night and rain conditions. We did not vary the colour of the LEDs during the
experiments, the only used colour was red, as it offered a good compromise between visibility of the cue, and
little impact on the vision of the driver.

32 LEDs. For the top array we used a single strip, while for the bottom one we connected two of

them together. The strips could be connected to a computer via a serial interface, thus allowing each

of the LEDs to be individually controlled. The connection was achieved with the help of a USB to

serial printed circuit board (PCB).

The LEDs were controlled by a separate PC unit to which they were directly connected. As

they had to be triggered as a function of position in the simulated world, but also as a function of

horizontal gaze position on the multidisplay system, the PC unit had to receive data streams both from

the simulator master computer and from the eye tracking computer. The master script that triggered

the LEDs also synchronized the two data streams it received via UDP. (Figure 6.16).

In the following, we will very briefly describe the algorithm behind the cue triggering. Each

packet from the driving simulator data stream received by the master script contained all the driving

statistics, including the position in the virtual city, and the speed of the egocar. In parallel, the master

had access to (and ran through) a list with all the cued locations. If the distance between the egocar

and the current critical location was smaller than a predefined constant, the controller could take the

decision to trigger a warning. In order to compensate for large speed variations between different

drivers, the distance measure was combined with an additional restriction regarding the estimated

time before reaching the critical location.

Once it was established that the egocar had reached a cued location, the first eye movement

sample was checked, in order to determine which LEDs would be activated during the warning. On

the top array, it was always the last two LEDs in the predefined cueing direction that were briefly
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flashed. However, on the bottom array, the cue was dynamic, and it followed a “chasing lights”

pattern: each of the LEDs between the start position of the cue and the end of the array would light

on and off in a rapid succession. The start LED was computed as the LED that corresponded to the

horizontal component of the last read gaze sample, to which a predefined offset in the direction of

the cue, equal to half the resolution of the centre screen, was added. If the subject’s gaze was already

in the cued direction, than no LED was lit.

Data recording

We selected four courses inside the Safety City world, each set in diverse environments: two were

situated mostly in urban and suburban areas, while the other two focused mostly on highway sections.

The route length ranged between 3 and 8 km. In addition to varying the setting, we also varied the

weather conditions. Two courses were set in daylight conditions, one in a clear day, the other in a

day with level 6 fog, while the remaining two courses were both set in identical, combined, night and

rain conditions.

Following the method presented in Section 6.2.3, for each subject, only approximately half of the

intersections were highlighted by a cue, while the remaining ones serving as control locations. Each

route was paired with a mirrored version, in which the control and the GCC sets were swapped. Each

complete trial consisting of the four pre-programmed routes contained approximately 40 control and

40 GCC locations. We set the cueing directions randomly, and each cued location was paired with a

fixed direction.

The order in which the routes were driven was fixed: daylight – highway and urban environment,

rainy night – suburban and urban environment, foggy day – urban environment and highway, and

again rainy night – urban and suburban environments. The driving order, together with the route

environment were deliberately set. This was done taking into consideration that it had not been

uncommon for subjects from previous studies that took place in the same settings to experience

simulator sickness.

Simulator sickness is a relatively common occurrence, and has been accordingly documented

since the appearance of the first virtual environments (see [164, 165, 166] for an overview). Its

symptoms are for the most part similar to those of motion sickness, and are commonly evaluated

using a simulator sickness questionnaire [167, 168]. There are several hypothesis on the causes

of simulator sickness, but no certain explanation is known. One of the earliest and most widespread

theories is that of the cue conflict: it is suggested that the sickness is caused by a discrepancy between

sensory cues, for example visual and motion cues. Another plausible explanation is that of postural

instability [169].

Although the exact cause for the simulator sickness often encountered in the FAAC simulator
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could not be determined, we speculate that the pairing between some minor geometry faults of the

simulated world and some inaccurate motion feedback through the driving seat are the principal

triggers. In any case, a short accommodation period in which the subject drove on a straight and flat

route, combined with a gradual introduction to steering manoeuvres and to altitude differences have

been observed to reduce the phenomenon. Also, having a somewhat reduced visibility for sections

with many turns and ramps appeared to help.

Despite these precautions, of the 13 volunteering subjects we recorded, one had to end the ex-

periment without completing a single course, while two other had to stop after the first course.

Regarding the additional traffic on the routes, we chose to use the autonomous traffic mode at

high density, and moderate aggressivity levels. Although using scripted vehicles would have ensured

to a higher degree that the trials are comparable between different subjects, a number of problems

arose. First, although the speed of the scripted vehicles could to a limited degree be adapted to that of

the egocar, large variations of the egocar velocity and of the driving behaviour would have made the

similar timing of events from subject to subject impossible. Second, no interaction between scripted

vehicles or scripted vehicles and egocar was possible, so very simple driving scenarios needed ex-

tensive fine tuning that could still fail at an unpredicted manoeuvre of the subject. Such aspects were

not an issue with autonomous traffic, and as the AI of the simulator created the autonomous traffic

following a similar algorithm every time, a certain degree of similarity was still present between

different trials.

6.3.2 Results

The aspect of most interest when analysing the recorded data was whether the cues succeeded in

guiding the gaze of the drivers in the desired direction. From the more than 5 hours of recorded

driving data, we extracted approximately 45,000 saccades.

In a first step, we analysed the saccade behaviour over the first two seconds after reaching each

critical location. In total, over all the two-second post-cue time intervals, more than 3500 saccades

were available. For each saccade landing point, we computed the distance between its horizontal

coordinate and the centre of the multidisplay system. The differences between the gaze distributions

built as such for control and cued locations are highly significant, and suggest a shift in gaze position

in the direction of the warning for cued locations.

For visualisation purposes, we divided the 4 s interval of interest in 200ms time bins. For each

event we computed and plotted the mean gaze position corresponding to each time bin (Figure 6.17),

as the average of the horizontal component of all the saccade landing points from the respective

time interval. A significant shift of the gaze horizontal position in the direction of the cue can be

distinguished starting after approximately 400ms from the cue triggering (Mann-Whitney U test:
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event triggering. It can be noticed that there is a significant shift of the gaze in the direction of the cue.
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p − value < 10−7 for cues to the right, and p− value < 10−13 for cues to the left). This shift is

not present before the event triggering or in the case of control locations.

In order to ensure that the cues did not directly attract the gaze, but guided the driver to look in

their general direction, we repeated the analysis above, but this time with the vertical coordinates of

the landing points belonging to the saccades immediately before and after a cue. No significant shifts

have been found towards the bottom arrays (p − value > 0.4, Mann-Whitney U test), suggesting

the subjects did not tend to look at the moving cue itself. However, a weak shift towards the top of

the displays was visible (p− value 0.095, Mann-Whitney U test).

6.3.3 Discussion

Gaze-contingent cues that horizontally highlight certain regions of the driving space are successful

in influencing eye movements in a state of the art driving simulator, without disrupting the driving

activity.

6.4 Chapter conclusions
In the current chapter, we have shown that it is possible to create an augmented vision system that

uses gaze guidance in order to help drivers better allocate their attention resources.

First, using a simple desktop driving simulator, we showed that gaze-contingent cues that high-

light a high-risk pedestrian, either directly or just by indicating his direction of walking, are effective

in reducing the number of crashes with that pedestrian. We extend these results to a more realistic

driving environment, and we show that simple directional gaze contingent cues can influence eye

movements without disrupting the driving activity in a state-of-the-art driving simulator.

Building such a systemwould involve already available components such as pedestrian detection,

pre-crash sensing and attention monitoring, and maybe also novel developments such as a wide-angle

gaze-contingent head-up display. Naturally, in order for such a system to be useful it should be 100%

reliable, give no false warnings and signal all potential dangers, but that holds true not only for gaze

guidance, but for any driver assistance system.

The actual benefits of unobtrusive gaze guidance can be fully comprehended when accepting

that visual perception is, as we have tried to show over the previous chapters, widely determined

by our expectations, i.e. by a model. This model is only selectively updated because of limited

attentional resources. Warnings such as beeping attempt to avoid critical situations by forcing the

driver to change their current model, whereas subliminal guidance would change the way the model

is updated. The latter process is faster and less distracting, and therefore more efficient.
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Conclusions

At the beginning of this dissertation we set out to explore aspects related to the efficacy and to the

practical implementation of an augmented vision system based on gaze guidance techniques and

adapted to driving.

In a series of experiments conducted in a desktop driving simulator, we showed that fewer ac-

cidents are registered with pedestrians involved in safety-critical scenarios when these pedestrians

are highlighted using gaze-contingent cues. These results were first obtained using fairly complex,

pedestrian-centred markers, and were later confirmed in an experiment that used simpler cues, that

only highlighted the direction of the high-risk pedestrian. In the final part of our work, we investi-

gated the effects of similar directional gaze-contingent cues in a more realistic driving environment.

The cues, implemented using LED arrays adjoined to a wide-field-of-view driving simulator, led to

a clear gaze guidance effect when triggered randomly at intersections in the virtual world.

Moreover, following an experiment that compared the eye movement strategies adopted by

novice and expert players engaged in playing a gaze-operated game, we could confirm that both

task and experience have a strong influence on eye movements. Next, as being able to guide eye

movements implies being able to predict what actually attracts them in a scene, we looked at bottom-

up factors that influence gaze allocation. We used low-level features of the visual input to accurately

predict eye movements on complex stimuli consisting of time-varying superimposed natural scenes.

We showed that eye movements prefer informative areas of the visual input, namely areas with a

higher intrinsic dimension.

To summarize our main results, we have shown that gaze-contingent cues do have a gaze-

capturing effect, and can influence where drivers look without being disruptive towards the driving

activity. Moreover, the gaze guidance effect is present even if the cues are not directly associated

with a traffic participant, but instead highlight a general direction of danger. This significantly sim-

plifies the implementation of such cues into a real vehicle. Our most important contribution though,

is showing that in actual safety-critical situations occurring in a driving simulator, drivers aided by
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gaze-contingent cues commit significantly fewer accidents.

Nevertheless, there are numerous questions that we did not address, leaving them open to future

research. To mention just a few, the optimal timing of the cues needs to be investigated, as well as

what exactly needs to be cued in a real-world situation.

Of course, one may argue that with the current advances in technology, the future belongs to

autonomous driving, and human-driven cars will soon be completely eliminated. Although this is

indeed a significant direction in automotive research, building a self-driving car poses a number of

critical problems, and it is unlikely that all will be addressed in the near future. As this did not directly

concern our research, we only mention here one obvious, but challenging requirement. In addition

to accurately detecting without any false positives all the potentially critical events near the car, the

automated system must also have the ability to identify what the risk elements are, and to decide on

an adequate set of actions to respond to them.

Seen from this perspective, a driving assistance system that integrates gaze guidance with a

highly-accurate detection component, provides the optimal compromise between two imperfect com-

ponents: an artificial brain that does not get distracted, and can process concurrently all the available

stimuli, and a human component that can effortlessly assess whether an event poses an immediate

risk.
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