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Summary 
!

The skin is in constant contact with the environment and serves a critical barrier function, yet 

provides a range of niches to inhabiting microbial communities. A multitude of interactions 

between the skin microbiota, host and environment contribute to community structure and its 

potential contribution to changes in health status is well known. Susceptibility to chronic 

inflammatory diseases is determined by the interaction of immunogenetic and environmental risk 

factors. In particular, resident microbial communities as environmental factors are the subject of 

intense scrutiny due to numerous observations of differences in community composition or 

structure are of primary etiological importance or secondary to the altered inflammatory 

environment remains largely unknown.  

Epidermolysis bullosa acquisita (EBA) is a chronic skin blistering disease of autoimmune origin 

characterized by antibodies to type VII collagen (COL7). This study provides experimental 

evidence for host gene-microbiota interactions contributing to disease risk in a mouse immunization 

model of EBA. By using an advanced intercross mouse population, genetic loci contributing to 

variability in the skin microbiota were simultaneously identified along with susceptibility to EBA 

and their overlap. QTL mapping of the skin microbiota with susceptibility to EBA demonstrates the 

involvement of host gene-microbe interactions in disease. Furthermore, treating the abundances of 

individual bacterial species as covariates with disease lead to the discovery of a novel disease locus. 

The majority of the identified covariate taxa were characterized by a reduction in abundance being 

associated with increased disease risk. This provides evidence of a primary role for individual 

bacterial species abundances in disease susceptibility and underscores their importance in 

protection from disease. Interestingly, in a parallel study in this thesis, mice that did not develop 

clinical disease showed a higher diversity in their skin microbial communities before disease 

induction. This further demonstrates the importance of skin community in predictive of EBA 
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disease outcome. Thus, further characterization of these putative probiotic species or species 

assemblages offers promising potential for preventative and therapeutic treatment development.
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1. Introduction 

Animals throughout their evolutionary process have been constantly in direct contact with diverse 

microbial communities that help them thrive in different environmental conditions on earth. This 

microbial community is made up of bacteria, viruses, fungi, and archaea, which directly or 

indirectly interact with the host. It is now known that animals host thousands of different bacterial 

species and are comprised of up to 90% of bacterial cells [1]. It also estimated that there are 10 viral 

particles for every bacterial cell [2]. The presence of these microbes has a great impact on the host 

in many ways. These microbes provide a vast reservoir of metabolic capabilities that can 

complement host metabolism well-being [3], [4] as well as developmental and nutritional processes 

[5]. However, the roles of other microbial communities like viruses, fungi, and archaea that inhabit 

animals are less studied.  

Bacteria colonizes throughout the portions of the human body that are exposed to the environment 

including the skin [6], gastrointestinal (GI) tracts [7], and lungs [8]. The human colon alone is 

colonized by 70% of all the microbes in the human body [9], [10]. This is one of the main reasons 

why most of the microbial studies focus on the gut. The number of bacterial species colonizing the 

human gut varies widely between different studies, but at the phyla level it is mainly dominated by 

2 major phyla: Firmicutes and Bacteroidetes. There are other phyla such as Actinobacteria, 

Proteobacteria, Cyanobacteria, and Fusobacteria present in less abundance [11]. The studies have 

shown that the microbiota in the GI tract is host specific and also region specific [12], [13], [14]. 

There has been a clear influence of diet on gut microbiota showing co-evolution between the diet, 

human and gut microbiota composition [15]. Studies using litter cross-fostering, embryo 

transplantation and mouse co-housing experiments and other stochastic and environmental factors 

show that they also contribute to microbiota composition [16]. One analysis of gut microbiota 

across human population showed three distinct clusters among microbiomes called enterotypes 
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[17]. Later it has been shown that two of three enterotypes could be driven by long term diet and it 

did not appear to correlate to host demography or health status [18], [19]. 

The interactions of host and their gut microbiota are of fundamental importance for host health and 

disease. Recent studies have shown that intestinal microbiota in humans can be correlated to 

inflammatory bowel disease [20], colon cancer [21], allergies [22], diabetes [23], neonatal 

necrotizing enterocolitis [24], metabolic syndrome [25] and obesity [26]. This awareness of health 

associated intestinal microbial communities underscores the importance of understanding the 

molecular basis and dynamics of host-microbe homoeostasis. Therefore it is necessary to have 

animal models that complement to human disease phenotype and allow us for targeted analysis of 

microbial, pathological and immunological aspects under controlled conditions. At the same time, 

genetically inbred mouse lines in a controlled environment help us understand the roles of host-

genetic association with specific gut microbiota composition [27]. Mutation, up and down 

regulation or inactivation of specific genes have been significantly associated with specific bacterial 

community changes and it is also linked to metabolic diseases like obesity, diabetes and metabolic 

syndrome [28]. But whether these associations may be mediated by alterations in microbial 

community structure is unknown [29]. Most of the microbial research in past years is mostly 

focused on gastrointestinal tract. In recent years, skin-microbiota related research has also gained 

attention, with advances made towards identifying specific or microbial communities molecules 

involved in host skin physiology.!

1.1 Skin microbiota 

Skin being the largest organ of the body serves as a critical barrier between the host and the 

environment. It also provides a range of specialized niches that contain microbial communities 

comprising bacteria, viruses, mites and fungi, as a whole referred to as the skin microbiome 

(Figure 1.1). The mammalian skin flora is mainly dominated by diverse bacterial communities and 
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mostly found in skin structures such as hair follicles, eccrine and sebaceous glands (Figure 1.1). 

The composition of skin bacterial species is found to be mainly driven by local environmental 

factors e.g. local chemistry, nutrient availability, exposure to external environment, dry and wet 

areas [30]. Mammalian hosts and their microbiota have developed an evolutionary relationship that 

is vital for co-existence including host defense against pathogens, metabolism and development of 

host immune system. Therefore, it is very important to characterize these microbes in an 

appropriate way to fully understand their role in human disease and health status.  

1.1.1 Skin microbiota characterization 

In early studies using culture-based approach it has been shown that there is an association 

between a number of skin infections and microbes [31], [32]. Further procedures like gram staining 

[33] and other biochemical methods emerged in past decades (such as Oxidase, Catalase, 

Oxidation/Fermentation, Coagulase, Acid and Gas from Lactose tests etc.) were used to identify 

and characterize bacterial organisms. These traditional methods of identifying bacteria suffer from 

two main drawbacks. Firstly, most are not cultivable. Secondly, biochemical tests which look for 

common patterns cannot be used to identify all bacterial strains. There are some strains, which 

exhibit unique biochemical characteristics that cannot be found using traditional methods. 

A revolutionary article in 1977 PNAS by two biologists Carl Woese and George Fox, phylogenetic 

analysis based on the 16S ribosomal RNA sequence revealed three distinct kingdoms: Eubacteria 

(Bacteria), Archaebacteria (Archaea) and Urkaryotes (Eucarya). 16S ribosomal RNA is a 

component of the 30S subunit of prokaryotic ribosomes and its use has revolutionized our 

understanding of microbial diversity [34], [35], [36]. The regions of 16S appear largely independent 

of ecological diversification and there are regions which evolve faster (variable regions) and slower 

(conserved regions), and can thus be used to find the relationships among different bacterial taxa at 

different phylogenetic depths. Based on this, several culture independent techniques have emerged 
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in the past 20 years. Microarrays and Real time PCR are widely used molecular techniques for 

identification and quantification of bacteria even at the species level. Real time PCR in particular is 

useful in quick detection of low amounts of bacterial DNA. 

!
Figure 1.1: Cross section view of skin histology. 
Microbes such as bacteria, fungi and viruses are found in the skin surface and also reside in the hair 
shaft, sweat pore, sweat and sebaceous glands. Staphylococcus spp. dominates the skin bacterial 
species population. Viruses are found to be living freely and also residing along with the bacterial 
cells. The figure is modified from Grice and Segre (2011) [37].  
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The recent introduction of low cost Next Generation Sequencing (NGS) technique has 

revolutionized the way in which diverse bacterial communities are characterized. Researchers use 

the 16S rRNA gene (also known as 16s rDNA) sequences to study bacterial phylogeny and 

taxonomy with greater accuracy than before. There are databases, including SILVA [38],   

 

Figure 1.2: Comparison of relative abundance of bacteria phyla in mouse and human skin.  
16s rDNA sequences are shown at phyla level. Figure was generated on publicly available data 
published by Grice et al. (2008) [6]. 

 

Greengenes [39] and the Ribosomal Database Project [40] databases dedicated to 16S rRNA gene, 

that help classify a greater proportion of environmental sequences. Using this technique, 

researchers have found changes in microbial composition with skin conditions such as atopic 

dermatitis [41], psoriatic lesions [42] and acne [43] using three sampling methods: scrape, swap, 

and punch biopsy.  These three sampling methods were first used in a single study to compare 

many layers and structures of human and mouse skin [6]. They also surveyed the bacterial 

composition in human antecubital fossa skin and mouse ear skin and identified striking parallels 

between them (Figure 1.2). They also reported that Proteobacteria phylum containing the genera 

Mouse&

Proteobacteria*

Ac,nobacteria*

Firmicutes*

Bacteroidetes*
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Pseudomonas and Janthinobacterium in mouse ear skin is identical to human antecubital fossae. 

These reports are very encouraging to take advantage of mouse disease models that could be useful 

to explore the roles of skin microbiota and its influence on disease. 

1.1.2 Factors influencing skin microbiota composition 

The microbial colonization of humans and other mammals begins right after birth, and the mode of 

delivery has a huge influence in the initial colonization. It has been reported that babies born by C-

section have microbiota similar to their mother’s skin while vaginally delivered babies have 

bacterial composition similar to vaginal microbiota [44]. It is noted that the maternal environment 

has a huge influence on microbiota composition. Several studies using mouse models have shown 

that genetically identical litters in the same cage have more similar intestinal microbiota than litters 

growing up in different cages [23], [45], [46].  

Skin microbiota composition is also determined by demographic characteristics on skin conditions 

such as host’s age, gender, hormones, and ethnicity [47], [48], [49], [50]. Local environmental 

characteristics like temperature, pH, moisture and exposure to ultraviolet radiation can influence the 

microbial composition in skin. These differences can be seen at different areas within the host 

which can lead to different skin microbial composition [30]. In skin, epithelial surfaces contain T 

lymphocytes, keratinocytes, mast cell and Langerhans cells, which express Toll like receptors and 

produce antimicrobial products such as cytokines, chemokines, β-definsins etc. These antimicrobial 

products are used by the innate immune system to regulate the skin microbiota. Thus, genetic 

variation within the host genome that can influence or alter the functions of immune system may 

also result in altering the microbial composition. To measure the variation caused by host genetics 

on microbial diversity, it is important to understand other factors influencing the variation. In order 

to effectively measure the host genotype effect, one has to control environmental factors to avoid 

noise. Benson and colleagues [27] showed that host genotype indeed controls significant variation 
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of gut microbiota. It is yet to be proven whether such alterations could lead to any changes in health 

status of the host. 

1.1.3 Skin microbiota association with health and disease 

Many common skin diseases such as atopic dermatitis [41], psoriatic lesions [42] and acne [43] are 

known to have microbial involvement [49]. This can be explained in two mutually exclusive 

events: a microbial infection that is promoting the disease, or microbes protects or prevents the host 

from getting the disease, and both scenarios are possible [51]. In atopic dermatitis (AD) patients are 

found densely colonized by Staphylococcus species (mainly Staphylococcus aureus) on their skin 

compared to healthy people [52]. It has also been found that AD patients have reduced amount of 

an antimicrobial peptide called dermicidin [53], which is found in skin as a part of epithelial innate 

defense system [54]. Dermicidin induces killing mechanism against Staphylococcus aureus [55] 

and prevent the infection by limiting the growth of  S. aureus and/or its colonization and indirectly 

promoting other commensals. Dekio and colleagues speculates that the presence of Dietzia Maris 

bacterial species in healthy skin compared to that of AD patients points towards a very important 

role in maintaining healthy skin [41].  

Microbial products from skin bacterial commensals are known to have immunoregulatory effects 

[56]. Accordingly, lipoteichoic acid (LTA) produced by Staphylococcal species has a unique anti-

inflammatory effect on keratinocytes and has the opposite response when reacting with other 

immune cells [56]. These conclusions show the potential role of certain species of Staphylococcus 

inhabiting the skin. Another study clearly underscores the importance of skin commensals to tune 

the functions of local T cells for optimal skin immune fitness [57]. A recent landmark study of the 

mouse gut microbiota using a quantitative trait locus (QTL) approach unequivocally demonstrates 

the role of host genetics in shaping diversity between individuals [27]. It is now interesting to study 

the relationship between different bacterial strains and their interactions with the host genetics to 
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understand the role of skin commensals in maintaining healthy tissue function. This is still largely 

unexplored area of research and the results hold the key to develop targeting therapeutic disease 

specific treatments for (autoimmune) skin diseases. 

1.2 Autoimmunity and Autoimmune diseases 

One of the main functions of our immune system is to mount inflammatory responses to non-

self while avoiding any harm to self-tissues. This non-self could be bacteria, viruses, parasites or 

any other foreign molecules. In the case of autoimmune diseases, the host immune system turns on 

against its own cells, tissues and organs. It can no longer differentiate between self and non-self; 

thus leading to autoimmune diseases (AD). Autoimmunity, on the other hand, refers merely to the 

presence or production of autoantibodies against self antigens, which does not lead to any tissue 

damage or inflammation per se, however, it can lead to false positive autoantibody tests in many 

cases [58]. For example T-lymphocytes reacting with self-antigens are found in all individuals [59]. 

1.2.1 Why study Autoimmune diseases? 

Currently there are more than 80 known autoimmune diseases, affecting more than 100 million 

people worldwide [60], which has a great global economic and social impact  globally. A recent 

American Autoimmune Related Disease Association (AARDA, source from www.aarda.org) report 

reveals that there are currently 50 million (~20% of the total population) Americans living with AD 

and it is disproportionately affecting women. Approximately every 3 in 4 affected individuals is a 

woman. AD is responsible for more than $100 billion in direct health care costs annually in 

America. A detailed research in this area not only potentially helps those directly affected by it but 

also helps us figure out how to modulate the immune system so that we can help cancer patients 

[61], it has the potential to revolutionize organ transplant [62], it improve treatment of AIDS 

patients as well as other infectious diseases [63]. 
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1.2.2 Autoimmune skin blistering diseases 

Autoimmune skin blistering diseases (ASBD) are a heterogeneous group of disorders 

characterized by autoantibodies that are mistakenly directed against self-specific structural proteins 

causing blistering lesions in skin. ASBD have different clinical manifestations not only ranging 

from blisters and erosions on the skin to surface mucous membranes but also share underlying 

common immunological mechanisms. ASBD can be divided into pemphigus disease and 

subepidermal bullous disease [64]. In the case of pemphigus disease, the autoantibodies are directed 

against intercellular structures called desmosomes, whereas in the case of subepidermal bullous 

disease, the autoantibodies are targeted against adhesion molecules of basal membrane called 

hemidesmosomes [64]. The pathophysiology of different skin blistering diseases (belonging to 

subepidermal bullous disease type) characterized by autoantibodies that target different subregions 

of epidermal basement membrane proteins is shown in detail in Figure 1.3.  

In Germany, roughly 2000 new cases of ASBD affected patients are reported every year, with an 

overall prevalence of about 12000 cases at present. The incidence of ASBD in Germany has 

doubled over the past 12 years and the recent records show 25 new cases per million every year 

[64]. The treatment of ASBD is still challenging because of a very few prospective therapeutic 

trials and a lack of standard treatment guidelines available in Germany. Thus, it is a timely 

endeavor to now to focus more in this area of clinical research. 

 

 



!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Introduction!
!

! ! !10!

Figure 1.3: Schematic model of the epidermal basement membrane (BM).  
The details of BM structural proteins that are targeted by autoantibodies in different autoimmune 
skin blistering diseases (ABSD) are shown. The major subregions of epidermal BM are depicted in 
the context of autoimmune and genetic blistering diseases. Proteins found as targets of 
autoantibodies are shown: AECP, Anti-Epiligrin Cicatricial Pemphigoid; CP, Cicatricial 
Pemphigoid; EBA, Epidermolysis Bullosa Acquisita; IB, Immunobullous; LAD, Linear IgA 
Dermatosis; OCP, Ocular Cicatricial Pemphigoid; GABEB, Generalized Atrophic Benign 
Epidermolysis Bullosa; PA, Pyloric Atresia. Figure is based on the idea from Yancey (2005) [65]. 

 

1.3 Epidermolysis Bullosa Acquisita 

Epidermolysis bullosa acquisita (EBA) is a chronic mucocutaneous and subepidermal 

autoimmune skin blistering disease characterized by autoantibodies to type VII collagen (COL7), 
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which is the major component of anchoring fibrils that attach the lamina densa of the basement 

membrane to the underlying dermis (Figure 1.3) [66], [67], [68]. Type VII collagen is made up of 3 

identical α chains, each with a molecular weight of 290 kDa and each α chain is composed of  an 

N-terminus non-collagen domain or NC1, Helical rod shaped collagenous domain in the center and 

a non-collagen globular domain or NC2, at the C-terminus [65]. The autoantibodies in EBA 

patients’ sera were mapped to the NC1 domain of type VII collagen epitopes where interfering with 

the adhesion function of type VII collagen and the loss of anchoring fibrils eventually lead to the 

formation of subepidermal blisters [69], [70], [71], [72], [73] (Figure 1.4). In EBA both 

complement and neutrophilic granulocytes are involved along with activity of specific T cells, 

which is very similar to pemphigoid disease. Currently there are no specific drugs available to treat 

EBA patients, only combinations of immunosuppressant drugs that are used to treat pemphigus are 

also used to treat EBA patients [64]. 

1.3.1 Mouse models to study EBA 

Disease models are used to understand the causes and the mechanisms of the disease, which can 

ultimately leads to the development of new treatments. Among other mammals,  

mouse is ideal to study human diseases for a number of reasons. Firstly, it has a short generation 

time, female yield an average of 5-10 pups, and their small in size (30-40g) makes them easy to 

handle. There are widely available techniques to manipulate the mouse genome and study genetic 

effects on disease phenotypes. For example, a germ free mouse model can be developed in a 

different genetic background, which could then be used to study the environmental and genetics 

effects on different phenotypes. Even differences in both development and metabolism exists 

between mice and humans [74], the mouse is still the most widely used experimental model animal 

used to study human disease in detail.  
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A spontaneously occurring sub epidermal blistering disease in mouse is rare, thus, induced models 

are necessary to reproduce the disease. Sitaru and colleagues showed that EBA blister formation 

could be produced in mice by passively transferring antibodies against type VII collagen from 

rabbit and injecting them into mice [75]. This model is called the passive EBA mouse model. This 

model suggests that EBA is an antibody mediated autoimmune disease [76]. Woodley and 

colleagues demonstrated that passive EBA mouse models can also be developed by injecting 

human EBA patient autoantibodies [77]. These antibody transferring passive EBA mouse models 

allow researchers to investigate mechanisms involved in autoantibody-induced tissue damage like 

complement activation [78] by alternative pathway [79], [80], neutrophils [81] and phagocyte-

derived reactive oxygen species [81]. Another mouse model termed the “Active EBA mouse 

model” is made by injecting an immunogenic peptide from murine COL7 [82].  

       

Figure 1.4: Active EBA mouse model and EBA disease in humans.  
Blisters, erosions with crusts are seen in an EBA patient (photo was taken with patient’s consent). 
Active EBA mouse model reproduces the autoimmune response type VII collagen where the active 
blistering with crusts can be seen in ears, near eyes and nose in the above mouse. 

 

Different clinical phenotypes of EBA share common immunological features including 

autoantibodies to type VII collagen. This may or may not lead to a loss of anchoring fibrils 

depending on the mouse strain background [78], [82]. The active mouse model is comparable to the 
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human EBA phenotype (Figure 1.4) [78]. The active and passive mouse models are established in 

our lab, which allows researchers to efficiently study EBA pathogenesis and search for molecular 

clues in genetics, environmental factors as well as molecular and cellular pathways.  Pros and cons 

of each EBA mouse model are explained in detail by Sitaru (2007) [76]. 

1.3.2 Genetics of EBA 

Autoimmune diseases are mostly polygenic in origin (a few exceptions and a more detailed 

classification of autoimmune diseases are explained by McGonagle (2006) [83]), with major 

contributions from three main factors of genetics, environmental factors and immune dysregulation 

[84]. The interaction between genes and the environment determine susceptibility to complex 

diseases such as autoimmune and chronic inflammatory disorders is known [85], [86], [87], [88], 

[89]. A strong genetic link exists between certain kinds of haplotypes of major histocompatibility 

complexes (MHCs) and autoimmune diseases such as multiple sclerosis [90], [91], [92], [93] and 

rheumatoid arthritis [94], [95], [96]. The MHC region encodes genes for cell surface molecules that 

display peptides for immune recognition [97]. In the case of EBA using data from 29 patients, an 

association with HLA-DR2 has been shown [98]. This result varied between different populations 

because the previous study is based on a small number of patients.  

Ludwig and associates [78] showed that EBA disease induction is strongly associated with the 

H2s mouse MHC haplotype by using an experimental EBA model inducing several inbred mouse 

strains. They also compared EBA disease induction in C57Bl/10.q and C57Bl/10.s mice where they 

differ only by H2q and H2s MHC haplotypes respectively. They found that C57Bl/10.q mice are 

completely resistant, whereas H2s developed mild, transient disease. By investigating different 

mouse strains they reported that 75% of mice carrying H2s developed EBA. Further questions are 

raised within the same study. The authors noted that the disease induction and severity in H2s 

MHC haplotype animals such as in MRL/MpJ or SJL/J is higher compared to same haplotype 
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in different genetic background such as C57Bl/10.s. This strongly suggested that there are non-

MHC dependent genes found within the genome that also contribute to EBA disease induction or 

severity. 

 

Figure 1.5: A schematic diagram of generation of four way autoimmune prone-advanced 
intercross mouse lines.  
Genetic diversity of mice was obtained by intercrossing each generation of mice. Mice from 
generation four (G4 marked in red) were used in this study as well as by Ludwig et.al. (2012) EBA 
QTL study [99]. Mice generated in this population lines were susceptible to immunization induced 
EBA model. (Mouse cartoon used in this figure is modified from original; Illustration by Picsburg, 
source: http://animecartoondrawing.com) 

X! X!

EBA$Susceptible$ EBA$Resistant$ EBA$Resistant$ EBA$Resistant$
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The contribution of non-MHC genes to the susceptibility of other autoimmune disease is well 

known [100], [101]. This is commonly referred to as genetic heterogeneity, where multiple 

combinations of genes within the genome lead to a similar disease phenotype [101]. In order to find 

non-MHC genes contributing to EBA disease phenotype, Ludwig and colleagues used a four-way 

autoimmune-prone advanced intercross line between an EBA susceptible strain (MRL/MpJ) and 

three EBA resistant strains (BXD2/TyJ, NZM2410/J and CAST) as shown in Figure 1.5. They 

revealed six quantitative trait loci (QTLs) involved in controlling susceptibility to immunization 

induced EBA [99]. SJL/J mice carry the H2s haplotype, and immunization of these mice leads to 

anti-COL7 IgG production in all mice (Ellbrecht et al. unpublished). Interestingly, 20% of these 

mice remain healthy; i.e. no blister formation is observed after immunization, despite the presence 

of IgG2 antibodies [78], [82]. Presence of autoantibody production and absence of skin blistering in 

genetically identical mice held under same environmental conditions cannot be explained by the 

current understanding of EBA pathogenesis (Ellbrecht et al. unpublished). This results points to the 

direction that there are environmental factors along with host immune factors playing a significant 

role in the pathogenesis of EBA. 

1.4 Scope of the thesis 

The main aim of this study is to evaluate the interaction between host genetics and the skin 

microbiota in the context of Epidermolysis bullosa acquisita (EBA), an autoimmune skin blistering 

disease (Figure 1.6). This is the first study to investigate the contribution of host genetic control of 

the skin microbiota using such an approach (Figure 1.5). A further goal is to characterize the 

identified genetic loci influencing skin microbial community structure on EBA disease 

susceptibility. 
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Figure 1.6: A simplified model showing the hypothesis of this study: skin microbiota and host 
genetics interaction leading to EBA disease susceptibility.  
The unnatural shift of healthy skin microbiota is known as dysbiosis. The figure is modified from 
Lee YK et.al. (2010) [102]. 

 

2. Another aim of this study is to determine what extent changes in the skin bacterial composition 

influences the onset of the Epidermolysis bullosa acquisita (EBA), an autoimmune skin blistering 

disease. To test this hypothesis, genetically identical mice belonging to SJL/J mice carry the H2s 

haplotype (a susceptible MHC to EBA) were held under same environmental conditions and their 

ear samples were taken before immunization for characterization of skin bacterial communities 

(Figure 1.7). Immunization induced EBA in the SJL/J mouse strain show incomplete susceptibility 

and this model could be further used to investigate disease-modulating mechanisms in genetically 

susceptible mice that harbor same environmental conditions. This model is an excellent tool to 
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investigate the presence of skin microbiome signatures that could be used to predict the onset of the 

EBA disease as microbiota phenotyping could be observed before disease induction. The results 

from this study are an important contribution to the ongoing debate about whether the changes in 

microbial communities are a cause or consequence of the disease. 

 

 
Figure 1.7: A schematic model explaining the importance of skin microbiota role in EBA 
disease susceptibility in SJL background mice carrying H2S haplotype.  
H2s haplotype is susceptible to EBA by immunization method. 
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2 Materials and Methods 
!

2.1 Generation of a four way advanced intercross lines 
!

Parental strains (MRL/MpJ, NZM2410/J, BXD2/TyJ, Cast) for generating a heterogeneous 

intercross line [75] were purchased from the Jackson laboratory (Maine, USA) through European 

distributor Charles River Laboratories, Germany. Briefly, strains were intercrossed at an equal strain 

and sex distribution to generate a genetically diverse mouse line. First generation (G1) offspring 

mice were then mated considering their parental origin to maintain an equal distribution of parental 

alleles for successive generations by maintaining at least 50 breeding pairs per generation. Male and 

female offspring used in the study were transferred to separate cages according to sex after weaning. 

This procedure was also followed for intercrossing and producing next generation of mice lines 

(Figure 1.5). Animals were coded with unique three-digit identification number and cages are 

identified using cage numbers also recorded according to standard lab protocol. Details regarding 

each inter-cross were also maintained as per standard lab protocol. In each generation a greater 

genetic diversity between animals was reflected by the different morphological traits like weight, tail 

length, fur or coat color and it was re-coded in detail. Animals were held under specific pathogen 

free conditions at a 12-hour light/dark cycle with food and water ad libidum. All 261 animals in this 

study were taken from fourth generation of this advanced intercross line (AIL). All animal 

experiments were approved by the state of Schleswig-Holstein, Germany. 

2.2 SJL/J mice  
!

Female SJL/J mice were obtained from Charles River Laboratories (Sulzfeld, Germany). At the 

beginning of the experiments mice were 8-10 weeks old. Housing facilities were according to 

FELASA recommendations with a dark: light cycle of 12:12 hours, an ambient temperature of 

23±1°C and a humidity of 65±5%. Housing of the mice was performed under conventional 



Materials!and!Methods!

! ! ! 20!

husbandry practices in open-box cages on metal racks. SPF-conditions were ensured throughout the 

experiments without any detection of before unknown microbes. Mice were fed acidified drinking 

water and chow ad libitum without changing the supplier during experiments. All protocols were 

approved by the Animal Rights Commission of the Ministry of Agriculture and Environment of 

Schleswig-Holstein and performed by certified personnel.  

2.3 Recombinant peptides  
!

A GST fusion protein of the immunodominant mCOL7C epitope of the murine NC1 domain 

(amino acids 757-967) of COL7 in a prokaryotic expression system was generated. This fusion 

protein was purified by glutathione-affinity chromatography as described [104]. Subcloning the 

mCOL7C fragment into pQE40 (Qiagen, Hilden, Germany), using Bam HI and Hind III restriction 

sites, produced a His-tagged mCol7C. The subcloned protein was expressed by E. coli and purified 

using Talon®-immobilized cobalt affinity chromatography (Clontech, Saint-Germain-en-Laye, 

France).  

2.4 Induction of experimental EBA and observation protocol 
!

EBA was induced by immunization with an immunodominant peptide within the murine NC1 

domain of type VII collagen (GST-mCOL7C) and this protocol was slightly modified from 

previously published paper [82]. In brief 60µg GST-mCOL7C emulsified in 60µl adjuvant 

(TiterMax, Alexix, Lörrach, Germany) was injected subcutaneously in to mice footpads and tail 

base. After immunization mice were screened for skin inflammation every 4th week for a period of 

12 weeks, after which the ears were taken for analysis. In this study 183 mice were immunized using 

above protocol and 78 non-immunized mice were also taken from fourth generation of advanced 

intercross lines (G4). The extent of disease was determined by the percentage of body surface area 

covered by lesions. This was evaluated 4, 6, 8, and 10 weeks after immunization. The extent of EBA 

skin disease was scored as follows: 0 to 5, corresponding to 0%, <1%, ≥1% to <5%, ≥5% to <10%, 
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≥10% to <20%, and ≥20%, respectively. From every mouse, ear skin samples were obtained at the 

end of the 10-week observation period. Ear skin samples were fixed in 4% buffered formalin and 

snap-frozen at -80oC. The observed scores were later classified in to Low (0>x<5), Moderate 

(5>x<15) and Severe EBA (x>15) categories, where x is the percentage of the EBA disease covered. 

For SJL/J mice, disease incidence was evaluated by clinical examination for presence of erosions, 

blisters, crusts, alopecia and skin necrosis every week after immunization. Disease severity was 

calculated as percentage of body surface area affected by skin lesions. An affected maximum body 

surface less than 1.5% was regarded as clinically healthy, as this is comparable to unspecific lesions 

in controls. Two weeks after immunization, one of the popliteal, draining lymph nodes was 

surgically removed. As control group served mice that were injected with mCOL7C/TiterMax, but 

that were not biopsied. 

2.5 Genomic DNA extraction for genotyping 
!

  In the genotyping protocol, genomic DNA was isolated from tail clippings was isolated by 

incubation in 500µl 50mM NaOH at 95°C for 2 hours (h), and posterior addition of 50 µl 1M Tris‐

HCl (pH 8.0). The DNA exact protocol was followed as in DNeasy Blood & Tissue Kit (Qiagen, 

Germany) according to manufacturer's instructions. The extracted genomic DNA content was later 

quantified using Nanodrop spectrophotometer. Extracted DNA sample from different mice were 

normalized to 50ng/µl in TE for genotyping. A typical protocol for making 1X TE buffer is: 10 mM 

Tris (bring it to pH 8.0 with HCl and 1 mM EDTA). Agarose gel electrophoresis was done for each 

sample for quality control purpose. 

2.6 G4 population genotyping  
!

Illumina mouse medium density linkage panel with 1449 SNPs were used for genotyping and it 

was processed at the Centre for Applied Genomics, Toronto, Canada. In order to avoid potential 

false positive association the quality control filtering in genotyping data is essential. SNPs with 
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insufficient genotyping quality were removed. Mainly genotyping quality is based on the Hardy-

Weinberg equilibrium principle, minor allele frequency and missing proportion. Around 17% of 

SNPs were excluded due to low quality, only 1199 SNPs were found to be informative across 261 

mice. These SNPs were further used in the downstream analysis in this study. 

2.7 Bacterial DNA extraction and 16S rRNA gene pyrosequencing 
!

Each sample mouse ear was split using mortar and pestle in the presence of liquid nitrogen to 

maintain low temperature. Approximately one third of an ear was transferred to the Power Bead 

tubes containing 60µl of C1 solution (from manufacturer’s powerSoil® Kit from MoBio, Carlsbad, 

CA) and 20µl of 20mg/ml Proteinase K. Samples were incubated at 50°C for 2h at 850 rpm and the 

remaining steps were performed according to the manufacturer’s instructions. The hypervariable V1 

and V2 region of the 16S rRNA gene was amplified using the composite forward (5´-

CTATGCGCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTGGCTCAG-3´) and reverse 

(5´CGTATCGCCTCCCTCGCGCCATCAGXXXXXXXXXXCATGCTGCCTCCCGTAGGAGT-3´) 

primers. These primers included the 454 Life Sciences Adaptor A (for reverse primer) and B (for 

forward primer) – donated by italics. Additionally, to the reverse primers were added barcodes of 10 

bp (designated as XXXXXXXXXX). The underlined sequences represent the broadly conserved 

bacterial primers 27F and 338R. A unique 10 base multiplex identifier (MID; designated as 

XXXXXXXXXX) was added to the reverse primer to tag each PCR product. 100 ng of template 

DNA was added to 25 µl PCR reactions performed using Phusion® Hot Start DNA Polymerase 

(Finnzymes, Espoo, Finland). The cycling conditions were as follows: initial denaturation for 30 sec 

at 98°C; 30 cycles of 9 sec at 98°C, 30 sec at 55°C, and 30 sec at 72°C; final extension for 10 min at 

72°C. All reactions were performed in duplicate and combined after PCR. PCR products were 

extracted with the Qiagen MiniElute Gel Extraction Kit and quantified with the Quant-iT™ dsDNA 

BR Assay Kit on a nanodrop 3300 fluorometer (Thermo Scientific, US). Equimolar amounts of 
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purified PCR product were pooled and further purified using Ampure Beads (Agencourt). A sample 

of each library was run on an Agilent Bioanalyzer prior to emulsion PCR and sequencing as 

recommended by Roche. Amplicon libraries were subsequently sequenced according to the 

manufacturer’s instructions on a Roche 454 GS-FLX using Titanium sequencing chemistry. 

2.8 454 pyrosequencing data analysis 
!

 The following steps were followed in processing of 454 pyrosequencing data analysis and it is 

explained more in detail. Python scripts were used to process the sequence data and they are part of 

quantitative insights into Microbial Ecology (QIIME) package [105]. 

2.8.1 Pre-processing steps 
!

Using the amplicon processing software on the standard 454 FLX, each region of the sequencing 

plate yield a FASTA file with .fna as extension. This file contains sequences. Simultaneously, it also 

generates a quality score file, which contains a score for each base in each sequence included in the 

FASTA file. A perl script using the Smith-Waterman algorithm [106] was written to match the 

forward primer and barcode allowing no insertions or deletions. Sequences were required to have a 

length between 290 to 370 nucleotides, an average quality score ≥ 20 and contain no ambiguous 

bases. Sequencing belonging to individual mouse is identified by matching the barcode and all 

sequences were separated accordingly. An average of 5732 reads (or sequences) per sample was 

obtained for 261 animals. 

Software Version Task 

sffinfo  

sfffile 

Both software are part of 
Roche 454 GS-FLX system  
Version 1.3.3 

To convert SFF files (raw 
files) into FASTA 
(sequence data) and QUAL 
(quality scores) files. 
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barcode_primer_trim.pl  

quality_sequence_check.
pl 

barcode_primer_trim.pl 

qiime_sample_preparati
on.pl 

(available DVD) 

 

 

 

Perl Version 5.5 for Linux 

To check sequence quality 
as specified in pre-
processing steps. 
Simultaneously separate 
sequences in to individual 
animal using barcode as 
unique identifier. 

greengenes_blast_tab_co
nverstion.pl 

(available DVD) 

To convert the blast output 
to tab delimited format. 

 

2.8.2 OTU determination 
!

 Trimmed sequences were grouped in to operational taxonomic unit (OTU). OTUs are clusters of 

sequences intended to represent some degree of taxonomic relatedness. Sequences clustered at 97% 

sequence similarity are typically thought of representing species level. This method is flawed and it 

is still an active area of research to determine how OTUs should be defined and at what sequence 

similarity cutoff should be used to represent each taxonomy depth? In this study OTUs were picked 

using 97% sequence similarity against a reference 16s rDNA dataset for V1-V2 region (This region 

is trimmed from full length 16s rDNA sequence from Greengenes database downloaded from 

http://greengenes.ibl.gov/). UCLUST [107] algorithm was used to generate clusters. The default 

parameters of the algorithm were used for optimal cluster formation. There are also chances that the 

candidate sequences are outside of the similarity threshold to any reference sequence in the reference 

database; so new clusters are allowed to form in such cases. Since each OTU clusters are made up of 

many related sequences, a representative sequence is picked to represent each OTU cluster. This 

representative sequence for each OTU is used in the subsequent analysis. In this study, the 

representative sequence for an OTU cluster is chosen as the most abundant sequence showing up in 
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that OTU. Each representative sequence from OTU clusters was given an arbitrary unique identifier. 

For those representative sequences from OTU clusters formed without having similarity threshold to 

any reference data set were identified using “N” followed by arbitrary OTU unique identifier.  

Software Version Task 

pick_otus.py  

(available under QIIME) 

 

 

Python version 2.6.5 for 
Linux 

QIIME version 1.4.0 

uclust version 1.2.22q 

usearch version 5.2.236 

The OTU picking step 
assigns similar sequences to 
operational taxonomic units 
clusters by clustering 
sequences at 97% sequence 
similarity threshold. 

pick_rep_set.py  

(available under QIIME) 

A representative sequence 
will be chosen as the most 
abundant sequence in the 
OTU. 

otu_table_rv_conversion.pl 

otu_table_log_conversion.pl 

(available in DVD) 

Perl Version 5.5 for Linux Values in OTU tables are 
converted to relative values 
and log values by respective 
scripts. 

 

2.8.3 Sequence alignment 
!

Representative OTU sequences were aligned using PyNAST [108], a python implementation of 

the NAST alignment algorithm [109]. This algorithm aligns each candidate sequence to the best 

matching sequence in a pre-aligned database sequences or template sequences, it is a core set of full 

length 16s rDNA sequences obtained from Greengenes website 

(http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/core_set_aligned.fasta.impute

d). Default parameters of NAST alignment tool was chosen for optical alignment of the sequences. 

ChimeraSlayer perl script (http://microbiomeutil.sourceforge.net/) was used to remove chimeras with 

reference to chimera free gold standard database set published by DeSantis et al. (2006). After 

removing chimera sequences it resulted in 34624 species-level OTUs. In order to examine changes in 
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community composition within (alpha diversity) and between (beta diversity) compositions across 

samples based on health status, species-level binned OTUs were analyzed by different diversity 

indices. 

Software Version Task 

align_seqs.py  

(available under QIIME) 

 

 

Python version 2.6.5 for 
Linux 

QIIME version 1.4.0 

PyNAST version 1.1 

PyCogent version 1.5.1 

NumPy version 1.5.1 

Perl Version 5.5 for Linux 

To align sequences using 
the PyNAST method. 

filter_alignment.py 

(available under QIIME) 

 

This step will remove 
positions, which are gaps in 
every sequence. Typically, 
this will differentiate 
between non-conserved 
positions, which are 
uninformative for tree 
building, and conserved 
positions, which are 
informative for tree 
building. 

ChimeraSlayer.pl 

(available online and link 
provided, please see in 
method description) 

Perl Version 5.5 for Linux 

ChimeraSlayer Version 
1.22.0 

To remove chimeric 
sequences. 

split_align_products.pl 

(available in DVD) 

Perl Version 5.5 for Linux 

 

To split alignment files 
according to PCR products 
for PCR chimera check. 

 

2.8.4 Normalization using rarefaction method 
!

The difference in the total number of sequences in each sample can lead to over or under 

representation of certain OTUs in samples. So it is very important to normalize the data across the 

samples. Rarefaction procedure was implemented. It creates a series of subsampled OTU tables by 

random sampling procedure without replacement from the initial original species level OTU table. 
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These tables are referred as rarified OTU tables and the analysis is called rarefaction analysis. In this 

study, multiple rarefaction analysis was performed on all samples at various sequencing depths. 10 

iterations at each sampling depth of 50 beginning with 50 sequences/sample through 2500 

sequences/sample were generated. The samples from some individuals did not yield more than 2500 

sequences. These rarefaction OTU tables are not only used for normalization but also to construct 

rarefaction graphs that are widely used by researchers to estimate the sequence depth for each 

sample. One of the samples from SJL/J mice did not yield more than 1000 sequences. The 

rarefactions OTU tables are normalized at 1000 sequences/individual. 

Software Version Task 

multiple_rarefaction.py 

(available under QIIME) 

 

 

Python version 2.6.5 for 
Linux 

QIIME version 1.4.0 

PyNAST version 1.1 

PyCogent version 1.5.1 

NumPy version 1.5.1 

This step creates a series of 
subsampled OTU tables by 
random sampling (without 
replacement) of the input 
OTU table. The pseudo-
random number generator 
used for rarefaction by 
subsampling is NumPy's 
default. 

Multiple_rarefaction_ 
even_depth.py 

(available under QIIME) 

 

 

2.8.5 Alpha diversity analysis 
!

 In this estimation, the diversity is assessed within a sample sometimes also referred as within 

sample diversity. A series of scripts were written along with QIIME scripts to estimate the alpha 

diversity within the samples in this study. Molecular ecologists have used wide range of metric to 

measure alpha diversity and every metric has different limitations and strengths. These estimators are 

focused either on estimating different types of species (qualitative species based measurement) or 

their abundances at a given scale (quantitative based measurement). However, this is still a major 

drawback of these estimators. In this study four estimators were used. The Shannon index (based on 
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quantitative) is used to calculate species richness within the sample using the formula E = e (H/S), 

where S is the number of taxa in that group (S = species/phylotypes) and H is Shannon diversity 

index. The Shannon diversity index H = Σ Pi ln(Pi) where Pi is the proportion of the ith OTU [110]. 

Chao1 [111] is focused on qualitative based species measurements. Chao1 index is slightly modified 

version of Chao and it is calculated using the formula (corrected for bias refer this book [112] to 

Chapter 4 for more details) Choa1 = Sobs + (f1(f1-1))/2( f2+1) where Sobs is the total number of species 

observed in a sample, f1 is the number of singleton species, f2 is the number of doubleton species. 

Phylogenetic Diversity (PD) is qualitative divergence based measure which sums the total branch 

length in a phylogenetic tree that leads to each member of a community [113]. It has a special 

property in which adding a new species will always increase the PD index value. Hence this 

measurement is highly sensitive to sampling efforts. The Phylogenetic tree was built using FastTree 

tool [114] and default parameters were used for optimal results. In order estimate the OTU richness 

within the sample observed species measure was chosen. All these measurements are applied for 

collection of rarefaction OTU species level tables generated by rarefaction method. 

Software Version Task 

alpha_diversity.py  

(available under QIIME) 

 

 

Python version 2.6.5 for 
Linux 

 

 

 

FastTree version 2.1 

QIIME version 1.4.0 

This step calculates alpha 
diversity, or within-sample 
diversity, using an otu 
rarefaction tables based on 
different metrics. 

make_phylogeny.py 

(available under QIIME) 

 

This step produces a tree 
from a multiple sequence 
alignment. Trees are 
constructed with a set of 
sequences representative of 
the OTUs using FastTree 
software program. 
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collate_alpha.py 

(available under QIIME) 

  

PyNAST version 1.1 

PyCogent version 1.5.1 

NumPy version 1.5.1 

 

 

The result of 
alpha_diversity.py 
comprises many files from 
rarefaction OTU tables, 
which need to be 
concatenated into a single 
file for generating 
rarefaction curves.  This 
script joins those files. 

make_rarefaction_plots.py 

(available under QIIME) 

 

This script generates 
rarefaction plots based on 
the supplied collated alpha-
diversity files. 

 

2.8.6 Beta diversity analysis 
!

Beta diversity represents the explicit comparison of microbial communities based on their 

composition between samples. This can explicitly explain the differences of the microbial 

communities found in different samples. This diversity analysis is based on a square matrix where a 

similarity or dissimilarity distance is calculated between every pair of samples. This matrix will 

reflect the dissimilarity between those samples. Many visualization techniques such as Principal 

component (or Coordinate) Analysis (PCoA), redundancy analysis, Constrained Principal component 

analysis and hierarchical clustering could be used. Rarefaction OTU table at 2500 sequences/sample 

is used in this analysis. This cutoff was used because all 261 samples have at least 2500 sequences. 

Jaccard Distance and Bray-Curtis distance between all 261 samples were compared using the R 

package ‘vegan’ [115]. If we denote the number of species shared between two sites as ‘a’ and the 

numbers of the unique species as ‘b’ and ‘c’, then  

S = a+b+c and α = (2a+b+c)/2. Bray-Curtis dissimilarity measure = (b+c)/(2a+b+c). This measure 

is also known as Sørensen dissimilarity. Jaccard dissimilarity measure = (b+c)/(a+b+c). This 

measure ranges from 0 (no species in common) to 1 (share identical species lists). In this study 

additionally another measurement called UniFrac is also used. This measurement is based on the 
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phylogenetic information. Weighted UniFrac and unweighted UniFrac is calculated using Fast 

UniFrac tool[116]. Phylogenetic tree built using FastTree tool was used as input for weighted and 

unweighted UniFrac distance matrix. Constrained PCoA with healthy and disease status as a 

constraint. This analysis is very similar to a redundancy analysis but additionally it allows non-

Euclidian dissimilarity indices. Constrained analysis of principal coordinates (CAP) were calculated 

using the Vegan package in R [115]. Statistical significance for CAP was determined by an 

ANOVA-like permutation test function with 1000 permutations (anova.cca function) in Vegan was 

used. Adonis multivariate statistics were applied using Vegan [115] package in R. R version 2.15.2 

for Linux was used for all analysis (R Development Core Team (2012)). 

Software Version Task 

beta_diversity.py  

(available under QIIME) 

 

 

Python version 2.6.5 for 
Linux 

QIIME version 1.4.0 

Fast UniFrac (a new version 
of UniFrac that is 
specifically designed to 
handle very large datasets) 

This step calculates beta 
diversity, or between-
sample diversity, using an 
otu rarefaction tables based 
on different metrics. 

Vegan 

(R package available in 
CRAN) 

Vegan version 2.0-7 

R version 2.15.2 for Linux 

To perform beta diversity 
statistics. 

vegan_data_prepartion.pl 

(available in DVD) 

Perl Version 5.5 for Linux 

 

Automatically converts all 
file formats to vegan file 
format for data processing. 

 

2.8.7 Indicator species analysis 
!

Indicator species analysis was performed using R package “indicspecies”. This package provides 

a set of specific functions to assess the species relationship between categories. Indicator and biserial 
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correlation values of each species among healthy and EBA samples were calculated using “Indval.g” 

and “r.g” functions within the packages. Species level OTU measurements in relative values were 

used as input. In order to obtain high statistical confidence permutation scheme implemented and this 

function is available within the package. Permutation was done using 10000 permutations. To correct 

for multiple testing “Benjamini and Hochberg” correction was applied using “p.adjust” function in 

R. 

 

 

2.8.8 Taxonomy classification 
!

RDP classifier [117] (RDP Multi-Classifier version 1.0 available from 

http://sourceforge.net/projects/rdp-classifier/files/MultiClassifier/) was applied to assign taxonomy to 

the genus level using 0.80 as minimum confidence. The “fixrank” option was used to assign 

taxonomy from kingdom to genus level. Sequences unclassifiable at a given taxonomic rank were 

classified at the next possible higher rank while genus being the lowest. Since RDP classifier can 

assign sequences till genus level it is important to look for alternative taxonomy assignment at 

species level. BLAST taxonomy assignment method was implement. Species level taxonomy was 

obtained by BLAST [118] against the Greengenes reference database at species level OTUs 

(http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/Caporaso_Reference_OTUs/g

g_otus_4feb2011.tgz) with an E-value cutoff of 0.001. For sequences that did not yield any species 

name is assigned as “Unclassified Species”. 

Software Version Task 

indicspecies 

(R package available in 
CRAN) 

indicspecies version 1.6.7 

R version 2.15.2 for Linux 

This package provides a set 
of functions to assess 
the statistical significance of 
the relationship between 
species 
occurrence/abundance and 
groups of sites 
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2.9 Data preparation for QTL analysis 
!

The proportion values were calculated at each taxonomic level using the following equation 

where proportion values equals to ratio of number of reads for a given taxon to total sequence reads 

for a given animal for each taxonomic level. Proportion values were then log10 transformed and for 

animals which no sequence counts were obtained for a given taxon, proportion value was calculated 

using 0.5/total reads for that taxon and then log10 transformed. These equations were applied 

accordingly and resulted in calculated log10 transformed proportional value across 261 mice  to 

34624 species-level OTUs, 863 genera, 376 families, 218 orders, 93 classes and 51 phyla. These 

taxonomic depths contained at least one assigned sequence in their taxa. Out of 34624 species-level 

OTUs, 19443 covers nearly 99% of the total sequences, and 762 species OTUs represents nearly 

90% of the total sequences. 

2.10 Core measurement microbiota 
!

To determine quantitatively measurable microbial traits across 261 samples from each taxonomic 

depth a core measurement microbiota is defined. 16S rDNA from five different samples were 

amplified with two different sets of barcoded primers. These samples were filtered and processed in 

similar fashion as explained above in this thesis. Sequence counts for each taxonomic level was 

log10 transformed. A scatter plot was generated from all pairwise combinations of the two repeat for 

each five different sample. A threshold of greater than 20 reads (or sequences) per bin (or taxon) 

leads to a correlation above 0.97 was observed. Thus, the Core Measurable Microbiota (CMM) taxa 

Software Version Task 

MultiClassifier.jar 

(available online and link 
provided, please see 
above) 

RDP multi classfier version 
2.0 

Java Version 7 for Linux 

To assign bacterial 16S 
rRNA sequences to the new 
phylogenetically consistent 
higher-order bacterial 
taxonomy. 
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were defined as taxonomic bins containing more than 20 reads in at least 20 animals. The resulting 

CMM of 131 species-level OTUs represent nearly 80% of the total sequences. 

 

 

 

 

2.11 QTL analysis 
!

The underlying haplotype structure of each mouse was inferred for linkage disequilibrium 

mapping of QTLs using HAPPY software version 2.1 (available at 

http://www.well.ox.ac.uk/happy/happyR.shtml) [119]. HAPPY is originally written in C and uses R 

interface for QTL mapping. It is based on hidden Markov model to infer the haplotype descent from 

each mouse and also uses multipoint analysis that offers a significant improvement in statistical 

power to detect QTLs compared to single marker association. It utilizes the known founder genotype 

information along with recombination distances to provide a probabilistic estimate measure of 

haplotype descent at each marker interval for each mouse. For mouse i at marker interval m, HAPPY 

software computes a vector gi(m) which contains the expected proportion of genetic material 

descended from each of the 4 possible pairs of founder haplotypes from AIL. Later this vector is 

used to characterize variation at the given locus to test for phenotype association. QTL mapping 

experiments in crosses of inbred mouse strains in this study were taken from generation four 

population. The distances between informative recombinants are larger and limited. It is also known 

that these populations are prone to uneven genetic relatedness among individuals thus require proper 

model selection to avoid false positive associations from family (sibship) and environment (cage). 

The strong association of family and cage in defining the microbial phenotype was also previously 

Software Version Task 

cor.test 

(function available in R) 

R version 2.15.2 for Linux This function is used to 
calculate correlation 
analysis. 
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described in Andrew K. Benson et. al. [27]. These factors were taken in to account during the QTL 

model selection procedure and it is described in detail below. 

 

Software Version Task 

HAPPY  

(now called as happy.hbrem) 

(available online and link provided, 
please see above) 

Happy version 2.1 

R version 2.15.2 for Linux 

To map QTL in 
Heterogeneous Stocks (HS), 
i.e. populations founded 
from known inbred lines, 
which have interbred over 
many generations without 
pedigree information. 

compare_QTL.pl 

(available in DVD) 

 

 

 

 

 

 

 

 

Perl Version 5.5 for Linux 

 

To compare the QTL 
detected under different 
categories.  

innate_immune_gene_overlap_sqtl.pl 

(available in DVD) 

To find innate immune 
genes within the QTL. 

parse_happy_QTL_output.pl 

(available in DVD) 

To automatically parse all 
happy QTL output file and 
calculate confidence 
interval. 

parse_happy_covariate_QTL_output.pl 

(available in DVD) 

To automatically parse all 
covariate Happy QTL 
output file and calculate 
confidence interval 

compare_covariate_QTLs.pl 

(available in DVD) 

 

To compare the covariate 
QTL and EBA QTL (null 
model) 

hfit.R 

(available in DVD) 

Happy version 2.1 

R version 2.15.2 for Linux 

Modified R code to account 
for cage and family 
simultaneously during 
mapping. 

Girish Srinivas
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2.11.1 Model selection 
!

Each microbial trait from CMM at chosen taxonomic depth is treated as an individual phenotype 

trait in this model and the data were log10 transformed for normalization because HAPPY uses 

Analysis of Variance F statistics to test for linkage. To estimate the contribution of various factors 

such as cage, family (sibship), age, and sex in defining CMM, a linear mixed model analysis was 

performed using ‘lmer function’ in ‘lme4 R package’. Mice with common parents are defined as one 

family. Family consists of genetic as well as environmental components. Within sibling from same 

family variation is explained by environmental variation and between families is explained by 

genetic variation. Same sex siblings from one or more family, depending on the number of mice, are 

kept in the same cage during the weaning stage. A model for a QTL at locus m on the Phenotype trait 

(microbial) was found using the following equations considering those factors that are significant 

from linear mixed models. 

Null model: Equation 1 

Microbial Trait ~ sibship k[i] + cage k[i]  

Alternative model: Equation 2 

Microbial Trait ~ sibship k[i] + cage k[i] + Qm 

 

Where Qm is the design matrix to fit a QTL at locus m. The design matrix Qm contains information 

related to the strain probabilities of each genotype markers. The significance of QTL at each locus m 

is found by comparing the fit of a null model and an alternative model, via ANOVA test. To add 

covariates to the model, additional column was added to the additional design matrix. The HAPPY 

package allows the inclusion of covariate matrices and allows to test to see if they significantly 

improve the fit conditional upon the presence of the covariates. 
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2.11.2 QTL mapping 
!

HAPPY requires two input text files for QTL mapping. One is called alleles files (or marker 

files). This file describes the state of alleles for each marker in the founder populations and also 

contains the marker position in centimorgan (cM). Another file is called a data file that contains the 

phenotype and genotypes for the individuals. If there are K markers and N individuals, then the data 

file contains N rows and 2*K+2 columns. For each taxon bin a separate data file was generated. For 

every marker pair position, HAPPY calculates a LOD score. The above model equations (equation 1 

and equation 2) were tested under additive model, which assumes there are independent QTLs and 

there are no interactions between alleles within each locus. HAPPY uses analysis of Variance F 

statistics (F-test) to look for association between locus and phenotypes using linear fit model. Let us 

assume the overall simulation over m loci is defined as Significance Si = -log10 Pi, where Pi is the P 

value from F-test at locus i [120]. Maximum over all loci is given by the equation Smax = 

max{S1,…,Sm}. The reported anova P value is highly anticonservative [120]. Since the Bonferroni 

correction is too conservative to use for the correction and it also ignores the linkage disequilibrium 

(LD) between markers. The distribution of most significant log P is found using genome wide scan 

with no QTL (equation 1) and compared it with each phenotype by permutation of phenotypes 

between animals while fixing the genotypes. This permutation scheme took LD in to account and 

also the phenotype distribution [121].  For each of 1000 permutations the genome wide scan was 

repeated and the most significant log P value was recorded. The quantiles form the extreme value 

Software Version Task 

lme4 

(R package available in 
CRAN) 

lme4 version 0.999999-2 

matrix version 1.0-12 

lattice version 0.20-15 

R version 2.15.2 for Linux 

To perform linear mixed 
model analysis. 
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distribution from 1000 permutation were fitted and then used to estimate the genome wide 

significance for each phenotype [120].  

 

Figure 2.1: Distribution of maximum –log P scores recorded across 1199 SNPs for 1000 
random permutations of the phenotype scores. 
(a.k.a. “QQ plot”, in this case for OTUID: N26684 “g_Staphylococcus”). This is used to estimate the 
genome wide significance threshold, or “E value”. For example, the E value for SNP rs13483244 
would be 1/1000 from the above plot (observed –log P value shown in red for trait OTUID: 
N26684). In other words, the probability of the observed –log P score for SNP rs13483244 (which is 
5.24) to occur by chance is 1 in 1000. 
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To illustrate the procedure used to obtain the E value for a given trait, a “QQ-plot” was produced 

(Figure 2.1), which shows the distribution of maximum –log10 P scores recorded across 1199 SNPs 

for 1000 random permutations of the phenotype scores (for OTUID: N26684). The genome wide 

significance threshold was set at 5%, which is equivalent to one false positive per 50 genome wide 

scans. Overall genome wide significance threshold for all phenotypes were calculated and found that 

global significance cutoff at α = 0.05, a corresponding ANOVA –log P ≥ 4.39 for all QTLs and for α 

= 0.1, ANOVA –log P ≥ 4.1. The corresponding Anova –log P value to 5% global significance value 

between phenotypes varies only slightly and the same procedure has been widely implemented 

[121]. Confidence intervals were determined manually by a drop of 1.5 in ANOVA –log10 P score 

[122].The probability of overlap for QTLs was calculated as described by Graham et.al. [123] and 

the equation is written as !! = ! − !!!! !

! − ! (!!!!)!
!  , where pi  is the probability of QTL overlap, 

Wi  is the fraction of the confidence interval of the QTL to the overall physical size of the mouse 

genome and WT is the ratio of the combined length of the confidence interval of QTL to the overall 

physical size of the mouse genome. 2500 Mb is used as the physical size of the mouse genome for 

the QTL overlapping calculation. 

2.12 Data deposition 
!

The microbiota sequence data has been submitted to the European Nucleotide Archive (ENA) under 

accession number ERP002614. The data will be released upon publication (revised and under 

review) and/or request by the Reviewer. 
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3. Results 

3.1 Skin bacterial diversity 
 
  Skin samples were collected from ear of 261 mice from the fourth generation of an advanced 

intercross line (G4 AIL) mapping population. This mapping population is a cross from four major 

strains (MRL/MpJ, NZM2410/J, BXD2/TyJ, Cast). Out of these 261 mice there are 119 healthy, 64 

EBA, and 78 non immunized mice samples. Since the induction of EBA disease is by immunization 

procedure it is very important to control for immunization. This is the reason why this study also 

includes 78 non-immunized mice ear samples. DNA was extracted from each sample and microbial 

“phenotyping” was carried out using barcoded 454 pyrosequencing of the bacterial 16S rRNA gene. 

In total 1.5 million sequences were obtained form 261 animals. Each sequence was checked for 

sequence quality and assigned to respective samples by matching unique barcodes.  

After quality control checks, sequences were clustered in to species-level operation taxonomic units 

using ≥ 97% sequence similarity. Operational taxonomic units (OTU) are used widely in ecological 

studies to classify bacterial sequences at different taxonomic level depths. Each taxonomic level 

distinction is made using respective sequence similarity threshold. The sequence similarity threshold 

is an arbitrary number and it is an important research focus area. Since current methods for defining 

species levels of bacterial diversity that are being covered new are incapable and inadequate, an 

OTU approach will allow us to classify newly found bacterial species using sequence similarity. For 

species level OTUs ≥ 97% sequence similarity is widely accepted cutoff and also followed in this 

study [124]. The representative sequences for each OTU bins were chosen. After controlling for 

chimeric sequences, there were 34624 species-level OTUs bins. A heat map is generated to visualize 

the abundances of OTUs distribution among 261 mice (Appendix A Figure A.1). This figure shows 

that there are only few species OTUs which are high in abundant across samples. In order to estimate 

the distribution of sequences among species OTUs precisely, another visualization technique was 
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used (Appendix A Figure A.2). This figure shows that 90% of the sequences from all samples are 

spread among 762 species OTUs. The rest of these OTU bins have at least one sequence present in 

one mouse sample. Using high quality curated 16s Greengenes database [39], (see Method) each of 

these representatives from OTU bins was classified till species level using BLAST method [118] 

with E-value threshold up to 0.001. Alternatively RDP multiclassifier [117] was also used to classify 

all sequences using 0.8 confidence threshold. RDP classifier could classify the sequences only till 

genus level. The independent classification of sequences helps us to find if there is any 

misclassification. After comparing the classification of sequences at each taxonomic depth by both 

classifiers resulted in no conflicting assignments. At the phyla level, the Firmicutes were most 

abundant (54%), followed by Proteobacteria (21%), Actinobacteria (12%) and Bacteroidetes (6%) 

(Figure 3.1 a), revealing communities similar to those observed in previous studies of the skin [6], 

[30], [47], [125]. The other phyla such as Deferribacters, Deinococcus-Thermus, Fusobacteria, and 

Spirochaetes were found less abundance in mouse ears (Figure 3.1 b). At the genus level, 

Staphylococcus (~36%), Corynebacterium (~9%), and Ralstonia (~8%) were most abundant (Figure 

3.2). The majority of species level OTUs belonged to Firmicutes (Figure 3.3). The largest single 

OTU, a member of the division Firmicutes phylum belonging to Staphylococcus equorum species, 

which covers 27% of total sequence. The second largest OTU member belongs to Actinobacteria 

phylum and to the genus Corynebacterium. Followed by another OTU that belongs to 

Proteobacteria phylum and to the genus Ralstonia. Other common OTUs belonging to Firmicutes 

phylum division were Staphylococcus genus, Aeroccocus genus, Lachnospiraceae family, 

Alicyclobacillus genus, Streptococcus Thremophilus species, Lactobacillus Delbruekii species, 

Bifidobacterium Longum species, Streptococcus genus and Lactobacillus genus. Order Bacteroidales 

was the only species level OTU belonging to phylum division Bacteroidetes found among top ten 

abundance species OTUs classification. There were other OTUs classified to Proteobacterium 



Results!

! ! ! 42!

phylum found to be under Enterobactriaceae family, Helicobacter Hepaticus, Enterobacter Cowaii 

species and Alphaproteobacteria family. 

a. 

!  

b.! 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: (a) Relative abundance of major and (b) minor phyla of mouse skin 
Error bars indicate 1 standard deviation (SD).  
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Figure 3.2: Ten most abundant genera in the mouse skin microbiota (n=261) 
For those unclassified at the genus level, the next highest taxonomic level is shown (as marked in 
asterisk *). Error bars indicate 1 SD. 

 
Figure 3.3: Relative abundance of major bacterial species of mouse skin those with common 
classification species OTUs were grouped.  
For those unclassified at the species level, the next highest taxonomic level is shown (as marked in 
asterisk *). The taxonomic level of classification is indicated by k, p, c, o, f and g for kingdom, 
phylum, class, order, family and genus, respectively. Error bars indicate 1 SD.                                                                 
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Figure 3.4: Relative abundance of bacterial species those with common classification species OTUs were grouped.  
Relative abundance of species OTUs less than 0.1% is not shown here. For those unclassified at the species level, the next highest taxonomic 
level is shown (as marked in asterisk *). The taxonomic level of classification is indicated by k, p, c, o, f and g for kingdom, phylum, class, 
order, family and genus, respectively. Error bars indicate 1 SD.                                                                  
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3.1.1 Microbial communities in healthy and EBA afflicted individuals 
'

Mice from G4 AIL in these experiments contain genetic material from parental strains that are 

susceptible to an immunization-induced model of EBA [82], of which a total of 183 out of 261 were 

autoimmunized. Thus, in order to gain insight into the role of the skin microbiota in the pathogenesis 

of this inflammatory disorder, the bacterial diversity was compared within and between healthy mice 

(n = 119) and those that developed EBA (n = 64). At phylum level, three major phyla including the 

Proteobacteria (22% Healthy; 17% EBA; P-value = 0.01, ANOVA F value = 10.463), 

Actinobacteria (12% Healthy; 8% EBA; P-value = 0.02, ANOVA F value = 9.7776) and 

Bacteroidetes (7% Healthy; 6% EBA; P-value = 0.001, ANOVA F value = 10.926) were more 

abundant in healthy samples compared to those that developed EBA (Figure 3.5). In Firmicutes 

phyla division extreme outliers of samples belonging to EBA category drive the overall abundance 

greater than healthy mice and also the one-way ANOVA test was not statistically significant at 

P<0.05. 

 

Figure 3.5: Relative abundance of major phyla between healthy and EBA samples.  
Asterisk represent statistically significant P-values < 0.05 using one-way ANOVA test. Error bars 
indicate1 SD. 
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Figure 3.6: Relative abundance of rare phyla between healthy and EBA samples. 
Asterisk represent statistically significant P-values < 0.05 using one-way ANOVA test. Error bars 
indicate 1 SD. 

 
Four other phyla that have the relative abundance less than 1% showed significant (P-value < 0.05, 

one-way ANOVA test) abundance difference between healthy and EBA samples and they are 

Deinococcus-Thermus, Spriochaetes, TM7, and clostridiales (Figure 3.6). Other Phyla that have the 

relative abundance less than 0.01% were not included in the analysis but their abundances were 

clubbed together to show the differences between the healthy and EBA mice. 

3.1.1.1 Alpha diversity 
!

To characterize the level and pattern of diversity within individuals, different measures of alpha 

diversity was applied, which focus on species richness, evenness and abundance. These alpha 

diversity measurements were applied to species level OTUs distributions. Each measurement 

calculation was described in detail in the method section of this thesis. Rarefaction analysis was 

simultaneously performed and the average within diversity measurements at each level was plotted. 
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These individual plots for different measurements not only reveal the highest detectable species 

richness and diversity based on sequencing depth but also show the measurement difference within 

the healthy and EBA samples. The Chao1 index was higher in the healthy individuals compared to 

those afflicted with EBA (Figure 3.7) (Wilcoxon rank sum test, W = 170, P-value = 0.005). The 

same pattern was also observed for Faith’s14 Phylogenetic Diversity index (PD whole tree) 

(Wilcoxon rank sum test, W = 176, P-value = 0.008) shown in Appendix A Figure A.1, the 

observed number of species (Wilcoxon rank sum test, W = 212, P-value = 0.05) as shown in 

Appendix A Figure A.2 and the Shannon evenness measure (Wilcoxon signed-rank Test, Z = -

4.3726, P-value < 0.001) (Figure 3.8). All four alpha diversity estimations revealed that the healthy 

samples contained the most diverse microbial community compared to the EBA samples. The 

rarefaction curves from ‘Chao1’, ‘PD whole tree’ and ‘Observed species’ strongly suggesting that 

more sampling depth would reveal a greater degree of species diversity and richness in the samples. 

The estimate shows that there is a minimum of 20-25 more species OTUs (mostly rare species) for 

every addition of 1000 sequences per animal to be discovered. There is no single study that claims to 

have sampled to completion and this study has covered large members of bacterial species across 

261 samples. 

The observed species measurement was later applied to samples belonging to different EBA 

disease severity scores. These scores were divided in to 3 categories i.e., low, moderate, and severe 

EBA. To know the detailed EBA scores for each disease severity category refer method section. 

Disease samples based on the EBA disease score were separated and measured for within species 

diversity measurement among the samples. The results revealed that bacterial diversity decreases 

with disease progression from healthy, low, moderate, and severe EBA categories respectively 

(Wilcoxon test for each pair, Healthy vs. Low: W = 357, P-value = 0.4; Healthy vs. Moderate: W = 

446, P-value = 0.009; Healthy vs. High: W = 482, P-value = 0.0007) (Figure 3.9). 
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Figure 3.7: Chao1 alpha diversity measurement for species level OTUs in healthy (n = 119 in 
blue) and EBA (n = 64 in red) samples 
Error bars represent the 95% confidence interval. P-value was determined by the Wilcoxon rank sum 
test in R. 

 

 
 
Figure 3.8: Shannon index alpha diversity measurement for species level OTUs in healthy (n = 
119 in blue) and EBA (n = 64 in red) samples 
Error bars represent the 95% confidence interval. P-value was determined by the Wilcoxon signed 
rank test in R. 
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Figure 3.9: Observed species rarefaction curves for healthy (n = 119) and varying EBA clinical 
scores (Low EBA n = 43; Moderate EBA n = 9; Severe EBA n = 12).  
P-values are calculated using the Wilcoxon rank sum test and significant P-values<0.05 are marked 
using asterisk (*). 

 

3.1.1.2 Beta diversity 
 

 To analyze bacterial community composition and structure between individuals (i.e. beta 

diversity,) the weighted and unweighted Unifrac metric [116], [126] were used. This analysis was 

done on species level OTUs. Both the metrics are phylogenetic based measure weighted by taxon 

abundance and based on presence-absence information, respectively. In this diversity measurement a 
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matrix was visualized in a three-dimensional space using constrained Principal component (or 

Coordinate) Analysis (PCoA). Constrained PCoA was analyzed using healthy and disease status as a 

constraint factor (see Method section for details). This revealed significant variation between 

bacterial communities in healthy and EBA samples (Adonis, weighted UniFrac: R2 = 0.01922, P-

value = 0.008; unweighted UniFrac: R2 = 0.018, P-value = 0.001). Constrained PCoA using EBA 

status as an explanatory variable and the weighted Unifrac metric as a response variable also 

revealed a small, but significant effect (P-value = 0.015), with the first principal coordinate axis 

explaining 1.794% of the variation between individuals (Appendix A Figure A.3). Similarly, the 

first principal coordinate axis of the unweighted Unifrac metric explains 2% of the significant 

variation (P-value = 0.005, Figure 3.10).  

Analysis of beta diversity using OTU-based approaches yielded very similar results. In this study 

two non-phylogenetic based measurements were implied. Bray-Curtis distance matrix is based on the 

quantitative abundance, which yielded similar results to weighted UniFrac metric. Adonis on Bray-

Curtis index, R2 = 0.01848, P-value = 0.004, with first principal component axis explaining 1.791% 

of the variation (P-value = 0.015) (Appendix A Figure A.4). Another measurement Jaccard index is 

based on the presence-absence of OTU species. Adonis on Jaccard index, R2 = 0.02544, P-value = 

0.001. First principal component axis of contrained PCoA using Jaccard distance matrix explains 1% 

of the variation (P-value = 0.001) (Appendix A Figure A.5). All beta diversity metric plots on the 

basis of species OTU taxonomic composition showed high correlation to health factor. Therefore, 

skin microbial communities have considerable role in health status and this results further motivated 

to look for individual species OTU driving these signals. 
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Figure 3.10: Constrained analysis of principal coordinates of the unweighted UniFrac metric 
using disease status as a constrained factor.   
*P-value = 0.005 

 

3.1.1.3 Indicator species analysis 
 

The alpha and beta diversity analysis indicated that there are different community composition 

that is distinct from the healthy site to that of disease site group. Now it is further important to check 
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if individual species and/or species combinations are involved in driving the community composition 

among two different sites. Since there are many species involved in skin microbiota composition, it 

is highly important to account for multiple testing errors and validate the indicators.  

In order to identify specific species OTUs that reliably distinguish between healthy and EBA-

afflicted individuals, an “indicator species” analysis was performed. This method combines 

information of species OTU abundances in a particular category and it also calculates the probability 

of occurences by chance of a species OTU in a particular category. The assignment by this method is 

highly reliable as it is specifically designed to handle such data analysis. Interestingly, this revealed 

39 OTUs more abundant in healthy individuals (Benjamini and Hochberg-adjusted [127] P-value ≤ 

0.05, 1000 permutation), yet only a single OTU more abundant in EBA-afflicted individuals 

(Appendix B Table B.1). A rondomly chosen 10 out of 39 OTUs abundances are plotted between 

healthy and diseased individuals in Figure 3.11 for visualization. Most of the OTUs associated with 

healthy individuals belong to the genera Corynebacterium and Staphylococcus, as well as several 

classified only to the order Bacteroidales. The single OTU associated with EBA also belonged to the 

genus Staphylococcus and most closely matched to S. equorum. 
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Figure 3.11: Relative abundances of randomly selected 10 species level OTUs out of 39 OTUs 
identified by indicator species analysis with respect to disease status.  
Further OTUs, P-values and details are shown in Appendix B Table B.1. For those OTUs 
unclassified at the genus level, the next highest taxonomic for which classification was possible is 
indicated by an asterisk. The taxonomic level of classification is indicated by k, p, c, o, f and g for 
kingdom, phylum, class, order, family and genus, respectively. OTU Ids are indicated in the 
parentheses. Box plots display the median, upper and lower quartiles, with whiskers denoting the 
maximum and minimum values within 1.5× of the interquantile range (IQR). Outliers are not shown. 
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3.2 Skin microbiota role in EBA susceptibility 
 

Since cutaneous inflammation has been reported to be influenced by skin commensal microbiota 

[57], the skin microbiota was characterized to study its influence in immunization induced EBA 

disease. For this purpose, skin biopsies for microbial community profiling were collected before 

immunization of SJL/J mice. A classical barcoded 454 pyrosequencing of 16S rRNA gene approach 

was used to quantify the bacterial composition in 20 randomly selected mice, representing the 

20/80% distribution of clinical health and overt blistering. In total, 16 phyla level bacteria in skin 

were found, which is dominated by Proteobacteria, Firmicutes and Actinobacteria (Figure 3.12) and 

at genus level by Acinetobacter, Ralstonia, Streptophyta, Streptococcus and Staphylococcus bacteria 

(Figure 3.13). 

Additionally classical ecological measurements were applied to evaluate potential microbial 

compositional difference between the ultimately healthy and diseased mice before immunization. By 

applying alpha diversity measurements including the Chao1 and Shannon indices, greater bacterial 

species richness and evenness were found in the mice that did not develop disease symptoms 

compared to those that did display EBA symptoms after immunization (P-value = 0.03 for 

Chao1using Wilcoxon Rank sum test and P-value = 0.01 for Shannon using Wilcoxon signed rank 

test) (Figure. 3.14 and Figure 3.15). Beta diversity measurements including the weighted UniFrac, 

unweighted UniFrac, Bray-Curtis and Jaccard distances were analyzed using constrained analysis of 

principle coordinates with the presence/absence of disease manifestation as the factor tested. 

However, no significant separation was identified with respect to this variable (Figure 3.16).   
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Figure 3.12: Major bacterial phyla in the mouse skin microbiota (SJL/J mouse strain) 
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Figure 3.13: Major bacterial genera in the mouse skin microbiota (SJL/J mouse strain) 

 

 

 

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%# Anaerococcus#

Faecalibacterium#

Haematobacter#

Clostridiales#order#

Lactobacillus#

Prevotella#

Pasteurellaceae#family#

Enterobacteriaceae#family#

Bacteroides#

Herbaspirillum#

Bacillales#order#

Lachnospiraceae#family#

Propionibacterium#

Corynebacterium#

Staphylococcus#

Streptococcus#

Streptophyta#

Ralstonia#

Acinetobacter#



Results'

' 57'

0"

100"

200"

300"

400"

100" 200" 300" 400" 500" 600" 700" 800" 900"1000"

Ch
ao

1&
In
de

x&

Sequences&per&sample&

No"EBA"Symptoms"

EBA"Symptoms"*P&=&0.03&

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.14: Chao1 alpha diversity measurement for species level OTUs in “No EBA 
Symptoms” (n = 4 in green) and “EBA Symptoms” (n = 16 in red) samples.  
Error bars represent the 95% confidence interval. P-value was determined by the Wilcoxon rank 
sum test in R. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 3.15: Shannon alpha diversity measurement for species level OTUs in “No EBA 
Symptoms” (n = 4 in green) and “EBA Symptoms” (n = 16 in red) samples.  
Error bars represent the 95% confidence interval. P-value was determined by the Wilcoxon signed 
rank test in R. 
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Figure 3.16: Constrained analysis of principle coordinates analysis of beta diversity metrics 
No EBA Symptoms” (green) and “EBA Symptoms” (red) were used as constrained factors. None of 
the first constrained (or CAP1) axes for any of the four distance measures is significant. 
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3.3 Factors influencing skin microbiota 
 

In order to measure the contribution of host genetics on skin microbial diversity, it is very 

important to understand the various factors that can influence variation in the skin microbiota. There 

are very high chances that these environmental factors potentially constitute the noise that can mask 

host genetic effects. Many factors including cages where mice were kept, family, sex, age, and 

weight were carefully noted for each generation in AIL. Linear mixed model statistics were 

implemented to test the influence of each factor among skin microbiota traits and a statistical model 

was developed to efficient map the loci contributing to microbiota trait variation simultaneously 

controlling for environmental factors. From Appendix A Figure A.1, it can be seen that there are 

huge differences in abundances among 261 mice across species OTUs. For further analysis, 131 

OTUs belonging to the “core measurable microbiota” (CMM) were identified (Appendix A Figure 

A.8) and it was determined in a manner similar to that of a paper published by Benson and 

associates[27]. In other words these 131 OTUs are indeed quantitatively reproducible data and this 

experiment also directly controls for PCR, sequencing, primer and adapter errors/influence in this 

study (Appendix A Figure A.9). It can be also seen from Appendix A Figure A.2 that 131 CMM 

species OTUs cover roughly 80% of total sequence from all 261 animals and hence, with high 

confidence it is now possible to claim that these 131 CMM species OTUs are indeed a major 

representation of skin microbiota composition. Mixed model analysis showed that only two factors 

(cage and family) out of measured factors significantly influenced the variation among skin bacterial 

communities at species OTU level. 

3.3.1 Cage 
'

One of the common factors that can have a deep influence on the skin microbiota variation is the 

cage environment. Mice sharing common cages also share common microbiota compare to that of 

mice from different cages [27], [128]. 261 animals from AIL were separated in to 104 cages. A 
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linear mixed model was used to determine to which extent the cage environment causes the skin 

bacterial phenotype variation in each of 131 CMM traits (see Methods). The result showed that the 

cage directly accounting for 28% of overall variation in CMM species abundance. The individual 

cage variation between taxa is shown in detail in Appendix B Table B.2. 

3.3.2 Family 
!

Littermates reared within the same cage at weaning can influence skin microbiota community 

composition. It also important to account for the family structure in segregating populations created 

using a multiple generation breeding methods for Quantitative Trait Loci (QTL) mapping. In this 

study siblings of the same sex were cohoused together in separate cages after weaning. Also 

depending on the number per cage, females from multiple families were also cohoused together. 261 

mice in this study originate from 41 different families. Accounting for the family structure on each 

CMM trait using linear mixed model showed an overall variation of 3 percent. A detailed variation 

by family factor on each CMM trait variation is shown in detail in Appendix B Table B.2. 

3.4 QTL analysis of skin microbiota 
 

To measure the genetic contribution, CMM abundances (131 species OTUs and 149 phylum-

genus level traits) were tested for co-segregation against 1199 informative SNP markers after 

accounting for cage and family effects (see Methods). This revealed host genetics to have significant 

control over members of the skin microbiota, which can be seen in Figure 3.17. Nine out of 131 

CMM OTUs were associated with three significant and six suggestive (see Methods) species-level 

OTU QTLs, hereafter referred to as “spQTLs” (Appendix B Table B.3). The phenotypic variance 

explained by the spQTLs ranged from 2.8 to 11.31% (Appendix B Table B.3). The highest ANOVA 

–log P of 5.24 was given by an OTU belonging to the genus Staphylococcus on chromosome 18 

(spQTL 7), with a peak at SNP rs13483244 (position 21 Mb), which accounted for 5.44% of the 

phenotypic variance.  



Results!

! ! ! 61!

s 

 

 

 

 

 

Figure 3.17: QTL mapping of skin microbiota 
19 mouse autosomes and X chromosome are scaled along with 1199 SNPs indicated in black lines. 
QTL representing at species level OTUs are color coded according to their respective phyla 
classification and highest taxonomic classification of that OTU is written next to QTL color shade. 
Other genus to phylum level QTLs are detected according to their phylum classification and color 
shaded respectively. 
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Mapping at higher taxonomic levels including phylum, class, order, family and genus revealed a total 

of six QTLs, including three with one or more significant associations and three with suggestive 

associations, hereafter referred to as “gpQTLs” (Appendix B Table B.4). Two out of the nine 

spQTLs are contained within gpQTLs, thus, in total thirteen unique QTLs were identified (Figure 

3.17). To gain further insight we compared our results to previously published QTL studies of the 

gut microbiota [27], [128] and revealed evidence of overlap greater than expected by chance (Figure 

3.18; Methods). Interestingly, the confidence intervals of our spQTLs and gpQTLs contain five and 

four genes related to innate immunity, respectively (see Discussion, Appendix B Table B.5). 

3.4.1 Effects of immunization on QTL mapping 
!

Since the model of EBA used in this study is immunization-based, we also included 78 non-

immunized mice to control for the effect of immunization in the QTL mapping. Accordingly, we 

analyzed a subset where both EBA-afflicted and non-immunized individuals were removed (i.e. only 

the 119 healthy, autoimmunized samples). Despite decreasing the sample size from 261 to 119, two 

out of nine spQTLs and two out of six gpQTLs were still detected (Appendix B Table B.3). Next, 

we analyzed a subset where the EBA afflicted mice were removed (i.e. including 119 healthy 

autoimmunized and 78 non-immunized samples). One out of nine spQTLs and two out of six 

gpQTLs were still detectable despite lowering the sample size from 261 to 197 (Appendix B Table 

B.3 – B.4). Thus, the presence of QTLs among subsamples not influenced by differences in 

disease/autoimmunization status supports the presence of true genetic effects. In order to further 

confirm this, immunization factor was included in the QTL mapping model and the mapping 

procedure was repeated for 280 traits. All previously found QTLs stayed significant. This strongly 

suggests that the QTLs found in this study for skin microbiota traits are indeed independent of the 

immunization. 
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Figure 3.18: Overlapping of skin microbiota QTLs on published gut microbiota QTLs 
Only those gut QTLs overlap on skin QTLs are shown above and color-coded respectively. 19 
mouse autosomes and X chromosome are scaled along with 1199 SNPs indicated in black lines. QTL 
representing at species level OTUs are color coded according to their respective phyla classification 
and highest taxonomic classification of that OTU is written next to QTL color shade. Other genus to 
phylum level QTLs are detected according to their phylum classification and color shaded 
respectively. 
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3.5 Genetics association of EBA 
!

To investigate the potential role of host genetically-based variation for EBA disease, first the 

subset of 183 immunized mice common to this and our previous study on EBA was re-analyzed [99]. 

This revealed no significant QTL for EBA presence/absence at an E value cutoff of < 0.1 (see 

Methods), likely due to the reduced number of animals (Figure 3.19). This previously published 

study of EBA by Ludwig and associates [99] did not look in to presence/absence disease as 

phenotypic trait. 

 

 

Figure 3.19: Manhattan plot of –log P values for each SNP tested against EBA disease phenotype 
(presence/absence) 
Each dot represents 1199 SNPs in X-axis according to their position on each chromosome along with 
respective ANOVA –log P values in Y-axis. 

 

3.6 Genetics and skin microbiota interaction 
 

The results in this study reveal that the bacterial taxon abundance from mouse skin does display a 

clear genetic component. Covariate QTL analysis was applied in order to evaluate potential 
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interactions between bacterial species and disease susceptibility between each of the 131 CMM 

species abundances (as covariates) and EBA disease susceptibility (presence/absence of disease as 

primary phenotype) (Figure 3.20).  

 
Figure 3.20: A graphical representation of covariate QTL mapping procedure.  
Addition of covariates in the QTL analysis will result in reduced residual variation, which directly 
improves the power of QTL detection. This analysis directly reflects the extent of QTL x covariate 
interaction. 

 

 

Figure 3.21:"Manhattan plot showing –log P values for each SNP tested against EBA including 
Staphylococcus spp. (OTUID 173469) abundance as a covariate 
SNPs with an E-value (Genome wide significance) < 0.05 are shown in red. 
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The covariate analysis revealed a significant covariation (E value < 0.1) involving 10 out of 131 

taxa, which, intriguingly, increased the power of detecting EBA QTLs, as a novel locus (covariate 

QTL) (Chr.19, CI 53 – 60, peak at 57 Mb) was detected (Figure 3.21, Appendix B Table B.6). Two 

OTUs belonging to the genus Staphylococcus clearly display a gene-bacterial interaction (E value < 

0.05) (Figure 3.22, Appendix B Table B.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.22: Portion of chromosome 19 containing the covariate QTL with a peak at SNP 
rs6211533 
SNPs shown in this figure in red and blue lines are those SNPs marked in Figure 3.19 and Figure 
3.21 highlighted in respective colors within respective figures. 
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To further characterize the nature of the identified covariate QTL, individuals were divided 

arbitrarily into “high” (top 50%) and “low” (bottom 50%) groups with respect to their individual 

OTU abundances and analyzed the proportion of individuals developing EBA with respect to host 

genotype. This revealed that for most cases the proportion of animals developing EBA was higher 

among the low OTU abundance category (n = 10; one of which was also significant by Fisher’s 

exact test between these defined abundance categories (Figure 3.23); It also noted however, that all 

10 taxa display significant covariation), suggesting a probiotic role (Appendix B Table B.7). While 

community-level alterations of the skin microbiota in the context of EBA are present (e.g. Appendix 

A Figure A.3-A.5, Figure 3.11, and Figure 3.12), it can be note that the putative probiotic covariate 

taxa identified here do not vary in abundance simply according to disease status. Namely, both 

healthy and diseased individuals are found among the low abundance categories, thus, low 

abundance of e.g. Staphylococcus spp. is not a simple byproduct of disease, but increases the 

probability of developing symptoms. 

The large number of covariate bacterial taxa interacting with a single host locus suggests that 

individual bacterial taxa may not be acting independently. Thus, to identify potential interactions 

among covariate taxa we performed a pairwise correlation analysis (Figure 3.24). Indeed, this 

revealed significant positive correlations (Pearson correlation; P-value ≤ 0.05 after correction for 

multiple testing (Benjamini-Hochberg [127])) between many taxa, suggesting interactions between 

the host locus and bacterial species assemblages or individual driver species.  
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Figure 3.23:"Percentage of animals developing EBA among high (top 50%) and low (bottom 
50%) Staphylococcus spp. (OTUID 173469) abundance categories with respect to host genotype 
at rs6211533, represented by green (AA), yellow (AC) and blue (CC). Numbers in parentheses 
indicate the sample size within each genotype category. 
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Figure 3.24: Pearson correlation matrix of 10 species OTUs that significantly co-vary with 
EBA susceptibility locus on chromosome 19.  
For OTUs not classified at the genus level, the next highest taxonomic level is shown (as marked 
in asterisk *). The taxonomic level of classification is indicated by k, p, c, o, f and g for kingdom, 
phylum, class, order, family and genus, respectively. Only values significantly differing from zero 
after correction for multiple testing[127] are shown by either blue (positive correlation) or red 
(negative correlation) squares. 
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4. Discussion 
 

Mammalian hosts are essentially sterile at birth but quickly become colonized by microbes [129], 

[130]. The microbial communities on human skin are primarily driven by the mode of delivery. It 

has been reported that babies born by C-section have microbiota similar to their mother’s skin while 

vaginally delivered babies have bacterial composition similar to vaginal microbiota [44]. 

Understanding the complex population structure of skin microbiota in the context of host-symbiont 

and host-pathogen relationship would indeed greatly advance the field mainly focused on the role of 

the environment in the development and progression of the autoimmune disease. Unlike the 

microbiota studies in gastrointestinal tract, a need exists to study the role of skin microbiota 

especially in the context of health and disease. Current results on abundance differences among skin 

communities in skin diseases such as atopic dermatitis [41], psoriatic lesions [42] and acne [43] fail 

to address whether the change is due to causes or consequences of the disease. In the context of 

autoimmune skin blistering disease, no study to date has focused on the skin microbiota. This study 

makes the first attempt to simultaneously study interactions between skin microbiota and host- 

genetics and its influence on EBA disease susceptibility, using a large number of animals (261 mice) 

from fourth generation of AIL population (see Methods). Animals in this generation include 

genetically susceptible individuals (~33%) as well as those resistant to immunization-dependent 

EBA disease. Non-immunized mice were also included in the study to control for immunization 

effect (see Methods and Results). 

Ears from 261 mice were specifically chosen for skin microbiota phenotyping because it is the 

site of the first disease manifestations of EBA clinical symptoms. The EBA clinical symptoms 

include redness, erythema, blistering, erosions, lesions, etc. High throughput sequencing of variable 

regions (V1-V2) of the bacterial 16s rRNA gene was used to phenotype the skin bacterial 

composition from mouse ears. The skin bacterial composition at the bacterial phyla level observed in 

this study is comparable to that of previously published studies on skin microbial communities [6], 
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[30], [47], [125] and hence confirms that the skin bacterial composition findings in this study are 

indeed a true representation of skin microflora. The analysis results of diversity “within” (Alpha 

diversity analysis) and “between” (Beta diversity analysis) individuals revealed significant 

differences between microbial community composition among healthy and diseased individuals. This 

further pointed to the direction towards the existence of important bacterial species candidates 

contributing to these patterns. At the species level, indicator species analysis showed that most OTUs 

displayed a strong association with healthy individuals compared to diseased individuals. This 

change could be a result of both causes as well as consequences of the disease. Increase in the 

bacterial diversity and evenness among healthy individuals supports the well-known hygiene 

hypothesis. This hypothesis suggests that the regulation of immune system response is compromised 

by diminished exposure to pathogens early in life because of changes in life style factors such as 

overuse of antibiotics, vaccines and improve hygiene methods. This immediately raises the question 

of what exactly constitutes hygiene microflora hypothesis? This theory is mainly supported by the 

observation or circumstantial evidences resulting from various microbiota studies on the context of 

disease state. Scientists are still trying to figure out the ways to understand this complex puzzle on 

how commensal bacteria are involved in changing the host health states. 

Recent clinical studies have provided valuable information about the different types and 

abundance of skin microbes, but they fail to address their function [49], [50], [125], [131], [132]. 

There are three different categories of relationship existing between host and microbial flora and 

they are parasitism, commensalism or mutualism [133]. These relationships also exist among 

microbial communities found within or on the host bodies making it more complex to disentangle 

their individual functions to host. They might act as an individual bacterial species or group of 

driving species contributing for specific host function at a given host environment or in the presence 

of certain unknown factors. In this study there are 38 bacterial species OTUs found in high 

abundance among healthy individuals compared to EBA diseased mice (Appendix B Table B.1). 
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Out of them eight bacterial OTUs belong to the genus Corynebacterium and also seven belong to 

Staphylococcus. These two genus level bacterial populations are common members of the skin flora. 

Metagenomics studies of different skin areas of mouse as well as humans have revealed that 

Corynebacterium and Staphylococcus are the most abundant organisms colonizing moist areas of the 

skin [30], [48]. Coryneforms of bacteria are Gram-positive, nonmotile facultative anaerobic bacteria 

that they are found in skin regions such as hair follicles, eccrine and sebaceous glands. There are 17 

different bacterial species belonging to the genus Corynebacterium and not all are present on 

mammalian skin [133]. Among these there are two bacterial species Corynebacterium dipththeriae 

[134], [135], [136], [137] and Corynebacterium jeikeium, which are known to be linked to different 

disease states in humans [138], [139], [140]. C.jeikeium is also found within the normal skin flora of 

most humans and is commonly found in hospitalized patients [140], [141]. This species produces 

bacteriocin-like compounds which might be used to ward off potential microbial pathogens and 

competitors, a possible way by which this bacteria species gives protection to host [133]. This 

particular bacterial species looks as if it exhibits both pathogenesis and benefits to the host. It 

remains to be explored what makes this bacterium turn pathogenic.  

Staphylococcus epidermidis and Staphylococcus aureus are two other species widely found in 

skin flora. They are Gram-positive coccus found in clusters. S. aureus has been usually classified as 

transient pathogen but it is also found in the nasal microbiota of healthy individuals [142]. Certain 

strains of S. aureus have been shown to produce bacteriocins, which inhibit the growth of other S. 

aureus strains [143]. It has also been shown that S.epidermidis produces a variety of bacteriocins 

[144], [145], [146]. In particular, it produces a toxic peptide that directly regulate other 

microorganisms such as S.aureus and group A Streptococcus (S. pyogenes) [147]. In this way 

S.epidermidis provides the host with additional protection against common pathogens. This “cross 

inhibition” mechanism may also be used by the host to regulate other commensal bacteria 

populations as well. A recent study demonstrated that the colonization of S.epidermidis as a single 
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bacterial species on germ free mouse skin is sufficient to rescue Interleukin-17 (IL-17) production in 

the skin, and this result shows that the local resident skin bacteria is indeed necessary to drive T cell 

function in the skin to main cutaneous immune homeostasis [57]. It has been further shown that the 

presence of S.epidermidis in mouse skin provides immunity to mice against the protozoan parasite 

Leishmania major [57]. It may be now possible to modulate various inflammatory cells by 

commensals as a tool to restore host fitness. But most of these studies are performed on C57BL/6 

(B6), a widely used laboratory mouse strain. It is of greater scientific importance to focus on more 

studies on different genetic backgrounds and derive germ free mouse strains from different genetic 

backgrounds to make available for scientists to perform similar experiments. Understanding the cross 

talk between the host immune system, host genetics and skin microbiota might help us in 

understanding the etiology and pathology of complex diseases such as autoimmune skin blistering 

diseases. Furthermore, it would be very exciting to study and explore how these microbes from 

different areas within host may affect physiological, metabolic and immunological balance. 

It can be seen that shifts in normal microbial community composition (also known as dysbiosis) 

make the host more susceptible to diseases. The association of host genetic variation in maintaining 

healthy skin microbiota or involvement in dysbiosis remains largely unexplored. Results from this 

study provide strong evidence on how host genetically based variation contributes to differences in 

the bacterial communities observed in the skin (Appendix B Table B.3 – B.4). This finding is 

consistent with the previous observation by Benson and associates [27]. They identified that the host 

genetics indeed controls the variation of the mouse gut community. These two findings clearly show 

a glimpse of the host genetic association over microbial communities found in gut and skin 

communities. In a previous QTL analysis of the mouse fecal community, Benson et al. [27] reported 

13 significant and 5 additional suggestive QTLs for 26 out of 64 taxonomic groups tested from 

CMM. However, their analysis was not extended beyond the level of bacterial genera. Despite a 

more inclusive set of phenotypic traits extending to the bacterial species (OTU) level, this study 
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detected nine significant QTLs for nine out of 131 species level traits (Appendix B Table B.3). 

Interestingly, despite differences in experimental setup and the obvious distinction between the two 

environments, a strong evidence of overlap between studies was found. The confidence intervals of 

two out of 18 QTLs controlling bacterial abundance in murine feces contain the peak SNP of a skin 

QTL, which overlaps more than expected by chance (P value < 0.05; Figure 3.18; Methods). One of 

these QTLs is consistent at the phyla level (Firmicutes, Chr. 14), while the other is at the order level 

(Pseudomonadales, Chr. 9). Similarly, an additional two of our skin spQTLs (OTU N31208 

belonging to Streptococcus on Chr. 12 and OTU 130241 belonging to Herbaspirillum on Chr. 15) 

overlap with fecal QTLs from another recently published study [128] although the taxonomic 

assignments do not agree at even the phylum level. Given the evidence of overlap of skin QTLs with 

previous studies of the gut, certainly a portion of these variants will have influences wider reaching 

than the ear. This speculation could be true as there are high chances that the host-coevolution of 

skin and gut bacteria communities could have evolved at the same time and the host has indeed 

found a common mechanism of tolerance to allow certain commensal bacterial taxon to reside in gut 

and skin simultaneously for its fitness. It further requires fine mapping within these QTL regions to 

find out whether the same genes are indeed involved in controlling the same or different bacterial 

taxa in the gut and skin regions and how this could directly contribute to the fitness of specific local 

regions of the host. However, these fine-mapped gene functions should be verified from gene 

knockout studies to further confirm the claim. It is indeed interesting to study whether the same 

genes are involved in improving the fitness of the host by manipulating the gut as well as skin 

communities simultaneously.  Future research may enhance our understanding of the evolutionary 

forces that shaped the host-genes influencing certain microbial communities. 

In addition to exogenous factors, genetic variation of innate immune system genes also appears to 

shape the composition and structure of commensal bacteria. IgA-deficient mice become highly 

colonized by segmented filamentous bacteria (SFB) [148]. It has been shown that SFB colonization 
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in the gut promotes IL-17 production through TH17 cells (Interleukin -17 (IL-17) producing helper T 

cells) [149]. Toll-like receptor (TLRs) signaling is the main part of the innate immune system and is 

widely studied in the context of its influence over microbiota composition in the mammalian gut. A 

recent study on TLR4 knockouts (KO) clearly showed that gut microbial products regulate 

gastrointestinal motility in mice through TLR4 signaling [150]. Another study simultaneously 

compared bacterial taxa that are affected by TLR signaling in the ileum or cecum from colonies of 

MyD88, TLR2, TLR3, TLR4, TLR5, or TLR9 KO mice and their respective wild type (WT) healthy 

controls [151]. In the results they showed that there is high possibility of specific bacterial taxa 

getting affected by defects in the TLR signaling pathways [151]. These results further motivated us 

to look for innate immune genes within the QTLs found in this study. The confidence intervals of 

skin microbiota QTLs found in this study contain nine genes known to be involved in the functioning 

of the innate immune system (Appendix B Table B.5). Interleukin-1 receptor-associated kinase 

(IRAK)-4 is an interesting candidate found within the confidence interval of spQTL6, which 

modulates an OTU (ID 130241) belonging to the genus Herbaspirillum. Deficiencies of this gene in 

humans lead to increased susceptibility to pyogenic bacterial infections including Staphylococcus 

aureus [152], and its interaction with the MYD88 adapter protein is used by several Toll-like 

receptor (TLR) pathways in host defence [153], as well as being involved in controlling commensal 

bacteria [154]. Another gene coding for CD14 antigen is found within spQTL8 on chromosome 18, 

which modulates an OTU (ID N10459) belonging to the genus Staphylococcus. Increasing CD14 

expression enhances TLR2 activation in skin in the presence of vitamin D3—1,25-dihydroxyvitamin 

D3 (1,25D3) [155], which in turn influences the skins sensitivity to microbial challenge. 

Furthermore, several studies have shown that components of Staphylocccus aureus (LTA and 

peptidoglycan) interact with the CD14 molecule [156], [157], [158]. Finally, by treating bacterial 

abundances as covariates with the presence/absence of EBA, an additional significant EBA QTL on 

chromosome 19 was identified (Fig. 4). One potential candidate gene lying within this chromosomal 
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interval (53-60 Mb) is caspase-7 (casp7), a member of the cytosolic cysteine protease family known 

to be involved with inflammatory disorders [159], [160] and defense against pathogens [161]. 

The results from this study confirmed previous findings that immunization of SJL/J mice with 

COL7 leads to autoantibody production in all mice, while clinically overt blistering is observed in 

80% of the mice. Interestingly, the remaining 20% of mice do not develop skin blistering, despite the 

presence of autoantibody production. The ultimate reason, why genetically identical mice housed 

under same environmental conditions, react differently to the same attempt of disease induction, can 

be explained by sub-clinical inflammatory events, which are obviously triggered by environmental 

factors in genetically prone individuals [57], [162], [163], [164]. In order to test whether exogenous 

factors lead to this altered state of subclinical inflammation, the microbial communities of the skin 

present before disease induction were characterized. Mice which do not develop symptoms after 

disease induction showed an increased microbial diversity compared to individuals that developed 

EBA symptoms, identifying bacterial diversity as a key element of protection against autoimmune 

diseases [165]. This result is in consistent with similar analyses done on the gut microbiota of 

identical twin humans, where healthy individuals showed greater bacterial diversity compared to 

individuals with Crohn’s disease [164]. The microbiome along with sub-clinical inflammation 

should be further evaluated as tools for surveillance of mouse experiments to minimize the bias by 

subclinical differences between the mice. Additionally, these two factors may serve as a target in 

prevention and therapy of autoimmune disease symptoms. Moreover, the results of this study show 

possible inflammatory and environmental events which enable further investigation of gene-

environment interactions in the pathogenesis of autoimmunity, as KC and TNFα have both been 

reported to be induced in the skin and other organs by the commensal flora, thus leading to 

inflammation and regulating autoimmune responses [166], [167].  
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Similar to previous studies of chronic inflammatory skin diseases, findings in this study support a 

role of resident microbial communities in disease pathogenesis. The differences in community 

composition and structure between mice with and without EBA symptoms are akin to shifts in the 

skin microbiota associated with atopic dermatitis disease flares and treatment [168] or between 

psoriatic lesions and both unaffected skin in patients and healthy controls [169]. A rough three-fold 

increase over the last 30 years of atopic dermatitis in industrialized countries suggests more complex 

environmental influences, possibly mediated by changes in microbial communities. By investigating 

disease provocation in a large mouse mapping population under controlled environmental conditions, 

this study is able to identify individual, genotype-dependent microbial risk factors among a core set 

of taxa inhabiting the skin of both healthy and diseased mice, more closely resembling a disease-

modifying effect. Validation and characterization of these interactions await more intensive 

experimental interrogation in gnotobiotic animals, for example. Thus, the further identification and 

functional analysis of host genetic and probiotic bacterial factors represent promising avenues for 

research in preventative and therapeutic treatment development. 
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6. Appendices 

6.1 Appendix A – Additional figures 
 

Figure A.1: Heat map represents the abundances of the species OTUs of skin microbiota across 
261 mice from generation four of AIL population.  
Abundance levels are gradient color coded where yellow being high abundance and black indicates 
absent or low abundance taxa. 
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Figure A.2: Distribution of sequences among the 1000 most abundant species level OTUs 
The X-axis indicates the individual OTUs ranked according to their relative abundance from high to 
low. The Y-axis indicates the cumulative percent of the total number of sequences. The dotted lines 
represent 80% and 90% of the total sequence reads from 261 samples, corresponding to the 131 and 
762 most abundant OTUs, respectively. 
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Figure A.3: Faiths Phylogenetic diversity alpha diversity measurement for species level OTUs 
in healthy (n = 119 in blue) and EBA (n = 64 in red) samples 
Error bars represent the 95% confidence interval. P-value was determined by the Wilcoxon rank sum 
test in R. 

 

 

Figure A.4: Observed species alpha diversity measurement for species level OTUs in healthy (n 
= 119 in blue) and EBA (n = 64 in red) samples 
Error bars represent the 95% confidence interval. P-value was determined by the Wilcoxon rank sum 
test in R. 
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Figure A.5: Constrained analysis of principal coordinates of the weighted UniFrac metric 
using disease status as a constrained factor 
*P-value = 0.015  



Appendix!A:!Additional!figures!

! ! ! 99!

 

Figure A.6: Constrained analysis of principal coordinates of the Bray-Curtis index using 
disease status as a constrained factor 
*P-value = 0.015 
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Figure A.7: Constrained analysis of principal coordinates of the Jaccard index using disease 
status as a constrained factor  
*P-value = 0.005 
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Figure A.8: Scatterplot from pairwise comparisons of taxonomic bins from technical repeats 
performed on five different samples 
Each sample is displayed by a different color/symbol. The V1-V2 region of the 16s rRNA gene from 
each sample was amplified with two different sets of barcoded primers. The sequence data was 
processed and taxonomic assignments were performed (see Methods). Sequence counts for each 
taxonomic bin were log-transformed and plotted for all pairwise comparisons of the two technical 
repeats for each sample. Taxonomic bins falling above the red lines indicate those with a correlation 
>0.97 between replicates and correspond to having at least 20 reads per bin. Thus, OTUs with at 
least 20 reads per bin and occurring in at least 20 animals were chosen to comprise the “Core 
Measurable Microbiota” (CMM). 
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Figure A.9: Heat map represents the abundances of the CMM species OTUs of skin microbiota 
across 261 mice from generation four of AIL population 
Abundance levels are gradient color coded where yellow being high abundance and black indicates 
absent or low abundance taxa. Most abundant quantitatively reproducible 131 CMM species OTUs 
across the AIL population is indicated by red line.
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6.2 Appendix B – Additional tables 
Table B.1: Indicator species analysis of EBA vs. healthy samples 
S.No OTUIDǂ Taxonomic Classificationᵟ Closely related speciesᵠ 

1 N2791 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
2 264597 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
3 N19632 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
4 N15384 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
5 N31433 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
6 530894 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
7 82696 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
8 470219 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium Corynebacterium 

tuberculostearicum 
9 273465 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Microbacterium unclassified species 

10 226812 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nocardioidaceae;g__Propionicimonas Propionicimonas paludicola 
11 368907 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Propionibacteriaceae;g__Propionibacterium Propionibacterium acnes 
12 N2007 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
13 268155 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
14 N24810 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
15 N10167 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
16 182382 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
17 325622 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
18 174809 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides unclassified species 
19 237040 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Alicyclobacillaceae;g__Alicyclobacillus unclassified species 
20 N10292 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
21 538741 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
22 N19020 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
23 92651 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
24 157775 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus aureus 
25 N13471 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus hominis 
26 173469 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus hominis 
27 N22308 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus equorum 
28 18951 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus Streptococcus pneumoniae 
29 108747 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus Streptococcus thermophilus 
30 N26397 k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria unclassified species 
31 294146 k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria unclassified species 
32 293030 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ralstonia unclassified species 
33 243860 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ralstonia unclassified species 
34 N26135 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae unclassified species 
35 269548 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Helicobacteraceae;g__Helicobacter Helicobacter hepaticus 
36 535160 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter Acinetobacter johnsonii 
37 66816 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas unclassified species 
38 181076 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae;g__Stenotrophomonas unclassified species 
39 N5309 k__Bacteria;p__Thermi;c__Deinococci;o__Deinococcales;f__Deinococcaceae;g__Deinococcus unclassified species 
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Table B.1 (continued) 

S.No OTUIDǂ Healthy samples 
(%Average 

relative 
abundance) 

EBA samples 
(%Average relative 

abundance) 

Standard 
Deviation of 

Healthy 
samples 

Standard 
Deviation of EBA 

samples 

P-value 
(without 

correction) 

P-value 
(Benjamini 

and 
Hochberg-
adjusted) 

More 
abundance 
direction 

1 N2791 5.02 2.26 11.73 7.98 0.001 0.01 Healthy ↑ 
2 264597 0.14 0.07 0.16 0.12 0.002 0.013 Healthy ↑ 
3 N19632 0.08 0.03 0.12 0.17 0.002 0.013 Healthy ↑ 
4 N15384 0.07 0.04 0.11 0.08 0.003 0.016 Healthy ↑ 
5 N31433 0.17 0.07 0.22 0.39 0.002 0.013 Healthy ↑ 
6 530894 0.13 0.1 0.19 0.19 0.007 0.028 Healthy ↑ 
7 82696 0.11 0.08 0.16 0.18 0.012 0.041 Healthy ↑ 
8 470219 0.52 0.46 1.53 1.66 0.009 0.034 Healthy ↑ 
9 273465 0.04 0.01 0.05 0.16 0.005 0.022 Healthy ↑ 

10 226812 0.1 0.02 0.47 0.09 0.001 0.01 Healthy ↑ 
11 368907 1.03 0.75 1.04 1.13 0.001 0.01 Healthy ↑ 
12 N2007 0.13 0.08 0.18 0.17 0.001 0.01 Healthy ↑ 
13 268155 0.47 0.27 0.54 0.33 0.001 0.01 Healthy ↑ 
14 N24810 0.2 0.1 0.46 0.13 0.001 0.01 Healthy ↑ 
15 N10167 0.22 0.15 0.26 0.26 0.004 0.019 Healthy ↑ 
16 182382 0.16 0.09 0.24 0.11 0.009 0.034 Healthy ↑ 
17 325622 0.13 0.09 0.18 0.18 0.013 0.044 Healthy ↑ 
18 174809 0.12 0.07 0.18 0.11 0.002 0.013 Healthy ↑ 
19 237040 0.26 0.09 0.5 0.34 0.001 0.01 Healthy ↑ 
20 N10292 0.12 0.09 0.25 0.33 0.002 0.013 Healthy ↑ 
21 538741 0.31 0.29 0.41 0.64 0.004 0.019 Healthy ↑ 
22 N19020 0.14 0.08 0.18 0.12 0.003 0.016 Healthy ↑ 
23 92651 1.98 1.77 3.74 3.45 0.014 0.046 Healthy ↑ 
24 157775 0.27 0.18 0.46 0.35 0.002 0.013 Healthy ↑ 
25 N13471 0.13 0.1 0.14 0.17 0.005 0.022 Healthy ↑ 
26 173469 1.37 1.03 2.26 1.34 0.004 0.019 Healthy ↑ 
27 N22308 0.17 0.27 0.18 0.26 0.016 0.05 EBA ↑ 
28 18951 0.21 0.16 0.28 0.25 0.003 0.016 Healthy ↑ 
29 108747 1.21 0.73 1.79 1.77 0.001 0.01 Healthy ↑ 
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S.No        OTUIDǂ Healthy samples 
(%Average 

relative 
abundance) 

EBA samples 
(%Average relative 

abundance) 

Standard 
Deviation of 

Healthy 
samples 

Standard 
Deviation of EBA 

samples 

P-value 
(without 

correction) 

P-value 
(Benjamini 

and 
Hochberg-
adjusted) 

More 
abundance 
direction 

30 N26397 0.6 0.26 1.6 0.43 0.002 0.013 Healthy ↑ 
31 294146 0.7 0.26 2.17 0.46 0.003 0.016 Healthy ↑ 
32 293030 0.97 0.92 0.85 1.19 0.003 0.016 Healthy ↑ 
33 243860 6.92 6.1 6.31 6.95 0.01 0.036 Healthy ↑ 
34 N26135 0.41 0.09 1.56 0.37 0.001 0.01 Healthy ↑ 
35 269548 1.35 1.03 2.01 2.09 0.006 0.025 Healthy ↑ 
36 535160 0.28 0.16 0.4 0.31 0.001 0.01 Healthy ↑ 
37 66816 0.31 0.23 0.5 0.38 0.007 0.028 Healthy ↑ 
38 181076 0.11 0.1 0.16 0.22 0.001 0.01 Healthy ↑ 
39 N5309 0.22 0.13 0.35 0.22 0.001 0.01 Healthy ↑ 

 

ǂ OTU IDs. The Ids for clusters displaying no match to the reference Greengenes database start with an "N" 
ᵟ Taxonomic classification from the RDP database and its prefixes k, p, c, o, f and g for kingdom, phylum, class, order, family and genus bacterial   
taxonomic   level, respectively. For OTUs that were unclassified, the next highest taxonomic level to which they could be classified is shown. 
ᵠ Closely related species were identified using the Greengenes database (see Methods) and were assigned using BLAST. 
Species OTU having more abundance in EBA sample is shown in bold text. 
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Table B.2: Estimation of cage effect and family variances using linear mixed model method of CMM species level OTUs 

 
S.No 

 
OTUIDǂ 

 
Taxonomic Classificationᵟ 

 
Closely related speciesᵠ 

1 N19632 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
2 N2791 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
3 N31433 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
4 530894 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
5 N16209 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
6 13405 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
7 N15384 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
8 82696 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium unclassified species 
9 273465 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Microbacterium unclassified species 

10 226812 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nocardioidaceae;g__Propionicimonas Propionicimonas paludicola 
11 591285 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium Bifidobacterium longum 
12 325622 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
13 N10167 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
14 N79 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
15 398943 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
16 264534 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
17 N24810 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
18 177453 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
19 182382 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
20 206324 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
21 469709 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides Bacteroides dorei 
22 356164 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides Bacteroides acidifaciens 
23 469832 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides Bacteroides uniformis 
24 190522 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Prevotellaceae;g__Prevotella unclassified species 
25 N27927 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Rikenellaceae unclassified species 
26 N10366 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Rikenellaceae;g__Alistipes unclassified species 
27 309188 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Rikenellaceae;g__Alistipes unclassified species 
28 167498 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Rikenellaceae;g__Alistipes unclassified species 
29 263010 k__Bacteria;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;f__Flavobacteriaceae unclassified species 
30 N14520 k__Bacteria;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;f__Flavobacteriaceae;g__Chryseobacterium unclassified species 
31 560209 k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta unclassified species 
32 60254 k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta unclassified species 
33 N12197 k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta unclassified species 
34 N8891 k__Bacteria;p__Deferribacteres;c__Deferribacteres;o__Deferribacterales;f__Deferribacteraceae;g__Mucispirillum Mucispirillum schaedleri 
35 237040 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Alicyclobacillaceae;g__Alicyclobacillus unclassified species 
36 N18531 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Jeotgalicoccus unclassified species 
37 N6868 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus equorum 
38 N13471 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus hominis 
39 N12039 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus equorum 
40 N29011 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
41 538741 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 

 



!
Appendix!B:!Additional!tables!

! ! ! 108!

S.No OTUIDǂ Taxonomic Classificationᵟ Closely related species 

42 92651 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
43 N2179 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus hominis 
44 N15687 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus equorum 
45 N13661 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus hominis 
46 N19525 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
47 120648 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus equorum 
48 173469 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus hominis 
49 N2632 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus equorum 
50 N19020 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
51 157775 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus aureus 
52 N10292 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
53 N1906 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus equorum 
54 102524 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
55 N10459 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
56 276600 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Aerococcaceae;g__Aerococcus unclassified species 
57 N4110 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Aerococcaceae;g__Aerococcus unclassified species 
58 160031 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus Lactobacillus delbrueckii 
59 252321 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus Lactobacillus helveticus 
60 567604 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus unclassified species 
61 286668 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus unclassified species 
62 18951 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus Streptococcus pneumoniae 
63 108747 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus Streptococcus thermophilus 
64 N31208 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus unclassified species 
65 346400 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae unclassified species 
66 195445 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae unclassified species 
67 331878 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae unclassified species 
68 339014 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae unclassified species 
69 N19958 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae unclassified species 
70 328536 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Clostridium unclassified species 
71 381715 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae unclassified species 
72 N26397 k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria unclassified species 
73 294146 k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria unclassified species 
74 549374 k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodospirillales;f__Acetobacteraceae;g__Acetobacter Acetobacter aceti 
75 243860 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ralstonia unclassified species 
76 130241 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__Herbaspirillum unclassified species 
77 N26135 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae unclassified species 
78 52884 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Helicobacteraceae;g__Helicobacter Helicobacter apodemus 
79 101810 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Helicobacteraceae;g__Helicobacter Helicobacter ganmani 
80 269548 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Helicobacteraceae;g__Helicobacter Helicobacter hepaticus 
81 143131 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae unclassified species 
82 288912 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter unclassified species 
83 66816 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas unclassified species 
84 308167 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas unclassified species 
85 231154 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae;g__Stenotrophomonas Pseudomonas geniculate 
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Table B.2 (continued) 

S.No OTUIDǂ  Variance         % Total variance explained*  
  Family Cage Residue Family Cage Residue 

1 N19632 0 0.1267 0.1387 0% 47.74% 52.26% 
2 N2791 0.0001 0.4634 0.3696 0.01% 55.62% 44.36% 
3 N31433 0 0.1662 0.1525 0% 52.15% 47.85% 
4 530894 0.0227 0.0512 0.3019 6.04% 13.62% 80.34% 
5 N16209 0.0003 0.0808 0.1891 0.11% 29.90% 69.99% 
6 13405 0 0.1301 0.3132 0% 29.35% 70.65% 
7 N15384 0 0.0975 0.1168 0% 45.50% 54.50% 
8 82696 0 0.0809 0.2299 0% 26.03% 73.97% 
9 273465 0.0152 0.0604 0.2006 5.50% 21.87% 72.63% 

10 226812 0.0302 0.0624 0.2134 9.87% 20.39% 69.74% 
11 591285 0 0.1791 0.3662 0% 32.84% 67.16% 
12 325622 0 0.052 0.2816 0% 15.59% 84.41% 
13 N10167 0 0.1401 0.2344 0% 37.41% 62.59% 
14 N79 0 0.0952 0.2306 0% 29.22% 70.78% 
15 398943 0.0077 0.0514 0.2183 2.78% 18.53% 78.70% 
16 264534 0 0.0848 0.1961 0% 30.19% 69.81% 
17 N24810 0.0568 0.0496 0.276 14.85% 12.97% 72.18% 
18 177453 0.0029 0.0976 0.4144 0.56% 18.96% 80.48% 
19 182382 0 0.0865 0.2235 0% 27.90% 72.10% 
20 206324 0.0017 0.0416 0.2069 0.68% 16.63% 82.69% 
21 469709 0.0353 0.0509 0.231 11.13% 16.05% 72.82% 
22 356164 0.0642 0.0332 0.1855 22.69% 11.74% 65.57% 
23 469832 0 0.1076 0.2346 0% 31.44% 68.56% 
24 190522 0.0403 0.024 0.2131 14.53% 8.65% 76.82% 
25 N27927 0.0263 0.0409 0.1713 11.03% 17.15% 71.82% 
26 N10366 0.0388 0.0354 0.2213 13.13% 11.98% 74.89% 
27 309188 0.0064 0.0723 0.2255 2.10% 23.77% 74.13% 
28 167498 0 0.0577 0.3246 0% 15.09% 84.91% 
29 263010 0.0406 0.0689 0.2902 10.16% 17.24% 72.60% 
30 N14520 0.0007 0.0937 0.1592 0.28% 36.95% 62.78% 
31 560209 0.0582 0.0375 0.2205 18.41% 11.86% 69.73% 
32 60254 0.046 0.0652 0.269 12.10% 17.15% 70.75% 
33 N12197 0 0.0727 0.2442 0% 22.94% 77.06% 

 
       
       

S.No OTUIDǂ Taxonomic Classificationᵟ Closely related speciesᵠ 
86 470139 k__Bacteria;p__Tenericutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Clostridium Clostridium ramosum 
87 15711 k__Bacteria;p__Tenericutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Clostridium Clostridium cocleatum 
88 N5309 k__Bacteria;p__Thermi;c__Deinococci;o__Deinococcales;f__Deinococcaceae;g__Deinococcus unclassified species 
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S.No OTUIDǂ  Variance         % Total variance explained*  
  Family Cage Residue Family Cage Residue 

34 N8891 0.0003 0.1197 0.2002 0.09% 37.38% 62.52% 
35 237040 0.0001 0.2919 0.3206 0.02% 47.65% 52.33% 
36 N18531 0 0.1379 0.1688 0% 44.96% 55.04% 
37 N6868 0 0.1978 0.2407 0% 45.11% 54.89% 
38 N13471 0 0.0959 0.1602 0% 37.45% 62.55% 
39 N12039 0 0.1131 0.1603 0% 41.37% 58.63% 
40 N29011 0.0004 0.1362 0.2516 0.10% 35.09% 64.81% 
41 538741 0 0.1034 0.2704 0% 27.66% 72.34% 
42 92651 0 0.1498 0.3397 0% 30.60% 69.40% 
43 N2179 0.0001 0.048 0.1246 0.06% 27.79% 72.15% 
44 N15687 0 0.0891 0.1535 0% 36.73% 63.27% 
45 N13661 0 0.1294 0.1681 0% 43.50% 56.50% 
46 N19525 0 0.0986 0.1841 0% 34.88% 65.12% 
47 120648 0 0.1504 0.1977 0% 43.21% 56.79% 
48 173469 0 0.1301 0.3254 0% 28.56% 71.44% 
49 N2632 0 0.0526 0.1297 0% 28.85% 71.15% 
50 N19020 0 0.1 0.1499 0% 40.02% 59.98% 
51 157775 0 0.1449 0.2712 0% 34.82% 65.18% 
52 N10292 0 0.077 0.2042 0% 27.38% 72.62% 
53 N1906 0 0.0617 0.2143 0% 22.36% 77.64% 
54 102524 0 0.1531 0.2797 0% 35.37% 64.63% 
55 N10459 0 0.0838 0.1449 0% 36.64% 63.36% 
56 276600 0 0.2862 0.2458 0% 53.80% 46.20% 
57 N4110 0 0.0807 0.1084 0% 42.68% 57.32% 
58 160031 0.0868 0.0881 0.4521 13.84% 14.05% 72.11% 
59 252321 0.0384 0.0732 0.252 10.56% 20.13% 69.31% 
60 567604 0 0.0944 0.2788 0% 25.29% 74.71% 
61 286668 0.0093 0.0636 0.3263 2.33% 15.93% 81.74% 
62 18951 0.089 0.0445 0.2638 22.40% 11.20% 66.40% 
63 108747 0 0.1926 0.376 0% 33.87% 66.13% 
64 N31208 0.0163 0.0507 0.2109 5.87% 18.24% 75.89% 
65 346400 0 0.1126 0.2918 0% 27.84% 72.16% 
66 195445 0.0029 0.039 0.2025 1.19% 15.96% 82.86% 
67 331878 0 0.1772 0.2814 0% 38.64% 61.36% 
68 339014 0 0.0932 0.2281 0% 29.01% 70.99% 
69 N19958 0.0005 0.044 0.2256 0.19% 16.29% 83.52% 
70 328536 0 0.0874 0.2283 0% 27.68% 72.32% 
71 381715 0 0.0899 0.1782 0% 33.53% 66.47% 
72 N26397 0 0.2232 0.2094 0% 51.60% 48.40% 
73 294146 0 0.2295 0.2507 0% 47.79% 52.21% 
74 549374 0 0.1106 0.2204 0% 33.41% 66.59% 
75 243860 0.0102 0.059 0.2635 3.07% 17.73% 79.20% 
76 130241 0 0.0241 0.3727 0% 6.07% 93.93% 
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S.No OTUIDǂ  Variance         % Total variance explained*  
  Family Cage Residue Family Cage Residue 

77 N26135 0 0.1387 0.2505 0% 35.64% 64.36% 
78 52884 0.0003 0.1635 0.253 0.07% 39.23% 60.70% 
79 101810 0 0.2396 0.2272 0% 51.33% 48.67% 
80 269548 0 0.2234 0.3299 0% 40.38% 59.62% 
81 143131 0.0072 0.0328 0.2122 2.85% 13.01% 84.14% 
82 288912 0.0033 0.046 0.2685 1.04% 14.47% 84.49% 
83 66816 0 0.11 0.2874 0% 27.68% 72.32% 
84 308167 0 0.1062 0.2107 0% 33.51% 66.49% 
85 231154 0.0041 0.0426 0.2111 1.59% 16.52% 81.89% 
86 470139 0 0.0292 0.2111 0% 12.15% 87.85% 
87 15711 0.0001 0.0675 0.165 0.04% 29.02% 70.94% 
88 N5309 0.0091 0.0624 0.3072 2.40% 16.48% 81.12% 

 
 

       

 

 

 

 

 

 

 

 

 

ǂ OTU IDs. The Ids for clusters displaying no match to the reference Greengenes database start with an "N" 
ᵟ Taxonomic classification from the RDP database and its prefixes k, p, c, o, f and g for kingdom, phylum, class, order, family and genus bacterial 
taxonomic   level, respectively. For OTUs that were unclassified, the next highest taxonomic level to which they could be classified is shown. 
ᵠ Closely related species were identified using the Greengenes database (see Methods) and were assigned using BLAST. 
Species OTU having more abundance in EBA sample is shown in bold text. 
*Percentage of total variance is the variance divided by the sum of the cage and residue variances 



!
Appendix!B:!Additional!tables!

! ! ! 112!

Table B.3: QTLs detected for species level OTUs of the skin microbiota 

 

 
ǂ OTU Ids. The Ids for clusters displaying no match to the reference Greengenes database start with an "N" 
ᵟ Taxonomic classification from the RDP database and its prefixes k, p, c, o, f and g for kingdom, phylum, class, order, family and genus bacterial taxonomic 
level, respectively. For OTUs that were unclassified, the next highest taxonomic level to which they could be classified is shown. 
ᵠ Closely related species were identified using the Greengenes database (see Methods) and were assigned using BLAST. 
# Percent of phenotypic variation of QTL was estimated using linear regression  
¥ QTL found is determined by location of peak position within the confidence interval of spQTLs and it is not taxon specific 

 

spQTL 
list 

OTUIDǂ Taxonomic Classificationᵟ Closely related speciesᵠ 

spQTL1 193038 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales unclassified species 
spQTL2 60254 k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta unclassified species 
spQTL3 294146 k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria unclassified species 
spQTL4 314572 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter unclassified species 
spQTL5 N31208 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus unclassified species 
spQTL6 130241 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__Herbaspirillum unclassified species 
spQTL7 N26684 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus equorum 
spQTL8 N10459 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus unclassified species 
spQTL9 N6868 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus Staphylococcus equorum 

spQTL 
list 

Nearest 
marker to peak Chr 

Peak 
position in 

Mb 

Anova -
log P 
score 

(LOD) 

Genome wide 
significance 

Confidence 
Interval 

(CI) in Mb 
using 1.5 -
log P drop 

% Phenotypic 
Variance# 

QTL found using 
non-immunized 
plus immunized 

mice without 
clinical EBA mice 

(n=197)¥ 

 QTL found 
only in 

immunized mice 
without clinical 

EBA mice 
(n=119)¥ 

spQTL1 rs6246342 2 150 4.23 E-value < 0.1 132-152 3.26 -- -- 
spQTL2 rs6241331 3 52 4.9 E-value < 0.05 46-55 2.8 yes yes 
spQTL3 rs3677770 4 55 4.23 E-value < 0.1 48-62 6.17 -- -- 
spQTL4 rs6320810 9 115 4.5 E-value < 0.05 106- 3.29 -- -- 
spQTL5 Gnf12.077.067 12 80 4.3 E-value < 0.1 74-85 7.54 -- -- 
spQTL6 rs13482712 15 92 4.28 E-value < 0.1 82-101 7.35 -- yes 
spQTL7 rs13483244 18 21 5.24 E-value < 0.05 11-31 5.44 -- -- 
spQTL8 rs13483319 18 41 4.28 E-value < 0.1 33-46 2.88 -- -- 
spQTL9 rs3706601 18 78 4.14 E-value < 0.1 70-82 11.31 -- -- 
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Table 1Table B.4: Skin microbiota QTLs detected from genus to phylum level 

gpQTL list Taxonomic Classificationᵟ 

gpQTL1 k___Bacteria;p__Bacteroidetes;c__Flavobacteria 

 k___Bacteria;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales 
 k___Bacteria;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;f__Flavobacteriaceae 
 k___Bacteria;p__Cyanobacteria 
 k___Bacteria;p__Cyanobacteria;c__Cyanobacteria 
  

gpQTL2 k___Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae;g__Neisseria 
  

gpQTL3 k___Bacteria;p__Firmicutes 
  

gpQTL4 k___Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae 
  

gpQTL5 k___Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Prevotellaceae;g__Prevotella 
  

gpQTL6 k___Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae 
 k___Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus 
 k___Bacteria;p__Firmicutes;c__Clostridia 
 k___Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales 
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Table B.4 (continued) 

gpQTL 
list 

Nearest marker 
to peak 

Chr Peak 
positio

n in 
Mb 

Anova -
log P 
score 

(LOD) 

Genome 
wide 

significance 

Confidence 
Interval 

(CI) in Mb 
using 1.5 -
log P drop 

% 
Phenotypic 
Variance# 

QTL 
seen in 

spQTLᵠ 

Taxon 
specific 

QTL 
seen in 
spQTLǂ 

QTL found 
using non-
immunized 

plus 
immunized 

mice without 
clinical EBA 

mice 
(n=197)¥ 

 QTL found 
only in 

immunized 
mice without 
clinical EBA 

mice 
(n=119)¥ 

gpQTL1 rs6241331 3 52 4.1 E-value < 0.1 46-55 4.36 yes -- -- -- 

 rs6241331 3 52 4.1 E-value < 0.1 46-55 4.36 yes -- -- -- 

 rs6241331 3 52 4.28 E-value < 0.1 46-55 4.25 yes -- -- -- 

 rs6241331 3 52 4.97 E-value < 0.05 46-55 3.59 yes yes -- -- 

 rs6241331 3 52 4.97 E-value < 0.05 46-55 2.73 yes yes -- -- 

            
gpQTL2 rs13482216 14 63 5.8 E-value < 0.05 56-69 4.13 -- -- yes -- 

            
gpQTL3 CEL.14_73162771 14 82 4.14 E-value < 0.1 70-103 2.25 -- -- yes -- 

            
gpQTL4 rs13483157 17 89 4.25 E-value < 0.1 76-95 2.15 -- -- -- -- 

            

gpQTL5 CEL.18_5565618 18 5 4.21 E-value < 0.1 -12 3.25 yes -- -- yes 

            
gpQTL6 CEL.X_8334947 X 10 4.47 E-value < 0.05 9 – 34 5.25 -- -- -- yes 

 CEL.X_8334947 X 10 4.52 E-value < 0.05 9 – 34 5.22 -- -- -- yes 

 CEL.X_8334947 X 10 4.2 E-value < 0.1 9 – 36 3.34 -- -- -- yes 

 CEL.X_8334947 X 10 4.26 E-value < 0.1 9 – 36 3.32 -- -- -- yes 

ᵟ Taxonomic classification from the RDP database and its prefixes k, p, c, o, f and g for kingdom, phylum, class, order, family and genus bacterial taxonomic level, respectively. For 
OTUs that were unclassified, the next highest taxonomic level to which they could be classified is shown. 
# Percent of phenotypic variation of QTL was estimated using linear regression  

ᵠ QTL found is determined by location of QTL peak position within the confidence interval of spQTLs, but it is not taxon specific 

ǂ QTL found is determined by location of QTL peak position within the confidence interval of spQTLs. At least one of the taxonomic levels of the QTL matches with that of the spQTL. 

¥ QTL found is determined by location of peak position within the confidence interval of gpQTLs, but it is not taxon specific 
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Table B.5: List of innate immunity related genes found within the confidence intervals of spQTLs 

S.No Gene related to innate 
immunity 

Chr Genome 
Coordinates NCBI 

Build 37 in Mb 

cM Gene name 

1 Polr3f 2 144.35-144.37 71.02 polymerase (RNA) III (DNA directed) polypeptide F 
2 Irak4 15 94.37-94.41 48.55 interleukin-1 receptor-associated kinase 4 
3 Aqp4 18 15.55-15.56 8.74 aquaporin 4 
4 Tmem173 18 35.89-35.90 19.23 transmembrane protein 173 
5 Cd14 18 36.88-36.89 19.46 CD14 antigen 
      
  List of innate immunity related genes found within the confidence intervals of gpQTLs 
      
6 Polr3d 14 70.84-70.84 36.32 polymerase (RNA) III (DNA directed) polypeptide D 
7 Prkce 17 86.57-87.06 56.74 protein kinase C, epsilon 
8 Colec12 18 9.71-9.88 4.91 collectin sub-family member 12 
9 Cfp 20 20.50-20.51 16.44 complement factor properdin 

 

S.No Gene related 
to innate 
immunity 

OTUIDǂ Taxonomic Classificationᵟ Closely related 
speciesᵠ 

Nearest 
marker to 
peak 

Chr Peak 
position 
in Mb 

Anova -
log P 
score 

(LOD) 

Confidence 
Interval 

(CI) in Mb 
using 1.5 -
log P drop 

1 Polr3f 193038 k__Bacteria;p__Bacteroidetes;c__Bacteroidia 
;o__Bacteroidales 

unclassified 
species 

rs6246342 2 132 4.23 150-152 

2 Irak4 130241 k__Bacteria;p__Proteobacteria; 
c__Betaproteobacteria;o__Burkholderiales; 
f__Oxalobacteraceae;g__Herbaspirillum 

unclassified 
species 

rs13482712 15 82 4.28 92-101 

3 Aqp4 N26684 k__Bacteria;p__Firmicutes;c__Bacilli; 
o__Bacillales; 
f__Staphylococcaceae;g__Staphylococcus 

Staphylococcus 
equorum 

rs13483244 18 11 5.24 21-31 

4 Tmem173 N10459 k__Bacteria;p__Firmicutes;c__Bacilli; 
o__Bacillales; 
f__Staphylococcaceae;g__Staphylococcus 

unclassified 
species 

rs13483319 18 33 4.28 41-46 

5 Cd14 N10459 k__Bacteria;p__Firmicutes;c__Bacilli; 
o__Bacillales;f__Staphylococcaceae; 
g__Staphylococcus 

unclassified 
species 

rs13483319 18 33 4.28 41-46 
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List of innate immunity related genes found within the confidence intervals of gpQTLs 
 
Table B.5 (continued) 
 
S.No Gene related 

to innate 
immunity 

OTUIDǂ Taxonomic Classificationᵟ Closely related 
speciesᵠ 

Nearest 
marker to 
peak 

Chr Peak 
position 
in Mb 

Anova -
log P 
score 

(LOD) 

Confidence 
Interval 

(CI) in Mb 
using 1.5 -
log P drop 

          

6 Polr3d -- k___Bacteria;p__Firmicutes -- CEL.14_73162
771 

14 82 4.14 70-103 

7 Prkce -- k___Bacteria;p__Proteobacteria; 
c__Gammaproteobacteria;o__Enterobacteriale;
f__Enterobacteriaceae 

-- rs13483157 17 89 4.25 76-95 

          
8 Colec12 -- k___Bacteria;p__Bacteroidetes;c__Bacteroidia; 

o__Bacteroidales;f__Prevotellaceae; 
g__Prevotella 

-- CEL.18_55656
18 

18 5 4.21 -12 

9 Cfp -- k___Bacteria;p__Firmicutes;c__Bacilli; 
o__Lactobacillales;f__Streptococcaceae 

-- CEL.X_833494
7 

X 10 4.47 9 – 34 

  -- k___Bacteria;p__Firmicutes;c__Bacilli; 
o__Lactobacillales;f__Streptococcaceae; 
g__Streptococcus 

-- CEL.X_833494
7 

X 10 4.52 9 – 34 

  -- k___Bacteria;p__Firmicutes;c__Clostridia -- CEL.X_833494
7 

X 10 4.2 9 – 36 

  -- k___Bacteria;p__Firmicutes;c__Clostridia; 
o__Clostridiales 

-- CEL.X_833494
7 

X 10 4.26 9 – 36 

 

ǂ OTU Ids. The Ids for clusters displaying no match to the reference Greengenes database start with an "N" 
ᵟ Taxonomic classification from the RDP database and its prefixes k, p, c, o, f and g for kingdom, phylum, class, order, family and genus bacterial taxonomic level, 
respectively. For OTUs that were unclassified, the next highest taxonomic level to which they could be classified is shown. 
ᵠ Closely related species were identified using the Greengenes database (see Methods) and were assigned using BLAST. 
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Table B.6: Covariate analysis using EBA susceptibility as the primary phenotype and bacterial species OTUs as covariates 

S.No OTUIDǂ Taxonomic Classificationᵟ Closely related speciesᵠ 
1 173469 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales; 

f__Staphylococcaceae;g__Staphylococcus 
Staphylococcus hominis 

2 N13471 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales; 
f__Staphylococcaceae;g__Staphylococcus 

Staphylococcus hominis 

3 589787 k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta unclassified species 
4 N12197 k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta unclassified species 
5 60254 k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta unclassified species 
6 52884 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria; 

o__Campylobacterales;f__Helicobacteraceae;g__Helicobacter 
Helicobacter apodemus 

7 286668 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales; 
f__Streptococcaceae;g__Streptococcus 

unclassified species 

8 243860 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria; 
o__Burkholderiales;f__Burkholderiaceae;g__Ralstonia 

unclassified species 

9 101810 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria; 
o__Campylobacterales;f__Helicobacteraceae;g__Helicobacter 

Helicobacter ganmani 

10 484436 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria; 
o__Pseudomonadales;f__Moraxellaceae 

unclassified species 

!

S.No OTUIDǂ 
Nearest 

marker to 
peak 

Chr 
Peak 

position in 
Mb 

Confidence 
Interval (CI) in 
Mb using 1.5 -

log P drop 

Covariate 
Anova -log 

P score 

E value for 
covariate 

QTL * 

EBA 
score 

Anova 
-log P 
score 

E value 
for EBA 
QTL * 

Difference 
in -log P 

scoreᵧ 

Percent 
increase 
of -log P 

1 173469 rs6211533 19 57 53-60 5.08 E-value < 0.05 3.59 ns 1.49 41.50% 
2 N13471 rs6211533 19 57 53-60 4.62 E-value < 0.05 3.59 ns 1.03 28.69% 
3 589787 rs6211533 19 57 53-60 4.35 E-value < 0.1 3.59 ns 0.76 21.17% 
4 N12197 rs6211533 19 57 53-60 4.24 E-value < 0.1 3.59 ns 0.65 18.11% 
5 60254 rs6211533 19 57 53-60 4.23 E-value < 0.1 3.59 ns 0.64 17.83% 
6 52884 rs6211533 19 57 53-60 4.23 E-value < 0.1 3.59 ns 0.64 17.83% 
7 286668 rs6211533 19 57 53-60 4.19 E-value < 0.1 3.59 ns 0.6 16.71% 
8 243860 rs6211533 19 57 53-60 4.17 E-value < 0.1 3.59 ns 0.58 16.16% 
9 101810 rs6211533 19 57 53-60 4.16 E-value < 0.1 3.59 ns 0.57 15.88% 
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Table B.6 (continued) 

S.No OTUIDǂ 
Nearest 

marker to 
peak 

Chr 
Peak 

position in 
Mb 

Confidence 
Interval (CI) in 
Mb using 1.5 -

log P drop 

Covariate 
Anova -log 

P score 

E value for 
covariate 

QTL * 

EBA 
score 

Anova 
-log P 
score 

E value 
for EBA 
QTL * 

Difference 
in -log P 

scoreᵧ 

Percent 
increase 
of -log P 

            
10 484436 rs6211533 19 57 53-60 4.09 E-value < 0.1 3.59 ns 0.5 13.93% 

 

 

ǂ OTU Ids. The Ids for clusters displaying no match to the reference Greengenes database start with an "N" 
ᵟ Taxonomic classification from the RDP database and its prefixes k, p, c, o, f and g for kingdom, phylum, class, order, family and genus bacterial taxonomic level, 
respectively. For OTUs that were unclassified, the next highest taxonomic level to which they could be classified is shown. 
ᵠ Closely related species were identified using the Greengenes database (see Methods) and were assigned using BLAST. 
ᵧ Difference in -log P score of the peak snp associated with EBA (presence/absence) and that of EBA along with an OTU as a covariate. 
*Significance threshold was set to an E value of 0.05 and 0.1 (see Methods). "ns" stands for not significant at a 0.1 significance threshold 
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Table B.7: Percentages of animals developing EBA with respect to genotype and bacterial abundance class (high or low) 

S.No OTUIDǂ Taxonomic Classificationᵟ Closely related speciesᵠ 

1 173469 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphyl
ococcus 

Staphylococcus hominis 

2 N13471 k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphyl
ococcus 

Staphylococcus hominis 

3 589787 k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta unclassified species 
4 N12197 k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta unclassified species 
5 60254 k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta unclassified species 
6 52884 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__H

elicobacteraceae;g__Helicobacter 
Helicobacter apodemus 

7 286668 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Stre
ptococcus 

unclassified species 

8 243860 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkhol
deriaceae;g__Ralstonia 

unclassified species 

9 101810 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__H
elicobacteraceae;g__Helicobacter 

Helicobacter ganmani 

10 484436 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Mo
raxellaceae 

unclassified species 
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Table B.7 (continued) 

S.No Nearest 
marker to 

peak 

Chr Peak 
position 
in Mb 

Confidence 
Interval 

(CI) in Mb 
using 1.5 -
log P drop 

Covariate 
Anova -

log P 
score 

Peak 
SNP 

(allele 
informa

tion) 

Percentage of animals 
developing EBA with respect to 

peak genotype and high 
bacterial abundance* 

Percentage of animals 
developing EBA with respect to 
peak genotype and low bacterial 

abundance* 

P value 
from 

Fisher 
exact 
testⱤ 

Direction 

      
(A/B) AA (n) AB (n) BB (n) AA (n) AB (n) BB (n) 

  1 rs6211533 19 57 53-60 5.08 A/C 26% (65) 29% (21) 67% (6) 34% (56) 48% (33) 100% (2) 0.05 Probiotic 
2 rs6211533 19 57 53-60 4.62 A/C 21% (63) 26% (23) 67% (6) 40% (58) 52% (31) 100% (2) ns Probiotic 
3 rs6211533 19 57 53-60 4.35 A/C 27% (62) 23% (26) 75% (4) 32% (59) 57% (28) 75% (4) ns Probiotic 
4 rs6211533 19 57 53-60 4.24 A/C 26% (58) 37% (30) 75% (4) 33% (63) 46% (24) 75% (4) ns Probiotic 
5 rs6211533 19 57 53-60 4.23 A/C 25% (59) 37% (30) 67% (3) 34% (62) 46% (24) 80% (5) ns Probiotic 
6 rs6211533 19 57 53-60 4.23 A/C 25% (59) 25% (28) 80% (5) 34% (62) 58% (26) 67% (3) ns Probiotic 
7 rs6211533 19 57 53-60 4.19 A/C 27% (59) 43% (28) 60% (5) 32% (62) 38% (26) 100% (3) ns Probiotic 
8 rs6211533 19 57 53-60 4.17 A/C 28% (61) 36% (25) 67% (6) 32% (60) 45% (29) 100% (2) ns Probiotic 
9 rs6211533 19 57 46-60 4.16 A/C 32% (62) 24% (25) 80% (5) 27% (59) 55% (29) 67% (3) ns Probiotic 
10 rs6211533 19 57 53-60 4.09 A/C 25% (61) 36% (28) 100% (3) 35% (60) 46% (26) 60% (5) ns Probiotic 

 

ǂ OTU Ids. The Ids for clusters displaying no match to the reference Greengenes database start with an "N" 
ᵟ Taxonomic classification from the RDP database and its prefixes k, p, c, o, f and g for kingdom, phylum, class, order, family and genus bacterial taxonomic level, 
respectively. For OTUs that were unclassified, the next highest taxonomic level to which they could be classified is shown. 
ᵠ Closely related species were identified using the Greengenes database (see Methods) and were assigned using BLAST. 
* High and low bacterial abundance for each species level OTUs is defined by taking the median of relative values 
Ɽ ns stands for not significant p value at alpha ≤ 0.05 
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7. Scientific achievements during doctoral research 

 

7.1 Publication related to doctoral thesis 
 
1. G. Srinivas, S. Möller, J. Wang, S. Künzel, D. Zillikens, J. F. Baines* and S. M. Ibrahim*, 

Genome-wide mapping of gene–microbiota interactions in susceptibility to autoimmune skin 
blistering. Nat. Commun. 4:2462 doi: 10.1038/ncomms3462 (2013). * Contributed equally. 

 

 

7.2 Workshops, ECTS credits and grades 
!

Date Course Name Location ECTS points Grade/Prize  
 

 
28.09. – 
01.10.2010 

 
EvoGen workshop 2010 

 
IST, Vienna, 
Austria 
 

 
4 

 
Not applicable 

 

 
03.10 –  
04.10.2010 

 
12th workshop about 
jobs for natural scientists 
 

 
Frankfurt Messe, 
Frankfurt, 
Germany 

 
Not applicable 

 
Not applicable 

 
25.02.2011 

 
3rd Theoretical workshop 
 

 
MPI Evolutionary 
Biology, Plön, 
Germany 
 

 
Not applicable 

 
Not applicable 

 
28.06.2011 

 
Grant proposal writing 
workshop 

 
University of 
Lübeck, Germany 
 

 
Not applicable 

 
Won 100 Euro       
prize money 

(Won as a Team) 
 
01.04. – 
27.07.2012 
 

 
Innovation Management 
and Marketing 

 
Fachhochschule 
Lübeck, Germany 

 
 

5 

 
 

1.3 
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7.3 Presentation in scientific conferences 
 
The following are the list of selected scientific conferences attended during my doctoral research to 
exchange scientific ideas and results of my doctoral work. 
 

 
 
Date 
 

 
Conference Name 

 
Place,  

Country 
 

 
Presentation type 

 
01.03. – 
03.03.2012 

 
Arbeitsgemeinschaft 
Dermatologische Forschung 
(ADF) 
 

 
Marburg, 
Germany 

 
Talk 

 
02.05. – 
03.05.2012 

 
Aquavit 2012 - Max Planck 
Institute for Evolutionary Biology 
 

 
Plön, 

Germany 

 
Talk 

 

 
19.08. – 
24.08.2012 

 
14th International Symposium on 
Microbial Ecology (ISME14) 
 

 
Copenhagen, 

Denmark 
 

 
Poster 

 
02.10. – 
06.10.2012 
 

 
25th Annual Mouse Molecular 
Genetics Conference 
 

 
California, 

USA 

 
Poster 

 
23.11.2012 
 

 
35th Symposium of the North-
German Immunologists 
 

 
Borstel, 

Germany 

 
Talk 

 
22.02. – 
23.02.2013 

 
Interdisciplinary Inflammation at 
Interfaces Symposium 
 

 
Hamburg, 
Germany 

 
Poster 

 
06.05. – 
07.05.2013 

 
International pre IID 2013 
Satellite Meeting on Autoimmune 
Bullous Diseases 
 

 
Lübeck, 
Germany 

 
Talk 

&  
Poster 

 
06.06. –  
07.06.2013 
 

 
3rd Heidelberg Forum for Young 
Life Scientists 
 

 
Heidelberg, 
Germany 

 
Poster 
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Covariate QTL,!64!
Crohn’s disease,!77!
cross-fostering,!1!
crusts,!12,!21!
CFsection,!6,!71!
cultivable,!3!
culture,!3,!90!
cytokines,!6!
Dekio,!7,!83,!90!
dermicidin,!7!
DeSantis,!25,!81,!83,!88!
diabetes,!2,!81!
dissimilarity,!29!
diversity,!III,!IV,!V,!VI,!IX,!3,!6,!7,!14,!19,!26,!
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51,!54,!57,!58,!59,!72,!77,!80,!82,!83,!88,!
92,!97,!122!

DNA,!II,!III,!4,!21,!22,!40,!80,!92,!115!
downstream,!22!
drugs,!11!
dysbiosis,!16,!74!
E value,!37,!38,!64,!66,!117,!118!
ear,!II,!5,!16,!21,!22,!40,!75!
eccrine,!3,!73!
ecological,!3,!40,!54!
electrophoresis,!21!
enterotypes,!1,!81!
environmental,!IX,!1,!3,!5,!6,!11,!13,!15,!16,!
35,!59,!77,!78,!80,!82,!83!

Epidermolysis!Bullosa!Acquisita!(EBA),!III,!
10,!85!

epithelial,!6,!7!
erosions,!9,!12,!21,!71!
erythema,!71!
ethnicity,!6!
Eubacteria,!3!
Eucarya,!3!
evolutionary,!1,!3,!75,!80,!81!
family,!VIII,!33,!34,!35,!41,!43,!44,!53,!59,!
60,!62,!69,!77,!106,!107,!111,!112,!114,!
115,!116,!118,!120!

FASTA,!23!
FastTree,!28,!30,!88!
Fermentation,!3!
Firmicutes,!1,!41,!45,!54,!75,!104,!107,!108,!
112,!113,!115,!116,!117,!119!

fitness,!7,!74,!75!
Gas,!3!
gastrointestinal,!1,!2,!71,!76,!91!
gender,!6!
generation,!V,!11,!14,!19,!20,!33,!40,!59,!60,!
71!

genes,!VIII,!2,!13,!15,!34,!62,!75,!82,!86,!88,!
115!

genetic,!IX,!6,!10,!11,!13,!15,!19,!33,!35,!45,!
59,!60,!62,!64,!74,!75,!78,!82,!83,!89!

genetics,!I,!V,!6,!7,!11,!13,!15,!16,!59,!60,!71,!
74,!82,!88!

genome,!6,!11,!14,!15,!36,!37,!38,!87!

genotype,!VI,!VIII,!6,!33,!35,!67,!68,!78,!82,!
119,!120!

genotyping,!III,!21!
George!Fox,!3!
gnotobiotic,!78!
gpQTLs,!62,!114,!115!
gram!staining,!3!
Gram-positive,!73!
granulocytes,!11!
Greengenes,!5,!24,!25,!31,!41,!83,!106,!111,!
112,!116,!118,!120!

Grice,!4,!5,!80,!82,!83,!92!
gut!microbiota,!VI,!1,!2,!7,!62,!63,!77,!80,!
81,!82,!83,!91,!92,!122!

H2s,!13,!15,!16,!85!
hair!follicles,!3!
haplotype,!V,!13,!15,!16,!17,!33!
HAPPY software,!II,!33!
hemidesmosomes,!9!
Herbaspirillum,!75,!76,!108,!112,!115!
heterogeneity,!15!
High throughput sequencing,!71!
HLAFDR2,!13,!87!
Hochberg,!31,!52,!67,!89,!105,!106!
homoeostasis,!2!
hormones,!6!
host-genetic,!2!
human,!V,!1,!2,!3,!5,!11,!12,!13,!71,!80,!81,!
82,!83,!84,!85,!89,!90!

hygiene,!72!
immune,!3,!6,!7,!8,!13,!15,!34,!72,!74,!75,!
80,!92!

immunization,!IV,!IX,!14,!15,!16,!17,!20,!40,!
45,!54,!62,!71,!77!

Immunobullous,!10!
immunogenetic,!IX!
immunogenic,!12!
immunosuppressant,!11!
Indicator species,!III,!IV,!VIII,!30,!51,!104!
induction,!IX,!13,!17,!40,!77,!86!
infection,!7,!90,!92!
infectious!diseases,!8,!90!
inflammation,!8,!20,!54,!77,!84!
inflammatory,!IX,!2,!8,!13,!45,!74,!77,!78,!
81,!87,!92!
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inflammatory bowel disease,!2!
innate,!VIII,!6,!7,!34,!62,!75,!84,!91,!92,!115,!
116!

Interleukin-17,!74!
Introduction,!III,!1!
IRAK,!76,!91!
Jaccard,!VII,!29,!50,!54,!100!
Jackson,!19!
Janthinobacterium,!6!
keratinocytes,!6,!7,!85!
Lactobacillus,!41,!108!
Lactose,!3!
Langerhans,!6!
lipoteichoic!acid!(LTA),!7,!92!
LTA,!7,!76,!92!
Ludwig,!II,!13,!14,!15,!64,!82,!85,!87,!122!
lymphocytes,!6,!8!
major!histocompatibility!complexes!
(MHCs),!13!

Manhattan!plot,!VI,!64,!65!
markers,!35,!36,!60,!89!
mast!cell,!6!
McGonagle,!13,!86!
metabolic syndrome,!2!
metabolism,!1,!3,!11,!81!
MHC,!13,!15,!16,!87,!88!
Microarrays,!4!
moisture,!6!
molecular,!2,!4,!11,!13,!82,!88,!90!
mortar,!22!
mouse,!II,!V,!VI,!IX,!1,!2,!5,!6,!7,!11,!12,!13,!
14,!16,!19,!21,!22,!23,!33,!38,!41,!42,!43,!
55,!56,!61,!63,!64,!71,!73,!74,!77,!78,!85!

mouse!skin,!5,!74!
multiple!sclerosis,!13,!87!
Mutation,!2!
mutualism,!72,!80!
MYD88,!76!
Nanodrop,!21!
necrosis,!21!
neonatal necrotizing enterocolitis,!2!
neutrophils,!12!
NGS,!5!
nitrogen,!22!
obesity,!2,!82!

operational taxonomic unit (OTU),!24!
organ,!2,!8,!84!
Oxidase,!3!
Oxidation,!3!
oxygen,!12!
parasite,!74!
parasitism,!72!
passive,!12,!13,!85,!88!
pathogens,!3,!72,!73,!77!
pathways,!13,!76!
patients,!7,!8,!9,!11,!13,!73,!78,!82,!83,!84,!
85,!87,!90!

PCoA,!29!
PCR,!II,!4,!22,!23,!26,!59!
Pemphigoid,!10,!11!
pemphigus,!11!
peptide,!7,!12,!20,!73,!84,!85!
peptidoglycan,!76!
permutation,!30,!31,!36,!52!
pestle,!22!
pH,!6,!21!
phenotype,!V,!VI,!VIII,!2,!13,!15,!33,!35,!36,!
37,!38,!60,!64,!65,!71,!117!

phyla,!V,!VI,!1,!5,!32,!41,!42,!45,!46,!54,!55,!
61,!63,!71,!75!

phylogenetic,!3,!28,!30,!49,!50,!81,!82,!89!
Phylogenetic Diversity (PD),!28!
Phylogenetic Diversity index,!47!
phylogeny,!5,!28!
polygenic,!13,!82,!83!
Polymerase,!22!
probiotic species,!X!
prokaryotic,!3,!20,!89!
Proteobacteria,!1,!5,!41,!45,!54,!104,!108,!
112,!113,!115,!116,!117,!119!

Pseudomonadales,!75!
Pseudomonas,!6,!104,!108!
psoriatic!lesions,!5,!7,!71,!78,!83!
QIIME,!23,!25,!26,!27,!28,!29,!30,!88!
QQ-plot,!38!
qualitative,!27!
quantitative,!7,!15,!23,!27,!50,!87,!88,!89!
quantitative!trait!locus!(QTL),!7!
rabbit,!12!
radiation,!6!
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rarefaction,!III,!V,!26,!27,!28,!29,!30,!47,!49!
rDNA,!5,!24,!25,!32!
Recombinant,!III,!20,!89!
resistant,!13,!15,!71,!90!
rheumatoid!arthritis,!13,!87,!92!
ribosomal,!3,!82!
Ribosomal!Database!Project,!5,!83!
richness,!28,!46,!54!
RNA,!3,!82,!115!
rRNA,!II,!III,!5,!22,!32,!40,!54,!71,!81,!83,!88,!
89,!101!

scrape,!5!
sebaceous!glands,!3,!4!
segmented filamentous bacteria (SFB),!75!
Segre,!4,!80,!82,!83,!84,!92!
self!antigens,!8!
sex,!19,!35,!59,!60,!83!
Shannon index,!V,!27,!48!
sibship,!33,!35!
Sitaru,!12,!13,!85,!86,!88!
Skin,!III,!IV,!V,!VI,!VII,!VIII,!IX,!1,!2,!3,!4,!5,!6,!
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67,!71,!72,!73,!74,!76,!77,!78,!80,!82,!83,!
84,!85,!89,!90,!91,!92,!93,!95,!102,!112,!
113,!122!

Smith-Waterman,!23!
SNPs,!V,!21,!37,!38,!61,!63,!64,!65,!66!
Sørensen dissimilarity,!29!
spectrophotometer,!21!
spQTLs,!VIII,!60,!62,!75,!112,!114,!115!

Staphylococcus5aureus,!7,!73,!76,!82,!84,!90,!
92,!104,!108!

Staphylococcus spp.,!VI,!4,!65,!67,!68!
strains,!3,!7,!13,!15,!19,!33,!40,!45,!73!
Streptococcus,!41!
subepidermal,!9,!10,!85,!86!
susceptibility,!1,!IV,!V,!VI,!VIII,!IX,!13,!15,!16,!
17,!54,!65,!69,!71,!76,!86,!87,!88,!92,!117,!
122!

susceptible,!14,!15,!16,!17,!45,!71,!74!
swap,!5!
T!cells,!7,!11,!76,!84,!90!
taxa,!IX,!3,!28,!32,!60,!66,!67,!75,!76,!78,!95,!
102!

taxonomy,!5,!24,!31,!32,!89!
temperature,!6,!19,!22!
therapeutic,!X,!8,!9,!78!
TNFα,!77!
tolerance,!75!
Toll-like receptor (TLRs),!6,!76!
treatments,!8,!11!
UniFrac,!V,!VI,!29,!30,!49,!50,!51,!54,!89,!98!
vaccines,!72!
vaginal!microbiota,!6,!71!
variable,!3,!50,!54,!71!
Vegan,!30!
Wilcoxon rank sum test,!47,!48,!49,!57,!97!
Woodley,!12,!85,!87!
βFdefinsins,!6!
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