KRONENFORTSATZBRÜCHE DER ULNA
EINE RETROSPEKTIVE MULTICENTERSTUDIE
VON 58 KORONOIDFRAKTUREN

Inauguraldissertation
zur
Erlangung der Doktorwürde
der Universität zu Lübeck
- Aus der Sektion Medizin -

vorgelegt von
Jil Wäldchen
aus Frankfurt/M.

Lübeck 2013
1. Berichterstatter: Priv.-Doz. Dr. med. Arndt-Peter Schulz
2. Berichterstatter: Prof. Dr. med. Jens Meyer

Tag der mündlichen Prüfung: 27.08.2013
Zum Druck genehmigt. Lübeck, den 27.08.2013

- Promotionskommission der Sektion Medizin -
INHALTSVERZEICHNIS

INHALTSVERZEICHNIS ......................................................... 1
ABBILDUNGSVERZEICHNIS .................................................. IV
TABELLENVERZEICHNIS ....................................................... VI
ABKÜRZUNGSVERZEICHNIS ................................................... VII

I EINLEITUNG ........................................................................... 1
1. ANATOMIE DES ELLENBOGENGELENKES ......................................... 2
  1.1 ARTICULATIO CUBITI (ELLENBOGENGELENK) .................................. 2
  1.2 GELENKKAPSEL UND BANDAPPARAT ........................................ 3
  1.3 MUSKULATUR DES ELLENBOGENGELENKES ................................ 5
  1.4 GEFÄSSVERSORGUNG UND NERVENBAHNEN DES ELLENBOGENS ...... 5
2. BIOMECHANIK DES ELLENBOGENGELENKES ...................................... 6
3. KORONOIDFRAKTUREN .................................................................... 8
  3.1 Klassifikationen ........................................................................ 8
  3.2 VERLETZUNGSURSACHEN ........................................................ 8
  3.3 ELLENBOGENLUXATION .......................................................... 9
  3.4 KNÖCHERNE BEGLEITVERLETZUNGEN ....................................... 10
    3.4.1 RADIUSKÖPFCHENFRAKTUREN .......................................... 10
    3.4.2 OLECRANONFRAKTUREN .................................................... 11
  3.5 VERLETZUNGSKOMBINATIONEN ............................................... 11
    3.5.1 MONTEGGIA-FRAKTUREN .................................................. 11
    3.5.2 TERRIBLE TRIAD OF THE ELBOW .................................... 12
  3.6 DIAGNOSTIK ............................................................................ 12
  3.7 THERAPIE ............................................................................... 13
    3.7.1 KORONOIDFRAKTUREN ....................................................... 13
    3.7.2 RADIUSKÖPFCHENFRAKTUREN ....................................... 15
    3.7.3 OLECRANONFRAKTUREN .................................................. 15
    3.7.4 MONTEGGIA-FRAKTUREN .................................................. 15
    3.7.5 TERRIBLE TRIAD OF THE ELBOW .................................... 15
  3.8 POSTOPERATIVE THERAPIE ..................................................... 16
  3.9 KOMPLIKATIONEN .................................................................. 16
4. PROBLEMATIK UND ZIELSTELLUNG DER ARBEIT ................................ 18
II MATERIAL UND METHODEN ................................................................. 19
1. STUDIENDESIGN .................................................................................. 19
2. PATIENTENKOLLEKTIV ...................................................................... 19
3. DIE KLINISCHE NACHUNTERSUCHUNG .......................................... 21
4. KRAFTMESSUNG .................................................................................. 21
5. RÖNTGENAUFNAHMEN ..................................................................... 22
6. EVALUATION DER BEHANDLUNGSERGEBNISSE ................................ 22
   6.1 MAYO ELBOW PERFORMANCE SCORE ......................................... 22
   6.2 DISABILITIES OF THE ARM, SHOULDER AND HAND SCORE .... 24
7. STATISTISCHE AUSWERTUNG .............................................................. 25
III ERGEBNISSE ......................................................................................... 26
1. EPIDEMIOLOGIE ................................................................................... 26
   1.1 ALTERS- UND GESCHLECHTERVERTEILUNG .................................. 26
   1.2 BERUF ............................................................................................. 27
   1.3 KOSTENTRÄGER .............................................................................. 27
   1.4 UNFALLURSACHEN ......................................................................... 27
2. KLASSEFIKATION DER KORONOIDFRAKTUREN .................................. 29
3. BEGLEITVERLETZUNGEN .................................................................... 30
   3.1 RADIUSKÖPFCHEINFRAKTUREN ................................................... 31
   3.2 FRAKTUREN DER PROXIMALEN ULNA UND OLECRANONFRAKTUREN 32
4. VERLETZUNGSKOMBINATIONEN ......................................................... 32
5. THERAPIE DER KORONOIDFRAKTUREN .............................................. 33
   5.1 STATIONÄRER AUFENTHALT .......................................................... 33
   5.2 ERSTVERSORGUNG ......................................................................... 33
   5.3 OPERATIVE THERAPIE ..................................................................... 33
      5.3.1 OPERATIONSTECHNIK ............................................................... 35
      5.3.2 BEGLEITVERLETZUNGEN ........................................................ 35
   5.4 POSTOPERATIVE THERAPIE ............................................................ 37
6. KOMPLIKATIONEN ................................................................................. 38
7. NACHUNTERSUCHUNGSERGEBNISSE ............................................... 39
   7.1 INSPEKTION ..................................................................................... 39
   7.2 PALPATION ....................................................................................... 40
   7.3 NEUROLOGISCHER UNTERSUCHUNGSBEFUND ................................ 40
   7.4 FUNKTIONSPRÜFUNG ..................................................................... 40
Inhaltsverzeichnis

7.5 BEWEGUNGSMASS SUBJEKTIV UND OBJEKTIV .................................................. 42
7.6 STABILITÄTSPRÜFUNG .................................................................................. 43
7.7 KRAFTMESSUNG .......................................................................................... 43
7.8 UMFAANGMESSUNG ....................................................................................... 44
7.9 FUNKTION SUBJEKTIV .................................................................................. 44
7.10 SCHMERZEN ................................................................................................ 45
7.11 AUSWERTUNG DER RÖNTGENBILDER ...................................................... 46
8. GESAMTBEURTEILUNG ...................................................................................... 47
  8.1 MAYO ELBOW PERFORMANCE SCORE ..................................................... 47
  8.2 DISABILITIES OF THE ARM, SHOULDER AND HAND SCORE .................. 48
9. EINFLUSS AUF DAS BEHANDLUNGSERGEBNIS ............................................. 48
  9.1 SOZIALE FAKTOREN .................................................................................. 48
  9.2 KORONOIDFRAKTUREN .............................................................................. 49
  9.3 RADIUSKÖPFCHENFRAKTUREN ................................................................. 50
  9.4 ELLENBOGENLUXATION ............................................................................ 50
  9.5 VERLETZUNGSKOMBINATIONEN ................................................................. 51
  9.6 IMMOBILISATION .......................................................................................... 52
  9.7 KOMPLIKATIONEN ........................................................................................ 53
  9.8 DATENGEWINNUNG ...................................................................................... 54
IV DISKUSION ...................................................................................................... 55
V ZUSAMMENFASSUNG .......................................................................................... 66
VI LITERATURVERZEICHNIS ..................................................................................... 67
VII ANHANG .......................................................................................................... 75
  1. FALLKASUISTIKEN ....................................................................................... 75
  2. FORMULARE KLINISCHE NACHUNTERSUCHUNG ....................................... 79
     PATIENTENANSCHREIBEN ........................................................................... 79
     FRAGEBOGEN ................................................................................................. 81
     PATIENTENAUFLÄRUNG ............................................................................... 90
     EINVERSTÄNDNISERKLÄRUNG .................................................................. 92
     UNTERSUCHUNGSBOGEN ........................................................................... 93
VIII DANKSAGUNG ............................................................................................... 96
IX LEBENSLAUF ................................................................................................... 97
ABBILDUNGSVERZEICHNIS

Abb. 1: Articulatio humeri .................................................................................................................. 2
Abb. 2: Die drei Komponenten des ulnaren Seitenbandkomplexes (MUCL) .................. 4
Abb. 3: Die vier Komponenten des radialen Seitenbandkomplexes (LCL) ................. 5
Abb. 4: Bewegungsumfang des Ellenbogengelenkes ................................................................. 6
Abb. 5: Instabilität bei gleichzeitiger Koronoid- und Radiusköpfchenfraktur ............ 7
Abb. 6: Klassifikation der Koronoidfrakturen nach Regan und Morrey .................. 8
Abb. 7: Luxationsformen ................................................................................................................... 9
Abb. 8: Klassifikation der Radiusköpfchenfrakturen nach Mason .......................... 10
Abb. 9: Klassifikation der Monteggia-Verletzungen nach Bado ............................ 12
Abb. 10: Unterteilung der Incisura semilunaris ................................................................. 13
Abb. 11: Kraftmessung .................................................................................................................. 21
Abb. 12: Mayo Elbow Performance Score ........................................................................ 23
Abb. 13: Geschlechterverteilung ............................................................................................. 26
Abb. 14: Alters- und Geschlechterverteilung ........................................................................ 26
Abb. 15: Berufsgruppen .............................................................................................................. 27
Abb. 16: Unfallursachen ............................................................................................................. 28
Abb. 17: Einteilung nach Regan und Morrey ................................................................. 29
Abb. 18: Verteilung der Begleitverletzungen ........................................................................ 31
Abb. 19: Einteilung nach Mason .......................................................................................... 32
Abb. 20: Primär operative Therapie der Koronoidfrakturen ............................................... 35
Abb. 21: Therapie der Radiusköpfchenfrakturen ............................................................. 36
Abb. 22: Signifikante Differenz zwischen Patienten mit und ohne Fixateur externe ... 38
Abb. 23: Ergebnisse im Mayo Elbow Performance Score .................................................. 47
Abb. 24: Signifikante Differenz zwischen BG und GKV .................................................. 49
Abb. 25: Signifikante Differenzen zwischen verschiedenen Therapieverfahren ...... 49
Abb. 26: Tendienzieller Unterschied zwischen Patienten mit und ohne Erhalt des Radiusköpfchens ............................................................................................................ 50
Abb. 27: Signifikante Differenz bei Immobilisation < bzw. > 21 Tage ............................. 52
Abb. 28: Signifikante Differenz zwischen Patienten mit und ohne Fixateur externe ........ 53
Abb. 29: Signifikante Differenz zwischen Patienten mit und ohne Komplikationen im Behandlungsverlauf ................................................................. 54
Abb. 30: Differenzen zwischen studienbezogener (NU) und gutachterlicher (GA) Untersuchung sowie Fragebogenergebnissen (FB) ................................. 54
Abb. 31: Röntgenkontrolle postoperativ ....................................................... 75
Abb. 32a: Röntgenkontrolle postoperativ ....................................................... 76
Abb. 32b: Röntgenkontrolle zum Zeitpunkt der Nachuntersuchung .............. 76
Abb. 33a: Röntgenkontrolle postoperativ ....................................................... 77
Abb. 33b: Röntgenkontrolle direkt nach Entfernung des Fixateur externe ...... 77
Abb. 34: Röntgenkontrollen posttraumatisch und zum Zeitpunkt der Nachuntersuchung ....................................................................................... 78
TABELLENVERZEICHNIS

Tab. 1: Ein- und Ausschlusskriterien ................................................................. 19
Tab. 2: Häufigkeit der Koronoidfrakturen nach unterschiedlichen Kriterien ....... 29
Tab. 3: Häufigkeit der Koronoidfrakturen in Abhängigkeit von der
Unfallursache .................................................................................................... 30
Tab. 4: Anteil der Begleitverletzungen nach PCU-Frakturtyp ......................... 31
Tab. 5: Verletzungskombinationen .................................................................... 33
Tab. 6: Anteil operativ therapieter PCU-Frakturen nach Frakturtyp ................ 34
Tab. 7: Verteilung der Operationstechniken nach PCU-Frakturtyp ................. 35
Tab. 8: Anteil operativ therapieter Radiusköpfchenfrakturen nach
Frakturtyp ........................................................................................................... 36
Tab. 9: Verteilung der Komplikationen nach PCU-Frakturtyp ....................... 39
Tab. 10: Bewegungsausmaß (Extension/Flexion) in Bezug auf den
PCU-Frakturtyp .................................................................................................. 41
Tab. 11: Rotationsbogen (Pronation/Supination) in Bezug auf den
PCU-Frakturtyp .................................................................................................. 42
Tab. 12: Subjektive Funktion in Bezug auf den PCU-Frakturtyp ..................... 45
Tab. 13: Schmerzen in Bezug auf den PCU-Frakturtyp ................................... 45
Tab. 14: Verteilung der Ergebnisse im MEPS nach PCU-Frakturtyp .............. 48
Tab. 15: Verletzungskombinationen mit durchschnittlichen
Nachuntersuchungsbefunden bezüglich erreichter Punktzahl im MEPS
und Extension-Flexion ulnohumeral ................................................................. 51
Tab. 16: Verletzungskombinationen mit durchschnittlichen Nachuntersuchungs-
befunden bezüglich Unterarmrotation und Instabilität ................................. 52
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Arteria</td>
</tr>
<tr>
<td>AAOS</td>
<td>American Association of Orthopaedic Surgeons</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AZ</td>
<td>Aktenzeichen</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>d.</td>
<td>days</td>
</tr>
<tr>
<td>DASH</td>
<td>Disabilities of the Arm, Shoulder and Hand Score</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>Dr.</td>
<td>Doktor</td>
</tr>
<tr>
<td>et al.</td>
<td>et altera</td>
</tr>
<tr>
<td>Fa.</td>
<td>Firma</td>
</tr>
<tr>
<td>IsoPCU-F</td>
<td>Isolierte Fraktur des Processus coronoideus ulnae ohne Luxation</td>
</tr>
<tr>
<td>kathol.</td>
<td>katholisch</td>
</tr>
<tr>
<td>lat.</td>
<td>lateinisch</td>
</tr>
<tr>
<td>LCL</td>
<td>Laterales Kollateralband</td>
</tr>
<tr>
<td>Lig.</td>
<td>Ligamentum</td>
</tr>
<tr>
<td>LuxPCU</td>
<td>Isolierte Fraktur des Processus coronoideus ulnae mit Luxation</td>
</tr>
<tr>
<td>m.</td>
<td>months</td>
</tr>
<tr>
<td>M.</td>
<td>Musculus</td>
</tr>
<tr>
<td>MdE</td>
<td>Minderung der Erwerbsfähigkeit</td>
</tr>
<tr>
<td>med.</td>
<td>medicinae</td>
</tr>
<tr>
<td>MEPS</td>
<td>Mayo Elbow Performance Score</td>
</tr>
<tr>
<td>MontPCU</td>
<td>Monteggia-Fraktur mit Fraktur des Processus coronoideus ulnae</td>
</tr>
<tr>
<td>MUCL</td>
<td>Mediales ulnares Kollateralband</td>
</tr>
<tr>
<td>N.</td>
<td>Nervus</td>
</tr>
<tr>
<td>Nn.</td>
<td>Nervi</td>
</tr>
<tr>
<td>OlePCU-F</td>
<td>Fraktur des Processus coronoideus ulnae mit begleitender Olecranonfraktur ohne Luxation</td>
</tr>
<tr>
<td>PCU</td>
<td>Processus coronoideus ulnae</td>
</tr>
<tr>
<td>PCURK-F</td>
<td>Kombinierte Fraktur des Processus coronoideus ulnae und des Radiusköpfchens ohne Luxation</td>
</tr>
<tr>
<td>PD</td>
<td>Privatdozent</td>
</tr>
<tr>
<td>Abkürzungsverzeichnis</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>p.o.</td>
<td>per os</td>
</tr>
<tr>
<td>Prof.</td>
<td>Professor</td>
</tr>
<tr>
<td>prox.</td>
<td>proximal</td>
</tr>
<tr>
<td>ProxULnTT</td>
<td>„terrible triad“-Verletzung mit zusätzlicher proximaler Ulnaschaft-Fraktur</td>
</tr>
<tr>
<td>R.</td>
<td>Ramus</td>
</tr>
<tr>
<td>S.</td>
<td>Seite</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>s.o.</td>
<td>siehe oben</td>
</tr>
<tr>
<td>SPSS-Statistics</td>
<td>Superior Performing Software System</td>
</tr>
<tr>
<td>t.</td>
<td>times</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TT</td>
<td>Typische „terrible triad“-Verletzung</td>
</tr>
<tr>
<td>w.</td>
<td>weeks</td>
</tr>
<tr>
<td>y.</td>
<td>years</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
I. EINLEITUNG

Als Processus coronoideus ulnae (lat. corona = Krone, Synonym Kronenfortsatz) oder auch als Koronoid bezeichnet man den prominenten, dreieckigen Knochenvorsprung am proximalen Ende der Ulna [36].

Es handelt sich dabei um „ein kleines Knochenstück mit großer Bedeutung“ [34], denn der Processus coronoideus ulnae (PCU) ist der wichtigste knöcherne Stabilisator des Ellenbogengelenkes [19, 62].

Bislang existieren nur wenige Studien, die sich mit dem klinischen Verlauf von Koronoidfrakturen beschäftigen [1, 18, 21, 45, 49, 66, 84, 91]. Kaum eine Studie weist Fallzahlen von mehr als 40 Patienten auf, denn operationspflichtige Frakturen des Processus coronoideus ulnae sind selten.

Frakturen des Koronoids treten als Begleitverletzung bei 2 bis 15% der dorsalen Ellenbogenluxationen auf [34, 44, 60, 84, 86, 107], zum Teil in Kombination mit einer Radiusköpchenfraktur („terrible triad of the elbow“ [26, 63, 74, 109]). Isolierte Koronoidfrakturen sind sehr selten [60, 84, 86].


Etwa 23 bis 61% der Koronoidfrakturen werden operativ versorgt [1, 84]. Ziel der Therapie ist ein stabiles, gut bewegliches und belastbares Gelenk. Bestehende Therapieempfehlungen werden bei geringem Evidenzlevel bisher jedoch kontrovers diskutiert. Häufig bestimmen Begleitverletzungen das therapeutische Vorgehen. Die Komplikationsrate an Reluxationen, persistierenden Instabilitäten und Bewegungseinschränkungen ist hoch und erschwert die Therapie [34, 44, 58, 67, 71, 79, 80, 81].
1. ANATOMIE DES ELLENBOGENGELENKES

1.1 ARTICULATIO CUBITI (ELLENBOGENGELENK)
Das Ellenbogengelenk (Abb. 1) ist ein zusammengesetztes Gelenk (Articulatio composita) und ermöglicht sowohl Scharnier- als auch Drehbewegungen (Trochoginglymus). Es besteht aus drei Anteilen mit gemeinsamem Kapsel-Band-Apparat:

- Articulatio humero-ulnaris (Humeroulnargelenk)

- Articulatio humero-radialis (Humeroradialgelenk) und

- Articulatio radio-ulnaris proximalis (proximales Radioulnargelenk). [60, 97]

Abb.1: Articulatio humeri (Ellenbogengelenk) [101]
ARTICULATIO HUMERO-ULNARIS (HUMEROULNARGELENK)
Dieses Teilgelenk ist ein Scharniergelenk, welches Extension und Flexion des Unterarms gegenüber dem Oberarm ermöglicht. [44, 97]

ARTICULATIO HUMERO-RADIALIS (HUMERORADIALGELENK)
Capitulum humeri und Fovea articularis radii bilden das Humeroradialgelenk. Strukturell handelt es sich um ein Kugelgelenk. Da der Radius durch das Lig. anulare radii und die Membrana interossea antebrachii eng an die Ulna fixiert ist, wird eine Seitenbewegung in Form von Abduktion und Adduktion verhindert. Das Gelenk weist daher nur zwei Freiheitsgrade auf: Extension und Flexion des Unterarms gegenüber dem Oberarm sowie Pronation und Supination des Radius gegenüber der Ulna. [97]

ARTICULATIO RADIO-ULNARIS PROXIMALIS (PROXIMALES RADIOULNARGELENK)
Die Circumferentia articularis des Radiusköpfchens bildet mit der Incisura radialis ein Drehgelenk (Abb. 1). Der Zusammenhalt erfolgt durch das Lig. anulare radii. Dieses Gelenk ermöglicht die Umwendbewegungen (Pronation und Supination) des Unterarms. [97]

1.2 GELENKKAPSEL UND BANDAPPARAT
Einleitung

Der ULNARE SEITENBANDKOMPLEX (MUCL) besteht aus drei Komponenten (Abb. 2): dem anterioren, dem posterioren und dem transversalen Bündel. Das anteriore Bündel entspringt am Epikondylus medialis und setzt medial am Processus coronoideus ulnae an. Es ist während der Beugung des Ellenbogengelenkes angespannt und stellt den Hauptstabilisator gegen Valgusstress dar. Es trägt zwischen 55 und 70% zur Valgusstabilität bei [7, 60].

Abb. 2: Die drei Komponenten des ulnaren Seitenbandkomplexes (MUCL). 1 anteriore Bündel, 2 posteriores Bündel, 3 transversales Bündel [71]

Der RADIALE SEITENBANDKOMPLEX (LCL) besteht aus vier unterschiedlichen Komponenten (Abb. 3): dem Lig. anulare radii (AL), dem lateralen/radialen Seitenband (RCL), dem lateralen ulnaren Seitenband (LUCL) und dem akzessorischen lateralen Seitenband. Dieser Komplex dient als Stabilisator gegen Varusstress [71].

Das LATERALE/RADIALE SEITENBAND (RCL) entspringt am Epicondylus lateralis und besteht aus einer pars anterior und einer pars posterior, welche medial in die Ulna und das Lig. anulare einstrahlen. Dabei verläuft die pars posterior hinter dem Radiusköpfchen, so dass die Drehbewegung des Radiusköpfchens nicht gestört wird [41, 60].

Das LIGAMENTUM ANULARE RADII (AL) ist Teil der Gelenkkapsel und verläuft um die Zirkumferenz des Radiusköpfchens [60]. Es setzt ventral und dorsal an der Incisura radialis ulnae an und ermöglicht durch seine überknorpelte Innenfläche eine ungehinderte Drehung des Radius gegenüber der Ulna [41].
Einleitung

1.3 MUSKULATUR DES ELLENBOGENGELENKES
Der M. biceps brachii ist außerdem der wichtigste Supinator des Ellenbogengelenkes, gefolgt vom M. supinator. Unterstützend wirken der M. abductor pollicis longus, der M. extensor pollicis longus und der M. brachioradialis [105]. Zu den wichtigsten Pronatoren zählen der M. pronator teres und der M. pronator quadratus [105].

1.4 GEFÄSSEVERSORGUNG UND NERVENBAHNEN DES ELLENBOGENS
Unterarmflexoren. Die sensible Innervation der Ellenbeuge erfolgt durch die Nn. cutanei antebrachii medialis, lateralis et posterior [50, 60, 100].

2. BIOMECHANIK DES ELLENBOGENGELENKES

Das Ellenbogengelenk ermöglicht Bewegungen in zwei Ebenen (Abb. 4): EXTENSION/FLEXION um eine transversale Achse durch das Capitulum humeri und die Längsachse der Trochlea humeri (physiologisches Bewegungsausmaß nach der Neutral-Null-Methode 0-0-145°) und PRONATION/SUPINATION um eine durch das Radiusköpfchen und das Caput ulnae ziehende Achse (physiologisches Bewegungsausmaß nach der Neutral-Null-Methode 75-0-85°) [60]. Frauen und Kinder können das Ellenbogengelenk oft um 5 bis 10° überstrecken [97]. Die meisten Verrichtungen des Alltags erfordern einen Bewegungsumfang von Extension/Flexion 0-30-130° und Pronation/Supination 50-0-50° („100°-Regel“ nach Morrey) [60].

Abb. 4: Bewegungsumfang des Ellenbogengelenkes („100°-Regel“ nach Morrey) [85]


M. brachialis, M. biceps brachii, M. triceps brachii und M. anconeus stabilisieren dynamisch [50, 80]. Das Humeroulargelenk ist für 55% der Varusstabilität in Streckung und für bis zu 75% der Varusstabilität in Beugung verantwortlich [7, 20]. Zusätzlich stabilisieren das humeroradiale Teilgelenk, der radiale Seitenbandkomplex und die ventrale Kapsel gegen Varusstress [60].
Die Valgusstabilität in Flexion und Extension wird vom ulnaren Seitenbandkomplex, der anterioren Kapsel und dem Humeroulnargelenk gewährleistet [7]. Das Radiusköpfchen trägt bei intaktem ulnarem Bandapparat mit etwa 30% zur Valgusstabilität bei. Bei Ruptur des ulnaren Bandapparates steigt sein Anteil auf bis zu 75% [7]. Eine gleichzeitige Radiusköpfcchenfraktur erfordert daher – um eine Valgusinstabilität zu vermeiden - eine Radiusköpfcchenrekonstruktion oder eine Rekonstruktion des ulnaren Bandapparates bei erforderlicher Radiusköpfcchenresektion [42].
Beim gleichzeitiger Fraktur von Processus coronoideus ulnae und Radiusköpfchen fehlt das gesamte Widerlager von Trochlea und Capitulum humeri (Abb. 5): es entsteht Instabilität [34]. Der Processus coronoideus ulnae sollte in diesem Fall immer refixiert oder rekonstruiert werden [17, 34].

Abb.5: Instabilität bei gleichzeitiger Koronoid- und Radiusköpfchenfraktur. Bei frakturiertem Processus coronoideus ulnae fehlt in Streckstellung ein Teil, bei gleichzeitiger Radiusköpfcchenfraktur das gesamte Widerlager für die Gelenkrollen des Humerus. [34]

3. KORONOIDFRAKTUREN

3.1 Klasseifikation

Die Einteilung der Koronoidfrakturen erfolgt entsprechend der Fragmentgröße und dem damit verbundenen Instabilitätsgrad nach der Klasseifikation von Regan und Morrey [84]:

Typ I: Spitzenabriss

Typ II: Frakturen <50%

Typ III: Frakturen >50% (Abb. 6).

[Abb. 6: Klasseifikation der Koronoidfrakturen nach Regan und Morrey.
Typ I Abscherfraktur (A), Typ II Fragmentgröße< 50% (B), Typ III Fragmentgröße > 50% (C) [62]]

3.2 Verletzungsursachen

Axial einwirkende Gewalten auf das Ellenbogengelenk können sowohl isolierte Verletzungen des Processus coronoideus ulnae als auch Luxationen des Ellenbogengelenkes mit Abscherfrakturen des Koronoids und Luxationen oder Luxationsfrakturen des Radiusköpfchens verursachen [69]. Frakturen des Processus coronoideus ulnae treten in bis zu 15% aller dorsalen Ellenbogenluxationen auf [34, 44, 60, 84, 86, 107]. Isolierte Frakturen des Processus coronoideus ulnae sind sehr selten [60, 84, 86].
3.3 ELLENBOGENLUXATION


![Luxationsformen](https://via.placeholder.com/150)

**Abb.7: Luxationsformen.** Dorsal (a), dorsolateral (b), dorsomedial (c), anterior (d), divergierend (e) [41]

Frakturen des Processus coronoideus ulnae entstehen wie oben genannt in bis zu 15% aller dorsalen Ellenbogenuxationen. Verletzungsmechanismus dabei ist ein Sturz auf das Handgelenk bei extendiertem Ellenbogengelenk und proniertem Handgelenk [82]. Dabei wird die Olecranonspitze durch einen Hyperextensionsmechanismus in die korrespondierende Fossa olecrani gepresst. Überschreitet die einwirkende Gewalt die Stabilitätskraft des Gelenkes, bewegt sich der Humerus bei fixiertem Unterarm nach ventral aus dem Gelenk und Processus coronoideus ulnae und Radiusköpfchen scheren nach dorsal über die Humerusrolle ab [44].
3.4 KNÖCHERNE BEGLEITVERLETZUNGEN

3.4.1 RADIUSKÖPFCHENFRAKTUREN

Radiusköpfchenfrakturen treten bei 20-30% aller Ellenbogenfrakturen auf. Als Begleitverletzung einer dorsalen Ellenbogenluxation treten sie in etwa 10 % auf [12, 26, 34, 60, 74, 84]. Sie entstehen durch indirekte Gewalteinwirkung beim Sturz auf das Handgelenk bei gestrecktem Ellenbogen und proniertem Unterarm. In Abhängigkeit vom Winkel und Ausmaß der einwirkenden Kraft entstehen Radiusköpfchen-/halsfrakturen [4].

Die Einteilung der Radiusköpfchen-Frakturen erfolgt am häufigsten nach der durch Jupiter modifizierten MASON-KLASSIFIKATION [64]:

Mason I: nicht disloziert

Mason II: disloziert oder Abkippping < 30°

Mason III: Trümmerfraktur oder Abkippping > 30° (Abb. 8).

(Mason IV: Radiusköpfchenfrakturen im Rahmen einer Luxation)

Abb.8: Klassifikation der Radiusköpfchenfrakturen nach Mason. Typ I nicht dislozierte Fraktur, Typ II dislozierte Fraktur mit meist einem Fragment, Typ III Trümmerfraktur [42]
3.4.2 OLECRANONFRAKTUREN

Olecranonfrakturen treten bei 38\% aller Ellenbogenfrakturen auf. Typischer Unfallmechanismus ist ein direktes Trauma durch Sturz auf den Ellenbogen (90\%). In 10\% der Fälle wird ein indirektes Trauma durch Sturz auf die Hand bei hyperextendiertem Ellenbogengelenk beschrieben [60].

Für Olecranonfrakturen gibt es zahlreiche Klassifikationen, unter anderem die Klassifikation nach Schatzker [95], welche die Frakturen entsprechend ihrer Lokalisation, des Frakturverlaufs und der Zahl der Fragmente in sechs Typen (Typ A bis F) einteilt.


Typ I  Nicht dislozierte Fraktur (Dislokation < 2mm)

Typ II  Dislozierte, stabile Fraktur (Dislokation > 2mm)

Typ III Dislozierte, instabile Fraktur (Luxationsfraktur)

(Typ A = einfache Fraktur und einen Typ B = Mehrfragmentfraktur) [15].

3.5 VERLETZUNGSKOMBINATIONEN

3.5.1 MONTEGGIA-FRAKTUREN

### Einleitung

**3.5.2 TERRIBLE TRIAD OF THE ELBOW**


### 3.6 DIAGNOSTIK


---

**Abb. 9: Klassifikation der Monteggia-Verletzungen nach Bado.** Typ I: anteriore Luxation des Radiusköpfchens (a), Typ II: posteriore/posterolaterale Luxation (b), Typ III: laterale/ anterolaterale Luxation (c), Typ IV: proximale Fraktur von Radius und Ulna mit anteriorem Radiusköpfchenluxation (d) [51]
3.7 THERAPIE

3.7.1 KORONOIDFRAKTUREN

Der Processus coronoideus ulnae wird dann refixiert, wenn Instabilität besteht [79]. Bei isolierter Fraktur des Processus coronoideus ulnae ist dies der Fall, wenn mehr als 1/6 der Incisura semilunaris zerstört ist oder das Bogenmaß der Incisura semilunaris einen Winkel von 160° unterschreitet [17, 69]. Mithilfe biomechanischer Studien konnte nachgewiesen werden, dass ab einem Koronoidfragment von über 50% seiner Höhe Instabilität besteht [13, 16]. Eine ventrale Instabilität findet sich bei gleichzeitiger Radiusköpfchenfraktur, da unter diesen Umständen das Widerlager von Trochlea und Capitulum humeri in Streckstellung des Ellenbogengelenkes fehlt [34] (s. auch Abb. 5, S. 7).

Daraus ergeben sich Operationsindikationen bei

- dislozierten, isolierten Abrissfrakturen des Koronoids mit mehr als 1/6 der Gelenkfläche der Incisura semilunaris bzw. einer Reduktion der Incisura semilunaris <160° (Abb. 10)
- allen Typ-III-Koronoidfrakturen
- gleichzeitiger Radiusköpfchenfraktur oder anderen Kombinationsverletzungen
- Reluxationstendenz des Ellenbogengelenkes [9, 16, 34, 62, 84].

Die Methode der operativen Rekonstruktion des Koronoids hängt von der Größe des Koronoidfragments und dem Vorhandensein von Begleitverletzungen, insbesondere einer Radiusköpfchenfraktur, ab [34].
Einleitung


TYP-II-FRAKTUREN können sowohl stabil als auch instabil sein. Wenn die Koronoidfraktur nach medial zum knöchernen Ansatz des vorderen Bündels des medialen Seitenbandes läuft oder gleichzeitig eine Radiusköpfchenfraktur besteht, resultiert in der Regel eine Instabilität, welche operativ versorgt werden sollte [20, 21, 24, 60, 75, 84]. Größere und solide Fragmente können sowohl direkt als auch indirekt mit Zugschrauben refixiert werden, kleinere oder separierte Fragmente können mittels Drahtschlinge (Lasso-Schlinge) stabilisiert werden [34, 80]. Für die direkte Verschraubung bietet sich der radiale Zugangsweg an, für die indirekte Verschraubung der dorsale Zugangsweg. Bei gleichzeitiger Radiusköpfchenfraktur empfiehlt sich ein radialer Zugang zum Ellenbogengelenk [34, 62, 69]. Bei isolierter Fraktur des Processus coronoideus ulnae bietet sich der ulnare Zugang an [69].

3.7.2 RADIUSKÖPFCHENFRAKTUREN

Die therapeutischen Grundsätze orientieren sich am zugrundeliegenden Frakturtyp [60]:

MASON-I-FRAKTUREN werden meist konservativ frühfunktionell behandelt [8, 42].


Das Verfahren der Wahl für eine MASON-III-FRAKTUR ohne Begleitverletzung ist eine primäre Radiusköpfchenresektion. Eine Radiusköpfchenprothese empfiehlt sich bei verbleibender Instabilität, insbesondere bei hochinstabilen Sonderformen wie zum Beispiel der „terrible triad of the elbow“. [8, 42, 61]

3.7.3 OLECRANONFRAKTUREN

Einfache Olecranonfrakturen werden mittels Zuggurtungsosteosynthese, Mehrfragmentfrakturen mittels Plattenosteosynthese stabilisiert [95]. Nur bei nicht dislozierter Fraktur ohne Dislokation bei Extension kann auf eine offene Reposition verzichtet werden. Ziel der Therapie ist die Wiederherstellung der ulnaren Gelenkfläche sowie die Schaffung übungsstabiler Verhältnisse als Grundlage einer frühfunktionellen Behandlung [60].

3.7.4 MONTEGGIA-FRAKTUREN


3.7.5 TERRIBLE TRIAD OF THE ELBOW

In diesem Fall sollten therapeutisch eine Refixation des Koronoids, eine Rekonstruktion oder Ersatz des Radiusköpfchens sowie eine Rekonstruktion des lateralen ulnaren Kollateralbandes (LUCL) erfolgen [71]. Kleinere oder multifragmentäre Koronoidfrakturen können mittels der Lasso-Technik refixiert, größere Fragmente auch verschraubt werden.
Einleitung

Besteht in Ausnahmefällen keine Rekonstruktionsmöglichkeit des Koronoids können Reste des Radiusköpfchens als autologer Ersatz eingebracht werden [57, 58]. Bezüglich des Radiusköpfchens empfiehlt sich eine Rekonstruktion. Alternativ ist ein Radiusköpfchenersatz zu erwägen, denn eine primäre Resektion des Radiusköpfchens ohne Ersatz führt bei der „terrible triad“ unweigerlich zur Reinstabilität [104].

3.8 POSTOPERATIVE THERAPIE


3.9 KOMPLIKATIONEN

Frakturen des Processus coronoideus ulnae sind zwar selten [84, 86, 107], aber von einer hohen Komplikationsrate begleitet. Insbesondere komplexe Verletzungsmuster von Koronoid- und Radiusköpfchenfrakturen hinterlassen auch nach gut gelungener Behandlung Funktionseinschränkungen im Ellenbogengelenk [34]. Häufig sind vor allem bleibende Bewegungseinschränkungen sowie Reluxationen und persistierende Instabilitäten [34, 44, 58, 71].

RELUXATIONEN oder PERSISTIERENDE INSTABILITÄTEN können als Folge primär nicht vollständig evaluerter oder als stabil fehl eingeschätzter Luxationen auftreten. Residuale
mediale Bandinstabilitäten sind dabei häufig mit schlechterer Funktion, Schmerzen und Verschleiß verknüpft als laterale Bandinstabilitäten [23, 67].


HETEROTOPE OSSIFIKATIONEN treten typischerweise nach Kombinationsverletzungen mit entsprechendem Weichteitrauma auf und sind verantwortlich für ein limitiertes Bewegungsausmaß von Flexion und Extension des Ellenbogens, bei Beteiligung der Membrana interossea auch für eine Behinderung der Unterarmumwendbeweglichkeit [71]. Sie können auch nach falscher, die Schmerzgrenze überschreitender Mobilisierung oder nach Schädel-Hirn-Trauma entstehen [44, 63]. In seltenen Fällen können sie zur Versteifung des Ellenbogengelenkes führen [34]. Sekundäre Arthrolysen mit Entfernung der Ossifikationen können Besserung bringen [71].

PSEUDARTHROSEN (= Ausbleiben der Heilung einer Fraktur nach Ablauf von sechs Monaten seit dem Ereignis [88]) finden sich häufig nach Erhaltungsversuch einer mehrfragmentären Radiusköpfchenfraktur als Begleitverletzung [91].

Neurovaskuläre Komplikationen sind selten, der NERVUS ULNARIS ist aufgrund seiner exponierten Lage am häufigsten betroffen [71].

Eine ARTHROSE kann als Folge des Knorpelschadens nach Verletzung des Koronoids entstehen. An der oberen Extremität können arthrotische Veränderungen lange kompensiert werden und sind meist weniger schmerzhaft und weniger einschränkend als betroffene Gelenke der unteren Extremität. Instabilität und Subluxationen fördern die Entwicklung einer Arthrose [34].
Einleitung

Nach der KLASSIFIKATION VON KELLGREN UND LAWRENCE [46] erfolgt eine radiologische Einteilung in vier Arthrosegrade:

Grad I: Beginnende Arthrose
Geringe subchondrale Sklerosierung, keine Osteophyten, keine Gelenkspaltverschmälerung

Grad II: Geringe Arthrose
Geringe Gelenkspaltverschmälerung, beginnende Osteophytenbildung

Grad III: Mäßige Arthrose
Gelenkspaltverschmälerung, ausgeprägte Osteophyten, unebene Gelenkfläche

Grad IV: Schwere Arthrose
Ausgeprägte Gelenkspaltverschmälerung, Deformierung der Gelenkpartner.

4. PROBLEMATIK UND ZIELSTELLUNG DER ARBEIT


Da dem Processus coronoideus ulnae aber eine entscheidende Rolle für die Stabilität des Ellenbogens zukommt und die Komplikationsrate nach Koronoidfraktur hoch ist, sollen nun anhand einer retrospektiven klinischen Nachuntersuchung in zwei überregionalen, miteinander assoziierten Traumazentren mit gleicher Therapiestrategie mittelfristige subjektive und objektive Behandlungsergebnisse nach Koronoidfraktur ermittelt und prognostisch relevante Faktoren bestimmt werden. Es soll untersucht werden, welchen Einfluss Verletzungsmuster, PCU-Frakturtyp, Begleitverletzungen, Therapieform, Immobilisationsdauer und Kostenträger auf das Behandlungsergebnis haben.
II. MATERIAL UND METHODEN

1. STUDIENDESIGN

Dieser Arbeit liegt eine multizentrische retrospektive einarmige Kohortenstudie zu Grunde. Das Ethikvotum der Universität zu Lübeck liegt vor (AZ 10-024).

2. PATIENTENKOLLEKTIV


<table>
<thead>
<tr>
<th>EINSCHLUSSKRITERIEN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Erwachsene Männer und Frauen über 18 Jahre mit therapiert Koronoidfraktur</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUSSCHLUSSKRITERIEN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorherige Frakturen am Ellenbogen desselben Arms</td>
<td></td>
</tr>
<tr>
<td>Knochenstoffwechselstörungen wie Morbus Paget oder renale Osteodystrophie (mit Ausnahme von Osteoporose)</td>
<td></td>
</tr>
<tr>
<td>Vorangegangene oder bestehende Infektionen des Ellenbogens, septische Arthritis</td>
<td></td>
</tr>
<tr>
<td>Systemische Erkrankungen, die die Gesundheit des Patienten erheblich beeinträchtigen oder das Ergebnis der Studie beeinflussen könnten</td>
<td></td>
</tr>
</tbody>
</table>

Tab.1: Ein- und Ausschlusskriterien
Material und Methoden

Der pseudonymisierte Fragebogen (s. Anhang, S. 81) enthielt neben allgemeinen Fragen zur Person auch Fragen zur Pathogenese der Fraktur sowie zum therapeutischen Vorgehen. Erfragt wurden zudem subjektive Angaben bezüglich Schmerzen, Beweglichkeit, Gelenkstabilität und Funktion im Alltag entsprechend dem Mayo Elbow Performance Score (MEPS) und dem Disabilities of the Arm, Shoulder and Hand Score (DASH).


Das Behandlungsergebnis konnte damit also bei insgesamt 58 von 74 Patienten (78%) durchschnittlich 48 Monate (SD 31; 9-120 m.) nach Erstbehandlung erhoben werden. (Anmerkung: Bei zwei Patienten lagen beidseitige Koronoidfrakturen vor. Diese Patienten wurden zur Vereinfachung doppelt gezählt.)
3. DIE KLINISCHE NACHUNTERSUCHUNG

4. KRAFTMESSUNG
Die Kraftmessung erfolgte unter Verwendung des Genius-Kraftmessgerätes (0-5 kN, Fa. FREI AG, Kirchzarten, Germany). Die Patienten saßen dazu aufrecht an einem Tisch, so dass sie das Ellenbogengelenk in 90° Beugestellung aufstützen konnten, und mussten an einem Seil gegen einen maximalen Widerstand ziehen. Die Messung wurde pro Patient dreimal durchgeführt und jeweils der Mittelwert gespeichert (Abb.11).

Abb. 11: Kraftmessung
5. RÖNTGENAUFNAHMEN

6. EVALUATION DER BEHANDLUNGSERGEBNISSE

Zur Bewertung der Ellenbogenfunktion existieren zahlreiche Scores. Anwendung in dieser Arbeit finden der Mayo Elbow Performance Score (MEPS) [77] sowie der Disabilities of the Arm, Shoulder and Hand-Score (DASH) [37].

6.1 MAYO ELBOW PERFORMANCE SCORE
Dieses als Mayo Elbow Performance Score (MEPS) [77] bezeichnete Bewertungssystem für den Ellenbogen legt ein größeres Gewicht auf die subjektive Bewertung der Ergebnisse nach medizinischer Intervention und rückt somit den Einfluss der Erkrankung und der medizinischen Intervention auf die Lebensqualität in den Vordergrund [77].

<table>
<thead>
<tr>
<th>SCHMERZINTENSITÄT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td>45</td>
</tr>
<tr>
<td>Gering (keine Bewegungseinschränkung, gelegentlicher Analgetika-Gebrauch)</td>
<td>30</td>
</tr>
<tr>
<td>Mäßig (Bewegungseinschränkung mit regelmäßigem Analgetika-Gebrauch)</td>
<td>15</td>
</tr>
<tr>
<td>Stark (ständiger Schmerz mit regelmäßigem Analgetika-Gebrauch)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ULNOHUMERALE BEWEGLICHKEIT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM &gt; 100°</td>
<td>20</td>
</tr>
<tr>
<td>ROM &gt; 50° – 100°</td>
<td>15</td>
</tr>
<tr>
<td>ROM &lt; 50°</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STABILITÄT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabil</td>
<td>10</td>
</tr>
<tr>
<td>Etwas Instabil</td>
<td>5</td>
</tr>
<tr>
<td>Völlig Instabil</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUNKTION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Haare kämmen möglich</td>
<td>5</td>
</tr>
<tr>
<td>Selbstständiges Essen möglich</td>
<td>5</td>
</tr>
<tr>
<td>Selbstständige Körperpflege möglich</td>
<td>5</td>
</tr>
<tr>
<td>Ankleiden möglich</td>
<td>5</td>
</tr>
<tr>
<td>Schuhe anziehen möglich</td>
<td>5</td>
</tr>
</tbody>
</table>

Abb. 12: Mayo Elbow Performance Score

Die Gesamtbewertung des MEPS ergibt sich aus der Summe der Punkte (5-100). 90-100 Punkte ergeben ein exzellentes Ergebnis, 75-89 ein gutes, 60-74 ein mäßiges und weniger als 60 Punkte ein mangelhaftes Ergebnis (Abb. 12).
6.2 DISABILITIES OF THE ARM, SHOULDER AND HAND SCORE


Die Berechnung des DASH-Scores gestaltet sich folgendermaßen: zunächst wird aus der Summe der Antworten ein Rohwert berechnet. Dieser liegt zwischen 30 und 150. Mithilfe des DASH-Auswertungsalgorithmus wird dieser Rohwert in den DASH-Score umgewandelt. Es ergeben sich Werte zwischen 0 und 100. Die Null bedeutet, dass keine Einschränkungen bestehen, ein Wert von 100 gibt eine schwere Beeinträchtigung an [28]. Die Formel zur Transformation in diese 0 bis 100-Skala lautet:

\[ \text{Rohwert} - 30 / 1,2 = \text{DASH-Score} \]

Es ist zu beachten, dass eine Berechnung des Scores nur dann möglich ist, wenn nicht mehr als 3 Fragen unbeantwortet bleiben. Beim Fehlen von bis zu drei Antworten wird der arithmetische Mittelwert der restlichen Antworten gebildet [47].
7. STATISTISCHE AUSWERTUNG


Untersucht wurde insbesondere, ob sich signifikante Unterschiede oder Korrelationen zwischen einem bestimmten Verletzungsmuster oder einem bestimmten Behandlungsverfahren und dem Nachuntersuchungsergebnis nachweisen lassen.
III. ERGEBNISSE

1. EPIDEMIOLOGIE

1.1 ALTERS- UND GESCHLECHTERVERTEILUNG

Unter den 58 Patienten waren 36 Männer und 22 Frauen (Abb. 13). Das Durchschnittsalter der Patienten zum Unfallzeitpunkt betrug 51,8 Jahre (SD 13,6; 19-79 y.). Die Frauen waren zum Unfallzeitpunkt mit durchschnittlich 58,9 Jahren (SD 10,4; 39-79 y.) älter als die Männer mit durchschnittlich 47,4 Jahren (SD 13,3; 19-70 y.).

Abb. 13: Geschlechterverteilung der 58 Patienten

Männer verunfallten im Alter von 31 bis 70 Jahren nahezu gleich häufig. Eine leicht abfallende Tendenz in Richtung höheren Alters ließ sich erkennen. Frauen verunfallten dagegen am häufigsten in der Altersgruppe von 51 bis 70 Jahren, also deutlich später als die Männer (Abb. 14).

Abb. 14: Alters- und Geschlechterverteilung
1.3 BERUF

![Berufsgruppen](image)

Abb. 15: Berufsgruppen

1.4 KOSTENTRÄGER
30 Patienten (52%) waren gesetzlich krankenversichert, 28 Patienten (48%) waren über die Berufsgenossenschaft unfallversichert.

1.5 UNFALLURSACHEN
Ergebnisse

Abb. 16: Unfallursachen


Unter der Gruppe der Stürze auf ebener Erde waren 68% weiblichen Geschlechts und nur 32% männlich. Der Altersdurchschnitt dieser Gruppe lag bei 59,1 Jahren (SD 9,7; 35-79 y.). Genau anders herum verhielt es sich in der Gruppe der Stürze aus größerer Höhe. Hier waren sogar 81% Männer und nur 19% Frauen. Die Patienten dieser Gruppe waren mit durchschnittlich 46,7 Jahren (SD 11,8; 27-68 y.) jünger. 67% der Stürze aus größerer Höhe ereigneten sich als Arbeitsunfall. Mehr als die Hälfte dieser Patienten (57%) war im Handwerk tätig.

In der Gruppe der Verkehrsunfälle waren 7 Männer (78%) und 2 Frauen (22%). Der Altersdurchschnitt lag hier bei 54,8 Jahren (SD 13,3; 29-70 y.).
2. KLASSIFIKATION DER KORONOIDFRAKTUREN

Es fanden sich 34 rechtsseitige (59%) und 24 linksseitige (41%) Frakturen des Processus coronoideus ulnae.

Diese wurden anhand der posttraumatischen Röntgenbilder nach Regan und Morrey [84] klassifiziert (Abb. 17). Es fanden sich 19 Typ-I-Frakturen (33%), 17 Typ-II-Frakturen (29%) und 22 Typ-III-Frakturen (38%).

Abb. 17: Einteilung nach Regan und Morrey

29 der 39 Typ-II- und Typ-III-Frakturen (74%) traten bei Männern auf und waren damit deutlich häufiger als bei Frauen (26%). Umgekehrt verhielt es sich mit den Typ-I-Frakturen: 63% der Typ-I-Frakturen traten bei Frauen auf. Bezüglich der Seitenlokalisation und des Durchschnittsalters ergab sich nahezu eine Gleichverteilung (Tab. 2).

<table>
<thead>
<tr>
<th>PCU-Frakturtyp nach Regan und Morrey</th>
<th>Geschlecht</th>
<th>Seitenlokalisation</th>
<th>Alter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Männer</td>
<td>Frauen</td>
<td>links</td>
</tr>
<tr>
<td>Typ I (n=19)</td>
<td>7 (37%)</td>
<td>12 (63%)</td>
<td>8 (42%)</td>
</tr>
<tr>
<td>Typ II (n=17)</td>
<td>12 (71%)</td>
<td>5 (29%)</td>
<td>6 (35%)</td>
</tr>
<tr>
<td>Typ III (n=22)</td>
<td>17 (76%)</td>
<td>5 (24%)</td>
<td>10 (45%)</td>
</tr>
</tbody>
</table>

Tab. 2: Häufigkeit der Koronoidfrakturen nach unterschiedlichen Kriterien
Ergebnisse

Die Hälfte der Typ-I-Frakturen trat als Folge eines Sturzes auf ebener Erde auf. Typ-II- und Typ-III-Frakturen traten häufiger nach Sturz aus großer Höhe auf. Ein Sturz auf ebener Erde war bei diesen Frakturtypen die zweithäufigste Ursache (Tab. 3).

<table>
<thead>
<tr>
<th>PCU-Frakturtyp nach Regan und Morrey</th>
<th>Unfallursache</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sturz auf ebener Erde</td>
<td>Sturz aus großer Höhe</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td><strong>Typ I (n=19)</strong></td>
<td>10 (53%)</td>
<td>5 (26%)</td>
</tr>
<tr>
<td><strong>Typ II (n=17)</strong></td>
<td>5 (29%)</td>
<td>6 (35%)</td>
</tr>
<tr>
<td><strong>Typ III (n=22)</strong></td>
<td>7 (32%)</td>
<td>10 (45%)</td>
</tr>
</tbody>
</table>

Tab. 3: Häufigkeit der Koronoidfrakturen in Abhängigkeit von der Unfallursache

3. BEGLEITVERLETZUNGEN


In 24 Fällen lag nur eine knöcherne Begleitverletzung vor, in 17 Fällen fanden sich mindestens zwei Begleitverletzungen und in 2 Fällen lagen sogar drei knöcherne Begleitverletzungen vor.

Eine Ellenbogenluxation konnte bei insgesamt 44 von 58 Patienten (76%) nachgewiesen werden, darunter waren elf isolierte Frakturen des Processus coronoides ulnae. Nur bei drei der 58 Patienten (5%) fand sich eine offene Fraktur mit Weichteilverletzung.
Ergebnisse


<table>
<thead>
<tr>
<th>Frakturtyp nach Regan und Morrey</th>
<th>Anzahl isolierter Frakturen</th>
<th>Anzahl Frakturen mit Begleitverletzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ I (n=19)</td>
<td>6 (32%)</td>
<td>13 (68%)</td>
</tr>
<tr>
<td>Typ II (n=17)</td>
<td>5 (29%)</td>
<td>12 (71%)</td>
</tr>
<tr>
<td>Typ III (n=22)</td>
<td>4 (18%)</td>
<td>18 (82%)</td>
</tr>
</tbody>
</table>

Tab. 4: Anteil der Begleitverletzungen nach PCU-Frakturtyp

3.1 RADIUSKÖPFCHENFRAKTUREN
Anhand der posttraumatischen Röntgenbilder ließen sich 40 Radiusköpfchenfrakturen (69%) als Begleitverletzung nachweisen. Diese wurden nach Mason [64] klassifiziert: Es fanden sich zwei Typ-I-Frakturen, 15 Typ-II-Frakturen und 23 Typ-III-Frakturen (Abb. 19). Fünf Patienten wiesen zusätzlich eine Radiushalsfraktur auf.
3.2 FRAKTUREN DER PROXIMALEN ULNA UND OLECRANONFRAKTUREN


4. VERLETZUNGSKOMBINATIONEN

Bei 16 Patienten fand sich eine typische „terrible triad“-Verletzung (TT), bei ebenfalls 16 Patienten fand sich eine „terrible triad“-Verletzung mit zusätzlicher proximaler Ulnaschaft-Fraktur (ProxUlnTT). In einem Fall lag eine Monteggia-Fraktur mit PCU-Fraktur und Radiusköpfchen-Fraktur (MontPCU) vor. Eine isolierte PCU-Fraktur mit Luxation (LuxPCU) konnte bei elf Patienten nachgewiesen werden, eine isolierte PCU-Fraktur (IsoPCU-F) ohne Luxation fand sich in vier Fällen. Eine kombinierte PCU- und Radiusköpfchen-Fraktur ohne Luxation (PCURK-F) kam in acht Fällen vor. Zweimal konnte eine PCU-Fraktur mit begleitender Olecranonfraktur ohne Luxation (OlePCU-F) nachgewiesen werden (Tab. 5).
Ergebnisse

<table>
<thead>
<tr>
<th>Art der Verletzungskombination</th>
<th>TT</th>
<th>ProxUlnTT</th>
<th>MontPCU</th>
<th>LuxPCU</th>
<th>IsoPCU-F</th>
<th>PCURK-F</th>
<th>OlePCU-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Patienten</td>
<td>16</td>
<td>16</td>
<td>1</td>
<td>11</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(27,5%)</td>
<td>(27,5%)</td>
<td>(2%)</td>
<td>(19%)</td>
<td>(7%)</td>
<td>(14%)</td>
<td>(3%)</td>
</tr>
</tbody>
</table>

Tab.5: Verletzungskombinationen

5. THERAPIE DER KORONOIDFRAKTUREN

5.1 STATIONÄRER AUFENTHALT
Der stationäre Aufenthalt betrug durchschnittlich 31,7 Tage (SD 29,7; 2-116 d.). 37 Patienten waren weniger als 30 Tage im Krankenhaus, 21 Patienten dagegen länger als 30 Tage. Patienten mit einer Typ-I-PCU-Fraktur verbrachten durchschnittlich 21 Tage (SD 24,4; 0-70 d.) im Krankenhaus, Patienten mit einer Typ-II-PCU-Fraktur durchschnittlich 38 Tage (SD 33,2; 6-116 d.) und Patienten mit einer Typ-III-Fraktur durchschnittlich 36 Tage (SD 30,0; 5-106 d.). Die Patientin mit dem längsten stationären Aufenthalt musste aufgrund einer komplizierten Typ-II-PCU-Fraktur mehrfach operiert werden und dementsprechend 116 Tage im Krankenhaus verbringen (s. Anhang, S. 78).

5.2 ERSTVERSORGUNG
In 32 Fällen (55%) erfolgte die Erstversorgung direkt im BUKH bzw. im UKSH (24mal operativ und 8mal konservativ). 23 Patienten (40%) wurden in einer auswärtigen Klinik vorbehandelt, davon 17 konservativ und sechs operativ. Drei Patienten (5%) wurden vor Krankenhaus einweisung von einem niedergelassenen Arzt mit einem Oberarm-Gips erstversorgt.

5.3 OPERATIVE THERAPIE
Insgesamt 56 der 58 Patienten (97%) wurden operiert. Entsprechend wurden zwei Patienten (3%) ausschließlich konservativ therapiert. In beiden Fällen lagen isolierte Koronoidfrakturen vor.
Ergebnisse

Insgesamt 33 Koronoidfrakturen der 56 operierten Patienten (59%) wurden operativ refixiert oder rekonstruiert. Bei den übrigen 23 operierten Patienten (41%) wurden nur die Begleitverletzungen operativ versorgt. Die Indikation zum operativen Vorgehen wurde wesentlich vom Frakturtyp beeinflusst. So wurden nur zwei der 19 Typ-I-Frakturen (11%), aber 12 der 17 Typ-II-Frakturen (71%) und 19 der 22 Typ-III-Frakturen (86%) operativ versorgt (Tab. 6).

<table>
<thead>
<tr>
<th>Frakturtyp nach Regan und Morrey</th>
<th>Anzahl der operierten Frakturen</th>
<th>Anteil operierter Frakturen in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ I (n=19)</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Typ II (n=17)</td>
<td>12</td>
<td>71</td>
</tr>
<tr>
<td>Typ III (n=22)</td>
<td>19</td>
<td>86</td>
</tr>
</tbody>
</table>

Tab. 6: Anteil operativ therapiert  
Frakturen nach Frakturtyp

26 der 56 operierten Patienten (46%) wurden präoperativ temporär mit einem Oberarm-Gipsverband versorgt. Bei zwei Patienten (4%) erfolgte zunächst nur die Anlage eines Fixateur externe, einmal im Rahmen eines Polytraumas (der Patient war von einem Dach gestürzt) und einmal bei drittgradig offener Ellenbogengelenks-Luxationsfraktur (der Patient war mit dem Arm in ein Förderband geraten). 28 Patienten (50%) wurden sofort operiert, d.h. auf eine präoperative Ruhigstellung wurde verzichtet.

30 der 56 operierten Patienten (54%) wurden innerhalb der ersten 24 Stunden nach dem Unfall operiert. 22 Patienten (39%) wurden innerhalb eines Zeitraums von 18 Tagen nach dem Unfall, vier Patienten (7%) erst nach einem längeren Zeitintervall (zwei bis 36 Monate nach dem Unfall) operiert. Bei letzteren war zunächst ein konservativer Therapieversuch unternommen worden. Aufgrund von einer Belastungsinsuffizienz mit Instabilität musste jedoch auf eine operative Therapie umgestellt werden. Drei Patienten (5%) waren im Ausland (Polen, New Orleans und Griechenland) verunglückt. Der Zeitpunkt der ersten Operation verzögerte sich in diesen Fällen aufgrund des Rücktransportes nach Deutschland um 5 bis 60 Tage.

35 Patienten (62%) mussten mehrfach operiert werden, 15 Patienten sogar mindestens dreimal (jeweils einschließlich der Materialentfernungen). Durchschnittlich wurde 2,2 mal (SD 1,5; 0-8 t.) operiert. In einem Fall musste aufgrund persistierender Instabilität und Belastungsinsuffizienz sogar acht Mal operiert werden.
5.3.1 OPERATIONSTECHNIK


Abb. 20: Primäre operative Therapie der Koronoidfrakturen

Typ-II-Frakturen wurden hauptsächlich mit Schrauben versorgt, Typ-III-Frakturen ebenfalls hauptsächlich mit Schrauben, aber auch mit Mini-Plättchen. Drei Typ-II-Frakturen wurden mit einem Koronoidersatz versorgt (Tab. 7).

<table>
<thead>
<tr>
<th>PCU-Frakturtyp nach Regan und Morrey</th>
<th>Schrauben</th>
<th>Mini-Plättchen</th>
<th>Lasso</th>
<th>Koronoidersatz</th>
<th>Fragmentresektion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ I (n=19)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Typ II (n=17)</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Typ III (n=22)</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Tab. 7: Verteilung der Operationstechniken nach PCU-Frakturtyp

5.3.2 BEGLEITVERLETZUNGEN

Insgesamt 36 der 40 Radiusköpfchen-Frakturen (90%) wurden operativ therapiert. Neun Radiusköpfchen-Frakturen wurden primär mit Schrauben versorgt, drei mit Leibinger-Miniplättchen, 20 mit primär kompletter und vier mit primär partieller Radiusköpfchen-
Ergebnisse


Abb. 21: Therapie der Radiusköpfchenfrakturen

Ähnlich wie bei den Koronoidfrakturen wurde die Therapie der Radiusköpfchen-Frakturen vom Frakturtyp beeinflusst. So wurden die beiden Mason-I-Frakturen sowie zwei der 15 Mason-II-Frakturen konservativ behandelt. Eine operative Therapie erfolgte bei den restlichen 13 Mason-II-Frakturen sowie bei allen 23 Mason-III-Frakturen (Tab. 8).

<table>
<thead>
<tr>
<th>RK-Frakturtyp nach Mason</th>
<th>Anzahl der operierten Frakturen</th>
<th>Anteil operierter Frakturen in %</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Typ I</strong> (<em>n</em>=2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Typ II</strong> (<em>n</em>=15)</td>
<td>13</td>
<td>87</td>
</tr>
<tr>
<td><strong>Typ III</strong> (<em>n</em>=23)</td>
<td>23</td>
<td>100</td>
</tr>
</tbody>
</table>

Tab. 8: Anteil operativ therapieter Radiusköpfchenfrakturen nach Frakturtyp

Die insgesamt 17 proximalen Ulnaschaft-Frakturen wurden überwiegend (76%) mit dorsal angelegten Kleinfragmentplatten (konventionell oder winkelstabil) stabilisiert. Die Übrigen (24%) sowie auch die beiden Olecranonfrakturen wurden mittels K-Drahtcerclage versorgt.
Bei 19 von 44 (41%) luxierten Gelenken wurde der rupturierte Seitenbandapparat operativ refixiert bzw. genäht, dabei 14mal radial und fünfmal ulnar.

5.4 POSTOPERATIVE THERAPIE

Postoperativ erfolgte eine Ruhigstellung des Gelenkes für durchschnittlich 34,12 Tage (SD 32,2; 0-170 d.). Insgesamt 23 von 56 Patienten (41%) wurden postoperativ mit einem Ellenbogengelenk-überbrückenden AO-Fixateur externe dorsal versorgt. Bei 17 Patienten (74%) erfolgte die Anlage primär postoperativ (bei zwei dieser Patienten erfolgte die Anlage bereits vor der endgültigen operativen Stabilisierung), bei 6 Patienten (26%) sekundär postoperativ.

Die übrigen 33 Gelenke (59%) wurden postoperativ mithilfe eines Oberarmgipsverbands stabilisiert.

Bezüglich heterotoper Ossifikationen wurde routinemäßig bei allen Patienten eine Prophylaxe mit 3 x 50 mg Diclofenac p.o. für 2 Wochen durchgeführt [39].

Bei allen 56 operierten Patienten wurde postoperativ eine physiotherapeutische Nachbehandlung begonnen, durchschnittlich 18,7 Tage (SD 23,2; 1-140 d.) nach der Operation. Bei 23 Patienten (41%) wurde noch innerhalb der ersten postoperativen Woche mit den Mobilisierungsmaßnahmen begonnen. Die durchschnittliche Dauer der physiotherapeutischen Behandlung belief sich auf 18,1 Wochen (SD 26,5; 0-152 w.).

GRUPPENVERGLEICH FIXATEUR EXTERNE - OBERARMGIPSVERBAND

Der Fixateur externe wurde durchschnittlich 40 Tage (SD 26,5; 14-140 d.) getragen, der Oberarmgipsverband nur durchschnittlich 23 Tage (SD 34,3; 1-170 d.).

Bei Patienten mit Fixateur externe fanden sich signifikant mehr Begleitverletzungen als bei Patienten ohne Fixateur externe: In der Fixateurgruppe waren durchschnittlich 3,3 Begleitstrukturen, in der Gruppe ohne Fixateur nur durchschnittlich 2,4 Begleitstrukturen verletzt (p=0,001, Mann-Whitney-U-Test). Dabei wurden jede knöcherne und jede ligamentäre Begleitverletzung sowie jede nachgewiesene Luxation als jeweils eine Verletzung gezählt (Abb. 22). Insgesamt 15 von 23 (65 %) Patienten mit Fixateur externe benötigten mindestens eine Revision, während von den 35 Patienten ohne Fixateur externe nur 7 revidiert werden mussten (20 %) (p = 0,000, exakter Test nach Fisher). Der stationäre Aufenthalt in der Oberarmgipsverbandgruppe war mit durchschnittlich 18 Tagen (SD 16,1; 0-67 d.) signifikant kürzer als der in der Fixateurgruppe mit durchschnittlich 52 Tagen (SD 35,1; 5-116 d.) (p = 0,000, Mann-Whitney-U-Test). Der Anteil an durchgeführten Bandnähten
Ergebnisse

oder Radiusköpfchenresektionen unterschied sich nicht signifikant zwischen beiden Gruppen, ebenso nicht die Dauer der ambulant fortgeführten Physiotherapie.

Abb. 22: Signifikante Differenz zwischen Patienten mit und ohne Fixateur externe bezüglich der Anzahl verletzter Begleitstrukturen (p=0,001, Mann-Whitney-U-Test)

6. KOMPLIKATIONEN

36 der insgesamt 58 therapierten PCU-Frakturen (62%), einschließlich der beiden konservativ behandelten Patienten, verliefen komplikationslos.

In 22 von 56 operierten Fällen (39%) traten postoperativ Komplikationen auf. Bei zehn Patienten (18%) wurden postoperativ partielle sowie komplette Nervenläsionen dokumentiert, vorwiegend im sensiblen Versorgungsgebiet des N. ulnaris. Weitere Komplikationen waren Reluxationen (14%) und chronische Instabilität (7%), heterotope Ossifikationen (19%) und freie Gelenkkörper (5%), Osteosynthesever sagen (4%) und Pseudarthrosen (4%). In einem Fall war eine Kompartmentsversorgung am Unterarm erforderlich. In einem anderen Fall wurde intraoperativ iatrogen eine suprakondyläre Humerusfraktur verursacht. Ein Patient beklagte eine Weichteilirritation über der eingebrachten Schraube am Ellenbogen und eine weitere Patientin erhielt bei fortbestehender Luxationsneigung trotz PCU-Rekonstruktion mit Beckenkammspan eine komplette Ellenbogengelenkprothese (Biomet IBP, Berlin, Germany). Im gesamten Patientenkollektiv kam es zu keinerlei Verletzung arterieller oder venöser Gefäße.

Bezogen auf den PCU-Frakturtyp ergab sich folgendes Bild (Tab. 9): Bei mehr als der Hälfte der Typ-III-Frakturen (55%) traten Komplikationen auf. Dagegen verliefen 15 der 19 Typ-I-Frakturen (79%) und 11 der 17 Typ-II-Frakturen (65%) komplikationslos.

38
<table>
<thead>
<tr>
<th>PCU-Frakturtyp nach Regan und Morrey</th>
<th>Anzahl der Fälle mit Komplikationen</th>
<th>Anteil der Fälle mit Komplikationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ I (n=19)</td>
<td>4</td>
<td>21%</td>
</tr>
<tr>
<td>Typ II (n=17)</td>
<td>6</td>
<td>35%</td>
</tr>
<tr>
<td>Typ III (n=22)</td>
<td>12</td>
<td>55%</td>
</tr>
</tbody>
</table>

Tab. 9: Verteilung der Komplikationen nach PCU-Frakturtyp

In der Korrelationsanalyse nach Pearson zeigte sich eine positiv signifikante Korrelation zwischen dem Auftreten von Komplikationen und dem PCU-Frakturtyp nach Regan und Morrey ($r = 0.263; p = 0.046$), d.h. je höher der PCU-Frakturtyp, desto häufiger traten Komplikationen auf.

Unter den 33 (51%) operativ therapierten Koronoidfrakturen verliefen 17 mit Komplikationen, d.h. bei jeder zweiten operativ therapierten Koronoidfraktur traten im weiteren Behandlungsverlauf Komplikationen auf. Dabei machte es keinen Unterschied, ob die Koronoidfrakturen isoliert oder mit Begleitverletzungen assoziiert aufgetreten waren. In beiden Gruppen belief sich die Komplikationsrate auf 40%.

7. NACHUNTERSUCHUNGSERGEBNISSE

7.1 INSPEKTION

Fünf Patienten (10%) zeigten beim Betreten des Untersuchungszimmers eine Schonhaltung mit leichter Beugestellung ihres verletzten Arms. Bei einem Patienten (2%) fiel eine funktionelle Armverkürzung im Seitenvergleich auf. Bei einem weiteren Patienten (2%) war ein Cubitus varus (nach suprakondylärer Humerusfraktur im Kindesalter) zu erkennen.

Schwellungen im Bereich des Ellenbogengelenkes fanden sich bei drei Patienten (6%), Schwellungen im Bereich des Ober- oder Unterarms bei zwei Patienten (4%). Eine leichte Muskelatrophie im und um den Bereich des Ellenbogengelenkes fand sich bei zwölf Patienten (25%).

Die Narbe war bei 45 Patienten (94%) ohne Rötung, Schwellung, Überwärmung oder Fistelung reizlos verheilt. Bei zwei Patienten (4%) zeigte sich allerdings eine diskrete Rötung und Schwellung der Narbe. Bei einem weiteren Patienten (2%) war die Narbe leicht verbreitert abgeheilt.
7.2 PALPATION

Einliegendes Osteosynthesematerial war bei vier Patienten (8%) im Bereich des Olecranons zu tasten, bei einem Patienten (2%) konnte über der ulnaren Seitenkante eine Schraubenspitze ertastet werden. Eine artikuläre Krepitation im Sinne eines arthrotischen Reibens war beim Durchbewegen des verletzten Ellenbogengelenkes in fünf Fällen (10%) nachzuweisen. Bei drei Patienten (6%) ließ sich ein leichter Druckschmerz über dem Ellenbogengelenk auslösen, bei weiteren zwei Patienten (4%) war die Palpation des Radiusköpfcchens druckschmerzhaft. Die Durchblutung war bei allen untersuchten Patienten intakt, der A. radialis Puls bei allen Patienten tastbar.

7.3 NEUROLOGISCHER UNTERSUCHUNGSBEFUND


Der Bizeps-Sehen-Reflex ließ sich bei allen untersuchten Patienten seitengleich auslösen.

7.4 FUNKTIONSPRÜFUNG

Das aktive Bewegungsausmaß des Ellenbogengelenkes in Extension und Flexion sowie in Pronation und Supination wurde im Vergleich zur gesunden Seite nach der Neutral-Null-Methode gemessen.
Ergebnisse

EXTENSION UND FLEXION
Insgesamt 45 der 48 klinisch nachuntersuchten Patienten (94%) wiesen Bewegungseinschränkungen in Extension und Flexion auf. Nur drei Patienten (6%) erreichten ein normales Bewegungsausmaß von bis zu 150°. Zwölf Patienten (25%) konnten ihr Ellenbogengelenk normal strecken und ebenfalls zwölf Patienten (25%) erreichten eine maximale Beugung von 140-150°.

Durchschnittlich ergab sich ein Bewegungsausmaß von 107,2° (SD 28,6; 5° - 155°). Das durchschnittliche Extensionsdefizit betrug 19,0° (SD 17,5; -10°-80°), das durchschnittliche Flexionsdefizit 18,8° (SD 16,2; 0°-60°).

Patienten mit Typ-III-PCU-Fraktur wiesen das durchschnittlich größte Extensionsdefizit von 24,2° (SD 19,2; 0°-80°) und ebenfalls das durchschnittlich größte Flexionsdefizit von 29,2° (SD 19,1; 5°-60°) auf. Das beste durchschnittliche Bewegungsausmaß erreichten Patienten mit Typ-II-Fraktur (115,2° (SD 33,2; 5°-140°)). Patienten mit Typ-I-Fraktur waren in der Extension eingeschränkter als Patienten mit Typ-II-Fraktur (Tab.10).

<table>
<thead>
<tr>
<th>PCU-Frakturtyp nach Regan und Morrey</th>
<th>Durchschnittliches Extensionsdefizit</th>
<th>Durchschnittliches Flexionsdefizit</th>
<th>Durchschnittliches Bewegungsausmaß</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Typ I (n=15)</strong></td>
<td>20° (SD 13,5; 0°-40°)</td>
<td>19,6° (SD 12,6; 0°-50°)</td>
<td>110,3° (SD 22,2; 60°-140°)</td>
</tr>
<tr>
<td><strong>Typ II (n=14)</strong></td>
<td>11,1° (SD 16,9; 0°-40°)</td>
<td>20,7° (SD 14,3; 5°-55°)</td>
<td>118,2° (SD 24,2; 80°-155°)</td>
</tr>
<tr>
<td><strong>Typ III (n=19)</strong></td>
<td>24,2° (SD 19,2; 0°-80°)</td>
<td>29,2° (SD 19,1; 5°-60°)</td>
<td>96,6° (SD 33,2; 5°-140°)</td>
</tr>
</tbody>
</table>

Tab. 10: Bewegungsausmaß (Extension/Flexion) in Bezug auf den PCU-Frakturtyp

PRONATION UND SUPINATION
Bei 28 der 48 klinisch nachuntersuchten Patienten (58%) fand sich eine Einschränkung der Umwendbewegung des Unterarms. 20 Patienten (42%) erreichten einen normalen Rotationsbogen von 180°. 14 Patienten (29%) hatten Schwierigkeiten bei der Pronation, 26 Patienten (54%) waren in der Supination eingeschränkt.

Das Pronationsdefizit betrug durchschnittlich 8° (SD 18,2; 0°-90°) das Supinationsdefizit 18,9° (SD 26,8; 0°-90°). Damit ergab sich ein durchschnittlicher Rotationsbogen von 153,0° (SD 38,5; 0° - 180°).
Ergebnisse

In der Gruppe der Typ-I-Frakturen fand sich ein durchschnittlicher Rotationsbogen von 163,3° (SD 30,6; 90°-180°). Patienten mit Typ-III-Frakturen erreichten nur durchschnittlich 132,6° (SD 47,4; 0°-180°). Das größte durchschnittliche Supinationsdefizit von 33,2° (SD 31,1; 0°-90°) trat bei Patienten mit Typ-III-Fraktur auf. Patienten mit Typ-I-Fraktur waren in der Rotation eingeschränkter als Patienten mit Typ-II-Fraktur (Tab. 11).

<table>
<thead>
<tr>
<th>PCU-Frakturtyp nach Regan und Morrey</th>
<th>Durchschnittliches Pronationsdefizit</th>
<th>Durchschnittliches Supinationsdefizit</th>
<th>Durchschnittlicher Rotationsbogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ I (n=15)</td>
<td>4,3° (SD 11,8; 0°-45°)</td>
<td>12,3° (SD 24,7; 0°-90°)</td>
<td>163,3° (SD 30,6; 90°-180°)</td>
</tr>
<tr>
<td>Typ II (n=14)</td>
<td>3,6° (SD 7,4; 0°-20°)</td>
<td>6,4° (SD 9,3; 0°-20°)</td>
<td>170° (SD 14,7; 140°-180°)</td>
</tr>
<tr>
<td>Typ III (n=19)</td>
<td>14,2° (SD 25,5; 0°-90°)</td>
<td>33,2° (SD 31,1; 0°-90°)</td>
<td>132,6° (SD 47,4; 0°-180°)</td>
</tr>
</tbody>
</table>

Tab. 11: Rotationsbogen (Pronation/Supination) in Bezug auf den PCU-Frakturtyp

7.5 BEWEGUNGSAUSMASS SUBJEKTIV UND OBJEKTIV

Die Patienten waren im Fragebogen aufgefordert worden, in einer Skizze einzuzeichnen, wie weit sie ihren Ellenbogen strecken bzw. beugen können. 30 Patienten konnten diese Aufgabe lösen. Die Auswertung der Skizzen ergab ein durchschnittliches Extensionsdefizit von 15,5° (SD 17,5; 0°-50°) und ein durchschnittliches Flexionsdefizit von 28,8° (SD 32,7; 0°-150°). Somit wurde ein durchschnittliches Bewegungsausmaß von 106,3° (SD 42; 0°-160°) erreicht. Die objektive klinische Prüfung der Beweglichkeit des Ellenbogengelenkes nach der Neutral-Null-Methode ergab bei denselben Patienten ein durchschnittliches Extensionsdefizit von 18,3° (SD 19,8; 0°-80°) und ein durchschnittliches Flexionsdefizit von 21,8° (SD 15,2; 5°-65°). Das Bewegungsausmaß lag damit durchschnittlich bei 109,5° (SD 29,4; 5°-155°).

Mittels der Korrelationsprüfung nach Pearson konnte gezeigt werden, dass sowohl die angegebene Streckstellung (Extension) als auch die angegebene Beugestellung (Flexion) im Fragebogen mittelstark signifikant mit den jeweiligen Parametern der objektiven Prüfung korrelieren (Extension: r = 0,591, p= 0,000; Flexion: r = 0,401, p= 0,028). Das gleiche Ergebnis brachte die Korrelationsanalyse nach Kendall-Tau-b für die Flexion (τb = 0,443, p = 0,001).
7.6 STABILITÄTSPRÜFUNG
Subjektiv gaben 30 Patienten (69%) ein stabiles Gelenk an. In der objektiven Stabilitätsprüfung konnte dagegen bei 20% dieser Patienten eine vermehrte seitliche Aufklappbarkeit von über 10° festgestellt werden. 18 Patienten (31%) gaben ein moderates oder starkes Instabilitätsgefühl an. Die objektive Stabilitätsprüfung ergab hier bei 56% eine vermehrte mediolaterale Aufklappbarkeit. Zum Nachuntersuchungszeitpunkt konnte bei keinem der 48 Patienten eine Relaxation nachgewiesen werden.

7.7 KRAFTMESSUNG
Mithilfe des Genius-Kraftmessgerätes (0-5 kN, Fa. FREI AG, Kirchzarten, Germany) wurde die Kraft des verletzten Arms im Vergleich zum gesunden Arm bestimmt, um eine eventuelle Kraftminderung festzustellen. Dazu mussten die Patienten im Sitzen mit 90° gebeugtem Ellenbogengelenk gegen einen maximalen Widerstand an einem Seil ziehen (s. Material und Methoden, S. 21).
Bei 15 Patienten (47%) war ein Kraftverlust des verletzten Arms im Vergleich zum gesunden Arm nachzuweisen. Bei elf Patienten zeigte sich eine leichte Kraftminderung (1-10N) und bei vier Patienten eine deutliche Kraftminderung (11-64 N) des verletzten Arms. Die Patientin mit der größten Kraftdifferenz von 64 N zwischen verletztem und gesundem Arm war aufgrund einer komplizierten Typ-III-PCU-Fraktur mehrfach operiert worden und hatte zuletzt eine Ellenbogengelenkprothese erhalten (s. Anhang, S. 78).
Bezüglich der verschiedenen PCU-Frakturtypen nach Regan und Morrey fand sich eine Gleichverteilung der in der Kraft geminderten Extremitäten. Die Kraftmessungen ergaben am verletzten Arm links durchschnittlich 85,6 N (SD 31,2; 0-140 N), rechts durchschnittlich 87,9 N (SD 48,9; 0-194 N), am gesunden Arm links 97,4 N (SD 39,2; 33-180 N) und rechts 94,0 N (SD 23,1; 45-142 N). Signifikante Differenzen ließen sich nicht nachweisen.
7.8 UMFTANGMESSUNG
Die Umfangmaße wurden bei 45 der 48 nachuntersuchten Patienten jeweils 15 cm oberhalb des äußeren Oberarmknorrens, direkt am Ellenbogengelenk und 15 cm unterhalb des äußeren Oberarmknorrens, sowohl an der verletzten als auch an der gesunden Extremität gemessen. In 25 Fällen (56%) war der rechte Arm verletzt, in 20 Fällen (44%) der linke. Unter den 45 Patienten waren drei Linkshänder (7%), zwei davon hatten sich den dominanten linken Arm verletzt, einer den rechten. Damit war bei insgesamt 26 von 45 Patienten (58%) der dominante Arm betroffen. Der verletzte dominante Oberarm war in 13 Fällen (50%) dicker und in 6 Fällen (23%) dünner als der gesunde Oberarm. Sieben Mal (27%) fand sich keine Umfangsdifferenz. Das dominante Ellenbogengelenk war auf der verletzten Seite in elf Fällen dicker (42%) und nur in drei Fällen (12%) dünner als das gesunde Ellenbogengelenk. Zwölf Mal (46%) fand sich keine Umfangsdifferenz am Ellenbogengelenk. Der Unterarm der verletzten dominanten Seite war in 13 Fällen (50%) dicker und in neun Fällen dünner als die gesunde Seite. In vier Fällen (15%) fand sich keine Umfangsdifferenz am Unterarm. Zusammenfassend lässt sich feststellen, dass die verletzte dominante Seite in 15 Fällen (58%) am Ober- oder Unterarm dünner war als auf der gesunden Seite. Da erst eine Umfangsdifferenz von mehr als 2 cm am Oberarm und/oder mehr als 1 cm am Unterarm als Zeichen einer Muskelrückbildung der betroffenen oberen Extremität gewertet werden kann, ist bei neun Patienten (35%) mit verletztem dominanten Arm eine Muskelatrophie im Bereich des Ober- oder Unterarms anzunehmen. Unter den 19 Patienten, die sich den nichtdominanten Arm verletzt hatten, fand sich bei insgesamt acht Patienten (42%) eine negative Umfangsdifferenz von 2 cm am Oberarm bzw. von über 1 cm am Unterarm der verletzten Seite. Auch in diesen Fällen ist von einer Muskelrückbildung auszugehen, so dass bei insgesamt 17 von 45 (37%) untersuchten Patienten eine Muskelatrophie der betroffenen Extremität angenommen werden kann.
Bezüglich der verschiedenen PCU-Frakturtypen nach Regan und Morrey fanden sich betreffend einer möglichen Muskelatrophie keine eindeutigen Differenzen.

7.9 FUNKTION SUBJEKTIV
Die Patienten wurden im Fragebogen aufgefordert, ihre derzeitige Ellenbogenfunktion in Schulnoten (1=sehr gut, 2=gut, 3=befriedigend, 4=ausreichend, 5=mangelhaft, 6=schlecht) zu bewerten. 21 Patienten gaben ihrer Ellenbogenfunktion eine „eins“ oder eine „zwei“. 
16 Patienten bewerteten ihre Ellenbogenfunktion mit einer schlechteren Note als „befriedigend“. Die Note „sechs“ wurde nicht vergeben. Die durchschnittliche Bewertung ergab die Note 2,9 (SD 1,5; 1-5). Patienten mit Typ-I-Fraktur erzielten mit der Note 2,5 (SD 1,3; 1-5) den besten Durchschnitt. Patienten mit Typ-III-Fraktur bewerteten ihre Ellenbogenfunktion durchschnittlich besser als Patienten mit Typ-II-Fraktur (Tab. 12).

50 von 58 Patienten (86%) gaben keine relevanten Funktionseinschränkungen bei den Verrichtungen des täglichen Lebens, wie zum Beispiel beim Ankleiden oder bei der Nahrungsaufnahme, an.

<table>
<thead>
<tr>
<th>PCU-Frakturtyp nach Regan und Morrey</th>
<th>Funktion</th>
<th>Sehr gut</th>
<th>Gut</th>
<th>Befriedigend</th>
<th>Ausreichend</th>
<th>Mangelhaft</th>
<th>Durchschnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ I (n=17)</td>
<td></td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2,5 (SD 1,3; 1-5)</td>
</tr>
<tr>
<td>Typ II (n=12)</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3,3 (SD 1,5; 1-5)</td>
</tr>
<tr>
<td>Typ III (n=17)</td>
<td></td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3,0 (SD 1,5; 1-5)</td>
</tr>
</tbody>
</table>

Tab. 12: Subjektive Funktion in Bezug auf den PCU-Frakturtyp

7.10 SCHMERZEN

23 Patienten (40%) gaben zum Nachuntersuchungszeitpunkt keine Schmerzen im Ellenbogengelenk an. 17 Patienten (29%) beschrieben einen milden Schmerz, 14 Patienten (24%) gaben belastungsabhängig moderate Schmerzen an und vier Patienten (7%) beklagten sogar starke Schmerzen. Patienten mit Typ-I-Fraktur waren häufiger schmerzfrei als Patienten mit Typ-II- oder Typ-III-Fraktur. Starke Schmerzen traten dagegen häufiger bei Patienten mit Typ-III-Fraktur auf (Tab. 13).

<table>
<thead>
<tr>
<th>PCU-Frakturtyp nach Regan und Morrey</th>
<th>Schmerzen</th>
<th>Keine</th>
<th>mild</th>
<th>moderat</th>
<th>stark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ I (n=19)</td>
<td></td>
<td>9 (47,3%)</td>
<td>5 (26,3%)</td>
<td>4 (21,1%)</td>
<td>1 (5,3%)</td>
</tr>
<tr>
<td>Typ II (n=17)</td>
<td></td>
<td>6 (35%)</td>
<td>4 (24%)</td>
<td>6 (35%)</td>
<td>1 (6%)</td>
</tr>
<tr>
<td>Typ III (n=22)</td>
<td></td>
<td>8 (36%)</td>
<td>8 (36%)</td>
<td>4 (18%)</td>
<td>2 (9%)</td>
</tr>
</tbody>
</table>

Tab. 13: Schmerzen in Bezug auf den PCU-Frakturtyp
7.11 AUSWERTUNG DER RÖNTGENBILDER


Die Fraktur war bei 26 von 28 Patienten (93%) knöchern durchbaut, bei einer Patientin lag nach luxierter PCU-Typ-II-Fraktur mit Radiusköpfchenfraktur Mason III eine Ellenbogengelenk-Prothese ein, bei einem anderen Patienten fand sich eine Pseudarthrose nach luxierter PCU-Typ-III-Fraktur. Die Gelenkstellung war in 18 von 28 Fällen (64%) regelrecht, eine Fehlstellung des PCU konnte bei einem Patienten mit luxierter PCU-Typ-II-Fraktur nachgewiesen werden, eine Fehlstellung des Radiusköpfchens zeigte sich in fünf Fällen (18%), dreimal nach Radiusköpfchenfraktur Mason III. Zudem fanden sich einmal eine leichte Subluxationsstellung nach Radiusköpfchen-Resektion, einmal eine Ankylose (nach luxierter PCU-Typ-III-Fraktur), und einmal eine Fehlstellung aufgrund der Pseudarthrose (s.o.). Bei 16 Patienten (57%) lag noch Osteosynthesematerial ein, nur bei einem Patienten fand sich eine gelockerte Platte mit gebrochenen Schrauben nach luxierter PCU-Typ-III-Fraktur mit proximaler Ulnaschaft- und Radiusköpfchenfraktur Mason III.

Die Arthrosezeichen in Form von Osteophyten, Geröllzysten, Gelenkspaltverschmälerung und subchondraler Sklerosierung wurden anhand der Klassifikation nach Kellgren und Lawrence [46] in vier Schweregrade eingeteilt. Ein Arthrosegrad I lag in sechs Fällen (21%) vor, ein Arthrosegrad II in fünf Fällen (18%) und ein Arthrosegrad III in zwei Fällen (7%). Ein Arthrosegrad IV konnte bei keinem Patienten nachgewiesen werden. Bei neun der 13 Patienten (69%) mit röntgenologischen Arthrosezeichen lag eine PCU-Fraktur Typ III vor. Bei elf Patienten (39%) fanden sich periarthikuläre Ossifikationen (PAOs), darunter waren sechs Patienten (55%) mit PCU-Fraktur Typ III. Bei allen elf Patienten (100%) lagen knöcherne Begleitverletzungen vor (neun Radiusköpfchenfrakturen (82%), sechs Frakturen des proximalen Ulnaschaftes (55%), eine Olecranonfraktur (9%)). In sieben Fällen (64%) handelte es sich um eine Luxationsfraktur, zwei davon waren offene Frakturen. Die PAOs waren sieben Mal (64%) in der Region um das Radiusköpfchen lokalisiert, fünf Mal (45%) im ulnaren Bereich und zwei Mal (18%) im Bereich des Sehnenansatzes des M. brachialis. Bei neun dieser elf Patienten (82%) lagen Bewegungseinschränkungen vor. Das durchschnittliche Extensionsdefizit betrug 21,8° (SD 13,8; 0°-40°), das durchschnittliche Flexionsdefizit 24,1° (SD 17,1; 0°-50°). Die Patienten erreichten einen durchschnittlichen
Ergebnisse

Rotationsbogen von 146,4° (SD 32,0; 90°-180°). Die Pronation war durchschnittlich um 3,6° (SD 6,7; 0°-20°), die Supination sogar um 30,0° (SD 33,2; 0°-90°) eingeschränkt.

8. GESAMTBEURTEILUNG

8.1 MAYO ELBOW PERFORMANCE SCORE

Aus den Untersuchungsergebnissen bezüglich Schmerzintensität, ulnohumeraler Beweglichkeit, Stabilität und Funktion im Alltag ließ sich der Mayo Elbow Performance Score für alle 58 Patienten berechnen.

Die Patienten erreichten durchschnittlich 80,6 Punkte (SD 18,3; 40 - 100). Dabei wurde das Ergebnis bei 21 Patienten (36%) mit exzellent (≥ 90 Punkte), bei 20 Patienten (34%) mit gut (≥ 75 Punkte), bei 10 Patienten (17%) mit mäßig (≥ 60 Punkte) und bei sieben Patienten (12%) mit mangelhaft (< 60 Punkte) bewertet (Abb. 23).

Abb.23: Ergebnisse im Mayo Elbow Performance Score

Die Varianzanalyse ergab keine signifikanten Differenzen zwischen den PCU-Frakturtypen bezüglich der erreichten Punktzahl im Mayo Elbow Performance Score (p= 0,815). Patienten mit Typ-I-Fraktur erreichten allerdings mit durchschnittlich 83,2 Punkten (SD 19,9; 40-100) das beste Ergebnis (Tab. 14).
Ergebnisse

<table>
<thead>
<tr>
<th>PCU-Frakturtyp nach Regan und Morrey</th>
<th>Ergebnisse im Mayo Elbow Performance Score</th>
<th>Durchschnittliche Punktzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ I (n=19)</td>
<td>Exzellent: 9 (47%)</td>
<td>Gut: 5 (26%)</td>
</tr>
<tr>
<td>Typ II (n=17)</td>
<td>Exzellent: 6 (35%)</td>
<td>Gut: 5 (29%)</td>
</tr>
<tr>
<td>Typ III (n=22)</td>
<td>Exzellent: 6 (27%)</td>
<td>Gut: 10 (45%)</td>
</tr>
</tbody>
</table>

Tab. 14: Verteilung der Ergebnisse nach PCU-Frakturtyp

8.2 DISABILITIES OF THE ARM, SHOULDER AND HAND SCORE

Im DASH-Fragebogen wurden als Rohwert durchschnittlich 52,3 Punkte (SD 25,4; 30 – 122) erreicht. Nach Umrechnung mithilfe der genannten Formel (s. Material und Methoden, S. 24) ergaben sich durchschnittlich 19,4 Punkte (SD 21,1; 0-76,7). Nach Kendall korrelierte der MEPS stark negativ signifikant mit dem DASH-Score ($\tau_b = -0,867, p = 0,000$), das heißt je höher die Punkte im MEPS, desto niedriger die Punkte im DASH. Da 12 der 14 Patienten, die anhand ärztlicher Gutachten nachuntersucht worden waren, den Fragebogen nicht beantwortet hatten, konnte der DASH-Score bei diesen Patienten nicht erhoben werden. Daher wurde für die weitere Auswertung nur der MEPS berücksichtigt.

9. EINFLUSS AUF DAS BEHANDLUNGSERGEBNIS

9.1 SOZIALE FAKTOREN

Die Varianzanalyse ergab keinen signifikanten Unterschied zwischen Patienten verschiedener Altersgruppen, der verletzten Armseite oder des Geschlechts. Es machte ebenfalls keinen relevanten Unterschied, ob die Patienten im Universitätsklinikum Lübeck oder im Berufsgenossenschaftlichen Unfallkrankenhaus Hamburg behandelt worden waren. Allerdings hatten Patienten, die berufsgenossenschaftlich (BG) versichert waren, ein signifikant schlechteres Ergebnis im MEPS (71,9 Punkte (SD 17,2; 40-100 ), als Patienten, die gesetzlich (GKV) krankenversichert waren (88,7 Punkte (SD 15,6; 40-100)) (GKV (p=0,000; Mann-Whitney-U-Test). (Abb. 24)
9.2 KORONOIDFRAKTUREN
Zwischen den einzelnen PCU-Frakturtypen nach Regan und Morrey fanden sich im MEPS keine signifikanten Differenzen (p=0,815). Allerdings korrelierte das Auftreten von Komplikationen nach Pearson positiv signifikant mit dem Frakturtyp (r = 0,263; p = 0,046), d.h. je höher der PCU-Frakturtyp, desto häufiger traten Komplikationen auf (siehe auch Tab. 9, S. 39).

Die operativen Therapieverfahren unterschieden sich signifikant im Ergebnis (Abb. 25): Patienten mit PCU-Frakturen, die konservativ oder nur mit einem Osteosyntheseverfahren (Schrauben oder Platten) stabil versorgt werden konnten, erreichten signifikant bessere Ergebnisse, als neun Patienten (15 %), bei denen der Processus coronoideus ulnae mit Lasso fixiert oder durch einen Knochenblock ersetzt worden war (p=0,005 bis 0,015; Fisher’s LSD-Test).
9.3 RADIUSKÖPFCHENFRAKTUREN
Es ergaben sich keine signifikanten Unterschiede im MEPS zwischen den nach Mason klassifizierten Radiusköpfchenfrakturen. Es fanden sich jedoch tendenzielle Unterschiede zwischen Patienten, deren Radiusköpfchen erhalten werden konnten und Patienten, deren Radiusköpfchen ersatzlos reseziert werden musste (Abb. 26). Patienten mit Erhalt oder Rekonstruktion des Radiusköpfchens erzielten im MEPS durchschnittlich 85,0 Punkte (SD 15,9; 45-100), Patienten mit vollständig und ersatzlos reseziertem Radiusköpfchen nur durchschnittlich 76,2 Punkte (SD 19,2; 40-100).

Abb. 26: Tendenzierer Unterschied zwischen Patienten mit und ohne Erhalt des Radiusköpfchens (p=0,139; Mann-Whitney-U-Test)

9.4 ELLENBOGENLUXATION
Von den 44 Luxationen waren 19 (43 %) operativ mit Naht des Bandapparates versorgt worden. Subjektiv gaben 17 der 25 nicht genähten Patienten (68%) trotz stattgehabter Luxation ein stabiles Gelenkgefühl an, ebenso 12 der 19 mit Naht versorgten Patienten (63 %). Die klinische Nachuntersuchung ergab weder im MEPS noch in der ulnohumeralen Beweglichkeit einen Unterschied zwischen operativ oder konservativ versorgten Luxationen. Allerdings fanden sich ausgeprägte signifikante Korrelationen nach Pearson zwischen verbleibender Schmerzangabe und objektiv (r = 0,512, p = 0,001) oder subjektiv (r = 0,605, p = 0,000) bestehender Instabilität des Ellenbogengelenkes.
9.5 VERLETZUNGSKOMBINATIONEN

Da die Fallzahlen der einzelnen Verletzungsgruppen insgesamt sehr gering waren, können keine gültigen statistischen Aussagen getroffen werden. Es können lediglich tendenzielle Unterschiede beschrieben werden (Tab. 15 und Tab. 16). So erreichten Patienten mit isolierter PCU-Fraktur und Luxation ein durchschnittlich besseres Ergebnis im MEPS (78,6 (SD 22,4; 45-100)), aber eine größere Instabilität in der Stabilitätsprüfung als Patienten mit isolierter PCU-Fraktur ohne Luxation. Diese erzielten nur ein mäßiges Ergebnis im MEPS (71,3 (SD 16,0; 55-85)). Dagegen erreichten Patienten mit begleitender Radiusköpfchen- oder Olecranonfraktur ohne Luxation ein gutes bis exzellentes Ergebnis im MEPS. Sie zeigten ein stabileres Ellenbogengelenk und waren auch in der ulnohumeralen Beweglichkeit am wenigst eingeschränkt. Der einzige Patient mit Monteggia-Fraktur hingegen war in der ulnohumeralen Beweglichkeit (durchschnittlich 70°) am meisten eingeschränkt, erreichte aber im MEPS noch knapp ein gutes Ergebnis (75 Punkte). Patienten mit einer einfachen „terrible triad“-Verletzung erreichten durchschnittlich ein gutes Ergebnis im MEPS (80,6 (SD 19,9; 40-100)), zeigten aber in der Stabilitätsprüfung die größte Instabilität. Patienten mit „terrible triad“ und gleichzeitiger Fraktur des proximalen Ulnaschafts erzielten ebenfalls ein durchschnittlich gutes Ergebnis im MEPS (77,8 (SD 16,5; 40-100)), waren aber in der ulnohumeralen Beweglichkeit deutlich eingeschränkter (92,0° (SD 33,2; 5°-130°)) als Patienten mit einer einfachen „terrible triad“ (durchschnittlich 106,3° (SD 12,9; 80°-135°)).

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Anzahl Patienten</th>
<th>Anteil nachuntersuchter Patienten</th>
<th>Ergebnis im MEPS (Punkte)</th>
<th>Beweglichkeit ulnohumeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>16</td>
<td>12 (75%)</td>
<td>80,6 (SD 19,9; 40-100)</td>
<td>106,3° (SD 12,9; 80°-135°)</td>
</tr>
<tr>
<td>ProxUlnT</td>
<td>16</td>
<td>15 (94%)</td>
<td>77,8 (SD 16,5; 40-100)</td>
<td>92,0° (SD 33,2; 5°-130°)</td>
</tr>
<tr>
<td>MontPCU</td>
<td>1</td>
<td>1 (100%)</td>
<td>75,0</td>
<td>70,0°</td>
</tr>
<tr>
<td>LuxPCU</td>
<td>11</td>
<td>8 (73%)</td>
<td>78,6 (SD 22,4; 45-100)</td>
<td>114,4° (SD 33,7; 60°-155°)</td>
</tr>
<tr>
<td>IsoPCU-F</td>
<td>4</td>
<td>3 (75%)</td>
<td>71,3 (SD 16,0; 55-85)</td>
<td>115,0° (SD 21,8; 90°-130°)</td>
</tr>
<tr>
<td>PCURK-F</td>
<td>8</td>
<td>7 (88%)</td>
<td>89,4 (SD 14,3; 60-100)</td>
<td>131,4° (SD 18,4; 100°-155°)</td>
</tr>
<tr>
<td>OlePCU-F</td>
<td>2</td>
<td>2 (100%)</td>
<td>100 (SD 0; 100-100)</td>
<td>120,0° (SD 14,1; 110°-130°)</td>
</tr>
</tbody>
</table>

Tab. 15: Verletzungskombinationen mit durchschnittlichen Nachuntersuchungsbefunden bezüglich erreichter Punktzahl im MEPS und Extension-Flexion ulnohumeral (TT = terrible triad, ProxUlnTT = prox. Ulnaschaftfraktur mit TT, MontPCU = Monteggia-Fraktur mit PCU-Fraktur, LuxPCU = PCU-Fraktur mit Luxation, IsoPCU-F = isolierte PCU-Fraktur ohne Luxation, PCURK-F = PCU-und RK-Fraktur ohne Luxation, OlePCU-F= Olecranonfraktur mit PCU-Fraktur ohne Luxation)
Ergebnisse

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Rotationsbogen Unterarm</th>
<th>Valgusinstabilität</th>
<th>Varusinstabilität</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>172,5° (SD 12,2; 140°-180°)</td>
<td>12,1° (SD 11,8; 0°-30°)</td>
<td>9,6° (SD 9,9; 0°-30°)</td>
</tr>
<tr>
<td>ProxUlnTT</td>
<td>124,3° (SD 46,1; 0°-180°)</td>
<td>4,6° (SD 4,1; 0°-10°)</td>
<td>5,7° (SD 5,5; 0°-20°)</td>
</tr>
<tr>
<td>MontPCU</td>
<td>180°</td>
<td>5°</td>
<td>0°</td>
</tr>
<tr>
<td>LuxPCU</td>
<td>162,5° (SD 32,4; 90°-180°)</td>
<td>7,5° (SD 11,7; 0°-30°)</td>
<td>4,2° (SD 8,7; 0°-10°)</td>
</tr>
<tr>
<td>IsoPCU-F</td>
<td>141,7° (SD 66,4; 65°-180°)</td>
<td>3,3° (SD 5,8; 0°-10°)</td>
<td>3,3° (SD 5,8; 0°-10°)</td>
</tr>
<tr>
<td>PCURK-F</td>
<td>168,6° (SD 15,7; 140°-180°)</td>
<td>3,6° (SD 3,8; 0°-10°)</td>
<td>5° (SD 4,1; 0°-10°)</td>
</tr>
<tr>
<td>OlePCU-F</td>
<td>170,0° (SD 14,1; 160°-180°)</td>
<td>0° (SD 0; 0°-0°)</td>
<td>0° (SD 0; 0°-0°)</td>
</tr>
</tbody>
</table>

Tab. 16: Verletzungskombinationen mit durchschnittlichen Nachuntersuchungsbefunden bezüglich Unterarmrotation (in Pronation und Supination) und Instabilität (in ° bei Varus- oder Valgusstress) [TT = terrible triad, ProxUlnTT = prox. Ulnaschaftfraktur mit TT, MontPCU= Monteggia-Fraktur mit PCU-Fraktur, LuxPCU = PCU-Fraktur mit Luxation, IsoPCU-F = isolierte PCU-Fraktur ohne Luxation, PCURK-F = PCU- und RK-Fraktur ohne Luxation, OlePCU-F= Olecranonfraktur mit PCU-Fraktur ohne Luxation)

9.6 IMMOBILISATION

Signifikante Unterschiede im MEPS ergaben sich zwischen Patienten mit einer Immobilisation bis maximal 21 Tage und Patienten, deren Gelenk länger als 21 Tage immobilisiert worden war (p=0,000, U - Test) (Abb. 27). Dabei erreichten die kürzer als 21 Tage immobilisierten Patienten im MEPS durchschnittlich 90,6 Punkte (SD 13,3; 55-100) und in der ulnohumeralen Beweglichkeit durchschnittlich 127,3° (SD 17,5; 100°-155°). Die länger als 21 Tage immobilisierten Patienten kamen auf durchschnittlich 73,5 Punkte (SD 18,2; 40-100) im MEPS und erreichten ein durchschnittliches Bewegungsausmaß in Extension und Flexion von 96,1° (SD 27,5; 5°-140°). Differenzen im Verletzungsmuster oder den operativen Therapiemaßnahmen ließen sich zwischen den beiden Patientengruppen nicht nachweisen.

Abb. 27: Signifikante Differenz bei Immobilisation < bzw. > 21 Tage (p=0,000, Mann-Whitney-U-Test)
Patienten, die im Therapieverlauf auf die Anwendung eines externen Fixateurs angewiesen waren, erreichten ein signifikant schlechteres Ergebnis im MEPS als Patienten ohne Fixateur externe \((p = 0,001, \text{Mann-Whitney-U-Test}; \text{Abb. 28})\). Zusätzlich waren Patienten nach Behandlung mit einem Fixateur externe in der Beweglichkeit signifikant eingeschränkter \((p = 0,037, \text{U-Test})\): Das durchschnittliche Bewegungsausmaß in Extension und Flexion lag bei 91,2° \((\text{SD }31,1; 5°-155°)\), ohne Therapie im Fixateur externe dagegen bei 119,1° \((\text{SD }19,9; 70°-155°)\) \((p = 0,000, \text{t-Test})\). Die Rotation des Unterarmes in Pronation und Supination betrug ohne Therapie im Fixateur externe 161,9° \((\text{SD }29,8; 65°-180°)\), nach Fixateur externe 139,5° \((\text{SD }46,0; 0°-180°)\). Die objektiv gemessene Varus-Valgus-Stabilität ergab keinen Unterschied zwischen beiden Gruppen.

9.7 KOMPLIKATIONEN

Das Auftreten von lokalen Komplikationen (z.B. Reluxationen, Nervenläsionen) im Behandlungsverlauf ergab signifikante Unterschiede im MEPS \((p=0,011, \text{U-Test})\) (Abb. 29). Patienten ohne Komplikation erreichten durchschnittlich 85 Punkte \((\text{SD }17,9; 40-100)\), Patienten mit mindestens einer Komplikation im Behandlungsverlauf nur 73,4 Punkte \((\text{SD }17,0; 40-100)\). Rezidivierende Reluxationen bzw. Subluxationen traten bei acht Patienten auf \((14\%)\). Zwei dieser Patienten erhielten einen Koronoidersatz mittels kortikospongiösem Span und erreichten damit nur ein mäßiges Ergebnis im MEPS \(<70\text{ Punkte})\). Ebenfalls zwei dieser Patienten erhielten eine Radiusköpchenprothese. Ein Patient erzielte damit ein gutes Ergebnis im MEPS \((80\text{ Punkte})\), ein anderer sogar ein sehr gutes Ergebnis \((100\text{ Punkte})\). Bei elf Patienten \((19\%)\) wurden heterotope Ossifikationen in den postoperativen Röntgenbildern nachgewiesen. Im MEPS erreichten sie durchschnittlich 83,6 Punkte \((\text{SD }19,9; 45-100)\), darunter waren vier Patienten mit einem mäßigen Ergebnis \(<75\text{ Punkte})\).
9.8 DATENGEWINNUNG

Abschließend erfolgte ein Vergleich der Ergebnisse in Abhängigkeit von der Datengewinnung (Abb. 30). 34 Patienten (59%) wurden studienbezogen klinisch nachuntersucht (NU), 14 Patienten (24%) im Rahmen eines Gutachtens für eine Versicherung (GA) und 10 Patienten (17%) hatten ausschließlich den Fragebogen (FB) beantwortet. Keine signifikanten Unterschiede ergaben sich zwischen Patienten, die im Rahmen der Studie klinisch nachuntersucht worden waren und denen, die im Rahmen einer gutachterlichen Untersuchung nachuntersucht worden waren (p=0,503, LSD-Test). Die Patienten, die nur den Fragebogen beantwortet hatten, erreichten mit durchschnittlich 91,0 Punkten (SD 15,2; 55-100) das beste durchschnittliche Ergebnis im MEPS. Sie unterschieden sich damit signifikant von den gutachterlich nachuntersuchten Patienten, die durchschnittlich 75,7 Punkte (SD 13,7; 45-100) im MEPS erreichten (p=0,044, LSD-Test). Ein tendenzieller, wenn auch nicht-signifikanter Unterschied (p=0,081, LSD-Test) ergab sich zu den studienbezogen nachuntersuchten Patienten, die im MEPS durchschnittlich 79,6 Punkte (SD 19,9; 40-100) erreichten.
IV. DISKUSSION

KLASSIFIKATION NACH REGAN UND MORREY


In unserer Studie ließen sich, wie auch bei Kälicke et al. [44], keine statistisch signifikanten Differenzen zwischen den einzelnen Frakturtypen nachweisen: Zufriedenstellende Ergebnisse erzielten 73% der Typ-I-Frakturen, 65% der Typ-II-Frakturen und sogar 72% der Typ-III-Frakturen. Patienten mit Typ-III-Fraktur waren aber, wie bei Regan und Morrey [84], sowohl in der ulnohumeralen Beweglichkeit als auch in der Unterarm-Rotationsfähigkeit deutlich eingeschränkter als Patienten mit Typ-I- oder Typ-II-Fraktur (s. Ergebnisse, S. 41 – 42).

**THERAPIESTRATEGIEN**


ELLENBOGENLUXATIONEN


RADIUSKÖPFCHENFRAKTUREN


In den neueren Studien überwiegen erhaltene oder ersetzende Therapieverfahren des Radiusköpfchens [1, 66, 83]. Geel et al. [27] sprachen sich schon 1992 für den Erhalt des Radiusköpfchens bei allen Radiusköpfchenfrakturen aus, da eine Radiusköpfchenresektion zu
Diskussion


Zusammenfassend halten auch wir den Erhalt oder Ersatz des Radiusköpfchens nach Luxationsfraktur mit Begleitverletzungen zum Erreichen einer besseren Stabilität des Ellenbogengelenkes für sinnvoll, gerade auch im Blick auf die funktionellen Ergebnisse im Langzeitverlauf [33, 45, 66]. Bei Unsicherheit bezüglich des Verletzungsausmaßes oder bei zweifelhaften Rekonstruktionsversuchen sollte aber frühzeitig die Indikation zur Radiusköpfchenresektion gestellt werden.

TERRIBLE TRIAD

Die auch als „terrible triad“ bezeichnete Verletzungskombination aus Koronoidfraktur und Radiusköpfchenfraktur bei bestehender Ellenbogenluxation ist besonders problematisch für Stabilität und Funktion des Ellenbogengelenkes.
Diskussion


FIXATEUR EXTERNE

Die Verwendung eines Fixateur externe, welcher eine sofortige Stabilisierung und damit auch eine sehr frühe Mobilisierung erlaubt, stellten Regan und Morrey [84] 1989 als mögliche Therapieoption zur Diskussion. Wir konnten anhand unserer Nachuntersuchung nachweisen, dass Patienten, die auf einen Fixateur externe im Therapieverlauf angewiesen waren, signifikant schlechtere Ergebnisse im Mayo Elbow Performance Score erreichten als Patienten ohne Fixateur externe. Außerdem waren diese Patienten sowohl in der ulnohumeralen Beweglichkeit als auch in der Rotationsfähigkeit des Unterarms signifikant eingeschränkter als Patienten ohne Fixateur externe. Da sich zudem signifikante Unterschiede in der Häufigkeit der Verletzungen pro Ellenbogengelenk und auch in der Häufigkeit erforderlicher Revisionsoperationen bei Patienten mit Fixateur externe fanden,
Diskussion


KOMPLIKATIONEN

Komplikationen in Form von Reluxation, persistierender Instabilität oder bleibender Bewegungseinschränkung nach Koronoidfraktur sind häufig [34, 44, 58, 67, 71]. Wir konnten bei insgesamt 39% der von uns nachuntersuchten Patienten Komplikationen im Therapieverlauf nachweisen (s. Ergebnisse, S. 38). Bei 17 der 33 (51%) operativ therapierten Koronoidfrakturen traten Komplikationen auf, das heißt jede zweite operativ therapierte Koronoidfraktur verlief mit Komplikationen. Dabei machte es keinen Unterschied, ob die Koronoidfraktur isoliert oder mit Begleitverletzungen assoziiert war. Die Komplikationsrate betrug in beiden Gruppen etwa 40%.


Das Ergebnis zeigt jedoch auch, dass gerade bezüglich der operativen Therapie von Koronoidfrakturen weiterhin Optimierungsbedarf besteht. Es werden weitere Studien erforderlich sein, um die bestmögliche Therapieform für Koronoidfrakturen zu definieren.

SOZIALE FAKTOREN


Als Unfallmechanismus waren hauptsächlich Stürze auf ebener Erde (38%) und aus großer Höhe (36%) zu verzeichnen. Vor allem Frauen stürzten auf ebener Erde (68%) und vor allem Männer aus großer Höhe (81%). 57% dieser Männer waren im Handwerk tätig und 67% der Stürze aus großer Höhe ereigneten sich als Arbeitsunfall. Offenbar scheinen also im Handwerk tätige Männer, die auch noch in großer Höhe arbeiten, besonders gefährdet für Koronoidfrakturen (s. Ergebnisse, S. 27 – 28).

Einen entscheidenden Einfluss auf das Langzeitergebnis hatte erstaunlicherweise der Kostenträger: Patienten, die berufsgenossenschaftlich versichert waren, erzielten ein signifikant schlechteres Ergebnis im Mayo Elbow Performance Score als Patienten, die gesetzlich krankenversichert waren (s. Ergebnisse, S. 48 – 49).

Patienten, die berufsgenossenschaftlich versichert sind, werden in regelmäßigen Abständen ärztlich nachuntersucht. Es werden Gutachten erstellt, um eine eventuelle Minderung der Erwerbsfähigkeit (MdE) festzustellen, in deren Folge eine Rente und andere Geldleistungen ausgezahlt werden.

STUDIENDESIGN


Bei unserer Studie handelt es sich um eine retrospektive Kohortenstudie. In diesem Fall ist die Untersuchungsrichtung prospektiv, denn von den Einflussgrößen wird auf die Zielgröße geschlossen, die Art der Datenerhebung ist jedoch retrospektiv [108]. Da die Daten unserer Studie auf unterschiedlichen Wegen erhoben wurden, erfolgte eine Untersuchung der Ergebnisse in Abhängigkeit von der Datengewinnung (s. Ergebnisse, S. 54). Es ergaben sich keine signifikanten Unterschiede zwischen Patienten, die im Rahmen der Studie klinisch nachuntersucht und denen, die im Rahmen einer gutachterlichen Untersuchung nachuntersucht worden waren. Die Patienten, die nur den Fragebogen beantwortet hatten, erreichten das beste durchschnittliche Ergebnis im Mayo Elbow Performance Score und unterschieden sich damit signifikant von den gutachterlich nachuntersuchten Patienten und tendenziell von den studienbezogen nachuntersuchten Patienten (s. Ergebnisse, S. 54).

Man könnte daraus nun ableiten, dass gerade die Patienten mit besonders gutem Behandlungsergebnis nur den Fragebogen ausgefüllt und nicht an der klinischen Nachuntersuchung teilgenommen haben. Und ebenso könnten gerade diejenigen Patienten mit besonders schlechtem Behandlungsergebnis zur klinischen Nachuntersuchung erschienen sein. Möglicherweise haben diese sich von der erneuten Untersuchung eine Verbesserung ihrer Therapie erhofft oder aber sie wollten einfach nur einen Beitrag zur
Verbesserung der Therapie von Koronoidfrakturen im Allgemeinen leisten. Es wäre auch gut möglich, dass gerade Patienten mit besonders gutem Behandlungsergebnis überhaupt nicht an der Studie teilgenommen haben. Umgekehrt wäre es aber auch denkbar, dass einige dieser Patienten wiederum aus Dankbarkeit an der Studie teilgenommen haben.

Letztlich bleibt festzuhalten, dass die unterschiedlichen Beweggründe der Patienten bei der Auswertung der Daten berücksichtigt werden müssen. Denn gerade bei einer kleinen Fallzahl von 58 Patienten könnten die Ergebnisse in die eine oder andere Richtung verzerrt worden sein.

Bezüglich der relativ geringen Fallzahl von 58 Patienten und einer Vielzahl verschiedener Verletzungskombinationen muss außerdem erwähnt werden, dass eine Vergleichbarkeit der Daten nahezu unmöglich und die statistische Auswertung erschwert war.

Retrospektive Studien können keine anerkannten Beweise liefern und haben im Vergleich zu anderen Studienmodellen weniger Aussagekraft. Dennoch können sie wertvolle Hinweise auf mögliche Zusammenhänge liefern und Anlass für eine nachfolgende prospektive Studie sein [108].

So zeigt auch unsere Studie mögliche Zusammenhänge auf, die in prospektiven Studien überprüft werden sollten, und leistet damit einen wertvollen Beitrag zur weiteren Erforschung der seltenen, aber komplikationsträchtigen und damit therapieaufwändigen Koronoidfrakturen.
ZUSAMMENFASSUNG


Das Durchschnittsalter der Patienten zum Unfallzeitpunkt betrug 51,8 Jahre (SD 13,6; 19-79 y.). Nach der Klassifikation von Regan und Morrey ergaben sich 19 Typ-I-Frakturen (33%), 17 Typ-II-Frakturen (29%) und 22 Typ-III-Frakturen (38%). 43 Koronoidfrakturen (74%) waren mit Begleitverletzungen assoziiert, darunter fanden sich 40 Radiusköpfchenfrakturen, 17 proximale Ulnaschaftfrakturen und 2 Olecranonfrakturen. Eine Ellenbogenluxation fand sich bei insgesamt 44 Patienten (76%). Durchschnittlich erreichten die Patienten 80,6 Punkte (SD 18,3; 40-100) im Mayo Elbow Performance Score. Zwischen den einzelnen PCU-Frakturtypen nach Regan und Morrey ergaben sich keine signifikanten Differenzen. Allerdings korrelierte das Auftreten von Komplikationen positiv signifikant mit dem PCU-Frakturty (p=0,046). Signifikante Differenzen ließen sich außerdem zwischen den verschiedenen Therapieverfahren nachweisen. 15 % der Koronoidfrakturen waren nur eingeschränkt osteosynthetisch rekonstruierbar. Bei 33 % der Patienten verblieben Instabilitäten. Die durchschnittliche Extension/ Flexion erreichte 107,2° (SD 28,6; 5°-155°), die Pro- und Supination 153,0° (SD 38,5; 0°-180°). Verbleibende Instabilitäten des Ellenbogengelenkes waren signifikant mit Schmerzen korreliert (p=0,001).

VI. LITERATURVERZEICHNIS


63. Mason ML (1954) Some observations on fractures of the head of the radius with a review of one hundred cases. Br J Surg 42, 123-32


71. Monteggia GB (1813) Institutione Chirurgiche, 2. Aufl., G Maspero
VII. ANHANG

1. FALLKASUISTIKEN

1.1 PATIENTIN, 67 JAHRE ALT

DIAGNOSE: Ellenbogenluxation mit Koronoidfraktur Typ II (LuxPCU)

UNFALLURSACHE: Stolpersturz nach vorne

THERAPIE:

1) Bei geringgradiger Instabilität zunächst konservativer Therapieversuch
2) Revision aufgrund ventroradialer Instabilität, Schraubenrefixation des Koronoids mittels Kleinfragmentschraube

ERGEBNIS NACH 17 MONATEN:

<table>
<thead>
<tr>
<th>Extension/Flexion</th>
<th>0°/0°/140°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronation/Supination</td>
<td>90°/0°/90°</td>
</tr>
<tr>
<td>Varus-/Valgusinstabilität</td>
<td>Jeweils 5°</td>
</tr>
<tr>
<td>Schmerzen</td>
<td>Mäßig</td>
</tr>
<tr>
<td>Ergebnis im MEPS</td>
<td>90 Punkte (Exzellent)</td>
</tr>
</tbody>
</table>

Abb.31: Röntgenkontrolle postoperativ
1.2 PATIENTIN, 79 JAHRE ALT

DIAGNOSE: Ellenbogenluxation mit Koronoidfraktur Typ III, Radiusköpfchenfraktur Mason III und proximale Ulnaschaftfraktur (ProxUlnTT)

UNFALLURSACHE: Sturz auf ebener Erde

THERAPIE:

1) Osteosynthese mit dorsaler KF-LCDC-Platte und Koronoidrekonstruktion mit Radiusköpfchenfragment bei totaler Radiusköpfchenresektion
2) Die sekundäre Implantation einer Radiusköpfchenprothese lehnte die Patientin trotz fortbestehender Instabilität ab.

ERGEBNIS NACH 61 MONATEN:

<table>
<thead>
<tr>
<th></th>
<th>0°/25°/130°</th>
<th>90°/0°/45°</th>
<th>Jeweils 15°</th>
<th>Mäßig</th>
<th>70 Punkte (Mittelmäßig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension/Flexion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pronation/Supination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varus-/Valgusinstabilität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmerzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ergebnis im MEPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 32: Röntgenkontrolle a postoperativ b zum Zeitpunkt der Nachuntersuchung
1.3 PATIENTIN, 67 JAHRE ALT

DIAGNOSE: Ellenbogenluxation mit Mehrfragment-Koronoidfraktur
Typ III, Radiusköpfchenfraktur Mason III und proximale
Ulnaschaftfraktur (ProxUlnTT)

UNFALLURSACHE: Sturz auf ebener Erde

THERAPIE:

1) Auswärtige Voroperation mit Reluxation
2) Osteosynthese mittels dorsolateral angelegter winkelstabiler Rekonstruktionsplatte und
   komplette Radiusköpfchenresektion
3) Revision mit AO-Minifragment-L-Plättchen am Koronoid, radiale Bandrefixation mittels
   Mitek-Fadenanker und sowie Implantation einer Radiusköpfchenprothese (Modell CRF
   II, Fa. Tornier, Burscheid, Germany), sekundäre Anlage eines AO-Fixateur externe

ERGEBNIS NACH 23 MONATEN:

<table>
<thead>
<tr>
<th>Extension/Flexion</th>
<th>0°/30°/120°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronation/Supination</td>
<td>90°/0°/90°</td>
</tr>
<tr>
<td>Varus-/Valgusinstabilität</td>
<td>Keine</td>
</tr>
<tr>
<td>Schmerzen</td>
<td>Keine</td>
</tr>
<tr>
<td>Ergebnis im MEPS</td>
<td>95 Punkte (Exzellent)</td>
</tr>
</tbody>
</table>

Abb. 33: Röntgenkontrolle a postoperativ b direkt nach Entfernung des Fixateur externe
1.4 PATIENTIN, 53 JAHRE ALT

DIAGNOSE: Ellenbogenluxation mit Koronoidfraktur Typ II und Radiusköpfchenfraktur Mason III (TT)

UNFALLURSACHE: Sturz auf ebener Erde

THERAPIE:

1) K-Draht-Osteosynthese des Radiusköpfchens, transossäre Refixation des Koronoids
2) Revision mit sekundärer Radiusköpfchenresektion und Implantation einer Radiusköpfchenprothese (Modell CRF II, Fa. Tornier, Burscheid, Germany)
3) Explantation der Radiusköpfchenprothese aufgrund persistierender Instabilität, sekundäre Anlage eines AO-Fixateur externe
4) Nach erneuter Subluxationsstellung Rekonstruktion des Koronoids mithilfe kortikospongösem Span des vorderen rechten Beckenkamms
5) Wegen persistierender Belastungsinsuffizienz Implantation einer gekoppelten, zementierten IBP Ellengelenkprothese

ERGEBNIS NACH 94 MONATEN:

<table>
<thead>
<tr>
<th>Extension/Flexion</th>
<th>0°/40°/120°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronation/Supination</td>
<td>90°/0°/70°</td>
</tr>
<tr>
<td>Varus-/Valgusinstabilität</td>
<td>jeweils 20°</td>
</tr>
<tr>
<td>Schmerzen</td>
<td>Stark</td>
</tr>
<tr>
<td>Ergebnis im MEPS</td>
<td>45 Punkte (Mangelhaft)</td>
</tr>
</tbody>
</table>

Abb.34: Röntgenkontrollen posttraumatisch und zum Zeitpunkt der Nachuntersuchung
Sehr geehrte Patientin, sehr geehrter Patient

Sie wurden vor einiger Zeit aufgrund eines Knochenbruchs am Ellenbogen im Universitätsklinikum Lübeck oder im Berufsgenossenschaftlichen Unfallkrankenhaus Hamburg behandelt.

Zur Überprüfung der Ergebnisse unserer Behandlungsmethoden würden wir sehr gerne mehr über Ihr persönliches Ergebnis, Ihre Zufriedenheit und vor allem über Ihre derzeitige Ellenbogenfunktion erfahren.

Aus diesem Grund möchten wir eine Nachuntersuchung am Universitätsklinikum Lübeck sowie am Berufsgenossenschaftlichen Unfallkrankenhaus Hamburg durchführen.

Die Nachuntersuchung besteht aus zwei Teilen und wird pseudonymisiert durchgeführt:
Der erste Teil bezieht sich auf einen von uns beigefügten Fragebogen. Wir bitten Sie, diesen sorgfältig durchzulesen, auszufüllen und anschließend mit dem frankierten Rückumschlag an die Unfallchirurgie des Universitätsklinikums Lübeck zurückzusenden.

Der zweite Teil der Nachuntersuchung beinhaltet eine klinische Untersuchung, bei der eine funktionelle Prüfung des betroffenen Arms erfolgt. Wir würden Sie bitten, zu dieser Untersuchung alle bei Ihnen aufbewahrten Röntgenbilder des betroffenen Arms mitzubringen.

Wir hoffen sehr, dass es Ihnen möglich ist, an der klinischen Nachuntersuchung im Universitätsklinikum Lübeck oder im Berufsgenossenschaftlichen Unfallkrankenhaus Hamburg teilzunehmen. Sollte Ihnen dies nicht möglich sein, so würden Sie uns sehr damit weiterhelfen, wenn Sie zumindest den ausgefüllten Fragebogen an uns zurück schicken.

Die klinische Nachuntersuchung findet nach Absprache statt.

Für An- und Abreise zum Universitätsklinikum Lübeck bzw. zum Berufsgenossenschaftlichen Unfallkrankenhaus Hamburg, sowie den Aufenthalt während der Untersuchung sind Sie über die Ecclesia Wegeunfallversicherung versichert.

Zwecks Terminvereinbarung oder falls Sie noch Fragen haben oder Unklarheiten bestehen, kontaktieren Sie uns bitte gern unter folgender Telefonnummer:

0451-500 6541

Über Ihre Teilnahme würden wir uns sehr freuen und bedanken uns im Voraus für Ihre Mühe und Ihr Interesse!

Mit freundlichen Grüßen

Prof. Dr. Ch. Jürgens
Direktor der Sektion für Unfallchirurgie

Dr. med. A. P. Schulz
Oberarzt der Sektion für Unfallchirurgie

Jil Wäldchen
Doktorandin der Sektion für Unfallchirurgie
NAME, VORNAME (Bitte jeweils nur die ersten beiden Buchstaben):
_________________________________________________________

GEBURTSTAG:
_________________________________________________________

BERUF:
_________________________________________________________

GESCHLECHT: ☐ MÄNNLICH ☐ WEIBLICH

UNFALLURSACHE: ________________________________

UNFALL-DATUM: ______________________________________

VERLETZTER ARM: ☐ RECHTS ☐ LINKS
<table>
<thead>
<tr>
<th>Anhang</th>
</tr>
</thead>
</table>

1. Wie schätzen Sie ihre derzeitige Ellenbogenfunktion im Alltag ein?

<table>
<thead>
<tr>
<th>Verletzter Arm:</th>
<th>Gesunder Arm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Sehr gut</td>
<td>☐ Sehr gut</td>
</tr>
<tr>
<td>☐ Gut</td>
<td>☐ Gut</td>
</tr>
<tr>
<td>☐ Befriedigend</td>
<td>☐ Befriedigend</td>
</tr>
<tr>
<td>☐ Ausreichend</td>
<td>☐ Ausreichend</td>
</tr>
<tr>
<td>☐ Mangelhaft</td>
<td>☐ Mangelhaft</td>
</tr>
<tr>
<td>☐ Schlecht</td>
<td>☐ Schlecht</td>
</tr>
</tbody>
</table>

2. Wie schätzen Sie die Ellenbogenfunktion ihres verletzten Arms vor dem Unfall ein?

| ☐ Sehr gut |
| ☐ Gut      |
| ☐ Befriedigend |
| ☐ Ausreichend |
| ☐ Mangelhaft |
| ☐ Schlecht |

3. Wie lange durften Sie ihren verletzten Ellenbogen nach dem Unfall nicht bewegen?

_______________________________ Tage

4. Gab es Komplikationen (wie z.B. eine Infektion des Ellenbogens)?

☐ Ja  ☐ Nein
Wenn „Ja“, welche?

___________________________________________
___________________________________________

5. Wenn Sie operiert wurden: Mussten Sie mehrfach operiert werden?
   ☐ Ja
   ☐ Nein
   Wenn „Ja“, wie oft? ________________________ Mal

6. Wenn Sie operiert wurden: Wie bewerten Sie das Ergebnis nach der OP?
   ☐ Sehr gut
   ☐ Gut
   ☐ Befriedigend
   ☐ Ausreichend
   ☐ Mangelhaft
   ☐ Schlecht

7. Befanden Sie sich nach ihrem stationären Aufenthalt in krankengymnastischer Behandlung?
   ☐ Ja
   ☐ Nein
   Wenn „Ja“, wie lange? ________________________ Wochen
   Und wie oft? ________________________ Stunden pro Woche
8. Wurden Sie vorher schon einmal aufgrund einer anderen Verletzung am verletzten Ellenbogen operiert?
   □ Ja □ Nein
   Wenn „Ja“, um welche Verletzung/-en handelte es sich?
   __________________________________________________________
   __________________________________________________________

9. Wie stark sind die Schmerzen Ihres verletzten Ellenbogens zur Zeit?
   □ Keine
   □ Gering
   □ Mäßig
   □ Stark

10. Wie bewerten Sie die Stabilität Ihres verletzten Ellenbogens zur Zeit?
    □ Stabil
    □ Mäßig instabil
    □ Größtenteils instabil

11. Bitte beantworten Sie die folgenden Fragen zur Funktion Ihres verletzten Ellenbogens:
    |                                      | Ja | Nein |
    |--------------------------------------|----|------|
    | Können Sie ihre Haare kämmen?       |    |      |
    | Können Sie ohne Hilfe essen?         |    |      |
    | Ist Ihre Körperpflege ohne Hilfe möglich? |    |      |
    | Können Sie ein T-Shirt anziehen?     |    |      |
    | Können Sie Schuhe anziehen?          |    |      |
12. Bitte zeichnen Sie im folgenden Bild ein, wie weit Sie ihren verletzten Arm im Ellenbogengelenk beugen und strecken können:

*Beispiel:*
Der folgende Fragebogen beschäftigt sich sowohl mit ihren Beschwerden als auch mit ihren Fähigkeiten, bestimmte Tätigkeiten auszuführen. Bitte beantworten Sie alle Fragen gemäß ihrem Zustand in der vergangenen Woche, indem Sie einfach die entsprechende Zahl ankreuzen.

Wenn Sie in der vergangenen Woche keine Gelegenheit hatten, eine der im folgenden aufgeführten Tätigkeiten durchzuführen, so wählen Sie die Antwort aus, die ihrer Meinung nach am ehesten zutreffen würde. Es ist nicht entscheidend, mit welchem Arm oder welcher Hand Sie diese Tätigkeiten ausgeübt haben. Antworten Sie ihrer Fähigkeit entsprechend, ungeachtet, wie Sie die Aufgaben durchführen konnten.

<table>
<thead>
<tr>
<th></th>
<th>Keine Schwierigkeiten</th>
<th>Geringe Schwierigkeiten</th>
<th>Mäßige Schwierigkeiten</th>
<th>Deutliche Schwierigkeiten</th>
<th>Nicht möglich</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ein neues oder fest verschlossenen Glas öffnen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Schreiben</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Einen Schlüssel umdrehen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Eine Mahlzeit zubereiten</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Eine schwere Tür aufstoßen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Einen Gegenstand in ein Regal über Kopfhöhe stellen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>schwere Hausarbeiten durchführen (z.B. Boden wischen)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Garten- oder Hofarbeit ausführen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Betten machen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>Eine Einkaufstüte oder eine Aktentasche tragen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Keine Schwierigkeiten</td>
<td>Geringe Schwierigkeiten</td>
<td>Mäßige Schwierigkeiten</td>
<td>Deutliche Schwierigkeiten</td>
<td>Nicht möglich</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>11</td>
<td>Einen schweren Gegenstand (schwerer 5kg) tragen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Eine Glühbirne über Ihrem Kopf austauschen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Ihre Haare waschen oder föhnen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Ihren Rücken waschen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>Einen Pullover anziehen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>Ein Messer benutzen, um Lebensmittel zu schneiden</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>Freizeitaktivitäten, die wenig körperliche Anstrengung verlangen (z. B. Karten spielen)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>Freizeitaktivitäten, bei denen auf Ihren Ellenbogen Druck oder Stoß ausgeübt wird (z.B. Golf, Hämmern, Tennis, usw.)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>Freizeitaktivitäten, bei denen Sie Ihre Arme frei bewegen (z. B. Federball, Frisbee)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>Mit Fortbewegungsmitteln zurecht kommen (um von einem Platz zum anderen zu gelangen)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>Sexuelle Aktivitäten</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Bitte schätzen Sie die Schwere der folgenden Beschwerden während der letzten Woche ein. Bitte kreuzen Sie in jeder Zeile die entsprechende Zahl an.

<table>
<thead>
<tr>
<th></th>
<th>Schmerzen in Ruhe im Ellenbogen</th>
<th>Schmerzen im Ellenbogen bei der Ausübung einer bestimmten Tätigkeit</th>
<th>Kribbeln (Nadelstiche) im Ellenbogen</th>
<th>Schwäche im Ellenbogen</th>
<th>Steifheit des Ellenbogens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keine</td>
<td>Gering</td>
<td>Mäßig</td>
<td>Stark</td>
<td>Sehr stark</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Anhang

<table>
<thead>
<tr>
<th></th>
<th>Keine</th>
<th>Gering</th>
<th>Mäßig</th>
<th>Stark</th>
<th>Ich konnte gar nicht schlafen</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Wie groß waren Ihre Schlafstörungen in der letzten Woche aufgrund von Schmerzen im Ellenbogen?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Trifft nie zu</th>
<th>Trifft selten zu</th>
<th>Weder ja noch nein</th>
<th>Trifft meist zu</th>
<th>Trifft immer zu</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Aufgrund meiner Probleme im Ellenbogen empfinde ich meine Fähigkeiten als eingeschränkt, ich habe weniger Selbstvertrauen oder ich fühle, dass ich mich weniger nützlich machen kann.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

**Falls Sie uns noch etwas mitteilen möchten, so haben Sie hier die Möglichkeit dazu:**

____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________

**VIELEN DANK!**
Was bedeutet eine Fraktur am Ellenbogen?


Knochenbrüche am Ellenbogen entstehen meist im Zusammenhang mit einer Verrenkung des Ellenbogens, u. a. verursacht durch eine indirekte Gewalteinwirkung bei Sturz auf den gestreckten Arm.

Welche Behandlungsmöglichkeiten stehen zur Verfügung?

Stabile Knochenbrüche können meist konservativ behandelt werden, d.h. es erfolgt eine Ruhigstellung im Gips mit anschließender Physiotherapie.


Zur Beurteilung, welche Behandlungsmethode für welches Verletzungsmuster den größten langfristigen Erfolg für die Stabilität und Funktion des Ellenbogens bringt, führen wir eine vergleichende Nachuntersuchung an Patienten durch, die wie Sie mit einer dieser Methoden bei uns behandelt wurden.
Was bedeutet die Teilnahme an einer „Nachuntersuchung“ für mich?

Es wird durch solch eine Beobachtung Ihres Heilverlaufes zu keinerlei Änderung Ihrer Nachbehandlung kommen. Es wird lediglich eine einmalige Untersuchung zur vergleichenden Befunderhebung sowohl am operierten als auch am gesunden Ellenbogen durchgeführt. Diese Untersuchung findet im Universitätsklinikum Lübeck bzw. im Berufsgenossenschaftlichen Unfallkrankenhaus Hamburg statt.


Für Sie selbst ergeben sich aus der Teilnahme an der Nachuntersuchung keine direkten Vorteile. Sie können jedoch dazu beitragen, dass die Versorgungsqualität für Patienten mit Knochenbrüchen am Ellenbogen weiter verbessert wird.

Für An- und Abreise sowie die Dauer des Aufenthalts während der Untersuchung im Universitätsklinikum Lübeck bzw. im Berufsgenossenschaftlichen Unfallkrankenhaus Hamburg sind Sie über die Ecclesia Wegeunfallversicherung versichert.

Natürlich steht es Ihnen völlig frei, sich für oder gegen eine Teilnahme an der geschilderten Nachuntersuchung zu entscheiden. Aus einer Nichtteilnahme ergeben sich für Sie keine negativen Konsequenzen für Ihre weitere Behandlung.
NAME, VORNAME: __________________________________________________

GEBURTSDATUM: __________________________________________________

Hiermit willige ich in die Durchführung der Klinischen Nachuntersuchung ein.
Ich bin damit einverstanden, dass die dabei gewonnenen Daten

- in einer Datenbank pseudonymisiert gespeichert,

- wissenschaftlich ausgewertet und

- einem Fachpublikum zugänglich gemacht werden.


Ich habe verstanden, dass die Teilnahme an einer solchen Studie absolut freiwillig ist.

Hamburg/Lübeck, den ____________________

______________________________  ________________________________
Unterschrift Patient          Unterschrift Arzt
NAME, VORNAME (Jeweils nur die ersten beiden Buchstaben):
_____________________________________________________________

GEBURTS_DATUM:
_____________________________________________________________

VERLETZTER ARM:  ☐ RECHTS  ☐ LINKS

HÄNDIGKEIT:  ☐ RECHTSHÄNDER  ☐ LINKSHÄNDER

UNTERSUCHUNGSDATUM: _______________________________________

HAUSARZT: ___________________________________________________
**INSPEKTION**

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

**PALPATION**

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

**NEUROLOGIE**

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

**FUNKTIONSPRÜFUNG**

**EXTENSION/FLEXION**

<table>
<thead>
<tr>
<th>RECHTER ARM</th>
<th>LINKER ARM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**PRONATION/SUPINATION**

<table>
<thead>
<tr>
<th>RECHTER ARM</th>
<th>LINKER ARM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### STABILITÄTSPRÜFUNG

<table>
<thead>
<tr>
<th></th>
<th>MEDIALES KOLLATERALBAND</th>
<th>LATERALES KOLLATERALBAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECHTER ARM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINKER ARM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### KRAFTMESSUNG

<table>
<thead>
<tr>
<th></th>
<th>RECHTER ARM</th>
<th>LINKER ARM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### UMFAHNGMESSUNG

<table>
<thead>
<tr>
<th></th>
<th>RECHTER ARM</th>
<th>LINKER ARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 CM OBERHALB EPIKONDYLUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELLENBOGEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 CM UNTERHALB EPIKONDYLUS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### SCHMERZSCORE

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
</table>
Danksagung

VIII. DANKSAGUNG

Ich danke besonders Herrn PD Dr. med. Arndt-Peter Schulz für die Bereitstellung des Themas sowie für die Hilfe und Unterstützung während der Durchführung und Fertigstellung dieser Arbeit.

Mein Dank gilt auch Herrn Prof. Dr. med. C. Jürgens, Direktor des Berufsgenossenschaftlichen Unfallkrankenhauses Hamburg und der Klinik für Chirurgie des Stütz- und Bewegungsapparates der Universität zu Lübeck, sowie Herrn Prof. Dr. med. A. Paech, Chefarzt der Sektion für Unfallchirurgie der Universität zu Lübeck, für die Möglichkeit, diese Arbeit in beiden Kliniken durchführen zu dürfen.

Ganz herzlich bedanken möchte ich mich bei Herrn Dr. med. Johannes Kiene für seine Unterstützung während der Durchführung der klinischen Nachuntersuchung sowie der anschließenden Datenauswertung. Seine konstruktiven Ratschläge haben wesentlich zum Gelingen dieser Arbeit beigetragen.

Ein ganz besonderes Dankeschön gilt Frau Sylvia Schlottau, ohne deren kompetente und freundliche Hilfe die Organisation der klinischen Nachuntersuchung nicht möglich gewesen wäre. Vielen Dank für die zahlreichen Tipps und Tricks.

Ich danke allen Mitarbeitern und Mitarbeiterinnen der Physiotherapeutischen Ambulanz der Universität zu Lübeck, allen voran Frau Helen Frostbrand-Bake für die Bereitstellung der Räume sowie die tatkräftige Unterstützung bei der Durchführung der Kraftmessung.

Ich danke weiterhin allen Mitarbeitern und Mitarbeiterinnen des Gutachtenzentrums, der Klinik für Radiologie sowie der Abteilung für Physiotherapie des Berufsgenossenschaftlichen Unfallkrankenhauses Hamburg, ganz besonders Herrn Dr. med. V. Grosser und Frau Frauke Nennich.

Ein besonderes Dankeschön gilt auch Herrn Dr. Friedrich Pahlke für die kompetente Hilfe bei allen Fragen rund um die Statistik.

IX. LEBENSLAUF

PERSÖNLICHE DATEN

NAME: Jil Wäldchen
GEBURTSORT: 05. März 1984
GEBURTSORT: Frankfurt/Main

PUBLIKATIONEN


