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1 1 1 1 IntroductionIntroductionIntroductionIntroduction        

 

1.1 Project overview 

The management of chronic, healing-retarded wounds has become one of the 

major, as yet unmet challenges in current clinical medicine (Fonder et al., 2008; 

Sen et al., 2009; Escandon et al., 2011; Eaglstein et al., 2012; Tang et al., 2012). In 

particular, well-tolerated, inexpensive and effective wound healing promoters need 

to be urgently identified. To assist with this, simple, but predictive and clinically 

relevant preclinical test systems are needed that allow one to search for such 

wound healing-promoting agents, ideally substances that are already in 

widespread clinical use.  

 

The current thesis project explores in a newly developed full-thickness organ 

culture assays of experimentally wounded human skin whether one such candidate 

agent, thyroxine (T4), holds promise as a wound healing promoter. 

 

Subsequently, basic background information for this project on human skin biology 

and wound healing is presented, followed by an analysis of the major challenges 

that clinically applied wound healing research faces today. 

 

1.2  Human skin 

 

1.2.1  Structure and function 

Skin (Figure 1 ) is the largest organ of human’s body. The integumentary system 

not only protects the body from dehydration and the underlying muscles and bone 

from environmental damage (Bangert et al., 2011), but wards off multiple other 
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injuries from the body, including infectious organisms, UV light, thermal, 

mechanical and chemical stressors. Skin also serves as an important sensory 

organ that provides sense of touch, pressure, temperature, vibration, pain, and itch. 

Moreover, the skin and its appendages are important for social and sexual 

communication; metabolize hormones and neuropeptides, e.g. Vitamin D, etc.(Holt, 

1978; Stucker et al., 2002; Madison, 2003; Sterry et al., 2006; Proksch et al., 2008; 

Krieg and Aumailley, 2011).  

 

Figure 1. Histology of hair-bearing human skin  

The human skin has a total area of 1.5-2.0 square meters and 12-15% of body weight (around 5 

kilograms) in the adult human. However, it always varies not only from one individual to another one, 

but also from one region of the body to another with respect to texture, colour, thickness, and 

appendage structures (hair follicles, sebaceous glands, sweat glands, vessels, nerves, etc) 

(Gaboriau and Murakami, 2001) 

(From http://eyepathology.blogspot.de/2010/10/tissue-types-epithelium-blood-muscle.html) 

 

The skin is subdivided into three distinct anatomical compartments: the epidermis, 

the superficial epithelial skin layer which serves as the biological, chemical and 

physical barrier between the body and its environment; the dermis, i.e. the adjacent 

mesenchymal layer which provides crucial structural support, perfusion, innervation, 
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access to the general immune system and multiple secreted signals to the 

epidermis and holds most skin appendages; and the subcutis (also called 

hypodermis), the well-perfused and innervated adipose layer of skin (Figure 1 and 

2). This composite structure connects with the underlying muscle tissue via a 

fibrous fascia (Stenn et al., 2006). In the context of this thesis project, we shall 

mainly deal with the epidermal and dermal compartments of experimentally 

wounded human skin. 

 

1.2.2  Epidermis 

The normal thin epidermis is a stratified, terminally differentiated epithelium and 

normally composed by four layers (from the superficial to the deepest) (Figure 2a 

and 2b ): stratum corneum (horny layer [stratum corneum]); stratum granulosum 

(granular cell layer); stratum spinosum (spinous or prickle cell layer); stratum 

basale (basal or germinativum cell layer) which also contains epidermal stem cells, 

including some cytokeratin 15 (CK15)-positive epithelial progenitor cells (Moll et al., 

1993; Kloepper et al., 2008; Fortunel et al., 2010; da Silva-Diz et al., 2012; de 

Souza et al., 2012).  

Figure 2.  Schematic (a) and histological images (b) detailing  the different layers and cell 

b a 



Introduction 

4 

types of human epidermis  

(From http://www.imperial.edu/~thomas.morrell/cha_5_tortora_integument.htm [a] and 

http://en.wikipedia.org/wiki/Epidermis_%28skin%29 [b]) 

 

While the epidermis is constituted mainly by keratinocytes, there are several other 

cell populations-melanocytes (Figure 3a) , Langerhans cells (Figure 3b) , Merkel 

cells (Figure 3c ), and intraepithelial T cells – while macrophages, B cells and mast 

cells are not found in healthy epidermis. While the epidermis contains no blood and 

lymphatic vessels, it is densely innervated (Sterry et al., 2006; Murphy, 2012; 

Reinke and Sorg, 2012) .     

Figure 3. Immunohistochemical staining of melanocyt es (a, Melan-A stain), dendritic cells (b, 

S100 stain, Langerhans cells), and Merkel cells (c,  Cytokeratin-20 stain) in basal layer 

(From: http://www.nordiqc.org/Run-7/Assessment/assessment-MLA.htm [a]; 

http://en.wikipedia.org/wiki/Langerhans_cell [b]; 

http://www.studyblue.com/notes/note/n/skinhairbreast-pics/deck/3615859 [c]) 

 

Melanocytes (Figure 2a and 3a) , a small population in the basal cell, are 

pigmentary cells of neural crest origin which not only are responsible for melanin 

synthesis and transfer, presumably to protect the nuclei of epidermal keratinocytes 

from ultraviolet radiation (UV), but may also exert multiple additional functions in 

epidermal physiology (Slominski et al., 1993; Plonka et al., 2009). It is as yet 

unclear whether any of the non-epithelial cell populations of human epidermis plays 

a functional important role in human skin wound healing. 

 

The stratum basale is a continuous, innermost layer of undifferentiated, 

proliferating keratinocytes which lies next to the dermis comprise as a single cell 

a b c 
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layer that are attached to the basement membrane (BM) by hemidesmosomes 

(Tsuruta et al., 2011). Located directly above the stratum basale, the keratinocytes 

of the stratum spinosum switch-on a program of terminal differentiation whose 

product, intracellular keratohyalin granules, are most prominently visible in the next 

layer, the stratum granulosum (Figure 2 ). Finally, in the stratum corneum, the 

outermost cornified layer of skin, keratinocytes have extruded their nuclei and 

contains densely packed intermediate keratin filaments that are bundled together in 

a manner that makes these non-viable cells highly resistant to environmental 

stressors, for example, temperature, pH, chemical insults and enzymatic digestion 

(Wysocki, 1999; Visscher et al., 2010; Wato et al., 2012) .  

 

1.2.3  Dermis  

The dermis is mainly composed by extracellular matrix (ECM)-embedded 

fibroblasts and consists of two layers, the papillary and reticular dermis. These  

are interspersed by blood and lymphatic vessels by autonomic and sensory nerve 

fibers of different type and caliber, as well as by mast cells (Figure 4c) , 

macrophages and other dendritic cells, and a few lymphocytes (Figure 4b) , while 

granulocytes are normally absent (Figure 1 and 2) (Sterry et al., 2006; Murphy, 

2012). The fibroblasts, which also may become a contractile cell (myofibroblast) 

during wound contraction, play a key role in wound healing, e.g. by the production 

of ECM such as collagen I and IV (Vedrenne et al., 2012) (Figure 4a) .  

 

Collagen is an exceedingly tough, long-lived, water-absorbing fibrous protein, and 

the collagen fibers mainly are responsible for the mechanical strength and 

extensibility of the dermis (Figure 4a-d) (Gaboriau and Murakami, 2001). 

Interspersed elastin fibers are responsible for elastic and recoil properties of the 

skin (Figure 4a) (Liu et al., 2004). The dermis also contains the bulk of skin 

appendages, i.e. hair follicles, eccrine and apocrine sweat glands, and sebaceous 
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glands, as well as mechanoreceptors that provide the sense of touch, vibration and 

heat (Figure 4d) . 

 

Figure 4. Structure of skin: Dermis 

(a) Gieson & elastin staining of thick skin. (b) Hematoxylin and eosin staining (H&E) of dermis. A: 

Epidermis; B: Fibroblasts; C: Collagen fibre bundles; D: Lympocytes; E: Blood vessels. (c) 

Visualisation of mast cells in human dermis by Leder esterase histochemistry (black arrow, red 

cells). (d) Hematoxylin and eosin staining (H&E). ”Hypodermis” = subcutis. 

(From: http://www.lab.anhb.uwa.edu.au/mb140/corepages/integumentary/integum.htm [a]; https://

courses.stu.qmul.ac.uk/SMD/kb/microanatomy/connective/cheatlink4.htm [b]; http://www.vetmed.v

t.edu/education/curriculum/vm8054/labs/lab14/lab14.htm [d]). 

 

1.2.4  Subcutis  

The subcutis (hypodermis), which mainly consists of adipocytes and endothelial 

cells, is a loose connective tissue layer with major regional differences in the 

amount and arrangement of adipose tissue (Figure 1 and 4d) and multiple 

physiological functions, which range from energy storage and thermoregulation via 

hormone and neuropeptide synthesis and metabolism, to the regulation of food 

uptake via leptin (Klein et al., 2007; Cerman et al., 2008). Subcutaneous adipocytes 

also operate as niche cells that provide important paracrine growth-regulatory 

signals, notably to the hair follicle (Schmidt and Horsley, 2012), and may promote 

wound healing by the release of leptin (Klein et al., 2007; Negrao et al., 2012). 

Moreover, adipose tissue-derived stem cells are now widely recognized as one of 

a 

b 

c d 
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the most pluripotent adult stem cell populations of the human body, with multiple 

potential uses in regenerative medicine (Beeson et al., 2011; Gir et al., 2012).  

 

1.2.5  Skin appendages  

The appendages of the skin – hair, nails and glands – originate from the stratum 

basale and grow downward into the dermis and subcutis. The hair follicle (HF) 

(Figure 5 ) is a characteristic feature of mammals and the only organ that shows a 

lifelong cyclic remodelling activity. In its cycle, the HF undergoes autonomous, 

cyclic transformations from a stage of growth (anagen), via regression (catagen) to 

relative quiescence (telogen), which have also been demonstrated that HF itself 

and its cycling exerted wound healing promoting effects (Paus and Cotsarelis, 1999; 

Jahoda and Reynolds, 2001; Stenn and Paus, 2001; Paus and Foitzik, 2004; Ito et 

al., 2005; Ito and Cotsarelis, 2008; Schneider et al., 2009; Ansell et al., 2010; 

Al-Nuaimi et al., 2012).  

 

In the context of wound healing, the HF is of special interest in that its activities 

directly impact on the efficiency and quality of wound healing as well as on 

intracutaneous angiogenesis, both of which are significantly increased in murine 

skin with terminal HFs in anagen, compared to catagen or telogen skin 

(Mecklenburg et al., 2000; Yano et al., 2001; Lau et al., 2009; Ansell et al., 2010). 

The sweat glands of human skin may also play a more prominent role in human 

skin wound healing than previously thought, as their stroma is rich in nestin+ stem 

cells, which can be utilized to promote wound healing in murine skin in vivo 

(Danner et al., 2012) and wounded organ-cultured human skin (Liao. et al., 2012). 

 

The HF consists of mesenchymal part the dermal papilla (DP) and the connective 

tissue sheath (CTS) that surrounds the entire HF and forms the infundibulum, 

isthmus, bulge and hair bulb (Paus and Cotsarelis, 1999; Schneider et al., 2009)  



Introduction 

8 

 

Figure 5.  Histomorphology of human scalp hair follicle   

(a) H&E section showing infundibulum, isthmus and anagen-associated (suprabulbar and bulbar 

area) components of the hair follicle. (b) High magnification image of the isthmus. The dashed 

square indicates the approximate location of the bulge; (c) High magnification image of the bulb. (d) 

Melanin granules. Graying of hair results from gradual dysfunction of the hair bulb’s pigmentary unit 

(including decreased tyrosinase activity of HF melanocytes) and gradual loss of the regenerative 

potential of HF melanocyte stem cells in the bulge (Paus, 2011).  

(BM: basal membrane; APM: arrector pili muscle; CTS: connective tissue sheath; DP: dermal papilla; 

M: matrix; HS: hair shaft, IRS: inner root sheath; ORS: outer root sheath; SG: sebaceous gland). 

(From Schneider et al., 2009 Image No 1 [a-c] and 

http://www.pgbeautygroomingscience.com/whats-next.php [d]). 

 

(Figure 5 ). HFs display a very dense innervation system, especially of the bulge 

and isthmus region. The perifollicular neural plexus release neurotransmitters,  

neuropeptides and neurotrophins and may thus fulfill important trophic and 

regulatory functions in hair biology (Botchkarev et al., 1997a; Botchkarev et al., 

1997b; Paus et al., 1997; Botchkarev et al., 1998; Peters et al., 2001; Botchkarev et 

al., 2004; Botchkarev et al., 2006; Anderson et al., 2010).  

c d 

a b 
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1.3  Wound healing  

 

Human adult skin wound healing is a complex multi-stage, dynamic event, which is 

modulated not only by local wound healing-regulatory factors, the state of tissue 

perfusion and innervation, and the functionality of relevant stem cell pools, but also 

by systemic mediators (such as steroid hormones), the nutritional and metabolic 

status as well as the absence/presence of deficiencies (e.g., vitamin C, Zn++ and 

Fe++ ions) (Behm et al., 2012; Medlin, 2012; Reinke and Sorg, 2012; Valacchi et al., 

2012). Acute wounds generally show five distinct, but overlapping phases. These 

are customarily summarized under the headings 1) “haemostasis”, 2) 

“inflammation”, 3) “proliferation”, 4) “remodeling”, and 5) “scarring” (Figure 6 ) 

(Singer and Clark, 1999; Werner and Grose, 2003; Stuart Enoch, 2008).  

 
Figure 6. Phases of wound healing   

ECM: Extracellular matrix; MMP: Metalloproteinase; TIMP: Tissue inhibitors of metalloproteinase 

(From Stuart Enoch, 2008).  

 

1.3.1  Wound healing phase 1: haemostasis   

The first phase of wound healing, haemostasis, is characterized by micro vascular 

and extravasation of blood into the wound and occurs immediately after the injury 

within seconds to minutes. This not only prevents blood loss, but also provides a 
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matrix for immigrating cells that is necessary for the subsequent wound healing 

phase to progress successfully (Velnar et al., 2009; Arwert et al., 2012).  

 

Platelets are integral into this phase, which are essential for the entire healing 

process, since they not only provide hemostasis but also de-granulate and release 

their alpha granules, which secrete critical growth factors, including platelet-derived 

growth factor (PDGF), transforming growth factor-β (TGF β), epidermal growth 

factor (EGF), platelet factor-IV, insulin-like growth factor-1 (IGF). These initiate not 

only the extrinsic and intrinsic coagulation cascades, but also are important wound 

healing promoters (Lawrence, 1998; Gurtner et al., 2008; Lucas et al., 2010; 

Gantwerker and Hom, 2011b, a) (Table 1 ). Fibrin polymerization supports clot 

formation and provides the scaffolding matrix for the infiltrating cells (fibroblasts, 

leukocytes, macrophages and keratinocytes) in the subsequent phases of wound 

healing. The platelets also release vasoactive substances such as catecholamines 

and serotonin act via specialized receptors on the endothelium, thus increasing 

microvascular permeability, which leads to fluid exudation into the extravascular 

space (Findikcioglu et al., 2012).  

 

1.3.2  Wound healing phase 2: Inflammation  

Clinically, the inflammatory phase (Figure 7 ) is characterized by redness, heat, 

swelling and pain, which is caused by vasodilatation and increased capillary 

permeability. In the early stage of this phase, neutrophils are the first key 

leukocytes that are attracted to the wound site (within 1-2 days after injury) by a 

number of chemoattractive agents, including fragments of ECM protein, TGF-β, 

complement components (e.g. C3a, C5a) and formyl-methionyl peptide products 

from bacteria and platelet (Singer and Clark, 1999; Stuart Enoch, 2008; Velnar et 

al., 2009; Gantwerker and Hom, 2011a). In a short time, neutrophils become sticky 

and, through a process of margination, start to adhere to the endothelial cells in the 

adjacent blood vessels and begin to intensely move through the vessel wall 
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(diapedesis) (Singer and Clark, 1999; Stuart Enoch, 2008). 

 
Figure 7.  Inflammatory phase of wound healing   

A selection of growth factors thought to be necessary for directing and regulating cell movement into 

the wound is shown here. TGF-a: transforming growth factor a; FGF: fibroblast growth factor; VEGF: 

vascular endothelial growth factor; PDGF: platelet-derived growth factor; IGF insulin-like growth 

factor and KGF: keratinocyte growth factor  

(From Singer and Clark, 1999 Image No 2. For a more comprehensive list of wound healing 

modulators, see Table 1 )  

 

In the late stage of the inflammatory phase, phagocytic cells such as macrophages 

and other lymphocytes appear in the wound and continue to clear debris and 

bacteria (Eming et al., 2007; Stuart Enoch, 2008; Velnar et al., 2009). Macrophages 

have long been thought to be the most important cells in the late stage of the 

inflammatory process and seem to act as the key modulator cells in the repair 

process (Rodero and Khosrotehrani, 2010; Gantwerker and Hom, 2011b; Arwert et 

al., 2012).  

 

Though likely less crucial than macrophages (Mahdavian Delavary et al., 2011), 

mast cells also are functionally important in the early stage of wound healing, 

namely in murine skin wounds in vivo (Weller et al., 2006; Shiota et al., 2009).  

Besides contributing to antimicrobial defense (Metz et al., 2008; Murphy, 2012), 
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they may also limit tissue damage (e.g., rescue implantation defects) (Noli and 

Miolo, 2001; Woidacki et al., 2013), promote angiogenesis (Trabucchi et al., 1988; 

Maurer and Metz, 2005; Ammendola et al., 2012; Genovese et al., 2012), tumor 

biology (Gotlib et al., 2013; Jiang et al., 2013) and even exhibit selective uptake of 

IgE based on an special imaging techniques in perivascular (Cheng et al., 2013). 

After activation by tissue injury, mast cells located at the wound margin degranulate 

to release various important mediators essential to initiate the inflammatory 

response of injured tissue and to activate regional endothelial cells such as 

histamine, different proteases, tumor necrosis factor-alpha (TNFa) (Ng, 2009; Noli 

and Miolo, 2010; Killick et al., 2011). In turn, the endothelial cells also influence 

mast cell function by releasing e.g. stem cell factor (SCF), interleukin-3 (IL-3) and 

thrombin, which enhance migration, proliferation and local differentiation of mast 

cells (Baghestanian et al., 1997; Huang et al., 1998; Noli and Miolo, 2001, 2010).  

 

Intriguingly, during the final stage of wound healing, mast cells may enhance scar 

formation, and they interfere with scarless repair in fetal skin; this suggests that 

mast cells may mediate the transition from scarless to fibrotic healing during fetal 

development (Wulff et al., 2011). In fact, excessive mast cell activities have long 

been suspected to play an important role in the formation of hypertrophic scars and 

keloids (Smith et al., 1987; Akaishi et al., 2008; Ammendola et al., 2012; Bagabir et 

al., 2012).  

 

1.3.3  Wound healing phase 3: Proliferation  

This wound healing stage occurs 2-10 days after injury and is characterized by 

reepithelialization, angiogenesis and extensive ECM synthesis and remodelling  

(Gurtner et al., 2008). 

 

1.3.3.1  Role of reepithelialization in skin wound healing 

The first event in this stage is reepithelialization (Figure 8 ), which is marked by the 
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proliferation and migration of keratinocytes near the leading edge of the wound 

(Gurtner et al., 2008; Gantwerker and Hom, 2011b). Epidermal cells migrate as a 

sheet, prolonging lamellipodia alongside the progressing edge and then loosen 

their attachments to the underlying dermis; this allows them to migrate in a 

‘leapfrog’ manner across the temporary matrix (Stuart Enoch, 2008). Once these 

keratinocytes encounter the ECM of the wound mesenchyme, they attach near the 

inner wound edge and begin to lay down a new basement membrane (Gantwerker 

and Hom, 2011a). During this process, the stimulation of integrin receptors 

expressed by these keratinocytes with ECM proteins such as fibronectin and 

vitronectin provides important guiding and regulatory signals (Singer and Clark, 

1999; Margadant et al., 2010; Schultz et al., 2011). Reepithelialization is an 

energy-consuming process, requires an appropriate, moist environment, and is 

regulated and adjusted by several growth factors such as keratinocyte growth 

factor (KGF), epidermal growth factor (EGF), and basic fibroblast growth factor 

(bFGF) (Gurtner et al., 2008; Stuart Enoch, 2008).  

 
 

 

 

 

 

Figure 8.  Reepithelialization in skin wound healing   

Reepithelialization takes place as keratinocytes differentiate from the stem cells in the basal stratum 

and migrate over the wound edge to fill in the defect. Migration stops, signaled by contact inhibition 

as the wound defect fills in.  

(From Gantwerker and Hom, 2011b Image No 1). 
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1.3.3.2  Role of angiogenesis in skin wound healing  

Angiogenesis is a critical step in wound healing and takes place concurrently 

during all post-haemostasis phases of wound healing (Ahluwalia and Tarnawski, 

2012; Reinke and Sorg, 2012). Proteolytic enzymes released into the connective 

tissue degrade ECM proteins. Some angiogenesis-promoting factors, such as 

bFGF, induce endothelial cells to release plasminogen activator (which converts 

plasminogen to plasmin) and procollagenase (which is converted to active 

collagenase by plasminogen activator, and possibly via tryptase released by 

degranulating mast cells) (Krejci-Papa and Paus, 1998). Collagen fragments from 

the injured basement membrane also exert pro-angiogenic properties and thus 

promote the formation of new blood vessels at the injured skin site (Singer and 

Clark, 1999; Aikio et al., 2012). 

 

Modelling and establishment of new blood vessels are critical in wound healing so 

as to re-establish tissue perfusion and takes place during all phases of the 

reparative process. In addition to attracting neutrophils and macrophages, 

numerous angiogenic factors secreted during the haemostatic phase promote 

angiogenesis (Pierce et al., 1991; Servold, 1991; Takeshita et al., 1994; Velnar et 

al., 2009). Two particularly important ones are vascular endothelial growth factor A 

(VEGFA) and fibroblast growth factor 2 (FGF2; also known as bFGF) (Table 1 ). For 

example, local application of VEGF to wounds in an animal model of diabetes can 

normalize wound healing (Gurtner et al., 2008). Furthermore, angiogenesis can 

also result from the recruitment of bone marrow-derived endothelial progenitor cells 

(EPCs), although this event is probably not very prominent, at least in non-ischemic 

wounds (Gurtner et al., 2008).  

 

Angiogenesis ceases once the wound is filled with new granulation tissue and 

many of the new formed blood vessels collapses as a result of the endothelial cell 

apoptosis (Singer and Clark, 1999). Any medications that interfere with new blood 
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vessel formation (i.e., the antiangiogenic drug bevacizumab: Avastins) can result in 

delayed wound healing (Gurtner et al., 2008; Gantwerker and Hom, 2011b), while 

excessive, unchecked angiogenesis is thought to significantly contribute to 

hypertrophic scar or keloid formation (Yang et al., 2003; Ammendola et al., 2012; 

Mogili et al., 2012). 

 

1.3.3.3  Role of fibroblasts and extracellular matr ix (ECM) 

In the later stage of proliferation phase (i.e. 2-4 days after wounding), fibroblasts 

are gathered from the edge of the wound or via bone marrow stimulation by a 

number of factors, e.g. PDGF and TGF-beta, which are secreted for example by 

macrophages (Gurtner et al., 2008; Behm et al., 2012). Some of these fibroblasts 

differentiate into myofibroblasts, which are responsible for wound contraction so as 

to bring the wound edges together for faster wound closure. Fibroblasts and 

myofibroblasts affect each other and produce ECM (e.g., fibronectin, hyaluronan, 

type I and III collagen, proteoglycans) which support further cell immigration into 

the wound and are essential for the repair process and subsequent remodelling 

(Gurtner et al., 2008; Stuart Enoch, 2008; Gantwerker and Hom, 2011b). 

Unwounded dermis contains 80% type I and 25% type III collagen, whereas wound 

granulation tissue is characterized by an increase of type III collagen to 40% 

(Robson et al., 2001; Velnar et al., 2009).  

 

By day 3-5 after wounding, granulation tissue usually is well established. 

Histologically, this becomes visible by proliferating fibroblasts and the presence of 

capillary loops embedded into a loose ECM, as a morphological indicator of 

angiogenesis or formation of new blood vessels from pre-existing vasculature at 

the locate of wound (neovascularization) (Singer and Clark, 1999; Broughton et al., 

2006; Stuart Enoch, 2008). With progressing collagen accumulation, the density of 

the blood vessels gradually declines and the granulation tissue subsequently 
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matures to form a scar (see below) (Velnar et al., 2009; Dulmovits and Herman, 

2012).  

 

1.3.4  Wound healing phase 4 : Maturation and remodeling   

The remodeling phase begins 2-3 weeks after injury and lasts for 1 year or more as 

the provisional ECM and type III collagen is replaced with type I collagen and the 

remaining cell types (e.g. endothelial cells, macrophages and myofibroblasts) of 

the previous phases undergo apoptosis (Gurtner et al., 2008; Gantwerker and Hom, 

2011a). Some authors consider scar formation as a separate, fifth phase of wound 

healing (see Figure 6 ) (Clark, 1991). Furthermore, over a period (6–12 months), 

the ECM is reconstructed that type I collagen dominates again (Lovvorn et al., 1999; 

Gurtner et al., 2008). This process is performed by matrix metalloproteinase that 

are secreted by fibroblasts, macrophages and endothelial cells at the wound locate 

and modulated by growth factors, cytokines, and phagocytic stimuli (Broughton et 

al., 2006; Gurtner et al., 2008; Stuart Enoch, 2008).  

 

Epithelial–mesenchymal interactions probably continuously adjust skin integrity 

and homeostasis during this final wound healing stage (Szabowski et al., 2000; 

Gurtner et al., 2008). Also, there must be regulatory feedback loops that control the 

presence, proliferation/differentiation/apoptosis, retainment and number of various 

cell types within the repaired skin (Gurtner et al., 2008). Excessive, unchecked 

fibrosis at this stage causes hypertrophic scar (with the scar limited to the wound 

area) or keloid formation (with the scar extending beyond a wound edge) 

(Broughton et al., 2006; Carantino et al., 2010; Zhang et al., 2011a; Zhang et al., 

2011b; Schwartzfarb and Kirsner, 2012).  

 

However, the injured skin never fully regains the complete functionality of uninjured 

skin (Levenson et al., 1965; Gurtner et al., 2008). Interestingly, scarless wound 

healing does occur in fetal skin (Ferguson et al., 1996; Aller et al., 2012; Lo et al., 



Introduction 

17 

2012) and complete skin regeneration is seen in adult lower vertebrates, such as 

salamanders (Brockes et al., 2001). Thus, fetal and amphibian wound healing may 

provide important pointers as to how complete repair of adult human skin may be 

achieved in the future, and how excessive scar formation may be avoided 

(Ferguson et al., 1996; Satish and Kathju, 2010; Aller et al., 2012; Kathju et al., 

2012; Lo et al., 2012).   

 

1.3.5  Key molecular controls of human skin wound h ealing 

Multiple cytokines and molecules regulate these 4-5 different, but overlapping 

stages of skin wound healing (Table 1 ) (Schafer and Werner, 2008a; Behm et al., 

2012). The mechanisms they modulate the process are intricate and proceed 

interactionally during the whole repair procedure (Werner and Grose, 2003; 

Schafer and Werner, 2008a). From this multitude of wound healing-modulatory 

agents, only a few shall be briefly discussed. 

 

Table 1 . Growth factors, chemokines and cytokines in wound healing  

Modified and extended after Behm et al. 2012 and Barrientos et al. 2008 

(Barrientos et al., 2008; Behm et al., 2012).  

 

Molecule Main cellular 

source(s) 

Wound healing- related 

function 

References 

Activin Keratinocytes, 

fibroblasts 

Granulation tissue formation, 

keratinocyte differentiation, 

re-epithelialization, 

Werner and Grose, 2003; 

Sulyok et al., 2004; 

Bamberger et al., 2005; 

Antsiferova et al., 2009 

Adiponectin Keratinocytes, 

fibroblasts 

Keratinocytes proliferation, 

differentiation, angiogenesis 

 

Mahadev et al., 2008; 

Salathia et al., 2012; 

Shibata et al., 2012 

Angiopoietin-1/2 Fibroblasts Angiogenesis Pola et al., 2001; Le et al., 

2008 

Betacellulin Keratinocytes Epidermal homeostasis, hair 

follicle morphogenesis and 

cycling, and wound 

Schneider et al., 2008 
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angiogenesis 

CCL17 Keratinocytes fibroblast migration, increase 

NGF(+) lymphocytes and 

mast cells 

Kato et al., 2011; Jang et 

al., 2012 

CTGF Fibroblasts Fibroblast proliferation, 

synthesis of collagen 

Alfaro et al., 2010; Shah 

et al., 2012 

CX3CL1 Macrophages, 

endothelial cells 

Inflammation, angiogenesis, 

collagen deposition 

Ishida et al., 2006; Ishida 

et al., 2008 

CXCL10, 

CXCL11 

Keratinocytes, 

endothelial cells 

Re-epithelialization, tissue 

remodeling 

Satish et al., 2003; Yates 

et al., 2007 

EGF Keratinocytes, 

macrophages, 

fibroblasts 

Re-epithelialization Jiang et al., 1993; 

Schneider et al., 2008; 

Melchionna et al., 2012 

FGF-2 (bFGF) Keratinocytes, 

fibroblasts, 

endothelial cells 

Angiogenesis, granulation 

tissue formation 

Pierce et al., 1991; 

Sogabe et al., 2006; 

Tiede et al., 2009a 

FGF-7, FGF-10 Fibroblasts, 

keratinocytes 

Re-epithelialization, 

detoxification of ROS 

Steiling and Werner, 

2003; Braun et al., 2004 

 

Follistatin Keratinocytes Re-epithelialization, 

enhanced keratinocyte 

proliferation 

Antsiferova et al., 2009 

 

HGF Fibroblasts Suppression of inflammation, 

granulation tissue formation, 

angiogenesis, 

re-epithelialization 

Yoshida et al., 2003; Min 

et al., 2005; Buchstein et 

al., 2009 

 

IFNs Fibroblasts, 

lymphocytes 

Inhibition of fibroblasts 

proliferation and collagen 

synthesis 

Shen et al., 2004; 

Ganapathy et al., 2012 

 

IGF-1 Fibroblasts, 

keratinocytes 

Fibroblast proliferation, 

synthesis of collagen 

Semenova et al., 2008; 

Emmerson et al., 2012 

IL-1 Macrophages, 

leukocytes, 

keratinocytes, 

fibroblasts 

Inflammation, angiogenesis, 

re-epithelialization, tissue 

remodelling 

Wood et al., 1996; 

Wiegand et al., 2009 

IL-4 Leukocytes Collagen synthesis Ruckerl et al., 2006; 

Mosser and Edwards, 

2008 

IL-6 Fibroblasts, 

endothelial cells, 

macrophages, 

keratinocytes 

Inflammation, angiogenesis, 

re-epithelialization, collagen 

deposition, tissue remodelling 

Lin et al., 2003; 

McFarland-Mancini et al., 

2010; Ebihara et al., 2011 
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IL-17 Macrophages Inflammation, 

re-epithelialization 

Rodero et al., 2012 

 

IL-27 Macrophages Suppression of inflammation, 

collagen synthesis 

Ruckerl et al., 2006 

 

KGF-1 Fibroblasts Epithelial cell proliferation Lin et al., 2006; Marti et 

al., 2008 

Leptin Keratinocytes Angiogenesis, fibroblast 

proliferation, collagen 

synthesis 

Larcher et al., 2001; 

Poeggeler et al., 2009 

 

MIF  Endothelial cells, 

melanocytes, 

keratinocytes, 

luminal sweat 

gland cell 

re-epithelialization, 

inflammatory responses and 

ECM homoeostasis 

Gilliver et al., 2010 

PDGF Platelets Inflammation, 

re-epithelialization, collagen 

deposition, tissue remodelling 

Greenhalgh et al., 1990; 

Pierce et al., 1991; Pierce 

et al., 1992 

TGF-α Keratinocytes, 

macrophages 

Re-epithelialization Brem et al., 2007; Behm 

et al., 2012 

TGF-β Fibroblasts, 

keratinocytes, 

macrophages, 

platelets, mast 

cells 

Inflammation, angiogenesis, 

granulation tissue formation, 

collagen synthesis, tissue 

remodelling, leukocyte 

chemotactic function 

Penn et al., 2012; Ryu et 

al., 2012 

 

TNF-α Monocytes 

macrophages 

keratinocytes, 

neutrophils 

Inflammation, 

reepithelialization 

Nemenoff, 2012 

 

 

VEGF Keratinocytes, 

fibroblasts, 

macrophages, 

endothelial cells 

Inflammation, angiogenesis Jang et al., 2012; Slusarz 

et al., 2012; Wilgus and 

DiPietro, 2012 

CCL17: Chemokine ligand 17; CTGF: Connective tissue growth factor; CX3CL1: Chemokine 

(C-X3-C motif) ligand 1; CXCL10/11: Cysteine-X amino acid-cysteine ligand 10/11; ECM: 

Extracellular matrix; EGF: Epidermal growth factor; ERK: Extracellular signal-regulated kinase; FGF: 

Fibroblast growth factor; HGF: Hepatocyte growth factor; IFNs: Interferons; IGF-1: Insulin-like 

growth factor-1; IL: Interleukin; KGF: Keratinocyte growth factor; MIF: Macrophage migration 

inhibitory factor; PDGF: Platelet-derived growth factor; ROS: Reactive oxygen species; TGF: Tumor 

growth factor; TNF: Tumor necrosis factor; VEGF: Vascular endothelial growth factor. 

 

1.3.5.1  Selected proinflammatory cytokines 
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Proinflammatory cytokines, particularly interleukin-1 (IL-1), interleukin-6 (IL-6) and 

tumour necrosis factor-α (TNF-α), are sharply up-regulated during the inflammatory 

phase of wound healing, stimulate the synthesis of other wound healing-promoting 

agents (e.g. platelet-activating factors) and facilitate the migration of leukocytes 

from peripheral blood to the wound (Lau et al., 2009).  

 

Immediately after injury, IL-1 is released by keratinocytes due to the epidermal 

barrier disruption (Graves et al., 2001; Menon et al., 2012). In inflammatory phage, 

neutrophils, monocytes, and macrophages also produce large amounts of IL-1. 

Through autocrine signaling, IL-1 increases keratinocyte migration and proliferation 

(Raja et al., 2007), e.g. IL-1 induces keratin 6 and 16 expression to promote 

reepithelialization (Komine et al., 2000; Freedberg et al., 2001). IL-1β stimulates 

wound healing via mitogen-activated protein kinase (MAPK) pathways, the nuclear 

factor (NF)-κB pathway, and prostaglandin E2 (Arai et al., 2011). 

 

In addition to its autocrine effects, IL-1 stimulates fibroblasts to secrete important 

cytokines and growth factor required for wound repair via paracrine signaling, such 

as keratinocyte growth factor (KGF), fibroblast growth factor (FGF)-7, IL-6, 

granulocyte-macrophage colony-stimulating factor (GM CSF) and hepatocyte 

growth factor (HGF); these, in turn, further promote keratinocyte proliferation and 

migration (Lau et al., 2009; Aden et al., 2010; Menon et al., 2012).  

 

Interestingly, TNF-α, another key proinflammatory cytokine released in large 

quantities during the early phases of wound healing, can even induce keratinocytes   

to undergo epithelial-mesenchymal transition (EMT) in human skin wound healing 

via induction of bone morphogenetic protein (BMP) (Yan et al., 2010). This may 

contribute to granulation tissue formation and may impact on the subsequent 

scarring process. Owing to its key role in wound healing, TNF-α has been therefore 
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been singled out as an important therapeutic target, namely during impaired 

cutaneous wound healing (Ashcroft et al., 2011).  

 

1.3.5.2  Selected growth factors 

Upon injury the platelets secrete numerous growth factors and cytokines, such as 

platelet derived growth factor (PDGF), transforming growth factor-β (TGF-β), and 

epidermal growth factor (EGF), which promote and attract inflammatory cells into 

the wound site. PDGF plays a significant role in each stage of wound healing. It is 

synthesized and released from platelets, smooth muscle cells, activated 

macrophages, fibroblasts and endothelial cells also express PDGF (Heldin and 

Westermark, 1999). PDGF induces activated macrophages to produce growth 

factors and cytokines that drive wound repair towards the proliferative phase (Shah 

et al., 2012). PDGF also stimulates myofibroblasts differentiation and kicks off the 

proliferation phase by initiating fibroblast migration into the wound site (Heldin and 

Westermark, 1999; Shah et al., 2012). PDGF also greatly promotes angiogenesis 

during wound healing (Uutela et al., 2004; Sun et al., 2007; Lin et al., 2009a).  

 

TGF-β is another key growth factor throughout wound healing, which promotes the 

proliferation of macrophages, fibroblasts and endothelial cells and just greatly 

stimulates granulation tissue formation (Valluru et al., 2011; Honardoust et al., 2012; 

Lee et al., 2012). Although it is overall an immunoinhibitory growth factor (Murphy, 

2012), TGF-β facilitates the immigration of inflammatory cells into the wound and 

amplifies the granulation tissue-promoting effects of macrophages (Barrientos et al., 

2008; Wi et al., 2012; Yang et al., 2012b). It also up-regulates VEGF secretion by 

keratinocytes and thus stimulates angiogenesis in vitro (Riedel et al., 2007). . 

 

EGF is released by platelets, macrophages, and fibroblasts and works on 

keratinocytes via a paracrine signal (Franz et al., 2007). In vivo, EGF improved 
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wound healing as evidenced by accelerated reepithelialization, granulation tissue 

formation and neovascularisation (Dogan et al., 2009). This has encouraged the 

use of exogenous EGF in clinical wound management as early as 1973 (Savage 

and Cohen, 1973). However, its effect in chronic wounds was limited by the 

substantial degradation of exogenous EGF and the imbalance between matrix 

metalloproteinase (MMP) and MMP inhibitors (Hardwicke et al., 2008). 

Nevertheless, if these obstacles can be overcome, EGF may still be of benefit in 

the management of chronic wounds, e.g. by the induction of endogenous EGF 

production via gene therapy, or by EGF administration in appropriate polymers or 

electrospun nanofibers (Hong et al., 2006; Choi et al., 2008).  

 

1.3.5.3  Selected other wound healing modulators  

Many additional agents impact on wound healing. For example, endothelial 

insulin/IGF signaling is recognized to be essential for vascularization in diabetic 

mice, and reducing endothelial insulin/IGF signaling directly contributes to 

diabetes-associated impaired wound healing (Aghdam et al., 2012). The 

chemoattractant protein-1/C-C chemokine receptor type 2 (CCL2/CCR2) pathways 

is now appreciated as important in mediator that regulates the influx of 

inflammatory cells into skin wounds (Lu et al., 2010; Saederup et al., 2010). CCR2 

stimulation by appropriate chemokine ligands recruits the blood 

monocytes/macrophages into skin wound sites and initiates vascularization of 

wound healing in vivo (Willenborg et al., 2012).  

 

Two other emerging wound healing research frontiers are the role of hydrogen 

peroxide (H2O2) and of Toll-like receptors (TLRs), key innate immune receptors. 

Distinct H2O2 gradients are established during different wound healing stages and 

impact on the progression of wound healing (Schafer and Werner, 2008b; Schreml 

et al., 2011). TLRs stimulation, e.g. by keratinocytes, also regulate wound 
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inflammation, and promote tissue repair in many settings (Chen et al., 2012b; Dasu 

and Rivkah Isseroff, 2012; Huebener and Schwabe, 2012).  

 

1.3.6  Role of stem cells in wound healing 

Stem cells are found in all multi-cellular organisms and have long been appreciated 

to be of critical relevance in tissue regeneration and regenerative medicine. Stem 

cells are self-renewing and can differentiate into diverse specialized cell types, 

depending on their degree of commitment to tissue lineages (Korbling and Estrov, 

2003; Sasaki et al., 2008; Furusawa and Kaneko, 2012; Sancho-Martinez et al., 

2012). Their paramount importance as a cell pool for tissue regeneration during 

wound healing, namely in the skin, is well-established (Figure 9 ) (Lau et al., 2009; 

Falanga, 2012). 

 

Figure 9. Role of stem/progenitor cell populations in cutaneous wound healing  

(BM, bone marrow; CTS: connective tissue sheaths; DP: dermal papilla; EC, endothelial cell; EPC, 

endothelial precursor cells; epiSC, epithelial stem cell; HPC, haematopoietic precursor cells; HSC, 
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haematopoietic stem cell; IFE, interfollicular epidermis; melSC, melanocyte stem cell; MSC, 

mesenchymal stem cell; SKPs, skin progenitor cells; TEP, tissue endothelial progenitors).   

(From Lau et al., 2009 Image No 1).  

 

1.3.6.1  Epithelial stem cells 

There are various stem cells population resident in different location within skin 

epithelium. For example, HF stem cells located in the bulge region of the outer root 

sheath (Figure 9 ) sustain the cyclic regeneration of the hair follicle, but also play an 

important role in the regeneration of sebaceous glands and the epidermis upon 

injury (Ito et al., 2005; Tiede et al., 2007; Ito and Cotsarelis, 2008). Lgr6+ epidermal 

stem cells can establish the hair follicle, sebaceous gland, and interfollicular 

epidermis and contribute to long-term wound repair (Snippert et al., 2010). HF 

derived-keratin 15+ epithelial stem cells migrate from the bulge into the epidermis 

of wound edges and contribute to the reepithelialization of wound healing 

(Mardaryev et al., 2011). Lhx2 mediates Sox9, Tcf4 and Lgr5 in the bulge epithelial 

stem cells of hair follicle to promote wound reepithelialization after injury 

(Mardaryev et al., 2011). These studies suggest that epidermis stem cells serve as 

a key player in the formation of different skin appendages during various processes 

of wound healing (Arwert et al., 2012). 

 

Nestin+ pluripotent stem cells reportedly located in the bulge region of murine HFs 

can form new blood vessels during skin angiogenesis in vivo (Amoh et al., 2004). 

However, in human skin, nestin+ cells appear to be exclusively located outside of 

the skin epithelium, e.g. in the stroma of HFs and sweat glands (Tiede et al., 2009c) 

so that they are best considered as intra-mesenchymal stem cells. 

 

1.3.6.2  Mesenchymal stem cells 

Besides epithelial stem cells, whose presence in sufficient quantity and 

functionality is a key determinant of successful reepithelialization (Harris et al., 
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2012; Plikus et al., 2012), mesenchymal stem cells are also critical for cutaneous 

wound healing. In vivo evidence exists that that GFP+ bone marrow-derived 

mesenchymal stem cells (BM-MSCs) accelerate wound closure and differentiate 

into keratinocytes to enhance reepithelialization (Sasaki et al., 2008). Application of 

allogeneic GFP+ BM-MSCs to the wound bed also increases tube formation by 

endothelial cells and thus promotes angiogenesis (Wu et al., 2007). One of the 

underlying mechanisms by which BM-MSCs enhance wound healing appears to be 

the secretion of cytokines and chemokines via paracrine signaling, such as VEGF, 

IGF, EGF, keratinocyte growth factor, angiopoietin-1, macrophage inflammatory 

protein-1 – important wound healing promoters (Table 1 ). Therefore, BM-MSCs 

can recruit macrophage, keratinocytes and endothelial cells into the wound site to 

promote wound healing (Chen et al., 2008).  

 

Human sweat glands have recently been recognized as a rich source of nestin+ 

progenitor/stem cells (Petschnik et al., 2009), whose transplantation to wounded 

mouse skin can improve vascularization during dermal regeneration in vivo 

(Danner et al., 2012).  

 

1.3.6.3  Other stem cells  

Haematopoietic stem cells (HSCs) are widely thought to be the main source for the 

leukocytes that migrate into the wound site during the inflammatory phase of 

wound healing (Lau et al., 2009; Lu et al., 2011; Sel et al., 2012). HSCs have been 

demonstrated to improve dermal wound healing by promoting angiogenesis as well 

as migration and proliferation of fibroblasts via secreting monocyte chemoattractant 

protein-1 and GM-CSF (Templin et al., 2009).  

 

However, inflammatory cells such as mast cells may also arise locally from resident 

intracutaneous progenitor cells in adult skin mesenchyme. The connective tissue 
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sheath (CTS) of HFs has been documented to serve as a potent local reservoir of 

connective tissue-type mast cell precursors, both in mice (Kumamoto et al., 2003) 

and in humans (Ito et al., 2010; Sugawara et al., 2012). The mast cell precursors 

may involve in cutaneous wound healing and mature within the CTS via stimulation 

with stem cell factor (SCF), a key mast cell differentiation- and 

proliferation-promoting factor, into mature skin mast cells (Lau et al., 2009). 

Interestingly, both peptide neurohormones released from the skin epithelium, such 

as corticotropin-releasing hormone (CRH) (Ito et al., 2010) and endocannabinoids 

that stimulate cannabinoid receptor type 1 (Sugawara et al., 2012), may play a 

central role in controlling the degranulation and the maturation of mast cells from 

resident progenitors within the CTS. Therefore, the CTS, which is routinely injured 

during skin wounding, may well be an important participant in wound healing (Judl 

et al., 2011). 

 

Revascularization, a main challenge during wound healing, partially occurs through 

angiogenesis in the presence of endothelial progenitor cells (Bonello et al., 2012; 

Kang et al., 2012). Topical application of ex vivo expanded EPCs (dilute in PBS) by 

subsequently semi-permeable transparent dressing cover in diabetic mice 

promotes neovascularisation of a full-thickness excisional wound via increasing the 

expression of VEGF and bFGF (Asai et al., 2012). One underlying molecular 

mechanism may be CCL5/CCR5 interaction, since the absence of CCR5 can 

reduce EPC accumulation, while CCL5 induces CCR5-dependent EPCs migration 

into the wound site (Ishida et al., 2012).  

 

1.4  Why more effective wound healing promoters are  urgently 

needed 

 

Since in our aging societies the incidence of skin ulcers as a result of retarded 
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wound healing is steadily rising and constitutes an ever-larger health care burden, 

this phenomenon may well be called an “ulcer epidemic”. This makes it an urgent 

challenge for both, clinical medicine and health care providers, to rapidly develop 

better strategies for more effective, safe, and affordable wound healing 

management (Sen et al., 2009; Eaglstein et al., 2012; Markova and Mostow, 2012).  

 

1.4.1  Ulcer epidemiology and health care burden  

Skin ulcers have become a major public health concern worldwide and consume 

enormous health care investments; moreover, skin ulcers are a growing cause of 

patient morbidity (Sen et al., 2009; Eaglstein et al., 2012; Markova and Mostow, 

2012). Skin ulcer incidence and prevalence vary a lot between different populations, 

as do patient compliance in terms of follow-up visits, which makes epidemiological 

studies challenging.  

 

However, it has been estimated that 1-2 % of the world population will experience a 

chronic wound healing condition during their lifetime (Sen et al., 2009; Eaglstein et 

al., 2012; Markova and Mostow, 2012). The incidence of skin ulcers has been 

reported to be 0.35% in the UK (Vowden et al., 2009), 4.5% in India (Shukla et al., 

2005), 1.5%–20.3% in China (Fu, 2005), 8%–12% in Mexico (Gillespie et al., 2012), 

and there are more than 200,000 skin ulcer-afflicted Australians at any one time 

(Gillespie et al., 2012).  

 

The estimate average cost of curing a single ulcer is $1,100 to $2,800, that of an 

infected one is $17,000 (Kalker et al., 1982; O'Meara et al., 2009). These costs are 

steadily rising. In the USA, chronic wounds affect about 6.5 million patients and an 

estimated $ 25 billion annually are spent on the management of chronic wounds 

(Sen et al., 2009). Already in 2009, the market for ulcer care and wound 

treatment-products had been projected to reach more than U.S.$ 15 billion one 



Introduction 

28 

year later (Sen et al., 2009). Thus, the overall health care burden of chronic skin 

ulcers is enormous, above and beyond the personal burden suffered by ulcer 

patients and their ulcer-associated morbidity and loss of quality of life. 

 

1.4.2  Current chronic ulcer therapy  

Retarded wound healing, leading to ulcer formation, results from the deficiency of 

essential wound healing requirements, such as an sufficient supply of oxygen, 

nutrients, proteins, vitamins, co-factors, an effective immune system, a normal, 

sequential release of growth factors and the avoidance of excessive and protracted 

inflammation (Gunter and Machens, 2012; Markova and Mostow, 2012; Valacchi et 

al., 2012). Wherever this is defective and substitution therapy is insufficient, a 

number of ulcer wound treatment strategies are available.  

 

These include e.g. wound cleansing and debridement (incl. therapeutic application 

of maggots), wound care strategies that keep the ulcer moist, pressure offloading, 

negative-pressure wound therapy, application of growth factors and proteolytic 

enzymes, electrostimulation, and hyperbaric oxygen therapy (Gunter and Machens, 

2012; Markova and Mostow, 2012; Sebastian et al., 2012; Ud-Din et al., 2012; 

Valacchi et al., 2012; Wong and Gurtner, 2012; White-Chu and Reddy, 2013). To 

enhance therapeutic efficiency, the topical application of wound management gents 

through lipid colloidal carriers, such as vesicular systems (traditional liposomes and 

ethosomes) and solid lipid nanoparticles, is being explored (Chen et al., 2012c; 

Gokce et al., 2012; Nam et al., 2012; Valacchi et al., 2012). These new carrier 

systems have a number of advantages, such as high penetration and absorption 

within a natural skin-moisture environment (Valacchi et al., 2012).  

 

However, very frequently, these therapeutic modalities are ineffective 

non-applicable, or unavailable in a given chronic ulcer patient, or superinfection 
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and persistent perfusion/innervation deficits destroy the wound healing progress 

that may have been achieved. Therefore, in numerous patients ulcer management 

painfully often remains unsatisfactory, since all these therapies are only 

symptomatic and since most patients are not only old, but also suffer from 

associated metabolic disorders (diabetes, obesity), hypertension, venous 

insufficiency and/or atherosclerosis, resulting in severe ischemia (Valacchi et al., 

2012). Thus, more effective, cost-efficient, safe, and evidence-based management 

strategies for skin ulcer therapy must urgently be developed (Brolmann et al., 

2012). 

 

1.5  Why simple, clinically relevant in vitro-wound healing assays 

are needed 

 

To better understand the complexity of wound healing, its many distinct stages, and 

its main determinants and regulatory elements, the use of appropriate clinical and 

preclinical wound healing models is essential. In vivo animal models have been 

indispensable for understanding the significant differences in wound healing   

fetal versus adult skin and between different vertebrate species (Amadeu et al., 

2003; Ramelet et al., 2009; Satish and Kathju, 2010). However, such in vivo models 

are complicated and costly, and rarely can claim to fully reproduce clinically 

relevant human wound healing conditions the same condition in humans. Hence, it 

is extremely important to study wound healing not only in animal models (Ansell et 

al., 2012; Deshmukh and Gupta, 2013; Wang et al., 2013), but also in human skin 

itself.   

 

 

1.5.1 Existing in vitro wound healing assays   
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In vitro models are generally simple, fast, and less costly, and permit the study of 

cell behaviour in a controlled environment, using human cells or tissue, and raise 

minimal ethical concerns compared to in vivo wound healing models (Gottrup et al., 

2000). They also facilitate investigation of the mechanisms of action of 

pharmacological agents or defined wound healing-regulatory factor.  

 

Table 2. In vitro models for wound healing investigation   

Modified and extended after Gottrup et al. 2000 (Gottrup et al., 2000) 

Model type Available research read out parameters 

Single cell systems  

Adherent cells  

     Monolayer (Yu et al., 1993)  Migration, proliferation, protein syntheses 

         Typical model : scratch 

assays (Yu et al., 1993) 

Migration, proliferation, protein syntheses 

     Three-dimensional (Grinnell, 2003) Cell-matrix interactions, migration, proliferation, 

protein syntheses, wound contraction 

Non-Adherent cells (Postlethwaite et al., 

1976) 

Chemotaxis 

Multi-cellular systems  

     Co-cultures (Kamalati et al., 1989; 

Werner and Grose, 2003; Radtke et 

al., 2013)  

Cell-cell interactions 

     Three-dimensional (Bell et al., 1983) Cell-matrix interactions, cell-cell interactions 

migration, proliferation, protein syntheses, wound 

contraction 

Organ Cultures  

Intact skin (Garlick and Taichman, 1994; 

Lu et al., 2007)  

Epithelialisation, tensile strength, morphology 

Punch in a punch model (Moll et al., 1998) Epithelialisation, migration, proliferation, 

angiogenesis 

 

However, it must always be kept in mind that in vitro experiments cannot fully 

represent the in vivo situation. In the current context, they routine lack skin 

perfusion and innervation, do not permit wound entry of circulating immunocytes 

and stem cells, and lack important molecular or cellular players of physiological 
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skin wound healing (Gottrup et al., 2000; Miao et al., 2012). With these caveats in 

mind, some frequently used in vitro wound healing assays are briefly discussed 

(Table 2 ). 

 

1.5.1.1 Scratch assay   

A simple, well-developed method is the “scratch assay”, which was originally 

developed for studying astroctye injury (Yu et al., 1993). Here the repairing cells 

proliferate around the central, scratched area and move into the core of this 

surrogate ‘wound’. The migration of keratinocytes can also be determined by this 

model. By mechanical foreign force, e.g. with a plastic pipette tip (Cha et al., 1996), 

a needle (Calderon et al., 1996), a stub adapter (Kheradmand et al., 1994), or a 

rotating silicone tip and razor blades (Yu et al., 1993; Gottrup et al., 2000), a 

confluent keratinocyte monolayer is injured, thus creating a wide gap. The 

experimentally induced loss of cell-cell contact stimulates migration (Figure 10 ). 

 
Figure 10.  Scratch assay  model  

Migration ability of cells is evaluated in a confluent monolayer of cells at time 0 (t0) and at 

conditional time (t1) by fragmenting the surface area occupied by the cells from the background (cf. 

hatched areas).  

(Modified from Olivier Debeir, 2008 Image No 2) 

 

This – highly artificial – model allows one to study cellular wounding responses in a 

well-controlled culture environment, which excludes interactions with other cells 

and with all agents not contained in the medium (Miao et al., 2012). The 

disadvantage of this model is that this model cannot really be compared with 

t0 t1 
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physiological wound healing of human skin: this 2-dimensional culture system that 

investigates only one cell type does not reproduce the in vivo status, while the 

complex multidirectional cell-cell and cell-matrix interactions in the epidermis, the 

dermis and the immune system as well as multiple other elements essential to 

normal skin wound healing are all missing (Koschwanez and Broadbent, 2011). 

 

1.5.1.2 Three dimensional models 

To overcome the problem that two dimensional cell monoculture assays lack proper 

interactions between different cell populations as well as important cell-ECM 

interaction (Miao et al., 2012), wound healing models have been developed, where 

different cell types are co-cultured under three-dimensional conditions (Auxenfans 

et al., 2009; Janin, 2011; Lynch and Ahsan, 2013).  

 

The classical one is a fibroblast-populated collagen matrix (usually type I collagen), 

which permits the observation of cell contractility and matrix deposit. In this model, 

fibroblasts are seeded into a disc-shaped collagen matrix which contracts as the 

cells contract and migrate over time (Greenhalgh, 2005). Cell morphology and 

motility (Friedl and Brocker, 2000), response to pharmacological agents, protein 

production (Asselineau and Bell, 1984), and fibroblast proliferation can easily be 

studied in this 3D culture model (Amadeu et al., 2003; Miller et al., 2003). Another 

advantage of this model is that it allows getting an analogous environment that 

fibroblasts and the matrix can expose to the mechanical forces in vivo situation, 

which, to some extent, simulates the early granulation tissue formation during early 

wound repair stage (Wong et al., 2011).  

 

Such a fibroblast-populated collagen “pseudodermis” or, alternatively, human 

acellular dermis (Lee et al., 2000; McDonald et al., 2011; Hirokawa et al., 2012) can 

also be populated by additional cell populations such as endothelial cells and 
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macrophages (Callegari et al., 2007; Stevenson et al., 2010) and can be used as 

support structure for a “pseudoepidermis” constructed from isolated epidermal or 

HF keratinocytes that have been seeded onto it (e.g. (Boehncke and Schon, 2007)). 

Such so-called “skin equivalents”, which may survive for several weeks or even 

months under appropriate culture conditions, can then be experimentally wounded 

to observe aspects of both epidermal and dermal regeneration under highly 

controlled in vitro conditions (Pena et al., 2012; Shimoda et al., 2012; Yang et al., 

2012a).  

 

1.5.2 Available punch-in-a-punch wound human skin a ssays  

However, these 3D systems usually do not faithfully reproduce human skin (e.g. 

absence of skin appendages, melanocytes, Merkel cells, intracutaneous 

immunocytes and the full range of skin stem cell populations). Thus intact 

fragments of partial or full-thickness human skin have been developed (Lu et al., 

2007; Xu et al., 2012).  

 

Moll et al. pioneered a simple punch-in-a-punch wound healing model , for which a 

6 mm punch biopsy of partial thickness human skin is cultured after having been 

further wounded by a central, small punch (3mm) (Moll et al., 1998). This is placed 

dermis-side down on gauze in a culture dish containing Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10% FBS incubated at 37°C at the air-liquid 

interphase so that the medium is only in contact with the bottom side of skin 

fragment, while the epidermis surface remains constantly exposed to the air (Moll 

et al., 1998). Most recently, during the execution of the current thesis project, Xu et 

al. published another optimized partial-thickness human ex vivo skin culture model 

(Xu et al., 2012): After removing the subcutis integral skin fragment with intact 

epidermis and partial-thickness dermis is placed on the bottom of a nylon mesh cell 

strainer with the epidermis facing up, is fixed by sutures, and cultured in a 6-well 
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plate with DMEM supplemented with 10% FBS at 37°C w ith 5% CO2 (Figure 11 ).  

 

However, these assays operate in the presence of high concentrations of serum 

from a non-human species (10% FBS), with the exact composition unknown. 

Moreover, the skin used in these models excludes the subcutis, and thus its wound 

healing-promoting pluripotent stem cells and adipokines (Kim et al., 2007; 

Poeggeler et al., 2009). Also, skin appendages are missing. The latter defect of 

these models is severe since HFs and sweat glands, and possibly even sebaceous 

glands, as well as their associated epithelial and mesenchymal progenitor cells 

are increasingly appreciated as major players in mammalian skin wound healing 

(Jahoda and Reynolds, 2001; Ito et al., 2005; Lu et al., 2007; Lau et al., 2009; 

Ansell et al., 2010; Danner et al., 2012; Lu et al., 2012a).   

 

Figure  11. Partial-thickness human ex vivo skin culture   

(From Xu et al., 2012 Image No 2) 

 

To overcome these limitations, we have developed a highly standardized human 

skin wound healing assay in the current study, which is based on a full-thickness, 

serum-free human skin organ culture assay previously developed in our lab (Lu et 

al., 2007) and on the “punch-within-a-punch”-design (Moll et al., 1998) (for details, 

see Materials & Methods). 

 

1.6 Hormones as modulators of wound healing 
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While it has long been known that hormones impact on wound healing, endocrine 

controls of tissue regeneration have become a recent focus of research interest 

(Dioufa et al., 2010; Sosne et al., 2010; Kiaris et al., 2011; Novotny et al., 2011; 

Emmerson and Hardman, 2012; Oh et al., 2012; Tarameshloo et al., 2012; Wang et 

al., 2012) (Figure 12 ). Since aging impairs wound healing, this has suggested that 

namely sex steroid hormones play a fundamental role in wound healing (Yanai et 

al., 2011; Zhang et al., 2011c; Sgonc and Gruber, 2012). However, the exact role of 

specific hormones in human skin wound healing and the underlying mechanisms of 

action remain largely obscure.  

 

Figure 12. Selected wound healing associated hormon es 

Sex steroids such as estrogens and androgens are mostly synthesized in the 

adrenal cortex, ovary, and/or testis and are then released systemically to fulfill their 

multiple physiological tasks. However, we now know that many other tissues, 

including human skin, human HFs, and human sebaceous glands, are major 

Amines:Norepinephrine (Gosain et al., 
2009), epinephrine (Rodrigues et al., 
2011), thyroid hormone (Tarameshloo et 
al., 2012; Zhang et al., 2012)  

Steroids: Estrogen (Emmerson et al., 2012), 
testosterone (Machowska et al., 2008), 
cortisol (Alberti et al., 2012) 

Peptides: Vasopressin (Gouin et al., 2010), 
oxytocin (Gouin et al., 2010) 

Proteins (Glycoproteins): Growth hormone 
(Breederveld and Tuinebreijer, 2012), 
luteinizing hormone (Hall and Phillips, 
2005),thyroid stimulating hormone 
(Rokkanen and Kettunen, 1972)    

Wound healing  
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peripheral sites of steroid hormone synthesis and metabolism (Rogoff et al., 2001; 

Slominski et al., 2008; Makrantonaki and Zouboulis, 2009) and even have fully 

functional equivalents of the central hypothalamic-pituitary-adrenal axis (CRH� 

ACTH� cortisol� CRH) established (Slominski et al., 2002; Slominski et al., 2005; 

Slominski et al., 2007; Slominski et al., 2008; van Beek et al., 2008; Ito et al., 2010)  

(Figure 15 ). 

 

In generally, estrogen can promote wound healing process in men and elderly 

women, by adjusting cytokine and growth factor expression, inflammation process, 

matrix deposition, improving reepithelialization, stimulating angiogenesis and 

wound contraction and has similar effects on mice wound healing to that observed 

in human (Gilliver et al., 2007; Emmerson et al., 2012) (Figure 13 ). The sex steroid 

precursor dehydroepiandrosterone (DHEA) exerts similar effects as estrogen, 

which suggests that it may stimulate wound healing via DHEA transformation to 

estrogen (Mills et al., 2005; Gilliver et al., 2007). Androgens, in contrast, 

significantly retard wound repair in aged humans, in part by increasing the 

inflammatory response (Gilliver et al., 2007; Emmerson et al., 2012) and by 

modulating cytokine expression and inducing excessive collagen deposition (in 

mice) (Ashcroft and Mills, 2002) (Figure 13 ).  
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Figure 13. The effects of sex hormone levels on wou nd healing  

Androgens play an inhibitory role in wound healing (compare top left with top right), whereas 

estrogens exert diametrically opposed effects to those of androgens (compare bottom right with top 

right). 

(From Hardman, 2005 Image No 2). 

 

Psychological stress also substantially delays wound healing in both human and 

animals, presumably via upregulating glucocorticoid (GC) and catecholamine 

levels, by altering immune response and inducing hyperglycemia (Figure 14 ) (Guo 

and Dipietro, 2010). This is thought to inhibit cell proliferation and differentiation as 

well as collagen production, the expression of cell adhesion molecules that direct 

immune cell trafficking, and to reduce the expression of proinflammatory cytokines 

such as IL-1β, IL-6, and TNF-α at the wound site, which are necessary for the early 

inflammatory stage of wound healing (Gouin et al., 2010; Guo and Dipietro, 2010; 
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Broadbent and Koschwanez, 2011). In addition increased skin and serum GC 

levels may increase the risk of wound site infection (Guo and Dipietro, 2010). 

However, topical low-dose GC administration can even accelerate wound healing 

while systemic high-dose, long use of GC has a big increased risk of wound 

infection.  

 

Figure 14. The effects of stress on wound healing  

(From Guo and Dipietro, 2010 Image No 1). 

 

Besides increased GC and catecholamine levels, abnormal neuroendocrine 

signaling along the central and intracutaneous HPA axes that is associated with 

psychological stress (e.g., increased CRH and ACTH levels) may negatively impact 

on wound healing via the recognized epithelial growth-inhibitory and mast 

cell-activating properties of CRH and ACTH, which could further promote excessive 

intracutaneous inflammation (Paus et al., 2006; Joachim et al., 2008; Ito et al., 

2010). Thus, the - as yet insufficiently explored - (neuro)endocrine controls of 

cutaneous wound healing are likely to be of major clinical relevance. 

 

1.7 Existing evidence that thyroid hormones may pro mote wound 

healing  
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Accumulating evidence suggests that, besides the above-mentioned hormones, 

thyroid hormones (THs) are particularly interesting, yet only poorly studied and 

ill-understood endocrine signals in the context of human skin wound healing. 

Human skin and its hair follicles (HFs) are classical THs target organs (Freinkel and 

Freinkel, 1972; Kaplan et al., 1988; Messenger, 2000; Safer et al., 2001; van Beek 

et al., 2008) and thyroid diseases are well-known to affect human skin structure 

and function on multiple levels (Holt and Marks, 1977; Holt, 1978; Doshi et al., 

2008). Yet, even though thyroxine (T4) is one of the most frequently administered 

hormones in clinical medicine, it is not used in dermatological therapy.  

 

However, T4 promotes murine hair growth in vivo (Safer et al., 2001) and human 

hair growth in vitro (van Beek et al., 2008), operates as the chief endocrine control 

of amphibian metamorphosis, which entails major changes in skin function (Kress 

et al., 2009). Most importantly, T4 has already been reported to stimulate wound 

healing in both rats (Erdogan et al., 1999) and mice (Safer et al., 2005) in vivo. 

Likewise, topical T3 enhances wound healing in guinea pigs, presumably by 

promoting wound contraction (Kassem et al., 2012). Together with the fact that T4 

has long been administered in clinical medicine, which is very cost-efficient and 

reasonably stable, and has a fully defined toxicolgical profile upon clinical 

application (Brenta et al., 2007; Moreno et al., 2008; Goldsmit et al., 2010; Biondi 

and Wartofsky, 2012), this makes THs (see Section 1.9) particularly intriguing 

candidate wound healing promoters. 

 

1.8 The emerging role of the hypothalamic–pituitary –thyroid (HPT) 

axis in skin biology 
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Figure 15. Skin neuroendocrine system regulates sys temic (A) and local (B) homeostasis    

Human skin is now recognized as an important peripheral endocrine organ, which is closely 

cross-linked to central neuroimmunological system and enable fast and selective responses to the 

environment for local and systemic homeostasis (Zmijewski and Slominski, 2011; Peters et al., 2012; 

Valdes-Rodriguez et al., 2012). Essentially all skin cell populations and skin appendages are not 

only important (neuro-)hormone and neuropeptide targets, but also synthesize and metabolize 

these. For example, the skin not only modulates cutaneous Vitamin D production, but also exerts a 

few neuropeptides functions and synthesis, which of including elements of 

hypothalamic-pituitary-adrenal (HPA), and hypothalamic-pituitary-thyroid (HPT) axes (Slominski et 

al., 2002; Bodo et al., 2010; Cianfarani et al., 2010; Gaspar et al., 2010). These newly synthesised 

hormones and neuropeptides primarily exert paracrine or autocrine activities in situ and are 

regulated by a number of environmental and intrinsic factors, such as solar radiation, humidity, and 

temperature. (PIT, pituitary)  

(From Zmijewski and Slominski, 2011 Image No 1).   

 

Besides the prominent cutaneous involvement in thyroid disease, there is growing 

evidence that several key players in the hypothalamic-pituitary-thyroid (HPT) axis 

(TRH�TSH�THs) (Figure 15 ) are expressed on the gene and/or protein level in 

human skin (Table 3 ) and that TRH and TSH are major novel modulators of human 

skin biology. These range from the stimulation of human hair growth and 

A B 
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pigmentation by TRH via the regulation of keratin expression by TSH to the 

promotion of keratinocyte energy metabolism and mitochondrial biogenesis by both 

TSH and TRH (Slominski et al., 2002; Gaspar et al., 2009; Bodo et al., 2010; 

Cianfarani et al., 2010; Gaspar et al., 2010; Paus, 2010; Poeggeler et al., 2010; 

Gaspar et al., 2011; Knuever et al., 2012).  

 

Table 3 . Elements of the HPT axis are expressed in human ski n in situ and/or 

cultured human skin cells  

HPT axis 

gene/gene 

product  

Comments Reference Associated 

endocrine effect 

and/or function in 

skin biology 

Reference 

TRH  Restrictedly expressed in dermal 

and follicular papilla fibroblasts, 

neonatal but not adult 

keratinocytes and melanoma cells 

in vitro. 

 

In addition, human scalp hair 

follicles express TRH mRNA and 

protein in situ. 

Slominski et al., 

2002 

 

TRH treatment significantly 

stimulates hair shaft 

formation and hair matrix 

keratinocyte proliferation, 

suppresses apoptosis of 

hair matrix keratinocytes, 

and prolongs active hair 

growth (anagen) in human 

hair follicle organ culture. 

TRH stimulate TSH 

expression epidermis in 

situ. 

Gaspar et al., 

2009; Bodo et 

al., 2010; 

Gaspar et al., 

2010 

 

 

TRH Receptor 

(TRHR) 

Human scalp hair follicles express 

TRH-R mRNA  

and protein in situ 

Slominski et al., 

2002 

Thyroid-releasing hormone 

probably exerts effects on 

both classical and 

non-classical receptor, e.g. 

MC-1R 

Slominski, 2005 

 

 

TSH  Human epidermis expresses TSH 

on the gene and protein levels in 

situ. 

Gaspar et al., 

2010 

Both systemic and 

intracutaneous−generated 

TSH modulate human skin 

epithelial biological 

functions (e.g., keratin 

expression).    

Bodo et al., 

2010; Paus, 

2010; Ramot et 

al., 2012  
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TSH Receptor  TSH-R mRNA is expressed in 

cultured keratinocytes, epidermal 

melanocytes and melanoma cells 

in vitro. 

However, regarding the TSH-R 

expression in situ, contradictory 

results are shown. In Bodo et al 

study, TSH-R was expressed in 

normal human skin at the gene 

and protein level only within 

mesenchyme. However, 

Cianfarani et al. found that TSH-R 

expressed in the epidermis in 

non-scalp human skin. 

Slominski et al., 

2002; Bodo et 

al., 2009; 

Cianfarani et al., 

2010  

1. TSH-R-expressing 

cells also expressed the 

sodium iodide symporter 

and thyroglobulin genes. 

2. TSH-R expression in 

the skin by autoantibodies 

may play very important 

physiological and 

pathological role in skin 

autoimmune disease. 

3. TSH-R stimulation by 

systemic TSH promotes 

the proliferation of human 

epidermal keratinocytes 

and dermal fibroblasts. 

Slominski et al., 

2002; Bodo et 

al., 2009; Paus, 

2010  

Deiodinases 

D2 and D3  

Gene expression in skin biopsy 

and in the majority of human 

epidermal and dermal cells 

cultured in vitro 

Human HFs transcribes 

deiodinase genes (D2 and D3). 

After T4 treatment with hair 

follicle, a significantly higher fT3 

level, when compared to vehicle 

group, was measured by 

electrochemiluminescent 

immunoassay in organ culture 

medium.   

Slominski et al., 

2002; van Beek 

et al., 2008  

Intraceutaneous 

transcribed deiodinases 

may convert T4 to T3 in 

human skin.  

van Beek et al., 

2008; Tiede et 

al., 2009b 

 

TH receptor  Thyroid hormone receptor beta 1 

is expressed in the human hair 

follicle 

Billoni et al., 

2000 

THs can modulate the 

selected keratins 

expression; even stimulate 

keratin 15 + progenitor 

cells, apoptosis and 

differentiation. Moreover, 

THs can also prolong the 

duration of hair growth 

(anagen phase) and wound 

healing (mice, rat, pig).  

THs inhibit TSH expression 

in human epidermis in situ.  

Erdogan et al., 

1999; Safer et 

al., 2005; Ramot 

et al., 2009b; 

Bodo et al., 

2010; Tiede et 

al., 2010  
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1.9 The biology of thyroid hormones 

 

This leads us to a brief consideration of TH biology, i.e. essentials of TH synthesis, 

TH receptor (TR)-mediated signalling, and non-classical TH actions. 

 

1.9.1 TH synthesis  

The thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), are widely 

thought to operate as chief regulators of energy metabolism (Boelen et al., 2012; 

Johannsen et al., 2012; Kafi et al., 2012). They are synthesized by a fundamentally 

different mechanism than all other endocrine hormones (Figure 16 ). T4 is the 

major secreted form (90%) in blood, which include 4 iodine atoms and long half-life 

(7 days) than T3 (1 day), whereas active T3 is converted from T4 within cells by 

deiodinases (5'-iodinase) mainly in liver and kidney (Molina, 2006; Gu et al., 2007; 

van Beek, 2009). However, T4 exerts a 100 times lower affinity to the thyroid 

hormone receptor (TRs) than T3. The majority of THs (>95%) binds to carrier 

proteins: thyroid-binding globulin (TBG), transthyretin (TTR, or prealbumin), and 

albumin (Gu et al., 2007). Even only 0.3% of T3 and 0.03% of T4 are unbound, they 

metabolically active at the tissue and cellular level (Molina, 2006; Gu et al., 2007; 

van Beek, 2009). However, inactive T3, reverse T3 (rT) which synthesized by 

metabolism of T4, affect as an antagonist to T4 activity (van Beek, 2009). Generally, 

there are three types of deiodinases: I, II, III (D1, D2, D3, respectively), which 

charge the activity of thyroid hormones by removing of specific iodine moieties from 

the precursor molecule T4 (Figure 17 ) (Bianco and Kim, 2006; van Beek, 2009). In 

the tissues, these enzymes can play a role in not only activate, but also inactivate 

thyroid hormones, which depends on whether they act on the phenolic or tyrosyl 

rings of the iodothyronines. D2 deiodinate the active form of thyroid hormone T3 via 

removal of an iodine atom on the outer ring of T4, whereas D3 inactivates T3 and 

exerts as the major inactivating enzyme. D1 is a kinetically inefficient enzyme that 
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activates or inactivates T4 on both rings, but its role in health remains to be further 

investigated (Bianco and Kim, 2006; van Beek, 2009).  

 

 
Figure 16.  Thyroid hormones synthesis   

THs are synthesized in thyroid gland follicular (epithelial) cells. The entire synthesis process calls for 

two essential raw materials (tyrosines and Iodine) and includes three main steps: accumulation raw 

materials, manufacture of hormone by the enzyme thyroid peroxidase (TPO), and release of the free 

hormones into the blood. 

(From http://en.wikipedia.org/wiki/File:Thyroid_hormone_synthesis.png) 

 

For thyroid hormone synthesis a sodium-iodide symporter (NIS), which located in 

the basolateral membrane of follicular epithelial cells, exerts an energy-dependent 

iodide uptake effort (van Beek, 2009). During the uptake process, the glycoprotein 

thyroglobulin (TG), a large complex protein which contains several tyrosine 

residues and released by the endothelial cells in a TSH-dependent manner, 

functions as producing matrix for TH-generation and account for the main part of 

the colloid at the same time (van Beek, 2009; Brent, 2012; Warner and Mittag, 

2012). In the lumen, iodide is oxydidated to iodine by thyroid peroxidase (TPO), an 
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enzyme called thyroid peroxidase which also made with the thyroid epithelial cells 

released into the colloid within the follicle. Hydrogen Peroxide (H2O2), which 

regenerated in active follicular cells by thyroid oxidase type 1 and 2 contingent on 

calcium availability and hydrogenated nitrogen amino-adenine-dinucleotide 

phosphate (NADPH), play a very role in this chemical transformation (van Beek, 

2009; Brent, 2012). Then with the catalytic effect of TPO, binding with one or two of 

the transformed iodide atom produces monoiodotyrosine (MIT, T1) or 

diiodotyrosine (DIT, T2), which are combined to create the finally hormones forms: 

triiodothyronine = T3 (DIT + MIT) or tetraiodothyrosine = T4 (DIT + DIT). Finally, the 

thyroid hormones are stored in the colloid and remain as a part of thyroglobulin until 

the thyroid is ready to secrete them into blood from thyroglobulin under the 

stimulation of TSH (van Beek, 2009; Brent, 2012). The THs synthesis process is 

strictly regulated by the HPT-axis (Figure 18 ).  

 
Figure 17. Reactions catalyzed by specific deiodina se isoforms 

(From http://en.wikipedia.org/wiki/Iodothyronine_deiodinase) 

 

Thyroid hormones primarily exert effects to all cells in our body. They mainly play a 

very essential role in stimulating whole body metabolism, which appears to lead, at 
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least partly, increase oxygen consumption and ATP hydrolysis rate. In addition, THs 

are essential for several tissue growths, differentiation and development, such as, 

bone, subcutaneous tissues. Moreover, except effects mentioned above, THs on 

cardiovascular, central nervous system, reproductive system has also been well 

known. 

 
Figure 18. Regulation of thyroid hormones synthesis  process     

Thyroid stimulating hormone (TSH) is the chief stimulator of T3 and T4 synthesis (see Figure 15 ) 

via by interacting with thyroid epithelial cells through specific membrane receptors (TSH-R). Instead, 

both pituitary and intracutaneous TSH production is regulated by TRH, which is synthesized in the 

paraventricular nucleus of the hypothalamus, and also in human skin epithelium (Bodo et al., 2010; 

Gaspar et al., 2010; Paus, 2010). In turn, both T3 and T4 negatively reduce both TSH and TRH 

secretion. T3/T4 also inhibits TSH expression in human skin (Bodo et al., 2010). If T3 and T4 

synthesis is reduced, TSH and TRH synthesis will increase, which in turn is inhibited by increasing 

TH serum level, thus creating effective feedback loops.                                                 

(TRH: thyreotropin releasing hormone, TSH: thyreotropin or thyroid stimulating hormone, T3: 

triiodothyronine, T4 = thyroxine)  

 

1.9.2 Classical and non-classical signalling of thy roid hormones   
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Thyroid hormones primarily exert not only genomic effects but also non-genomic 

action (Davis et al., 2008). For their genomic action, THs enter cells through 

membrane transfer proteins (or transporter) and then further move inside the 

nucleus to bind to thyroid hormone receptors (TRs) (Figure 19A ), thus creating an 

active TH-TR complex with high affinity and specificity (85% T3, 15% T4) in a 

dimeric form with the retinoid-x-receptor (van Beek, 2009). There are four isoforms 

of thyroid hormones receptor: TR-α1, TR-α2, TR-β1 and TR-β2. However, only 

three of them (TR-α1, TR-β1 and TR-β2) are able to bind thyroid hormones, while 

TR-α2 may have TH-inhibitory functions by binding T3/T4 without transmitting a 

signal (Cheng et al., 2010; Boelen et al., 2012; Brent, 2012; Burris et al., 2012).  

TRs belong to the large family of nuclear hormone receptor that effect as specific 

consequence of DNA associated with a couple of co-promoters and act by 

stimulating downstream specific gene transcription (thyroid hormone response 

elements, TRE) (Moore and Guy, 2005; Dittrich et al., 2011) (Figure 19 ). In the 

absence of THs, TR bind DNA usually result in inhibiting gene transcription.  

 

In all tissues these transcription-modulatory effects exert function in cellular 

metabolism: oxygen consumption, heat generation, protein synthesis and 

degradation. Furthermore, THs are essential in several developmental processes, 

especially in amphibian metamorphosis (Paris et al., 2008; van Beek, 2009). 

Moreover, THs might play an important role in evolution, since many of the 

thyroid-associated gene encoding proteins, such as TR, TPO, TRH, TSH, 

sodium-iodide symporter (NIS) and deiodinases, were detected in amphibians, 

therefore were evolutionary preserved (Paris et al., 2008; van Beek, 2009).  
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Figure 19. Thyroid hormone receptor (TR) structure and nuclear action 

(A) Diagram of the primary structure of the TR subtypes; (B) mechanism of TR transcriptional 

control. TR forms a heterodimer complex with RXR that recognizes specific TREs.  

(AF: Activation function; LBD: Ligand binding domain; NTD: Amino-terminal transactivation domain; 

TRE: Thyroid hormone response elements)  

(From Moore and Guy, 2005 Image No 2). 

 

Besides the classical (“genomic”) actions of TH described above, T3/T4 also exert 

non-genomic actions in many cell types during the multiple physiological processes 

by TR-independent, membrane-associated pathway (Figure 20 ). The non-genomic 

action of T3/T4 mainly include membrane Ca2+-ATPase activity (Davis et al., 1983), 

Na, K-ATPase activity (Lei et al., 2003), angiogenesis (Luidens et al., 2009), cancer 

cell proliferation (Davis et al., 2006), initiation of transcription of hypoxia-inducible 

transcription factor-1 gene (HIF-1 gene) (Bhargava et al., 2009; Cheng et al., 2010; 

Moeller and Broecker-Preuss, 2011; Vicinanza et al., 2012).  
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Figure 20. Nongenomic actions of thyroid hormones  

(avß3: Integrin avß3; ER: Estrogen receptor; ER: Estrogen receptor; ERK 1/2: 

Extracellular-signal-regulated kinases 1/2; GLUT1: Glucose transporter-1; MAPK: 

Mitogen-activated protein kinases; NHE: Na/H exchanger; PI3K: phosphatidylinositide 3-kinases; 

PKC: Protein kinase C; PLC: Phospholipase C; STAT: Signal transducer and activator of 

transcription; TR: thyroid hormone receptor)  

(From Cheng et al., 2010 Image No 5) 

 

1.10 Current use of T4 in clinical medicine 

 

T4 is one of the most widely used hormones in clinical medicine, especially for 

treating TH deficiency (hypothyroidism). In addition, it is also available for treatment 

or prevention of euthyroid goiter, congenital hypothyroidism, myxedema coma or 

stupor and TSH suppression in well-differentiated thyroid cancers and thyroid 

nodules (Grozinsky-Glasberg et al., 2006; Shoemaker et al., 2012). Since T4 can 
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easily be digested and absorbed by gut and is metabolised more slowly than T3, it 

has normally given by oral and just only once daily administration (75-200 

microgram Levothyroxine) (De Leo et al., 2000; Pollock et al., 2001; Vaisman et al., 

2001).  

 

Levothyroxine is a pharmaceutical preparation of physiological thyroxine (T4), 

which is metabolised more slowly than T3 and therefore normally only requires 

once-daily administration, and typically used for treat hypothyroidism 

(Grozinsky-Glasberg et al., 2006; Vaidya and Pearce, 2008). Even though some 

patients feel better on desiccated, natural THs than when biosynthetic THs are 

used. Unfortunately, there is no convincing objective evidence yet to support this 

claim (Grozinsky-Glasberg et al., 2006).  

 

Since T4 is the clinically most-used TH and would thus be available for immediate 

clinical testing in a wound healing trial, and had already been shown by us to 

modulate human skin, skin appendage, and HF epithelial stem cell functions in 

organ culture (van Beek et al., 2008; Tiede et al., 2010), this thesis project entirely 

focused on testing the effects of T4 on human skin wound healing in vitro.  

 

1.11 Working hypothesis 

 

Specifically, we hypothesized that T4 may promote human skin wound healing and 

that this hormone would be particularly interesting for wound healing management, 

since it is not only FDA-approved and inexpensive, but also very well-known in its 

toxicology and can be applied both systemically and topically (Safer et al., 2001; 

Bach-Huynh et al., 2009; Hennessey et al., 2010; Colucci et al., 2011).  

 

1.12 Questions addressed 
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To test this working hypothesis, we have studied in a newly developed 

full-thickness wounded human skin organ culture assay (see below, Figure 21 ) 

whether and how T4 impacts under serum-free conditions on reepithelialization, 

angiogenesis, and mast cells in experimentally wounded human skin in situ. 
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2 2 2 2 Materials and Materials and Materials and Materials and MethodsMethodsMethodsMethods    

2.1 Materials   

2.1.1 Human skin samples and ethics approval  

Human scalp or corporal skin samples were obtained anonymously from patients 

undergoing plastic or reconstructive surgery with informed consent and Institutional 

Research Ethics Committee permission (University of Luebeck, license 

Aktenzeichen: 06-109) and according to Helsinki Declaration principles.  

 

Our study included skin samples from 6 patients aged 26-67 years (average 52.7 

years). The profile of each patient is listed in Table 4 . Since, under the applicable 

ethics license, sample collection had to be done in anonymized form, only age, sex 

and skin sample location were known (thyroid status and medication unknown). In 

addition, we also visually examined the skin for macroscopic indications of tissue 

decomposition. Only good quality skin samples were chosen for organ culture. 

Table 4.  Characteristics of patients included in this study 

Patient Number Age (years) Sex Location 

Patient 1a 67 Female Temporal 

Patient 2a 42 Female Breast 

Patient 3a 59 Female Forearm 

Patient 4b 61 Female Middle face 

Patient 5b 61 Female Temporal 

Patient 6b 26 Male Buttock 

a: used for T4 experiment analysis; b: used for inhibitory bFGF antibody treatment experiments. 

 

2.1.2 Antibodies, chemicals, buffers, kits, equipme nt 

Table 5  and 6 lists the primary and secondary antibodies that were used for 

immunohistochemistry/immunofluoresence studies (see below). Table 7  

summarizes the reagents employed and the respective vendor, while Table 8  lists 

the buffers that were used, Table 9  the utilized kits, Table 10  organ culture 
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reagents, and Table 11  the equipment that was employed 

Table 5.  Primary  antibodies used for immunohistology in this study    

Name Host Dilution Method Source Positive control Clone 

MTCO1 Mouse 1:50 DAB Mitosciences, 

Eugene, OR, 

USA 

Skin epidermis (Lu et al., 2007; 

Poeggeler et al., 2010; Knuever 

et al., 2012)  

1D6E1A8 

Keratin 6 Mouse 1:10 Indirect IF PROGEN, 

Heidelberg, 

Germany 

Suprabasal layers of the ORS; 

suprabasal layers of wounded 

skin (van Beek et al., 2008) 

Ks6.KA12 

Keratin 15 Mouse 1:100 TSA Chemicon, MA, 

USA 

Scalp skin (Tiede et al., 2010) LNK15 

VEGF Rabbit 1:500 Indirect IF Abcam, 

Cambridge, UK 

Skin epidermis (Brenner et al., 

2009)  

ab46154 

bFGF Mouse 1:50 Indirect IF Abcam, 

Cambridge, UK 

Skin epidermis (Brenner et al., 

2009) 

ab181 

PCAM(CD31) Mouse 1:30 Indirect IF Dako, Glosturp, 

Denmark 

Dermal microvessel 

(Mecklenburg et al., 2000) 

M0823 

FGFR1 Mouse  1:100 Indirect IF Abcam, 

Cambridge, UK 

Skin epidermis (Brenner et al., 

2009) 

ab829 

Cortactin  Mouse 1:100 Indirect 

IF 

Millipore, 

Temecula, CA 

lamellopodia of migrating 

keratinocytes (Ceccarelli et al., 

2007; Gendronneau et al., 2008)  

4F11 

C-kit (CD117) Rabbit 1:1000 TSA Cell Marque, 

Rocklin, CA 

Hair follicle CTS (Sugawara et 

al., 2012) 

YR145 

Ki67 Mouse 1:100 Indirect 

IF 

Dako proliferating hair 

matrix and 

epidermal  

keratinocytes of normal human 

skin (Bodo et al., 2007)  

MIB-1 
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MTCO1: Cytochrome c oxidase 1; DAB: Diaminobenzidine; IF: Immunofluorescence; TSA: 

Tyramide Signal Amplification; VEGF: Vascular endothelial growth factor; bFGF: Basic fibroblast 

growth factor; PECAM: Platelet endothelial cell adhesion molecule; FGFR1: Fibroblast growth factor 

receptor1; VEGFR: Vascular endothelial growth factor receptor. 

 

Table 6.  Secondary antibodies used for immunohistology in th is study  

Name Conjugated with Dilution Company 

Goat anti-mouse biotin 1:200 Beckmann Coulter 

Goat anti-mouse FITC 1:200 Jackson ImmunoResearch 

Goat anti-mouse Rhodamin 1:200 Jackson ImmunoResearch 

Goat anti-rabbit FITC 1:200 Jackson ImmunoResearch 

 

Table 7. Chemicals  

Name  Company 

Aceton Roth 

Alcohol Merck 

Antibody diluent Dako 

Antibody diluent DCS 

DAPI (4',6-diamidino-2-phenylindole) Roche 

Diaminobenzidine (DAB) Vector 

Eosin E Sigma 

Endogenous peroxidase Merck 

Eukitt Sigma 

Ethanol (100 %) Roth 

Foetal calf serum Gold PAA Laboratories GmbH 

Fluoromount-G Southern Biotech 

Glacial ethanoic acid Roth 

Goat normal serum Dako 

Hydrogenperoxide Merck 

KH2PO4 Merck 



Materials and Methods 

55 

Light green Fluka 

Mayer’s Haemalaun Merck 

Mounting medium Faramount Dako 

Mounting medium Flouromount-G Southern Biotec 

Na2HPO4 Roth 

N,N-dimethylformamide Sigma 

Naphtol-ASD chloroacetate Sigma 

Paraformaldehyde Merck 

Pararosaniline Merck 

Potassium dihydrogen phosphate Merck 

Shandon Cryomatrix Thermo 

Sodium chloride (NaCl) J.T. Bakker 

Sodium dihydrogen phosphate Merck 

Sodium dihydrogen phosphate monohydrate Merck 

Sodium nitrit Merck 

Sörensen A Roth 

Sörensen B Merck 

TdT(Terminal dioxynucleotidyltransferase)-Enzym Qbiogene 

Toluidine blue O Sigma 

Tris-HCl Roth 

Triton X Roth 

Trizma Base Sigma 

Trypsin/EDTA Gibco™(Invitrogen) 

Tween 20 Merck 

Xylol Merck 
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Table 8. Buffers # 

8.0g sodium chloride  

1.8g sodium dihydrogen phosphate monohydrate 

PBS (pH = 7.2) 

Phosphate buffered saline 

Aqua dest. ad 1000ml 

6.1g Trizma Base 

8.8g sodium chloride 

TBS (pH = 7.6) 

Tris buffered saline 

Aqua dest. ad 1000ml 

15.76g Tris-HCl 

8.766g sodium chloride 

500µl Tween 20 

TNT (pH = 7.5) 

Tris buffered saline triton-x added 

Aqua dest. ad 1000ml 

# Sodium hydroxid (NaOH) and hydrogen chloride (HCl) were used to adjust the pH. 

 

Table 9. Staining Kits 

Name Company 

Alkaline Phosphatase (AP) Vectastain 

Apop Tag® Fluorescein In Situ Apoptosis Detection Kit Millipore 

Avidin/Biotin Blocking Kit Vector 

Fast Red Tablets Sigma 

TSA™ Fluorescein System Perkin Elmer LAS, Inc. 

TSA™ Tetramethylrhodamine System Perkin Elmer LAS, Inc. 

 

 

Table 10. Organ culture reagents 

Name Company 

bFGF inhibitory antibody R&D systems 

Fetal bovine serum (FBS) PAA Laboratories 

Hydrocortisone Sigma 
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Insulin Sigma 

L-glutamine Gibco™ (Invitrogen) Corporation 

PBS (sterile) PAA Laboratories GmbH 

Penicillin G/ streptomycin Gibco™ (Invitrogen) Corporation 

T3 Sigma 

T4 Sigma 

William´s E Medium (2,2 g/l NaHCO3) Biochrom KG 

William´s E Medium (2.2g/l NaHCO3) Biochrom 

KG, supplemented with:  

L-glutamine (200mM) 

Penicillin G/ streptomycin (1 %) 

insulin (10mg/ml) 

William’s E culture medium 

hydrocortisone (0.05 mg/ml) 

 

2.1.5 Table 11. Equipment    

Name  Company 

Bright field microscope Krüss 

Cell culture incubator Autoflow Nuaire™ 

Centrifuge 5810 Eppendorf 

Cryostat Leika 

Fluorescence microscope (8000) Biozero Keyence  

Laminar airflow ScanLaf 

Neubauer counting chamber Brand 

pH meter Knick 

Pipettes  Eppendorf 

Safety cabinet Clean Air Thermo 

Scale Kern EW 

Vortexer IKA®MS3 basic 
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2.2 Methods 

 

2.2.1 Human skin wound healing organ culture model 

The human skin wound healing assay modified the previously published  

“punch-in-a-punch” design of Moll (Moll et al., 1998) and our established 

full-thickness human skin organ culture assay (Lu et al., 2007; Bodo et al., 2010; 

Gaspar et al., 2010; Poeggeler et al., 2010). The notable difference to the Moll et al. 

assay was that hair-bearing, full-thickness adult human skin (including 

subcutaneous fat) was used, which cultured under serum-free conditions in 

William’s E medium (instead of DMEM) supplemented with 2mmol/liter, L-glutamine, 

10 ng/ml hydrocortisone, 10 µg/ml insulin and antibiotics (Philpott et al., 1990; Lu et 

al., 2007). Also, a number of (immuno-)histomorphometric read-out parameters for 

the quantitative assessment of defined wound healing aspects was newly 

established (see below).  

 

In brief, first, 2 mm punches were made in the obtained skin samples. Then, a 

wider (4 mm) punch was set in the surrounding skin so as to obtain “punch-within.a 

punch” skin fragments (Figure 21 ). Samples were frozen immediately for analysis 

(day 0) or transferred to six-well plates containing supplemented William’s E 

medium (Lu et al., 2007).  
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Figure 21.  Schematic diagram of wounded human skin organ cultu re model (details, see 

Section 3.1 Figure 25)   

(The black cartoon (lefthand) was modified from http://www.answers.com/topic/skin-biopsy).  

 

Each well contained 2 skin punches in 3 ml medium and the punch surface 

continuously faced into the air while floating in medium (air-liquid interphase 

design). After 24 hours (day 1), William’s E culture medium (used as a vehicle 

control) or the test agents T4 (10nM, 100nM or 1000nM) were added (Figure 22 ). 

These concentrations were selected based on our previous in vitro studies, which 

had shown that under the different concentration (10nM, 100nM, 1000nM), T4 

modulate multiple hair biology parameters: up-regulates hair matrix keratinocytes 

proliferation, prolongs the duration of the hair growth phase (anagen) in vitro, 

increase thyroid hormone-responsive keratins cytokeratin 6 (CK6) and 14 (CK14) 

6 well plate 

Serum-free  William‘s E  
+ insulin + hydrocortisone 
Lu et al. Exp Dermatol 2007 

4 mm 

2 mm 

4 mm 

2 mm 

6 mm longitudinal  
section (H&E) 

outer epithelial tongue  
Inner epithelial tongue  
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expression and stimulate intrafollicular melanin synthesis (van Beek et al., 2008).  

 

 

Figure 22.  Organ culture protocol of this study  

 

The incubation medium change and sample freeze was performed following the 

culture protocol and incubation medium was changed and randomly selected skin 

punches from each experimental condition were frozen at day 3, 6 as summarized 

in Figure 22 . Human skin fragments were embedded in Shandon cryomatrix 

(Thermo Fisher Scientific; Waltham, MA, U.S.A.) before cutting longitudinal 6 µm 

cryoslides for further analyses. Normally, we cut all the samples under -21°C to 

-23°C, whose temperature choose dependent on the am ount of fat tissue in the 

wound healing punches, and afterwards the slides stored at -80°C refrigerator 

again until staining procedures. Organ culture and snap freezing were performed 

under standardized, sterile conditions in order to minimize any confounding 

influences on the samples. 

 

2.2.2 Histochemistry 

2.2.2.1 Haematoxylin and eosin staining 

Routine histology was performed by staining with Mayer’s Haemalaun (Merck, 

Darmstadt, Germany) and 0.1 % eosin E (Sigma-Aldrich, St Louis, MO, U.S.A.). 
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This H&E staining was used for the general structure of wound tongue, evaluation 

the reepithelialization of the area and the length of the wound tongue.  

 

Firstly, all the slides were dried for 10 minutes at room temperature and then fixed 

them in Acton for 10 minutes at -20 °C. After fixat ion, the slides washed in distilled 

water 1 to 3 minutes and then directly stained with Haematoxylin for 10-15 minutes. 

Next steps wash the stained slide in running tap water for around 15 minutes and 

stained in eosin in 1 minute. Next, the slides were differentiated in sequential 

solutions (70% alcohol-96% alcohol-96% alcohol-100% alcohol -100% 

alcohol-Xylol I-Xylol II) for a few times and Xylol II for 10 minutes. Finally, the slides 

were very carefully mounted with Eukitt® solution and then dried them until ready 

to use (Note all the procedures were done under a laminar airflow).  

 

2.2.2.2 Mast cell histochemistry 1: Toluidine blue 

For detection of MCs and their characteristic metachromatic granules, one 

histochemical staining method, toluidine blue was performed on 6 µm cryoslides as 

previously described (Ito et al., 2010; Sugawara et al., 2012).  

 

Toluidine blue stock solution (1 g Toluidine blue O and 100ml 70% alcohol, and mix 

well to dissolve) and sodium chloride (1%: 0.5 g sodium chloride dissolves in 50 ml 

distilled water, and adjusted ph value to 2-2.5) were prepared firstly and then 

diluted to working solution (5 ml Toluidine blue stock solution and 45 ml 1% Sodium 

chloride dissolved and then adjust pH value around 2.3). The toluidine blue working 

solution should be made freshly before use. Cryoslides were dried firstly 10 

minutes at room temperature, washed in distilled water 2 minutes and then stained 

in toluidine blue working solution 1 minute. Next, slides were rinsed in distilled 

water 3 to 4 times and dehydrate quickly through (70% alcohol-96% alcohol-96% 

alcohol-100% alcohol -100% alcohol-Xylol I-Xylol II) and finally mounted with 
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Eukitt® medium. 

 

2.2.2.3 Mast cell histochemistry 2: Leder esterase 

Leder esterase histochemistry, also known as chloroacetate esterase reaction, 

depends on the activity of an enzyme found in mast cells and granulocytes that is 

capable of hydrolyzing aliphatic and aromatic bonds (Leder, 1979). Leder esterase 

mast cell histochemistry is an excellent, very sensitive marker for staining human 

skin mast cells (Ito et al., 2010; Sugawara et al., 2012).   

 

For Leder esterase staining, cryoslides were dried 10 minutes at room temperature 

and then fixed in 1% paraformaldehyde for 10 minutes at room temperate. After the 

fixation, the slides washed in distilled water around three times, 5 minutes per time 

and then stained in the incubating medium (more detail see below) for 40 minutes 

and washed them in running tap water 5 minutes. Next, slides were counterstained 

with hematoxylin for 30 seconds to 1.5 minutes and then washed in running tap 

water 5 minutes again, differentiated in ascending sequential solutions (70% 

alcohol-96% alcohol-96% alcohol-100% alcohol -100% alcohol-Xylol I-Xylol II) for a 

few times and Xylol II for 10 minutes. Finally, all the slides were mounted with Eukitt. 

Incubating medium was prepared immediately before use by our previously 

protocol: naphthol-ASD-chloroacetate (10 mg; Sigma Aldrich), N, 

N-dimethylformamide (1 ml; Sigma Aldrich), Sörensen working buffer (35ml, 

Sörensen A: Na2HPO4; water free, Roth, Karlsruhe, Germany; Sörensen B: 

KH2PO4; Merck, Darmstadt, Germany), and nitrosylated pararosaniline 

(pararosaniline and sodium nitrite; Merck, Darmstadt, Germany) (Ito et al., 2010). 

All the staining procedure should be mandatorily done under the bench, since the 

above materials used for this staining are very harmful to our health. 

 

2.2.3 Immunohistochemistry (IHC) 
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MTCO I: An indirect marker for screening energy met abolism  

For the immunodetection of MTCO1 by IHC, as the previously described 

peroxidase-based avidin-biotin complex immunostaining method with a monoclonal 

antibody that specifically recognizes MTCO1 (mitochondrial encoded cytochrome c 

oxidase I), a multi-chain transmembrane protein located in the inner membrane of 

mitochondria and an indirect marker for screening energy metabolism, was 

employed (Bodo et al., 2009; Bodo et al., 2010; Poeggeler et al., 2010; Knuever et 

al., 2012). After fixation in acetone, blocking of endogenous peroxidase (3% H2O2) 

and pre-incubation with goat serum [10% in Tris-buffered saline; Dako], cryoslides 

were incubated with anti-MTCO1 antibody (Table 5 ). Next, cryoslides were stained 

with biotinylated goat anti-mouse IgG (1:200 for 45 minutes at room temperature; 

Beckmann Coulter, Merseille, France) as secondary antibody and then performed 

with an avidin-biotin kit (Vector), followed by DAB substrate-chromogen system 

(Vector) (van Beek et al., 2008). Counter-staining was performed with Mayer’s 

hematoxylin. 

 

2.2.4 Immunofluorescence (IF)  

For the detection of indirect immunofluorescence, the previously described 

methods were used (Lu et al., 2007; Bodo et al., 2009; Bodo et al., 2010). 

Cryoslides were fixed in acetone for 10 minutes at -20 °C, washed in Tris buffered 

saline (TBS), pH 7.6 and incubated at 4°C over nigh t with primary antibody (Table 

5) diluted in DAKO Antibody Diluents (DAKO North America, Carpinteria, CA). 

Slides were washed 3 times in TBS, then incubated at 4 °C for overnight with 

secondary antibody (Which secondary antibody chooses was depended on the 

primary antibody host and availability in our secondary antibody list, normally FITC 

(fluorescein isothiocyanate) or Rhodamine conjugated secondary antibody were 

used) (Table 6 ) diluted in DAKO Antibody Diluent, then washed 3 times in TBS and 

incubated in 0.1 µg/ml 4′, 6-Diamidino-2-phenylindol (DAPI) (Roche Diagnostics, 
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Risch, Switzerland) for 5 minutes. After washing 3 times in TBS, slides were 

embedded in Fluoromount-G (Southern Biotech, Birmingham, AL, USA). Negative 

controls were performed by following the above protocol, but incubating samples 

without primary antibody. Absence and presence of immunoreactive cells in 

well-described human skin locations served as additional internal negative or 

positive controls. All samples were photographed for analysis with a Keyence 

Biozero-8000 Microscope (Keyence Corporation, Higashi-Nakajima, Osaka, 

Japan), and the excitation light channel chooses to depend on which secondary 

antibody used. Since all immunostaining experiments were conducted with 

appropriate positive and negative controls for each investigated parameter, the only 

specific IR (beyond background) was evaluated in the current study. 

 

2.2.4.1 Ki67/TUNEL: Markers for proliferating and a poptotic cells 

For the detection of proliferating and apoptotic cells in this system, Ki67/TUNEL 

double-immunofluorescence was performed as described previously (van Beek et 

al., 2008; Bodo et al., 2009). For the quantitative evaluation and comparison of the 

double-staining, DAPI-, Ki-67-, or TUNEL-positive cells were counted in clearly 

defined area indicated by reference (the newly formed epidermal tissue was 

addressed as a new “epithelial tongue” [ET], for details see Figure 23 ) (Ramot et 

al., 2011). The number of DAPI-positive cells served as the “total number of cells,” 

from which the percentage of Ki-67-positive and/or TUNEL-positive cells in the ET 

was calculated to enable comparison between vehicle and test groups (Ramot et 

al., 2011).  

 

2.2.4.2 Cortactin: A marker for keratinocyte migrat ion 

Cell migration is achieved through dynamic reorganization of the actin cytoskeleton 

(Mitchison and Cramer, 1996; Pollard and Borisy, 2003; Ceccarelli et al., 2007). 

Cortactin is a diffusely expressed actin-binding protein originally demonstrated as a 
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substrate for Src kinase (Ceccarelli et al., 2007). Cortactin, distributed in 

lamellipodia of migrating keratinocytes, contains an actin-binding domain, which 

have been developed as a marker of migration keratinocytes (Ceccarelli et al., 

2007; Gendronneau et al., 2008). Therefore, in this study, cortactin is used as a 

marker for migration, using the described general immunofluorescence protocol 

(see also Table 5 ) (Ceccarelli et al., 2007; Gendronneau et al., 2008). 

 

2.2.4.3 Cytokeratin 6: A marker for wounded and hyp erproliferating 

epithelium 

Cytoeratin 6 (CK6) is a member of the type II keratin family, which is usually 

expressed together with CK16 and/or CK17, is the inducible expression in 

response to stressful stimuli such as wounding (Ramot et al., 2009b; Windoffer et 

al., 2011). Also, CK6 is induced early on in wound-proximal keratinocytes and 

maintained during reepithelialization (Wojcik et al., 2000; Rotty and Coulombe, 

2012). CK6 is also constitutively expressed in the HF’s ORS (van Beek et al., 2008; 

Ramot et al., 2009b). It has recently been shown that genetic ablation of CK6 

results in enhanced keratinocyte migration, which is functionally important in wound 

repair (Wojcik et al., 2000; Rotty and Coulombe, 2012). CK6 negatively modulates 

Src kinase activity and the migratory potential of skin keratinocytes during wound 

repair process by a cultured skin explants model (Wojcik et al., 2000; Rotty and 

Coulombe, 2012). Here, CK6 was used as a marker for wound healing-associated 

epithelial differentiation, using our established immunofluorescence protocol (van 

Beek et al., 2008) (see also Table 5 ). 

 

2.2.4.4 CD31: A marker for endothelial cells 

CD31, also known as platelet endothelial cell adhesion molecule-1 (PECAM-1), is 

found on the surface of many cell populations, e.g. endothelial cell, which have 

been widely accepted as a marker of angiogenesis (Mecklenburg et al., 2000; 
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Baluk and McDonald, 2008). Therefore, we used CD31 as a marker of 

angiogenesis during the wound repair, and the immunostaining followed the 

immunofluorescence protocol described above (see also Table 5 ).  

 

2.2.4.5 bFGF/VEGF: Growth factors for promoting  angiogenesis  

During wound healing of normal tissue, both bFGF and VEGF resulted in the 

angiogenesis process: it mediated the formation of the new vessel (Przybylski, 

2009). Moreover, they have been demonstrated that they, at least in part, are 

involved in TH-induced angiogenesis (Davis et al., 2009). Here, we immunostained 

these two antigens to obtain first mechanistic insights into how T4 may modulate 

angiogenesis in our model system. The immunostaining protocol was run as 

described above (see also Table 5 ). 

 

2.2.4.6 FGFR1: bFGF receptor 

FGFR1 is a receptor tyrosine kinase whose ligands are specific members of the 

fibroblast growth factor family such as bFGF (FGF-2). It has been demonstrated 

that the proangiogenic actions of T4 may be transduced by mitogen-activated 

protein kinase, specifically, extracellular regulated kinase 1/2 (ERK1/2) and this 

effect mediated at least in part via up regulating FGFR1 expression (Davis et al., 

2009; Luidens et al., 2009). Thus, to further investigate the mechanism underlying 

the proangiogenic activity of T4, FGFR1 immunostaining was also performed, 

following the protocol described above (see also Table 5 ). 

 

2.2.5 Tyramide Signal Amplification (TSA)-Immunoflu orescence 

To investigate keratin 15 (CK15) and C-Kit expression, we used the highly sensitive 

tyramide signal amplification (TSA) staining method (TSA kit, Perkin Elmer, Boston, 

USA) (Ito et al., 2010; Sugawara et al., 2012). Firstly, the slides were dried 10 

minutes at room temperature and then fixed in acetone 10 minutes at -20 °C. After 
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fixation, slides were washed with TNT buffer and blocked endogenous peroxidase 

by (3% in PBS, 15 minutes, room temperature), which followed by treatment with 

avidin and biotin (each for 15 minutes). After pre-incubated for 30 minutes with 5% 

goat normal serum in TNT buffer, the slides were incubated with the primary 

antibody at indicated diluents concentration (more detail see Table 5 ) in TNB (Tris 

HCl+NaCl+Casein) supplemented with 2% normal rabbit serum, overnight at 4 °C. 

On the following day, a secondary biotinylated antibody was incubated to the slides 

at a dilution of 1:200 in TNB with 2% normal rabbit serum for 45 minutes at room 

temperature, and then incubated with the streptavidin conjugated horseradish 

peroxidase (TSA kit, Perkin Elmer, Boston, USA) diluted 1:100 in TNB for 30 

minutes at room temperature. Next, FITC/Rhodamine-tyramide amplification 

reagent 1:50 in amplification diluent was applied and then counterstained with 

DAPI for 1 minute and mounted with Fluoromount®.  

 

2.2.5.1 Cytokeratin 15: A marker for epithelial ste m cells and their immediate 

progeny 

Cytokeratin 15 (CK15), a member of type I keratin family group is restricted to 

immature epithelial progenitor cells in the epidermis and HF, and is prominently 

expressed by human HF epithelial stem cells in the bulge and their immediate 

progeny (transit amplifying cells (Cotsarelis, 2006; Kloepper et al., 2008; Tiede et 

al., 2010). Here CK15 was investigated to analyse whether in wound tongue area, 

the number of CK15 positive cells was increased or not in T4 treated groups, and 

the staining protocol used was described above (see also Table 5 ). 

 

2.2.5.2 C-kit (CD117): An intra-mesenchymal marker for mast cell progenitor 

cells  

C-Kit, also known as CD117 and mast/stem cell growth factor receptor, is 

expressed not only mast cells, but also on hematopoietic progenitor cells, 
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melanocytes, cardiac stem cells and many sarcomas and carcinomas (Ito et al., 

2010; Sugawara et al., 2012). In human skin mesenchyme, C-Kit is an excellent 

marker for identifying both immature and differentiated connective tissue type mast 

cells, which visualizes many more mast cells than can be detected by mast cell 

histochemistry (Weller et al., 2006; Fuehrer et al., 2009; Ito et al., 2010; Rodewald 

and Feyerabend, 2012; Sugawara et al., 2012). The TSA-IF technique described 

above (More details: see Table 5 ) and previously reported by our lab (Ito et al., 

2010; Sugawara et al., 2012) was used.  

 

2.3. Microscopy 

All skin sections were photographed for analysis with a Keyence Biozero-8000 

Microscope (Keyence Corporation, Higashi-Nakajima, Osaka, Japan), which was 

used for both fluorescence and light microscopy. This portable fluorescence 

microscope permits to generate high-quality photos without any other auxiliary 

equipment and does not require a dark room. 

 

2.4 Quantitative (immuno-) histomorphometry 

2.4.1 Assessment of reepithelialization 

For quantitative of reepithelialization, the H&E staining of epithelial tongue were 

analyzed, both sides (outer and inner epithelial tongue), defined, reference 

indicated reference areas were analyzed, which based on the visible edge of the 

stratum corneum where the punch had been placed and the corresponding region 

in the basal layer of the epithelial tongue [ET] (See Figure 23  for details). ImageJ 

software (National Institutes of Health, Bethesda, MD) was used for evaluation. 
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Figure 23.  Analysis of reepithelialization in this model   

Epithelial tongue (ET) area was measured in the reference area marked with blacked dotted line 

and epithelial tongue (ET) length was measured marked with the blue line. 

 

2.4.2 Assessment of apoptotic/proliferating cells: Ki-67/TUNEL 

Based on our previously published quantitative immunomorphometrical techniques 

(Gaspar et al., 2010; Holub et al., 2012), the number of apoptotic (TUNEL) and 

proliferating (Ki-67) cells could be analyzed in the new generated human wound 

epithelial tongue in situ. The numbers of Ki-67 and TUNEL positive cells were 

counted in the ET and then calculated as the percentage to the total number of 

DAPI positive cells in the same ET area. 

 

2.4.3 Assessment of immunoreactivity 

All photos in each read-out parameter were taken at the same exposure time and 

magnification. The staining immunoreactivity (IR) in wound ET area was analysed 

by using the NIH/Image software (Bethesda, Maryland, USA), as described 

previously (Knuever et al., 2012; Sugawara et al., 2012), and then all the values 

were normalised to control as 100%. 

 

2.4.4 Assessment of angiogenesis  

To analyze the angiogenesis process, firstly, we taken 3 visual field (x400) photos 
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per wound punch side as below the dotted-line marked reference area: two visual 

fields next to the wound tongue, one visual field under that two fields far from 

epidermis (200µm) (Figure 24 ). Next, there were three read-out parameters 

investigated in this study, as our previously described methods (Mecklenburg et al., 

2000). 

1. Count the number of CD31+ nucleus/visual field; 

2. Calculate CD31 staining immunoreactivity per visual field followed as above 

(2.4.3); 

3. Count the number of CD31+ lumina/visual field. 

 
Figure 24.  Analysis of angiogenesis in this model   

Yellow arrow: Cross-section of CD31+ blood vessel, recognizable by its central lumen. Whenever 

possible, photos were taken from the reference areas indicated above on both the right and the left 

side of the tissue section.  

 

2.4.5 Assessment of mast cell number and degranulat ion  

By taking photos with a 400 fold magnification, mast cells under the wound tongue 

of wound healing model in situ were counted and classified into two categories: not 

degranulated (lower than five granules) and degranulated (five or more granules), 

as described previously (Ito et al., 2010; Sugawara et al., 2012).   
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2.5 Statistical analysis 

All the data are given as means±SEM (standard error of the mean). For the 

immunohistochemistry, immunofluorescence, and quantitative 

imunohistomorphometry of new ‘tongue’, both sides of area and immunoreactivity 

(IR) were measured in the outer and/or inner tongue (the values obtained for the 

inner and outer wound edges were combined). For each test parameter, 3 to 6 

non-consecutive sections from 3 to 6 different organ-cultured skin fragments 

derived from 3 different patients were analyzed. Data were pooled, since the results 

trends from all three patients were highly comparable. 

 

One-Way ANOVA by appropriate post hoc comparison was used at single time 

points. If the values did not follow a Gaussian distribution, Kruskal-Wallis ANOVA 

test was employed. Statistical analysis was carried out by Graphpad prism 5.01 

(Graph Pad software, Inc., San Diego, CA, USA), and p value <0.05 were regarded 

as significant. 
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3. Results3. Results3. Results3. Results    

    

3.1 Reepithelialization of wounded adult human skin  can be studied and 

quantified under serum-free long-term organ culture  conditions 

 

In this new serum-free organ culture assay of full-thickness wounded adult human 

skin, the expected phenomenon of epithelial sheet movement over a floating skin 

fragment (epiboly) (Stenn, 1981; Brown et al., 1991) was observed already after 1 

day of organ culture: As shown in Figure 25 , a compact rim of epidermal 

keratinocytes formed an “epithelial tongue” (ET) that covered the exposed dermis 

at the inner and outer wound edges. This suggests that serum and its 

epiboly-promoting key ingredient, vitronectin (Brown et al., 1991), are not 

indispensable for epithelial sheet movement, or that wounded human epidermal 

keratinocytes produce this spreading factor themselves (the fact that ET 

enlargement progressed after day 1, renders it unlikely that sufficient vitronectin 

was retained in the tissue after surgery, microdissection and tissue handling).  

 

With progressing culture duration, typical signs of tissue degeneration also became 

apparent, heralded by detachment of the stratum corneum and increasingly 

compacted epidermal keratinocyte nuclei. These degenerative phenomena 

became routinely visible by day 6 (Figure 25 ). Interestingly, however, despite these 

parallel degeneration events in the same skin fragment, our pilot experiment shown 

that the newly formed “epithelial tongue” retained its morphology until day 9 

suggesting a higher viability and more autonomous growth of these cells than the 

epidermal tissue from which it originated. 

 

To quantify the extent of reepithelialization, we used two complementary methods: 

a) measurement of the length of the ET; b) planimetric measurement of the entire 
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ET area of the ET (More details see Figure 23 and 25 ).  

 
Figure 25.  Example of wounded full-thickness human skin fragme nt, punch-in-a-punch 

design  

(a): View from above: (b): longitudinal section. (c-g ): Longitudinal sections through outer wound 

edge (0 and 9 days, H & E). Large arrows in c, d and f indicate the border between native and 

regenerated epithelium (based on the visible edge of the stratum corneum where the punch had 

been placed and the corresponding region in the basal layer of the epithelial tongue [ET]). (f) The 

ET area is demarcated by a dotted black line (e). Small arrows indicate increasingly compacted 

epidermal keratinocyte nuclei. (g) Large arrows indicate detachment of the stratum corneum. 

 

Generally, reepithelialization (ET formation) progressed faster and was more 

pronounced in the outer edge of the wounded skin fragment compared to the inner 

wound edge (Figure 26 ). This suggests that reepithelialization/epiboly conditions in 

freely floating wounded human skin fragments under serum-free conditions are 
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more favorable at the outer wound edge and that ET measurements performed in 

this region are more likely to detect even subtle reepithelialization-promoting or 

-inhibitory effects of test agents than in the inner edge. However, human skin ulcers 

reepithelialization in a centripetal fashion as ulcers typically only has an inner 

wound edge. Therefore, it should be kept in mind that ET formation at the inner 

wound edge of organ-cultured “punch-within-a-punch” human skin fragments 

probably reflects the clinical reality of ulcer reepithelialization more closely than ET 

formation in the skin fragment periphery and is therefore translationally more 

relevant. Thus, if a test agent promotes both inner and outer ET formation, this 

enhances confidence that it may also do so in vivo. Therefore, where not indicated 

otherwise, ET measurements were subsequently performed at both inner and 

outer wound edges .  

 
Figure 26.  Representative picture of the inner and outer wound  edge epithelial tongue 

Scale bars=50µm.  

 

3.2  Thyroxine (T4) promotes reepithelialization an d angiogenesis in 

wounded human skin  
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Next, we asked whether T4, in concentrations that we had previously shown to 

profoundly modulate human HF growth in organ culture (van Beek et al., 2008)  

and that correspond to the T4 dose range that has previously been used in animal 

wound healing studies in vivo (Safer et al., 2005), stimulates reepithelialisation in 

organ-cultured wounded aging human skin. 

 

3.2.1  T4 promotes human skin reepithelialization in situ 

 

Compared to the vehicle control, T4 administration to the serum-free culture 

medium (William’s E medium supplemented with insulin, hydrocortisone, and 

glutamine) significantly stimulated reepithelialization of human skin by day 3 after 

skin wounding (Figure 27 a-d ). Thereafter (day 6), T4 further promoted ET 

elongation (which reflects keratinocyte migration) slightly, even though significance 

was not reached. Instead, the total ET area (i.e. the total mass of regenerated 

epidermis) did not get significantly increase in the T4-treated group while compared 

to vehicle-treated skin fragments (Figure 27 c, d ).   
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Figure 27.  T4 promotes human skin reepithelialization in situ  

(a, b) Haematoxylin and eosin histochemistry overview of wounded human skin fragment. After 3 

days, the regenerated epithelial tongue (ET) areas (blacked dotted line) and length (blue dotted line) 

were significantly greater after treatment with T4 compared to vehicle alone (a-d). Note that ET 

length is taken as an indicator of keratinocyte migration during reepithelialization, while the ET area 

indicates the total mass of regenerated epithelium. Number of independent experiments: n=3-6 (i.e. 

3-6 skin fragments derived from three distinct individuals were analyzed per test/control group). ET 

area and length were measured as indicated (see also Figure 23 ). Data were pooled, since the 

results trends from all three patients were highly comparable. One-Way ANOVA by appropriate post 

hoc comparisons was used and data are represented as Mean±SEM. *p<0.05; **p<0.01. Scale 

bars=50µm.  

 

3.2.2 T4 promotes migration of wounded human kerati nocytes in situ 

 

It is well-recognized that efficient and well-controlled keratinocyte migration is a key 

factor during reepithelialization (Brown et al., 1991; Raja et al., 2007). The 

observed ET length-promoting effects of T4 (Figure 27 ) suggested that T4 
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stimulates keratinocyte migration. Therefore, we attempted to support this concept 

by assessing cortactin immunoreactivity (IR), a sensitive marker of migrating 

keratinocytes (Ceccarelli et al., 2007; Gendronneau et al., 2008). In fact, in a pilot 

experiment (1 patient), T4 up-regulated cortactin IR, demonstrating ectopic 

cortactin-positive domains in keratinocytes at the leading edge of the spreading ET 

(Figure 28 ). Together with the ET length data, this strongly suggests that, initially, 

T4 stimulates keratinocytes migration over the wound edge. 

 
Figure 28.  T4 promotes wounded human skin keratinocytes migrat ion in situ 

Immunofluorescence microscopy for anti-cortactin (red), counterstained with DAPI (blue) of the 

wound margins after 3 days (a, b) and 6 days (c, d ) T4 treatment (Qualitative data from a single 

organ culture, one patient). Red large arrows indicate the ectopic cortactin-positive domains in 

keratinocytes at the leading edge (see also high-magnification: e, f). NC: negative control. Scale 

bars in a-b =50µm, e and f =100µm.  

 

3.2.3 T4 promotes human skin epidermal keratinocyte  proliferation and 

apoptosis in situ  
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To further assess the role of keratinocyte migration versus proliferation/apoptosis 

during ET formation, and the effects of T4 on these parameters, quantitative 

immunohistomorphometry of Ki67+ or terminal deoxynucleotidyl transferase dUTP 

nick end labeling-positive (TUNEL+) cells was performed. This showed a significant 

up-regulation of Ki67+ cells in the ETs of wounded skin fragments that had been 

treated with high dose T4 (100nM, 1000nM) (Figure 29 a, b and c ) at day 3.  

 

However, after this early epithelial repair phase, this stimulatory effect of T4 on 

keratinocyte proliferation in the ET tended to get lost (day 6). During the early repair 

phase, apoptosis in the ET was slightly, but not significantly up-regulated by 

high-dose T4 (Figure 29 a, b and d ), possibly as a result of enhanced tissue 

remodeling during the 3rd phase of wound healing (“proliferation”) (see Figure 6 ).  

These findings may reflect the recognized complexity of T4’s effects on tissue 

remodeling events, namely on the balance between epithelial cell proliferation and 

differentiation (Kress et al., 2009), within the newly regenerated epithelium, and 

further support the concept that the stimulation of keratinocyte migration is an 

important component of the reepithelialization-promoting effects of T4. 
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Figure 29.  T4 stimulates human epidermal keratinocytes prolife ration in situ after wounding      

(a-d) Quantitative double-immunohistomorphometry for proliferating (Ki-67+, red arrows) and 

apoptotic (TUNEL+, green arrows) within the ET (dotted line: reference area=ET). Significantly more 

Ki-67+ cells were seen after 3 days of culture with 100nM or 1000nM T4 treatment, and after 6 days 

with 10 nM T4 (c). A tendency towards more TUNEL+ cells in the ET was seen after 3 days of T4 

treatment (d). Number of independent experiments: n=3 (3-6 skin fragments derived from three 

distinct individuals were analyzed per test/control group; pooled data; one-way ANOVA; 

Mean±SEM). *p<0.05; **p<0.01. DAPI, 4’-6-diamidino-2-phenylindole; TUNEL, terminal 

deoxynucleotidyl transferase dUTP nick end labeling; Scale bar=50µm.  

 

3.2.4 T4 up-regulates expression of the wound heali ng-associated keratin, CK 

6 

 

Next, we assessed whether T4 also impacts on the major wound healing-related 

keratin, CK6 (Ramot et al., 2009a; Ramot et al., 2009b; Windoffer et al., 2011; Rotty 
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and Coulombe, 2012). CK6 is expressed in human epidermis primarily upon 

wounding and under conditions of hyperproliferation, while scattered foci of CK6 

expression can be detected also on normal human epidermis (Ramot et al., 2009a). 

CK6 deletion even functionally impacts on murine skin wound healing in vivo 

(Wojcik et al., 2000) and on murine keratinocyte migration in vitro (scratch assay) 

(Rotty and Coulombe, 2012). Moreover, the promoter region of the CK6 gene 

carries a thyroid hormone-response element (TRE) (Radoja et al., 1997; Wojcik et 

al., 2000), and topical T3 reportedly increases CK6 protein expression in murine 

HFs in vivo (Safer et al., 2005). CK6 IR in the ET was assessed by quantitative 

immunohistophometry. 

 

As shown in (Figure 30a and 30b ), T4 significantly increased CK 6 expression in 

the newly formed ET of wounded human skin. Interestingly, the peak of 

T4-stimulated CK6 IR occurred several days after the proliferation peak (Figure 30 , 

compare with Figure 29 ). Note that even in wounded control skin, epidermal CK6 

expression was strong and widespread. 

 

These findings provide the first evidence that T4 stimulates CK6 protein expression 

in human epidermis in situ, are in line with previous reports that THs stimulate CK6 

expression (Radoja et al., 1997; Safer et al., 2005), and confirm that CK6 is a 

sensitive, proliferation-independent, marker protein for regenerating human skin 

epithelium.  
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Figure 30.  T4 increases expression of the wound healing-associ ated keratin, CK 6 

Cytokeratin 6 (CK6) protein expression within the newly regenerated ET was significantly 

upregulated by high-dose T4 treatment compared to vehicle. Staining intensity was measured in 

dotted line area and normalized vehicle as 100%. Number of independent experiments: n=3 (3-6 

skin fragments derived from three distinct individuals were analyzed per test/control group; pooled 

data; one-way ANOVA; Mean±SEM). **p<0.01; ***p<0.001. CK: Cytokeratin; Scale bars=50µm.  

 

3.2.5 T4 up-regulates expression of the epithelial stem cell-associated 

keratin, CK15 

Successful epithelial repair in the skin depends on the availability and functionality 

of epithelial progenitor cells from which more differentiated epithelium can be 

regenerated (see Introduction: 1.3.6.1). Therefore, we next assessed whether T4 

also stimulated the in situ-protein expression of CK15, which demarcates both 

epithelial stem cells and their immediate progeny (transit amplifying cells), mainly in 
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the HF, but also in the epidermis, namely under wound healing conditions (Ito et al., 

2005; Cotsarelis, 2006; Tiede et al., 2007; Tiede et al., 2009b). This was further 

encouraged by the prior demonstration that THs stimulate CK15 expression in 

human HF epithelial stem cells in situ and in vitro (Tiede et al., 2010).  

CK15 IR in the new formed ET was analyzed by quantitative 

immunohistomorphometry. As shown in Figure 31 , this showed that CK15 IR in the 

basal layer of the ET was significantly higher than in the control group at day 3. 

This striking stimulatory effect was lost by day 6 (Figure 31 ).This finding provides 

the first evidence that T4 stimulates epithelial stem/progenitor cells in human 

wounded skin in situ, and is in line with our previous report that T4 also enhances 

CK15 gene and protein expression in organ-cultured human HFs and in isolated 

HF epithelial progenitor cells (Tiede et al., 2010). 
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Figure 31. T4 up-regulates expression of epithelial  stem cell-associated keratin, CK15 

CK15 expression is significantly up-regulated by T4. Green fluorescence staining represents Keratin 

15 immunoreactivity in the new wound tongue. Staining intensity was measured in dotted line area 

and normalized vehicle as 100%. Number of independent experiments: n=3 (3-6 skin fragments 

derived from three distinct individuals were analyzed per test/control group; pooled data; one-way 

ANOVA; Mean±SEM). ***p<0.001. CK: Cytokeratin; Scale bars=50µm.  

 

3.2.6 T4 stimulates energy metabolism during human skin reepithelialisation 

 

Since epithelial regeneration is a highly energy-consuming process (Li et al., 2004; 

Almaca et al., 2009; Clerici and Planes, 2009) and since THs are the best-studied 

endocrine stimulators of mitochondrial activity (Harper and Seifert, 2008), we next 

asked whether T4 affects the intraepithelial protein expression of mitochondrial 

cytochrome c oxidase subunit I (MTCO1), a mitochondria-specific key enzyme in 
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the electron transport chain (Hebert et al., 2003; Clerici and Planes, 2009). 

Previously, we had shown that, in organ-cultured human skin, epidermal MTCO1 IR 

is an excellent mitochondrial biology screening marker, since it correlates well with 

mitochondrial cytochrome c oxidase activity and MTCO1 transcription, and even 

points towards mitochondrial biogenesis (Poeggeler et al., 2010; Knuever et al., 

2012). Again, IR was assessed by quantitative immunohistomorphometry. 

 

Indeed, T4 significantly up-regulated MTCO1 IR in the new ET after wounding. This 

effect was most pronounced on day 3, but still present on day 6 (Figure 32a and 

32b). This represents the first documentation of such an effect in human skin, and 

fits well with the recognized stimulation of mitochondrial function by THs (Harper 

and Seifert, 2008). Since increased MTCO1 IR in human epidermis is an excellent 

in situ-indicator of enhanced mitochondrial energy metabolism (Poeggeler et al., 

2010; Knuever et al., 2012), this finding invites the hypothesis that T4 also 

stimulates epidermal energy metabolism during wound healing. 
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Figure 32.  MTCO1 expression is significantly up-regulated by T 4  

Brown staining represents MTCO1 immunoreactivity in the regenerated ET. Note that MTCO1 

immunoreactivity in the non-wounded epidermis was also up-regulated by T4 (not quantified). 

Staining intensity was measured in dotted line area and normalized vehicle as 100%. Number of 

independent experiments: n=3 (3-6 skin fragments derived from three distinct individuals were 

analyzed per test/control group; pooled data; one-way ANOVA; Mean±SEM). **p<0.01; ***p<0.001. 

MTCO1: Mitochondrial cytochrome c. Scale bars=50µm.  

 

3.2.7 T4 stimulates intracutaneous angiogenesis in wounded human skin 

 

Since angiogenesis is a critical determinant of cutaneous wound healing (Ahluwalia 

and Tarnawski, 2012; Park et al., 2012; Roy and Sen, 2012; Dipietro, 2013), we 

also asked whether angiogenesis can be studied at all in the current organ culture 

assay, despite the fact that skin perfusion is abrogated under assay conditions, with 

the likely consequence of blood vessel collapse and rapid degeneration of the skin 
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microvasculature. This was studied by quantitative CD31 immunoreactivity, with 

emphasis on the measurement of CD31+ vessel lumina (an indicator of 

microvessel density [MVD]), since this provides an optimal in situ marker for 

angiogenesis (Mecklenburg et al., 2000). This showed that, even after 6 days of 

organ culture, prominent CD31 IR (Figure 33 ) and even (very few) CD31+ blood 

vessel cross-sections with a lumen can (Figure 34 ) still be detected, both in control 

and test wounded human skin in vitro. Therefore, this simple preclinical wound 

healing assay is well-suited to study angiogenesis in situ.  

 

Next, we asked whether T4 treatment impacts on CD31 protein expression and/or 

angiogenesis in wounded human skin, since T4 is a recognized pro-angiogenic 

hormone (Mousa et al., 2005; Mousa et al., 2006; Davis et al., 2009; Pinto et al., 

2011; Chen et al., 2012a; Chen and Thibeault, 2012). This showed that T4 

significantly increased angiogenesis (Figure 33-34 ): Both the total CD31 

immunoreactivity in defined reference areas (Figure 33a, 33b and 33c ) and the 

number of CD31+ positive endothelial cells (Figure 33a, 33b and 33d ) were 

significantly up-regulated in T4-treated wounded skin fragments. Most importantly, 

T4 (100 nM) also significantly increased the microvessel density compared to 

vehicle control, measured as number of cross-sections of CD31+ vessel lumina 

(Mecklenburg et al., 2000) (Figure 34 ). 

 

This suggest that T4 enhances angiogenesis in wounded human skin in vitro, even 

in the absence of pro-angiogenic serum components and functional blood vessel 

perfusion. Thus, T4 promotes human skin wound healing at both the epithelial 

regeneration and angiogenesis level. 
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Figure 33.  T4 stimulates angiogenesis in wounded human skin in situ 

(a-b) To analyze angiogenesis of the wound, the number of CD31+ cells (red, a), total CD31 

immunoreactivity under the ET (a), per visual field were counted in defined reference areas (see 

also Materials & Methods: Figure 24 ) by quantitative immunohistomorphometry. (c) General CD31 

immunoreactivity was significantly up-regulated by T4 at days 3 and 6. Staining intensity was 

measured in dotted line area and normalized to vehicle control results (=100%). (d) T4 also 

increased the number of (CD31+/DAPI+) endothelial cell nuclei. Number of independent 

experiments: n=3 (3-6 skin fragments derived from three distinct individuals were analyzed per 

test/control group; pooled data; one-way ANOVA; Mean±SEM).*p<0.05; **p<0.01; ***p<0.001. IR: 

Immunoreactivity. Scale bars = 50µm. 
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Figure 34.  T4 stimulates microvessel density in wounded human skin in situ 

To analyze angiogenesis of the wound, the number of CD31+ blood vessel cross-sections (lumina) 

(yellow arrow, c) per visual field was counted by quantitative immunohistomorphometry. Number of 

independent experiments: n=3 (3-6 skin fragments derived from three distinct individuals were 

analyzed per test/control group; pooled data; one-way ANOVA; Mean±SEM). **p<0.01; ***p<0.001. 

MVD: Microvessel density (=number of CD31+ blood vessel cross sections with visible central 

lumen (see also Materials & Methods: Figure 24 ). Scale bars in a, b =50µm, c=200µm. 

 

3.2.8  T4 up-regulates bFGF and FGFR1 expression 

 

To obtain first indications as to a potential mechanism of action for the 

pro-angiogenic activity of T4 in our assay, the protein expression of bFGF and its 

receptor, FGFR1, in the newly formed ET was investigated since bFGF is 

upregulated by T4 (Davis et al., 2004) and since increased bFGF secretion is a key 

pro-angiogenic factor (Cao et al., 2011) (VEGF was not further examined due to 

problems with IF/IHC specificity). FGFR1 IR was assessed, since the 
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proangiogenic actions of T4 may be mediated at least in part via up regulating 

FGFR1 expression (Luidens et al., 2009). 

 

Quantitative immunohistomorphometry revealed that high-dose T4 significantly 

increased bFGF (Figure 35 ) immunoreactivity in the ETs, as measured by 

quantitative immunohistomorphometry.  

 
Figure 35.  T4 stimulates bFGF immunoreactivity in wounded huma n skin in situ  

bFGF expression (red fluorescence) were significantly up-regulated by T4 in the regenerated ET 

(staining intensity was measured in the indicated reference area, dotted line) at day 3 and day 6 

after high-dose T4 treatment. Staining intensity was measured in dotted line area and normalized 

vehicle as 100%. Number of independent experiments: n=3 (3-6 skin fragments derived from three 

distinct individuals were analyzed per test/control group; pooled data; one-way ANOVA; 

Mean±SEM). **p<0.01; ***p<0.001. bFGF: Basic fibroblast growth factor. Scale bars=50µm.  
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As shown in Figure 36 , FGFR1 immunoreactivity in ETs was also significantly 

increased by T4 (100 nM, 1000 nM) compared to vehicle. This supports the 

hypothesis that bFGF/FGFR1-mediated signaling may underlie at least some of the 

pro-angiogenic effects of T4 in organ-cultured human skin. 

 
Figure 36.  T4 stimulates FGF receptor 1 immunoreactivity in wo unded human skin in situ  

FGFR1 expression (red fluorescence) were significantly up-regulated by T4 in the regenerated ET 

(staining intensity was measured in the indicated reference area, dotted line) at day 3 and day 6 

after high-dose T4 treatment. Staining intensity was measured in dotted line area and normalized 

vehicle as 100%. Number of independent experiments: n=3 (3-6 skin fragments derived from three 

distinct individuals were analyzed per test/control group; pooled data; one-way ANOVA; 

Mean±SEM). *p<0.05; **p<0.01; ***p<0.001. FGFR1: Fibroblast growth factor receptor 1. Scale 

bar=50µm.  

 

3.2.9 T4-induced angiogenesis and re-epithelisation  effects are, at least in 

part, bFGF-dependent  
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To probe this hypothesis, bFGF-neutralizing antibody (8 µg/ml) (Davis et al., 2004) 

was co-administered with T4 for 3 days. Importantly, this counteracted the 

stimulatory effects of T4 on all three angiogenesis parameters: CD31 protein 

immunoreactivity (Figure  37a), the number of CD31+ endothelial cells (Figure 

37b), and–most importantly–on microvessel density (Figure 37c ). bFGF 

expression was also reduced by administration of this inhibitory antibody (Figure 

37d). Unexpectedly, bFGF-neutralizing antibody almost abolished the stimulatory 

effects of T4 on human skin reepithelialization (Figure 37e and 37f ), suggesting 

that even the T4-induced promotion of reepithelialization depends on 

bFGF/FGFR1-mediated signaling.  

 

Taken together, this suggests that the wound healing-promoting effects of T4 in 

organ-cultured human skin, namely its promotion of epidermal regeneration and 

dermal angiogenesis in organ culture depend, at least in part, on 

bFGF/FGFR1-mediated signaling (Time constraints prevented to also study the 

role of VEGF and PDGF in the current thesis project).  
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Figure 37.  T4-induced angiogenesis and re-epithelisation effec ts are, at least in part, 

bFGF-dependent  

Intensity of the immunoreactivity of CD31 (a), number of CD31+ cells (b), number of CD31+ lumina 

(c), and intensity of bFGF immunoreactivity in the regenerated ET (d), area and length of epithelial 

tongue in new ET (e, f), were all significantly enhanced under T4 stimulation compared to the 

control groups. Co-treatment of T4 (100 nM) with inhibitory bFGF antibody (8 µg/ml) for 3 days 

largely abolished these T4 effects (a-f). Number of independent experiments: n=3 (in total, 6 skin 

fragments derived from three distinct individuals were analyzed per test/control group; pooled data; 

one-way ANOVA; Mean±SEM).*p<0.05; **p<0.01; ***p<0.001. DAPI, 4’-6-diamidino-2-phenylindole; 

MVD: Microvessel density; ibFGF ab: Inhibitory bFGF antibody. 

 

3.2.10 T4 increases the number of interfollicular M Cs, and induces their 

activation and increase the C-Kit positive MCs  

Given the importance of mast cells (MCs) in wound healing and angiogenesis 

(Weller et al., 2006; Ammendola et al., 2012; de Souza et al., 2012; Jung et al., 
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2012) and that histamine promotes bFGF-induced experimental angiogenesis (Lu 

et al., 2012b), we also studied the impact of T4 on histochemically detectable, 

mature mast cells in human skin as well as on c-Kit+ intradermal cells (which 

primarily demarcates both immature mast cell progenitors and differentiated mast 

cells (Ito et al., 2010; Sugawara et al., 2012).  

 

Interestingly, T4 (100 nM) significantly increased the number of both 

histochemically detectable, toluidine blue+ (Figure 38) and c-Kit+ human skin MCs 

in situ (Figure 39 ). T4 also stimulated mast cell degranulation (Figure 38b ). One 

pilot assay in which by Leder esterase staining was used for mast cell 

histochemistry independently confirmed these results (Figure 40 ).  

 

This raises the question whether T4 may stimulate not only mast cell activation, but 

also mast cell proliferation and/or maturation from resident progenitor cells in 

human skin (note the T4-induced increase in the number of c-Kit+ cells: Figure 36 ), 

just as we have previously shown for corticotropin-releasing hormone (CRH) (Ito et 

al., 2010) and cannabinoid receptor 1 (CB1) antagonists (Sugawara et al., 2012). 
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Figure 38.  T4 treatment increases the number of mast cells and  stimulates their 

degranulation   

(a) Intradermal MCs under the ET were visualized by toluidine blue histochemistry. The number of 

degranulated (red arrow) (b), total MCs(c) per visual field were counted after culture for 3 and 6 days. 

In total, 6 skin fragments derived from three distinct individuals were analyzed per test/control group; 

pooled data; one-way ANOVA; Mean±SEM) . *p<0.05; **p<0.01; ***p<0.001. Scale bars=50µm. 
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Figure 39. T4 treatment increases C-kit+ mast cells  

(a) Intradermal MCs under the ET were visualized by c-Kit immunofluoresence (green arrow). The 

number of c-Kit+ cells (b) per visual field was counted after 3 days. In total, 6 skin fragments derived 

from three distinct individuals were analyzed per test/control group; pooled data; one-way ANOVA; 

Mean±SEM). ***p<0.01; Scale bars=50µm. 
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Figure 40. T4 stimulates mast cell degranulation by  Leder esterase staining  

One whole pilot culture was performed and intradermal mast cells under the epithelial tongue were 

visualized by Leder esterase. Representative picture shown in day 3 vehicle (a) and day 3 T 10 nM 

(b). ‘Degranulated’ (arrowhead) and ‘nondegranulated’ (arrow) MCs were detected by Leder 

esterase histochemistry. Scale bars=50µm. 
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4. Discussion4. Discussion4. Discussion4. Discussion    

This thesis project reports the successful development of a human skin wound 

healing in vitro-assay that provides a unique tool to examine long-standing 

questions and molecular mechanism underlying wound healing. Following in the 

footsteps of Safer et al (Safer et al., 2003; Safer et al., 2004, 2005), who had 

demonstrated that the topical application of T4 accelerated wound healing in mice, 

the first evidence is provided that T4 exerts wound healing-promoting effects also in 

human skin wound healing in vitro. Namely, T4 promotes both reepithelialization, 

and angiogenesis, up-regulates the protein expression in situ of two key keratins in 

wound healing (CK6, CK15), stimulates both keratinocyte migration and epithelial 

progenitor cells (i.e. increased CK15 IR), and up-regulates the number and activity 

of dermal mast cells in organ-cultured, wounded human skin. Given its immediate 

availability for clinical application and testing, this makes T4 a highly interesting, 

inexpensive, and toxicologically well-defined novel candidate wound healing 

promoter in the future management of human skin ulcers.  

 

This current study also provides novel insights into the possible mechanisms of the 

endocrine regulation of human skin wound healing by showing that 

bFGF/FGFR-mediated signaling plays an important role in the wound 

healing-promoting properties of T4. However, the mechanism by which T4 

stimulates reepithelialization and angiogenesis remains largely unknown. Yet, the 

initial pointers to novel T4 target candidate genes in human skin that were obtained 

in the current study provide a valuable basis for mechanistic follow-up studies.  

 

In the current study, sample donors were included only just based on normal 

euthyroid status in order to avoid skin changes by altering thyroid hormone status. 

Since our available ethics permit did not allow for the collection of patient details 

beyond age, gender and skin location (e.g., euthyroid versus hypothyroid status, 
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presence of thyroid-peroxidase (TPO) or TSHR autoantibodies), one limitation of 

the current study is that we cannot correlate the responses seen in the skin 

fragments from the three investigated individuals with the thyroid status of the 

donors.  

 

However, it should be noted that serum-free organ culture of human skin always 

occurred under severely “hypothyroid” assay conditions, i.e. only the culture 

medium of test groups contained T4, while control groups contained only those 

traces of intracutaneous THs that the tissue may have retained after surgery.  

Therefore, it is reasonable to propose that the wound healing-promoting properties 

of T4 seen in the current assays system most accurately reflect the response of 

hypothyroid wounded human skin to T4 administration. Viewed from this 

perspective, the stimulatory effects of T4 fit perfectly to the well-recognized 

phenomenon of generally retarded wound healing in hypothyroid patients (Talmi et 

al., 1989; Feitosa Dda et al., 2008; Jaul, 2010) and rodents in vivo (Ozawa et al., 

2003; Ekmektzoglou and Zografos, 2006; Tha Nassif et al., 2009; Zimmermann et 

al., 2009). Generally, at least 3 different individual’s antigens normally were 

checked to minimize inter individual difference. 

 

Another potential limiting factor of the current study is that skin sample transport 

and processing times after surgery varied substantially. Though all skin samples 

were continuously kept in William’s E medium at 4 °C from surgical removal until 

the onset of organ culture, and even though the time between surgery and organ 

culture never exceeded 24 hours, different degrees of tissue damage suffered 

before, during, and after transport as well as difference in the time from surgery to 

organ culture set-up could account for substantial interindividual variations in the 

response of human skin to T4 stimulation. However, as suggested by the relatively 

low SEM values, even though data from all three patients were pooled, and by the 



Discussion 

99 

fact that the results trends seen in all three patients were nicely comparable, the 

response of wounded human skin to T4 stimulations is consistent and fairly robust 

to the potential variations mentioned above. 

 

Besides maintaining a stable temperature, it is critical to also maintain the correct 

pH during tissue transport and dissection for organ culture to preserve and 

standardize the quality of human skin, since e.g. even small, prolonged milieu 

deviations into the alkaline pH range during tissue preparations can severely 

damage human skin vitality (Paus Lab, unpublished observations). Though the 

colour indicator present in William’s E medium (phenol red) provides pragmatic 

guidance in this respect, in the future, a sprayable luminescent pH imaging 

technology that has been recently been developed for use on human skin in vivo 

(Schreml et al., 2012), might perhaps be employed before human skin samples are 

set-up for organ culture so as to further standardize and refine this wound healing 

organ culture assay. 

 

Two critical questions are whether the T4 concentration range we tested was 

well-chosen, and whether we should also have tested T3. Given the painfully 

limited availability of human skin for organ culture, we were forced to make 

educated choices. Here, we selected the range of 10nM-1000nM T4, since range 

included one order of magnitude above and below the physiological T4 serum 

concentration (100 nM) (Lin et al., 1999). Instead, the typical range of T4 serum 

concentration in hypothyroid patients is 4 nM to 30 nM (Avalos et al., 1986), while 

hyperthyroid patients show T4 serum levels between 181 nM and 321 nM (Avalos 

et al., 1986). Also, the above dose range was best comparable to the ones 

previously explored in two human HF organ culture studies (Billoni et al., 2000), 

which had demonstrated prominent responses of human skin tissue to these doses 

in vitro. The supraphysiological test dose (1000 nM) was selected in order to 
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guarantee ample T4 uptake into (non-perfused!) human skin punches and sufficient 

intracutaneous enzymatic conversion into T3 (see Introduction: 1.8).  

 

In fact, with most of the assessed read-out parameters, the obtained results, 

suggest that the above dose range was well-chosen since all tested doses tended 

to elicit a response compared to vehicle controls, and since a tendency towards 

“dose-dependent” effects of T4 was evident. However, a full dose-response study 

would, ideally, have required the testing of 5 different concentrations (this was 

impossible due to insufficient tissue availability) so that no stringent claims on the 

“dose-dependency” of the observed T4 effects on the investigated wound healing 

read-out parameters can be made. However, the current study facilitates the design 

of follow-up studies with an extended dose range that is informed by the current 

results.  

 

The quantitatively predominant endogenous TH in the blood is T4, while the 

biologically most active form (T3) is converted from T4 within cells by deiodinases 

(Slominski et al., 2002). Deiodinase gene expression in human skin biopsies and in 

the majority of human epidermal and dermal cells in vitro has been demonstrated, 

and human HFs were shown to transcribe deiodinase genes (D2, D3) (Slominski et 

al., 2002; van Beek et al., 2008). Furthermore, after treatment of human HFs with 

T4, a significant increase in the fT3 level was measured by 

electrochemiluminescent immunoassay in the supernatant, compared to 

vehicle-treated control HFs (van Beek et al., 2008). Thus, there is no doubt that 

human skin tissue can convert T4 to T3 so that it is sufficient to test T4.   

 

However, it needs to be emphasized that even non-converted T4 may exert 

biological effects on its own, e.g. via quick-acting membrane mediated signalling 

(see Figure 20 ) (Cheng et al., 2010; Boelen et al., 2012). In some read-out 



Discussion 

101 

parameters, e.g. hair follicle proliferation and cytokeratin 6, T4 (10nM-1000nM) 

actually exerted greater modulatory effects than T3 (10-3 nM-10nM) (van Beek, 

2009). Also, unexpectedly, in preliminary screening experiments not reported in the 

current thesis, we had noted that only 10-1000 nM T4, but not 10-3 nM to 10nM of 

T3 exerted wound healing-promoting effects in human skin organ culture (data not 

shown).  

 

Taken together, this makes it particularly intriguing to ask whether the observed 

wound healing effects of T4 were mainly mediated via non-classical TH signalling 

pathways (cf. Figure 20 ). In fact, a growing body of evidence suggests that, 

besides the many direct TH target genes that show a TRE in their promoter region, 

there are many additional, TRE-negative genes which nevertheless are regulated 

by THs (Shen et al., 2004; van Beek et al., 2008) or by non-classical, 

receptor-independent TH activities (Davis et al., 2004; Mousa et al., 2008; van 

Beek et al., 2008; De Vito et al., 2012). Our gene profiling data support this concept 

further (data not shown). Thus, the current study also provides important new 

pointers to further investigate the molecular targets and mechanisms that underlie 

the wound healing-promoting effects of T4 on wounded human skin in the absence 

of serum and other extracutaneously generated steroid hormones. 

 

The main reason for focusing on T4, however, was translational one: Since T4, but 

not T3, is licensed for use in clinical medicine and has been extensively 

administered to patients already for many decades, we argued that it is most 

important to investigate the effects of T4 on human skin wound healing, as this TH 

is clinically and pharmaceutically most relevant. 

 

Bioengineered human skin “equivalents” have been advocated as suitable wound 

healing models (Falanga et al., 2002; MacNeil, 2007; Wigger-Alberti et al., 2009). 
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However, the generation of such skin “equivalents” is costly, time-consuming, 

labor-intensive, and requires substantial cell culture expertise. Moreover, these 

reconstitution assays can not claim to fully reflect native human skin, and employ 

cultured cells whose properties likely have been altered during isolation, culture, 

and reconstitution. Furthermore, these assays typically lack several skin cell 

populations appreciated as important wound healing protagonists (e.g., endothelial 

cells, macrophages, and mast cells) (Wulff et al., 2011; Korybalska et al., 2012) as 

well as skin appendages. Given the increasingly appreciated role of hair follicles in 

wound healing (Ito et al., 2005; Lau et al., 2009; Ansell et al., 2012; 

Martinez-Martinez et al., 2012), this further questions whether skin “equivalents” 

are satisfactory in vitro-wound healing models. 

 

Instead, the human skin wound healing assay reported here has multiple 

advantages over previously reported in vitro-models:  

1) It is very simple and cost-efficient, and can be performed with minimal tissue 

culture know-how and limited laboratory equipment, and offers an instructive tool to 

screen drugs or pharmacological substances in preclinical wound healing studies. 

Preliminary evidence from our laboratory suggests that other hormones, such as 

estrogen, prolactin, thymosin beta-4, and TRH, also exert profound wound 

healing-promoting effects in this assay system. Thus, the current assay is 

well-suited for testing the wound healing-modulatory properties of a wide range of 

steroids and peptides. 

2) In contrast to its predecessor assay (Moll et al., 1998) and the concomitantly 

developed assay of Xu et al (Xu et al., 2012), the current assay operates under 

precisely defined, serum-free conditions, and uses a metabolically optimized 

medium (Philpott et al., 1991) that we had previously shown to sustain the 

long-term organ culture of human skin (Lu et al., 2007). 

3) In contrast to Moll et al. (Moll et al., 1998) and Xu et al. (Xu et al., 2012), our 
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assay also uses adult, full-thickness human skin which includes the subcutis, with 

its wound healing-promoting pluripotent stem cells and adipokines (Kim et al., 2007; 

Poeggeler et al., 2010), and its skin appendages. The latter may be quite relevant 

since hair follicles and their associated epithelial and mesenchymal progenitor cells 

likely exert important functions in cutaneous wound healing (Ito et al., 2005; Lau et 

al., 2009; Ansell et al., 2012; Martinez-Martinez et al., 2012).  

4) The current assay system encompasses a number of sensitive, quantitative 

morphometric and molecular read-out parameters that are not routinely used in 

previous in vitro-wound healing assays, such as H&E, Ki67/Tunel, CK6 and CD31. 

These read-out parameters facilitate highly standardized, biologically instructive, 

and easily reproducible in vitro-wound healing research in the human system. 

Furthermore, some other interesting read-out parameters, e.g. electrical stimulation 

which has been demonstrated that it accelerated wound healing via increasing 

blood flow and haemoglobin levels in acute cutaneous wounds without affecting 

wound closure time (Ud-Din et al., 2012), might also be studied or developed in the 

future in our current organ culture assay.   

 

Thus, this simple preclinical assay cannot only be set-up easily and relatively 

inexpensively, and allows to the quantitative evaluation of numerous instructive in 

situ-read out-parameters, but is also closer to the clinical wound healing reality than 

any other current in vitro-assay. 

 

By measuring longitudinal reepithelialization (length of the new wound ET) and 

cortactin IR, we provide direct evidence that T4 promotes the migration of human 

epidermal keratinocytes during wound healing in situ. Though the underlying 

mechanisms require further investigation, this is line with growing evidence that T4 

can stimulate the migration of several different cell populations (Matrisian, 1990; 

Bohnsack and Kahana, 2013; Peeters et al., 2013).  
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For example, the migration of neuronal and glial cells has been shown to be 

regulated by T4 (Farwell et al., 1990; Farwell et al., 2006). The mechanisms 

underlying this phenomenon were subsequently investigated by Lenoard and 

coworkers, who demonstrated that T4 plays a role in the conversion of soluble actin 

into F-actin, which is responsible for cell migration. This is a novel, non-genomic 

effect of T4 that could affect polymerization and accordingly, the physical state of a 

key component of the cytoarchitecture of migrating cells (Farwell et al., 1990; 

Siegrist-Kaiser et al., 1990; Leonard and Farwell, 1997). Our in vitro data are well in 

line with these findings (Figure 28 ), since T4 upregulated cortactin IR at the 

migratory edge of the newly formed ETs. Cortactin is a widely expressed 

actin-binding protein which is most prominently expressed in the lamellopodia of 

migrating keratinocytes and which had been originally identified as a substrate for 

Src kinase (Ceccarelli et al., 2007; Gendronneau et al., 2008). Double staining with 

F-actin and cortactin has been developed as a very useful marker to show the 

migrating cells (Gendronneau et al., 2008). Thus, the results from the current study 

suggest that T4 may regulate the formation and recognition of critical extracellular 

migration guidance actin-binding proteins, thereby controlling accelerated 

keratinocyte migration and reepithelization after human skin wound healing. This 

hypothesis deserves to be followed-up by cortactin/F-actin double-staining and 

quantitative immunohistomorphometry as well as by functionally interfering e.g. 

with Src kinase activity and/or actin-binding. 

 

In line with our previous findings on the impact of THs on human HF matrix 

keratinocyte proliferation (van Beek et al., 2008), the current study shows that T4 

increases human epidermal keratinocyte proliferation in situ. This fits well to other 

experimental studies which have shown that THs, in physiological concentrations, 

promote the proliferation not only of epidermal keratinocytes, but also of fibroblasts 

(Holt and Marks, 1977; Safer et al., 2001; Safer et al., 2003; Safer, 2012), human 
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thyroid cells (Lin et al., 2007), breast cancer cells (Tang et al., 2004) and glioma 

cells (Davis et al., 2006), granulosa cells (Verga Falzacappa et al., 2009), cardiac 

fibroblasts (Yao and Eghbali, 1992) in vitro and endothelial progenitor cells in vivo 

(Shakoor et al., 2010). One of the underlying mechanisms identified so far is that 

cell surface receptors may mediate these proliferative effects, since tetrac, a 

naturally-occurring deaminated derivative of T4 (tetraiodothyroacetic acid) (Mousa 

et al., 2008), opposes the trophic effect of agonistic thyroid hormone analogs 

(Mousa et al., 2008). Subsequently additional studies showed that the proliferative 

effect of iodothyronines can be blocked by RGD peptides that bind to an 

Arg-Gly-Asp recognition site on integrin molecules which are critical for TH 

membrane binding, and by antibody to integrin αvβ3 (Cheng et al., 2010). 

 

However, the results obtained by systemic versus topical administration of THs to 

the skin were contradictory (Kress et al., 2009). In vivo, skin proliferation effect 

regulated by T3 may be counteracted by inhibitory factors, dependent on the 

systemic level of T3 (Safer, 2012). In fact, the cell’s response to THs appears to be 

very much dependent on the cell type in question, its developmental state 

(progenitor or differentiated cell), its pathophysiological state (normal or tumor cell) 

and, eventually, the cellular context and the interaction of THs and TRs (Kress et al., 

2009).  

 

The keratin genes encode epithelial-specific intermediate filaments, making up 

about 30% of the protein of the epidermis (Safer et al., 2005; Kress et al., 2009; 

Ramot et al., 2009b; Coulombe and Lee, 2012). While keratins 1 and 10 are 

associated with terminal epidermal differentiation, keratins 5 and 14 are expressed 

in the basal skin layer; their expression decreased as the skin cells differentiate. 

Expression of, keratins 6 (investigated here), 16, and 17 is associated with both, 

epidermal (hyper-)proliferation and epithelial repair (Safer et al., 2005; Ramot et al., 
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2009b; Coulombe and Lee, 2012). In keratin 6 knockout mice, superficial wound 

healing was reduced, compared to normal genotype mice (Wojcik et al., 2000). In 

addition, proliferation-associated cytokeratin 6 gene expression is decreased in 

hypothyroid mice and significantly stimulated in these by supraphysiologic doses of 

thyroid hormone (Safer et al., 2004, 2005). This is persuasive since the CK6 

promoter is well-known to exhibit a TRE (Tomic et al., 1990; Radoja et al., 1997).  

 

The CK6 IR results from the current study, which showed up-regulated CK6 protein 

expression in situ in wounded human skin epithelium after application of 

supraphysiological T4 doses, perfectly correspond to the previous in vivo work by 

Safer et al. in mice (Safer et al., 2004, 2005). Moreover, our laboratory has 

previously demonstrated that both T3 and T4 up-regulate CK6 expression in 

human HF epithelium (van Beek et al., 2008).  

 

However, the exact mechanism underlying this phenomenon in situ and in vivo 

remains unclear. In fact, proliferation-associated cytokeratin genes reportedly 

contain inhibitory TREs in their promoter regions (Tomic et al., 1990; Ohtsuki et al., 

1992; Tomic-Canic et al., 1996; Radoja et al., 1997), suggesting that their 

expression should be reduced in the presence of THs. Furthermore, while normal 

CK6 expression levels may be essential for physiological wound healing (Wojcik et 

al., 2000; Rotty and Coulombe, 2012), supraphysiological T4 doses may promote 

wound healing via TR- and TRE-independent mechanisms of action. Certainly, the 

comprehensively interpret the current CK6 protein in situ expression data, the 

obvious limitations of quantitative immunohistomorphometry make it desirable to 

complement this method by both qRT-PCR and fully quantitative Western blot 

analyses (the latter could not be run because this would have required much larger 

amounts of human skin than were available for the current study).  
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That T4 also stimulates protein expression of the prototypic epithelial 

stem/progenitor cell-marker keratin, CK15 (Cotsarelis, 2006; Tiede et al., 2007; 

Ramot et al., 2011), in human wounded skin in situ, is in line with our previous 

report that T4 also enhances CK15 gene and protein expression in organ-cultured 

human HFs in situ and in isolated HF epithelial progenitor cells (Tiede et al., 2010). 

In any case, since the CK15 promoter has not been reported to exhibit a TRE, the 

fact that T4 does modulate CK15 protein expression further encourages one to 

systematically investigate non-genomic, non-classical T4 signaling pathways in 

human skin.  

One critical question here is whether continued stimulation of these epithelial 

progenitor cells by T4 may have undesired long-term consequences. In fact, T4 

may just stimulate CK15 expression (and epitehlia, cell activity) only initially, while it 

may subsequently promote epithelial stem cell differentiation or even apoptosis (in 

human HFs, prolonged T4 stimulation inhibited proliferation and apoptosis of 

CK15+ cells at day 6) (Tiede et al., 2010). Thus, in theory, T4 stimulation could also 

exert a counter-regulatory effect through which excessive epithelial regeneration is 

down-regulated.    

The current study provides the first evidence that T4 exerts pro-angiogeneic effects 

in human skin, which may play a role in the accelerating reepthelialization seen in 

vitro. This observation is well in line with the fact that THs are now 

well-documented to promote angiogenesis in many tissues and/or cells under 

physiological and pathological circumstances and in different experimental models 

(Luidens et al., 2009; Cheng et al., 2010), such as, chick chorioallantoic membrane 

(CAM) system (Davis et al., 2004; Bergh et al., 2005), the human dermal 

microvascular endothelial cell (HDMEC) microtubule assay (Mousa et al., 2005), 

etc., and the underlying molecular mechanism of the proangiogenic actions of 

thyroid hormones were both non-genomic and genomic (Fonder et al., 2008; 
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Luidens et al., 2009).  

 

Most of the proangiogenic actions of THs on endothelial cells and vascular smooth 

cells seem to initiate at target cell surface receptors, e.g. integrin avβ3, and are 

then transduced into downstream intracellular signals (e.g. via the ERK1/2 pathway) 

(Cheng et al., 2010). This, in turn, modulates the transcription of pro-angiogenic 

targets genes such as bFGF and VEGF; moreover, the integrin receptor for thyroid 

hormone engages in crosstalk with vascular growth factor receptors, such as bFGF, 

VEGF and EGF receptors (Davis et al., 2009; Luidens et al., 2009; Cheng et al., 

2010). In addition, T4 can induce treated cells to release bFGF in an autocrine 

manner in CAM model, which promotes cell proliferation. Interestingly, when 

co-cultured with T4 and bFGF inhibitory antibody, the release action was blocked, 

suggesting that the proangiogenic effects of T4 depend, at least in part, on the 

release of one or more vascular growth factors (Luidens et al., 2009; Cheng et al., 

2010).  

 

In line with previous research, the pro-angiogenic effects of T4 in our model also 

are mediated, at least in part, by increased bFGF/FGFR expression and signaling, 

based on the observation that inhibitory bFGF antibody blocks of the angiogenesis 

effects of T4. However, the contribution of other important pro-angiogenic signaling 

pathways known to respond to TH stimulation, such as VEGF and PDGF (Sterry et 

al., 2006; Tang et al., 2012), remain to be systematically evaluated in wounded 

human skin. 

 

HIF1α provides another interesting potential connection between THs and 

angiogenesis: HIF1α is a potent modulator of the tissue response to hypoxia, which 

serves as an important stimulus for angiogenesis during wound healing 

(Andrikopoulou et al., 2011) and tumor growth (Escandon et al., 2011) and is 

constitutively expressed in human epidermis, mainly in the basal layer (Rezvani et 
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al., 2011). T4 can induce HIF1α expressions via activation of phosphatidylinositol 

3-kinase (PI3K), rather than ERK1/2 (Moeller et al., 2005; Moeller et al., 2006). 

Moreover, the activation of PI3K, resulting in HIF1α gene expression, may involve 

the integrin surface receptor for THs (Lin et al., 2009b). Intriguingly, emerging 

evidence suggests that HIF 1α also playd a role in reepithelialization of the wound 

bed via promoting keratinocyte migration. In addition, expression and activity of 

HIF1α are diminished under retarded wound healing conditions such as aged and 

diabetic skin (Andrikopoulou et al., 2011). Thereby, in addition to T4’s 

bFGF/FGFR-mediated effects on angiogenesis, T4 may also accelerate both 

angiogenesis and wound healing via up-regulating HIF 1α expression and activity 

in wounded human skin.  

 

Mast cells have been shown to play an important role in early inflammatory phase 

of wound healing and also to profoundly modulate proliferation and tissue 

remodeling in skin (Weller et al., 2006; Kennelly et al., 2011) as well as 

angiogenesis (Norlen, 2003; Rodewald and Feyerabend, 2012) (see Introduction: 

1.3.6.3). However, no stimulatory effect of T4 on human skin mast cells has 

previously been reported, especially not in situ. The current study, therefore, 

provides first evidence that T4 prominently impacts on human dermal mast cells 

within their natural tissue habitat. The available (immune-)histomorphometric mast 

cell data provide no insight into whether the observed mast cell effects (i.e. 

increase in the number of mast cells, triggering of human skin mast cell 

activation/degranulation in situ) occur directly (e.g. via stimulation of mast cell TR) 

or indirectly (e.g. via stimulating the release of mast cell-regulatory factors such as 

SCF or nerve growth factor). The specifically mast cell identification method based 

on KIT(+)CD49b(-) staining would be interesting in the further investigation (Liu et 

al., 2013). 
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Yet, T4 now has to be counted among the increasing number of hormones that, 

besides cortisol and ACTH (Arck et al., 2006; Paus et al., 2006; Murphy, 2012) as 

well as CRH (Ito et al., 2010) and cannabinoid receptor 1 (CB1) antagonists 

(Sugawara et al., 2012), regulates dermal mast cells activities in normal human 

skin. Also, if endogenous THs really do promote human skin mast cell activation 

and maturation from resident intracutaneous progenitor cells, as is suggested by 

the current findings (just like CRH and CB1 antagonists (Ito et al., 2010; Sugawara 

et al., 2012)), the application of newly developed TR antagonists such as Amio and 

Dron (Hara and Verkman, 2003) might become clinically interesting in may 

common diseases, in whose pathogenesis excessive mast cell activities are 

critically involved (e.g. atopic eczema, urticaria, allergic asthma, allergic 

rhinoconjunctivitis, prurigo). 

 

The current mast cell data are also interesting in the context of inflammation 

(Figure 38-40 ), since, on the one hand, T4-induced increased mast cell 

degranulation may positively contribute to the inflammatory phase of wound 

healing. On the other hand, excessive mast cell activation and increase in the 

number of mast cells may have long-term deleterious effects on wound healing by 

preventing the timely down-regulation of inflammation that is required for optimal 

wound healing (Proksch et al., 2008; Kennelly et al., 2011; Wulff et al., 2011). So far, 

conflicting reports on the effects of THs on inflammation have been published. In rat 

brain, treatment with THs up to 5 days of age reportedly resulted in a decrease of 

histamine levels and mast cell numbers (Sabria et al., 1987). Instead, treatment of 

thyroiditis with suppressive TH doses improved chronic urticaria, which results from 

excessive skin mast cell degranulation and histamine release (Schocket, 2006). 

Thus, T4 effects on human skin mast cells may well be context-, dose-, and 

time-dependent. Clearly, this requires further investigation.  
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In summary, the simple, but clinically relevant human skin wound healing-assay 

used here has generated the first definitive preclinical evidence that T4 promotes 

reepithelialization and angiogenesis of experimentally wounded human skin in vitro. 

Moreover, our study suggests that this occur at least in part via up-regulation of 

bFGF/FGFR1-mediated signalling. In view of the overall medical importance of 

wound healing disorders and the urgency to develop more effective, inexpensive, 

and reasonably safe wound healing-promoting agents for the treatment of chronic 

skin ulcers (Markova and Mostow, 2012), our data encourage one to now 

systematically explore T4 as wound healing promoter in appropriate clinical trials. 

Like other steroid hormones, this FDA-approved agent is a stable, inexpensive and 

both topically and systemically applicable, has a well-known toxicological profile, 

and is routinely employed in clinical practice (Biondi and Wartofsky, 2012; Cooper 

and Biondi, 2012). Therefore, together with the existing in vivo-evidence from 

animal models (Safer et al., 2001; Safer et al., 2005; Kassem et al., 2012; 

Tarameshloo et al., 2012), the current preclinical human data render it timely to 

clinically explore T4 as a candidate promoter of human skin wound healing, namely 

as a topically applied agent (so as to minimize the risk of inducing a hyperthyroid 

state). Readily available and inexpensive drugs (e.g. L-thyroxine) could rapidly be 

repositioned for ulcer management as novel indication for the therapeutic 

administration of T4.   
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5. Summary 

Despite growing evidence that thyroid hormones (TH) promote wound healing in 

animals, their effects in human skin wound healing are almost unexplored.  

Therefore, we wished to evaluate whether thyroxine (T4), which could easily be 

applied topically under clinical conditions, promotes reepithelialisation and 

angiogenesis in experimentally wounded human skin in vitro.  

Wounded full-thickness human skin was organ-cultured in serum-free medium, 

using a ‘punch-within-a-punch’ design. The newly formed epithelial tongues at the 

inner and outer edges were analyzed by quantitative (imuno-)histomorphometry, 

using a set of instructive reepithelialisation and angiogenesis markers. 

Reepithelialisation was significantly promoted by 100 and 1000 nM T4, compared 

to vehicle controls. T4 also significantly up regulated the proliferation of epidermal 

keratinocytes as well as expression of the wound healing-associated keratin, CK6, 

and of the epithelial stem cell-associated keratin, CK15. Furthermore, expression 

of the endothelial cell marker, CD31, as well as the number of CD31+ vessel cross 

sections were up-regulated, indicating that T4 stimulates intracutaneous 

angiogenesis during skin wound healing. Both reepithelialisation and angiogenesis 

appear to be mediated, at least in part, via up-regulation of bFGF/FGF 

receptor1-mediated signalling. Given the importance of mast cells in wound healing 

and angiogenesis, it is interesting to note that T4 also increased the number and 

degranulation of dermal mast cells in T4-treated human skin fragments.  

Taken together, these findings provide the first definitive preclinical evidence that 

T4 promotes reepithelialisation and angiogenesis in wounded human skin. This 

strongly encourages one to further explore topical T4 in the management of chronic 

skin ulcers. 
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6. Zusammenfassung 

In der klinischen Medizin ist das Management von chronischen, verzögert 

heilenden Wunden zu einer der größten und bislang unbewältigten 

Herausforderungen geworden.  Insbesondere müssen dringend gut verträgliche, 

kostengünstige und wirksame Wundheilungspromotoren identifiziert werden. Um 

dies zu unterstützen, sind einfache, wohl aber prognostisch und klinisch relevante 

vorklinische Prüfsysteme erforderlich, welche die Suche nach solchen 

wundheilungsfördernden Wirkstoffen erleichtern. Im Idealfall handelt es sich dabei 

um Substanzen, die sich bereits weitläufig im klinischen Einsatz befinden.  

 

Thyroxin (T4) ist eines der gebräuchlisten Hormone in der klinischen Medizin und 

wird vor allem für die Behandlung der Schilddrüsenfunktionsstörungen verwendet . 

Üblicherweise wird synthetisches T4 nur einmal täglich oral verabreicht. Nach 

intestinaler Aufnahme  wird T4 auf zellulärer Ebene dann zu T3 umgewandelt.  

 

T4 ist also das klinisch gebräuchlichste Schilddrüsenhormon  und würde 

deswegen für sofortige klinische Wundheilungs-Untersuchungen zur Verfügung 

stehen. Außerdem konnten wir bereits zeigen, dass T4 das Wachstum von 

menschlichen Haarfollikeln sowie epitheliale Haarfollikelstammzellenfunktionen in 

Organkultur moduliert. Daher konzentriert sich die vorliegende Dissertation 

gänzlich auf die Wirkungen von T4 in Bezug auf die Wundheilung menschlicher 

Haut in vitro.  

 

Die Dissertation stellt zunächst grundlegende Projekt-Eckdaten in Bezug auf die 

Biologie der menschlichen Haut und der Wundheilung vor und analysiert dann die 

erheblichen Herausforderungen, mit denen die klinisch angewandte 

Wundheilungsforschung konfrontiert ist. Besonders wichtig ist es, neue 
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Medikamente zu enwickelen, welche die Reepithelialisation, 

Granulationsgewebebildung und Angiogenese stimulieren. Dabei ird auch auf die 

besondere Bedeutung von Mastzellen und Makrophagen hingewiesen, deren 

kontrollierte Aktivierung für eine optimale Wundheilung wichtig ist.Es wird die 

Hypothese begründet, warum T4 die Wundheilung menschlicher Haut fördern 

könnte. Diese Hypothese stützt sich zum einen auf bereits publizierte Tierversuche, 

in denen topisch appliziertes T4 die Wundheilung (z.B. in der Maushaut) 

beschleunigte und zum anderen darauf, dass T4 humanes Haarwachstum (in vitro) 

stimuliert. Da erhebliche biologische Parallelelen zwischen der 

Haarwuchsregulation und der Wundheilungskontrolle bestehen und 

Haarwuchsstimulatoren grundsätzlich auch Kandidaten dafür sind, Wunheilung 

beschleunigen zu können,  macht dies die Testung vonm T4 bsonders interessant. 

Hinzu kommt, dass T4 schon seit Jahrzehnten ein kostengünstiges klinisches 

Standardtherapeutikum , dessen Wirkungs- und Nebenwirkungssepktrum gut 

bekannt ist und das sowohl systemisch als auch topisch appliziert werden kann.  

 

Um diese Arbeitshypothese zu testen, wurde in einem vom Doktoranden 

mitentwickelten neuen Wundheilungs-Organkulturmodell anhand von auf 

standardisierte Weise verwundeter humaner Vollhaut untersucht, ob und wie T4 

unter serumfreien Bedingungen Reepithelialisation, Angiogenese und 

Mastzellaktivitäten beeinflusst. Dazu wurde ein "Doppel-Loch-Design" 

(„punch-in-a-punch“) verwendet. Die Wirkungen von T4 auf Reepithelialisation, 

Angiogenese und Mastzellaktivitäten wurden v.a. durch quantitative 

(Immun-)Histomorphometrie untersucht, wobei verschiedene Marker 

herangezogen wurden. 

 

 

Zunächstz konnte das der o.g. in vitro-Wundheilung-Assay mit menschlicher 
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Vollhaut weiter charakterisiert und standardisiert werden, wodurch ein wertvolles, 

klinisch besomders interessantes Instrument für die präklinische 

Wundheilungsforschung entwickelt wurde.  

 

Ferner konnte erstmal gezeigt werden,  T4 die Wundheilung der menschlichen 

Haut in vitro stimuliert. Und zwar fördert T4 sowohl die Reepithelialisierung der 

vedrwundeten Epidermis also auch Angiogenese im Hautmesenchym, T4 

hochreguliert ferner die Protein-Expression in situ zweier Schlüssel-Keratine (CK6, 

CK15) bei der Wundheilung und stimuliert sowohl die Keratinozyt-Migration (größte 

Länge der epithelialen „Wundzungen“; gesteigerte Cortactin-Expression) als auch 

epitheliale Progenitorzellen (d.h. vermehrte CK15 Immunreaktivitä). Ferner regelt 

T4die Anzahl und Aktivität der dermalen Mastzellen in organkultivierter, verletzter 

Humanhaut hoch.  

 

Zieht man seine sofortige Verfügbarkeit in Bezug auf klinische Verwendung und 

Testung in Betracht, so legen diese präklinischen Untersuchungen in einem 

einfachen, aber klinisch sehr relevanten in vitro-Modell nahe, dass T4 ein 

hochinteressanter, kostengünstiger und toxikologisch wohldefinierter neuer 

Kandidat als Wundheilungspromotor für die zukünftige Behandlung von Wunden, 

insbesondere von chronischen Wunden ist.  

 

Die vorliegende Studie bietet zudem auch neue Einsichten in Bezug auf mögliche 

endokrine Regulations-Mechanismen der Wundheilung der menschlichen Haut, 

indem sie aufzeigt, dass bFGF/FGFR-vermittelte Signalwege  eine wichtige Rolle 

bei den wundheilungsfördernden Eigenschaften von T4 spielen. Jedoch bleibt der 

Mechanismus, bei dem T4 die Reepithelialisation und Angiogenese stimuliert, 

größtenteils unbekannt. Aus einer Microarray-Analye haben sich aber bereits 

ersten Indikatoren für neue T4 Kandidaten-Zielgene in der menschlichen Haut 
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ergeben. Dies liefert eine wertvolle Basis für mechanistische Anschlussstudien.  

 

Selbstverständlich bleibt jetzt zu prüfen, ob T4 seine Wundheilungs-fördernden 

Wirkungen auch unter erschwerten Bedingungen (z.B. chronische Gewebshypoxie 

und Entzünung, Diabetes mellitus, periphere Neuropathie) entfaltet. An einem 

Surrogatassay, der solche chronischen Wundheilungsbedingungen zumindest 

teilweise nachzustellen versucht, wird aktuell gearbeitet (auch unter Beteiligung 

des Doktoranden).  

 Eine Einschränkung erfährt diese vorliegende Studie auch dadurch, dass der 

Schilddrüsenstatus der Hautspender unbekannt war (die vorliegende 

Ethikgenehmigung erlaubte nur anonymisierte Angaben überAlter, Geschlecht und 

Lokalisation der Haut). 

 

Es ist jedoch darauf hinzuweisen, dass serumfreie Organkultur menschlicher Haut 

immer unter ausgeprägt "hypothyreotischen" Untersuchungsbedingungen erfolgt 

und allenfallsSpuren von intrakutanem T4 enthält, die das Gewebe intra-und 

postoperativ retiniert hat.  Die beobachteten Hautreaktionen auf T4  könnten also 

gut die Wundheilungantwort von hypothyreotischer Humanhaut widerspiegeln. 

Unter diesem Gesichtspunkt passen die beobachteten 

Wundheilungs-stimulierenden Wirkungen von T4 gut zu der klinischen 

Beobachtung, dass die Wundheilung bei hypothyreotischen Patienten in vivo 

grundsätzlich verzögert abläuft.  

 

Zusammengenommen liefern diese Forschungsergebnisse den ersten definitiven 

präklinischen Beweis dafür, dass T4 die Reepithelialisation und Angiogenese in 

experimentell verletzter, menschlicher Vollhaut in vitro Haut fördert. Dies ermutigt 

stark dazu, topisches T4 als Nächstes in der Behandlung von chronischen 

Hautulzera weiterführend zu untersuchen.                                  
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