DNA-Vakzinierung zur Behandlung von minimal residual disease bei Ph⁺ akuter lymphoblastischer Leukämie im syngenens Mausmodell

Inauguraldissertation
zur
Erlangung der Doktorwürde
der Universität zu Lübeck

Aus der Sektion Naturwissenschaften

vorgelegt von
Yvonne Rott
aus Düren
Lübeck 2012
1. Berichterstatter: Prof. Dr. med. E. Herting

2. Berichterstatter: Prof. Dr. med. J. Westermann

Tag der mündlichen Prüfung: 11. April 2013

Zum Druck genehmigt. Lübeck, den 15. April 2013
Für meine Familie, die mir diesen Weg ermöglichte und ohne die ich dieses Ziel nie erreicht hätte.
Inhaltsverzeichnis

Vorbemerkung ... IV

Abbildungsverzeichnis ... V

Tabellenverzeichnis .. VI

Nomenklatur ... VII

1 Einleitung

1.1 Philadelphia-Chromosom-positive Akute Lymphoblastische Leukämie 1

1.1.1 Pathogenese ... 1

1.1.2 Therapie der ALL .. 3

1.2 Stand der Forschung ... 6

1.2.1 Immuntherapie maligner Erkrankungen .. 6

1.2.2 Vakzine ... 7

1.3 Zielsetzung/Fragestellung ... 12

2 Material und Methoden

2.1 Material ... 13

2.1.1 Geräte ... 13

2.1.2 Lösungen/Medien/Puffer/Reagenzien .. 13

2.1.3 Verbrauchs-/Labormaterialien ... 15

2.1.4 Antikörper ... 16

2.1.5 Zelllinien ... 17

2.1.6 Syngenes BM185/Balb/c- Mausmodell .. 17

2.1.7 MIDGE-Vektor ... 19

2.1.8 dSLIM ... 20

2.1.9 Poly-(β-Aminoester) .. 21

2.1.10 Leukämiespezifische DNA-Vakzine ... 22

2.1.11 Tyrosinkinase-Inhibitor Imatinib mesylate 23

2.1.12 6-Mercaptopurin (6-MP) ... 24

2.1.13 Anthocyane ... 24
2.2 Methoden .. 26
 2.2.1 Zellkultur .. 26
 2.2.2 Narkose ... 27
 2.2.3 In vivo Zelldepletion .. 27
 2.2.4 Vakzinierung ... 28
 2.2.5 Komplexierung der Vakzine mit Poly-(β-aminoestern) 28
 2.2.6 Leukämiechallenge ... 29
 2.2.7 Therapie .. 29
 2.2.8 Bestimmung der CD4^+, CD8^+ T-Zellen und NK-Zellen 30
 2.2.9 Alamar Blue Proliferationsassay ... 31
 2.2.10 Caspase Apoptoseassay ... 32
 2.2.11 Nachweis der Zytokinexpressions nach DNA-Vakzinierung 32

3 Ergebnisse .. 35
 3.1 Optimierung der Basisvakzine BCR-ABL/GM-CSF/dSLIM 36
 3.2 CD4^+, CD8^+ T-Zellen und NK-Zellen sind an der Immunantwort beteiligt 38
 3.3 Antileukämischer Memory Effekt der DNA-Vakzine .. 40
 3.4 6-MP, Imatinib mesylate und Anthocyane inhibieren die Proliferation von Leukämiezellen und induzieren die Apoptose über Caspasen in vitro 41
 3.5 Die Vakzin-Monotherapie ist den Monotherapien Imatinib mesylate, Cyanidin-3-Rutinosid, OptiBerry® BX600 und 6-MP überlegen .. 43
 3.6 Die Kombination der DNA-Vakzine mit 6-MP führt zum Synergismus und zeigt die höchste Effizienz gegen eine präexistente Leukämie......................... 45
 3.7 Die DNA-Vakzine induziert die mRNA-Expression der Transgene BCR-ABL, GM-CSF und IL-12 sowie verschiedener Zytokine ... 46

4 Diskussion .. 48
 4.1 Optimierung der Vakzine BCR-ABL/GM-CSF/dSLIM .. 49
 4.2 Beteiligung der CD4^+, CD8^+ T-Zellen und NK-Zellen an der Immunantwort.... 51
 4.3 Induktion eines antileukämischen Memory-Effekts der DNA-Vakzine 54
 4.4 Inhibition der Proliferation von Leukämiezellen durch 6-MP, Imatinib mesylate und Anthocyane in vitro ... 54
Inhaltsverzeichnis

4.5 Die optimierte Vakzine ist die beste Monotherapie .. 56
4.6 Die Kombination der DNA-Vakzine mit 6-MP erreicht die höchste Effizienz ... 59
4.7 mRNA-Expression der Transgene und verschiedener Zytokine 60

5 Zusammenfassung .. 62

Literaturverzeichnis ... 63

Danksagung

Erklärung

Kongressbeiträge/ Abstracts-Veröffentlichungen
Vorbemerkung

Teile dieser Dissertation wurden veröffentlicht in:

Abbildungsverzeichnis

Abbildung 1: Schematische Darstellung der BCR-ABL-Fusionsgene 2
Abbildung 2: Therapieübersicht nach der AIEOP-BFM ALL 2009 Studie 4
Abbildung 3: Therapieübersicht nach der EsPhALL Studie 2006 5
Abbildung 4: Syngenes BM185/Balb/c-Mausmodell 18
Abbildung 5: Elemente des MIDGE-Vektors ... 19
Abbildung 6: Immunmodulator dSLIM .. 20
Abbildung 7: Poly-(β-Aminoester) .. 21
Abbildung 8: Strukturformel von Imatinib mesylate 23
Abbildung 9: Anthocyane .. 25
Abbildung 10: Überlebensrate der unbehandelten Kontrolle und mit unterschiedlichen DNA-Vakzinen immunisierten Mäusen 37
Abbildung 11: Nachweis der in vivo Depletionseffizienz mit FACS-Analyse ... 39
Abbildung 12: Zytotoxizität der nicht-immunsuppressiven Substanzen bei den Leukämiezelllinien BM185 (A) und K562 (B) 42
Abbildung 13: Leukämiekinetik nach Behandlung mit 6-MP oder DNA-Vakzine ... 45
Abbildung 14: Expression der kodierten Transgene, IL-4 und IFN-γ 47
Tabellenverzeichnis

Tabelle 1: Primersequenzen, Amplikongröße und Accession Number der analysierten Gene	33
Tabelle 2: Optimierung der Basisvakzine BCR-ABL/GM-CSF/dSLIM (V) durch die zusätzlichen Komponenten CD40-L, IL-12 oder IL-27	36
Tabelle 3: Komplexierung der Vakzine BCR-ABL/GM-CSF/IL-12/dSLIM	37
Tabelle 4: Abhängigkeit der Vakzineffizienz von in vivo CD4⁺-T-; CD8⁺-T- oder NK-Zelldepletion	38
Tabelle 5: Effizienz der DNA-Vakzine, des Tyrosinkinase-Inhibitors Imatinib mesylate, 6-MP und der Anthocyane	44
Tabelle 6: Vergleich der Vakzine-Monotherapie mit den Kombinationstherapien	46
Nomenklatur

Abkürzungen

for. forward
i.c. intracutan
i.m. intramuskulär
i.p. intraperitoneal
Kryo Kryoröhrchen
Ph⁺ Philadelphia-Chromosom positiv
p.o. per os
rev. reverse
s.c. subcutan

Akronyme

ABL Abelson murine leukeia virus
ADI acceptable daily intake
ALL Akute Lymphoblastische Leukämie
APC Allophycocyanin
APC Antigenpräsentierende Zelle
ATCC American Type Culture Collection
ATP Adenosintriphosphat
BCR Breakpoint Cluster Region
BFM Berlin Frankfurt Münster
CD40L CD40-Ligand
CFSE 5-(6-)-Carboxyfluorescein-Diacetat-Succinimidyl-Ester
CLL Chronisch lymphatische Leukämie
CML Chronisch myeloische Leukämie
CMV Cytomegalievirus
CpG Cytosin-(phosphat)-Guanin-Dinukleotid
CTL Zytotoxischer T-Lymphozyt
DC Dendritische Zelle
DMEM Dulbecco's Modified Eagle's Medium
DMSO Dimethylsulfoxid
DNA Desoxyribonukleinsäure
FACS Fluorescence-activated cell sorter
FBS bzw. FCS Fötales Bovines Serum bzw. Fetal Calf Serum
FITC Fluoresceinisothiocyanat
GM-CSF Granulocyte-macrophage colony-stimulating factor
HBSS Hank´s Buffered Salt Solution
HCC Hepatozelluläres Karzinom
HGPRT hypoxanthine-guanine phosphoribosyl-transferase
HPV humane Papillomviren
ICAM interzelluläre Adhäsionsmoleküle
ICE Interleukin Converting Enzyme
IFN-γ Interferon-gamma
Ig Immunglobulin
IL Interleukin
ing LK inguinale Lymphknoten
L-Glu L-Glutamin
LPS Lipopolysaccharid
M-BCR major breakpoint cluster region
m-BCR minor breakpoint cluster region
MHC Major histocompatibility complex
McCoys Medium benannt nach Name des Erfinders
MRD Minimal residual disease
NaCl Natriumchlorid
NK-Zellen Natürliche Killerzellen
ODN Oligodesoxynukleotide
PBMC Mononukleäre Zellen des peripheren Blutes
PBS Phosphate-Buffered Saline
PDGFR platelet derived growth factor receptor
PE Phycoerithrin
RAS Rat Sarcoma
RNA Ribonukleinsäuren
RPMI Roswell Park Memorial Institute
SDS Sequence Detection System
TCR T-Zellrezeptor
Th T-Helfer
Nomenklatur

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR</td>
<td>Toll-Like-Rezeptor</td>
</tr>
<tr>
<td>TNF(\alpha)</td>
<td>Tumor-Nekrose-Faktor-(\alpha)</td>
</tr>
<tr>
<td>TPMT</td>
<td>Thiopurin-Methyltransferase</td>
</tr>
<tr>
<td>TrisHCL</td>
<td>Tris(hydroxymethyl)aminomethanhydrochlorid</td>
</tr>
<tr>
<td>TVT</td>
<td>Tierärztlichen Vereinigung für Tierschutz</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>6-MP</td>
<td>6-Mercaptopurin</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XO</td>
<td>Xanthine Oxidase</td>
</tr>
</tbody>
</table>

Maßeinheiten

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>cm(^2)</td>
<td>Quadratzentimeter</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>µM</td>
<td>Mikromolar</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>Nm</td>
<td>Nanometer</td>
</tr>
</tbody>
</table>
Einleitung

1 Einleitung
1.1 Philadelphia-Chromosom-positive Akute Lymphoblastische Leukämie
1.1.1 Pathogenese

Einleitung

Während der Bruchpunkt auf Chromosom 9 zwischen Exon 1 und Exon 2 (a1 und a2) innerhalb des ABL-Gens liegt, gibt es auf Chromosom 22 drei mögliche Bruchpunkte, so dass Fusionsgene unterschiedlicher Größe sowie unterschiedlicher onkogener Potenz entstehen. Bei dem „major breakpoint“ (M-BCR) befindet sich der Bruchpunkt zwischen Exon 12 und 16 (b1-b5) entweder zwischen b2 und b3 (b2a2) oder zwischen b3 und b4 (b3a2). Beide Bruchpunkte führen zu einem Fusionsgen, das für das Fusionsprotein BCR-ABLp210 kodiert, wobei p210 insbesondere bei der chronisch myeloischen Leukämie (CML), aber in geringerem Maße auch bei der Philadelphia-Chromosom-positiven ALL (Ph+-ALL), nachgewiesen wird. Der Bruchpunkt des „minor breakpoint“ (m-BCR) liegt im ersten Intron von BCR (e1a2) und führt zur Expression des Ph+-ALL spezifischen BCR-ABLp185 [6]. Das Fusionsprotein BCR-ABLp230 stammt von dem Bruchpunkt µ-BCR (e19a2) und ist bei Patienten mit chronisch neutrophiler Leukämie nachzuweisen (Abbildung 1) [8].

Abbildung 1: Schematische Darstellung der BCR-ABL-Fusionsgene (Faderl et al. 1999)

Das Philadelphia-Chromosom entsteht aus einer balancierten reziproken Translokation zwischen Chromosom 9 und 22. Im oberen Teil der Abbildung sind die Gene bcr und abl mit Exonen (e1 bis e20 bzw. b1 bis b5 für bcr, a1 bis a11 für abl) und Bruchpunkten (→) dargestellt. Je nach Lage des Bruchpunktes von bcr (m-bcr, M-bcr, µ-bcr) entstehen die im unteren Teil der Abbildung aufgeführten Translokationen (e1a2, b2a2, b3a2, e19a2) mit den „Translokationsprodukten“ p190 BCR-ABL, p210 BCR-ABL oder p230BCR-ABL.
Die Fusion von BCR mit c-ABL führt unabhängig von dem Bruchpunkt zu einer konstitutiven Aktivierung der ABL-Tyrosinkinase [9], der Induktion der Tyrosinphosphorylierung sowie der Inhibition der RAS-Signaltransduktion in hämato-
poetischen Zellen. Bei 95% der Patienten mit CML und 25 bis 30% der adulten ALL-
Patienten bzw. 3 bis 5% der erkrankten Kinder kann die reziproke chromosomale Translokation t(9;22)(q34;q11) und ein Transkript des BCR-ABL Fusionsgens nach-
gewiesen werden [6;10]. Der Befund einer definierten chromosomalen Translokation,
die bei akuten Leukämien primär die Transkriptionsfaktoren kodierenden Gene
betrifft, korreliert signifikant mit dem Therapieerfolg und der Prognose [11]. Unter-
suchungen zeigten, dass die BCR-ABL Translokation ebenfalls bei 22 von 73
gesunden Erwachsenen und einem von 22 gesunden Kindern im Blut nachgewiesen
werden kann, wo sie nicht zu einer Leukämie führt [12]. In diesem Zusammenhang
ist die Fähigkeit des Immunsystems, Tumore zu erkennen und zu eliminieren,
Gegenstand wissenschaftlicher Debatten. Die Theorie der Immunosurveillance
(Immunüberwachung) wurde bereits 1909 von Paul Ehrlich aufgestellt und später von
Burnet und Thomas aufgegriffen [13,14]. Da es sich bei der vom Immunsystem ge-
steuerten Tumorabwehr um einen sehr komplexen Prozess handelt, wurde der
Begriff „Immunoediting“ eingeführt [15-17]. Der Prozess des „Immunoediting“ wird in
drei Phasen aufgeteilt, die als die drei „E’s“ des „Immunoediting“ bezeichnet werden:
Eliminierung, Equilibrium und „Escape“ [18]. Die Eliminierungsphase spiegelt das
klassische Konzept der Immunosurveillance wieder, indem die Tumorzellen durch
Effektor-Immunzellen zerstört werden. In der zweiten Phase, dem Equilibrium, be-
steht ein Gleichgewicht zwischen Proliferation und Eliminierung der Tumorzellen
durch das Immunsystem. Mit „Escape“ wird die Phase bezeichnet, in der die
Tumorzellen der immunologischen Überwachung entgehen, unkontrolliert proli-
ferieren und der Tumor in Folge dessen klinisch detektierbar wird [18].

1.1.2 Therapie der ALL

Die Standardtherapie der ALL im Kindesalter ist eine aus drei Blöcken bestehende
Polychemotherapie, die mit einer mehrere Wochen dauernden Induktionstherapie
beginnt. Durch die Gabe von Zytopstatika soll in dieser Phase eine komplette
Remission erreicht werden. Die zweite Phase, die Konsolidierungstherapie, dient
dazu, das Rezidiv-Risiko zu reduzieren. Auf die Konsolidierungsphase folgt die Re-
Einleitung

Induktionsphase, deren Zytoptatika-Kombinationen und Dosierung im Wesentlichen identisch mit denen der Induktionsphase sind. An diese drei Phasen schließt sich die Erhaltungsphase an, die die Rezidivinzidenz signifikant senkt. Während der Erhaltungsphase bekommen die Patienten eine orale Chemotherapie mit Methotrexat (20 mg/m²/Woche) und 6-Mercaptopurin (50 mg/m²/Tag). Die Erhaltungstherapie wird bis zwei Jahre nach Behandlungsbeginn weitergeführt [19,20]. Die bei sehr hohem Rückfallrisiko empfohlene Stammzelltransplantation ist nicht Bestandteil der Studie AIEOP-BFM ALL 2009 (Abbildung 2), sondern der Studie ALL SZT-BFM 2003.

Abbildung 2: Therapieübersicht nach der AIEOP-BFM ALL 2009 Studie

Einige Hochrisikopatienten benötigen eine Stammzelltransplantation (SZT) nach dem 3. HR-Block (Studie ALL SZT-BFM 2003). Lässt sich die Leukämie auch noch nach dem 3. HR-Block nachweisen, bekommen diese Patienten vor der SZT eine weitere intensivierte Chemotherapie (DNX-FLA).

EsPhALL

Abbildung 3: Therapieübersicht nach der EsPhALL Studie 2006 (Stand 25.09.2006)

Einleitung

1.2 Stand der Forschung

1.2.1 Immuntherapie maligner Erkrankungen

Einleitung

1.2.2 Der Weg zur effektiveren Vakzine

Im Gegensatz zur aktiven Impfung erfolgt die passive Impfung mit Antikörpern. Emil von Behring legte 1890 den Grundstein zur passiven Immunisierung indem er an Diphterie erkrankte Kinder mittels Serumtherapie heilen konnte. Das Prinzip der passiven Impfung ist, dass die applizierten Antikörper an die Erreger binden und das Immunsystem entsprechend schnell reagieren kann. Im Gegensatz zur aktiven Impfung hält die Wirkung der passiven Impfung maximal einige Monate an, da in der Regel kein „immunologisches Gedächtnis“ gebildet wird.

Bei der auch als Vakzinierung bezeichneten aktiven Impfung, werden entweder Lebendimpfstoffe, welche abgeschwächte aber noch vermehrungsfähige Erreger beinhalten oder Totimpfstoffe, d.h. abgetötete oder fragmentierte Erreger, appliziert, die nicht in der Lage sind, die Krankheit auszulösen. Mit Hilfe der Impfung wird die Produktion spezifischer Antikörper durch die B-Lymphozyten induziert. Im Anschluss an die primäre Immunantwort differenzieren sich einige Lymphozyten zu den sogenannten „Gedächtniszellen“, die den Schutz gegen die entsprechenden Antigene aufrechterhalten. Diese ermöglichen bei einem erneuten Kontakt mit dem Erreger eine wesentlich schnellere Immunantwort.

Zu den wirksamsten Maßnahmen zur Prävention bestimmter Krebserkrankungen zählt die präventive Impfung gegen onkogene Viren, wie humane Papillomviren (HPV) sowie Hepatitis B-Viren. Die Impfung gegen Hepatitis-B-Viren senkt das Risiko eines Leberzellkarzinoms (hepatozelluläres Karzinom, HCC) erheblich, so dass in Taiwan die HCC-Inzidenz erheblich gesenkt werden konnte [27]. Ferner ist das
Einleitung

Zervixkarzinom, die dritt häufigste Krebserkrankung der Frau, ein impfräventabler Tumor. Bereits seit Ende der 1970er Jahre ist bekannt, dass das Zervixkarzinom zu den durch HPV induzierten Krebserkrankungen gehört. 2006 wurde der erste Impfstoff gegen humane Papillomviren (HPV) zugelassen [28].

effiziente Alternativen in Form nicht viraler Gentranfermethoden, wie die Elektroporation oder den ballistischen Transfer (Gene Gun), deren Sicherheit und Funktionalität bereits verschiedene Arbeitsgruppen nachwiesen [38,39], gesucht. Trotz der Sicherheitsvorteile der nicht-viralen Transfermethoden gegenüber viralen Vektoren, wird aufgrund der wesentlich besseren Gentransfer-Effizienz in klinischen Studien nach wie vor auch mit viralen Vektorsystemen gearbeitet [40,41].

Im Vergleich zu den oben beschriebenen Leukämiezellvakzinen sind DNA-Vakzinen wesentlich einfacher und schneller herzustellen, kodieren allerdings lediglich für ein begrenztes Spektrum antigener Peptide, während Leukämiezellvakzinen über das komplette Antigenspektrum verfügen.

Bei der DNA-Vakzinierung werden Vektoren (Plasmide) verwendet, die als Transportvehikel zur Übertragung der DNA fungieren. Für die DNA-Vakzine wird das „Gene of interest“, das für ein leukämiespezifisches Antigen oder pro-inflammatorische Moleküle kodiert, in das Plasmid kloniert. Die Bestandteile des Plasmidvektors sind der Replikationsursprung, ein Antibiotika-Resistenz-Gen, ein Promoter für eine optimale Expression des Proteins in Säugerzellen sowie eine Polyadenylierungs-Sequenz, welche der Stabilisierung dient [42].

Die Prozessierung und Präsentation des kodierten Antigens kann über verschiedene Wege erfolgen [42]. Eine Möglichkeit ist die direkte Transfektion von professionellen Antigenpräsentierenden-Zellen (APCs), wie Dendritischen Zellen (DCs), welche nach Wanderung in die drainierenden Lymphknoten einer schnellen Antigenpräsentation dienen [43, 44]. Bei dem Weg des Cross-Priming werden somatische Zellen und/oder professionelle APCs transfiziert, das sezernierte Protein von anderen professionellen APCs aufgenommen und anschließend den T-Zellen präsentiert [45]. Erfolgt die Vakzinierung durch ballistischen Gentransfer, werden die in der Epidermis vorkommenden Keratinozyten und Dendritischen Zellen direkt transfiziert [46-48]. Hier erfolgt die Präsentation entweder direkt über die transfizierten DCs oder durch Cross-Präsentation. Bei der intramuskulären (i.m.) Applikation der Vakzine werden hauptsächlich Myozyten transfiziert [49]. Verglichen mit der intramuskulären Vakzinierung stellt die intradermale Vakzinierung den effizienteren Applikationsmodus dar [43]. Nachdem verschiedene Studien zeigen konnten, dass die Immunisierung mit Plasmid-DNA, die für das leukämiespezifische Antigen kodiert und in vivo exprimiert wird, wirksam ist, konnte nachgewiesen werden, dass die Ko-
Einleitung

Expression von Zytokinen, ko-stimulatorischen Molekülen oder Adhäsionsmolekülen die Vakzineffizienz verstärkt [50]. Bei einer Ko-Expression der Zytokine IL-2 und IL-12 [51,52], B7 als kostimulatorisches Molekül [53] und ICAM-1 und LAF-3 als Adhäsionsmoleküle [54] konnten verstärkte Immunantworten beobachtet werden.

Ferner wird die Vakzineffizienz durch nicht methylierte CpG-Motive, die für ihre immunstimulatorische Fähigkeit bekannt sind, verstärkt.

1.3 Zielsetzung und Fragestellungen

Die Langzeitheilungschancen von Kindern mit ALL konnten wie die Daten von 12 ALL-Studiengruppen belegen [65-76], in den vergangenen drei bis vier Jahrzehnten signifikant verbessert werden. Im Gegensatz hierzu haben Patienten mit Rezidiv einer Philadelphia Chromosom positiven akuten lymphoblastischen Leukämie (Ph⁺ALL) eine äußerst ungünstige Prognose und nur 35 bis 40% dieser Kinder können kurativ behandelt werden [3,4]. In der Regel kann die Leukämielast durch Polychemotherapie zwar deutlich reduziert, aber nicht immer vollständig eliminiert werden. Daher kommt dem Immunsystem grundsätzlich eine bedeutende Rolle bei der Eliminierung residueller Lymphoblasten zu. Im Anschluss an die Polychemotherapie sollte die Erhaltungstherapie daher die Erhaltungstherapie daher die immunologischen Mechanismen verstärken, die eine dauerhafte Remission erst ermöglichen.

Das Ziel dieser Dissertation war die Etablierung einer neoadjuvanten Vakzintherapie zur Rezidivprophylaxe im syngenen BM185 Mausmodell. Verschiedene Arbeitsgruppen zeigten, dass mit BCR-ABLp210 Bruchpunktteptide gepulste Dendritische Zellen, durch die Präsentation dieser Peptide auf MHC Klasse I Molekülen spezifische nicht-alloreaktive Zytotoxische T-Zellen gegen die CML induzieren [77-79]. Die Vakzinierung von CML-Patienten mit BCR-ABLp210 Bruchpunktteptiden führte zu einer spezifischen Immunantwort [80]. Bis her liegen jedoch nur wenige Daten zu Vakzinierung mit translokationsspezifischer BCR-ABLp185 DNA und deren Potential spezifische CTLs gegen Ph⁺ ALL zu induzieren vor. Die vorliegende Dissertation konzentriert sich daher und angesichts der Vorteile von MDGE-Vektoren gegenüber Plasmid-Vektoren auf die DNA-Vakzinierung mit dem BCR-ABLp185 bruchpunktspezifischen MIDGE-Vektor. Im Rahmen dieser Zielsetzung ergeben sich folgende Fragestellungen.

1) Wie kann die Effizienz der Vakzine optimiert werden?
2) Welche immunologischen Mechanismen bzw. Zellpopulationen sind an dem antileukämischen Effekt der Vakzine beteiligt?
3) Kann minimal residual disease (MRD) durch eine DNA-Vakzine therapiert werden?
4) Ist die DNA-Vakzine mit der chemotherapeutischen Erhaltungstherapie kombinierbar oder kompromittiert die Chemotherapie mit 6-MP die Immunisierung?
5) Besteht ein Synergismus zwischen der DNA-Vakzine und den Anthozyanen?
2 Material und Methoden

2.1 Material

2.1.1 Geräte

- Abdampf-Wasserbad 1023 GFL
 Münstermann u. Scheel
- Autoklav Systec 2540EL
 Systec
- Brutschrank Labotect Inkubator C200
 Labotect
- Dual Timer Model No. TR118
 Oregon Scientific
- Elektrische Pipettierhilfe Easypet® 4421 9V DC
 Eppendorf
- FACS-Canto
 BD
- Gelkammer
 PEQLAB Biotechnology
- Hettich Zentrifugen Universal 16A
 Hettich
- Hettich Zentrifugen Universal 320
 Hettich
- Heizblock Unitek HB-130
 Hassa Laborbedarf
- Labnet Minizentrifuge
 Neolab (Hassa)
- Laborwaage PT300-*D2
 Sartorius
- Magnetrührer IKAMAG® RH Basic
 IKA
- Mikroskop Will Wilovert
 Hund Wetzlar
- MJ Research PTC-200 ThermoCycler DNA Engine
 Peltier
- Tecan Infinite F200 Fluoreszenzmessgerät
 Tecan
- Vortexer JK Minishaker Taquara RJ 22713-000
 IKA (Werner Hassa)
- Werkbank Biological Safety Cabinets Class II
 NUAIR

2.1.2 Lösungen/Medien/Puffer/Reagenzien

- Agarose 100g
 Roth
- Alamar Blue Cell viability Reagent
 Invitrogen
- Aqua Delta Select Spüllösung
 Delta Select
- Desinfektionsmittel Softasept N 250ml
 B Braun
- DMSO Dimethyl Sulphoxide 5x5ml D2650
 Sigma
- dNTP 0.5 mM
 Promega
- Dulbecco’s PBS (1X) without Ca/Mg
 PAA
- Dulbecco’s PBS (1X) w/o Ca/Mg
 Biochrom AG
- FBS
 Biochrom AG
Material und Methoden

Hanks’ Balanced Salt Solution (HBSS) (1X); GIBCO™
Helipur® 100ml
Heparin-Natrium-5000-ratiopharm Antithrombotikum
L-Glutamin 200mM 100ml
6x Loading Dye Solution 0,1ml #R0619
Lysisbuffer
McCoy’s mit 2,2g/l NaHCO₃ F1015
2-Mercaptoethanol mind. 98% 100ml M3148
Penicillin/Streptomycin 10.000Units/ml
Phosphat Buffered Saline pH 7.4 10stk P-5368
Red Blood Cell Lysing Buffer
100 U reverse Transkriptase Superskript II RNase H-
RPMI1640 mit 5mg/l Phenolrot 2,0g/l NaHCO₃
T4 DNA Ligase M0202S
TRIZMA® base T1503
Trypanblau 100ml 0,4%

Substanzen für in vivo und/oder in vitro Experimente:
OptiBerry® BX600
Cyanidin 3-O-Rutinosid C₂₇H₃₁ClO₁₅
Delphinidin 3-Glucosid C₂₁H₂₁ClO₁₂
dSLIM
MIDGE BCR-ABL
MIDGE GM-CSF
MIDGE IL-12p35
MIDGE IL-12p40
MIDGE IL-27
MIDGE CD40-L
6-MP Puri Nethol® Mercaptopurin 50mg Ch.-B.906527
MTX Lantarel® FS 15mg Methotrexat-Dinatrium
STI571 (Imatinib) CGP057148B-AG-6 SAP No 149271

Invitrogen
B. Braun Melsungen AG
Ratiopharm
PromoCell
Fermentas
Sigma Aldrich
Biochrom AG
Sigma
Gibco
Sigma
Sigma
Biochrom AG
BioLabs
Sigma
Gibco-Invitrogen
Interhealth Nutraceuticals Inc., Benicia, USA
PhytoPlan GmbH
PhytoPlan GmbH
Mologen AG
Mologen AG
Mologen AG
Mologen AG
Mologen AG
Mologen AG
GlaxoSmithKline
Wyeth
Novartis Pharma AG
Material und Methoden

Substanzen für die Narkose:
- Isofluran 250ml HDG9623
 Baxter
- Ketanest® S Esketaminhydrochlorid 25mg/ml
 Pfizer
- NaCl Natriumchlorid-Infusionslösung 0,9%
 Berlin Chemie
- Rompun 2% Xylazinhydrochlorid
 Bayer Healthcare

Assay-Kits:
- Caspase-3/CPP32 Fluorometric Assay Kit
 BioVision
- Caspase-8/FLICE Fluorometric Assay Kit
 BioVision
- Caspase-9 Fluorometric Assay Kit
 BioVision
- innuPrep RNA Mini Kit
 Analytic Jena AG
- Myco Alert® sample Kit
 Lonza
- Venor®GeM Mycoplasma Detection Kit
 Minerva biolabs

2.1.3 Verbrauchs-/Labormaterialien

- BD Plastipak 1ml
 Becton Dickinson GmbH
- BD Discardit II 5ml
 Becton Dickinson GmbH
- Biosphere Fiter Tips 1250µl; 200µl; 20µl
 Sarstedt
- C-Chip Disposable Hemocytometer sterile
 PAA
- Cryo. S sterile PP mit Schraubverschluß
 Greiner Bio One
- Einmal-Injektionskanüle Gr.18 G26x1” 0,45x25mm
 B Braun
- FACS Canto Flow Cytometer
 BD Biosciences
- FACS-Röhrchen 5ml 75x12mm PS
 Sarstedt
- Falcon 15ml; 50ml Cellstar Tubes
 Greiner Bio One GmbH
- Gene Ruler™ 100bp DNA Ladder ready to use 0,1µg/µl
 Fermentas
- Glasflasche 100ml, 250ml, 500ml, 1000ml
 Schott Duran
- Handschuhe Peha soft powderfree vinyl
 Hartmann
- Handschuhe Nitrit Venyl
 Hartmann
- Kaliper 0-150mm Electronic Digital Caliper
 Whitworth
- Kanüle 30G½; 25G5/8; 24G1; 27G¾; 20G1½
 BD Microlance
- MF-Millipore GS Filter Unit 0,22µm
 Millipore
- Microvette® CB300
 Sarstedt
- Multipette Plus
 Eppendorf
- Neubauer improved Zählkammer
 REF0640010 Marienfeld
Material und Methoden

Objektträger Menzel-Gläser 76x26mm ISO 8037/1
Pipette 2,5µl; 10µl; 100µl; 200µl und 1000µl
Pipettenspitze für Multipette 2.5 ml; 25ml; 50ml
Pistill
Plastibrand Messbecher 1000ml
PS Röhrchen GLKL 0,6ml 6,0/38mm
Reaktionsgefäß 0,5ml; 1,5ml; 2,0ml
Serologische Pipette 10ml; 25ml
Skalpell Art. Nr. 3607.1
Teflon-Einwegsonde
Trockenperlen mit Farbindikator 1000ml
Vorfrierer Cryo 1°C Freezing Container
96er Well-Platte Cellstar TC-Plate
Zellkulturschale 175cm², 75cm², 25cm²
Zellsiebe 40µm blue BD cell strainer

2.1.4 Antikörper

Biotin anti-mouse IgM (II/41) 0,5mg/ml
APC anti-mouse CD19 (1D3) 0,2mg/ml
APC anti-mouse CD4 (L3T4) (RM4-5) 0,2mg/ml
Streptavidin-PE 0,5mg/ml
PE anti-mouse CD8a (Ly-2) (53-6.7) 0,2mg/ml
PE Rat Anti-Mouse CD49b (DX5) 0,2mg/ml
FITC anti-mouse CD3e (CD3 ε chain) (145-2C11) 0,5mg/ml
PE rat IgG2a,κ isotype control 0,2mg/ml
APC Rat IgG2a,κ isotype control 0,2mg/ml
FITC Hamster IgG1,κ isotype control (anti-TNP) 0,5mg/ml
anti-mouse CD4 (L3T4) Clone GK1.5 eBioscience NatuTec
anti-mouse CD8a (Ly-2) Clone 53-6.7 eBioscience NatuTec
Rabbit Anti-Mouse/Rat Asialo GM1 CL8955 Cedarlane (antibodies-online)
→NK-Zell Antikörper
2.1.5 Zelllinien

Die Leukämiezelllinie BM185 wurde durch retrovirale Transduktion von Balb/c Knochenmarkstammzellen mit dem humanen 185kDa BCR-ABL-Fusionsgen generiert [36, 81, 82]. Der Phänotyp dieser Zelllinie entspricht einer prä-B-ALL mit Expression des 185kDa BCR-ABL Fusionsproteins (Abbildung 4a). Die intravenöse Injektion von 1000 Zellen führt innerhalb von 1 bis 2 Wochen zur prä-B-ALL und nach 3 Wochen zum Tod. Die subkutane Injektion induziert innerhalb von 1 bis 2 Wochen einen Tumor mit einem Durchmesser von über 20mm, der ca. 1 bis 2 Wochen nach Tumorentstehung ebenfalls zum Tod führt.

2.1.6 Syngenes BM185/Balb/c- Mausmodell

Alle Tierexperimente wurden von der Ethikkommission und dem Ministerium für Landwirtschaft, Umwelt und ländliche Räume Schleswig Holstein genehmigt. Für die Durchführung der Experimente wurden sechs bis acht Wochen alte weibliche Balb/c Mäuse (Charles River Laboratories Sulzfeld) mit einem Gewicht von 16 bis 18 g nach einer Eingewöhnungsphase von 1 bis 2 Wochen verwendet und in Makrolonkäfigen des Typ III in offener Haltung unter Standardbedingungen gehalten.

Das syngene BM185-Balb/c Mausmodell (Abbildung 4) wurde von Witte et al. [81] und Stripecke et al. [36] entwickelt. Es ist syngenes und immunkompetentes Mausmodell für die Philadelphia Chromosom positive ALL, das sowohl für die Vakzinierung mit genmodifizierten Leukämiezellen als auch translokationspezifischer DNA verwendet werden kann. Das Modell basiert auf der Leukämie-
zelllinie BM185, die durch retrovirale Transduktion von Balb/c Knochenmarkstammzellen mit dem humanen BCR-ABLp185 Fusionsgen generiert wurde (Abbildung 4a) und den Phänotyp einer prä-B-ALL zeigt [36,81].

Abbildung 4: Syngenes BM185/Balb/c-Mausmodell
a) Generierung der murinen Leukämiezelllinie BM185 (prä-B-ALL) b) protektiver Modus und c) therapeutischer Modus der Vakzinierung. Im protektiven Modus erfolgte die intrakutane Vakzinierung an den Tagen -28 und -7 und im therapeutischen Modus an den Tagen 2 und 9. An Tag 0 erhielten die Mäuse den letalen Leukämiechallenge, der bei i.v.-Applikation innerhalb von 3 Wochen zum Tod führt und bei s.c. Applikation einen Tumor von > 2cm Durchmesser induziert.
Material und Methoden

2.1.7 MIDGE-Vektor

Der MIDGE-Vektor ist ein nicht-viraler Expressionsvektor, dessen doppelsträngiger Stamm sich aus dem CMV-Promotor, dem Transgen sowie einem Poly-A-Schwanz zusammensetzt. Der lineare DNA-Doppelstrang wird an beiden Enden durch einzelsträngige Haarnadelbereiche aus vier Thymidinnukleotiden stabilisiert, was die Inaktivierung durch Exonukleasen verhindert (Abbildung 5).

Die Sequenz des MIDGE-BCR-ABL Vektors kodiert für ein t(9;22) translokationspezifisches Peptid des humanen Fusionsprotein BCR-ABLp185 (5´-MFRDKSRSPS QNSQQSFDSSSPPTPQPCHKRHRHPVVSATEIVGVRKTGQIWPNDGEGAFHGDA ---EALQRPV ASDFEPQGLSE-stop -3´) mit Bruchpunkt zwischen dem BCR Exon 1

Abbildung 5: Elemente des MIDGE-Vektors (Minimalistic immunogenically defined gene expression) (Quelle:Mologen AG)

c Mologen AG, Berlin
und ABL Exon 2. Das translokationsspezifische Peptid AFHGDA–EAL besitzt die Ankernukleotide Phenylalanin (Position 2) und Leucin (Position 9), die für die Bindung an MHC Klasse I (H2-Kd) der Balb/c-Mäuse notwendig sind. Ferner wurden MIDGE-Vekoren verwendet, die für murines GM-CSF sowie murines IL-12 kodieren. Der murine IL-12 MIDGE-Vektor ist ein aus MIDGE IL-12p35 und MIDGE IL-12p40 bestehendes Heterodimer.

2.1.8 dSLIM

Das dSLIM-Molekül (double Stem Loop Immunomodulator) besteht ausschließlich aus nicht kodierender DNA. Die beiden einzelsträngigen „Loops“ tragen jeweils drei nicht methylierte CpG-Motive und sind über einen doppelsträngigen Stamm miteinander verbunden (siehe Abbildung 6).

Abbildung 6: Immunmodulator dSLIM (double stem loop immunomodulator)
(Quelle: Mologen AG)

Material und Methoden

2.1.9 Poly-(β-Aminoester)

Abbildung 7: Poly-(β-Aminoester)

a) Synthese des Poly-(β-Aminoester) C32-117 aus einem Diacrylat- und Amin-Monomer
b) DNA-Polymer-Nanopartikel (Anderson et al. 2004 PNAS 101:16028)

Bei der Synthese „großer Bibliotheken“ von Poly(β-Aminoestern) waren die fünf wichtigsten Charakteristika das Molekulargewicht, die Partikelgröße nach Komplexierung, die Oberflächenladung, das Polymer/DNA-Verhältnis und die
Material und Methoden

Transfektions-Effizienz [88]. Es zeigte sich, dass sowohl das Molekulargewicht als auch das Polymer/DNA Verhältnis für die Transfektionseffizienz ausschlaggebend sind [88, 89]. Das Molekulargewicht des Polymers ist abhängig von der Anzahl der Polymer-Kationen/DNA-Anionen Interaktionen und beeinflusst die Bindungsaffinität vom Polymer zur DNA. Das Polymer/DNA-Verhältnis spiegelt das Ladungsverhältnis des positiv geladenen Polymer und negativ geladener DNA wieder, wodurch Transfektionsbedingungen, wie die Stabilität und die zelluläre Aufnahme des Komplexes, beeinflusst werden [88, 90].

Die Komplexierung mit dem Poly(β-Aminoester) C32-117 (Abbildung 7) (1,3-diaminopentane-terminated poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) führte in vitro als auch in vivo zu einer gegenüber nicht komplexierten DNA bis zu 26fach höheren Transfektionsrate [85, 87, 91].

2.1.10 Leukämiespezifische DNA-Vakzine

2.1.11 Tyrosinkinase-Inhibitor Imatinib mesylate

Abbildung 8: Strukturformel von Imatinib mesylate
2.1.12 6-Mercaptopurin

2.1.13 Anthocyane

Anthocyane (griech. anthos = Blüte, kyanos = blau) sind wasserlösliche Pflanzenfarbstoffe, die zu den Flavonoiden gehören. Im Zellsaft von Blüten, Früchten, Samen, häufig auch Sprossachsen und Blättern von Landpflanzen führen Anthocyane zur typischen blauschwarzen bis roten Färbung der Pflanzen. Sowohl die Struktur als auch der pH-Wert der Anthocyane haben Einfluss auf die Absorptionsmaxima (465 bis 560 nm) und folglich auf die Farbe (pH1-3 rot, pH4-6 farblos, pH>6 violett-blau). Anthocyane sind Glykoside, deren zuckerfreie Anthocyanidine (Aglykone)
die Farbträger darstellen. Die bekanntesten und am häufigsten vorkommenden Formen sind Cyanidin, Delphinidin, Malvidin, Pelargonidin, Peonidin und Petunidin. Laut „Joint Expert Committee of Food Additives“ der WHO besitzen Anthocyane lediglich eine sehr geringe Toxizität, sind jedoch weder reproduktionstoxisch noch mutagen, so dass es weder eine Mengenbeschränkung als Zusatzstoff (quantum satis) noch einen ADI-Wert (acceptable daily intake) gibt und Anthocyane als Lebensmittelzusatzstoff E163 zugelassen sind.

In Pflanzen erfüllen Anthocyane mehrere Aufgaben. Einerseits schützen sie diese aufgrund der Absorption von UV-Strahlen und verhindern damit Schäden in der Zelle und der DNA. Darüber hinaus sind Anthocyane Antioxidantien, die bei oxidativem Stress entstehende freie Radikale binden.

Die aus der schwarzen Johannisbeere *Ribes nigrum* isolierten Anthocyane Cyanidin-3-rutinosid (C_{27}H_{31}ClO_{15}) und Delphinidin-3-glucosid (C_{21}H_{21}ClO_{12}) wurden von der Firma Phytoplan (Heidelberg) bezogen (Abbildung 9). Der Beerenextrakt OptiBerry® BX-600 ist eine standarisierte Mischung aus dem Extrakt der wilden Blaubeere *Vaccinium angustifolium*, Extrakt der Erdbeere *Fragaria chiloensis*, der Moosbeere *Vaccinium macrocarpon*, Extrakt der wilden Heidelbeere *Vaccinium myrtillus*, der Holunderbeere *Sambucus nigra* sowie Extrakt der Himbeere *Rubus idaeus*. Der Extrakt setzt sich aus über 80mg/g Anthocyangen zusammen, darunter sind Cyanidin (> 30mg/g), Delphinidin (> 30mg/g), Malvidin (>8mg/g) sowie Petunidin (>8mg/g).

Abbildung 9: Anthocyane
a) Cyanidin-3-rutinosid (C_{27}H_{31}ClO_{15}), b) Delphinidin-3-glucosid (C_{21}H_{21}ClO_{12})
2.2 Methoden

2.2.1 Zellkultur

Die Leukämiezelllinien wurden in RPMI1640 Medium mit 5% FBS (BM185) bzw. 10% FBS (K562), 1% Penicillin/Streptomycin, 1% L-Glutamin sowie 0.02% β-Mercapto-ethanol im Brutschrank bei 37°C, 5% CO_2 und 95% Luftfeuchtigkeit kultiviert und alle zwei bis drei Tage auf 0,5 bis 0,3 x10^6 vitale Zellen/ml (BM185) und 0.1 bis 0.5 x 10^6 Zellen/ml (K562) eingestellt.

Zur Bestimmung der Lebendzellzahl wurden 20 µl Zellsuspension mit 20 µl Trypanblau gemischt und 10 µl dieser Mischung auf die Neubauer Zählkammer gegeben. Anhand der Trypanblaufärbung wurden die lebenden und toten Zellen (blau) in allen vier großen Quadraten (4 GQ) gezählt und die Lebendzellzahl nach Gleichung (1) berechnet:

\[
\text{Anzahl Zellen} = \frac{\text{Anzahl lebende Zellen in 4 GQ} \times \text{Verdünnungsfaktor}}{4} \times 10^6
\]

Die Zellkulturen wurden in regelmäßigen Abständen mit Hilfe des Mycoplasmen-Test (Venor®GeM) auf Kontaminationen überprüft. Der nach Herstellerangaben durchgeführte Test basierte auf der Polymerase-Kettenreaktion, die eine schnelle und sensitive Überprüfung der Zellkultur ermöglicht.

Das für die Kryokonservierung der Zellen verwendete Einfriermedium setzte sich aus 70% Medium (RPMI1640), 20% FBS und 10% DMSO zusammen und wurde vor Gebrauch steril filtriert. Die erforderliche Menge Zellsuspension (10 Mio. BM185-Zellen/ml; 5 bis 7 Mio. Zellen/ml HL-60 bzw. K562) wurde 5 Minuten bei 500*g und einer Temperatur von 4°C zentrifugiert, das Pellet in vorgekühltem Einfriermedium resuspendiert und 1 ml in jedes Kryoröhrchen überführt. Die Zellen lagerten für 24 bis 48 Stunden bei -80°C und wurden anschließend in Flüssigstickstoff überführt.

Bei Bedarf wurden die gefrorenen Zellen zügig im vorgewärmten Wasserbad aufgetaut und mit Medium gewaschen. Anschließend wurde das Zellpellet in 5 ml Medium resuspendiert und in einer 25 cm² Zellkulturflasche im Brutschrank kultiviert.
2.2.2 Narkose

2.2.3 In vivo Zelldepletion

Sowohl die CD4⁺- als auch die CD8⁺-T-Zelldepletion erfolgte durch intraperitoneale Applikation von 200 µl des Antikörpers anti-mouse CD4 (L3T4) Klon GK1.5 bzw. anti-mouse CD8a (Ly-2) an den Tagen -35,-32,-29,-24,-21,-17,-14,-11,-7,-3. Die NK-Zellen wurden mittels intraperitonealer Injektion von 150 µl des polyklonalen Antikörpers Rabbit Anti-mouse/Rat Asialo GM1 an den oben genannten Tagen und zusätzlich an Tag -1,+2,+5 und +9 depletiert. Als Narkose für die Applikation der Depletionsantikörper diente Isofluran.
2.2.4 Vakzinierung

2.2.5 Komplexierung der Vakzine mit Poly-(β-aminoestern)

Für die Komplexierung der DNA-Vakzine mit Poly-(β-aminoestern) blieben die Polymere bis zum Gebrauch gefroren. Um die Anzahl der Frieren/Auftauen-Zyklen so gering wie möglich zu halten, wurden die Polymere in den Experimenten in entsprechend kleinen Mengen aliquotiert und eingefroren. Da Polymere unter wäsrrigen Bedingungen degradieren, wurden sie stets mit Trockenmittel gelagert. Die Verkapselung der Vakzine erfolgte für jede Maus separat und die anschließende Vakzinierung wurde innerhalb von weniger als 30 Minuten durchgeführt.

Zunächst wurde ein großes Aliquot des Polymers im Trockenbehälter aufgetaut (10 Minuten) und gründlich gemischt. Je Ansatz wurden anschließend 36 µl des Polymers in mehrere kleine Röhrchen (400 bis 500 µl) gefüllt. Die für die Ansätze aliquotierten Polymerröhrchen wurden entweder für kurze Zeit (< 1 Stunde) bei Raumtemperatur (RT) im Trockenapparat oder bei längerer Wartezeit im Gefrierschrank (-20°C) mit Trockenmittel aufbewahrt. Um die Verkapselung zu gewährleisten, wurde die DNA im Verhältnis 3:1 mit dem Polymer gemischt.

Von jedem MIDGE-Vektor (BCR-ABL, GM-CSF, IL-12p35, IL-12p40) wurden 25 µg (100 µg total) in ein Röhrchen gegeben und soviel 125 mM Natriumazetat-Lösung
Material und Methoden

(NaAc-Lsg.) zugefügt, dass die Endkonzentration 25 mM NaAc und das Endvolumen 125 µl betrug. Anschließend wurden 125 µl der Polymer-Lösung, bestehend aus 36 µl Polymer und 114 µl 25 mM NaAc, zu der 125 µl MIDGE-Vektor-Lösung pipettiert. Diese wurde für 10 Minuten bei RT inkubiert und im Anschluss 50 µl PBS beziehungsweise dSLIMs (1 µg/µl) zu dem Gemisch gegeben und jeder Maus 300 µl intrakutan injiziert.

2.2.6 Leukämiechallenge

Für die subkutane Applikation von 1x10³ Zellen (10 x LD50) der syngenen Ph⁺ ALL Zelllinie BM185 in die rasierte linke Glutealregion am Tag 0, befanden sich die BM185 Zellen im exponentiellen Wachstum mit einer Vitalität von mindestens 95%. Der Leukämiechallenge wurde unmittelbar vor Gebrauch angesetzt, indem eine ausreichende Menge Zellsuspension zentrifugiert, anschließend mit HBSS+Heparin (20 U/ml) gewaschen und das Zellpellet in 5 ml HBSS mit Heparin (20 U/ml) resuspendiert wurde. Nach der Zellzählung wurde aus der 5 ml Stammlösung der Challenge mit 1x10³ BM185-Zellen/100 µl hergestellt. Alle Schritte erfolgten auf Eis. Nach dem Leukämiechallenge wurden zweimal wöchentlich das Gewicht und täglich das Tumorwachstum der Mäuse kontrolliert. Dazu wurden zwei perpendikuläre Durchmesser des Tumors gemessen und das Tumorvolume nach der Formel

\[TV = \frac{d^2 \times D}{2}\]

(d = kleinstes, D = größter Durchmesser in mm) berechnet. Erreichte der Tumor ein Volumen von über 6000mm² oder war das Allgemeinbefinden der Mäuse schlecht (Gewichtsverlust >1 g innerhalb einer Woche) wurden die Mäuse getötet.

2.2.7 Therapie

Im Anschluss an den letalen Leukämiechallenge erhielten die Mäuse unterschiedliche Therapien. Von Tag 1 bis 21 nach dem Leukämiechallenge erhielten die Mäuse unter Inhalationsnarkose tägliche intraperitoneale (i.p.) Applikationen von 25 mg/kg Imatinib mesylate bzw. 50 mg/kg Cyanidin-3-Rutinosid in 200 µl Injektionsvolumen. Die tägliche orale Gabe von 50 mg pro m² Körperoberfläche 6-MP (Dosis an das ALL BFM 2009 Protokoll angepasst) bzw. 500 mg/kg/Tag Beerenextrakt erfolgte ab Tag 1 über einen Zeitraum von 21 Tagen. Mit Hilfe der flexiblen Teflon-Magensonde
konnten der Maus 100 µl der 6-MP-Lösung bzw. der Beerenextrakt-Lösung gastral appliziert werden.

Berechnung der Körperoberfläche: \[\sqrt{\frac{\text{Gewicht [kg]} \times \text{Größe [cm]}}{3600}}\]

2.2.8 Bestimmung der CD4\(^+\), CD8\(^+\) T-Zellen und NK-Zellen

Für die wöchentliche Blutentnahme wurden die Vorgaben (Tierärztlichen Vereinigung für Tierschutz) der maximalen Entnahme von 7,5% des Gesamtblutvolumens eingehalten. Zu Beginn der Experimente waren die Mäuse 6 bis 8 Wochen alt und wogen ca. 17 g. Während der Experimente, Zeitraum von 60-90 Tagen, stieg das Körpergewicht auf bis zu 20 g an, so dass den Mäusen maximal 200 µl Blut pro Woche entnommen wurde. Zunächst wurde der Schwanz mit Alkohol desinfiziert und anschließend mit einer Injektionsnadel die Vene der Schwanzspitze punktiert. Die Entnahme des erforderlichen Blutvolumens erfolgte durch leichtes Massieren in Richtung Schwanzende, wo das aus der Schwanzvene tretende Blut mit einer Microvette aufgenommen und bis zur weiteren Bearbeitung auf Eis gestellt wurde. Der Maus wurden 50 µl Blut mit einer Microvette mit Heparin aus der Schwanzvene entnommen (s.o.) und mit 1 ml PBS in ein 15ml Reaktionsröhrchen überführt. Alle Schritte erfolgten auf Eis. Anschließend erfolgte ein 5 Minuten Zentrifugationsschritt der Blutprobe bei 4°C und 500*g. Der Überstand wurde dekantiert, das Zellpellet mit 2 ml Red Blood Cell Lysing Buffer pro 50 µl Blut resuspendiert und für 10 bis 15 Minuten bei Raumtemperatur inkubiert. Nach der Lyse folgte ein weiterer Zentrifugationsschritt bei 4°C und 500*g. Das Pelle t wurde für die spätere FACS-Messung mit 100 µl PBS (0.01 M) resuspendiert und in ein FACS-Röhrchen überführt.

Die Effizienz der unter 2.2.3 beschriebenen Zelldepletion wurde über einen Zeitraum von 14 Wochen durch die Messung von Blutproben von 6 parallel zum Experiment zusätzlich depletierten Mäusen am Durchflußzytometer überprüft. Für den Nachweis der CD4\(^+\)-T-Zelldepletion wurden die Blutproben mit 5 µl APC konjugiertem anti-mouse CD4 und 2 µl Fluoresceinisothiocyanat (FITC)-konjugiertem anti-mouse CD3e markiert. Die Markierung der Blutproben der CD8\(^+\)-T-Zelldepletion erfolgte mit 5 µl phycoerythrin (PE)-konjugiertem anti-mouse CD8a sowie 2 µl FITC-konjugiertem
Material und Methoden

anti-mouse CD3e. Die Markierung mit 5 µl phycoerythrin (PE) konjugiertem rat anti-mouse CD49b und 2 µl FITC-konjugiertem anti-mouse CD3e diente dem Nachweis der erfolgreichen NK-Zelldepletion. Der bei allen Proben verwendete FITC-konjugierte CD3-Antikörper ermöglichte die Differenzierung zwischen CD3⁺ T-Zellen und CD3⁻ NK-Zellen. Nach dem Mischen wurden die markierten Proben für 20 Minuten im Dunkeln auf Eis inkubiert und anschließend mit 2ml PBS für 5 Minuten bei 250°g zentrifugiert. Im Anschluss wurden die in 100µl PBS resuspendierten Proben mit dem Durchflusszytometer (FACS-Canto) gemessen. Die Detektion der Lymphozyten erfolgte anhand des Vorwärtsstreulichtes (FSC = Forward Scatter), das ein Maß für das Volumen der Zelle ist und des Seitwärtsstreulichtes (SSC = Sidewards Scatter), das ein Maß für die Granularität der Zelle ist. Für die Auswertung wurden die Daten von 10.000 Ereignissen erfasst.

2.2.9 Alamar Blue Proliferationsassay

Mit Hilfe des Alamar Blue Assays wurde die Proliferation der Leukämiezelllinien BM185 und K562 nach Behandlung mit Imatinib mesylate, 6-MP, Cyanidin-3-Rutinosid, Delphinidin-3-Glucosid (Endkonzentrationen 100 µM, 10 µM, 1 µM) und des Beerenextraktes (Endkonzentrationen 100 µg/ml, 10 µg/ml, 1 µg/ml) untersucht. Hierbei wurden zunächst 2 mM bzw. 2 mg/ml Stammlösungen und anschließend 1:10 Verdünnungsreihen angesetzt, so dass die erhaltenen Lösungen in einer Konzentration von 200 µM, 20 µM und 2 µM bzw. 200 µg/ml, 20 µg/ml und 2 µg/ml vorlagen. Der Assay erfolgte in 96-Wellplatten mit 10.000 vitalen Zellen in 100 µl Medium pro Well und die Zellen wurden für 48 Stunden bei 37°C und 5% CO₂ mit 100 µl der jeweiligen Konzentration der Substanzen inkubiert. Im Anschluss an die Inkubation wurden pro 100 µl Volumen Zellsuspension 10 µl Alamar Blue® Reagenz auf die Zellen gegeben (Ansatz in 96-Well-Platte). Die metabolische Aktivität von lebenden und proliferationsfähigen Zellen wandelt das Alamar Blue Reagenz in ein messbares Fluoreszenzsignal um. Die Stärke des Signals ist dabei proportional zu der Anzahl lebender Zellen und entspricht der metabolischen Aktivität. Die Fluoreszenzmessung erfolgte mit dem Tecan Infinite 200 unmittelbar nach der Zugabe des Alamar Blue Reagenz bei einer Exzitationswellenlänge von 540 nm und einer Emissionswellenlänge von 590 nm im 15 Minuten-Takt, wobei die Platten zwischenzeitlich bei 37°C und 5% CO₂ weiter inkubiert wurden.
2.2.10 Caspase Apoptoseassay

Der fluorimetrische Caspase-Assay für die Caspasen 3, 8 und 9 wurde entsprechend den Angaben des Herstellers durchgeführt. Die Leukämiezelllinien BM185 und K562 wurden 48 Stunden mit Imatinib mesylate (100 µM), 6-MP (100 µM) oder Cyanidin (100 µM) bzw. Beerenextrakt (100 µg/ml), sowie eine nicht behandelte Kontrolle bei 37°C und 5% CO₂ inkubiert. Anschließend wurden 1 bis 5x10⁶ Zellen pro Ansatz zentrifugiert, die Zellpellets in jeweils 50 µl Zelllysisbuffer resuspendiert und 10 Minuten auf Eis inkubiert. Zum Beenden der Lyse wurden 50 µl 2x Reaktionspuffer (10 mM DTT) zu jedem Reaktionsansatz gegeben und die Ansätze auf 96-Wellplatten überführt. Danach erfolgte die Zugabe von 5 µl des jeweiligen 1mM Substrates (Caspase 3: DEVD-AFC; Caspase 8: IETD-AFC; Caspase 9:LEHD-AFC; Endkonzentration 50µM) je Well gefolgt von einer 1 bis 2 Stunden dauernden Inkubationsphase bei 37°C.

2.2.11 Nachweis der Zytokinexpressions nach DNA-Vakzinierung

Die frisch präparierten inguinalen Lymphknoten (ingLK) vakzinerter und unbehandelter Kontrollmäuse sowie die Haut der Vakzinationsstelle bzw. Ohrhaut (Kontrolle) wurden 16 Stunden und 24 Stunden nach der Vakzinierung in Stickstoff schockgefroren und bei -80°C bis zur weiteren Bearbeitung gelagert. Zur Isolation der RNA
wurden die angefertigten 12 µm Kryoschnitte direkt in 700 µl Lysisbuffer gelöst. Die RNA wurde anschließend nach Herstelleranleitung isoliert. Die gefrorenen Proben wurden bei RT aufgetaut und für eine Minute geschüttelt. Nach Trennung der Lysate wurden diese in RNeasy Mini Spin Säulen überführt und die RNA im Anschluss an mehrere Waschschritte in 30 µl RNase-freiem Wasser eluiert. Zur Erhöhung der Konzentration wurde das finale Volumen der extrahierten RNA-Lsg. auf 8 µl reduziert. Nach 15 minütiger Inkubation mit DNase I wurde die RNA 10 Minuten bei 70°C erhitzt und unmittelbar danach auf Eis herunter gekühlt. Die Synthese der cDNA wurde mit 200 ng Random Primer, 0.01 M DTT, 1x Reaktionsbuffer, 0.5 mM dNTP und 100 U reverse Transkriptase Superskript II RNase H- in einem Gesamtvolumen von 20 µl durchgeführt. Die Proben wurden für 50 Minuten bei 42°C inkubiert [119].

Tabelle 1: Primersequenzen, Amplikongröße und Accession Number der analysierten Gene

<table>
<thead>
<tr>
<th>Oligo Name<sup>b</sup></th>
<th>5' Nucleotid Sequenz</th>
<th>Size (bp)</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLN51 for</td>
<td>ccaagccagctttcattcttg</td>
<td>134</td>
<td>NM_138660.2</td>
</tr>
<tr>
<td>MLN51 probe</td>
<td>cacgggaactcaggttgctaacc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLN51 rev</td>
<td>taacgcctagctgaccactttg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNγ for</td>
<td>gcaagcggaaaagaggtgc</td>
<td>98</td>
<td>NM_008337.2</td>
</tr>
<tr>
<td>IFNγ probe</td>
<td>tgcaccatgttgctcaacaacagt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNγ rev</td>
<td>gaccactcggatgagctcattg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL2 for</td>
<td>tccccagagatgtcctaccc</td>
<td>98</td>
<td>NM_008366.2</td>
</tr>
<tr>
<td>IL2 probe</td>
<td>cttgccccagcgccccagagtaattg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL2 rev</td>
<td>atgccccgcagaggtccaaag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL4 for</td>
<td>gagactctttggggtctccttg</td>
<td>96</td>
<td>NM_021283.1</td>
</tr>
<tr>
<td>IL4 probe</td>
<td>cctggattcatcgataaagtgccacagt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL4 rev</td>
<td>aggctttcagagaatgcttcag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR-ABL for</td>
<td>gaactgcagacgtctcttgga</td>
<td>64</td>
<td>AF113911.1</td>
</tr>
<tr>
<td>BCR-ABL rev</td>
<td>ccggtgccgcttttgagcagcagtcgcttcag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR-ABL probe</td>
<td>agcagcagctccccccacgccc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL12p40 for</td>
<td>gagcactctctctctctctctc</td>
<td>140</td>
<td>NM_008352.2</td>
</tr>
<tr>
<td>IL12p40 probe</td>
<td>ctctacgaagggcacctttggtctaccc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL12p40 rev</td>
<td>tgcatttgcggtgtagatgtc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM-CSF for</td>
<td>ttctctgtgcagtcctggtgctta</td>
<td>68</td>
<td>NM_009969.4</td>
</tr>
<tr>
<td>GM-CSF rev</td>
<td>aagggcggttgacagtga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM-CSF probe</td>
<td>agcctctcagaccccacgcc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFα for</td>
<td>cccctcacaatctctctctctctc</td>
<td>100</td>
<td>NM_013693</td>
</tr>
<tr>
<td>TNFα rev</td>
<td>tggctcagcactctctcag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFα probe</td>
<td>ctgtagccccagctctagacaaccac</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^b for, forward; rev, reverse.
Material und Methoden

Im Anschluss an die reverse Transkription wurde die cDNA dem qPCR Master Mix Plus zugefügt und mit Hilfe des Sequence Detection System (SDS) ABI 7900 amplifiziert. Das Design der TaqMan Sonden sowie forward (for) und reverse (rev) Primer erfolgte mittels der Software Primerexpress von Applied Biosystems bzw. Clone Manager version 7.01 von Sci Ed Central. Die optimale Primerkonzentration sowohl für die forward als auch die reverse Primer lag bei 900 nM und für die TaqMan Sonde bei 200 nM. Die Primersequenzen, Größe der Amplikons und die Accession Numbers sind in Tabelle 1 dargestellt.

3 Ergebnisse

Die vorliegende Dissertation schließt an frühere Experimente der Arbeitsgruppe an, in denen die Effizienz der Prä-Immunisierung mit MIDGE-Vektoren die für ein leukämiespezifisches Peptid kodieren, gegen einen letalen Leukämiechallenge mit 1×10^3 BCR-ABLp185-exprimierenden Leukämiezellen untersucht wurde. Im Vergleich zur nicht-vakzinierten Kontrolle zeigte sich kein signifikanter Unterschied bezüglich der leukämiefreien und gesamten Lebensdauer bei den mit BCR-ABLp185-MIDGE-Vektoren vakzinierten Mäusen. Ebenso lag die Überlebensrate der Kontrolle und der vakzinierten Gruppe bei 0%. Wurden zusätzlich GM-CSF-MIDGEs appliziert, zeigte sich eine Steigerung der Überlebensrate auf 21%, und sowohl die leukämiefreie als auch gesamte Lebensdauer waren gegenüber der nicht-vakzinierten Gruppe signifikant länger. Eine weitere Verbesserung der Vakzineffizienz wurde durch den Toll-like-Rezeptor Agonisten dSLIM erreicht [63].

Darüber hinaus wurde untersucht, inwiefern die Wirksamkeit der DNA-Vakzine von der leukämiespezifischen Sequenz und unspezifischen Komponenten abhängig ist. Es zeigte sich, dass weder dSLIM noch GM-CSF als Einzelkomponente die Lebensdauer signifikant verlängerte und keine Maus überlebte. Auch wenn die Vakzine GM-CSF/dSLIM zu einer Überlebensrate von 14% führte, waren weder die leukämiefreie noch die gesamte Lebensdauer signifikant länger gegenüber der nicht-vakzinierten Kontrollgruppe. Dagegen wurde sowohl die leukämiefreie als auch die gesamte Lebensdauer der Mäuse, die die Vakzine BCR-ABL/GM-CSF/dSLIM erhielten, signifikant verlängert und die Überlebensrate erhöhte sich auf 17% [63].

Damit basiert die anti-leukämische Effizienz der DNA-Vakzine auf dem Gentransfer leukämiespezifischer BCR-ABL Sequenzen, wobei aufgrund der schwachen antigenen Potenz des BCR-ABL spezifischen Fusionspeptids zusätzlich unspezifische Immunmodulatoren wie GM-CSF und dSLIM erforderlich sind [63].
3.1 Optimierung der Basisvakzine BCR-ABL/GM-CSF/dSLIM

Im folgenden Experiment wurde untersucht, ob zusätzliche MIDGE-Vektoren, die für die Initiation und Modulation der Immunantwort wichtige kostimulatorische Moleküle und Zytokine wie CD40-L, IL-12 oder IL-27 kodieren, die Vakzineffizienz steigern.

Tabelle 2: Optimierung der Basisvakzine BCR-ABL/GM-CSF/dSLIM (V) durch die zusätzlichen Komponenten CD40-L, IL-12 oder IL-27

<table>
<thead>
<tr>
<th></th>
<th>Lebensdauer leukämiefrei [t]</th>
<th>Lebensdauer gesamt [t]</th>
<th>Überlebens-rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW</td>
<td>CI95%</td>
<td>P*</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>10.8</td>
<td>9.7-11.9</td>
<td>0.0909</td>
</tr>
<tr>
<td>Vakzine</td>
<td>19.7</td>
<td>7.6-31.7</td>
<td>---</td>
</tr>
<tr>
<td>V + CD40-L</td>
<td>21.6</td>
<td>10.1-33.1</td>
<td>0.0663</td>
</tr>
<tr>
<td>V + IL-27</td>
<td>39.4</td>
<td>23.3-55.4</td>
<td>0.0191</td>
</tr>
<tr>
<td>V + IL-12</td>
<td>56.1</td>
<td>47.4-64.8</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

Die Daten wurden über einen Zeitraum von 60 Tagen, ausgehend vom Leukämiechallenge am Tag 0 erhoben. CI = Konfidenzintervall; *p < 0.05 Signifikanzniveau nach dem einseitigen Mann Whitney Test; MW = Mittelwert; t = Tage; V = Vakzine

Abbildung 10: Überlebensrate der unbehandelten Kontrolle und mit unterschiedlichen DNA-Vakzinen immunisierten Mäusen

Neben der Vakzinierung mit zusätzlichen MIDGE-Vektoren wurde untersucht, ob die Komplexierung der DNA-Vakzine in Nanopartikel über die Erhöhung der Transfektionseffizienz zu einer Optimierung der Vakzine führt. Die in Tabelle 3 dargestellten Ergebnisse zeigen, dass weder die leukämiefreie noch die gesamte Lebensdauer der Mäuse durch die Komplexierung der Vakzine signifikant verlängert wurde.

Tabelle 3: Komplexierung der Vakzine BCR-ABL/GM-CSF/IL-12/dSLIM

<table>
<thead>
<tr>
<th>Vakzine</th>
<th>Lebensdauer leukämiefrei [t]</th>
<th>Lebensdauer gesamt [t]</th>
<th>Überlebensrate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW</td>
<td>CI 95%</td>
<td>P*</td>
</tr>
<tr>
<td>Vakzine</td>
<td>26.2</td>
<td>15.6-36.8</td>
<td>---</td>
</tr>
<tr>
<td>C32-117 Vakzine</td>
<td>28.7</td>
<td>17.2-40.1</td>
<td>0.4810</td>
</tr>
<tr>
<td>C32-118 Vakzine</td>
<td>30.3</td>
<td>19.3-41.2</td>
<td>0.1551</td>
</tr>
</tbody>
</table>

Die Daten wurden über einen Zeitraum von 60 Tagen, ausgehend vom Leukämiechallenge am Tag 0, erhoben. CI = Konfidenzintervall; *p < 0.05 Signifikanzniveau nach dem einseitigen Mann Whitney Test; MW = Mittelwert; t = Tage
Ergebnisse

Ferner führte die Dosiserhöhung von 25 µg auf 50 µg weder zu einer signifikant längeren leukämiefreien (49.4 Tage vs. 48.5 Tage) und gesamten (52.7 Tage vs. 52.2 Tage) Lebensdauer, noch zu einer gesteigerten Überlebensrate (75% gegenüber 77%). Damit war die Wirkung der Vakzine zumindest in dem getesteten Dosisbereich dosisunabhängig.

3.2 CD4⁺-, CD8⁺-T-Zellen und NK-Zellen sind an der Immunantwort beteiligt

Tabelle 4: Abhängigkeit der Vakzineffizienz von *in vivo* CD4⁺-T-; CD8⁺-T- oder NK-Zelldepletion

<table>
<thead>
<tr>
<th></th>
<th>Lebensdauer leukämiefrei [t]</th>
<th>Lebensdauer gesamt [t]</th>
<th>Überlebensrate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW</td>
<td>CI 95%</td>
<td>P*</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>8.7</td>
<td>7.4-9.9</td>
<td>0.0002</td>
</tr>
<tr>
<td>Nicht depletiert</td>
<td>50.1</td>
<td>40.5-59.6</td>
<td>---</td>
</tr>
<tr>
<td>CD4⁺-T-Zelldepletion</td>
<td>12.3</td>
<td>11.5-13.2</td>
<td>0.0002</td>
</tr>
<tr>
<td>CD8⁺-T-Zelldepletion</td>
<td>38.3</td>
<td>13.2-63.4</td>
<td>0.1735</td>
</tr>
<tr>
<td>NK-Zelldepletion</td>
<td>10.8</td>
<td>10.0-11.6</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

Die Daten wurden über einen Zeitraum von 60 Tagen, ausgehend vom Leukämiechallenge am Tag 0, erhoben. CI = Konfidenzintervall; \(^*p < 0.05\) Signifikanzniveau nach dem einseitigen Mann Whitney Test; MW = Mittelwert; t = Tage

Wie Abbildung 11 zeigt, waren beide T-Zellpopulationen bereits zum Zeitpunkt der 1. Vakzinierung fast komplett und die NK-Zellen zu 70% depletiert. Im Verlauf der weiteren Antikörperapplikationen sank der Anteil NK-Zellen nach vier Wochen auf ein Minimum von 10% bis zum Tag der Leukämieapplikation, während die T-Zellen nahezu vollständig depletiert waren. Trotz vier zusätzlicher NK-Depletionen an den Tagen -1, +2, +5 und +9 wurde keine vollständige Depletion der NK-Zellen erreicht.
Ergebnisse

Bereits eine Woche nach Beendigung der Antikörperapplikation wurden ca. 40% der initialen NK-Zellzahl nachgewiesen.

Obwohl die NK-Zellen nicht komplett depletiert wurden (vergleiche Abbildung 11), konnte die Vakzine die Leukämie nicht verhindern, so dass keine NK-Zell depletierte Maus den Leukämiechallenge überlebte. Verglichen mit der vakzinierten, nicht depletierten Gruppe war die durchschnittliche leukämiefreie und die gesamte Lebensdauer signifikant verkürzt (Tabelle 4). Die CD4⁺-T-Zelldepletion führte ebenfalls zu einer gegenüber der nicht depletierten Vakzingruppe signifikant verkürzten leukämiefreien und gesamten Lebensdauer (Tabelle 4) sowie einer Überlebensrate von 0%. Die CD8⁺ T-Zelldepletion zeigte dagegen einen geringeren Einfluss auf die Vakzineffizienz, was nicht auf eine unvollständige CD8-Zelldepletion zurückzuführen ist (Abbildung 11). Die leukämiefreie und gesamte Lebensdauer waren gegenüber der nicht depletierten Vakzingruppe moderat verkürzt und 50% der Mäuse überlebten (Tabelle 4).

Tabelle 4: Ergebnisse der Depletionseffizienz mit FACS-Analyse

<table>
<thead>
<tr>
<th>Zeit [Wochen]</th>
<th>CD4-Cells</th>
<th>CD8-Cells</th>
<th>NK-Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Ergebnisse

Die Vakzine BCR-ABL/GM-CSF/IL-12/dSLIM kann die Leukämie (10xLD_{50}) effektiv verhindern, wobei die CD4^{+} T-, CD8^{+} T- und die NK-Zellen an der anti-leukämischen Wirkung der Vakzine (BCR-ABL/GM-CSF/IL-12/dSLIM) beteiligt sind. Die Hauptrolle kommt in dieser Phase der Immunisierung den CD4^{+} T-Zellen und NK-Zellen zu, d.h. es wird sowohl eine adaptive als auch angeborene Immunantwort induziert.

3.3 Antileukämischer Memory Effekt der DNA-Vakzine

In einem weiteren Experiment wurde untersucht, ob die protektive Vakzine die überlebenden Mäuse ebenfalls gegen einen erneuten Leukämiechallenge schützt. Die überlebenden Mäuse der Vakzingruppe erhielten einen zweiten Leukämiechallenge mit 10^{3} BM185-Zellen am Tag 60. Drei von 6 Mäusen überlebten und alle Mäuse zeigten eine im Gegensatz zur unbehandelten Kontrolle signifikant längere leukämiefreie (40.5 Tage vs. 10.8 Tage p = 0.021) und gesamte (46.2 Tage vs. 23.8 Tage; p = 0.033) Lebensdauer (Daten nicht aufgeführt). Dieses Resultat zeigt die Induktion eines antileukämischen Memory-Effektes.

Mit dem Ziel, die klinische Situation von minimal residual disease (MRD) im Mausmodell abzubilden, wurde ausgehend von der erfolgreichen Prä-Immunisierung in den darauffolgenden Experimenten untersucht, ob die Vakzine BCR-ABL/GM-CSF/IL-12/dSLIM auch bei prä-existenter Leukämie therapeutisch wirksam ist.

Ergebnisse

3.4 6-MP, Imatinib mesylate und Anthocyane inhibieren die Proliferation von Leukämiezellen und induzieren die Apoptose über Caspasen in vitro

Mit Hilfe des Alamar Blue Proliferationsassays wurde die Wirkung der nicht-immunsuppressiven Substanzen Imatinib mesylate, Beerenextrakt OptiBerry BX-600, Delphinidin-3-Glukosid, Cyanidin-3-Rutinosid sowie des immunsuppressiven Chemotherapeutikum 6-MP auf die Proliferation der Leukämiezellenlinien K562 und BM185 untersucht.

Die Proliferation der Zelllinien K562 und BM185, die BCR-ABL Fusionsproteine exprimieren, wurde im Dosisbereich von 1-100 µM signifikant durch Imatinib mesylate gehemmt. Die Inhibition durch den Beerenextrakt war dagegen bei beiden Zelllinien dosisabhängig und nur bei einer Dosis von 100 µg/ml signifikant. Während Delphinidin-3-Glukosid die Proliferation der Zelllinien dosisabhängig inhibierte, zeigte Cyanidin-3-Rutinosid keine inhibierende Wirkung auf die Proliferation der Zelllinie K562. Die Proliferation der BM185-Zellen wurde dagegen dosisabhängig durch Cyanidin-3-Rutinosid inhibiert.

Verglichen mit der durch Beerenextrakt, Delphinidin-3-Glukosid und Cyanidin-3-Rutinosid erzielten Proliferationshemmung der Zelllinien K562 und BM185 war die durch Imatinib mesylate hervorgerufene Inhibition signifikant höher. Nur die Proliferation der BM185-Zellen wurde bei einer Konzentration von 100 µM Anthozyane und 100 µg/ml des anthozyanreichen Beerenextrakts annähernd wie durch Imatinib mesylate inhibiert. Ferner zeigte der Beerenextrakt in beiden Zelllinien eine anti-proliferative Wirkung, die isolierten Anthocyane Cyanidin-3-Rutinosid und Delphinidin-3-Glukosid hingegen nur in einer beziehungsweise zwei Zelllinien (Abbildung 12).

Die inhibierende Wirkung von 6-MP war in den getesteten Zelllinien dosisabhängig. Eine signifikante Proliferationshemmung konnte bei den Zelllinien BM185 (p = 0,0017 Daten nicht dargestellt) und K562 bei einer Konzentration von 100 µM nachgewiesen werden (Abbildung 12).
Abbildung 12: Zytotoxizität der nicht-immunsuppressiven Substanzen bei den Leukämiezelllinien BM185 (A) und K562 (B). In der Grafik ist die Fluoreszenz (Mittelwert ± SD) in relativen Einheiten (RE) dargestellt.

Mit Hilfe des in vitro Caspase Apoptoseassay wurde untersucht, ob die Caspasen 3, 8 und 9 durch Imatinib mesylate, OptiBerry BX-600, Cyanidin-3-Rutinosid und 6-MP aktiviert werden.

Während Imatinib mesylate in der Zelllinie BM185 die Caspasen 3 (p<0.01) und Caspase 9 (p<0.01) induzierte, führte die Inkubation mit 6-MP zur Hochregulation der
Ergebnisse

Caspase 3 (p<0.001), Caspase 8 (p<0.01) und Caspase 9 (p<0.01). Der Beereextrakt und Cyanidin-3-Rutinosid führten dagegen nur bei Caspase 8 (p<0.05) zu einer Expressionssteigerung. Bei der Zelllinie K562 wurde die Apoptose durch Imatinib mesylate und 6-MP über die Expressionssteigerung der Caspasen 3, 8 und 9 (p<0.0001) induziert, während der Beereextrakt und Cyanidin-3-Rutinosid nur über Caspase 8 wirkten (p<0.0001 bzw. p<0.05) (Daten nicht aufgeführt).

3.5 Die Vakzin-Monotherapie ist den Monotherapien Imatinib mesylate, Cyanidin-3-Rutinosid, OptiBerry® BX600 und 6-MP überlegen

Die in vitro nachgewiesene inhibierende Wirkung von Imatinib mesylate, Cyanidin-3-Rutinosid, OptiBerry® BX600 und 6-MP auf die Proliferation verschiedener Leukämiezelllinien, wurde anschließend in vivo im syngenen BM185/Balb/c-Mausmodell untersucht. Die Effizienz der Vakzine BCR-ABL/GM-CSF/IL-12/dSLIM wurde mit einer konventionellen Chemotherapie verglichen. Dazu wurde eine Mausgruppe mit 6-MP, einer Standardkomponente der Erhaltungstherapie bei ALL behandelt. Eine weitere Frage war, ob die nicht-immunsuppressiven Substanzen Imatinib mesylate, das Anthocyan Cyanidin-3-Rutinosid sowie der Beereextrakt OptiBerry® BX600 ebenfalls die Proliferation der murinen Prä-B-ALL im syngenen Balb/c Mausmodell inhibieren und eine Alternative zu 6-MP darstellen. Die Mäuse erhielten im Anschluss an den Leukämiechallenge entweder keine Behandlung, die intrakutane Vakzine BCR-ABL/GM-CSF/IL-12/dSLIM an Tag 2 und 9 oder täglich von Tag 1 bis 21 Imatinib mesylate, Cyanidin-3-Rutinosid, Beereextrakt oder 6-MP.

Die vakzinierten Mäuse zeigten im Vergleich mit der unbehandelten Kontrolle eine signifikant längere leukämiefreie sowie gesamte Lebensdauer, und 56% der Mäuse überlebten den Leukämiechallenge (Tabelle 5). Dagegen hatte keine der nicht-immunsuppressiven Substanzen (Imatinib mesylate, Cyanidin, BX) einen Effekt auf die Leukämieentwicklung. Weder die leukämiefreie noch die gesamte Lebensdauer war gegenüber der unbehandelten Kontrolle länger, und keine Maus überlebte (Tabelle 5). Die Behandlung mit 6-MP führte zu einer Überlebensrate von 10%. Verglichen mit der Kontrolle wurde außerdem eine signifikante Verlängerung der leukämiefreien und gesamten Lebensdauer erzielt (Tabelle 5).
Ergebnisse

Tabelle 5: Effizienz der DNA-Vakzine, des Tyrosinkinase-Inhibitors Imatinib mesylate, 6-MP und der Anthocyane

<table>
<thead>
<tr>
<th></th>
<th>Lebensdauer leukämiefrei [t]</th>
<th>Lebensdauer gesamt [t]</th>
<th>Überlebensrate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW</td>
<td>CI 95%</td>
<td>P*</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>9.9</td>
<td>9.3-10.5</td>
<td>---</td>
</tr>
<tr>
<td>Vakzine</td>
<td>40.7</td>
<td>32.9-48.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Imatinib i.p.</td>
<td>9.6</td>
<td>8.9-10.3</td>
<td>0.31</td>
</tr>
<tr>
<td>6-MP p.o.</td>
<td>20.4</td>
<td>10.3-30.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>Cyanidin i.p.</td>
<td>10.0</td>
<td>8.5-11.5</td>
<td>0.43</td>
</tr>
<tr>
<td>BX p.o.</td>
<td>10.1</td>
<td>8.9-11.3</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Die Daten wurden über einen Zeitraum von 60 Tagen, ausgehend vom Leukämiechallenge am Tag 0, erhoben. CI = Konfidenzintervall; *p < 0.05 Signifikanzniveau nach dem einseitigen Mann Whitney Test; MW = Mittelwert; t = Tage

Insbesondere hatte die Monotherapie mit den nicht-immunsuppressiven Substanzen Imatinib mesylate, Beerenextrakt oder Cyanidin-3-Rutinosid im Gegensatz zu der Vakzine BCR-ABL/GM-CSF/IL-12/dSLIM keinen Effekt auf die Leukämieentwicklung.

Gegenüber der Kontrolle konnte sowohl in der vakzinierten als auch der mit 6-MP behandelten Mausgruppe ein verlangsames Tumorwachstum nachgewiesen werden. Der Vergleich der vakzinierten und der mit 6-MP behandelten Gruppe zeigte, dass durch die Vakzine eine signifikant längere leukämiefreie Lebensdauer erreicht wurde (p<0.01). Die Tumorgenetik der vakzinierten und mit 6-MP behandelten Gruppe zeigt dagegen, dass 6-MP verglichen mit der Vakzine zu einem retardierten Tumorwachstum und einem geringeren durchschnittlichen Tumorvolumen führt (Abbildung 13) [215].
Ergebnisse

Abbildung 13: Leukämiekinetik nach Behandlung mit 6-MP oder DNA-Vakzine

Dargestellt ist das durchschnittliche Tumorvolumen von Mäusen, die an Tag 0 eine lethale subkutane Dosis Leukämiezellen (10 xLD50) erhielten und an der Applikationsselle einen Tumor entwickelten. Die Mäuse enthielten entweder keine Behandlung (Kontrolle) oder die Vakzine BCR-ABL/GM-CSF/IL-12/dSLIM an den Tagen 2 und 9 oder 6-MP (50mg/m²/Tag) von Tag 1-21. n = Anzahl der Mäuse mit Entwicklung eines Tumors

3.6 Die Kombination der DNA-Vakzine mit 6-MP führt zum Synergismus und zeigt die höchste Effizienz gegen eine präexistente Leukämie

In den folgenden Experimenten sollte untersucht werden, ob die Kombination der Vakzine mit jeweils einer der drei Substanzen zum Synergismus und einer verstärkten Proliferationshemmung der Leukämiezellen führt. Ferner wurde untersucht, ob 6-MP die Vakzinwirkung beeinträchtigt oder synergistisch wirkt.

Die Kombination der Vakzine mit Imatinib und die Kombination mit Cyanidin-3-Rutinosid zeigte im Vergleich zur Vakzine keine signifikante Verlängerung der leukämiefreien sowie gesamten Lebensdauer. Obwohl die Monotherapie mit Beerenextrakt keinen therapeutischen Effekt hatte, waren sowohl die leukämiefreie als auch die gesamte Lebensdauer der Mäuse nach Kombinationstherapie (Beerenextrakt und Vakzine) im Gegensatz zur Vakzin-Monotherapie signifikant länger, und 90% der Mäuse überlebten (Tabelle 6). Die höchste Effizienz zeigte die Kombination der Vakzine mit 6-MP. Alle Mäuse überlebten den Leukämiechallenge (Tabelle 6).
Ergebnisse

Tabelle 6: Vergleich der Vakzine-Monotherapie mit den Kombinationstherapien Vakzine (V) und Imatinib mesylate bzw. 6-MP, Beerenextrakt (BX) oder Cyanidin

<table>
<thead>
<tr>
<th></th>
<th>Lebensdauer leukämiefrei [t]</th>
<th>Lebensdauer gesamt [t]</th>
<th>Überlebens-rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW CI 95% P*</td>
<td>MW CI 95% P*</td>
<td></td>
</tr>
<tr>
<td>Vakzine</td>
<td>40.7 32.9-48.4 -</td>
<td>46.4 41.0-52.0 -</td>
<td>19/34 [56]</td>
</tr>
<tr>
<td>V + Imatinib</td>
<td>35.8 22.9-48.7 0.2655</td>
<td>42.7 33.3-52.1 0.2436</td>
<td>6/14 [43]</td>
</tr>
<tr>
<td>V + BX</td>
<td>56.2 47.6-64.8 0.0350</td>
<td>58.0 53.5-62.5 0.0329</td>
<td>9/10 [90]</td>
</tr>
<tr>
<td>V + Cyanidin</td>
<td>43.2 27.6-58.8 0.3415</td>
<td>47.6 36.1-59.1 0.4496</td>
<td>6/10 [60]</td>
</tr>
<tr>
<td>V + 6-MP</td>
<td>60 60 0.0329</td>
<td>60 60 0.0329</td>
<td>10/10 [100]</td>
</tr>
</tbody>
</table>

Die Daten wurden über einen Zeitraum von 60 Tagen, ausgehend vom Leukämiechallenge am Tag 0, erhoben. CI = Konfidenzintervall; *p < 0.05 Signifikanzniveau nach dem einseitigen Mann Whitney Test; MW = Mittelwert; V = Vakzine; t = Tage

Bei diesem Experiment muß besonders hervorgehoben werden, dass bei Behandlung der Mäuse keine Beeinträchtigung der Vakzineffizienz durch 6-MP, sondern eine synergistische Wirkung von 6-MP und der leukämiespezifischen DNA-Vakzine BCR-ABL/GM-CSF/IL-12/dSLIM nachgewiesen wurde.

3.7 Die DNA-Vakzine induziert die mRNA-Expression der Transgene BCR-ABL, GM-CSF und IL-12 sowie verschiedener Zytokine

Mit Hilfe der Kryoschnitte wurde die Expression der Transgene BCR-ABL; GM-CSF; und IL-12 nach Applikation der DNA-Vakzine BCR-ABL/GM-CSF/IL-12/dSLIM untersucht. Ferner wurde untersucht, ob die Vakzine zu einer gesteigerten Expression der nicht von der Vakzine kodierten Zytokine IL-4 und IFN-γ führt.

Die Expressionsanalyse zeigte 16 Stunden nach der Vakzinierung eine gesteigerte mRNA-Expression von BCR-ABL, GM-CSF und IL-12 an der Vakzinierungsstelle (Abbildung 14). Während die Expression von IFN-γ gesteigert war, wurde keine signifikant höhere Expression von IL-4 beobachtet (Daten nicht aufgeführt).
Ergebnisse

Abbildung 14: Expression der kodierten Transgene, IL-4 und IFN-γ. Expression der BCR-ABL, GM-CSF und IL-12 mRNA 0, 16 und 24 Stunden nach der Vakzinierung an der Vakzinationsstelle (A). Expression von BCR-ABL, IL-4 und IFN-γ imRNA n den regionären inguinalen Lymphknoten 0, 16, 24 und 120 Stunden nach der Vakzinierung (B). Die mRNA-Expression (Mittelwert ± SD), dargestellt in relativen Einheiten (AU) wurde mit dem Basisniveau vor der Vakzinierung verglichen. p<0.05 signifikant, Signifikanzniveau nach dem two tailed Student t-Test. * p<0.05; **p<0.01.

In den inguinalen Lymphknoten zeigte die Analyse bei BCR-ABL 16 Stunden nach der Vakzinierung eine signifikant stärkere Expression, während die mRNA-Expression von IFN-γ zu beiden Zeitpunkten nur mäßig gesteigert wurde. Im Gegensatz dazu zeigte sich bei IL-4 eine Suppression der mRNA-Expression nach der Vakzinierung (Abbildung 14) [215].
4 Diskussion

Trotz der erfolgreichen Behandlung der ALL mit risikoadaptierter Chemotherapie, insbesondere bei Kindern mit ALL, kann die Leukämielast häufig nicht vollständig eliminiert werden. In Folge dessen ist das ALL-Rezidiv nach wie vor eine der Haupttodesursachen bei Kindern und Adoleszenten mit maligner Erkrankung [120,121]. Eine weitere Intensivierung der Chemotherapie für Patienten mit Hochrisiko-ALL ist aufgrund toxischer Nebenwirkungen limitiert, so dass neue Therapiestrategien für die Erhaltungstherapie entwickelt werden sollten, um die Rückfallrate zu senken.

Es konnte gezeigt werden, dass das Immunsystem eine bedeutende Rolle bei der Eliminierung residueller Lymphoblasten spielt [122]. Ferner bestärkt der nach hämatopoetischer Stammzelltransplantation beobachtete „Graft versus leukemia“-Effekt die immuntherapeutischen Ansätze für die ALL-Erhaltungstherapie. Die im Vergleich zur allogenen Transplantation höhere Rückfallrate bei autologer Transplantation zeigt eine signifikante therapeutische Immunaktivität der transplantierten Zellen [123-125]. Eine Immunsuppression ist mit einem gesteigerten Rückfallrisiko verbunden [126]. Daher sollte untersucht werden, ob mit Hilfe immuntherapeutischer Strategien die residuellen Lymphoblasten eliminiert und die minimale Resterkrankung (MRD) effektiver behandelt werden kann.

Tumorzellen sind schlechte Antigenpräsentierende Zellen (APCs) und exprimieren keine kostimulatorischen Moleküle, so dass die Interaktion von T-Zellen und Tumor- bzw. Leukämiezellen zur Anergie und Apoptose der T-Zellen führt [34,35]. Frühere Arbeiten unserer Arbeitsgruppe haben gezeigt, dass die Vakzinierung von Mäusen mit syngenen BCR-ABL

exprimierenden Leukämiezellen, die modifiziert wurden, um kostimulatorische Moleküle und Zytokine zu exprimieren, eine systemische Immunität gegenüber der Wildtyp-Leukämie induziert [36,39,127]. Die klinische Applikation leukämiezellbasierter Vakzinen ist aufgrund der schwierigen und durch die Notwendigkeit von Gewebekulturmanipulationen aufwendigen Kulturbedingungen humaner Leukämiezellen eingeschränkt. Eine attraktive Alternative ist die DNA-Vakzinierung mit Expressionsvektoren, die für tumorspezifisches Antigen und Zytokine kodieren und in präklinischen Experimenten therapeutisch bei soliden Tumoren eingesetzt wurde [42,128]. Bei der Immunisierung mit DNA-Vakzinen kommt den Dendritischen Zellen (DCs) eine besondere Rolle zu, weil sie die
Diskussion

gesamte Bandbreite von MHC Molekülen, kostimulatorischen Molekülen und Adhäsionsmolekülen exprimieren, die für die Antigenprozessierung und Präsentation notwendig sind [129]. Die mit tumorspezifischer DNA transfizierten DCs können zu den regionalen Lymphknoten wandern, wo sie endogen synthetisierte Tumorantigene auf MHC Klasse I Molekülen präsentieren und CD8⁺ T-Zellen aktivieren [130].

In Folgeexperimenten wurden DNA-Vakzinen eingesetzt, die MIDGE-Vektoren die für ein BCR-ABL fusionspezifisches Peptid aus 83 Aminosäuren und murines GM–CSF kodieren sowie den Immunomodulator dSLIM enthalten. Die Vakzinierung mit BCR-ABL und GM-CSF führte zu einer Überlebensrate von 27% und CTL-Assays zeigten, dass die leukämiespezifische BCR-ABL-Sequenz der Vakzine für die Zytotoxizität essentiell ist [63].

4.1 Optimierung der Vakzine BCR-ABL/GM-CSF/dSLIM

Basierend auf den zuvor beschriebenen Ergebnissen wurde in der vorliegenden Arbeit untersucht, ob die Basis-DNA-Vakzine mit Hilfe zusätzlicher MIDGE-Vektoren die für CD40-L, IL-27 oder IL-12 kodieren, optimiert werden kann.

Die zweite Komponente zur Optimierung der Basisvakzine war das zur IL-12-Familie gehörende Interleukin-27 (IL-27). Durch IL-27 werden naive CD4⁺ T-Zellen zur Proliferation sowie die Sekretion von Interferon gamma (IFN-γ) induziert. Hisada et

Interleukin-12 (IL-12) wurde bereits in mehreren vergleichbaren Studien als potentes Zytokin zur Eliminierung von Tumorzellen, unter anderem aufgrund seiner antiangiogenischen Eigenschaften, der Vermeidung von Metastasen sowie der Auslösung einer lang anhaltenden Antitumorimmunität in Tiermodellen beschrieben [93,94,135-137]. Zudem zeigte sich, dass genetisch modifizierte IL-12 exprimierende Leukämiezellvakzinen im Mausmodell potente Stimulatoren des Immunsystems sind, die sowohl eine protektive als auch therapeutische antileukämische Immunität hervorrufen [95]. Die nach Prä-Immunisierung der Mäuse mit dem zusätzlich für IL-12 kodierenden MIDGE-Vektor erhaltenen biometrischen Daten bestätigen die Effektivität von IL-12 zur Eliminierung von Leukämiezellen. In klinischen und präklinischen Studien wurde bei systemischer Applikation von IL-12 eine durch einen erhöhten IFN-γ Spiegel hervorgerufene Toxizität nachgewiesen [138]. Im Gegensatz dazu wurden bei Applikation von IL-12 Genexpressionsvektoren via Gene-Gun [139,140] und auch bei den in der vorliegenden Arbeit verwendeten für IL-12 kodierenden MIDGE-Vektoren keine toxischen Nebenwirkungen beobachtet. Damit kann die systemische Toxizität durch eine lokale und effiziente Expression von IL-12 vermieden werden [141].

Durch die Komplexierung mit Poly-β-Aminoestern wurde in mehreren in vitro Studien [88,90,142-144] eine gegenüber nicht komplexierter DNA gesteigerte Transfektionseffizienz nachgewiesen, so dass die Komplexierung in in vivo Studien getestet wurde [145,146]. Obwohl die Komplexierung mit Poly(β-Aminoestern) auch in vivo eine gegenüber nakeder DNA bis zu 26fach höhere Transfektionsrate erzielt [85,87,91], führte die Komplexierung in den vorliegenden Experimenten nicht zu einer Optimierung der Vakzinieffizienz (Tabelle 3). In früheren in vivo Studien wurde eine Abhängigkeit der Transfektionseffizienz vom Applikationsmodus nachgewiesen. So führte die intratumorale Injektion der komplexierten Vakzine zu einer höheren Transfektionseffizienz als die intramuskuläre Injektion der Vakzine. Im Gegensatz

4.2 Beteiligung der CD4\(^+\), CD8\(^+\) T-Zellen und NK-Zellen an der Immunantwort

Die durchgeführte in vivo T- und NK-Zelldrepletion sollte Aufschluss darüber geben, welche Zellpopulationen für den antileukämischen Effekt der DNA-Vakzine verantwortlich sind. In anderen Studien wurde nachgewiesen, dass für die CML typische BCR-ABL\(^{p210}\) Bruchpunkteptide spezifische nicht-alloreaktive CTLs induzieren [78], indem sie auf MHC Klasse I und MHC Klasse II Molekülen präsentiert werden [12,79]. Unsere Arbeitsgruppe konnte bereits früher zeigen, dass die Expression des BCR-ABL\(^{p185}\) Fusionspeptids für die Effektivität der DNA-Vakzine (BCR-ABL/GM–CSF/dSLIM) erforderlich ist und die Effektivität mit der Aktivität spezifischer CTLs korreliert [63]. Ferner konnten Stripecke et al. in T-Zelldepletionsstudien nachweisen, dass CD8\(^+\) T-Zellen sowie CD4\(^+\) T-Zellen die Effektorzellen in dem BM185 Zellvakzinmodell sind [36]. Während der Vakzineffekt in der vorliegenden Dissertation durch Depletion der CD4\(^+\) T- oder NK-Zellen vollkommen aufgehoben wurde, führte die CD8\(^+\) T-Zelldrepletion lediglich zu einer verminderten Vakzinwirkung (Tabelle 4). Die CD4\(^+\) T-Zellen und NK-Zellen sind demzufolge essentiell für den durch die DNA-Vakzine hervorgerufenen antileukämischen Effekt, und die CD8\(^+\) T-Zellen spielen eine eher untergeordnete Rolle. Der in der Vakzine enthaltende TLR-9 Agonist dSLIM und IL-12 aktivieren sowohl
Diskussion

Dendritischen Zellen ein direktes Bindeglied darstellen [175,176]. Während die CD8⁺ T-Zellen aufgrund ihrer Abhängigkeit von CD4⁺ T-Zellen und NK-Zellen eine untergeordnete Rolle spielen, übernehmen die CD4⁺ T-Zellen und NK-Zellen die Hauptaufgabe bei der immunologischen Tumorabwehr.

4.3 Induktion eines antileukämischen Memory-Effekts der DNA-Vakzine

4.4 Inhibition der Proliferation von Leukämiezellen durch 6-MP, Imatinib mesylate und Anthocyane in vitro

Die nicht-immunsuppressiven Substanzen Imatinib mesylate, OptiBerry BX-600, Delphinidin-3-Glukosid, Cyanidin-3-Rutinosid sowie das zu den Immunsuppressiva gehörende 6-MP wurden in vitro bezüglich ihrer Wirkung auf die Proliferation der Leukämiezelllinien K562 und BM185 untersucht. Übereinstimmend mit früheren in vitro Studien zeigte Imatinib mesylate eine signifikante anti-proliferative Aktivität in den BCR-ABL positiven Zelllinien BM185 und K562 [97,177-180]. Diese war im getesteten Dosisbereich von 1-100 µM dosisunabhängig. Der Beerenextrakt zeigte eine dosisabhängige anti-proliferative Aktivität, die in beiden Zelllinien lediglich bei einer Konzentration von 100 µg/ml
signifikant war. Cyanidin-3-Rutinosid zeigte zwar keine Wirkung auf die K562 Zellen, in der BM185 Zelllinie dagegen einen signifikanten dosisabhängigen Effekt bei einer Konzentration von 100 µM und 10 µM. Die 100 µM-Konzentration zeigte eine ähnlich anti-proliferative Wirkung wie Imatinib mesylate, Beerenextrakt und Delphinidin-3-Glukosid. Die in 100 µg/ml Beerenextrakt enthaltene Menge Cyanidin und Delphinidin ist verglichen mit der 100 µM Konzentration der isolierten Einzelkomponenten 10 bis 15mal geringer. Trotzdem konnte in beiden Zelllinien ein anti-proliferativer Effekt des Beerenextraktes nachgewiesen werden, während die isolierten Anthocyane Cyanidin-3-Rutinosid und Delphinidin-3-Glukosid lediglich in einer oder zwei Zelllinien eine Wirkung zeigten. Eine mögliche Erklärung ist ein synergistischer Effekt der in dem Beerenextrakt enthaltenen Anthocyane.

Während mit dem Alamar Blue Assay die Wirkung der Testsubstanzen auf die Proliferation der Zelllinien BM185 und K562 getestet wurde, sollte der Apoptoseassay klären, ob eine Apoptose über die Caspasen induziert wird. Da die Caspasen 8 und 9 zu den Initiator-Caspasen zählen, die die Apoptose kontrollieren und regulieren und später die Effektor-Caspasen, z.B. Caspase 3, aktivieren, wurden diese drei Caspasen untersucht. Während die Aktivierung der Caspase 8 über den extrazellulären Signalweg erfolgt, wird Caspase 9 über den intrinsischen (mitochondrienabhängigen) Weg aktiviert. Beide Wege enden in der Effektorphase der Apoptose, bei der Caspase 3 von den Initiator-Caspasen 8 und/oder 9 aktiviert wird, so dass mindestens zwei Caspasen an der Apoptose beteiligt sind [181,182].

mit 6-MP in beiden Zelllinien zur Aktivierung der Caspasen 3, 8 und 9, was sich mit der früher beschriebenen durch Krebsmedikamente über den mitochondrialen Weg eingeleiteten Aktivierung der Caspase 9 deckt [181]. Eine andere Studie zum Einfluss von 6-MP auf T-Zellen zeigte ebenfalls eine deutliche Induktion der Caspase 3 und 9, jedoch nur eine mäßige Aktivierung der Caspase 8 [182].

In den Zelllinien BM185 und K562 wurde sowohl durch Cyanidin-3-Rutinosid als auch den Beerenextrakt ausschließlich die Caspase 8 induziert. Entgegen der in verschiedenen Arbeiten bei Krebszellen gezeigten Induktion der Caspase 3-Aktivierung durch Cyanidin-3-Rutinosid bzw. Cyanidin-3-Glukosid [185,186], konnte in der vorliegenden Dissertation keine Caspase 3-Aktivität nachgewiesen werden. Nachdem Feng et al. eine zeitaabhängige Induktion der Apoptose nachweisen konnten [185], ist die Inkubationszeit ein wichtiger Aspekt. Darüber hinaus kontrollieren und regulieren die Initiator-Caspasen 8 und 9 die Apoptose und aktivieren erst später die Effektor-Caspase 3. Im Anschluss an die Inkubation mit Cyanidin-3-Rutinosid in den BM185 und K562-Zellen wurde zwar Caspase 8, aber nicht Caspase 3 nachgewiesen. Eine mögliche Erklärung ist, dass nicht die Effektor-Caspase 3 aktiviert wird, sondern nicht untersuchte Effektor-Caspasen wie Caspase 6 oder 7 durch Cyanidin-3-Rutinosid aktiviert werden.

4.5 Die optimierte Vakzine ist die beste Monotherapie

Die Behandlung der Mäuse mit der optimierten Vakzine an den Tagen 2 und 9 führte im Vergleich zu unbehandelten Kontrolle zu einer signifikant längeren leukämiefreien sowie gesamten Lebensdauer und 56% der Mäuse überlebten (Tabelle 5). Im Gegensatz zur Monotherapie mit Imatinib mesylate, Cyanidin-3-Rutinosid oder dem anthozyan reichen Beerenextrakt führte die Monotherapie mit 6-MP zu einer signifikant verlängerten leukämiefreien und gesamten Lebensdauer und einer Überlebensrate von 10%. In der vorliegenden Arbeit wurde gezeigt, dass die leukämiespezifische DNA-Vakzine im Vergleich zu 6-MP effizienter ist. Anthocyane verfügen über eine umfassende Bioaktivität, dazu zählen eine starke anti-oxidative Aktivität und der Einfluss auf die Zellzykluskontrolle [187]. Ferner zeigten frühere Studien, dass Cyanidin sowohl in vitro als auch in vivo über chemopräventive Aktivität verfügt [188] und zudem in verschiedenen humanen Krebszellellinien
Aufgrund der spezifischen Pharmakokinetik liegt Imatinib mesylate in der Maus in einer zu geringen Konzentration vor und ist bei einer hoch proliferativen Leukämiezelllinie nicht wirksam. In einer Studie von Weisberg et al. wird beschrieben, dass die Halbwertszeit von Imatinib mesylate in Mäusen im Vergleich zum Menschen signifikant kürzer ist und Imatinib mesylate als Einzelsubstanz sogar in einer Konzentration von 50 mg/kg keinen nennenswerten Effekt aufwies [198]. Um eine effiziente Wirkung zu gewährleisten, muß somit ein kontinuierlicher Konzentrationsspiegel aufrechterhalten bleiben. Da le Coutre et al. darüber hinaus zeigen konnten, dass die zweimal tägliche intraperitoneale Applikation von 50 mg/kg Imatinib mesylate zu einer signifikanten Hemmung des Tumorwachstums führte, während die einmalige tägliche intraperitoneale Dosis keine Wirkung zeigte, könnte das Applikationsintervall eine Erklärung für die in vivo beobachtete Unwirksamkeit sein. Ferner führte die wesentlich höhere orale Dosis gegenüber der intraperitonealen Dosis nicht zu einem signifikanten Unterschied hinsichtlich des tumorfreien Überlebens [192].

4.6 Die Kombination der DNA-Vakzine mit 6-MP erreicht die höchste Effizienz

Diskussion

Bei den Zelldepletionen wurde gezeigt, dass die NK-Zellen eine bedeutende Rolle bei der antileukämischen Immunantwort spielen, wodurch ebenfalls die antileukämische Wirkung der Vakzine bei einer prä-existenten Leukämie zu erklären ist. Im therapeutischen Modus stellt der Wettlauf zwischen dem Tumorwachstums und einer tumorspezifischen Immunantwort einen wichtigen Faktor bei der Abstoßung der Tumorzellen dar [213]. Aufgrund der kurzen Verdopplungszeit (12h) der hochmalignen BM185 Zellen in vitro und dass sich die CTLs erst 7 Tage nach der Vakzinierung bilden, liegt die Tumorlast zu diesem Zeitpunkt bereits bei 16 Millionen Zellen [214]. Daher halten die NK-Zellen die Tumorlast offenbar so lange auf einem niedrigen Niveau, bis die leukämiespezifischen CTLs intervenieren können.

4.7 mRNA-Expression der Transgene und verschiedener Zytokine

Im Anschluss an die leukämiespezifische Immunisierung wurde durch Messung der BCR-ABL-, GM-CSF; sowie IL-12-Expression in den regionären Lymphknoten und der Haut die Zytokinexpression analysiert. Zudem wurde getestet, ob die Vakzine zu einer gesteigerten Expression von IL-4, IFN-γ oder TNF-α führt.

5 Zusammenfassung

Literaturverzeichnis

01. Deutsches Kinderkrebsregister 2008

04. Yiallouros M. Kinderkrebsinfo ALL Stand 05.01.2011

20. www.bfm-international.org AIEOP-BFM ALL 2009

Danksagung

Vielen Dank!
Erklärung

Ich versichere, dass ich die vorliegende Dissertation selbstständig und ohne fremde Hilfe angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Ich habe diese Arbeit weder vorher noch gleichzeitig in gleicher oder ähnlicher Form an anderer Stelle im Rahmen eines Prüfungsverfahrens vorgelegt und mich bisher noch keinen anderen Promotionsverfahren unterzogen.

Lübeck, den 24.09.2012 Yvonne Rott

