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Abstract 
Macromolecular X-ray crystallography is a technique used for elucidating 

macromolecular structures at high resolution. It is an iterative process of the following 

steps: (1) growing crystals of molecules, (2) performing X-ray diffraction experiments 

with the crystals and converting diffraction intensities to structure-factor amplitudes 

(Fourier coefficient amplitudes), (3) obtaining phases by phasing techniques 

(molecular replacement, experimental phasing, and ab-initio phasing, (4) 

transforming the amplitudes and the phases of the structure factors to an electron 

density function that reveals molecular structures, (5) building an atomic model into 

the electron density, (6) refining the model against the structure-factor amplitudes. 

 

While the structure-factor amplitudes are derived directly from the diffraction 

intensities, phases have to be obtained via an additional step where a variety of 

computing techniques is used intensively. Two phasing problems are at the focus of 

this thesis and genetic algorithms were developed to understand and solve the 

problems. For experimental phasing, a computer program, SISA, was developed to 

optimize the quality of phases prior to density modification and model building. SISA 

improved the quality of phases for a few strongest reflections using the electron-

density map skewness as the target function. In all test cases, the optimized phases led 

to improvements of the model building and in one case, a model could be derived 

where this had been impossible before application of the algorithm. For ab-initio 

phasing, another genetic algorithm was developed to search for solutions for 2-

dimensional structures using the structure-factor amplitude correlation as the target 

function. Three structures with different levels of solvent were artificially generated. 

Results from the search showed that when information about the structures were 

lacking, the amplitude correlation was not a useful measure for the quality of phase. 

With an increasing amount of known information, the usability of the correlation 

increased and the test structures were recovered by the algorithm. The results also 

showed that the high-solvent structure required the smallest amount of known 

information to achieve similar results. 
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1 Introduction 
Crystallographic studies would cease to exist without computers. The rapid 

increase of the number of structures solved every year validates this, for such an 
increase would be impossible by mere handwork. Crystallographers cultivate 

their structures from collecting diffraction data, constructing electron-density 
maps, building and refining models, and validating results. All triumph due to 

the computers complementing the theories.    

 

Macromolecular crystallography has a tremendous merit on biological studies such as 

enzyme mechanisms and emerging viruses by revealing their 3-dimensional images at 

high resolution. The concept of Bragg reflection and the Ewald sphere define the 

geometry of X-ray diffraction. Crystallographers perform the non-trivial process of 

deducing structure-factor amplitudes from diffracted X-ray intensities. The inverse 

Fourier transform would reveal the anticipated molecular pictures, if only the phases 

were present – unfortunately, these phases are lost in the diffraction experiment.  
 

Lack of phases and constraints on the electron-density function permit infinite 

possibilities for its shape. Direct Methods, based on the relations between the 

structure factors (Cochran, 1952) and the Tangent Formula (Karle & Hauptman, 

1956), celebrated their success due to the recognition of the positive and resolved 

nature of atoms.  Their applications become less efficient with an increasing amount 

of atoms, hence macromolecules subscribe to other phasing techniques. 

Crystallographers employ non-crystallographic symmetry and molecular replacement 

when they can seize comparable structures; if not, they must inevitably rely on 

experimental phasing.  

 

Of all crystallographic problems, phasing prevails. As computers continue to 

empower stochastic methods, more possibilities are open for phasing to grasp 

problems with higher complexity. The emergence of stochastic methods salvages the 

problems where a less-than-optimum solution is preferable over none. I addressed two 
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problems in macromolecular crystallography and introduced stochastic algorithms to 

solve them.  

 

SISA: SIR/SAD phase optimization 
Experimental phasing of diffraction data from macromolecular crystals involves 

deriving phase probability distributions. These distributions are often bimodal, 

making their weighted average, the centroid phase, improbable, so that electron 

density maps computed using centroid phases are often uninterpretable. Density 

modification brings in information about the characteristics of electron density in 

protein crystals. In successful cases, this allows a choice between the modes in the 

phase probability distributions, and the electron-density maps can cross the borderline 

between uninterpretable and interpretable.  

 

Based on the suggestions by Vekhter (2005), I got interested in the impact of 

assigning low-error phases to a small number of strong reflections prior to the 

density-modification process, while using the centroid phase as a starting point for the 

remaining reflections.  A genetic algorithm, SISA, was developed to search for 

optimal phases using the skewness of the density map as a target function. Phases 

optimized this way are then used in density modification and model building. 

Experimental data that had failed to give complete structures were selected to 

demonstrate that SISA could improve the quality of phases. The optimized phases led 

to greater success in subsequent model building.  

 

Ab-initio phasing: resolving phase ambiguities for 2-dimensional 

problems 

Given a structure consisting of only equal atoms, with information about this structure 

lacking (coordinates or phases are unknown), the correlation of the observed and the 

calculated structure-factor amplitudes is not a good measure for the quality of phases. 

Other measures such as electron-density histograms, connectivity properties, and 

statistical likelihood also fail to resolve phase ambiguities (Lunin et al., 2000). The 

usages of α-helical polyalanine search fragments cannot solve the problem in the 

general case (Rodriguez et al, 2009). Phase ambiguities are key problems for 

macromolecular ab-initio phasing. 
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In a 2-dimensional setting, I investigated the usability of structure-factor amplitude 

correlation as a measure of phase quality in ab-initio phasing. The goal was to find 

out the amount of prior information on the structure needed to rely on structure-factor 

amplitude correlation. Three structures on 10x10 grids with different levels of solvent 

were artificially generated. A genetic algorithm that searches for solutions using the 

structure-factor amplitude correlation as the target function was developed. I 

demonstrated that usability of the structure-factor amplitude correlation depends on 

the amount of prior information on the structure and the magnitude of solvent content.   
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2 Background 
The Fourier transform enables us to describe an object in real space (time domain) 

and reciprocal space (frequency domain). Bragg connected X-ray diffraction to 

reciprocal lattices, which led to conversion of measured intensities (I) to structure-

factor amplitudes (F):  

 

  (2.1) 

where k contains all angle-independent corrections such as the Lorentz factor 

(Pflugrath, 1999) and kʹ′ contains all angle-dependent corrections such as the 

polarization factor (Kabsch, 1988). 

 

For phases, the introduction of isomorphous replacement in proteins (Green et al., 

1954; Perutz, 1956) pioneered the field of de-novo phasing, while the observation of 

non-crystallographic symmetry (Rossmann & Blow, 1962) led to the development of 

molecular replacement. Attempts to uncover relations of the structure factors (Karle 

& Hauptmann, 1950; Sayre, 1952; Cochran, 1952) based on the positive and resolved 

features of the electron density, were the basis of the success of direct phasing for 

small molecules. We routinely combine structure-factor amplitudes (F) and phases 

(α) (eq. 2.2) based on these grounds to obtain an electron-density function (ρ), which 

represents the 3-dimensional image of our structures. 

 

ρ (x) = (1/V) ∑ Fh exp (-2πihx), (2.2) 

Fh = Fh exp (iαh) 

where h is a vector of reciprocal index, x is a vector of real-space index, and the bold-

letter notation of the structure factor represents a complex number with the amplitude 

and the phase component. 

 

Developments in computing science support us to test our assumptions and gain 

insights more rapidly. The emergence of stochastic methods, complementary to the 

deterministic ones, enables us to deal with complex problems. Genetic algorithms 

(Holland, 1975; Goldberg, 1989) follow stochastic techniques by offering search 

€ 

F(obs) = k " k I
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procedures based on the concept of natural selection. In crystallography, genetic 

algorithms were implemented in a variety of computational methods such as small-

angle scattering (Svergun & Franke, 2009), powder diffraction (Shankland et al., 

1997; Harris et al., 2004; Feng & Dong, 2007) and ab-initio phasing for 

macromolecular crystals at low resolution (Miller et al., 1996; Webster & Hilgenfeld, 

2001; Zhou & Su, 2004; Immirzi et al., 2009).   

2.1 Molecular replacement (MR) 

The condensed idea: Phases from analogous structures. 

 

Rossmann & Blow (1962) use the Patterson function (Patterson, 1934) to locate 

similar subunits in crystals of oligomeric protein. The maximum of the function peaks 

when rotation operators correctly locate the subunits. Recognition of a large number 

of known structures enhanced this original idea to use other similar structures as 

search models, which led to current practices of molecular replacement (Rossmann, 

2001).  Early developments in molecular replacement include the fast rotation and 

translation functions (Crowther & Blow, 1967; Crowther, 1972). Today, molecular 

replacement can be carried out using computer programs such as AMoRe (Navaza, 

1994), EPMR (Kissinger et. al., 1999), and Phaser, which introduced the concept of 

maximum likelihood in molecular replacement functions (McCoy et. al., 2007).   

 

Key requirements for molecular replacement involve obtaining a model with at least 

25% sequence identity and finding correct rotation and translation vectors to place the 

model in the unit cell. We obtain these vectors by identifying a maximum on the 

Patterson map (autocorrelation map). A 2-dimensional example as illustrated in Fig. 

2.1 demonstrates how this method works. Given a known structure A, which shares 

some similarities to an unknown structure B, a suboptimal orientation and location 

(Fig 2.1 top) would produce an autocorrelation map with its largest peak (ccmax) less 

than the optimal one (Fig. 2.1 bottom).  
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Figure 2.1 An example showing a usage of the Patterson map (the autocorrelation map) to 
find the optimal orientation and location for superimposing structure A onto structure B. The 
suboptimal location results in a smaller Patterson peak (ccmax) (top) while the optimal 
location results in a larger peak (bottom). 
  

Model errors affect the structure-factor amplitudes and consequently the 

autocorrelation map. Phaser treats effects of resolution and these errors by 

incorporating the maximum likelihood (Read, 2001). The SIGMAA function (Read, 

1986), employed in Phaser, weights a pair of observed and calculated (model) 

structure-factor amplitudes according to its resolution and the model errors in the 

calculation of the likelihood function. Since we know the model’s sequence identity, 

we can estimate the value of coordinate errors (root-mean-square or r.m.s. errors) 

using the relation between sequence identity and r.m.s. error (Chothia & Lesk, 1986).  

Figure 2.2 shows plots of SIGMAA functions calculated with model r.m.s. errors of 

0.2, 1.0, and 2.5 Å within a resolution range of 2.0 – 18.0 Å. With the low-error 

model, the SIGMAA function shows large values for high-resolution reflections and 

begins to fall off in lower resolution ranges. The error-prone model, on the other 

hand, causes the SIGMAA to decrease for both high- and low-resolution reflections. 

Different behaviors of the SIGMAA function affect the summation of the log-

likelihood (LL).  
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Figure 2.2 SIGMAA functions calculated with different values for model r.m.s. errors. 
 

Fig. 2.3 shows an example of the log-likelihood function calculated from the PDB 

model of the CcmK1 C-terminal structure (PDB Code: 3DN9; Tanaka et al., 2009) 

with r.m.s. = 0.2 Å and r.m.s. = 2.5 Å. Since we know that this is the correct model, 

we would expect that the log-likelihood summation should be very large for an r.m.s. 

value close to 0. The plots and the calculations of the log-likelihood summation (Fig. 

2.3) confirm our expectation; the smallest r.m.s. errors of 0.2 Å yields the largest log-

likelihood summation of 1.13 x 104. 

 
Figure 2.3 Likelihood functions viewed on a logarithmic scale for a comparison of the 
observed and the calculated normalized structure factors (E value: see eq. 2.18 on page 22) 
for CcmK1 C-terminal (generated from the PDB coordinates). The calculations were done 
using r.m.s. values of 0.2, 1.0, and 2.5 Å.  
 

The log-likelihood function affects the search for orientation and location to place the 

model. Locating a model with high sequence identity would yield a very probable 

solution. The search still derives some solutions for a low-sequence-identity model; 

crystallographers can then try to improve these solutions using other techniques.    
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2.2 Experimental phasing 

The condensed idea: Solving phase equations. 

 

“Experimental phasing” refers to techniques that obtain phases without structural 

information (de-novo structure determination). Two techniques in experimental 

phasing are isomorphous replacement and anomalous dispersion. Note that figures 

and detail explaining the anomalous-dispersion section as presented here are modified 

after the course on exploiting anomalous scattering in macromolecular structure 

determination (EMBO’07) at ESRF, France (http://www.esrf.eu/events/conferences/ 

embo2007/weiss_AnomScatt_2007.pdf, with permission of Dr. Manfred Weiss). 

2.2.1 Isomorphous replacement 

Crystallographers need to obtain isomorphous crystals with heavy atoms or 

compounds bound to native protein molecules. Obtaining phases from isomorphous 

crystals involves the following steps: 

 

Step 1. The substructures (heavy atoms/compounds) in the derivative crystals are 

responsible for providing phase information for the proteins. We obtain structure-

factor amplitudes of the protein (FP) and the derivative (FPH) from diffraction data of 

the native and the isomorphous crystal respectively. We depend on the isomorphism 

of the derivative crystal because only under this condition, the summation of the 

protein structure factors (FP) and the heavy-atom structure factors (FH) will be equal 

to the derivative structure factors (FPH).  

 

FPH = FP +  FH  (2.3) 

 

For FH, we derive the amplitudes from the differences between structure factor 

amplitudes of the protein and of the derivative. These differences are used in the 

Patterson technique or in Direct Methods to determine phases of the substructures. 

 

Step 2.  We substitute FH and the observed amplitudes of FP and FPH into equation 

2.3 to derive phases for the protein. We use the Harker diagram, which constructs 

possibilities for the protein phases using two circles. Each circle comprises three 
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vectors FPH, FP, and FH  (Fig. 2.4a). We derive the solutions by determining the 

angles where the two circles intersect (Fig. 2.4b). 

 

 
Figure 2.4 Single Isomorphous Replacement (SIR) (a) Phase equations represented by two 
triangles; each formed by three vectors FPH, FP, and FH. (b) Solving phase equations using the 
Harker diagram. 
 

Step 3. We convert the solutions in the Harker diagram to a phase probability 

distribution (Blow & Crick, 1959; Otwinowski, 1991; McCoy et al., 2004). Phases 

derived from the equation expand along the range 0 to 2π, leading to the derivation of 

a confident level for each phase angle. We calculate the error quantity (ε) from the 

lack of closure of the summation of the three vectors FPH, FP, and FH (Fig. 2.5a) for 

each phase angle (often with 5° interval). We turn a collection of ε to a phase 

probability distribution that describes the phases with a degree of confidence known 

as figure of merit (FOM).  
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Figure 2.5 Conversion of phases from the Harker diagram to a phase probability distribution. 
(a) Calculation of figures of merit (FOM) using lack of closure. (b) The phase probability 
distribution calculated from (a) with its best phase (φB) and the corresponding FOM. 
 

Crystallographers encapsulate a phase probability distribution in the Hendrickson-

Lattmann coefficients (Hendrickson & Lattman, 1970) for subsequent applications. 

The coefficient consists of four real numbers represented as A, B, C, and D in 

equation 2.4. We extract the centroid phase (φB) and its corresponding FOM from the 

result calculated from the formula.  

 

P (φ) = N exp( A cos(φ) + B sin(φ) + C cos(2φ) + D sin(2φ) ) (2.4) 
 

where N is a normalization constant such that ∫ P(φ) d φ = 1. 
 

Single isomorphous replacement (SIR) phasing leads to ambiguity in phase solutions, 

which affects the resulting electron density map to become uninterpretable. 

Crystallographers employ density-modification techniques that use the characteristics 

of electron density in protein crystals to improve the quality of phases. Maps that are 

still uninterpretable will require further treatments to resolve the ambiguity of phases: 

more derivatives for the multiple isomorphous replacement (MIR) or more 

wavelengths for the anomalous dispersion.  

2.2.2 Anomalous dispersion (scattering) 

Prior to solving the phase equation, the anomalous dispersion method requires either 

derivative crystals such as in the case of the isomorphous replacement or so called 

“selenomethionine (Se-Met) crystals” produced by replacing methionine residues 

with selenomethionine. The two approaches produce the same effect; waves with 

energy close to the transition energy of the electron in heavy atoms or selenium will 
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be absorbed and eject core electrons. This phenomenon causes the wave to scatter 

anomalously. Fig. 2.6 shows differences between normal scattering and anomalous 

scattering; for normal scattering, Friedel’s law holds, so structure factors of a Friedel 

pair (F(h k l) and F(-h –k –l)) are equal, and for anomalous scattering, Friedel’s law 

is broken since anomalously scattering waves add two additional quantities (Δf’ and 

Δf”) to the normal scattering form factor (fo). 

 

 
Figure 2.6 Comparison of normal and anomalous scattering. Friedel’s law holds for the first 
but is broken for the latter. In anomalous scattering, the structure factors of the Friedel pair 
are not equal for both the magnitudes and the phases. 
 

We can resolve the ambiguity of phases resulting from single isomorphous 

replacement when the derivative crystal diffracts anomalously. This technique is 

known as single isomorphous replacement with anomalous scattering (SIRAS), which 

requires: 

• one native crystal with normal scattering (FP) 

• one derivative crystal with normal scattering (FPH) 

• and the same derivative crystal with anomalous scattering (FPH
+ and FPH

-) 

 

The two additional quantities, which are added to the scattering form factor, break the 

symmetry of the structure factors (FPH
+ and FPH

-) as described by Friedel’s law (Fig. 

2.6), therefore yielding additional phase information to resolve the phase ambiguity 

occurring in SIR. We supply ΔFH
’ and ΔFH

”  in the phase equation and arrive at 
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FPH
+ = FP + FH

o + ΔFH
’ + ΔFH

” (2.5) 

FPH
- = FP + FH

o + ΔFH
’ - ΔFH

” (2.6) 

 

where 

• FH
o is the heavy atom structure factor (from normal scattering), which can be 

derived using the Patterson technique or Direct Methods in the same way as it 

is done in SIR. 

• ΔFH
’ is the dispersive component of the anomalous scattering from the heavy 

atom. Its phase depends on FH
o and its magnitude can be extracted from the 

absorption curve.  

• ΔFH
” is the anomalous component of the anomalous scattering from the heavy 

atoms. Its phase is orthogonal to ΔFH
’ and its magnitude can also be extracted 

from the absorption curve. 

 

Fig. 2.7a shows vector constructions of equations 2.5 and 2.6. To resolve the 

ambiguity of SIR phases, we construct the Harker diagram as seen in Fig 2.4b with 

two circles representing FP and FPH, then add two additional circles for FPH
+ and FPH

-. 

The extra two circles are constructed by adding the negative ΔFH
’ to FH

o and setting 

center to draw the first circle FPH
+ on one side of ΔFH

” and the second circle FPH
- on 

the other side of ΔFH
”. The ambiguity of the two solutions from SIR is resolved and 

one arrives at a single solution as seen at the intersecting point of the four circles. 
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Figure 2.7 Solving the phase equation using the anomalous scattering from a derivative 
crystal (SIRAS). (a) A representation of equation 2.5 and 2.6 in vector forms. (b) A Harker’s 
construction is added with phase information from the anomalous scattering to break the 
phase ambiguity in SIR. 
 

As one gains understanding about how the protein phases can be derived using the 

anomalous scattering technique based on a single derivative crystal (SIRAS) as 

explained here, it is now easy to understand the phasing technique of single 

anomalous dispersion (SAD) and why the protein phases obtained from the technique 

are still ambiguous. 

 

Another technique to resolve phase ambiguity involves a native crystal with either 

sulfur (Weiss et al., 2001; Liu et al., 2012) (under the condition that a relatively long 

wavelength can be applied), or selenomethionine. The technique requires only one 

data set, which contains the anomalous scattering components FPH
+ and FPH

-. To 

understand the relationship between the two components, Fig. 2.8 shows a version of 

the vector forms as presented in Fig. 2.7a with unavailable parameters represented as 

dotted line. The three closed vectors seen in bold (Fig 2.7a) are comparable to the 

three vectors formed in SIR (Fig 2.5a). We derive ΔFH
” from the positions of the 

scatterers (sulfur or selenium) and construct the Harker diagram in a similar way as it 

is done in SIR; phases from SAD phasing remain ambiguous and crystallographers 

need to apply density modification to improve the quality of phases. 
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Figure 2.8 The phase equation for single anomalous dispersion (SAD). The protein structure 
factor is not observed, leaving only the three closed vectors FPH

+, FPH
-, and ΔFH

”. 
 

In case phase ambiguity still exists after SIRAS or SAD, crystallographers need to 

employ more derivatives or wavelengths. The techniques are known as multiple 

isomorphous replacement with anomalous scattering (MIRAS), when we use more 

than one derivative crystal, and as multiple anomalous dispersion (MAD) when we 

use more than one wavelength. Table 2.1 provides a summary of available 

experimental phasing techniques. 

Method Detail 

Single isomorphous replacement SIR 

Required data sets 
• A native crystal (FP) 

• A derivative crystal (FPH) 

Phase equation 
FPH = FP +  FH  

Solved by Harker’s construction 

(Fig. 2.4b) 

Single isomorphous replacement with anomalous scattering SIRAS 

Required data sets 

• A native crystal (FP) 

• A derivative crystal (FPH) 

• The same derivative crystal 

with anomalous scattering (FPH
+ 

and FPH
-) 

Phase equations 

FPH
+ = FP + FH

o + ΔFH
’ + ΔFH

” 

FPH
- = FP + FH

o + ΔFH
’ - ΔFH  

Solved by Harker’s construction 

(Fig 2.7b) 
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Method Detail 

Single anomalous dispersion  SAD 

Required data sets 

• A native crystal with sulfur 

(with long wavelength) or 

selenium atom(s) with 

anomalous scattering (FPH
+ and 

FPH
-) 

Phase equations 

are solved in the same way as SIR 

with the three closed vectors being 

FPH
+, FPH

-, and ΔFH
”. 

MIR Multiple isomorphous replacements 

Requirements and phase equations are similar to SIR; only more 

derivative crystals are needed for more experiments. 

MIRAS Multiple isomorphous replacements with anomalous scattering 

More than one derivative crystal diffracting anomalously. 

MAD Multiple anomalous dispersion 

A crystal with SAD requirements diffracting anomalously at different 

wavelengths. 

Table 2.1 A summary of experimental phasing methods. 

2.3 Ab-initio phasing for macromolecules 

The condensed idea: Finding relations between phases of structure factors. 

 

Ab-initio phasing refers to techniques that require only structure-factor amplitudes for 

phase determination. The basis of Direct Methods for small molecules provides a 

foundation for their adaptation and extension for macromolecules. This basis includes 

Sayre’s equation (Sayre, 1952), Cochran’s integral (Cochran, 1952), and the tangent 

formula (Karle & Hauptman, 1956).  

 

Current progress in ab-initio phasing methods for macromolecular crystals diverges 

into two directions. Development in the first direction inherited the original Direct 

Methods for small molecules and extended them for macromolecules. Current 

computer programs include Shake-and-Bake (Debaerdemaeker & Woolfson, 1983) 

and SHELXD (Sheldrick & Gould, 1995). These programs limit the size of the 
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applicable molecules to < 1,000 non-H-atoms in the asymmetric unit, which led to a 

call for an alternative concept. The second direction drew in macromolecular features 

to enhance the ab-initio phasing. Methods, which explored an imitation of 

macromolecules, include a series of developments as summarized in Lunin et al., 

(2000; 2012), spherical scatterers (Subbiah, 1991), binary scatterers (Webster & 

Hilgenfeld, 2001; Su, 2008), and α-helical fragments as scatterers (Rodríguez et al., 

2009).  

2.3.1 Basis of Direct Methods 

Direct Methods rely on the relations between the structure-factor amplitudes derived 

from the positive and resolved features of the electron-density function. When 

reflections up to atomic resolution can be measured, the electron-density function 

representing the molecules and the solvent will be positive almost everywhere with 

the locations of atoms resolved from each other (Fig. 2.9).  The early pioneers of 

Direct Methods (Harker & Kasper, 1948; Karle & Hauptmann, 1950; Goedkoop, 

1950; Sayre, 1952; Cochran, 1952) used these features to derive the relations between 

the structure factors.  

 

 
Figure 2.9 Discrete and resolved features of a 1-dimensional electron-density function 
mimicking an atomic structure with 6 atoms in a unit cell of length 14 Å. 
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Sayre’s equation  

The condensed idea: There are limited choices of signs that can be assigned to the 

structure factors, to yield a positive and resolved electron-density function. 

 

David Sayre (1952) presented support for the idea that the signs (phases) of the 

structure factors in the centrosymmetric case were deducible from the diffraction data. 

By incorporating the convolution theory, he showed that a set of structure-factor 

products should follow a set of signs. An electron-density function (ρ) and its squared 

function (ρ2) are comparable when the structure consists of only positive and resolved 

atoms; thus, the structure factor of the function (F) and its squared function (Fsq) 

should be almost identical (Fig 2.10a).  Another contrasting example demonstrates 

that F and Fsq are different when the electron density function (ρ) fails to follow the 

conditions (Fig 2.10b).  

 
Figure 2.10 Fourier transforms of an electron-density function (ρ) and its squared fuction (ρ2) 
for (a) a case with equal and resolved atoms, ρ and ρ2 are equal (a.1 and a.2); they have the 
same structure factors (a.3 and a.4) (b) a case without equal and resolved atoms, ρ and ρ2 are 
not equal (b.1 and b.2); they have different structure factors (b.3 and b.4).  
 

Sayre derived relations between the structure factors based on the convolution 

theorem for the case when Fsq is nearly identical to F. From the convolution theorem, 

the Fourier transformation of the squared electron-density function (ρ2) is equal to a 

convolution of its structure factors    
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€ 

F sq (h,k, l) =
1
V

F(p,q,r)F(h − p,k − q,l − r)
r
∑

q
∑

p
∑  (2.7) 

where the right-hand side is a self-convoluting process for all reciprocal indexes p, q, 

and r, and V is the volume of the unit cell. Since Fsq ≅ F for the equal- and resolved-

atoms function, we can substitute Fsq with F, move the volume (V) to the left-hand 

side, and arrive at 

 

€ 

V ⋅ F(h,k,l) = F(p,q,r)F(h − p,k − q,l − r)
r
∑

q
∑

p
∑  (2.8) 

 

Equation 2.8 is known as Sayre’s equation, from which signs or phases of the 

structure factors can be determined. In order to see how this relation can be used to 

derive the signs of the structure factors, consider the convolution of a selected index  

p = 3 for a Fourier series of a 1-dimensional function with length 5 Å 

 

5 F(3)= F(3)F(3 - 0) + F(3)F(3 - 1) + F(3)F(3 - 2)  + F(3)F(3 - 3) + F(3)F(3 - 4) 

   = F(3)F(3) + F(3)F(2) + F(3)F(1)  + F(3)F(0) + F(3)F(-1)  (2.9) 

 

For a centrosymmetric structure, structure factors can only have a phase value of 

either 0 or π. Substituting 0 for the phase of F(3) in equation 2.10 results in 

 

5 |F(3)| = |F(3)|2 + |F(3)| |F(2)| exp(iα(2)) + 

|F(3)| |F(1)| exp(iα(1)) + |F(3)| |F(0)| + |F(3)| |F(-1)| exp(iα(-1))  (2.10) 

 

We can only select choices of sign for α(2), α(1), and α(-1) to make the two sides of 

equation 2.10 equal. We know that the choices of sign are correct when we substitute 

them to other convolution terms (e.g. for p = 1 or p = 2) and they also fulfill those 

equations.  

 

It can also be realized now that those terms with large amplitude would likely be the 

ones that determine the sign of the whole summation and that when the number of the 

Fourier terms is large (in the case of large structures), finding the correct signs that 

meet all the equations can become very difficult. 



 19 

 

Cochran’s integral and distribution 

The condensed idea: For a positive electron-density function, its cubed function will 

result in another positive function. The cubed function can be interpreted as the 

double convolution of the structure factors, which defines the relation for three 

reflections. To yield a positive function to the extent that the integral of the cubed 

function is maximum, there should be as many cases as possible where the signs of 

the two structure factors in the first convolution are equal to the third structure 

factor.  

 

Cochran (1952) provided another view of ab-initio phase determination based on 

relations of the structure factors. He pointed out that structure factors were redundant 

and the inverse Fourier transform using some of them could already regenerate a 

recognizable electron-density function. The selected Fourier terms should fulfill 

€ 

{ Fs
2

1− p
∑ }1/ 2 ≥ F(0)  (2.11) 

where p is the number of selected Fourier terms and Fs denotes the structure factor of 

a point atom. 

 

Examples of this construction for a 1-dimensional function of a centric structure using 

a partial series with two and four terms are shown in Fig. 2.11b-c. The structure 

consists of 6 atoms, making F (0) = 6. The sums of the left side of 10 for these chosen 

two and four Fourier terms are 4.94 and 6.16 accordingly. The inverse Fourier 

transforms show a recognizable electron-density function (Fig. 2.11c) only for the 

second case where {Σ1-p Fs
2} 1/2 > 6.  
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Figure 2.11 Numbers of Fourier terms required to construct a recognizable electron-density 
function illustrated by using constructions of the function based on different numbers of 
Fourier terms. (a) Original structure. (b) Two terms with {Σ1-p Fs

2} 1/2  < F(0). (b) Four terms 
with {Σ1-p Fs

2} 1/2  > F(0).  
 

Cochran suggested that an integral of a cubed function (eq. 2.12) could differentiate a 

positive function from a real function; therefore, it may be used as a measure for 

correct phases.  Fig. 2.12 demonstrates two 1-dimensional functions calculated from 

four Fourier terms. The function with four correct signs (Fig. 2.12a) yields a value of 

the integral larger than the value calculated from the function with only two correct 

signs (Fig. 2.12b). 
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Figure 2.12 Using integrals of the cubed electron-density functions to determine the correct 
signs for the structure factors. The two plots show the inverse Fourier transform of four 
Fourier terms with (a) four correct signs. (b) only two correct signs. 
 

∫V ρ3 dV  (2.12) 

 

An integral of a cubed function in real space is comparable to a summation of a 

double convolution in reciprocal space (eq. 2.13), which implies another relation, in 

addition to the one by Sayre, for three structure factors (eq. 2.14).  Following the sign 

(s) derivation in equation 2.14 results in a maximum of the integral (eq. 2.12), which 

may lead to a correct recovery of the structure. 

 

∫V ρ3 dV = Σ1-p Fs (h) Gs (h), where 

Gs (h) = 1/V Σh’ Fs (h’) Fs (h + h’)  (2.13) 

 

s(h) = s(h’) s(h + h’) (2.14) 
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For non-centrosymmetric structures, phases of the structure factors can be any value 

from 0 to 2π. Cochran (1955) applied the same idea onto the non-centrosymmetric 

cases and introduced a relation between the phases of structure factors as 

 

α(h) = α(h’) + α(h – h’) (2.15) 

 

The relations (eq. 2.14 and eq. 2.15) return the maximum for the integral of the cubed 

function; however, they fail to assure correct phase determination for large structures. 

Cochran (1955) estimated a probability for phase determination of a triplet phase (ϕ3) 

(eq. 2.16) given three normalized structure factors (Eh, Ek, and Eh-k) and the number of 

non-H atoms (N) (eq. 2.17). 

€ 

φ3 = αh +αk +αh−k ≈ 0 (2.16) 

€ 

P(φ3 |
2 | EhEkEh−k |

N
) =

1

2πI0(
2 | EhEkEh−k |

N
)
exp[(2 | EhEkEh−k |

N
)cosφ3] (2.17) 

 

where I0 is a zeroth-order Bessel function of the first kind and E is a normalized 

structure factor that can be calculated as
 

€ 

E =
F 2

ε f i
2

i=1

N

∑   (2.18) 

where ε (epsilon-factor) is a measure of how often a reflection is superimposed onto 

the same diffraction spot due to crystallographic symmetry, f is the atomic-scattering 

factor, and N is the number of atoms in the asymmetric unit. 

 

The probability calculated from equation 2.17 is very small when N (number of 

atoms) is large - this explains the limitation of the method for macromolecules. 

 

The tangent formula and its practical applications in Direct Methods 

The condensed idea: Extending sets of phases by triplet relations. 

 

Equations 2.14 and 2.15 indicate that the phase of the third reflection can be derived 

from phases of the other two reflections involved in the relation. From the cosine law 

and the normalized structure factors (E), this third phase can be calculated using 
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€ 

tanϕh =

| EkEh−k | sin(ϕk +ϕh−k )
k
∑

| EkEh−k | cos(ϕk +ϕh−k )
k
∑

  (2.19) 

where φh is involved in a series of triplet relations: 

φh = φh2 - φh-h2 

φh = φh3 - φh-h3 

	
  	
  	
  	
  	
  	
  	
  φh = φh4 - φh-h4 etc. 

 

as proposed by Karle & Hauptman (1956). Equation 2.19 is the simplest form of the 

Tangent Formula, which is the main tool used in conventional Direct Methods. 

 

A complete implementation of Direct Methods requires an understanding of 

diffraction and symmetry. The theory and practice of Direct Methods are covered 

briefly by Gilmore (2000) and comprehensively by Giacovazzo (2006).  

2.4 Genetic algorithms 

The condensed idea: Finding solutions based on the “survival of the fittest”. 

 

The primary concern of the work described in this thesis is about finding solutions for 

the phase problem under the scopes of different phasing methods (experimental 

SIR/SAD phasing and ab-initio phasing). These tasks involve finding protein phases 

in the range of 0 to 2π; thus, the size of the problem could exponentially grow with 

increasing choices for phases and amount of reflections selected. Finding an exact set 

of phases for 1,000 reflections, given that the phase can only be π/4, 3π/4, -π/4, or -

3π/4, would require testing 41,000 combinations of phases, a number that is too large to 

be computed.  Yet in most cases, the number of reflections could be up to a few ten 

thousands or more and choices of phase can be any real number from 0 to 2π. To 

obtain some answers, stochastic methods may be more suitable for this type of 

problem.  

 

The problem of finding the correct phases is also highly complex since its solution 

landscape is prone to local minima. Types of stochastic search such as hill climbing 
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become less efficient when dealing with this kind of problem. To avoid local minima, 

other types of algorithms such as genetic algorithms or simulated annealing are more 

suitable.  

 

Genetic algorithms were pioneered by Holland (1975) and have been used as search, 

optimization, and machine-learning tools. They encapsulate and perturb problem 

settings through chromosomes and genetic operators. For example, we can use the 

algorithms to solve a problem of finding a binary string that produces the maximum 

value from a function  

€ 

Xi
i=1

N

∑
 (2.20)

 

where Xi is the value stored on bit i of a chromosome with length N (Fig. 2.13).  

 

The genetic algorithms encode real values representing candidates for the solution in 

a binary-type chromosome.  The search evaluates a fitness value for each 

chromosome using the given target function (eq. 2.20). At each generation, the 

algorithms select a pair of chromosomes and apply the genetic operators on them to 

produce offspring that represents two more chromosomes. These operators play a 

crucial role by allowing binary bits in the chromosomes to be perturbed through 

crossover, mutation, or inversion. The offspring would get propagated to the next 

generation or not, depending on their fitness calculated from the target function (eq. 

2.20). The procedure terminates either when one of the chromosomes demonstrates 

acceptable fitness values or when the predefined maximum number of generations is 

reached. 
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Figure 2.13 An example of genetic algorithms for solving equation 2.20. (a) A representation 
of chromosomes, fitness values (calculated using equation 2.20), and percent-of-total values. 
(b) Selection process using the biased roulette wheel – each slot, which represents a 
chromosome, has its size proportionate to its fitness value or its percent of total. (c) Three 
genetic operators: a crossover operator with 1 crossover point swaps chromosome sections 
specified by the crossover point to produce two offspring; a mutation operator with 1 
mutation bit inverts the value of the selected bit; an inversion operator inverts all the bits in a 
chromosome.  
 

There are a number of ways to implement genetic algorithms. The four operations, 

selection, crossover, mutation, and inversion can be performed in different ways 

depending on the complexity of the problem. The example as shown in Fig. 2.13(b) 

illustrates the selection process using the biased roulette wheel. Each slot on the 
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roulette wheel, which represents a chromosome, has its size proportionate to its 

fitness value (eq. 2.20) or its percent of total. Each time a roulette ball is rolled, it is 

likely going to get into the hole with the bigger size. However, the smaller-size holes 

would still have a chance to get selected but only with less probability. This is an 

example of how the genetic algorithms use probability to avoid local minima. 

Allowing some less fit chromosomes to remain in the population helps retaining 

variants, which might emerge to be good solutions in later stages of the search 

process. For more complex problems, there are also other more sophisticated selection 

techniques, which are usually designed to prevent the crowding problem (Mitchell, 

1997). This problem occurs when fitter populations reproduce themselves too fast, 

leaving fewer variants in the genetic pool.  

 

The genetic algorithms perturb binary bits in each chromosome by applying the 

crossover, mutation, and the inversion operators. The simplest forms of crossing 

genes (series of bits) on a pair of chromosomes are 1- or 2- point crossover operators, 

where 1 or 2 positions are selected and the two chromosomes can exchange their 

genes based on the slices defined by these positions. These crossover operators are 

usually effective on schematized problems, e.g. the first 5 bits represent variable X 

and the next 7 bits represent variable Y. Another type of crossover is the uniform 

crossover (Syswerda, 1989). The uniform crossover generates a cross template by 

randomly selecting locations for the exchange across the chromosome. The method 

may perform better for some problems with large search space, giving variants in a 

population the potential to improve the performance of the search (De Jong & Spears, 

1991). 

 

Another genetic operator, which has a minor role in the search process, is the 

mutation operator. The genetic algorithms select bits on a chromosome randomly and 

adjust their values (‘0’  ‘1’ and ‘1’  ‘0’ for a binary chromosome). The mutation 

operator is usually set to occur infrequently, leaving most of the manipulation tasks to 

the crossover operator. Through the process of natural selection, the genetic 

algorithms derive the fittest solution as the output.  
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Applications of genetic algorithms involve transforming problem context to these 

operations provided in the algorithms. Choices of problem encapsulation and genetic 

operators determine the level of success at the end of the optimization.  
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3 SISA: SIR/SAD phase optimization  

3.1 Introduction 

Experimental SAD phasing allows us to obtain phasing information by solving 

equations based on differences between Friedel pairs of structure factors.  The 

possible solutions for a reflection are represented in the form of a probability 

distribution (Blow & Crick, 1959; Otwinowski, 1991; McCoy et al., 2004). Toward 

solving a structure, this phasing information is passed onto density modification, 

which exploits expected features of molecular maps to break the ambiguity existing in 

the initial distribution (Wang, 1985). In the case where many reflections have 

accurate phases, obtaining an interpretable map is straightforward. In contrast, when 

the majority of the reflections are poorly determined, resolving the ambiguity remains 

a difficult task.  

 

A SAD dataset of Gene V protein (Skinner et al., 1994) was selected as an example of 

this situation. Solving this structure from just the peak wavelength of SAD data is 

challenging due to the low quality of the electron density map obtained after density 

modification. The structure could however be solved from a MAD dataset. This is a 

common situation when experimental phases result in a poor map.  

 

Vekhter (2005) presented an interesting study where it was shown that by assigning 

low-error phases to a few of the strongest reflections, the entire set of phases could 

become significantly improved after density modification. There were five structures 

with 5,000 to 17,000 reflections in that test and it was very encouraging to see that 

datasets so large could be improved by having only the 124 strongest reflections 

assigned the correct phase. Vekhter (2005) assigned correct phases calculated from 

the model and proposed that, in practice, phases could be measured experimentally by 

a three-beam diffraction experiment. The study performed as part of the thesis follows 

up this analysis by exploring computational methods to select improved phases for a 

few of the strongest reflections before feeding them into density modification. The 

following points were addressed to pursue the goal. 
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An analysis was performed to test if the map skewness (Podjarny & Yonath, 1977), 

which describes the extent to which the extreme values in a map tend to be 

systematically positive or negative, could be used to identify the correct phases for a 

few of the strongest reflections. The test was done by implementing an algorithm that 

searched for combinations of phases for the strongest reflections that, in the presence 

of the entire data set, led to better values of skewness. Observed results showed that 

correct phases for the strongest reflections correlate with increasing values of the map 

skewness.    

 

Another analysis was carried out to test the efficiency of having the skewness as the 

target function to implement an algorithm and protocols that optimize the quality of 

phases for strongest reflections for four structures. In order to observe the effect of 

this improvement, the optimized dataset was passed to density modification and 

model building to obtain a resulting model, which can be compared with the model 

obtained using the original data. 

 

The datasets presented in Table 3.1 were selected because they represented borderline 

cases where density-modified phases were not good enough to generate an 

interpretable map.  
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Unit cell Structure PDB 

entry 

Space 

group 

Resolu-

tion for 

phase 

optimizat

ion (Å) 

No. of 

non-H 

atoms 

(a.u.) 

axes 

(Å) 

angles 

[°] 

I. Gene V protein 

(single-stranded DNA-

binding protein; Skinner 

et al., 1994) 

1VQB C2 2.6 682 a=75.81 

b=27.92 

c=42.4 

β=103.1 

II. Heterogeneous 

ribonucleoprotein A1 

(Shamoo et al., 1997) 

1HA1 P21 3.0 1,338 a=38.1 

b=44.0 

c=56.1 

β=94.8 

III. Cytosolic C2A-

C2B domains of synap-

totagmin III (Sutton et 

al., 1999) 

1DQV P6222 3.2 2,191 a=b=125.96 

c=118.44 

 

IV. RNA molecule 

containing domains 5 

and 6 of the yeast ai5g 

group II self-splicing 

intron (Zhang & 

Doudna, 2002) 

1KXK P6122 3.5 1,497 a=b=91.68 

c=241.65 

 

Table 3.1 Summary of data for test proteins 

 

There are two key ideas exploited here in order to improve the quality of the 

experimental maps. The first key idea involves the role of the strongest reflections. 

Considering that only a few strongest reflections can have an impact on density 

modification (Fig 3.1a), it is possible to implement algorithms that search for phase 

combinations in this compact solution space. Together with the fact that knowledge 

about phases is obtainable from experimental phasing, the choice of phases for a 

reflection based on its probability distribution can also be limited.   

 



 31 

The second key idea is based on measures of molecular map quality. Note that we are 

going to choose alternative phases for only a few of the strongest reflections. The rest 

of the reflections will be used with their original centroid phase and any new map will 

be calculated using the complete set of reflections.  In this way, the phases for the 

reflections that are not varied provide a background of known information used for 

the map calculation, and the phases that are varied are being tested for consistency 

with the other phases.  The phase choices for the strongest reflections are not 

generated from random sources but from the probability distribution obtained from 

the experiment, therefore the prior knowledge about phase is still preserved. The 

newly generated maps are assumed to have some molecular features as a starting 

point that can be used to calculate a measure of map quality.  The skewness of the 

density values in an electron-density map was chosen in this work as it was pointed 

out in Terwilliger et al. (2009) that it was the most accurate one for estimating map 

quality out of ten measures tested. The skew function (eq. 3.1) as the target function 

for the search algorithm is 

 

€ 

skew =
< ρ3 >

< ρ2 >3 / 2
  (3.1) 

 

Fig. 3.1b shows a comparison of the electron-density histogram generated from 

phases from the SAD data (ΦB) and phases from the solved structure (ΦC) for Gene V 

protein. Electron-density maps for the two sources of phase were generated 

accordingly and a threshold of ±5σ was applied for the density cutoff on the maps. 

The skewness was calculated using equation 3.1 and values of about 0.22 and 1.11 

were obtained for the first and the second case accordingly. It is necessary to apply 

the threshold cutoff to truncate the density map since most of the starting 

experimental maps tend to have some highly positive and negative values. The 

truncation helps prevent extreme values of map skewness, resulting from a few very 

large peaks. 
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Figure 3.1 Two key ideas exploited in the implementation of the method. (a) A comparison 
of two density-modified maps generated from SAD data of Gene V: the first map was derived 
from a reflection set with the original centroid phases (φB) while the second map was derived 
by assigning correct phases (from PDB model) to 100 strongest reflections of the same 
reflection set. Map correlation of the second map was significantly improved from 0.46 to 
0.77. (b) A comparison of two electron-density histograms: the histogram on the left was 
generated from the electron-density map calculated using the centroid phases (φB) resulting in 
a small value of map skewness (skew = 0.22) (eq. 3.1) while the histogram on the right side 
was generated from the map calculated using the correct phases (φC) resulting in a large value 
of map skewness (skew = 1.11). 

3.2 Materials and methods 

Genetic algorithms (Holland, 1975) were chosen as the optimizing tools because of 

their useful features in problem representation and search space exploration. A variety 

of methods in crystallography such as small angle scattering (Svergun & Franke, 
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2009), powder diffraction (Shankland et al., 1997; Harris et al., 2004; Feng & Dong, 

2007) and ab-initio phasing for macromolecules at low resolution (Miller et al., 1996; 

Webster & Hilgenfeld, 2001; Zhou & Su, 2004; Immirzi et al., 2009) have 

implemented the genetic algorithms to solve the phase problem. The implementation 

takes phase probability distributions of the strongest reflections selected as input, 

creates a data structure analogous to chromosomes to store these phases, manipulates 

each chromosome by genetic operators, selects only those with higher skew value, 

and outputs the solution with a high value for the target function (Fig. 3.2). At the end 

of each run, phase improvement is determined by calculating the map correlation 

coefficient (Read, 1986; Lunin & Woolfson, 1993) between the solution phases (ΦS) 

and the calculated phases from the correct model (ΦC)   

 (3.2), 

 

where N is the number of the selected reflections. 

 

 
Figure 3.2 Implementation of the genetic algorithm.  
 

The implementation was divided into three parts. In the first part, phase choices are 

generated from the phase probability distribution function. The second part involves 

the construction of genetic algorithm and genetic operators with the target function 

being the skewness of the density map. The last part deals with selection of the best 

solution, treats them with new figures of merit, and passes them to density 

modification and model building procedures. All parts of the algorithm were written 

in Python together with the usage of the cctbx libraries (Grosse-Kunstleve et al., 

2002). 

 

€ 

CP{ρ1,ρ2} = ( Fobs
2

i=1

N

∑ cos[PHIC ,i − PHIS,i]) / Fobs
2

i=1

N

∑
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In the first part, phase choices were generated for a reflection according to its phase 

probability distribution function encoded in Hendrickson-Lattman coefficients 

(Hendrickson & Lattman, 1970). An example of selecting a phase for a reflection is 

shown in Fig. 3.3. In the case of this bimodal distribution, traditionally, a centroid 

phase (ΦB) is selected. In this method here, other phases were allowed for selection 

according to their probability distribution. In practice, the phase probability 

distribution (Fig. 3.3a) was converted to the cumulative one (Fig. 3.3b). At a time, a 

random number in the range of 0-1 was picked, then a line was drawn horizontally to 

intersect with the cumulative function. The phase that met this point vertically was 

selected out. By doing this many times, all possible choices of phase could be 

sampled out for that reflection. It is also clear that those phases with higher 

probability are most likely to be selected because of the high slope of the cumulative 

function. At the end, a number of phase choices was generated according to the 

desired number of density maps and the same was done for the rest of the selected 

reflections. 
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Figure 3.3 Selection of phase choices other than ΦB for a reflection. (a) Phase- probability 
distribution function. (b) Cumulative distribution function calculated from (a). (c) 
Chromosomes storing phase choices for the genetic algorithm.  
 

Note that these alternative phase choices were applied only on the strongest 

reflections. The rest of the reflections, which comprised the majority, maintained the 

centroid phases (ΦB). Even though the phases of the remaining reflections were not 

perturbed, they play an important role in interacting with the varied reflections to 

determine the skew value. It will be shown below that phase improvements could be 

obtained only when the varied reflections are used with the other reflections to 

calculate the map skewness. 
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The second part is the implementation of the genetic algorithm, SISA. This kind of 

stochastic search algorithm has two important features. The first feature is the way 

information representing the possible solution to the problem is stored. The genetic 

algorithm treats each set of answers as a chromosome, which looks like the output 

constructed from the first part (Fig. 3.3c) where each value of phase is a possible 

answer for a reflection. Note that the values stored in the chromosomes are not 

represented by binary strings but by the set of non-negative integers from 0 to 359. 

SISA treats these many combinations of phases that had been created as a starting 

pool of chromosomes. The second feature comprises the selection and recombination 

process. In order to increase search performance, the geographical-restraint technique 

(Connor, 1994) was chosen over the probability- weighted (also known as roulette-

wheel) method (Bäck et al., 1997) for this selection process. To compare the search 

performance, tests to search for phases for 100 reflections were attempted for one of 

the selected test cases, Gene V protein, using both selection techniques. For the 

geographical-restraint method, the solution phases were found after around 9 – 11 

generations.  This performance was seen as a significant improvement over the 

roulette-wheel technique where around 95 – 97 generations were needed before the 

algorithm could terminate. Note that the SISA was designed to terminate when all 

chromosomes in the same generation yielded phase differences less than 2°. Both 

selection techniques resulted in a similar quality of the 100 solution phases with map 

correlation of 0.53 for the geographical-restraint and 0.54 for the roulette-wheel (the 

100 original centroid phases yielded a map correlation of 0.4).  

 

Fig. 3.4 illustrates how the geographical-restraint technique was implemented for the 

selection and recombination process. At any time, a parent chromosome is selected 

from a random location on a map where another smaller map is drawn to cover the 

selected position (Fig 3.4a). The algorithm performs random walks on this smaller 

map to select candidates for recombination and choose the one with the highest fitness 

value. In comparison to the roulette-wheel, where only the fittest chromosomes 

determined globally are likely to be selected at any given time, the geographical-

restraint method also allows other fittest chromosomes determined locally on the 

fitness landscape to be selected for the recombination.  
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The evolution process is triggered by the recombination of the parents, which depends 

on the crossover and mutation operators. These two mechanisms are controlled by the 

probability of crossover and mutation accordingly, so that many of the fitter solutions 

and some non-fit solutions would get selected for the next generation.  

 

The uniform crossover, which allows randomly selected segments from the parents’ 

chromosome to be exchanged (Syswerda, 1989), was selected for the recombination 

process. It was suggested as a suitable operator for problems with complex search 

spaces where the practical population size could not meet the necessary sampling 

accuracy (De Jong & Spears, 1991), which might be the case for this work. In the 

problem settings here, one way to imagine the size of the solution space is to consider 

the number of phase sets that must be tested for 1,000 reflections. If each reflection 

has 2 choices for the phase (like in the case of the bimodal distribution), there are 

21,000 combinations of phases to be tested in order to obtain the best answer. In order to 

still be able to compute the answer, the approach applied here only generates around 

400 combinations of phase per each test run and this number is much smaller than the 

number required to obtain an accurate answer. Note that the 1-point and 2-point 

crossover operators were also tested in this work; however, the results showed that all 

chromosomes turned homogeneous after a small number of generations without 

deriving a significantly higher value for the target function.   

 

An example of how the recombination process works for the method is illustrated in 

Fig. 3.4b. From the population pool, a pair of phase sets is selected. In order to 

recombine their chromosomes, a random template is generated indicating locations 

where the genes will be swapped. This template is newly created every time crossover 

occurs. With a certain probability, some of the genes of these two new offspring 

chromosomes are mutated as well. When mutation happens, the algorithm randomly 

selects a new phase from the reflection’s original phase probability distribution. The 

target function is then recalculated from the new phase combination. The parent pair 

is replaced with their offspring only when the latter has a higher value for the target 

function. 
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Figure 3.4 Geographical-restraint technique used in the selection and recombination process 
for SISA. (a) A parent is selected (dark blue location) from a random location on the fitness 
landscape where a local map is drawn around it. By performing random walks on this local 
map, more chromosomes are selected as candidates (red locations) and the fittest one (dark 
red) is chosen for the recombination process. (b) A pair of selected chromosomes is chosen 
for the recombination under controls of probability of crossover and mutation. The uniform 
crossover technique was used for the crossover operation where only locations indicated on 
the crossover template were exchanged between the parents. The mutation operator occurred 
on randomly selected locations on the child chromosomes where their phases were replaced 
by new phases redrawn from the phase probability distribution. 
 

The last part of the process concerns the selection of the best solution from the 

optimization process. To sample solution space, several independent microruns were 

carried out so that many solutions from different starting points could be obtained. 

Once all runs were completed, the results show that there were different solutions that 

could produce similar values of map skewness. This means that for a selected value of 

map skewness, the value of phase difference between the best solution and the worse 

solution can be up to around 15°. In order to avoid selecting the worse solution, those 

solutions for which the value of the fitness was higher than the average value were 

selected and their centroid phases were calculated as the best solution. This composite 

best solution is the output from each run of the search process. 

 

Additionally, although the original figure of merit could be used for density 

modification, the results from different runs show that setting the figure of merit to 

1.0 for all reflections selected in the search resulted in more complete models after the 

density modification and the model building. These solution phases (ΦS) and figures 

of merit from the optimization were combined with the rest of the reflections. The 
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impact of optimizing the strongest reflections was measured by feeding this new set 

of reflections to the density modification and model building process. 

 

Throughout each run, SISA processes were controlled by the following parameters. 

Nchromosomes: number of chromosome 

Ngenerations number of generations 

Pcross: probability for crossover operator (0.0 – 1.0) 

Pmutate: probability for mutation (0.0 – 1.0) 

Rcrosspoints: number of crossover points represented by a fraction of chromosome size 

Nmutatepoints: number of mutation points 

 

These parameters determine the size of the solution space that each run can represent 

and the amount of computing time required. Note that CCP4 Suite (Collaborative 

Computational Project, Number 4, 1994) and PHENIX (Adams et al., 2010) were also 

used during this work. 

3.3 Results and discussion 

3.3.1 Case I - Gene V Protein (PDB Code: 1VQB) 

The SAD dataset from this crystal delivered phases with a mean figure of merit of 

0.42 for the entire set of reflections.  By supplying the dataset with the sequence of 

the molecule to an automatic model building program, PHENIX AutoBuild, a model 

was obtained at the end of the run with 42 out of 87 residues built with R value = 

0.46. The dataset was collected from a crystal with unit cell parameters as shown in 

Table 1. The crystal packing is in spacegroup C2 with about 2,500 reflections.  

 

There are two points that direct the test procedures here. The first goal involves 

examining if the skew function can be used to improve the phases of a few strongest 

reflections and, if so, to determine if the new phases could make an impact on the 

density modification and model building process. To meet the first goal, the 

optimization algorithm was set to run on varying numbers of strongest reflections 

selected. Apart from the different number of reflections, the same parameters 

(Nchromosomes= 400, Ngenerations= 100, Pcross= 0.95, Pmutate= 0.01, Rcrosspoints= 0.2, and 

Nmutatepoints= 1) were assigned to SISA for all the runs and the procedure was terminated 
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when every chromosome had phase differences < 2°. To observe changes in phase 

quality, the map correlation coefficient (eq. 3.2) was calculated for a particular 

chromosome, which stored phase choices for the selected reflections, in comparison 

to the known ΦC. A scatter plot (Fig. 3.5) between the map correlation (vertical axis) 

and the skew value (horizontal axis) having one particular point representing a set of 

phases for selected reflections was generated. The color, which goes from light green 

to dark blue, represents an increase in number of generations during the optimization 

process. The square and diamond markers represent ΦB and the solution phases ΦS 

accordingly. Note that ΦS is the new centroid phase calculated from the selected 

chromosomes that have a skew value greater than the average. These plots also reveal 

the variation of overall phase quality during the optimization process as can be seen 

from the series of filled dots. Each filled dot represents the phase quality of the 

centroid phases computed from a collection of phase sets with similar skew values. 

These centroid phases tend to have higher phase quality than the individual samples, 

as evident in particular when larger numbers of reflections are varied. 
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Figure 3.5 Measures of the quality of the solution phases for the strongest reflections selected 
in the search. The measures were calculated using map correlation coefficients (eq. 3.2) of the 
solution phases (φS) and the known phases (φC). Each plot is displayed with the skew value of 
a density map that each set of phases represents. The filled dots show map correlation 
coefficients of the centroid phases calculated from a group of phases with similar skew value. 
All plots show the results from 10 independent runs with a square marker representing the 
centroid phases ϕB and a diamond marker representing the solution phases ϕS selected as 
output of the search process for: (a) the 20 strongest reflections. (b) the 30 strongest 
reflections. (c) the 100 strongest reflections. (d) the 500 strongest reflections. 
 

These plots reveal that at least 30 strongest reflections should be selected in order to 

obtain phase improvements because with at least this many reflections chosen, the 

solution phases ΦS with better map correlations than the one calculated using ΦB 

could be obtained. As the number of selected reflections was increased, the algorithm 

achieved higher values of map skewness with less overall average improvement in 

phase quality for the varied reflections. The same procedures were used to run 10 

independent trials for cases with 100, 300, 500, and 1,000 strongest reflections 

selected in the search and the map correlation coefficients were calculated. The results 

from the calculations are shown in the plot in Fig. 3.6(a). The plot shows the 

maximum (top end of the line), the minimum (bottom end), and the median 

(connected horizontal line) of the calculated map correlations for the results from the 

10 runs. The results shown are grouped according to the number of the strongest 

reflections used in the search process. For each group, the quality of ΦB for the 

selected amount of reflections is shown using the square marker. 

 
Figure 3.6 Results of running 10 independent trials to search for phases for 100, 300, 500, 
and 1,000 selected strongest reflections showing (a) Phase quality calculated using map 
correlation coefficient (eq. 3.2) for phases found after the search and (b) Quality (R factor) of 
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the final models generated by assigning the selected strongest reflections in the original 
dataset with the new phases and passing them to the model building program. 
 

Fig. 3.6(a) shows that SISA could improve the quality of phases of the original ΦB for 

up to around 500 strongest reflections. The highest degree of improvement was 

achieved in the case of 100 strongest reflections, where the map correlation 

coefficient of ΦB was improved from 0.35 to 0.50 (the median case of the solution 

phases ΦS). Some improvements could also be observed in the 500 strongest 

reflection tests with less degrees of improvement (from 0.40 to 0.46). Significant 

improvements were not observed in the 1,000 strongest reflection case and the median 

case for the solution phases ΦS had similar map correlation coefficient to ΦB.   

 

Two other tests were performed to see if phase improvements obtained from the 

search depend on other reflections incorporated with the varied ones to calculate map 

skewness. In the first test, the map skewness (the target function of the search) was 

calculated using both the varied reflections and the other reflections while in the 

second test, only the varied reflections were used. Both tests were performed for the 

100 and the 300 strongest reflections with 10 independent runs in each case. Fig. 3.7 

shows comparisons of map correlations of the solution phases (φS) from the first test 

with map correlations from the second test for the 100 (a) and the 300 strongest 

reflections (b). Both plots show that while improvements of map correlations could be 

observed for the tests with all reflections, this is not the case for the tests using only 

the varied reflections. For the 100 strongest reflections, map correlation coefficients 

of 0.36 (φB) increased to 0.5 (the median value) when using all reflections but 

decreased to 0.34 when using only the varied reflections. Similar results were 

obtained for the 300 strongest reflections when the map correlation coefficient of 0.39 

(φB) increased to 0.49 when using all reflections but decreased to 0.38 when using 

only the varied reflections. Note that map skewness reached at the end of all the runs 

for the two tests increased from 0.1 (φB) to similar values of around 0.3 for the 100 

strongest reflections and from 0.1 (φB) to 0.35 for the 300 strongest reflections.  
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Figure 3.7 Comparisons of map correlations of the solution phases (φS) from the tests using 
the varied and the other reflections with map correlations from the tests using only the varied 
reflections for the calculation of map skewness as the target function for the search. Each 
vertical line on the plots displays map correlations calculated using only the varied reflections 
of 10 independent runs. The square marker indicates map correlation calculated using φB. (a) 
The 100 strongest reflections case. (b) The 300 strongest reflections case. 
 

Another task for this work is to investigate if increasing the population size in the 

genetic algorithm could help improve the results when searching for more than 300 

reflections. A total of 10 runs were performed with an increase of the population size 

from 400 to 2,500 to search for phases for the 500 strongest reflections. Leaving other 

parameters for the search to the same values as used previously, map correlation 

coefficients were obtained in the range of 0.4 to 0.5 for 10 independent runs. These 

resulting values were similar to the values obtained when the population size of 400 

was used in the tests. 

 

In order to see if the new phases as obtained from the search could improve the results 

from density modification and model building, a new reflection file was created by 

combining the strongest reflections (assigning their phases to the solution phases ΦS 

and figures of merit to 1.0) with the rest of the reflections (using their original phases 

(ΦB) and figures of merit) and passed the file to the model building program 

(PHENIX AutoBuild was chosen in the test). The results were evaluated by comparing 

the R factor of the atomic model generated at the end of the runs using the solution 

phases (ΦS) and the original phases (ΦB). The tests were done for the cases of the 100, 

300, 500, and 1,000 strongest reflections selected in the search. 
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Fig. 3.6(b) shows that model quality is strongly influenced by the numbers of 

strongest reflections selected for the search. In Fig. 3.6(b), each vertical line 

represents the range of R factors of the atomic models generated from PHENIX 

AutoBuild using the 10 new reflection files, with the connected horizontal line 

representing the median value. The square marker displays the R factor of the model 

built from the same program using the original ΦB and the figures of merit. For each 

case with 10 independent runs, there were 6 runs for the 100 strongest reflections, 9 

for the 300 strongest reflections, all 10 runs for the 500 strongest reflections, and 8 

runs for the 1,000 reflections where the R factors obtained were better than or equal to 

the R factor of the model built from ΦB. As a comparison to the results obtained here, 

note that the model obtained from the program using ΦB had 42 residues (the structure 

has 87 residues) with R factor = 0.46.  In comparison to this result, it can be seen that 

most of the significant improvements were generated from the 500 strongest 

reflection cases where three of the runs resulted in R factors of around 0.31 with 64, 

65, and 69 residues built. The best result was also obtained in one of the tests varying 

the 500 strongest reflections; the resulting model had 84 residues with R factor = 0.22.  

 

Two uses of the figure of merit for the solution phases were tested for the density 

modification: setting the value to the original figure of merit and setting it to 1.0. It 

was possible to obtain improvements after the density modification with the original 

figures of merit, but setting these values to 1.0, led to even better results. For gene V, 

with 500 strongest reflections optimized, an average of map correlation was increased 

from 0.53 to 0.57.  

 

3.3.2 Cases II - IV 

The improvement after the density modification and model building for the SAD 

dataset of Gene V protein shows that map skewness could be used as a target function 

to search for more accurate phases than ΦB. In order to investigate if the same method 

can be applied to other datasets, three more datasets (Cases II-IV in Table 1), which 

had failed to give complete structures after density modification and model building 

were selected for the test here.  

 



 46 

The same protocol was applied to these three datasets as for the Gene V protein. 

Firstly, SISA was set to perform 10 independent runs in order to search for phases for 

100, 300, 500, and 1,000 strongest reflections in each test case. The map correlation 

coefficients were calculated for all the solution phases (ΦS) in comparison to the 

known structure (ΦC). After the search operations were complete, the new set of 

phases with figures merit of 1.0 was recombined with the original centroid phases 

(ΦB) of the other reflections and the figures of merit and passed to PHENIX 

AutoBuild. The R factors of the models generated from the runs were collected to 

investigate the impact of the new phase sets.  

 

The quality of the solution phases (ΦS) for the three test cases is shown in Fig. 3.8a, c, 

and e. Resulting phases from the search procedures for these three datasets have 

relationships to the map skewness similar to the results obtained for the Gene V 

protein. For the Heterogeneous ribonucleoprotein A1 (Case II) and the Cytosolic C2A 

C2B domains of synaptotagmin III (Case III), using 100 strongest reflections was 

enough to obtain phase improvements for the search procedures (Fig. 3.8a and c). 

With these 100 strongest reflections, the map correlation coefficients were improved 

from 0.45 (ΦB) to 0.54 (ΦS) for the second case and from 0.49 to 0.57 for the third 

case. However, for the RNA molecule of the yeast ai5g group II self-splicing intron 

(Case IV), at least 300 reflections were necessary for the search in order to obtain 

some improvements (Fig. 3.8e). The obtained map correlation coefficient for this 

fourth case increased from 0.40 to 0.43. As the numbers of the selected strongest 

reflections increased, the degrees of phase improvements also decreased. In all three 

cases, for 1,000 strongest reflections, phase improvements were not observed and the 

median cases for the three datasets resulted in map correlation coefficients less than or 

equal to the value calculated from the original ΦB.  
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Figure 3.8 Results of running 10 independent trials to search for phases for 100, 300, 500, 
and 1,000 selected strongest reflections showing map correlation coefficients on the left side 
and map quality (R factor) on the right side for the three datasets. 
 

Fig. 3.8b, d, and f show R factors of the models built from PHENIX AutoBuild 

grouped by numbers of reflections used in the search. These plots reveal that R factors 
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for models generated from the new phases are in general better than the values 

produced from the original phases (ΦB). There is only one test run from the 

Cytosolic C2A C2B domains of the synaptotagmin III test case (Fig. 3.8d) where R of 

the model generated from the new phases is significantly higher than the R value 

obtained starting from ΦB (R ΦB=0.38 and R ΦS=0.41). For the three datasets, the 

results of the most successful test run are shown in Table 3.2. 

 
Results from PHENIX AutoBuild Test structures No. 

of 

resi-

dues 

Phases No. of 

reflec-

tions 

used in 

search 

R Rfree Resi-

dues 

traced 

Side 

chains 

Frag-

ments 

ΦB - 0.29 0.40 140 89 5 II. Hn-rnp 184 

ΦS 300 0.22 0.30 153 143 1 

ΦB - 0.38 0.43 167 30 14 III. Synaptotagmin 296 

ΦS 300 0.34 0.39 159 91 8 

ΦB - 0.37 0.41 61 0 4 IV. Group2intron 70 

ΦS 500 0.36 0.42 58 48 1 

Table 3.2 Comparisons of results from the model building program using ΦB and the 

solution phases ΦS. 

3.4 Conclusions 

There are two key ideas explored in this work: first, reducing the phase errors in a 

small set of the strongest reflections can have a large impact; second, map skewness is 

a highly effective measure of phase quality. These ideas were combined using the 

genetic algorithm, SISA, to improve the quality of the density map after density 

modification, leading to greater success in subsequent model building. Results from 

the four test cases show that the phases of around 100 – 500 selected strongest 

reflections could be improved through a search using map skewness as the target 

function. Based on tests using, variously, the 100, 300, 500, and 1,000 strongest 

reflections in the search, it can be seen that greater average phase improvement 

occurred when smaller numbers of reflections were selected. The greatest 

improvements were observed for 3 test cases (I - III) when only the 100 strongest 

reflections were varied, or the 300 strongest reflections for the remaining test case 

(IV). Significant phase improvements were not observed in any of the cases when the 
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1,000 strongest reflections were varied. For the Gene V protein, phase quality 

measured by map correlation coefficient did not change significantly when 1000 

reflections were varied, whereas the map correlation coefficients actually dropped by 

about 0.05 for the other three test cases.  

 

When 100-500 phases were varied and combined with the original centroid phases, 

ΦB, for the remaining reflections, a large majority of test runs showed a substantial 

improvement in the quality of the map after density modification and the success of 

the subsequent model building. 

 

The calculation time for the search depends on the size of the structures and the 

numbers of the selected reflections. From the four test cases, the smallest structure, 

the Gene V protein, has 682 non-H atoms with around 2,500 reflections in space 

group C2. Calculations took about 0.5 hours for the 100 strongest reflections and 1.5 

hours for the 1,000 strongest reflections. The largest structure, the structure of the 

Cytosolic C2A C2B domains of synaptotagmin III (Case III), has 2,191 non-H atoms 

with around 9,000 reflections in space group P6222. Calculation times of 4.4 hours 

and 16 hours were recorded for the 100 and 1,000 selected reflections respectively.  
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4 Ab-initio phasing: resolving phase ambiguities 

for 2-dimensional problems 

4.1 Introduction 

The uniqueness of solutions in ab-intio phasing depends on molecular size and data 

resolution. Atomic-resolution features (positive, equal, and resolved atoms) may help 

derive a unique solution from the structure factor amplitudes when the molecular size 

is restricted to < 1,000 atoms (Sheldrick et al., 2001). Lower-resolution data and a 

large number of atoms usually prevent this. The usages of electron density 

histograms, connectivity properties, and statistical likelihood usually do not resolve 

phase ambiguities (Lunin et al., 2000). Also, the usages of α-helical polyalanine 

search fragments do not solve the problem in the general case (Rodriguez et al, 2009). 

Thus, uniqueness is the key problem for macromolecular ab-initio phasing. 

 

Ab-initio phasing for macromolecules relies on fitting search models with the 

observed structure factor amplitudes. Usually, the method tries to locate atoms or 

protein fragments in the unit cell, then identifies solutions by comparing their 

calculated structure factor amplitudes with the observed ones. When errors 

(measurement and model errors) are included, we use the maximum likelihood for the 

comparison; otherwise, we may use the least-square methods or the correlation 

coefficients. 

 

The amount of prior knowledge about the structure may impact the identification of a 

unique solution that relies only on the structure-factor amplitudes. Although these 

amplitudes are less useful for ab-initio phasing, methods such as molecular 

replacement and model building use them to indicate the quality of the models or the 

phases: molecular replacement uses the maximum likelihood to locate and orient the 

starting models, model building uses least-squares (crystallographic R-factor) to 

modify and extend the models. The difference between these methods and ab-initio 
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phasing is that both molecular replacement and model building use prior knowledge 

about the structure.  

 

This work seeks to understand relations between the amount of known information 

about the structure and the structure-factor amplitudes. Three test structures were 

artificially generated based on these settings: the structure is in 2-dimensonal grids of 

binary values (‘1’ for protein and ‘0’ for solvent), the sampling size is 10x10, the 

solvent content is varied from low to high, and the pseudo-atoms are all equal. With 

different amounts of known coordinates given, a genetic algorithm was implemented 

to search for solutions using the correlation coefficient of the observed and the 

calculated (from the solutions) structure-factor amplitudes as the target function. At 

the end of the search, the solutions with the largest amplitude correlation were 

extracted and their quality of phases were determined – these helped quantify the 

relations between the amount of known information about the structure and the 

structure-factor amplitude correlation based on structures with different levels of 

solvent.  

4.2 An example of non-unique solutions 

Given a structure consisting of only equal atoms, with information about the structure 

lacking (coordinates or phases are unknown), the correlation of the observed and the 

calculated structure-factor amplitudes fails to measure the quality of phases. An 

example of this problem in 10x10 sampling grids is shown in Fig. 4.1. The structure- 

factor amplitude correlations (CCF) between the first structure and two additional 

structures (Structure B and C) were calculated and a value as high as 0.87 and 0.88 

were obtained respectively (a perfect match will yield a correlation of 1); however, 

their map correlations (CP) (eq. 4.1) (Read, 1986; Lunin & Woolfson, 1993) resulted 

in a value as low as ~0.3 after applying a different origin, enantiomorph, and 

Babinet’s principle (an opaque body and a hole of the same size and shape) to match 

the two structures.     

   (4.1) 

where N is the number of Fourier terms. 

 € 

CP{ρ1,ρ2} = ( Fobs
2

i=1

N
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∑
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Figure 4.1 An example of non-unique solutions shows a structure used as a comparison, 
structure A, and two additional structures, structure B and C, that yielded a map correlation of 
only around 0.3 in comparison with structure A. Nonetheless, structure factor amplitudes of 
Structure B and C were highly correlated with Structure A (CCF = 0.87 and 0.88 
respectively).  

4.3 Materials and methods 

Three test structures were generated with solvent content of 70%, 50%, and 30% (Fig. 

4.2). These structures consisted of cells containing ‘1’ for the molecular region and 

‘0’ for the solvent. The structure factors of these structures were calculated with 

10x10 sampling grids and only the amplitudes were used in the search process. 

Genetic algorithms were selected as search tools and an initial set of solutions was 

created by randomly locating positions of ‘1’ on the grids. The number of ‘1’-

locations was set to be equal to the amount found in the test structures. Since the goal 

was to measure usability of the structure-factor amplitude correlation in determining 

solutions according to the amount of known coordinates, the initial random solutions 

were generated with 0%, 25%, 50%, and 75% of known coordinates. The algorithm 

applied genetic operators to perturb the positions of ‘1’ and used the structure-factor 

amplitude correlation as the target function. For the test with >0% known coordinates 

supplied, these coordinates stayed unperturbed during the search. The algorithm 

terminated when the structure-factor amplitude correlations among the solutions were 

> 0.9 or when the maximum number of generations was reached. 
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Figure 4.2 Test structures artificially constructed using an equal-atom binary model on the 
10x10 sampling grids for (a) 70% solvent content. (b) 50% solvent content. (c) 30% solvent 
content.  
 

All Fourier terms generated from the 10x10 sampling grids were used to calculate the 

structure-factor amplitude correlation. These terms provide enough information only 

for the structures with 50% and 70% solvent content, since the inverse Fourier 

transforms (the structure) will be recognizable when the selected Fourier terms fulfill 

€ 

F 2

P
∑ > F(0)  (4.2) 

where P is the number of Fourier terms (Cochran, 1952).  

 

An example, which illustrates (eq. 4.2) can be shown by a calculation of an inverse 

transform using different numbers of strong Fourier terms generated from a 2-

dimensional structure. Fig. 4.3 shows structures constructed from the inverse Fourier 

transforms using 10, 20, and 44 Fourier terms (Fig. 4.3a, b, and c). This example 

shows that when √ΣF2 is larger than F(0) (Fig. 4.3b), the inversed transform function 

already looks similar to the transform using all terms (Fig. 4.3c), especially when the 

structure is discretized to increase the contrast between positive and negative regions.   
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Figure 4.3 Structures calculated from the inverse Fourier transforms using different numbers 
of the largest Fourier terms. (a) For the 10 selected largest terms; (b) for the 20 selected 
largest terms; (c) for the 44 largest terms.  
 

The number of selected Fourier terms required to meet eq. 4.2 depends on the solvent 

content, the 50%-solvent structure required 26 while the 70%-solvent structure 

required only the 17 largest structure-factor amplitudes. The √ΣF2 values were larger 

than F(0) terms for both cases; therefore, the use of 44 terms generated from 10x10 

sampling grids was more than enough to provide information about the structure after 

the inverse Fourier transform. However, when the solvent was as low as 30%, these 

10x10 sampling grids with 44 Fourier terms could only produce √ΣF2 = 63.5. Note 

that this value was lower than the F(0) term, which was 70, and inadequate to provide 

a recognizable structure after the inverse Fourier transform.  The test on this case with 

30% solvent content was still performed to examine the effect when the available 

Fourier terms were inadequate to explain the complete structure. 

 

Once the required number of the Fourier terms was known, the genetic algorithm 

started by initializing binary models and placing ‘1’ randomly on the 10x10 grids. 
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The amount of ‘1’ placed was set to be equal to the amount of ‘1’ in the selected test 

structure. Note that for each test case, different amounts of known coordinates were 

supplied and kept fixed throughout the search process. The genetic algorithm stored a 

solution as a chromosome (Fig. 4.4a); only the location numbers of ‘1’ were recorded 

in the chromosome to minimize the size of computing memory. This allowed the size 

of the population to be larger if necessary. At any time when the 10x10-grid models 

were needed, they could be regenerated from these location numbers stored on the 

chromosomes.   

 

At the beginning of each run, the genetic algorithm generated these chromosomes and 

stored them on a population landscape where selection and recombination processes 

took place. The selection process was done using methods similar to the geographical-

restraint technique (Connor, 1994) as shown in Fig. 4.4b to prevent a crowding 

problem, where some highly fit solutions quickly reproduce themselves (Mitchell, 

1997). These selection techniques involve choosing two chromosomes from a local 

map, which is generated randomly for a number of times at a particular generation. 

These two chromosomes are candidates for the recombination processes, which 

consist of the crossover and the mutation operations. For the crossover, the two 

chromosomes (parent 1 and 2) will have their genes (binary bits) swapped at locations 

specified by the crossover template. Note that the two chromosomes were 

reconstructed back to the 10x10 grids, so they could be aligned to the same origin, 

enantiomorph, and Babinet structure before gene swapping. Crossover genes were 

done using a template, which was designed under the uniform crossover scheme 

(Syswerda, 1989). The scheme selected crossover points randomly along the positions 

on the chromosomes and regenerated the template every time crossover occurred. At 

the end of these processes, two offspring chromosomes would be produced and 

subjected for the mutation operation according to the chosen probability. Mutation 

also occurred on randomly selected locations where values stored on those bits would 

be flipped to the opposite state (1 0 and 01). 

 

The evolution process is triggered by the recombination of the parents, which depends 

on the crossover and the mutation operators. These two mechanisms are controlled by 

the probability of crossover and mutation accordingly so that not only the fitter 
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solutions would get selected to the next generation. When crossover or mutation 

processes occur, the newly generated offspring would be calculated for their fitness 

values; the aim of the search process is to derive the solutions by maximizing these 

values. 
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Figure 4.4 An implementation of the genetic algorithm: (a) Initialization of the chromosomes 
by placing ‘1’ randomly on the 10x10 grids and storing the location numbers in each 
chromosome. (b) Selection of parental chromosomes for the recombination process via the 
use of a local map. (c) Recombination of the parental chromosomes by applying genetic 
operators (crossover and mutation) according to the chosen probabilities. 
 

The chromosome fitness was obtained from the calculation of the correlation between 

the observed (from the selected test structure) (FO) and calculated (from the solution) 

(FC) structure factor amplitudes (eq. 4.4).  The algorithm performed selection, 

recombination, and fitness evaluation iteratively until all chromosomes in the 

population pool became homogeneous (averaged map correlation among the 

chromosomes > 0.9) or when maximum number of generations was reached. When 

the algorithm terminated, the solutions with the highest fitness values were selected as 

output. 



 58 

 

€ 

CCF =

(FO− < FO >)(FC − < FC >)
P
∑

(FO− < FO >)2
P
∑ (FC − < FC >)2

P
∑

 (4.4) 

where P is the number of Fourier terms. 

 

To measure the quality of the solutions, it was necessary to identify different origin, 

enantiomorph, and Babinet equivalents. An example to demonstrate these problems in 

2-dimensional structures is shown in Fig. 4.5. A structure (Fig. 4.5a) can be generated 

using a set of structure factor-amplitudes and phases. The same set of amplitudes with 

all the phase angles shifted by a constant, inversed by sign, and shifted by π generates 

the structure’s translated copy (Fig. 4.5b), inverted copy (Fig. 4.5c), and Babinet copy 

(Fig. 4.5d) respectively. The structure-factor amplitude correlations between these 

copies and the original structure, in the same order, were 1.0, 1.0, and 0.89 (for the 

Babinet copy, only the F(0) is different).  

 

These ambiguities must be taken into account when measuring quality of the 

solutions. We can identify these ambiguities by analyzing the cross-correlation map 

(the Patterson map) and the peak found on the map (CMAX). For the translated 

structure, the highest peak on the map corresponds to the translation vector and 

moving the structure according to this vector will superimpose the two structures (Fig. 

4.5b). For the inverted structure, the height of the peak on the cross-correlation map 

can be used to determine whether the structure is an inverted version of the other (Fig. 

4.5c); by inverting the structure in Fig. 4.5c, CMAX value will increase from 0.48 to 

1.0. Lastly for the Babinet structure, the sign of the peak on the cross-correlation map 

can be checked. By looking at the highest peak on the map, if the sign of the CMAX is 

negative, it means that the structure could be better matched when it is overturned 

(Fig. 4.5d) (Lunin et al., 1993). Once the solutions were aligned with the test 

structure, map correlations (eq. 4.1) could be calculated. 
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Figure 4.5 Scattering objects displayed with their corresponding Fourier coefficient 
amplitudes and the cross-correlation maps compared with the test structure. (a) A test 
structure showing the same amplitudes with the other three objects. (b) A translated copy of 
the test structure with its cross-correlation map showing the peak shifted by the translation 
vector (-1, 2). (c) An inverted copy having the maximum value on its cross-correlation map 
being smaller than it should be (the correct structure would have CMAX=1.0). (d) A Babinet 
copy with its peak on the cross-correlation map being a negative value.   
 

Throughout each run, the genetic algorithm was controlled by the following 

parameters. 

Nchromosomes: number of chromosomes 

Ngenerations number of generations 

Pcross: probability for crossover (0.0 – 1.0) 

Pmutate: probability for mutation (0.0 – 1.0) 

Rcrosspoints: number of crossover points represented by a fraction of chromosome size 

Nmutatepoints: number of mutation points 
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4.4 Results and discussion 

4.4.1 A test structure with 50% solvent content 

The first test structure (Fig. 4.2b) demonstrates a case where scatterers (‘1’) occupy 

the same amount of cells as the background (‘0’). The goal of the test involves 

identifying the amount of known information about the structure needed to rely on 

structure-factor amplitude correlation as a measure for the quality of phases. The 

algorithm was set to perform 10 independent runs on four types of test: given amount 

of known coordinates were 0%, 25%, 50%, and 75%. The genetic algorithm used the 

same parameters (Nchromosomes= 400, Ngenerations= 50, Pcross= 0.95, Pmutate= 0.01, Rcrosspoints= 

0.2, and Nmutatepoints= 1) for all the runs. Termination of the search occurred when every 

chromosome had map correlations > 0.9 or when the maximum number of 

generations was reached.  

 

To observe changes in phase quality, we calculated a map correlation (eq. 4.1) by 

transforming a particular chromosome, which stored locations of ‘1’ back to the 

10x10 grids. Phases of the Fourier coefficients were used for the calculation of the 

map correlation in comparison with the known calculated phase. A scatter plot (Fig. 

4.6) between the map correlation (vertical axis) and the structure-factor amplitude 

correlation (horizontal axis) having one particular point representing a set of phases 

was generated. The color, which goes from light green to dark blue, represents an 

increase in number of generations during the optimization process.  

 

Each error bar represents the phase quality of the centroid phases computed from a 

collection of phase sets with similar structure-factor amplitude correlations. The 

quality of the centroid phase set is represented as a range (the error bar), because a 

group of around 100 chromosomes was selected as a representative set. The other 

chromosomes (with similar values of structure-factor amplitude correlation) had to be 

matched for different origin, enantiomorph, and Babinet copy to the selected group. 

The centroid phases were calculated after the matching procedures; therefore, the 

quality of phase was approximated from the representative chromosome set. We filled 

each plot in Fig. 4.6: the error bar on the plot represents the range of map correlations, 

the line that connects each bar represents the mean value, and the width of the bar 

represents 1σ above and below the mean value.  These centroid phase sets tend to 
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have higher phase quality than the individual samples, as evident in particular when 

larger amounts of known coordinates are supplied. 

 
(a) 

 
(b) 
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(c) 

 
(d) 
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Figure 4.6 Measures of solution-phase quality for Fourier terms calculated from the solutions 
(10x10 sampling grids) for the test structure with 50% solvent content. The measures were 
calculated using map correlations (eq. 4.1) between the solution phases and the known 
phases. Each plot shows relations of the structure factor amplitude correlation and the map 
correlation calculated from chromosomes in different generations. The error bars show map 
correlations of the centroid phases calculated from a group of solutions with similar structure-
factor amplitude correlations. The quality of centroid phases is represented as a range, since 
100 phase sets were selected and the rest were used to perform phase match with the selected 
sets. The line connecting each error bar represents mean values and the width of the error bars 
show 1σ above and below the mean values. All plots show the results from 10 independent 
runs for the four tests with a different amount of known coordinates of: (a) 0% (b) 25%. (c) 
50%. (d) 75%. 
 

For cases of 0% (Fig. 4.6a) and 25% (Fig. 4.6b) supplied known coordinates, 

solutions with increasing values of structure-factor amplitude correlation failed to 

improve phase quality (map correlation). Mean values of map correlations for both 

cases stayed almost constant at around 0.5 from the range of structure-factor 

amplitude correlations from -0.5 to 0.9. The algorithm was terminated without 

reaching a homogeneous population and the calculated map correlations among the 

chromosomes in the last generation (generation 50th) that yielded a value of ~0.4, 

show that the chromosomes in the population still remained different.  

 

With the amount of known coordinates increased to 50% (Fig. 4.6c), the correlation 

between observed and calculated structure-factor amplitudes could be used to 

distinguish the solution from the non-solutions. Note that all solutions had these 50% 

of correct locations of ‘1’ fixed throughout the optimization process and only the 

locations of the other 50% of ‘1’ were varied. At a range of structure-factor amplitude 

correlations of -0.5 to 0.25, the averaged map correlation was 0.59. The range of 

amplitude correlation of 0.25 to 0.75 produced an averaged map correlation of 0.69 

and the largest value of amplitude correlation above 0.75 produced the largest value 

of an averaged map correlation of 0.78. This result shows that for this test case when 

50% of correct coordinates were known, increasing values of structure factor 

amplitudes would result in phase improvement for all the structure factors used in the 

calculation. Note that the algorithm failed to converge with homogeneous population; 

however, the averaged map correlation among chromosomes in the last generation 

was as high as 0.73. 
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When the amount of known coordinates is as large as 75%, the test structure could be 

completely recovered (solutions with map correlation = 1). An initial set of random 

solutions (with 70% of correct coordinates) yielded an averaged map correlation of 

0.87 when structure-factor amplitude correlations were less than 0.2. Averaged map 

correlations increased to 0.98 when structure factor amplitude correlations reached the 

value of 0.9.   

4.4.2 Structures with low and high solvent content 

Another two structures with solvent content of 70% (Fig. 4.2a) and 30% (Fig. 4.2c) 

were artificially generated to test if solvent content affects the amount of known 

information about the structure needed to distinguish the solutions from the non-

solutions using only the structure factor amplitude correlation. The second structure 

with low solvent content had 30 of ‘1’-locations while the last structure had 70 of ‘1’-

locations.  

 

Tests were done using the same procedures as performed in 4.4.1. The genetic 

algorithm generated the first population pool using the known amount of coordinates 

of 0%, 25%, 50%, and 75%. For the cases with >0% known information, locations of 

‘1’ stayed the same throughout the search process and only the rest of ‘1’-locations 

were varied by the genetic operators. The algorithm terminated the run when all 

chromosomes were homogeneous or when the maximum number of generations was 

reached. Each chromosome, which stored the locations of ‘1’, was transformed back 

to the 10x10 grids where a map correlation could be calculated.  

 

Fig. 4.7 shows a measure of phase quality for the low-solvent structure (30%) for the 

0%, 25%, 50%, and 75% known coordinate cases. Note that since the √ (Σ F2) of all 

Fourier terms calculated using 10x10 sampling grids (44 terms in total) yielded a 

value of only 63.5, these terms failed to provide enough information to describe the 

structure with F(0) = 70. Similar results were observed for the case when 0% of 

known coordinates were supplied. An increase in structure-factor amplitude 

correlations failed to improve phase quality generated from the solutions. Even with 

as many as 50% of known coordinates supplied, significant improvement of map 

correlations could not be observed. It required the amount of known coordinates of 

75% such that improvements in the quality of phases could be obtained. The averaged 
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phases calculated from the chromosomes with structure-factor amplitude correlations 

> 0.88 yielded averaged map correlations of around 0.94. Note that the initial value of 

map correlation was already as large as 0.76. 

 
(a) 
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(b) 

 
(c) 
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(d) 

Figure 4.7 Measures of solution-phase quality for Fourier terms calculated from the solutions 
(10x10 sampling grids) in the case of 30% solvent content. The four test cases were set with 
different amounts of known coordinates of (a) 0%, (b) 25%, (c) 50%, (d) 75%.   
 

For the high-solvent content structure, the results with 0% known coordinates 

supplied show that map correlations stayed unchanged at a value of ~0.6 independent 

of the increase of the structure-factor amplitude correlations (Fig. 4.8a). Note that for 

this test structure with 30 locations of ‘1’ (F(0) = 30), only the 17 largest structure-

factor amplitudes were adequate to generate a recognizable inverse Fourier transform 

for an equal-atom binary structure. Therefore, the use of 44 Fourier terms in the 

search provided more than enough information required to generate the structure. The 

test structure was completely recovered when 50% of known coordinates were used in 

the search. The set of chromosomes with the structure-factor amplitude correlation > 

0.8 produced an averaged map correlation of 0.93. The algorithms were terminated 

with an averaged map correlation among chromosomes in the last population of 0.79. 

With as high as 75% known coordinates supplied (Fig. 4.8d), it took only 19 

generations on average for the algorithms to converge. The solutions were found with 

an averaged map correlation of 0.97. 
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(a) 

 
(b) 
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(c) 

 
(d) 
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Figure 4.8 Measures of solution phase quality for Fourier terms calculated from the solutions 
(10x10 sampling grids) in the case of 70% solvent content. The four test cases were set with 
different amounts of known coordinates of (a) 0%, (b) 25%, (c) 50%, (d) 75%.   
 

To differentiate the amount of known information about the structure needed to rely 

on structure-factor amplitude correlation as a measure of phase quality for the 

structures with different level of solvent, a summary of results from the three test 

structures grouped by 0%, 25%, 50%, and 75% of known-coordinate tests is given in 

Fig. 4.9. The results shown here were generated from a group of chromosomes with 

structure-factor amplitude correlations < 0.2 (circle markers) and > 0.8 (upward-

pointing triangle markers). The dark, medium, and light colors of the markers show 

the results of the structures with solvent content of 70%, 50%, and 30% respectively. 

With 0% of known coordinates given, no significant phase improvement could be 

observed from the increases of structure-factor amplitude correlations from -0.5 to 

around 0.9. The lowest solvent content structure (30%) required as high as 75% of 

known coordinates to be supplied for the search to obtain a significant increase of 

map correlation. The higher solvent content structures (50% and 70%) required 

around 50% of known coordinates to obtain a similar improvement with more 

improvement observed for the structure with the highest solvent content. Both test 

structures with 30% and 50% solvent content were completely recovered when 75% 

of known coordinates were given.  The highest solvent-content structure, the 70%, 

was recovered with fewer amounts of known coordinates supplied (50% of known 

coordinates).  
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Figure 4.9 Required amounts of known coordinates to obtain increases of map correlation 
with the increases of the structure-factor amplitude correlation for the three test structures 
with solvent content of 30% (dark color), 50% (medium dark color), and 70% (light color). 
The circle marker and the upward triangular marker show map correlations calculated from 
averaged solutions with structure-factor amplitude correlation <0.2 and >0.8 respectively. 
Map correlation improvements were displayed in separated columns according to the percent 
of known coordinates supplied for the search. The plot reveals that significant map correlation 
improvement could be obtained only when at least 50% of known coordinates were given 
with the highest improvement occurring in the test structure with the highest solvent content 
(70%). 

4.5 Conclusions 

This work explored if structure-factor amplitude correlations could be used to 

determine the quality of phases in ab-initio phasing. The focus was on an equal-atom 

binary structure in 2-dimensional layout with 10x10 sampling grids. Three types of 

structures with 30%, 50%, and 70% solvent content were artificially generated for the 

tests. Their structure-factor amplitudes were used with the genetic algorithm to search 

for solutions with high values of the correlation between the observed (generated 

from the test structure) and the calculated (generated from the solutions) structure-

factor amplitudes. The three structures were tested with an initial set of solutions 

generated using different amount of known coordinates of 0%, 25%, 50%, and 75%. 

A measure of phase quality was calculated from a map correlation (eq. 4.1) between 

the solutions found during the search and the test structures. 

 



 72 

The results for all test structures show that large values of structure-factor amplitudes 

generated from the solutions, which lacked information about known coordinates 

were uncorrelated with the structures’ map correlations. When structure-factor 

amplitude correlation increased from 0 to ~0.8, map correlations calculated from the 

solutions stayed unchanged at a value of ~0.5. Results of the structure with 50% 

solvent content show that at least 50% of known coordinates should be supplied, 

because with at least this amount of information, the structure-factor amplitude 

correlation could be used to distinguish the solutions from the non-solutions.  

 

The amount of solvent content had some impact on the amount of known coordinates 

needed for the search to rely on the structure-factor amplitude correlation to 

determine the quality of phases. Higher solvent content required fewer amounts of 

known coordinates to be supplied for the search to obtain solutions. The test structure 

with 70% solvent content needed 50% of known coordinates for the search to be fully 

recovered. The lower-solvent content structures, the 50% and 70% solvent structures, 

required 75% of known coordinates to yield the same result.   

 

The algorithm was designed to terminate under two conditions: 1) the solutions in the 

population pool had map correlation > 0.9 or 2) the maximum number of generations 

was reached. Note that only when the algorithm found a completely recovered test 

structure, the first condition was met. In other test runs, when the chromosomes 

reached map correlations < 1, these chromosomes in the population pool still 

remained different. These runs were set to terminate at the limit number of 

generations of 50 due to the observation that with this value, all chromosomes could 

already reach a structure factor-amplitude correlation of around 0.9.   
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5 Summary and outlook 
This thesis combines crystallographic knowledge and computational algorithms 

to tackle the phase problem. I associated the role of the strongest reflections and 
map skewness, a measure of the quality of density map, to improve the quality of 

phases from experimental phasing. The developed genetic algorithm, SISA, 
reconstructed optimized phases that can be used to improve density 

modification.  For ab-inito phasing studies, I shed light onto using the structure-

factor amplitude correlation as a measure of map quality.  
 

A computer program, SISA (SIR/ SAD phase optimization), was created to optimize 

the quality of phases for a few strongest reflections using map skewness as a target 

function. For the tests, I selected experimental data that had failed to give complete 

structures after density modification and model building. The program reduced phase 

errors in the optimized phases compared to the original centroid phases, leading to a 

greater success in the subsequent model building. In one of the cases, this new 

method enabled successful model building where SAD phasing had failed to do so. 

Additionally, results from the tests also showed that integrating the rest of the 

reflections with the varied ones during the search played a significant role in phase 

improvements. SISA calculation times depend on the size of the experimental data 

and the number of the selected strongest reflections.  

 

The role of the strongest reflections and the map skewness are the key ideas for the 

success of phase optimization in SISA. The algorithm used the structure-factor 

amplitudes to sort and select these strongest reflections; the normalized structure 

factors (E) can also be used instead. Phases optimized this way might have fewer 

errors. However, the density modification and the model building based on an 

electron-density map calculated from the normalized structure factors must be used to 

measure the impact of the optimized phases. Additional measures of the quality of an 

electron-density map such as the local r.m.s error can be used to improve the 

efficiency of the target function in optimizing the quality of phases. Fewer phase 
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errors for the strongest reflections help decrease errors in an electron-density map, 

leading to a greater improvement in density modification and model building. 

 

I also constructed another genetic algorithm to study the usability of structure-factor 

amplitude correlation for ab-initio phasing. The problem was configured in a 2-

dimensional setting using 10x10 grids. The focus was on finding out the amount of 

known coordinates needed to rely on the structure-factor amplitude correlation as a 

measure of phase quality. Given a structure consisting of only equal atoms, when 

information about the structure was lacking (coordinates or phases unknown), 

solutions with large values of structure-factor amplitude correlation still yielded 

incorrect structures. The test structures were categorized according to their solvent 

content; as a result, I observed that the low-solvent structure required a higher amount 

of known coordinates to obtain phase improvement with the increase of structure-

factor amplitude correlations. The medium- and high-solvent structures required 

fewer amounts of known coordinates to achieve similar results; with 50% of known 

coordinates supplied, both structures were fully recovered. 

 

The study of structure-factor amplitude correlation for 2-dimensional structures helps 

in understanding their usability for ab-initio phasing. Although structure-factor 

amplitude correlation is not useful for ab-initio phasing in the complete absence of 

prior structural information, the results in this thesis show that phases can be 

recovered using the genetic algorithm when some coordinates of the structures are 

known. The high-solvent structure yielded the best results (in terms of the 

completeness of the solutions and the calculation times); this work can be extended to 

3-dimensional data for macromolecules with an inclusion of finding the translated, 

inverted, and Babinet copy of a structure in a 3-dimensional setting.  
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