Einfluss pulsatiler und kontinuierlicher Glukoseinfusionen auf das spontane Nahrungsaufnahmeverhalten

Inauguraldissertation
zur
Erlangung der Doktorwürde
der Universität zu Lübeck
- aus der Sektion Medizin-

vorgelegt von
Felix de l’Homme de Courbière
aus Herdecke

Lübeck 2011
1. Berichterstatter: Prof. Dr. med. Bernd Schultes
2. Berichterstatterin: Prof. Dr. med. Kerstin Oltmanns
Tag der mündlichen Prüfung: 04.06.2012
zum Druck genehmigt. Lübeck, den 04.06.2012
gez.
- Promotionskommission der Sektion Medizin -
INHALTSVERZEICHNIS

1 Einleitung .. 1
 1.1 Regulation der Energiehomöostase ... 1
 1.1.1 Zentrale Kontrolle der Energiehomöostase .. 2
 1.1.2 Mediatoren der Energiehomöostase ... 3
 1.2 Glukose als Modulator des Nahrungsaufnahmeverhaltens .. 5
 1.2.1 Regulation der Blutglukosekonzentration .. 5
 1.2.2 Blutglukosekonzentration und Nahrungsaufnahmeverhalten 7
 1.3 Ziele und Fragestellungen ... 10

2 Material und Methoden ... 11
 2.1 Probanden .. 11
 2.2 Studiendesign und Versuchsablauf .. 12
 2.3 Nahrungsangebot ... 16
 2.4 Blutglukose- und Insulinbestimmung .. 19
 2.5 Statistische Auswertung .. 19

3 Ergebnisse ... 20
 3.1 Blutglukose und Insulin ... 20
 3.1.1 Glukose ... 20
 3.1.2 Insulin ... 22
 3.2 Symptome .. 23
 3.2.1 Hunger .. 23
 3.2.2 Sattheit .. 24
 3.2.3 Autonome Symptome ... 25
 3.2.4 Neuroglykopene Symptome ... 26
 3.3 Energieaufnahme ... 27
 3.3.1 Spontane Nahrungsaufnahme ... 27
 3.3.2 Gesamt-Energieaufnahme .. 29
 3.4 Neurokognitive Tests ... 30
 3.4.1 Wort-Wiedergabe-Test ... 30
 3.4.2 Stroop-Test .. 31
4 Diskussion .. 32

4.1 Glukosekonzentration und Insulinsekretion .. 32

4.2 Nahrungsaufnahme und Symptomratings unter kontinuierlicher Glukose 33

4.3 Nahrungsaufnahme und Symptomratings unter pulsatiler Glukose 35

4.4 Gesamtenergiezufuhr ... 37

4.5 Klinische Implikationen ... 37

4.6 Limitationen .. 38

4.7 Ausblick .. 39

5 Zusammenfassung ... 40

6 Literaturverzeichnis .. 41

7 Verzeichnis der Abbildungen und Tabellen ... 46

7.1 Abbildungsverzeichnis .. 46

7.2 Tabellenverzeichnis ... 46

8 Eigenständigkeitserklärung ... 47

9 Danksagung .. 48

10 Lebenslauf .. 49
Einleitung

In der vorliegenden Arbeit wurde untersucht, ob durch direkte Beeinflussung der Blutglukosekonzentration Veränderungen des Nahrungsaufnahmeverhaltens induzierbar sind. Vor der Beschreibung von Zielen und Fragestellungen dieser Arbeit soll zunächst ein Überblick über die Regulation der Energiehomöostase gegeben werden.

1.1 Regulation der Energiehomöostase

Nach heutigem Kenntnisstand wird das Nahrungsaufnahmeverhalten reguliert durch ein vom ZNS kontrolliertes Zusammenspiel verschiedener Mediatoren. Hierzu zählen beispielsweise Hormone, Neuropeptide, neuronale Signale und Energiesubstrate.
Einleitung

Neben der lebenswichtigen Aufrechterhaltung des Energiemetabolismus wird dieses äußerst komplexe Verhalten zusätzlich durch viele weitere Faktoren moduliert. Hierzu zählen etwa soziale Bedingungen, Gewohnheiten und hedonische Motive. Im Rahmen eines klassisch homöostatisch regulierten Modells konnten in den letzten Jahren zahlreiche hormonelle und neurohumorale Einflussfaktoren identifiziert werden [5].

1.1.1 Zentrale Kontrolle der Energiehomöostase

<table>
<thead>
<tr>
<th>Orexiogene Neuropeptide</th>
<th>Anorexiogene Neuropeptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuropeptid Y (NPY)</td>
<td>α-Melanocyte-stimulating hormone (α-MSH)</td>
</tr>
<tr>
<td>Agouti-related protein (AGRP)</td>
<td>Corticotropin-releasing hormone (CRH)</td>
</tr>
<tr>
<td>Melanin-concentrating hormone (MCH)</td>
<td>Thyrotropin-releasing hormone (TRH)</td>
</tr>
<tr>
<td>Orexin A/B</td>
<td>Cocaine- and amphetamine-regulated transcript (CART)</td>
</tr>
</tbody>
</table>

Tabelle 1: Einige Neuropeptide der Energiehomöostase nach Schwartz et al. [5].
Einleitung

1.1.2 Mediatoren der Energiehomöostase

Wie bereits geschildert, informieren periphere Signale das Gehirn über den aktuellen Ernährungszustand. Einige dieser Signale wirken sich dabei eher auf die langfristige, andere auf die kurzfristige Regulation aus [11]. Bei der langfristigen Regulation spielt vor allem das Hormon Leptin als eher tonisches Signal eine wichtige Rolle. Hierbei wird die über einen größeren Zeitraum konsumierte Energiemenge an die Energiespeicher angepasst und somit, trotz Schwankungen der täglich konsumierten Nahrungsmenge, langfristig ein bestimmtes Körpergewicht relativ konstant gehalten [4]. Hormone wie Leptin, dessen Serumkonzentration sich proportional zur Körperfettmasse verhält [12], signalisieren zentralnervös ausreichende periphere Energiereserven und induzieren eine Reduktion der Nahrungszufuhr sowie eine Steigerung des Energieverbrauchs [13].

Auch Insulin hat neben seiner vorrangigen Funktion im Glukosestoffwechsel und seinem anabolen Einfluss auf den peripheren Metabolismus eine wesentliche katabole Wirkung im ZNS [14]. Es versorgt das Gehirn mit Informationen über periphere Energiespeicher und bewirkt so als zentrales Feedbacksignal einen zügelnden Effekt auf den peripheren anabol en Stoffwechsel [15].

Niedrige Konzentrationen dieser Signale, welche die Energiedepots beschreiben, können dazu führen, dass das Gehirn dies als Defizit einer adäquaten Energieversorgung interpretiert. Dies resultiert in Hungergefühlen, die den Organismus zur
Einleitung

Nahrungsaufnahme veranlassen. Demgegenüber steht z.B. das gastrale Hormon Ghrelin. Bei diesem Hormon führt nicht eine Verringerung sondern eine Erhöhung seiner Konzentration zu Hungergefühlen [16].

Zusätzlich erhält das ZNS während der Essenszufuhr Informationen aus der Mundhöhle über Geschmackssensationen, was bereits ein Sättigungsgefühl verursacht [17]. Aus dem nachfolgenden Gastrointestinaltrakt werden Signale über Magendehnung und Magenfüllung vermittelt, die sich ebenfalls sättigend auswirken [6]. Einen weiteren wichtigen hungersupprimierenden Effekt haben humoral vermittelte Signale aus der Darmschleimhaut. Hierzu zählen z.B. Cholecystokin (CCK) [18], Peptid YY (PYY) [19] und Glucagon-like-petide 1 (GLP 1) [20]. Diese Hormone vermögen außerdem die Magenentleerung zu verlangsamen, was über die Induktion eines Völlegefühls zu einer reduzierten Nahrungsaufnahme führen könnte [21, 22]. Diese mit der akuten Nahrungszufuhr verbundenen Signale wirken sich eher phasisch aus und besitzen als Sättigungsdeterminanten einen kurzfristigen Effekt auf die Regulation der Nahrungsaufnahme [11].

Ingestion eines beliebigen Nährstoffs entscheidend für die Regulation der Nahrungsaufnahme ist, sondern vor allem welcher Nährstoff aufgenommen wird. In der Diskussion um die Entstehung von Adipositas und deren Prävention und Behandlung könnte somit eine differenziertere Empfehlung bestimmter Nährstoffe herausgearbeitet werden.

1.2 Glukose als Modulator des Nahrungsaufnahmeverhaltens

1.2.1 Regulation der Blutglukosekonzentration

Neurone, die in Abhängigkeit von Schwankungen der Blutglukosekonzentration ihre elektrische Aktivität verändern [34].

Kommt es trotz dieser stabilen Regulation der Blutglukosekonzentration zu einem Abweichen vom physiologischen Normbereich, kann dies für den Organismus mit bedrohlichen Konsequenzen einhergehen. So reagiert der Körper auf ein Unterschreiten der Grenzen mit typischen vegetativen Symptomen, zu denen unter anderem Heißhunger zählt [42]. Außerdem gehen ausgeprägte Hypoglykämien mit neuroglykopen Symptomen, wie etwa Konzentrationsdefiziten einher [42]. Aber auch erhöhte
Einleitung

Blutglukosekonzentrationen stellen eine Gefährdung für den Organismus dar. Kurzfristige Hyperglykämien können über neurokognitive Einschränkungen bis hin zum Koma führen, wohingegen langfristig erhöhte Blutglukosekonzentrationen eine Ursache für typische diabetische Komplikationen sind, die sich klinisch als Organschäden darstellen.

1.2.2 Blutglukosekonzentration und Nahrungsaufnahmeverhalten

Seitdem konnte gezeigt werden, dass Glukose wesentliche Effekte auf das Nahrungsaufnahmeverhalten hat. Untersucht wurden vor allem die Auswirkungen von

- Hypo- und Hyperglykämien,
- Störungen des Glukosemetabolismus,
- Verzehr von Kohlenhydraten und
- akuten dynamischen Veränderungen der Blutglukosekonzentration.

Der Einfluss von Hypoglykämien auf Hunger und Essverhalten ist gut erforscht. So konnte neben der Tatsache, dass eine Hypoglykämie einen starken Hungerimpuls darstellt, welcher keiner Habituation unterliegt [44], beobachtet werden, dass es während schwerer Hypoglykämien zu einer selektiven Aufmerksamkeit auf essensrelevante Stimuli kommt [45].

In Anlehnung an Mayers ursprüngliche Theorie zeigen weitere experimentelle Studien, dass statt der absoluten Glukosekonzentration vielmehr ein vermindelter
Einleitung

Bislang wurde nicht systematisch untersucht, inwiefern die Dynamik der Blutglukosekonzentration, frei von gastrointestinalen Faktoren, Einfluss auf das Nahrungsaufnahmeverhalten nimmt.

1.3 Ziele und Fragestellungen

Folgende Fragestellungen wurden in der hier vorliegenden Arbeit konkret untersucht:

- Führt eine pulsatile parenterale Glukosegabe zu einer erhöhten spontanen Nahrungszufuhr im Vergleich zu einer Placebobedingung?

- Wird dagegen durch eine kontinuierlich gegebene parenterale Gabe der gleichen Menge Glukose die Nahrungsaufnahme reduziert?
2 Material und Methoden

2.1 Probanden

2.2 Studiendesign und Versuchsablauf

Spontanes Nahrungsaufnahmeverhalten, Blutparameter und Hungergefühle wurden unter vier verschiedenen Bedingungen gemessen. Folgende Bedingungen musste jeder einzelne Proband durchlaufen:

1. Eine Infusion von insgesamt 100 g Glukose, verteilt auf zwei relativ kurze Infusionen (2 x 500 ml 10 % Glukoselösung, DeltaSelect GmbH, Deutschland) über je eine Stunde: „Glukose Pulsatil“ = GP.

2. Die gleiche Menge Glukose wie unter Bedingung 1 (1 x 1000 ml 10 % Glukoselösung, DeltaSelect GmbH, Deutschland), allerdings kontinuierlich über zehn Stunden intravenös appliziert: „Glukose Kontinuierlich“ = GK.

3. Eine über den gleichen Zeitraum wie in Bedingung 2 applizierte, isovoluminöse, kalorienfreie Placeboinfusion (1000 ml 0,9 % Natriumchlorid-Infusionslösung, Berlin-Chemie-AG, Deutschland): „Placebo“ = P.

Der Energiegehalt, der über einen Versuchstag gegebenen Infusionen betrug, mit Ausnahme der Natriumchloridlösung, jeweils 400 kcal.

wurden angehalten, an den Tagen vor den Versuchen ab 22:00 h keine Nahrung mehr zu sich zu nehmen und auf koffeinhaltige und alkoholische Getränke zu verzichten. Das Trinken von ungesüßtem Kräutertee und Mineralwasser war gestattet.

Nach Beenden der Vorbereitungen fing um 07:30 h das Experiment mit einer Blutentnahme zur Bestimmung des Leerwertes der Blutparameter (Baseline) an. Direkt im Anschluss wurden mit den Probanden neurokognitive Tests durchgeführt und sie mussten von nun an die Symptomfragebögen stündlich ausfüllen. Zusätzlich mussten die Versuchspersonen um 08:00 h zwei Müsliriegel essen (218 kcal; 3,4 g Eiweiß, 31,6 g Kohlenhydrate, 8,6 g Fett). Hierdurch sollte eine Überhungerung aufgrund der prolongierten Nüchternheit der Probanden vermieden werden. Die Infusion der für den jeweiligen Versuchstag vorgesehenen Lösung unter den Bedingungen GK, P und F begann um 08:00 h. Die Infusionen liefen von 08:00 h bis 18:00 h unter GK und P mit einer Geschwindigkeit von 100 ml/h, bzw. unter F mit einer Geschwindigkeit von 20 ml/h. Unter GP erhielten die Teilnehmer erst um 09:00 h die Infusion, welche mit einer Geschwindigkeit von 500 ml/h bis 10:00 h lief. Von 15:00 h bis 16:00 h wiederholte sich dieser Ablauf unter GP. Von 08:00 h an wurde stündlich Blut zur Insulinbestimmung entnommen. Die Blutglukosekonzentrationen wurden ab 08:00 h halbstündlich gemessen mit Ausnahme in den Zeiten von 09:00 h bis 11:00 h und von 15:00 h bis 17:00 h - hier wurde die Plasmaglukosekonzentration jede vierte Stunde bestimmt. Unmittelbar vor jeder Blutentnahme wurde mit einer Spritze (BD Discardit™ II, BD, USA) über den dazu vorgesehenen Zugang 10 ml Blut abgenommen und verworfen. Zur Gewinnung des für die
Bestimmung der Plasmaglukose vorgesehenen Blutes wurde mit einer weiteren Spritze 1 ml Blut entnommen. Das Blut zur Bestimmung von Insulin wurde mit Hilfe eines Blutentnahmeröhrchens gewonnen (S-Monovette® 4,9 ml Serum Gel, Sarstedt Ag & Co, Deutschland).

Abb. 1: Schematische Darstellung des Versuchsablaufes. (GP = Glukose Pulsatil. NT = Neurokognitive Tests).

2.3 Nahrungsangebot

Nachdem die Teilnehmer um 08:00 h bereits zwei Müsliriegel (Corny, 218 kcal) gegessen hatten, wurde ihnen um 11:00 h ein Frühstückbuffet offeriert (Tab. 2).

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>Angebotene Menge (g)</th>
<th>Kohlenhydrate (g)</th>
<th>Fette (g)</th>
<th>Proteine (g)</th>
<th>Energie (kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kondensmilch</td>
<td>30</td>
<td>3,2</td>
<td>1,2</td>
<td>2,3</td>
<td>33,5</td>
</tr>
<tr>
<td>Zucker</td>
<td>24</td>
<td>24,0</td>
<td>0,0</td>
<td>0,0</td>
<td>97,7</td>
</tr>
<tr>
<td>Milch</td>
<td>1000</td>
<td>47,6</td>
<td>35,0</td>
<td>33,0</td>
<td>653</td>
</tr>
<tr>
<td>Erdbeermilch</td>
<td>400</td>
<td>20,0</td>
<td>0,4</td>
<td>5,2</td>
<td>107</td>
</tr>
<tr>
<td>Orangensaft</td>
<td>800</td>
<td>72,0</td>
<td>3,2</td>
<td>7,2</td>
<td>353</td>
</tr>
<tr>
<td>Vanillepudding</td>
<td>125</td>
<td>20,8</td>
<td>3,5</td>
<td>3,5</td>
<td>131</td>
</tr>
<tr>
<td>Brötchen</td>
<td>225</td>
<td>114,1</td>
<td>3,0</td>
<td>16,7</td>
<td>562</td>
</tr>
<tr>
<td>Vollkornbrot</td>
<td>165</td>
<td>67,5</td>
<td>2,2</td>
<td>11,9</td>
<td>344</td>
</tr>
<tr>
<td>Weißbrot</td>
<td>30</td>
<td>14,4</td>
<td>0,4</td>
<td>2,1</td>
<td>71,1</td>
</tr>
<tr>
<td>Butter</td>
<td>105</td>
<td>0,6</td>
<td>87,4</td>
<td>0,7</td>
<td>812</td>
</tr>
<tr>
<td>Konfitüre</td>
<td>50</td>
<td>33,6</td>
<td>0,1</td>
<td>0,2</td>
<td>139</td>
</tr>
<tr>
<td>Nutella</td>
<td>40</td>
<td>23,8</td>
<td>11,8</td>
<td>1,7</td>
<td>214</td>
</tr>
<tr>
<td>Honig</td>
<td>40</td>
<td>30,0</td>
<td>0,0</td>
<td>0,2</td>
<td>123</td>
</tr>
<tr>
<td>Geflügelwurst</td>
<td>100</td>
<td>0,3</td>
<td>9,8</td>
<td>21,0</td>
<td>178</td>
</tr>
<tr>
<td>Zervelatwurst</td>
<td>85</td>
<td>0,2</td>
<td>27,5</td>
<td>17,1</td>
<td>325</td>
</tr>
<tr>
<td>Schnittkäse</td>
<td>100</td>
<td>0,0</td>
<td>27,0</td>
<td>25,3</td>
<td>353</td>
</tr>
<tr>
<td>Frischkäse</td>
<td>33,3</td>
<td>1,0</td>
<td>9,2</td>
<td>2,0</td>
<td>96,9</td>
</tr>
<tr>
<td>Fruchtquark</td>
<td>150</td>
<td>26</td>
<td>3,9</td>
<td>7,5</td>
<td>173</td>
</tr>
<tr>
<td>Kräuterkäse</td>
<td>40</td>
<td>0,8</td>
<td>12,0</td>
<td>3,2</td>
<td>127</td>
</tr>
<tr>
<td>Apfel</td>
<td>100</td>
<td>11,4</td>
<td>0,4</td>
<td>0,3</td>
<td>51,6</td>
</tr>
<tr>
<td>Banane</td>
<td>100</td>
<td>21,4</td>
<td>0,2</td>
<td>1,1</td>
<td>93,7</td>
</tr>
<tr>
<td>Birne</td>
<td>100</td>
<td>12,4</td>
<td>0,3</td>
<td>0,5</td>
<td>55,4</td>
</tr>
<tr>
<td>Orange</td>
<td>100</td>
<td>9,2</td>
<td>0,2</td>
<td>1,0</td>
<td>43,4</td>
</tr>
<tr>
<td>Gesamt</td>
<td>3942</td>
<td>554</td>
<td>239</td>
<td>164</td>
<td>5135</td>
</tr>
</tbody>
</table>

Tabelle 2: Auflistung der Lebensmittel des Frühstückbuffets und deren Zusammensetzung aus den Makronährstoffen sowie des jeweiligen Energiegehaltes.
Des Weiteren wurde ihnen ein Buffet mit Snacks angeboten, von welchem sie sich, wie auch von dem Frühstückbuffet, den restlichen Versuchstag über ad libitum bedienen konnten (Tab. 3).

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>Angebotene Menge (g)</th>
<th>Kohlenhydrate (g)</th>
<th>Fette (g)</th>
<th>Proteine (g)</th>
<th>Energie (kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chips</td>
<td>40</td>
<td>19,6</td>
<td>14,0</td>
<td>2,4</td>
<td>219</td>
</tr>
<tr>
<td>Erdnusslocken</td>
<td>40</td>
<td>21,6</td>
<td>9,6</td>
<td>5,6</td>
<td>200</td>
</tr>
<tr>
<td>Erdnüsse</td>
<td>200</td>
<td>18,5</td>
<td>96,8</td>
<td>50,2</td>
<td>1175</td>
</tr>
<tr>
<td>Brotchips</td>
<td>50</td>
<td>32,4</td>
<td>6,9</td>
<td>5,9</td>
<td>220</td>
</tr>
<tr>
<td>Schokoladenwaffeln</td>
<td>75</td>
<td>39,0</td>
<td>24,0</td>
<td>6,0</td>
<td>405</td>
</tr>
<tr>
<td>Toffifee</td>
<td>125</td>
<td>72,5</td>
<td>38,8</td>
<td>7,5</td>
<td>684</td>
</tr>
<tr>
<td>Weingummi</td>
<td>125</td>
<td>90,8</td>
<td>0,3</td>
<td>10,0</td>
<td>414</td>
</tr>
<tr>
<td>Lakritz</td>
<td>96</td>
<td>64,3</td>
<td>0,1</td>
<td>2,4</td>
<td>273</td>
</tr>
<tr>
<td>Müsliriegel</td>
<td>75</td>
<td>46,4</td>
<td>13,0</td>
<td>5,2</td>
<td>330</td>
</tr>
<tr>
<td>Schokoladenkekse</td>
<td>80</td>
<td>48,4</td>
<td>19,8</td>
<td>5,4</td>
<td>403</td>
</tr>
<tr>
<td>Milchschokolade</td>
<td>100</td>
<td>58,8</td>
<td>29,5</td>
<td>6,6</td>
<td>540</td>
</tr>
<tr>
<td>Erdbeerjoghurt</td>
<td>250</td>
<td>36,5</td>
<td>7,3</td>
<td>9,8</td>
<td>256</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1256</td>
<td>549</td>
<td>260</td>
<td>117</td>
<td>5117</td>
</tr>
</tbody>
</table>

Außerdem konnten sie jederzeit ein warmes Essen als Hauptmahlzeit anfordern (Tab. 4).

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>Angebotene Menge (g)</th>
<th>Kohlenhydrate (g)</th>
<th>Fette (g)</th>
<th>Proteine (g)</th>
<th>Energie (kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kartoffeln</td>
<td>500</td>
<td>71</td>
<td>0,5</td>
<td>9,8</td>
<td>335</td>
</tr>
<tr>
<td>Reis</td>
<td>500</td>
<td>120</td>
<td>0,9</td>
<td>11,1</td>
<td>543</td>
</tr>
<tr>
<td>Kaisergemüse</td>
<td>100</td>
<td>2,4</td>
<td>0,2</td>
<td>2,1</td>
<td>20,3</td>
</tr>
<tr>
<td>Bratensoße</td>
<td>10</td>
<td>0,6</td>
<td>0,8</td>
<td>0,5</td>
<td>12,1</td>
</tr>
<tr>
<td>Tomatensalat</td>
<td>100</td>
<td>2,6</td>
<td>0,2</td>
<td>1,0</td>
<td>16,5</td>
</tr>
<tr>
<td>Dressing</td>
<td>10</td>
<td>0,6</td>
<td>1,1</td>
<td>0,3</td>
<td>13,8</td>
</tr>
<tr>
<td>Schweineschnitzel</td>
<td>100</td>
<td>4,8</td>
<td>5,7</td>
<td>28,3</td>
<td>188</td>
</tr>
<tr>
<td>Hähnchenbrust</td>
<td>100</td>
<td>0,3</td>
<td>0,8</td>
<td>25,2</td>
<td>112</td>
</tr>
<tr>
<td>Margarine</td>
<td>15</td>
<td>0,1</td>
<td>12,0</td>
<td>0,1</td>
<td>111</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1435</td>
<td>202</td>
<td>22,2</td>
<td>78,3</td>
<td>1351</td>
</tr>
</tbody>
</table>

Tabelle 4: Auflistung der Lebensmittel der Hauptmahlzeit und deren Zusammensetzung aus den Makronährstoffen sowie des jeweiligen Energiegehaltes.

Material und Methoden

2.4 Blutglukose- und Insulinbestimmung

Die Blutglukosekonzentrationen wurden sofort nach Entnahme mittels der Glukose-Dehydrogenase-Methode gemessen (HemoCue Glucose 201 DM, HemoCue AB, Ängelholm, Schweden). Die inter- und intra-assay Variationskoeffizienten betrugen hierbei < 3,5 % bzw. < 2,7 %. Das zur Messung der Insulinkonzentrationen entnommene Blut wurde nach 30 min zentrifugiert (Heraeus Labofuge 400 R, Thermo Fisher Scientific Inc., USA). Der Überstand wurde in 1,5 ml große Reaktionsgefäße (Eppendorf AG, Deutschland) pipettiert (Finpipette® Thermo Fisher Inc., USA) und bis zur Analyse bei minus 80° C gelagert. Die Insulinkonzentration wurde mit kommerziell erhältlichen Immunoassays bestimmt (Immulite, Siemens Health Care). Die inter- und intra-assay Variationskoeffizienten und die analytischen Sensitivitäten (aS) betrugen hierbei < 5,2 % bzw. < 6,1 %, aS 12,0 pmol/l.

2.5 Statistische Auswertung

3 Ergebnisse

3.1 Blutglukose und Insulin

3.1.1 Glukose

Die Mittelwerte der morgendlichen Blutglukosekonzentrationen waren unter allen drei Bedingungen gut miteinander vergleichbar (P: 4,29 ± 0,18 mmol/l; GP: 4,30 ± 0,10 mmol/l; GK: 4,57 ± 0,12 mmol/l; p=0,22), variierten im Tagesverlauf allerdings deutlich (p < 0,001 für den „Bedingung“ x „Zeit“ Effekt über alle drei Bedingungen; Abb. 2). Während die Konzentrationen unter P und GK einen ähnlichen Verlauf nahmen (p=0,21 für den „Bedingung“ x „Zeit“ Effekt für den Vergleich zwischen beiden Bedingungen), wich der unter GP signifikant davon ab (p<0,001 für GP vs. P; sowie für GP vs. GK für den „Bedingung“ x „Zeit“ Effekt für den Vergleich zwischen den jeweiligen Bedingungen).

Nach dem Verzehr der Müsliriegel um 08:00 h kam es bis 09:00 h unter P zu einem leichten Anstieg der Blutglukosekonzentration. Gut vergleichen lässt sich damit der Verlauf unter der kontinuierlichen Glukosegabe (p=1,63 für den „Bedingung“ x „Zeit“ Effekt für den Vergleich zwischen den Bedingungen). Allerdings lagen die Werte unter GK vormittags auf einem höheren Niveau (p=0,006 für den Faktor „Bedingung“ für den Vergleich zwischen P und GK für den vormittäglichen Zeitraum). Nach dem morgendlichen Anstieg fielen die Konzentrationen sowohl unter P als auch unter GK auf eine tieferes Niveau mit einem Nadir um 10:30 h (p<0,001 für den Faktor „Zeit“ für den Vergleich zwischen P und GK). Hierauf folgte ein erneuter Anstieg der Blutglukosekonzentration, der nach Beginn des Frühstücks gegen 11:30 h wieder eine Spitze erreichte (p<0,001 für den Faktor „Zeit“ für den Vergleich zwischen beiden Bedingungen), und der sich gut unter beiden Bedingungen vergleichen ließ (p=0,31 für den „Bedingung“ x „Zeit“ Effekt für den Vergleich zwischen P und GK). Daraufhin nahmen die Blutglukosekonzentrationen für den Rest des Versuches unter P und GK ab 13:00 h einen stabilen, ähnlichen Verlauf an (p=0,68 für den „Zeit“ x „Bedingung“ Effekt für den Vergleich zwischen P und GK).

Unter der Bedingung GP konnte mit Beginn der Glukoseinfusion um 09:00 h ein steiler Anstieg der Blutglukosekonzentration verzeichnet werden mit einen Spitzenwert um
09:30 h (p<0,001 für den Faktor „Zeit“ unter GP). Hierauf folgte ein Abfall, welcher um 10:45 h einen Nadir erreichte, gefolgt von einem nun nicht mehr so steil verlaufenden Anstieg. Dieser Verlauf von 08:30 h bis 12:00 h unterschied sich unter GP signifikant von denen unter den beiden anderen Bedingung (p<0,001 für GP vs. P; sowie für GP vs. GK für den „Bedingung“ x „Zeit“ Effekt für den Vergleich zwischen den jeweiligen Bedingungen). Während der zweiten pulsatilen Glukoseinfusion um 15:00 h konnte erneut ein rapider Anstieg der Glukosekonzentration erzielt werden, der allerdings nicht so steil verlief wie derjenige unter der vormittäglichen Infusion. Auch der hierauf folgende Tiefpunkt fiel nicht so ausgeprägt aus. Danach stieg die Konzentration und verblieb bis zum Ende des Versuchstages auf einem gleichbleibenden Niveau.

Abbildung 2: Verlauf der Blutglukosekonzentration während des Versuches.
3.1.2 Insulin

Die morgendlichen Insulinwerte unterschieden sich nicht zwischen den einzelnen Versuchsbedingungen (P: 22,72 ± 2,63 pmol/l; GP: 28,47 ± 5,82 pmol/l; GK: 29,09 ± 4,95 pmol/l; p=0,22). Die Verläufe der Insulinkonzentrationen wurden durch die Glukoseinfusionen signifikant verändert (p<0,001 für den „Bedingung“ x „Zeit“ Effekt über alle Bedingungen; Abb. 3). Unter P konnte zu Versuchsbeginn ein steiler Anstieg der Insulinkonzentration verzeichnet werden, der nach einer kurzfristigen Schwankung ein Maximum um 12:00 h erreichte. Unter GK nahmen die Insulinwerte einen vergleichbaren Verlauf wie unter P an (p=0,32 für den „Bedingung“ x „Zeit“ Effekt zwischen P und GK), allerdings auf einem signifikant höheren Niveau (p=0,003 für den Faktor „Bedingung“ zwischen P und GK).

Nach Beginn der Glukoseinfusion stieg die Insulinkonzentration unter GP steil an und erreichte Spitzenwerte um 10:00 h sowie nach der zweiten Glukosegabe um 16:00 h.

Abbildung 3: Insulinkonzentrationen während des Versuches.
3.2 Symptome

3.2.1 Hunger

Die Skalenwerte für das mittels Ratingskalen erfasste Symptom „Hunger“ waren morgens gut miteinander vergleichbar (p=0,475 für den Vergleich zwischen allen Bedingungen) und wurden in ihrem Verlauf durch die Glukoseinfusionen nicht beeinflusst (p=0,62 für den „Bedingung“ x „Zeit“ Effekt über alle drei Bedingungen; Abb.4). Nach Versuchsbeginn stiegen die Werte bis zum Offerieren des Frühstückbuffets an (p<0,001 für den Faktor „Zeit“ über alle Bedingungen) und zwar unter jeder Bedingung (p=0,80 für den „Bedingung“ x „Zeit“ Effekt über alle Bedingungen). Nach dem Frühstück fielen die Werte dann in allen Bedingungen gleichermaßen steil ab (p<0,001 für „Zeit“ über alle Bedingungen).

Abbildung 4: Hungergefühle während des Versuches.
3.2.2 Sattheit

Auch die morgendlichen Werte für den Score der gefühlten „Sattheit“ wiesen keine signifikanten Unterschiede auf (p=0,45). Die Verläufe zeigten einen inversen Verlauf zu denen des Symptoms „Hunger“ und waren unter den verschiedenen Bedingungen gut miteinander vergleichbar (p=0,49 für „Bedingung“ x „Zeit“ Effekt über alle drei Bedingungen; Abb. 5). Nach 11:00 h konnte ein steiler Anstieg verzeichnet werden (p<0,001 für den Faktor „Zeit“ in allen Bedingungen). Bis 16:00 h fielen die Werte dann noch einmal ab, gefolgt von einem erneuten Anstieg.

Abbildung 5: Sattheitsgefühle während des Versuches.
3.2.3 Autonome Symptome

Die Skalenwerte der Symptomfragebögen, die zu den autonomen Symptome zusammengefasst wurden, zeigten in ihren Basalwerten morgens keine signifikanten Abweichungen (p=0,89) und unterschieden sich in ihrem Verlauf nicht wesentlich voneinander (p=0,79 für den „Bedingung“ x „Zeit“ Effekt über alle drei Bedingungen; Abb. 6). Auffällig war, dass die Werte nach dem Frühstück um 11:00 h sehr steil sanken (p<0,001 für den Faktor „Zeit“) und zwar unter allen drei Bedingungen (p=0,32 für den Faktor „Bedingung“).

![Abbildung 6: Autonome Symptome während des Versuches.](image-url)
3.2.4 Neuroglykopene Symptome

Die Skalenwerte für die zusammengefassten neuroglykopenen Symptome zeigten keine auffälligen Verläufe: Es gab keine signifikanten Unterschiede in den Basalwerten zwischen den drei Bedingungen (p=0,897) und auch die weiteren Verläufe während des Versuches stellten sich als gut miteinander vergleichbar dar (p=0,54 für den „Bedingung“ x „Zeit“ Effekt über alle drei Bedingungen; Abb. 7).

Abbildung 7: Vegetative Symptome während des Versuches.
3.3 Energieaufnahme

3.3.1 Spontane Nahrungsaufnahme

Nach Erfassung der von den Probanden verzehrten Nahrung wurden die jeweiligen Makronährstoffkomponenten analysiert und in die konsumierte Menge in Kilokalorien umgerechnet. Es ergab sich kein Unterschied zwischen den drei Bedingungen bezüglich der über den gesamten Versuchstag vom Probanden oral aufgenommenen Energiemenge (p=0,81; Abb. 8).

Ebenso zeigten sich keine Unterschiede zwischen den Bedingungen bei der Analyse der Makronährstoffkomponenten (\(p=0,32\) für die Faktoren „Bedingung“ x „Makronährstoff“ über alle Bedingungen), weder bezüglich der Menge der einzelnen Makronährstoffkomponenten, noch im Hinblick auf ihren relativen Anteil in der Zusammensetzung der Nahrung wie Tabelle 5 zeigt.

<table>
<thead>
<tr>
<th></th>
<th>Glukose Pulsatil</th>
<th>Glukose Kontinuierlich</th>
<th>Placebo</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE (kcal)</td>
<td>3346 ± 216</td>
<td>3256 ± 203</td>
<td>3340 ± 139</td>
<td>0,81</td>
</tr>
<tr>
<td>KH (kcal)</td>
<td>1563 ± 98,1</td>
<td>1439 ± 91,3</td>
<td>1526 ± 83,9</td>
<td>0,26</td>
</tr>
<tr>
<td>(%)</td>
<td>47,2 ± 1,5</td>
<td>44,8 ± 2,1</td>
<td>45,8 ± 1,7</td>
<td>0,30</td>
</tr>
<tr>
<td>F (kcal)</td>
<td>1291 ± 107</td>
<td>1344,9 ± 130</td>
<td>1323± 79,2</td>
<td>0,84</td>
</tr>
<tr>
<td>(%)</td>
<td>38,0 ± 1,1</td>
<td>40,4 ± 1,9</td>
<td>39,5 ± 1,4</td>
<td>0,25</td>
</tr>
<tr>
<td>EW (kcal)</td>
<td>491 ± 38,6</td>
<td>472 ± 32,0</td>
<td>491,0 ± 27,6</td>
<td>0,71</td>
</tr>
<tr>
<td>(%)</td>
<td>14,8 ± 0,9</td>
<td>14,8 ± 0,8</td>
<td>14,8 ± 0,7</td>
<td>0,99</td>
</tr>
</tbody>
</table>

Tabelle 5: Spontan aufgenommene Energiemenge und die Anteile der einzelnen Makronährstoffkomponenten. (OE=orale Energieaufnahme; KH=Kohlenhydrate; F=Fett; EW=Eiweiß).
3.3.2 Gesamt-Energieaufnahme

Für die gesamte Energieaufnahme wurden zur oralen Energieaufnahme die verzehrten Müsliriegel (218 kcal) und die jeweilige Infusion (400 kcal) hinzugerechnet. Hierbei zeigten sich deutliche Unterschiede zwischen den Bedingungen bezüglich der insgesamt aufgenommen Energiemenge (p=0,04 für den Anova Haupeffekt „Bedingung“; Abb. 9).

\[P = 0,041 \]

\begin{center}
\begin{tabular}{c c c}
Glukose Puls. & Glukose Kont. & Placebo \\
\hline
\end{tabular}
\end{center}

Während die über den gesamten Versuchstag aufgenommene Energiemenge unter P 3558 ± 139 kcal betrug, ergaben sich unter GP und GK höhere Energiemengen von 3964 ± 216 kcal bzw. 3874 ± 203 kcal (p=0,041 für den Vergleich zwischen allen Bedingungen). In den Einzelvergleichen zeigte sich, dass unter GP insgesamt ein signifikant höherer Energiekonsum zu verzeichnen ist als unter P (p=0,021 für den Vergleich zwischen beiden Bedingungen). Für den Vergleich zwischen GK und P wurde das Signifikanzniveau nur knapp verpasst (p=0,052 für den Vergleich zwischen beiden Bedingungen).
3.4 Neurokognitive Tests

3.4.1 Wort-Wiedergabe-Test

Die Anzahl der erinnerten Wörter im Wort-Wiedergabe-Test ließen sich zu Beginn des Versuches unter allen drei Bedingungen gut miteinander vergleichen (p=0,30). Unter keiner der Bedingungen kam es zu einer wesentlichen Abnahme oder Zunahme der erinnerten Wörter zu Versuchsende (p=0,90 für den „Bedingung“ x „Zeit“ Effekt; Tab. 6).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P</th>
<th>GP</th>
<th>GK</th>
<th>p-Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>morgens</td>
<td>3,73 ± 0,37</td>
<td>4,20 ± 0,39</td>
<td>3,40 ± 0,42</td>
<td>0,33</td>
</tr>
<tr>
<td>abends</td>
<td>3,60 ± 0,36</td>
<td>3,67 ± 0,40</td>
<td>3,47 ± 0,48</td>
<td>0,95</td>
</tr>
<tr>
<td>delta</td>
<td>-0,13 ± 0,39</td>
<td>-0,53 ± 0,45</td>
<td>-0,60 ± 0,43</td>
<td>0,67</td>
</tr>
<tr>
<td>Emotional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>morgens</td>
<td>4,80 ± 0,50</td>
<td>4,93 ± 0,38</td>
<td>4,87 ± 0,36</td>
<td>0,93</td>
</tr>
<tr>
<td>abends</td>
<td>4,40 ± 0,42</td>
<td>4,93 ± 0,40</td>
<td>4,67 ± 0,32</td>
<td>0,56</td>
</tr>
<tr>
<td>delta</td>
<td>-0,40 ± 0,49</td>
<td>0 ± 0,32</td>
<td>-0,20 ± 0,45</td>
<td>0,80</td>
</tr>
<tr>
<td>Nahrung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>morgens</td>
<td>3,87 ± 0,40</td>
<td>4,33 ± 0,37</td>
<td>4,07 ± 0,28</td>
<td>0,59</td>
</tr>
<tr>
<td>abends</td>
<td>3,47 ± 0,36</td>
<td>3,80 ± 0,44</td>
<td>3,53 ± 0,40</td>
<td>0,82</td>
</tr>
<tr>
<td>delta</td>
<td>-0,40 ± 0,56</td>
<td>-0,53 ± 0,45</td>
<td>-0,53 ± 0,46</td>
<td>0,98</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>morgens</td>
<td>12,40 ± 0,80</td>
<td>13,47 ± 0,76</td>
<td>12,33 ± 0,69</td>
<td>0,30</td>
</tr>
<tr>
<td>abends</td>
<td>11,47 ± 0,58</td>
<td>12,40 ± 0,74</td>
<td>11,67 ± 0,72</td>
<td>0,63</td>
</tr>
<tr>
<td>delta</td>
<td>-0,93 ± 0,62</td>
<td>-1,07 ± 0,60</td>
<td>-0,67 ± 0,69</td>
<td>0,90</td>
</tr>
</tbody>
</table>

3.4.2 Stroop-Test

Die im modifizierten Stroop-Test fehlerfrei wiedergegebenen Wörter waren unter allen Bedingungen in ihrer Anzahl abends mit denen vor Versuchsbeginn gut vergleichbar (p=0,90). Auch das Verhältnis der nahrungsbezogenen Wörter zu den neutralen Wörtern unterschied sich morgens und abends nicht wesentlich voneinander (p=0,25 über alle Bedingungen; Tab. 7).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P</th>
<th>GP</th>
<th>GK</th>
<th>p-Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essen/Neutral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>morgens</td>
<td>0,96 ± 0,02</td>
<td>0,95 ± 0,04</td>
<td>1,02 ± 0,03</td>
<td>0,35</td>
</tr>
<tr>
<td>abends</td>
<td>0,93 ± 0,03</td>
<td>1,04 ± 0,04</td>
<td>0,97 ± 0,03</td>
<td>0,15</td>
</tr>
<tr>
<td>delta</td>
<td>-0,03 ± 0,04</td>
<td>0,09 ± 0,07</td>
<td>-0,04 ± 0,05</td>
<td>0,25</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>morgens</td>
<td>143 ± 4,21</td>
<td>144 ± 4,74</td>
<td>145 ± 6,66</td>
<td>0,87</td>
</tr>
<tr>
<td>abends</td>
<td>149 ± 4,64</td>
<td>148 ± 5,63</td>
<td>150 ± 6,15</td>
<td>0,92</td>
</tr>
<tr>
<td>delta</td>
<td>6,20 ± 2,14</td>
<td>4,60 ± 4,94</td>
<td>4,33 ± 3,56</td>
<td>0,09</td>
</tr>
</tbody>
</table>

4 Diskussion

4.1 Glukosekonzentration und Insulinsekretion

Wie erwartet, wurden durch die intravenösen Glukoseinfusionen die Blutglukosekonzentration und die Insulinsekretion beeinflusst. Der erste Anstieg der Blutglukosekonzentration unter der Placebobedingung um 09:00 h geht auf den vorausgegangenen Verzehr der Müsliriegel zurück. Der weitere Verlauf unter der Placebobgabe erklärt sich aus der basalen und aus der nahrungsmittelinduzierten Sekretion von Insulin. So zeigt sich z.B. um 11:00 h nach Offerieren des Buffets, dass nach dem Essen die Blutglukosekonzentration anstieg, woraufhin vermehrt Insulin freigesetzt wurde. Diese Insulinerhöhung wiederum resultierte in einer Anpassung der Blutglukose.

Die frühmorgendliche Erhöhung der Blutglukosekonzentration unter kontinuierlicher Glukosegabe erklärt sich aus der um 08:00 h begonnenen Glukoseinfusion. Dass die Konzentration nach 11:00 h ein vergleichbares beständiges Niveau wie das unter Placebo erlangte, lag an der konsekutiv erhöhten
Diskussion

Insulinkonzentration, die bis zum Ende des Infusionsdurchlaufs um 18:00 h bestehen blieb. Die Erhöhung der Blutglukosekonzentration, die noch zu Beginn des Versuches auffiel, konnte also unter der kontinuierlichen Glukoseinfusion nicht konstant erhöht gehalten werden. Sie lag für den weiteren Tag auf einem ähnlichen Niveau wie unter Placebo.

Die rapiden Anstiege der Blutglukosekonzentration auf deutlich hyperglykämie Werte unter der Bedingung „Glukose Pulsatil“ sind die logische Konsequenz aus den pulsatil applizierten Glukoselösungen um 09:00 h und um 15:00 h. Auch die unmittelbar darauf einsetzende erhöhte Insulinsekretion entsprach den Erwartungen. Diese beträchtliche Insulinfreisetzung führte dazu, dass in der Verlaufskurve der Blutglukosekonzentration direkt nach Erreichen ihres Maximums ein rapider Abfall einsetzte. Die Konzentration der Blutglukose driftete am Vormittag sogar für einen kurzen Moment bis in den hypoglykämischen Bereich ab. Der Anstieg am Nachmittag fiel nicht so extrem aus wie der morgendliche. Dies kann darauf zurückgeführt werden, dass die Insulinkonzentration zu diesem Zeitpunkt bereits auf einem höheren Niveau lag als zu Versuchsbeginn. Hierdurch wurde die Erhöhung der Plasmaglukose effektiver abgepuffert.

4.2 Nahrungsaufnahme und Symptomratings unter kontinuierlicher Glukose

Diskussion

Glukoselösung im Vergleich zu einer Kochsalzlösung bei gesunden Männern nicht zu einer Veränderung der spontanen Nahrungsaufnahme oder von Hungergefühlen über den Zeitraum eines Versuchstages führt.

Induktion zur Sekretion von Inkretin-Hormonen wie GLP-1, das neben seinem, die Insulinfreisetzung fördernden Effekt, auch sättigend wirkt [75].

Interessant ist, dass also trotz einer parenteralen Energiezufuhr in Form von Glukose, die orale Energiezufuhr derjenigen unter der Placebobedingung glich, was in einer insgesamt signifikant höheren Gesamtenergiezufuhr resultierte. Dies unterstreicht, dass ein sättigender Effekt von isoliert intravenös erhöhter Glukose ausblieb.

4.3 Nahrungsaufnahme und Symptomratings unter pulsatiler Glukose

4.4 Gesamtenergiezufuhr

4.5 Klinische Implikationen

Ein wichtiger klinischer Aspekt dieser Arbeit ergibt sich aus der Beobachtung, dass die kalorienreichen Infusionen keine Auswirkungen auf Hunger und Sättigkeit hatten. Patienten, denen eine enterale Ernährung nicht möglich ist, aufgrund einer Dysfunktion des Magen-Darm-Traktes bei abdominalen Erkrankungen oder Bauchoperationen, benötigen eine parenterale Ernährung. Diese wird gewährleistet durch die intravenöse Infusion von Makronährstoffen. Bleibt durch so eine Infusion ein sättigender Effekt aus, so bedeutet dies einen zusätzlichen Leidensdruck und eine weitere Einschränkung der Lebensqualität für diese Patienten. Dies wäre neben Komplikationen wie Infektionen oder Thromben, ein Gesichtspunkt, der nicht unberücksichtigt bleiben sollte. Passend zu den Ergebnissen der vorliegenden Arbeit zeigte bereits eine klinischen Studie von Murray et al., dass bei Patienten, die parenteral Makronährstoffe infundiert bekamen, ein Sättigungsgefühl, ausblieb [79]. Dies ist ein wichtiger Faktor in der Betreuung und Pflege dieser meist
schwerkranken Patienten, dem eine weitere wissenschaftliche Ausarbeitung wünschenswert wäre.

4.6 Limitationen

letzten Messung aber hatte sich jegliche Dynamik der Blutglukosekonzentration längst wieder gelegt und die Probanden hatten jedes aufkommende Hungergefühl durch Konsum vom Bufett gestillt.

4.7 Ausblick

Zusammenfassung

5 Zusammenfassung

6 Literaturverzeichnis

peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol
21. Muurahainen N, Kissileff HR, Derogatis AJ, Pi-Sunyer FX: Effects of
cholecystokinin-octapeptide (CCK-8) on food intake and gastric emptying in man.
1 increases the period of postprandial satiety and slows gastric emptying in obese
23. Rogers PJ, Blundell JE: Reanalysis of the effects of phenylalanine, alanine, and
aspartame on food intake in human subjects. Physiol Behav, 1994. 56(2): S. 247-
250.
R393-401.
25. Fisler JS, Egawa M, Bray GA: Peripheral 3-hydroxybutyrate and food intake in a
strains sensitive and resistant to dietary obesity. Physiol Behav, 1996. 59(3): S.
555-560.
27. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr: Brain
30. Field JB: Hypoglycemia. Definition, clinical presentations, classification, and
308-312; discussion 313-304.
34. Levin BE, Dunn-Meynell AA, Routh VH: Brain glucose sensing and body energy
R1223-1231.
W: Incretin effects of increasing glucose loads in man calculated from venous
S. 883-894.

7 Verzeichnis der Abbildungen und Tabellen

7.1 Abbildungsverzeichnis

Abbildung 1: Schematische Darstellung des Versuchsablaufes. .. 14
Abbildung 2: Verlauf der Blutglukosekonzentration während des Versuches. 21
Abbildung 3: Insulinkonzentrationen während des Versuches. ... 22
Abbildung 4: Hungergefühle während des Versuches. .. 23
Abbildung 5: Satzungsgefühle während des Versuches. .. 24
Abbildung 6: Autonome Symptome während des Versuches. .. 25
Abbildung 7: Vegetative Symptome während des Versuches. .. 26
Abbildung 8: Die von den Probanden spontan verzehrte Menge Energie während des Versuches. .. 27
Abbildung 9: Die über den Versuch insgesamt aufgenommene Energie, bestehend aus Essen und Infusion. .. 29

7.2 Tabellenverzeichnis

Tabelle 1: Einige Neuropeptide der Energiehomöostase nach Schwartz et al. 2
Tabelle 2: Auflistung der Lebensmittel des Frühstückbuffets und deren Zusammensetzung aus den Makronährstoffen sowie des jeweiligen Energiegehaltes. .. 16
Tabelle 3: Auflistung der Lebensmittel des Snackbuffets und deren Zusammensetzung aus den Makronährstoffen sowie des jeweiligen Energiegehaltes. ... 17
Tabelle 4: Auflistung der Lebensmittel der Hauptmahlzeit und deren Zusammensetzung aus den Makronährstoffen sowie des jeweiligen Energiegehaltes. ... 18
Tabelle 5: Spontan aufgenommene Energiemenge und die Anteile, der einzelnen Makronährstoffkomponenten. ... 28
Tabelle 6: Vergleich der erinnerten Wörter während des Versuches. ... 30
Tabelle 7: Vergleich der korrekt wiedergegebenen Wörter während des Versuches. 31
8 Eigenständigkeitserklärung

9 Danksagung

Ich bedanke mich herzlich bei Herrn Prof. Dr. Hendrik Lehnert für die Bereitstellung aller erforderlichen Mittel und Räumlichkeiten.

Mein besonderer Dank gilt Herrn Prof. Dr. Bernd Schultes für die Überlassung des Themas und die gute Betreuung der Studie, sowie für die geduldige Unterstützung.

Zu vielfachem Dank verpflichtet bin ich Herrn Dr. Sebastian Schmid, sowohl für die Betreuung als auch für die hervorragende Zusammenarbeit, die konstruktive Kritik und die stete Hilfsbereitschaft, ohne die diese Arbeit nicht möglich gewesen wäre.

Bedanken möchte ich mich auch bei Frau Dr. Kamila Jauh-Chara für die Hilfe in der praktischen Durchführung dieser Studie. Herrn Dr. Manfred Hallschmid und Frau Monique Friedrich danke ich für die Beratung und Hilfestellung bei der statistischen Auswertung der Daten, sowie Frau Dr. Britta Willms für die Unterstützung bei der grafischen Gestaltung der Diagramme und der Abbildungen.

Den medizinisch-technischen Assistentinnen der Klinischen Forshergruppe Neuroendokrinologie der Universität zu Lübeck danke ich für die Bestimmung der Laborparameter.

Bedanken möchte ich mich vor allem bei Frau Inga Birgit Frey für die gute Zusammenarbeit bei der Durchführung der Versuche.
10 Lebenslauf

Persönliche Angaben
Name: Felix de l’Homme de Courbière
Geburtsdatum: 07.11.1981
Geburtsort: Herdecke
Anschrift: Uhlenhorster Weg 41
22085 Hamburg

Schulausbildung
09/1988 – 06/2001 Grundschule und Gymnasium in Mülheim/Ruhr
18. 06.2001 Allgemeine Hochschulreife

Zivildienst
10/2001 – 07/2002 Evangelisches Krankenhaus Mülheim/Ruhr

Vorsemester
11/2002 – 03/2003 Vorsemesterkurs Medizin am Rheinischen Bildungszentrum Köln

Studium
04/2003 – 03/2005 Vorklinischer Studienabschnitt an der Georg-August-Universität Göttingen
09.03.2005 Erster Abschnitt der ärztlichen Prüfung (Physikum) an der Georg-August-Universität Göttingen
04/2005 – 05/2009 Klinischer Teil des Medizinstudiums an der Universität zu Lübeck
26.05.2009 Zweiter Abschnitt der ärztlichen Prüfung (Staatsexamen) an der Universität zu Lübeck
Lebenslauf

Praktisches Jahr

02/2008 – 06/2008 Klinik für Innere Medizin, DRK-Krankenhaus Mölln-Ratzeburg
06/2008 – 08/2008 Department of Surgery, Division of Orthopaedic Surgery, Toronto East General Hospital, Kanada
08/2008 – 10/2008 Chirurgische Klinik, DRK-Krankenhaus Mölln-Ratzeburg
10/2008 – 01/2009 Klinik für Neurologie, Klinikum Itzehoe

Dissertation

Einfluss pulsatiler und kontinuierlicher Glukoseinfusionen auf das spontane Nahrungsaufnahmeverhalten
Medizinische Klinik I des Universitätsklinikum Schleswig-Holstein, Campus Lübeck. Doktorvater: Prof. Dr. Bernd Schultes

10/2006 – 09/2007 Durchführung des experimentellen Teils

Beruflicher Werdegang

01/2010 – 09/2011 Anstellung als Assistenzarzt in der Abteilung für Allgemeine Chirurgie der Asklepios Klinik Bad Oldesloe
Seit 10/2011 Anstellung als Assistenzarzt in der Abteilung für Neurologie der Asklepios Klinik Altona, Hamburg