Towards Closed Loop Deep Brain Stimulation
An Integrated Approach for Neural Recording and Microstimulation

Dissertation
for Fullfillment of
Requirements
for the Doctoral Degree
of the University of Lübeck

from the Department of Computer Sciences/Engineering

Submitted by

Susanne Löffler
from Sonneberg

Lübeck 2012
First referee: Prof. Dr. rer. nat. Ulrich G. Hofmann

Second referee: Prof. Dr. med. Andreas Moser

Date of oral examination: 24 May 2012

Approved for printing: Lübeck, 30 May 2012
“Flying is learning how to throw yourself to the ground and miss.”

— Douglas Adams
DECLARATION

I hereby declare, that this thesis is my own work and effort and that it has not been submitted anywhere for any award. Where other sources of information have been used, they have been acknowledged.

Lübeck, March 2012

Susanne Löfler
Deep brain stimulation with high frequencies around 130 Hz has been established as an effective treatment for parkinsonian motor symptoms and is studied as a promising technique for the therapy of other motoric- and psychomotoric syndroms.

Common systems administer cathodic stimulation pulses with rectangular waveform, frequencies around 130 Hz and unmodulated stimulus amplitude, independent from neuronal feedback. Partly severe side effects due to distortion of surrounding tissue and disruption of neuronal network activity are reported. Thus, there is need for highly customizable systems that administer feedback-controlled deep brain stimulation affecting the tissue around the electrode as little as possible. The first step towards the use of such closed-loop systems for deep brain stimulation are electrodes that can be used to deliver functional electrical stimulation, and to record neuronal signals, that allow to determine pathological network activity as to provide feedback for neuronal stimulation.

Here, two candidates of bimodal recording and stimulation probes are evaluated. The performance of a stiff metal Linear Array Probe is compared to a flexible polyimide based Flexible Array Probe. The probes were characterized using Impedance spectroscopy along with an equivalent circuit model. The voltage response of the probes was determined in the acute stage, right after implantation, and in the chronic stage, after four weeks of implantation. Neuronavigation was used to characterize the probes' performance at recording neuronal discharge in certain brain areas. In hemiparkinsonian rats with partial lesions of the dopaminergic nigrostriatal projections, subthalamic high frequency microstimulation was applied, and the electrophysiological neuronal response was determined.

Increased firing of subthalamic neurons was determined in hemiparkinsonian animals and high frequency microstimulation was shown to induce infraslow oscillations which could be used as parameters for feedback-controlled neuronal stimulation. Further, it was established, that the effect of subthalamic high frequency microstimulation is not due to bulk excitation or inhibition of neuronal tissue, but specifically addressed certain neuronal elements.
ZUSAMMENFASSUNG

Die Tiefenhirnstimulation mit Frequenzen um 130 Hz hat sich bewährt als eine Methode zur Behandlung der motorischen Symptome der Parkinson Erkrankung. Heute untersucht man, ob mit Hilfe der bekannten Technik auch andere Krankheiten behandelt werden können, bei denen die Patienten motorische- oder psychomotorische Symptome zeigen. Übliche Systeme vermitteln kathodische Stimulation in Form von Rechteckpulsen mit Frequenzen um 130 Hz und unmodulierter Amplitude, und sind unabhängig von neuronalen Signalen, die als Antwort auf die Stimulation aufgefasst werden können. Durch Gewebeveränderungen um die Elektrode und Störung von neuronaler Netzwerkaktivität kommt es aber teilweise zu schweren Nebenerscheinungen. In Zukunft wird man Systeme brauchen, die es ermöglichen, die Stimulation genau anzupassen, so dass möglichst wenig neuronales Gewebe beeinflusst wird. Ausserdem werden Systeme entwickelt, die auf die neuronale Antwort zur Stimulation reagieren, also bedarfsabhängig stimulieren. Der erste Schritt hin Systemen, die bedarfsabhängige Tiefenhirnstimulation erlauben, sind Elektroden, die benutzt werden können, funktionelle elektrische Stimulation zu vermitteln, und zur selben Zeit neuronale Signale aufnehmen können, die es erlauben, pathologische Netzwerkaktivität festzustellen, die als Parameter für die Antwort auf elektrische Stimulation dienen könnten.

Es wurde festgestellt, dass die Aktivität der Neurone im subthalamischen Nucleus erhöht ist, in Tieren mit einer unilateralen Läsion. Weiterhin wurde gezeigt, dass elektrische Hochfrequenzstimulation, sehr langsame Oszillationen neuronaler Aktivität verursacht, die als Parameter für bedarfsgerechte neuronale Stimulation dienen könnten. Ausserdem wurden weitere Hinweise gefunden, dass der Effekt der subthalamischen elektrischen
Hochfrequenzstimulation nicht ungezielte Aktivierung oder Inhibition von neuronaler Elemente darstellt, sondern, dass bestimmte neuronale Elemente spezifisch adressiert werden.
Journal Articles & Submitted Manuscripts

Löffler, S., Füllgraf, H., Hofmann, U. G., Moser, A. N-Methyl-D-Aspartate Receptor Activation Modulates the Local Effect of Electrical High Frequency Stimulation in the Rat Caudate Nucleus, *under review*

Conference Articles

Löffler, S., Vogt, S., Hofmann, U. G., Moser, A. Striatal microstimulation in awake animals depends on NMDA receptor activity. *Biomedical Engineering*, 53(S1), 241-243, 2008
Posters & Abstracts

Contents

Declaration	v
Abstract	vii
Zusammenfassung	ix
Publications & Manuscripts	xi
Contents	xiii

1 Introduction

1.1 Electrical Activity in the Brain .. 1
 1.1.1 Action Potential .. 2
 1.1.2 Synaptic & Dendritic Integration 4
1.2 Interfacing the Brain .. 5
 1.2.1 Recording of Neuronal Activity 6
 1.2.2 Intracerebral Electrical Stimulation 9
1.3 Electrode Characterization .. 11
 1.3.1 Impedance Spectroscopy ... 11
 1.3.2 Voltage Response .. 13
1.4 Neuronavigation .. 14
 1.4.1 Targeting the Subthalamic Nucleus 14
1.5 Deep Brain Stimulation .. 15
 1.5.1 Mechanism of Action .. 16
 1.5.2 Approved Equipment for Deep Brain Stimulation 17
 1.5.3 New Approaches to Deep Brain Stimulation 19
 1.5.4 Animal Models of Parkinson’s Disease 21
1.6 Aim of the Current Work ... 23

2 Materials and Methods

2.1 Probes for Neural Recording and Stimulation 27
 2.1.1 Linear Array Probes .. 27
 2.1.2 Flexible Array Probes ... 28
 2.1.3 Connection to Commercial Hardware 29
2.2 Hardware .. 30
 2.2.1 Stimulation Hardware .. 30
 2.2.2 Recording Hardware .. 30
2.3 Impedance Spectroscopy .. 31
2.4 Chronic Experiments .. 32
 2.4.1 Animals .. 32
 2.4.2 Surgical Procedure .. 32
 2.4.3 Probe Insertion & Neuronavigation 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.4</td>
<td>Probe Implantation</td>
<td>38</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Lesioning Procedure & Sham Treatment</td>
<td>39</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Microstimulation and Recording Freely Behaving Animals</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Data Analysis</td>
<td>45</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Groups & Parameters</td>
<td>45</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Signal Processing</td>
<td>47</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Edge Detection</td>
<td>47</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Wavetrain Derived Parameters</td>
<td>48</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Spike Detection & Clustering</td>
<td>49</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Spike Event Analysis</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Results</td>
<td>53</td>
</tr>
<tr>
<td>3.1</td>
<td>Probe Characterization</td>
<td>53</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Linear Array Probe Impedance Spectra</td>
<td>53</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Flexible Array Probe Impedance Spectra</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Neuronavigation</td>
<td>58</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Wavetrain Appearance</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Mean Spike Shapes</td>
<td>58</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Wavetrain Based Parameters</td>
<td>60</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Spike Based Parameters</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Voltage Response</td>
<td>66</td>
</tr>
<tr>
<td>3.4</td>
<td>Basal Neuronal Activity</td>
<td>69</td>
</tr>
<tr>
<td>3.5</td>
<td>Rotational Behaviour</td>
<td>70</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Apomorphine Induced Rotational Behaviour</td>
<td>70</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Rotational Behaviour Induced by Subthalamic High-frequency Microstimulation</td>
<td>71</td>
</tr>
<tr>
<td>3.6</td>
<td>Network Response to High-frequency Microstimulation</td>
<td>72</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Signature Curves of Neuronal Activity</td>
<td>73</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Averaged Network Response</td>
<td>75</td>
</tr>
<tr>
<td>3.7</td>
<td>Single Unit Response to High-frequency Microstimulation</td>
<td>79</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Single Unit Activity at Implanted Linear Array Probes</td>
<td>82</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Single Unit Activity at Implanted Flexible Array Probes</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>Discussion</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>List of Listings</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>List of Abbreviations</td>
<td>151</td>
</tr>
<tr>
<td>A</td>
<td>Curriculum Vitae</td>
<td>A-1</td>
</tr>
</tbody>
</table>
B LCR Meter B-1
C TDT Export C-1
D Data Processing D-1
E Protocols E-1
INTRODUCTION

1.1 Electrical Activity in the Brain

The central nervous system was first described by the roman physician Galen. He saw the spinal cord as an extension to the brain carrying sensation to the limbs. He believed that nerves controlled the actions of muscles in the limbs and that the two principal functions of the nervous system were sensation and motion. Further, he reasoned that nerves must act as a medium for the "animal spirit" circulating through the body. In 1762 Galvani explained that the "animal spirit" was electricity conducted by the nervous system. By doing so, he created the concept of bioelectricity (López-Muñoz & Alamo 2009).

Soon, it became clear that a two-way communication with the central nervous system is possible in terms of electrical stimulation and electrophysiological recording. Fritsch & Hitzig contributed the first topographic studies of the motor cortex by measuring the muscular response to electrical cortical stimulation (Fritsch & Hitzig 2009). These experiments eventually lead to the creation of the first somatosensory map known as homunculus by Wilder Penfield (Penfield & Boldrey 1937). At the same time, the first human electroencephalogram was measured which enabled the detection of somatosensory evoked potentials (Dawson 1947, Haas 2003).

At a deeper level, the electrical properties of the nerve cell were explored. Matteucci discovered that electrical energy is stored in the nerve cell in form of a potential across the membrane. Du Bois-Reymond measured neural discharge and called it action potential (Pearce 2001). A fundamental contribution was made by Hodgkin & Huxley in the 1950s. Studying the giant squid axon, they characterized the neural action potential and described the flow of ionic currents across the neural membrane (Hodgkin & Huxley 1952). Together with the almost concurrent description of the $\text{Na}^+/$$K^+$-ATPase (Skou 1957) and the concept of transmembrane ion channels a good understanding of the process of neuronal electrical activity on the single cell level emerged.

Today, we can modify the activity of almost every transmembrane ion channel specifically and are still surprised about the variety of implications such an action can cause. We can listen to hundreds of neurons at the same time, and still not fully understand how they interact. We can implant electrodes into the brain that help severely impaired patients to move again. And, still, do not know why it works. Electrical stimulation in the brain is extremely complex since we do not know about the fundamental mechanism and have no means to make simplifying assumptions. Thus, when looking at electrical stimulation and recording in the brain it is always necessary to go back and look at the action potential as the fundamental unit of bioelectricity.
1.1.1 Action Potential

The action potential is a summation of the ionic currents flowing across the neuronal membrane. Ions can pass the membrane in three different ways. They are actively transported against a concentration gradient, flow through ion-specific and regulated ion channels, or leak through in small amounts. The main player in the active transport is the $\text{Na}^+ / \text{K}^+ - \text{ATPase}$ pumping 1.5 times more sodium ions out of the cell than potassium ions into the cell generating a resting potential across the cell membrane which is negative at the inner leaflet. Ion channels, important for action potential generation, are voltage-gated sodium and potassium channels (Na_v and K_v). Currents, flowing across the membrane, give the action potential its characteristic shape (see figure 1.1).

![Figure 1.1: An action potential generated by ionic currents flowing across the cell membrane.](image)

Ionic gradients create a resting potential of about -80 mV across the neuronal membrane. When the neuronal membrane is depolarized to a certain threshold, voltage-gated sodium channels open. This leads to even more depolarization since sodium ions rush into the cell until voltage-gated sodium channels close and the voltage-gated potassium channels open. This leads to repolarization since potassium ions will flow out until the voltage-gated potassium channels close again when the resting potential is reached. There is a certain hyperpolarization overshoot at which the inner leaflet is more negative than at rest but the resting potential will be re-established by leaking currents. Only when the resting potential is reached, the cell can be excited again.

When an action potential is initiated, it travels along the axon until it reaches the axon terminals (see figure 1.2). At the synapse, connecting the axon terminal of the presynaptic cell with the dendrites of the postsynaptic cell, the incoming action potential is converted into a chemical signal. Voltage-gated calcium channels in the axon terminals enable influx of calcium ions. This leads to vesicle fusion with the presynaptic membrane and to neurotransmitter release into the synaptic cleft. The membrane of the pre- and postsynaptic cell carries receptor proteins, which can be ligand-gated ion channels, or G-protein coupled receptors. Activation of ligand-gated ion channels can lead to influx of cations (depolarization) or anions (hyperpolarization).
Figure 1.2: Neuronal cells with soma, axon, dendrites, and interconnections between different neuronal cells. Figure uses parts from sv.wikipedia.org/wiki/Fil:Complete_neuron_cell_diagram_numbered.svg

axon

hillo

soma

dendrites

axon

terminals

synapse

presynaptic cell

postsynaptic cell

dendrites

soma

axon hillock

axon terminals

axon

Figure 1.2: Neuronal cells with soma, axon, dendrites, and interconnections between different neuronal cells. Figure uses parts from sv.wikipedia.org/wiki/Fil:Complete_neuron_cell_diagram_numbered.svg

Figure 1.2

The synaptic input (excitation or inhibition) into the postsynaptic cell. The probability to excite the postsynaptic cell is increased by depolarization and lowered by hyperpolarization. Therefore, cation influx into the postsynaptic cell is called excitatory postsynaptic potential and anion influx into the postsynaptic cell is called inhibitory postsynaptic potential. The postsynaptic potentials of all dendrites are considered to be integrated in the soma and when the threshold potential is reached a new action potential is generated.

1.1.1.1 **The Shape of the Action Potential**

The inherent shape of an action potential depends on the time constants of the ionic currents flowing across the membrane. They are related to the opening- and closing times of the voltage-gated ion channels. Many different voltage-gated ion channel with different time constants have been described. Their distribution differs among various types of neurons in the mammalian brain and so does the shape of the action potential (Baranauskas 2007).

The duration of an action potential differs between purkinje, pyramidal and dopamine containing neurons (Bean 2007). The action potentials of fast-spiking purkinje neurons with durations of 180 μs can be differentiated from the action potentials of regular and slow-spiking pyramidal and dopamine containing neurons with durations of 810 μs and 4 ms (Bean 2007).

The physiological relevance of the action potential shape is not well understood. Yet, it seems that the shape of a neuron’s action potential and its firing pattern can not be clearly separated. Short duration action potentials
are observed in cells, firing at higher frequencies (Nowak et al. 2003). Also, long duration action potentials have been shown that lead to increased calcium influx into the presynaptic cell and thereby and influence the generated postsynaptic potential (Geiger & Jonas 2000).

The duration of action potentials in different cells can range from 0.25 to 5 ms. Usually, an action potential lasts about 1 ms.

1.1.2 Synaptic & Dendritic Integration

The all-or-nothing characteristic of action potential initiation is the reason that neuronal information is thought to be encoded by frequency and pattern of a sequence of action potentials. A sequence of action potentials contains a rate code and a temporal code. The rate code is based on the mean firing rate of a neuron. The exact information about the timing of neuronal discharge events is the basis for the temporal code (Gerstner et al. 1997, Brown 2007).

In the majority of neurons, a single synaptic response provides insufficient depolarization to trigger an action potential. Instead, in order to elicit an action potential, multiple potentials are summed up in the postsynaptic cell. The time scale of synaptic integration is dependent on the time constants of postsynaptic receptors. These time constants are widely distributed and range between 1-2 ms for AMPA-type glutamate receptors, and up to 0.8-10 s for metabotropic glutamate receptors (Bengtson et al. 2004, Smith et al. 2000).

The average time constant for postsynaptic integration is about 20 ms giving an estimate about the timing of synaptic integration in the brain (Attwell & Gibb 2005, Attwell & Iadecola 2002).

The integration of postsynaptic potentials by propagation through the dendritic tree results in specialized spiking patterns, and is largely dependent on the computational abilities of the neuron (Silver 2010). While postsynaptic potentials propagate in the neuronal cell, they are integrated due to the active and passive properties of the dendritic tree.

Passive integration follows from the morphology of the dendritic tree. Since distal dendrites have a smaller diameter, lower local membrane capacitance and larger input impedance, distal postsynaptic potentials show larger amplitudes and faster response than proximal synaptic potentials. Although proximal postsynaptic potentials have a lower amplitude than fast, distal postsynaptic potentials they possess longer integration times. Non-linear summation of postsynaptic potentials occurs when the respective synapses are in close proximity because the driving force is reduced. Linear summation of synaptic inputs occurs when the synapses are spatially isolated and the synaptic events are temporally distributed. The membrane resistance is generally low. Thus, the amplitude of the propagating potentials declines with the distance. Fast synaptic responses become elongated and attenuated since the serial membrane capacitance is acting as a low-pass filter. Since dendrites become narrower with the distance from the soma, passive dendritic integration favours potential propagation directed away from the soma.
Beyond the passive properties of the dendritic tree morphology, integration of postsynaptic potentials is dependent on active conductances in dendrites. Depending on their gating characteristics, ion specificity and kinetics, dendritically expressed voltage-gated channels have the potential to amplify, dampen and shape the synaptic responses as they propagate through the dendritic tree.

Probably, there is no unique site for initiation of action potentials (Ibarz et al. 2003). Generation of dendritic potentials has been shown for different types of neurons. Also, backpropagation of action potentials into the dendritic tree has been observed, influencing synaptic plasticity, synaptic integration and neurotransmitter release from the dendrites (Magee 2000, Sidiropoulou et al. 2006). The ability of dendrites to actively support propagation, depends on their electrical history. Cumulative sodium channel inactivation is thought to increase attenuation of potentials that occur later in a sequence of action potentials. Action potential activation at a critical frequency around 100 Hz leads to potential summation and generation of local calcium currents even in distal apikal dendrites (Gulledge et al. 2005, Segev & Rall 1998).

1.2 Interfacing the Brain

Current and emerging neural prostheses and therapies are based on central nervous stimulation and recording (Ryu & Shenoy 2009). Electrodes are chronically implanted, and used as an interface to the electrically active neuronal tissue. There is a wide range of applications for neuroprosthetic devices facilitating electrophysiological recording and stimulation. Electrodes, used as neuronal interfaces must fulfill certain requirements with respect to electrochemical properties and biocompatibility.

Commonly, electrodes for neuronal interfacing are metallic conductors, located in the extracellular fluid. When two electrodes are placed into an electrolyte, electrode polarization occurs due to differences in the equilibrium potential of the electrode material (see figure 1.3a). Dependent on the polarity of the electrode, capacitive layers of hydrated ions form on the exposed surface of a polarized electrode (see figure 1.3c). The potential on the polarized electrode surface decreases exponentially with the distance from the electrode. Thus, a compact double-layer of hydrated ions forms directly on the surface, and diffuse layers establish in greater distance from the electrode. The compact double-layer of hydrated ions on the electrode surface can store charge and act like an electrical capacitance. When a signal is measured by the electrode, or transmitted from the electrode, charge transfer occurs across the electrode-electrolyte interface. The resistance of this charge transfer is dependent on the frequency of the measured or transmitted signal, and is therefore called impedance. The impedance of the electrode-electrolyte interface can be described by the Randles cell equivalent circuit (Geddes 1997). In the classical Randles cell, a spreading resistance \(R_s \), representing the ohmic resistance of the electrolyte and electrode, and a charge transfer resistance
R_{ct} in parallel with a double layer capacitance C_{dl} is used to describe the impedance characteristics of a first order system with a single time constant (see section 1.3.1).

This approximation seems sufficient to describe the frequency dependent resistance, and the high-pass filter properties of the electrode-electrolyte interface in ionic solution. Yet, description of the tissue-electrode interface is more complex, since charge transfer to the tissue faces the capacitance of the cell membrane, often approximated as tissue capacitance. Many different equivalent circuit models have been used to describe the electrode-tissue interface, and mostly an additional serial RC circuit is added to the parallel RC circuit of the Randles Cell to describe the electrode-tissue interface (Cantrell et al. 2008, Troy et al. 2006, Geddes 1997).

Figure 1.3: The electrode-electrolyte interface forms on the surface of polarized electrodes. Capacitive layers of hydrated ions mediate charge transfer between electrode and electrolyte.

1.2.1 Recording of Neuronal Activity

Action potential propagation along the neuronal membrane produces current sinks and sources, generating local dipoles, which add up throughout the anisotropic volume conductor of the extracellular space, whereby potentials of opposing polarity are cancelled out, and potentials of the same polarity are summed up.

Extracellular electrodes for neuronal recording are located at some distance to a particular cell membrane. Therefore, the potential which is measured at the electrode is always the integration of local dipoles generated by currents sinks and sources at the neuronal membrane and does not necessarily resemble the actual action potential. Depending on the distance between the
recording electrode and the neural membrane, integration occurs over a certain spatial range, resulting in extracellular potentials referring to single- or multiple events of neural discharge.

Fluctuations in the extracellular electric field result in reorganizations in the ordered layers of hydrated ions at the electrode-electrolyte interface. Thus, ionic fluctuations in the extracellular electrolyte are translated into electron flow in the electrode via charge transfer at the electrode-electrolyte interface. Yet, due to the impedance characteristics of the interface, the measured signal has a lower amplitude and is distorted by a certain phase angle (Logothetis 2003).

Since the processes at the electrode-electrolyte interface during recording are assumed to be capacitive (Moffitt & McIntyre 2005, Butson & McIntyre 2005), the electrochemical challenges to the recording electrode are considerably low (see figure 1.3b). For high-quality signals, the distance between a neuron and electrode, as well as the respective size of each plays a major role. Thus, the spatial arrangement of multiple recording sites and ways to prevent glial sheathing, foreign-body response and electrode movement have to be considered for recording electrode design (Cogan 2008).

1.2.1.1 Single Unit Recordings

When an extracellular recording electrode with a geometric surface area approximately the size of the target structure is located near the soma or axon, the area of spatial summation is very small. Thus, small extracellular electrodes in close proximity to a cell compartment, can reflect single unit spike activity, and will reveal firing rate and firing pattern on the single cell level.

To record single unit activity close to different neuronal compartments, electrodes with a very small geometric surface area are desirable. Yet, the smaller the exposed surface of the electrode, the higher is the electrode resistance and the lower is the double layer capacitance. That results in a better high-frequency response, but also in larger noise levels, and low signal-to-noise ratios. The dominant noise source for high impedance recordings is thought to be thermal noise which originates from the thermal electron agitation in a conductor (Johnson & Nyquist) (Johnson 1928, Nyquist 1928). Since thermal noise is directly related to the electrode impedance, it is also related to the surface area of the electrode contact site. Thus, the surface area of the contact influences the signal amplitude recorded from the neuron (Lempka et al. 2006). To measure a sufficiently large signal, the electrode needs to be located even closer to the cell, which increases the risk to damage the cell. Therefore, the size of recording electrode contacts have to be well balanced in order to measure the desired activity. Electrodes for single unit recordings usually expose a geometric surface area smaller than 4×10^{-5} cm2. Depending on the electrode material, electrode impedances range between 0.05 - 1 MΩ at 1 kHz (Cogan 2008).

Recordings of single unit activity are biased towards larger cells, since these produce considerably larger extracellular field potentials than smaller cells (Sakai et al. 1978, Menendez de la Prida et al. 2002). Larger neurons
with 20-30 μm diameter are estimated to generate a potential of more than 100 μV amplitude within a 100 μm radius. The measured amplitude decreases rapidly with the distance. For distances larger than 140 μm, spikes become indistinguishable from the background noise. Measurement of smaller, inhibitory neurons can therefore be difficult (Logothetis 2003).

Extraacellular electric field potentials do not directly relate to action potentials. Yet, signals, resembling the actual action potentials can be measured with intracellular glass capillary microelectrodes. Simultaneous intra- and extracellular recordings along with mathematical simulations revealed information about the correlation of membrane currents and the extracellular potential waveform. Although the size of soma and proximal dendrites determine the amplitude of the extracellular potential waveform, the details of cell morphology have relatively little impact. Simulations of W-shaped extracellular potential waveforms suggest that the pattern of action potential initiation can be reflected in the extracellular potential waveform under the condition of uniform dendritic stimulation. Consequently, monitoring extracellular potential waveforms may provide insights into the pattern of action potential initiation (Gold et al. 2006).

1.2.1.2 Multi Unit Recordings

If a recording electrode is sufficiently far away from a spiking neuron, the single cell activity does not predominate the measured signal and the sum of potentials from a large area is recorded. Thus, the measured signal will be a mixture of fast spike activity from multiple cells and slow, integrative activity in the dendritic tree. The two components of multi-unit activity can be distinguished by frequency. A high-pass cut-off at 300 Hz can be applied to filter multi-unit spike activity, and a low-pass cut-off at 300 Hz is used to obtain local field potentials, which account for integrative events at the synapse and dendritic tree (Belitski et al. 2008, Kelly et al. 2010). The choice of electrode impedance can influence the weight of the signal contributions. An electrode with low impedance and large geometric surface area will facilitate recordings with good signal-to-noise-ratio from a large volume.

The amplitude of high-frequency multi-unit spike activity seems to be a function of the average cell size in the measured cell population. Large amplitudes are correlated with large cell size populations, and fast, low-amplitude activity is recorded from populations of small cells.

The summation range for fast multi-unit spike activity was estimated with a radius of 50-350 μm for electrodes with a recording site diameter of 100 μm and 40-120 kΩ impedance (Grover & Buchwald 1970, Legatt et al. 1980, Gray et al. 1995). The activity from each point within the sphere is weighted by a factor depending on the distance of the point from the tip of the electrode (Llinas & Nicholson 1971). When multi-unit spike activity is sampled from a radius of about 140 μm from the electrode tip, hippocampal cell density estimations suggest, that multi-unit spike activity can contain information from up to 1000 neurons (Boss et al. 1985, Aika et al. 1994, Henze et al. 2000). The activity of synchronous firing cells can be enhanced by summation and
thus detected over a larger distance (Huang & Buchwald 1977, Arezzo et al. 1979)

Local field potentials represent the low-frequency component of multi-unit activity (Mitzdorf 1985). The local field potential amplitude is correlated with the extent and geometry of dendrites. Synchronous activation of structures with longitudinal dentrite-to-soma arrangement produces strong dendrite-to-soma dipoles, visible in the recorded local field potential. Horizontal dentrite-to-soma arrangements, do not effectively contribute to the summation of low-frequency multi-cell activity. Local field potentials were reported to reflect a weighted average of synchronized dendrosynaptic components from neural populations within 0.5-3 mm from the electrode tip (Mitzdorf 1987, Juergens et al. 1999).

Similar to the frequency band classification of electroencephalogram recordings, local field potential activity is divided into δ (0-4 Hz), θ (4-8 Hz), α (8-12 Hz), β (12-24 Hz) and γ (24-40/80 Hz) band activity. The classification is based on the strong correlation of the activity in each band with a specific behavioural state. Rhythmic spiking with β-band frequencies around 5-12 Hz has been reported for principal neurons in the neocortex. In special cases like that, spike activity seems to be tightly correlated with the local field potential amplitude (Silva et al. 1991, Logothetis 2003).

1.2.2 Intracerebral Electrical Stimulation

To perform electrical stimulation of neuronal tissue, electrode polarization exceeding the electrode’s equilibrium potential is achieved by an external bias potential. Capacitive charge transfer is possible by charging and discharging the electrode-tissue interface, which leads to ionic rearrangements in the proximity of the electrode (see figure 1.3b). This influences the electric field surrounding the cell membrane, and can drive the cell towards depolarization or hyperpolarization.

Although capacitive charge transfer is desirable for electrical stimulation since no chemical species are created or consumed (see figure 1.3b) reaching high charge injection capacities needed for electrical stimulation is almost impossible with standard electrode materials and purely capacitive ionic charge separation. Porous capacitor electrodes or highly dielectric coatings can increase the charge injection capacity but, in order to reach high levels of charge injection, faradaic charge transfer (see figure 1.3d) occurs on uncoated noble metal electrodes (Cogan 2008, Cogan et al. 2005).

For faradaic charge transfer, the electrode surface is oxidized or reduced in a reversible electrochemical reaction. Although electron transfer occurs, chemical species are confined to the electrode surface and the noble metals or noble metal alloys are not consumed by the faradaic reaction. Faradaic processes at the surface of noble metal electrodes are therefore sometimes called pseudocapacitive. Still, all faradic reactions lead to changes in the electrolyte composition adjacent to the electrode. Thus, faradic reactions can result in
Table 1.1: Save charge injection capacities for different noble metal electrode materials measured in vitro by avoiding electrolysis of water.

<table>
<thead>
<tr>
<th>Material</th>
<th>Charge Injection Capacity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>1-8 μC/cm²</td>
<td>Niina et al. 2011</td>
</tr>
<tr>
<td>Platinum</td>
<td>50-150 μC/cm²</td>
<td>Rose & Robblee 1990</td>
</tr>
<tr>
<td>Platinum Iridium</td>
<td>90-300 μC/cm²</td>
<td>Cogan et al. 2005</td>
</tr>
</tbody>
</table>

irreversible tissue damage. Therefore, the safety of charge injection has to be considered at all times (Cogan 2008).

If the electrode is polarized more than the charge injection capacity allows, irreversible electrochemical reactions occur. Among them, electrolysis of water is the most common. For platinum electrodes, electrode dissolution due to formation of soluble metal complexes is common (Merrill et al. 2005).

Save charge injection values for different noble metal electrodes were measured in vitro by avoiding electrolysis of water (see table 1.1). They have to be carefully reconsidered for in vivo use, since the equilibrium potential in vivo is more positive than in vitro and less total charge for cathodal stimulation is available.

Beyond consideration of safe charge injection thresholds, delivery of bi-phasic, charge balanced waveforms is considered as measure to avoid irreversible reactions at the electrode surface. Ideally, charge balanced waveforms have cathodal and anodal phases with current amplitudes and durations that result in an overall zero net charge for the pulse. The overall delivered charge is the integral of the pulse. Current pulses are defined in terms of the charge delivered in the leading phase, the charge density in the leading phase, the current density, the pulse width in each phase, and the pulse frequency (Cogan 2008). Although the use of charge balanced waveforms is well established, the long term stability of most noble metals or noble metal alloys is unknown at positive bias. Generally, limitation of the electrode potential to within safe limits seems to be more important for safe stimulation than a perfectly balanced waveform (Donaldson & Donaldson 1986).

A neuronal prosthesis is supposed to deliver functional electrical stimulation within the limits of safe charge injection thresholds over a long period of time. Electrode material, surface area, stimulation amplitude, pulse widths, and frequency have to be chosen in order to exceed the charge per phase threshold for functional stimulation, without reaching the charge density threshold for safe stimulation. For functional deep brain stimulation in the subthalamic nucleus, charge per phase thresholds of 135-400 μC/phase have been reported. Considering stimulation pulse widths of 60-200 μs and a large electrode surface area of 0.06 cm² charge density thresholds for deep brain stimulation electrodes can be as low as 2.6-6.7 μC/cm² (Kuncel & Grill 2004).

In practice, most electrodes used for nerve stimulation or surface electrodes for cortical stimulation are macroelectrodes with surface areas larger
than 0.001 cm2. They can safely reach high functional charge per phase thresholds and still allow the use of materials with low charge density thresholds. With exception of the intracerebral electrodes used for deep brain stimulation, most penetration electrodes are microelectrodes with surface areas smaller than 2x10$^{-5}$ cm2. Since charge per phase thresholds of 0.4-4.6 nC/phase for neuronal excitation of cerebral grey matter need to be reached, the allowed charge density on the electrode surface has to be less than 80 μC/cm2 to achieve safe chronic stimulation (Geddes & Roeder 2003, Kuncel & Grill 2004, Merrill et al. 2005).

1.3 Electrode Characterization

1.3.1 Impedance Spectroscopy

Impedance spectroscopy is used to describe the charge transfer properties at the electrode-electrolyte interface. To determine the frequency response of the electrode-electrolyte interface the impedance is measured over a broad frequency range. While applying a low-amplitude sinusoidal voltage or current excitation to the device under test the amplitude attenuation of the test signal is measured as impedance and the phase shift of the signal is measured as phase angle. Using impedance spectroscopy, electrode properties as well as properties of the surrounding medium are investigated. The resistive contribution of the electrolyte and electrode is measured at high frequencies, when the contribution of the impedance due to charge transfer at the electrode-electrolyte interface is low (Cogan 2008).

1.3.1.1 Randles Cell Impedance

A simple representation of the impedance of the electrode-electrolyte interface is the Randles cell (see figure 1.3c). A spreading resistance R_s in series with a parallel RC component with double layer capacitance C_{dl} and charge transfer resistance R_{ct} describes the electrolyte resistance in series with the frequency dependent resistance on the electrode-electrolyte interface. Due to the frequency response of the capacitance, the impedance of the Randles cell is a complex quantity. It can be displayed in cartesian coordinates with a real part (RE) and an imaginary part (IM) (see equation 1.1). The Randles cell incorporates only one parallel RC circuit and thus represents a first-order system with a single time constant $\tau = R_{ct} C_{dl}$. The complex impedance $Z(\omega)$ equals $Z(2\pi f)$, since $f = \omega/2\pi$ (Yuan et al. 2010).

\[
Z(\omega) = R_s + \frac{R_{ct}}{1 + \omega^2 R_{ct}^2 C_{dl}^2} - i \frac{\omega^2 R_{ct}^2 C_{dl}}{1 + \omega^2 R_{ct}^2 C_{dl}^2} Z_{RE} Z_{IM} \sin \Phi = \frac{Z_{RE}}{Z_{IM}} \cot \Phi \tan \Phi = \frac{Z_{IM}}{Z_{RE}} (1.1)
\]
When the imaginary part \(Z_{IM} \) of the complex impedance \(Z(\omega) \) is plotted versus the real part \(Z_{RE} \) for all different frequencies, the spreading resistance \(R_s \) and the charge transfer resistance \(R_{ct} \) can be determined as the intersections of a semicircle with the real axis. The representation of \(Z_{IM} \) and \(Z_{RE} \) in a Nyquist plot reflects the complex character of \(Z(\omega) \) when displayed in cartesian coordinates (see figure 1.4).

![Nyquist plot](image)

Figure 1.4: Representation of the complex impedance \(Z(\omega) \) in cartesian coordinates. Plotting of \(Z_{IM} \) versus \(Z_{RE} \) on a real- and imaginary axis, results in a semicircle, representing a first order system with a single time constant. \(R_s \) and \(R_{ct} \) can be determined from the intersections of the semi-circle with the real axis. \(C_{dl} \) can be calculated from the frequency and \(Z_{RE} \) at the apex of the semi-circle. The arrow indicates increasing frequencies.

By presenting the complex impedance in a Nyquist plot, the frequency information is lost in the graph. The frequency dependency of the magnitude of the complex impedance and the phase angle is commonly represented in a Bode plot. Here, the magnitude of the complex impedance is plotted against the frequency on a log-log scale, and the phase shift is plotted against the frequency on a lin-log scale (see figure 1.5). The magnitude representation of the Bode plot visualizes the properties of a Randles cell by means of amplitude attenuation. Low- and high-frequency asymptotes can be estimated. The high-frequency asymptote resembles purely ohmic amplitude attenuation of the signal (see figure 1.5a).

The phase representation of the Bode plot visualizes the phase shift of the signal. When a phase shift is applied to a realistic signal with a certain bandwidth the signal is distorted if the phase delay \(t_\Phi \) varies between the different frequencies. The different frequency components of the signal are shifted by a different phase when the phase delay is not constant in the signal bandwidth. The phase delay \(t_\Phi \) in the time-domain is proportional to the phase shift in the frequency domain with \(t_\Phi(\omega) = \Phi(\omega)/\omega \). Thus, a constant phase shift over a certain bandwidth leads to signal distortion, whereas the signal is conserved when the phase shift is linear in the respective frequency band (see figure 1.5b).
1.3.2 Voltage Response

To determine the polarization of an electrode during a current pulse, the voltage response is measured. The maximum polarization across the electrode-electrolyte interface is usually determined using a three-electrode setup.
1.4 Neuronavigation

Neuronavigation is a technique which is commonly used in neurosurgery. Generally, the term refers to image-guided surgery. The source of the image used as the basis for navigation differs between applications. Common intraoperative imaging methods are computer tomography and magnetic resonance imaging. Also, intraoperative ultrasonography and fluoroscopy can provide imaging in real time and thereby eliminate surgical inaccuracies (Stone & Rutka 2008). A promising new method for intraoperative imaging is optical coherence tomography (Xie et al. 2010).

Imaging of very small structures, however, is still difficult and inaccurate. Hence, the method of choice for neuronavigation in deep brain stimulation surgery is intraoperative microelectrode recording. To characterize the activity patterns of the target nucleus precisely, microelectrodes are inserted on the target trajectory and sequential measurements are performed, whereby neural firing rate and firing patterns are monitored in different depths (Gross et al. 2006).

1.4.1 Targeting the Subthalamic Nucleus

The trajectory to the subthalamic nucleus lies on a posterior coronal section of the rat brain. In order to reach the subthalamic nucleus, the parietal association cortex, hippocampus, thalamus and zona incerta have to be passed (see figure 1.6).

Figure 1.6: Neuronavigation on the trajectory to the subthalamic nucleus via the parietal association cortex, hippocampus, thalamus, zona incerta and subthalamic nucleus.

The cytoarchitectural organization of the parietal association cortex is similar to the motor cortex. The layered structure contains pyramidal cells in different shapes as the major cell population (Donoghue & Wise 1982). Three main classes of pyramidal cell were identified in the rat cortex according
<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Target</th>
<th>Frequency</th>
<th>Pulse Width</th>
<th>Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkinson's disease</td>
<td>subthalamic nucleus</td>
<td>145 Hz</td>
<td>60 μs</td>
<td>3.3 V</td>
</tr>
<tr>
<td>obsessive compulsive disorder</td>
<td>anterior internal capsule</td>
<td>100 Hz</td>
<td>210 μs</td>
<td>5.5 V</td>
</tr>
<tr>
<td>depression</td>
<td>subgenual cingulate cortex</td>
<td>130 Hz</td>
<td>90 μs</td>
<td>4 V</td>
</tr>
<tr>
<td>Tourette's syndrome</td>
<td>thalamic CM/Pf</td>
<td>130 Hz</td>
<td>60 μs</td>
<td>3.6 V</td>
</tr>
</tbody>
</table>

Table 1.2: Stimulation parameter for Obsessive compulsive disorder, Parkinson’s disease, Depression and Tourette’s syndrome in the respective target nuclei.

to morphological features. Spontaneous firing is either absent, or occurs in spontaneous bursts (Degenètais et al. 2002).

The hippocampus is a layered structure, too. It is subdivided in CA1, CA2 and CA3 fields. Again, the principal cell type of the hippocampus is the pyramidal cell and spontaneous bursting was observed (Mazzoni et al. 2007).

In the thalamus, tonic firing neurons and thalamic bursters were reported to be active at the same time (Llinás & Steriade 2006). Dorsal to the highly active thalamus follows the zona incerta. In the zona incerta, low background activity has been reported (Merello et al. 2006). In the subthalamic nucleus, neurons are observed, which switch between single-spike activity and burst-firing mode (Beurrier et al. 1999).

1.5 Deep Brain Stimulation

Deep brain stimulation is a technique for neurostimulation. Electrodes are directly implanted into the region of the brain which is functionally related to the symptomatic pattern of the disease (DeLong & Wichmann 2007). The beneficial effects of deep brain stimulation in the subthalamic nucleus have been shown to be remarkable for the parkinsonian motor symptoms rigour, tremor and akinesia (Weaver et al. 2009). Along with the beneficial effects on the motor system, adverse effects of deep brain stimulation in the subthalamic nucleus have been reported. Short term problems occur due to intracerebral bleeding during surgery, lead misplacement and hardware issues. When the electrode implantation was unproblematic, tissue gliosis and reduced word fluency are the most abundant adverse side effects. Also, behavioural changes such as cognitive dysfunctions, depression and mania were reported (Temel et al. 2006, Saint-Cyr et al. 2000, Pillon et al. 2000).

Recently, deep brain stimulation is being explored for the treatment of other psychomotoric disorders, originating from structures outside the basal ganglia. Clinical studies examine deep brain stimulation in the subgenual cingulate cortex for depression, the anterior internal capsule for obsessive-compulsive disorder and the thalamic centre median/parafascicular nucleus.

For all these applications, rectangular pulses with a frequency of 100-150 Hz and 60-90 μs pulse duration are delivered with stimulation amplitudes of 3-5 V (see table 1.2). The similarity of the stimulation parameter for all these applications is not based on a rational working hypothesis of electrical stimulation in the brain, but is more related to the fact that they are all based on the parameters for deep brain stimulation in the subthalamic nucleus, which were empirically determined over the last 15 years (Kuncel & Grill 2004).

1.5.1 Mechanism of Action

According to current understanding, the positive effect of deep brain stimulation on parkinsonian motor symptoms is paradox. Understanding the mechanism of deep brain stimulation means to solve the question how electrical stimulation, traditionally thought to activate neurons, results in the same effect as ablation of the target structure. It is debated, whether the functional ablation of the target nucleus is achieved by direct inhibition due to electrical stimulation (see section 1.5.1.1), or if electrical stimulation acts by local excitation (see section 1.5.1.2), which is translated to functional inhibition of the target by transmission through the neuronal network. There are different models to explain the one or the other hypothesis (Vitek 2002, McIntyre et al. 2004). Recent work even brought the role of astrocytes into focus (Vedam-Mai et al. 2011).

When referring to deep brain stimulation in a research context, the term electrical high-frequency stimulation is often used. This notation clearly determines that frequencies above 100 Hz must be used for effective electrical stimulation (Lozano et al. 2002). Also, electrical high-frequency stimulation does not imply the local confinement to thalamic- and subthalamic areas as it has been originally the case for the clinical term deep brain stimulation.

1.5.1.1 Direct Inhibition

Two models emphasize direct inhibition of the stimulated neurons. One of them, often referred to as depolarization blockade explains the effect of electrical high-frequency stimulation as a transient blockade of voltage-gated currents in subthalamic neurons. The model is based on the observation that a period of several minutes of neuronal silence follows electrical high-frequency stimulation in the subthalamic nucleus (Beurrier et al. 2001). Since indications of transmitter depletion were reported from imaging studies with voltage-sensitive dyes, synaptic depression was hypothesized as another reason for direct inhibition of the stimulated nucleus (Urbano et al. 2002).
1.5.1.2 Local Excitation

Although there are indications for direct inhibition of neurons due to electrical stimulation, increased transmitter release and firing activity have been found in efferent nuclei after electrical high-frequency stimulation (Windels et al. 2003, Anderson et al. 2003). Therefore, the models for local excitation seem to be more likely.

A model which is consistent with these data is the disruption of pathological network activity. This model proposes orthodromic activation of target neurons replacing the pathological network activity by a stimulus driven firing pattern (Hammond et al. 2008). It complies well with the observation that increased power in the β-band of local field potentials correlates with the severity of parkinsonian motor symptoms (Gatev et al. 2006, Hammond et al. 2007, Brown 2007). Also, pathological low-frequency rhythmic bursting near the tremor frequency at 7-10 Hz has been observed in animal models of the disease (Bergman et al. 1994, Raz et al. 2000). Normally uncorrelated firing across cells becomes synchronized at about twice that frequency (Nini et al. 1995). Recent electrophysiological studies and modelling approaches substantiate these findings (Dorval et al. 2010, Schiff 2010). The main message from this model is that the beneficial effects of deep brain stimulation might not be related to the firing rate of neurons but rather to the disruption of low-frequency bursting, disruption of synchrony in the beta band, or both (Hashimoto et al. 2003, Wilson et al. 2011).

Although these findings are consistent, they are lacking an explanation of the described effects on the molecular level. The model of synaptic inhibition might provide just that (Feuerstein et al. 2011). Here, the effect of deep brain stimulation is explained by activation of axon terminals that make synaptic connections with neurons near the stimulation electrode. Electrophysiological recordings of neuronal activity near the stimulation site revealed that synaptic events such as the release of an inhibitory neurotransmitter might lead to effective inhibition of the stimulated nucleus (Dostrovsky et al. 2000, Benazzouz et al. 1995). The inhibitory neurotransmitter γ-aminobutyric acid (GABA) was identified to be a key player to convey synaptic inhibition and its role was further elucidated (Benabid et al. 2002). Neurochemical studies in the caudate putamen of the rat showed that GABAergic interneurons with functional GABA$_A$ receptors are necessary to evoke a neurochemical effect of electrical high-frequency stimulation (Moser et al. 2003b). Also, increased GABA release from GABAergic interneurons was characterized as an immediate effect of electrical high-frequency stimulation (Li et al. 2004). Beyond that, a certain form of neuronal pre-activation was identified as a prerequisite for successful electrical high-frequency stimulation applied in vitro and in vivo (Li et al. 2006, Mantovani et al. 2006, Hiller et al. 2007).

1.5.2 Approved Equipment for Deep Brain Stimulation

Only in 1987, deep brain stimulation was first introduced as a definitive long term alternative to destructive thalamic surgery for patients with Parkin-
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>0-10.5 V in steps of 0.1 V</td>
</tr>
<tr>
<td>amplitude</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>3-250 Hz</td>
</tr>
<tr>
<td>Pulse</td>
<td>60-450 µs in 30 µs increments</td>
</tr>
<tr>
<td>Cycling</td>
<td>1 s to 24 h on/off</td>
</tr>
</tbody>
</table>

Table 1.3: Medtronic© neurostimulator output capability. Data from (Coffey 2009).

Parkinson’s disease (Benabid et al. 1987). From then, use of the technique advanced rapidly with more than 75,000 implanted deep brain stimulation devices today (Shah et al. 2010).

The most commonly used devices are the Medtronic© systems. They consist of concentric, polyurethane insulated leads with four electrode contact sites for brain implantation, burr hole caps to anchor the lead and seal the cranial opening and a battery powered neurostimulator unit for subcutaneous implantation into the infraclavicular pocket with subcutaneous extension cables to connect to the cranial leads.

The neurostimulator device can be fully programmed after implantation. Lead contacts can be selected to be positive, negative, on or off in any combination, the stimulation mode can be bipolar or monopolar with the neurostimulator case set to positive. The neurostimulator device delivers constant voltage, biphasic and charge-balanced pulse trains (Lilly 1961). Stimulation parameters can be adjusted according to table 1.3 and are independently programmable for each lead in dual channel applications.

Fully programmable physician- and patient controllers with more limited functions use skin contact radio frequency telemetry to program the neurostimulator. The neurostimulator batteries are not rechargeable, and typical stimulation paradigm for bilateral implants for Parkinson’s disease yield a battery life of approximately 3.5 years (Coffey 2009).

The food and drug association approved leads for deep brain stimulation have an outer diameter of 1.27 mm and are 28 or 40 mm long with a polyurethane jacket which is exposed to the brain tissue. The leads are inserted through a stainless steel cannula which is withdrawn after insertion into the brain leaving the lead in place. Four annular platinum/iridium electrode contacts are exposed near the lead tip. The resistance of each conductor to contact pathway is lower than 100 Ω. At present, three models of deep brain simulation leads are available with different contact lengths and spacing dimensions regarding their intracerebral target site (see table 1.4).

The geometric surface area of all lead contact sites is 0.06 cm². The impedance of the implanted leads is approximately 1.2 kΩ at 1 kHz (Butson et al. 2006). Although the device is capable to deliver charge densities larger than 30 µC/cm², the value is considered as the threshold for safe stimulation (Lilly 1961).
As it is today, implantation of deep brain stimulation systems is a multi-step procedure. The patient’s head is mounted into a stereotaxic frame, and magnetic resonance imaging is used to determine the anatomical reference marks for neuronavigation. Under local anaesthesia, the skull is trepanated and four or five individual microelectrodes are inserted. Neuronavigation (see section 1.4) is performed, and the trajectory giving the most characteristic signal for the target region is chosen for lead implantation. In case of bilateral applications, this process is repeated for the other hemisphere. Then, under full anaesthesia, the neurostimulator device is implanted into the infraclavicular pocket, and the subcutaneous connections to the deep brain stimulation leads are placed.

1.5.3 New Approaches to Deep Brain Stimulation

Deep brain stimulation has become a tool to manage a range of neurological and psychiatric disorders. There is no fully acknowledged theory on the mechanism of action. Yet, there seems to be a relative specific mechanism on cellular level. Therefore, it seems wrong to adopt stimulation parameters empirically established to treat motor symptoms of Parkinson’s disease, and use them in completely different neuronal circuits to treat depression and Tourette’s syndrome (Shah et al. 2010). Current advances lead the way to closed-loop systems that could provide tailored stimulation to target the specific conditions (Osorio et al. 2001). Ultra-high resolution 7.5 T magnetic resonance tomography supports target identification and placement of closed-loop systems. The ability to built miniaturized, low-power brain computer interface microsystems that enable high-performance on-line signal processing facilitate computation for closed-loop systems. And, production of chronically implantable, biocompatible and stable probes, usable for stimulation and recording provide interfaces for closed-loop systems (Johnson et al. 2008).

Contemporary brain computer interfaces have been used very successfully. The cochlear implant and the retinal stimulator are the most widely used neural prostheses interfacing the nervous system (Cosetti & Waltzman 2011, Krisch & Hosticka 2007). Cortical brain computer interfaces use microelectrode arrays with low penetration depth to record activity from hundreds of neurons. Table 1.4: Leads for deep brain stimulation applications. Data from (Coffey 2009).

<table>
<thead>
<tr>
<th>Model number</th>
<th>Contact length</th>
<th>Contact spacing</th>
<th>Targets</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>3387</td>
<td>1.5 mm</td>
<td>1.5 mm</td>
<td>thalamus, globus pallidus, subthalamic nucleus</td>
<td>tremor, dystonia, epilepsy, Parkinson’s disease</td>
</tr>
<tr>
<td>3389</td>
<td>1.5 mm</td>
<td>0.5 mm</td>
<td>subthalamic nucleus</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>3391</td>
<td>3.0 mm</td>
<td>4.0 mm</td>
<td>ventral striatum, internal capsule</td>
<td>depression, obsessive compulsive disorder</td>
</tr>
</tbody>
</table>
of neurons to convey precise direction of hand movement (Georgopolous et al. 1986, Hochberg et al. 2006). Simultaneous firing patterns in the cortex were associated with limb movement in a three dimensional space and used to move a cursor on a computer screen or control a robotic arm (Schwartz et al. 1988, Taylor et al. 2002).

Brain computer interfaces for applications which are relevant for the target regions of *deep brain stimulation* are not common for several reasons. The encoding strategies in the *basal ganglia* are currently unknown (Parush et al. 2008). Electrode layouts for deeply penetrating microelectrodes exist, but typically have a small number of recording sites. Most commonly used microelectrodes do not support combined recording and stimulation. Yet, recent microelectrode layouts allow multi-channel recording and reflect the trend of probe development (Rousche et al. 2001, Stieglitz 2002).

Metal wire microelectrodes are the most widely used neural probes so far. Typically, electrolytically sharpened wires are used which are completely insulated except for an exposed area on the tip. Contact materials are *platinum*, *iridium*, *platinum-iridium*, *gold*, *stainless steel* or *tungsten*. Highly dielectric insulation materials such as *teflon*, *polyimide*, and *parylene* are used. Multi electrode arrays can be made by gluing individual metal wire electrodes together or by using wire bundles (Hammad et al. 2010, Tsytsarev et al. 2006). *Metal wire microelectrodes* are cheap and easy to produce but they can record activity only at their tip and increasing the number of recording sites implies increasing probe diameter. Due to the lack of automation, the probes differ between manufacturers and batches.

Silicon based neural probes are produced with high precision and accuracy using micromachining techniques. Using batch processes, the probes can be produced at low cost. Also, the use of silicon micromachining facilitates production of active probes with integrated signal processing circuitry. Photolithography enables placement of differently sized recording sites along the shaft of the electrode in well defined distances. Thus, a large number of recording sites can be located in a small volume. Examples of *silicon based probes* are the well known *Michigan probes* and the *Utah array* (Hajj Hassan et al. 2008), and the *ACREO* probes for deep tissue insertion (Hofmann et al. 2006, Jensen et al. 2006).

Many different layouts of single-shaft, multi-shaft, and three-dimensionally stacked *Michigan probes* are used. *Gold*, *platinum*, or *iridium* is used for recording sites. The insulation on top of *silicon substrate* is made from triple layers of *silicon dioxide*, *silicon nitride*, and *silicon dioxide*. Yet, due to the relatively large diameter, guide tools are needed for insertion into the brain. Mechanical instability and breaking of the probe during insertion is a huge problem (Kipke et al. 2003, Wise et al. 2004).

The *Utah arrays* are made from boron doped silicon substrates. The electrochemically sharpened probe tips are coated with *gold*, *platinum*, or *iridium* for recording and stimulation. *Polyimide* is used to coat the probes as the insulation layer with only the recording sites exposed. The probe length of the *Utah array* structures is limited to about 1.5 mm, and only one record-
ing site is located on the probe shaft, since the probe is produced vertically. Due to their stiffness, they are not suited for long term chronic implantation in humans (Normann et al. 1999, Sumer et al. 2005).

For production of polymer microelectrodes, biocompatible polymers such as polyimide and parylene are used to support the conducting regions of the probes to form a biocompatible interface between the probe and the brain tissue. Flexible neural probes were produced with a gold metal layer for recording sites sandwiched between two polyimide layers. The use of flexible probes reduces tissue irritation, since the electrode can move with the brain. A large problem is electrode insertion, since they are not stiff enough. Also, moisture absorption by the polymer can lead to probe failure (Rousche et al. 2001, Takeuchi et al. 2004).

1.5.4 Animal Models of Parkinson’s Disease

Parkinson’s disease is a progressive neurodegenerative disorder. The severity and type of symptoms depends on the time since onset, the rapidity of functional decline and the treatment. Positive motor symptoms are tremor at rest, muscular rigidity and involuntary movements as side effect of dopamine substitution therapy. Also, negative motor symptoms such as poverty or slowing of movement and postural disturbances occur. Apart from the motor deficits, psychomotor signs are cognitive dysfunction, dementia and depression.

Idiopathic Parkinson’s disease is characterized by degeneration of dopaminergic neurons. The axons of dopaminergic neurons, located in the substantia nigra pars compacta run along the medial forebrain bundle and terminate in the dorsal striatum. Dopaminergic neurons in the retrorubral area in the midbrain project to the ventrocaudal putamen, and dopaminergic neurons in the ventral tegmental area project to the nucleus accumbens. From these three pathways, the nigrostriatal pathway seems to be most heavily damaged by the loss of dopaminergic neurons in Parkinson’s disease.

Beyond the loss of dopamine, damage has been found in noradrenergic, cholinergic and serotonergic cell populations, which may play an important role in the psychomotor aspects of Parkinson’s disease (Jellinger 1990).

A neurotoxin that leads to degeneration of mainly dopaminergic neurons is 6-hydroxydopamine. It is taken up into dopaminergic and noradrenergic neurons and causes degeneration of nerve terminals by oxidative stress while mitochondrial respiratory enzymes are blocked (Glinka et al. 1997).

To test therapeutic strategies, experimental models of Parkinson’s disease are used. In preclinical research, the catecholamine neurotoxin 6-hydroxydopamine is mostly injected into the substantia nigra pars compacta, medial forebrain bundle or the caudate putamen (Deumens et al. 2002).

Following neurotoxin injection, compensatory responses to loss of dopamine are observed including increased metabolic turnover and heightened activity in the remaining dopaminergic cells as well as increased postsynaptic dopamine receptor density and sensitivity. Compensatory responses to

dopamine depletion are the reason for rotational behaviour after unilateral lesions of the dopaminergic system. They cause an asymmetry in striatal activity compared between the lesioned and unlesioned side making the animal to rotate away from the side of greater activity (Ungerstedt 1971).

Subcutaneous administration of the dopamine releasing agent amphetamine creates a dopamine imbalance favouring the nonlesioned side and leads to ipsilateral turning behaviour. This imbalance can even be detected with 50 % loss of dopaminergic neurons. The dopamine receptor agonist apomorphine induces contralateral rotation due to denervation supersensitivity (Ungerstedt 1971). Postsynaptic supersensitivity occurs only when most of the dopaminergic neurons are lost. Thus, rats with light lesions show no rotational asymmetry in response to apomorphine. Therefore, apomorphine was reported to be a better predictor of extensive 6-hydroxydopamine lesions (Hudson et al. 1993).

1.5.4.1 Medial Forebrain Bundle Lesions

6-hydroxydopamine injection into the medial forebrain bundle leads to a near total destruction of dopaminergic terminals arising from the substantia nigra pars compacta and the ventral tegmental area. The loss of dopamine usually occurs rapidly and complete and the expected rotational behaviour is observed with unilateral lesions. Yet, more specific degeneration of dopaminergic neurons in the nigrostriatal pathway resembles the pattern of neurodegeneration observed in human idiopathic Parkinson's disease more closely. Further, bilateral medial forebrain bundle lesions lead to adipsia and aphagia in the lesioned animal (Ungerstedt 1971).

1.5.4.2 Substantia Nigra Lesions

Lesions of the substantia nigra pars compacta are used to produce a more selective model with moderate dopamine depletion in which the number of lesioned dopaminergic neurons correlates with apomorphine induced turning behaviour (Carman et al. 1991). Bilateral models of Parkinson's disease by injection of 6-hydroxydopamine into the substantia nigra on both sides have been achieved (Deumens et al. 2002).

1.5.4.3 Striatal Lesions

Highest selectivity can be reached by lesions in different parts of the caudate putamen. The ventrolateral sector receives input from motor and sensimotor areas of the neocortex, and dopamine innervation originate mainly from the substantia nigra pars compacta. The dorsomedial sector receives a mixed innervation from substantia nigra pars compacta and ventral tegmental area. Different behavioural responses can be induced choosing one or more lesion sites in the caudate putamen. Neurotoxin injections into the ventrolateral caudate putamen lead to apomorphine induced rotations when dopamine depletion of more than 90 % is achieved (Kirik et al. 1998).
Lesions in the ventrolateral caudate putamen have been reported to be most suitable for modelling Parkinson’s disease (Deumens et al. 2002). Injection of 6-hydroxydopamine into the ventrolateral caudate putamen leads to decreased dopaminergic input. This results in diminished activation of D₁ and D₂ receptors, leading to less inhibition of the subthalamic nucleus via the direct and indirect way (DeLong & Wichmann 2007). This causes the overactivity of the subthalamic nucleus, which is reported to be the reason for generation of motor symptoms in Parkinson’s disease (Kreitzer & Malenka 2008). Concurrent implantation of a stimulation electrode into the subthalamic nucleus makes the striatal model for Parkinson’s disease a tool to study the effects of subthalamic deep brain stimulation in the animal model of Parkinson’s disease (see figure 1.7).

Figure 1.7: The nigrostriatal pathway in the rat brain with dopaminergic projections (red) from the substantia nigra pars compacta (SNC) to the caudate putamen, and GABAergic neurons (blue) with direct or indirect connection to the subthalamic nucleus (DeLong & Wichmann 2007)

1.6 Aim of the Current Work

It is the design of the electrode that determines which type of neuronal activity is recorded or which neuronal elements are subjected to electrical stimulation. Since the mechanism of electrical stimulation in the brain is not fully understood and many variables of the neural tissue and implications of probe design are still unknown it is advisable to test the development states of new types of neural probes under realistic conditions.

Two types of neural probes are presented in this work. Both probe types are bimodal probes for recording and electrical stimulation. The presented Linear Array Probe design is a more conventional lateral array of recording sites arranged along a thin steel shaft with a stimulation site on the tip of the shaft. The presented Flexible Array Probe design features a lateral array of mixed recording and stimulation sites arranged on polyimide film as carrier. The use of flexible probes for intracerebral applications is a very new
approach and has been rarely used before. To allow a certain measure of comparability between the probe layouts only the deepest stimulation site on the tip of the Flexible Array Probe design was used.

The presented probes were designed for feedback controlled electrical stimulation in the subthalamic nucleus of the rat brain, and the probes’ development is directed towards closed-loop systems for deep brain stimulation in patients suffering from Parkinson’s disease.

The probes’ lateral array design with recording sites evenly spaced over a depth of 1 mm at the end of the shaft and a stimulation site at the tip assumes that the appropriate feedback signal is to be found in the parallel circuits of the subthalamic nucleus or its direct neighbours. The size of the stimulation sites was chosen to record high-frequency neuronal activity related to neuronal discharges in the close vicinity of the recording site. That is in agreement with the assumption that the feedback signal is to be found in the closer vicinity of the stimulation site. Yet, the size of the recording sites was chosen to be large enough to record activity from more than a single neuron with low thermal noise levels. That implies, that activity can be recorded even when neuronal elements are farther away from the recording site but also that the activity recorded from the electrode is not necessarily originating from a single neuronal element.

The neuronal probes used in the work at hand were tested under real conditions. The testing procedure was focused towards finding probable candidates for a feedback signal for feedback controlled subthalamic deep brain stimulation with regards to the assumptions that were made by probe design.

The whole purpose of feedback controlled deep brain stimulation in patients suffering from Parkinson’s disease is to reduce the amount of current injected into the tissue even when its not immediately necessary to diminish stimulation induced side effects and increase battery life of the stimulation devices. Therefore, the search for feedback parameters was confined towards the long term neuronal response to electrical stimulation in a time range of one minute.

Previous work that focused on the effect of neuronal stimulation and used electrophysiological recordings to analyse this effect was concerned with the immediate short term response of neural activity to electrical stimulation. Especially studies concerned with high-frequency neuronal response are mostly limited to a time range of a few seconds.

Yet, evidence exist that there is a long term effect of high-frequency electrical microstimulation on neuronal discharge activity. The studies which lead to such conclusions are mostly performed on the level of neurochemistry. It has been shown that the inhibitory neurotransmitter γ-aminobutyric acid increased after high-frequency microstimulation in the awake and freely moving animal over a time range of minutes (Hiller et al. 2007). Related studies give rise to the assumption that GABAergic interneurons with functional GABAA receptors are specific targets for high-frequency microstimulation (Moser et al. 2003b, Li et al. 2004, 2006, Mantovani et al. 2006, Hiller et al. 2007).
The aim of this thesis is to find candidate parameters that provide information about high-frequency neural discharge after high-frequency microstimulation in a long time range and could be used as feedback parameters for closed-loop systems for deep brain stimulation developed with the new type of bimodal probes which were used in the project. Along with that, the possibility of an effect of high-frequency microstimulation that leads to a specific increase or decrease in spike activity of certain neural elements should be investigated.
MATERIALS AND METHODS

2.1 Probes for Neural Recording and Stimulation

In the presented work, we used stiff type Linear Array Probes as well as Flexible Array Probes for neural single unit recording and microstimulation. The probes were provided by the "Institut für Mikrotechnik Mainz GmbH" as part of the research project BiCIRTS, which was funded by the German Ministry of Research (BMBF).

2.1.1 Linear Array Probes

The Linear Array Probes (see figure 2.1) provide seven recording sites and one stimulation site. The array of recording sites is arranged along the probe shaft over a distance of 750 μm with a centre-to-centre distance of 125 μm starting 400 μm from the tip. A single recording site has a surface area of 3.85x10^{-5} cm^2. The stimulation site is located at the tip of the electrode and has a surface area of 1.13x10^{-4} cm^2. All electrode contact sites are made from gold. The contacts are embedded in a stainless steel shaft with 300 μm diameter and a total length of 10 mm. The stainless steel shaft is used as ground for recording and current sink for stimulation. It is connected to the plug housing. A housed mini-PCB with female jack (HRS, ST60-10P) provides the connection interface.

Figure 2.1: Linear Array Probe with seven recording sites and one stimulation site on the tip of the electrode.
2.1.2 Flexible Array Probes

The Flexible Array Probe (see figure 2.2) was microfabricated from electrospun polyimide. Gold contact sites were vapour deposited and galvanically reinforced. The probe was manufactured on 8 inch silicone wafers. Many different layouts were produced. Designs, accommodating up to 22 recording sites with an area of 4x10^{-6} cm^2 to 1.6x10^{-5} cm^2 and ten additional stimulation sites with an area of 3.6x10^{-5} cm^2 were feasible with conductor path width and distance of 10 μm on a 750 μm wide shaft. All probe layouts feature alternating recording and stimulation sites as well as large surface ground contacts and a reinforced punch hole at the tip to facilitate tissue insertion (see section 2.4.3.2).

![Flexible Array Probe schematic with alternating recording and stimulation sites.](image)

Figure 2.2: Flexible Array Probe schematic with alternating recording and stimulation sites.

For the neural recording and microstimulation experiments, two different probe layouts were used (see figure 2.3 and section 2.4). Both layouts feature large area ground contacts which are distributed between the recording and stimulation sites and a punching hole at the probe tip.

![Flexible Array Probe layouts used for neural recording and microstimulation.](image)

Figure 2.3: Flexible Array Probe layouts used for neural recording and microstimulation. Large area ground contacts (1) are distributed between stimulation (2) and recording sites (3). A punching hole on the tip facilitates tissue insertion.

Layout A provides three 3.6x10^{-5} cm² stimulation contacts, arranged linearly in the middle of the probe shaft and six 1.6x10^{-5} cm², off-centred record-
ingsites, placed between the stimulation contacts. Layout B is equipped with the same number of contacts. The recording sites are 4x10⁻⁶ cm² in size and the large area ground contacts are placed between the recording and stimulation sites.

Both layouts provide ten enforced gold contacts with 0.5 mm pitch for connection. To equip the connections interface with the same connector as used for the Linear Array Probes, a small PCB was designed using a Graphical Layout Editor (EAGLE v5.11.0, CadSoft). The PCB accommodated solder patches for a rotary lock FFC connector (Omron, XF2M-1015-1) on the front and for the female jack (see section 2.1.1) on the back. Both connectors were soldered to the PCB. The connection interface on the Flexible Array Probe was stabilized and adjusted to 0.3 mm thickness using several layers of sticky tape and was then inserted into the FFC connector (see figure 2.4).

Figure 2.4: Flexible Array Probe assembled with connection interface.

2.1.3 Connection to Commercial Hardware

All probes were connected to the commercial hardware for neural recording and stimulation (see section 2.2.1 and section 2.2.2) using the same female jack (HRS, ST60-10P) connection interface.

For each probe, a self-made adapter to the 32 channel ZIF-Clip® headstage Adapter (ZCA-NN32, Tucker Davis Technologies) was manufactured from a male mobile connector (HRS, ST40-10P) which was connected to a male pin connector (Samtec, MOLC-140-01) compatible to the ZCA-NN32 headstage adapter. The channel configuration of each probe was matched to the channel configuration of the commercial hardware (see section 2.2). The probes'
Table 2.1: Charge densities at the stimulation sites of Linear- and Flexible Array Probes during stimulation with rectangular pulses with 60 μs duration and 0.1-0.4 mA current amplitude.

<table>
<thead>
<tr>
<th>current [mA]</th>
<th>0.1 mA</th>
<th>0.2 mA</th>
<th>0.3 mA</th>
<th>0.4 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>charge per phase (60 μs)</td>
<td>6 nC</td>
<td>12 nC</td>
<td>18 nC</td>
<td>24 nC</td>
</tr>
<tr>
<td>Linear Array Probes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>charge density (1.13x10^-4 cm²)</td>
<td>0.053 mC/cm²</td>
<td>0.106 mC/cm²</td>
<td>0.159 mC/cm²</td>
<td>0.212 mC/cm²</td>
</tr>
<tr>
<td>Flexible Array Probes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>charge density (3.6x10^-5 cm²)</td>
<td>0.167 mC/cm²</td>
<td>0.333 mC/cm²</td>
<td>0.500 mC/cm²</td>
<td>0.667 mC/cm²</td>
</tr>
</tbody>
</table>

Ground contact was connected to reference and ground of the headstage adapter, which were shortcut together. An external two pin socket for the stimulation site and ground was provided on the outer side of the MOLC and later connected to the current controlled stimulator.

2.2 **Hardware**

2.2.1 **Stimulation Hardware**

For electrical stimulation a single-channel current controlled stimulus isolator (*Isostim A320, WPI Inc.*) was used. The rechargeable stimulus is powered by sixteen 9 V alkaline batteries and has a compliance voltage of 100 V. The device was run in continuous mode, pulse interval and pulse width were set to 8 ms and 60 μs. Stimulus currents of 0.0-0.4 mA were applied. A continuous waveform DC pulse with 8 μs current rise time and 10 μs current fall time was generated by internal timing. The stimulus isolator was connected to the electrode so that the current was flowing from the stimulation contact site to the electrode ground. An oscilloscope (*TDS2004B, Tektronix, Inc.*) was used to monitor the voltage response of the electrode. The stimulation pulse waveform was recorded using NI LabVIEW SignalExpress (*v2004, National Instruments*).

Calculated charge densities per phase during current controlled stimulation with 0.1-0.4 mA current amplitude and 60 μs pulse width at the Linear- and Flexible Array Probe stimulation sites are shown in table 2.1

2.2.2 **Recording Hardware**

For multi-channel neural recordings an RZ5 BioAmp Processor (*Tucker Davis Technologies*) was used. Two battery powered 16-channel Medusa pream-
plifiers (RA16PA, Tucker Davis Technologies) were used. The preamplifiers provide 24.414 kHz maximum sampling rate, 100 kΩ input impedance and 3 dB frequency response between 2 Hz and 7.5 kHz. The 32-channel ZIF-Clip® digital headstage and the ZCA-NN32 headstage adapter were used to connect the bimodal probes via the self-made adapter (see section 2.1). For the chronic experiments with freely behaving animals, the AC32 motorized commutator was used.

2.3 Impedance Spectroscopy

Impedance and phase angle of all electrode sites were measured using a LCR-800 impedance spectrometer (Good Will Instruments Co., Ltd).

Using the standard three electrode setup, a sinusoidal waveform with frequencies between 0.1 and 100 kHz and 10 mV amplitude was applied between a large area platinum counter electrode and a non-polarizable Ag/AgCl reference electrode. The signal was measured using the electrode contact site as working electrode. All measurements were performed in 0.9 % saline solution which was constantly agitated using a magnetic stirrer.

The LCR-800 impedance spectrometer was controlled via a MATLAB® interface (MATLAB 2008a, The MathWorks) (see Appendix B). A frequency sweep experiment was performed (see Appendix B) and a frequency spectrum was recorded for the impedance and phase angle with n = 8. Each experiment was carried out three times. Mean values and standard deviations were calculated. The data were fitted using the *leastsq* method from the Scipy optimize module (Jones et al. 2001). The fit function Z_{fit} for the complex impedance $Z(\omega)$ described by the Randles cell equivalent circuit was used to estimate the parameter R_s, R_{ct} and C_{dl} (see equation 2.1 and section 1.3.1). Variances were determined from the diagonal of the covariance matrix.

\[
Z_{RE} = R_s + \frac{R_{ct}}{1 + \omega^2 R_{ct}^2 C_{dl}^2} \quad (2.1)
\]

\[
Z_{IM} = -i \frac{\omega^2 R_{ct}^2 C_{dl}}{1 + \omega^2 R_{ct}^2 C_{dl}^2}
\]

\[
Z_{fit} = \frac{Z_{IM}}{-1 \sin \left(\arctan \left(\frac{Z_{IM}}{Z_{RE}} \right) \right)}
\]

The χ^2 error of the fit was calculated using equation 2.2 by taking the sum of the squared difference between the measure impedance Z_{exp} and the fitted impedance Z_{fit}, weighted by Z_{exp}.

\[
\chi^2 = \sum \frac{(Z_{\text{exp}} - Z_{\text{fit}})^2}{Z_{\text{fit}}} \quad (2.2)
\]

The fitted impedance Z_{fit} and phase angle Φ are presented in a Bode plot with the absolute values plotted against the frequency on a semilogarithmic scale. For the Nyquist plot, the real and imaginary parts Z_{RE} and Z_{IM} of
the measured impedance were calculated and plotted against each other (see equation 2.3).

\[
Z_{RE} = Z_{exp} \left(\cos \left(\text{rad} \left(\Phi_{exp} \right) \right) \right) \\
Z_{IM} = j Z_{exp} \left(\sin \left(\text{rad} \left(\Phi_{exp} \right) \right) \right)
\]

(2.3)

The impedance values of recording and stimulation sites were analysed at 1 kHz. Mean values and standard deviations of the 1 kHz impedances for all recording and stimulation sites were calculated and compared to each other.

2.4 Chronic Experiments

Neuronal recording and high frequency microstimulation experiments with bimodal Linear- and Flexible Array Probes were conducted in awake and freely moving rats with chronically implanted probes. A stereotaxic surgery was carried out to ensure precise probe insertion into the subthalamic nucleus. Animals received a lesion of striatonigral dopamine by injection of neurotoxin solution into the ventrolateral caudate putamen or sham treatment by injection of 0.9 % saline into the same area. While the probe was lowered into the brain tissue in steps of 200 μm, the neuronal activity was measured at each depth and neuronavigation was performed. For the measurements, a ground screw was placed into the skull and electrical connections were made as described in section 2.2.2. The target area for electrophysiological recording and high frequency microstimulation was the subthalamic nucleus. After insertion, the probe was fixed to the skull by using dental cement and skull screws for fixation as anchors. After the surgery, the animals were allowed to recover, and experiments were performed to establish the effect of electrical and chemical stimulation on the neuronal activity in the target structure.

2.4.1 Animals

All procedures with animals were reviewed and approved by the University of Lübeck and the Ministry for Agriculture, the Environment and Rural Areas, Schleswig-Holstein, Germany, and were conducted in accordance with the NIH guide for the Care and Use of laboratory animals. Male Wistar rats were used and housed separately under standard lightning conditions (12 h light-dark cycle, lights on at 06:00 am), 22 ℃ and 40 % humidity with free access to food and water.

2.4.2 Surgical Procedure

The stereotaxic surgery for precise probe insertion was carried out after a standard protocol (see Appendix E). Prior to the surgery, animals received initial inhalation anaesthesia with isoflurane (HDG9623, Baxter). Deep anaesthesia and analgesia was induced by intraperitoneal injection of 80 mg/kg ke-
Figure 2.5: The ventrolateral caudate putamen (CPu) in 2.5a was targeted for injection of neurotoxin or saline in the chronic experiment. The subthalamic nucleus (STN) in 2.5b was targeted in chronic and acute experiments for neural recordings and electrical microstimulation. The longitudinal section through the rat brain in 2.5c shows all trajectories for the targeted areas, as well as the ground screw position.

Figures from (Paxinos & Watson 2007), modified.

tamine (Ketavel®, Pfizer) and 1 mg/kg xylazine (Rompune®, Bayer). To refresh anaesthesia, if necessary, one third of the initial dose was injected. Additionally, animals received injection of 1 ml 0.9 % saline and 5 % glucose. While under anaesthesia, the animal was placed on a 35 °C heating pad, driven by a circulation pump thermostat (VWR International).

A stereotaxic frame for small animals (Stoelting Co.) was used for accurate mounting of the animal and fixation via ear-bars in the auditory canals and an incisor bar for upper jaw fixation.

The carefully shaved scalp was opened by a 2-3 cm long sagittal cut along the middle line. Suture material was used to stretch the skin and create a wide operation area. The periosteum was removed, and the cranium was prepared by rigorous rubbing with cotton Q-tips until the frontal, longitudinal and inter-aural fissures were clearly visible.

A navigation rod with a hypodermic needle tip was mounted to the stereotaxic frame. Stereotaxic navigation was carried out under microscopic control (see figure 2.7) with the help of an imaging zoom lens mounted to a CCD camera on a stand, which was independent from the stereotaxic frame (Imaging Zoom Lens, 0.7X-4.5X, NT53-347, Steel post components NT03-609, NT58-994, NT58-955, NT58-974, NT54-976, Edmund Optics, FireWire CCD Color Cam-
era DFK 41BF02.H, The Imaging Source). The live image was displayed on the computer screen (AVT Smart View v1.13.1, Allied Vision Technologies GmbH).

Figure 2.6: Setup for stereotaxic surgery. Anaesthetized animal mounted in stereotaxic frame. Microscopic cameras are placed on an additional stand.

The anterior-posterior (AP) medial-lateral (ML) and dorsal-ventral (DV) coordinates of the skull reference marks, bregma (B) and inter-aural point (IAP), were determined. Also, the DV coordinates of the left- and rightmost points of the inter-aural fissure (IAL and IAR) were gauged.

Figure 2.7: Reference bregma (A) and interaural point (B).

The AP tilt Δ_{AP} and ML tilt Δ_{ML} were calculated (see equation 2.4). When Δ_{ML} or Δ_{AP} exceeded a tolerance value of 0.02 cm, the skull position in the stereotaxic frame was readjusted, and measurements were repeated.

$$\Delta_{AP} = DV_B - DV_{IAP}$$
$$\Delta_{ML} = ML_{IAL} - ML_{IAR}$$ (2.4)
Starting from the skull reference marks, the coordinates of the target area according to the *Rat Brain Atlas* (*Paxinos & Watson 2007*) were calculated as shown in table 2.2. The resulting AP and ML trepanation points were marked on the skull surface.

After labeling the trepanation points, the skull bone was carefully perforated using a high speed micro drill (*Fine Science Tools, Inc.*) and the respective drill-head according to table 2.2 (*Micro Drill Steel Burrs, 0.9, 1.4, 2.1 mm, Fine Science Tools, Inc.*). A piece of silicone rubber tube was put around the drill head to avoid irritation of the *dura mater* and *cortex* tissue.

The trepanation was carefully cleaned from bone fragments and blood. The *dura mater* above the probe insertion points was carefully removed using sharp, delicate forceps (*Fine Science Tools, Inc.*). To prevent tissue desiccation, a drop of high viscosity silicone oil (*Mw 10000, Sigma-Aldrich*) was applied.

Skull screws (1.17 x 4.0 mm Bone Screws, *Fine Science Tools, Inc.*) were placed to the respective trepanation and were fastened with approximately three revolutions. The ground screw (G) was soldered to a short silver wire and a pin connector and connected to the ground and reference of the biosignal amplifier (see section 2.2.2).

Table 2.2: ML and AP coordinates for stereotaxic targets according to (*Paxinos & Watson 2007*).

<table>
<thead>
<tr>
<th>target</th>
<th>AP [cm]</th>
<th>ML [cm]</th>
<th>trepanation [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPu, right</td>
<td>AP<sub>CPu</sub> = AP<sub>B</sub> + 0.02</td>
<td>ML<sub>CPu</sub> = ML<sub>B</sub> - 0.3</td>
<td>1.4</td>
</tr>
<tr>
<td>STN, right</td>
<td>AP<sub>STN</sub> = AP<sub>IAP</sub> + 0.02</td>
<td>ML<sub>STN</sub> = ML<sub>IAP</sub> + 0.25</td>
<td>2.1</td>
</tr>
<tr>
<td>Ground screw 1</td>
<td>AP<sub>F1</sub> = AP<sub>STN</sub> + 0.3</td>
<td>ML<sub>F1</sub> = ML<sub>STN</sub> + 0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Fixation screw 2</td>
<td>AP<sub>F2</sub> = AP<sub>STN</sub> + 0.3</td>
<td>ML<sub>F2</sub> = ML<sub>STN</sub> - 0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Fixation screw 3</td>
<td>AP<sub>F3</sub> = AP<sub>STN</sub> + 0.3</td>
<td>ML<sub>F3</sub> = ML<sub>STN</sub> - 0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Fixation screw 4</td>
<td>AP<sub>F4</sub> = AP<sub>STN</sub> - 0.2</td>
<td>ML<sub>F4</sub> = ML<sub>STN</sub> + 0.2</td>
<td>0.9</td>
</tr>
</tbody>
</table>

2.4.3 *Probe Insertion & Neuronavigation*

For step-by-step probe insertion, a PILINE® micropositioning stage with integrated linear encoder and controller (*M-663 Linear Motor Stage and C-867 Controller, Physik Instrumente (PI) GmbH & Co. KG*) was used. The stage was mounted to the navigation rod on the stereotaxic frame by a custom-made aluminium clamp as shown in figure 2.8 (*Workshop, University of Lübeck*). The *Linear Array Probe* housing or the support for the *Flexible Array Probes* (see section 2.4.3.2) were fixed to the holder on the opposite site of the clamp. The piezo drive of the micropositioning stage locks the position when no
power is supplied. That way, no AC noise was introduced into the neural recordings when the drive was on hold.

Figure 2.8: Micropositioning stage, mounted to the stereotaxic frame via the navigation rod with a custom made clamp. A holder for probe insertion is present on the clamp.

2.4.3.1 Insertion of Linear Array Probes

For insertion, the Linear Array probe was mounted to the micropositioning stage via the holder on the custom made clamp (see figure 2.8). Using the stereotaxic frame the probe tip was referenced to bregma and the inter-aural point under microscopic control. The AP and ML target coordinates for the probes were calculated according to table 2.2, and adjusted via the stereotaxic frame. The micropositioning stage displacement was set to zero and the probe tip was adjusted to the height of the skull surface above the target point (DV₃), using the stereotaxic frame. From here, the DV displacement of the probe was adjusted, using the software controlled micromanipulation stage, only. Target depths for the respective targets are summarized in table 2.3.

The Linear Array Probe was lowered into the cerebral tissue in steps of 200 μm with a speed of 0.4 mm/s by linear displacement of the micropositioning stage. Between each step, the neural activity pattern was recorded. The target depths in table 2.3 were used as guideline values. The final target depth was determined based on the patterns of neural activity which were recorded for each step (see section 1.4).
<table>
<thead>
<tr>
<th>target</th>
<th>DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPu, right</td>
<td>$DV_{CPu} = 0.45 \text{ cm}$</td>
</tr>
<tr>
<td>STN, right</td>
<td>$DV_{STN} = 0.74 \text{ cm}$</td>
</tr>
</tbody>
</table>

Table 2.3: Target depths for target areas in the brain according to (Paxinos & Watson 2007).

2.4.3.2 Insertion of Flexible Array Probes

Insertion of Flexible Array Probes was achieved differently (see figure 2.9). Instead of mounting the Flexible Array Probe itself a support needle ($DN2730K$, Dental Needle, Terumo®) was inserted into the probe holder on the micropositioning stage. The support needle was referenced to bregma and the inter-aural point and the subthalamic nucleus target coordinate was calculated as described for the Linear Array Probe.

To place the Flexible Array probe on the skull, a 0.75 % agarose gel was prepared with 0.9 % saline. A little cube was cut and placed between the four fixation screws around the trepanation hole (see figure 2.10a and figure 2.10b). The Flexible Array Probe was placed onto the agarose gel and adhered to the wet surface (see figure 2.10c). The punching hole on the tip of the Flexible Array Probe was picked up with the sharp tip of the support needle (see figure 2.10d), and the target coordinates were adjusted by slowly dragging the Flexible Array Probe along. When the AP and ML target coordinates were reached, the stereotaxic frame was adjusted to the DV value for the support needle (see figure 2.10e). Then, the Flexible Array Probe was inserted into the brain by linear displacement of the micromanipulation stage in steps of 200 μm with 0.4 mm/s (see figure 2.10f). At each step neural activity was recorded and the target depth was determined. When the target area was reached, the support needle was twisted slightly and slowly retracted.
2.4.4 Probe Implantation

When the electrode target area was verified by neuronavigation, the probes were implanted to facilitate chronic high frequency microstimulation and multi-channel neuronal recording in the awake and freely moving animal (see figure 2.11).

The probes were fixed onto the skull using the fixation screws as anchors. The implantation technique was different for Linear- and Flexible Array Probes, since the Linear Array Probes were reusable and explantation without causing damage to the electrode had to be ensured.
2.4.4.1 Implantation of Linear Array Probes

To fix the Linear Array Probes tightly to the skull and yet allow for easy explantation, probe fixation occurred only via the probe housing. A little plug for the probes’ support adapter (see figure 2.1) was built around the fixation screws (see figure 2.12a) using cold-curing, two-component, dental resin (Ref 64707794, Heraeus Kulzer). For that, a silicone spacer was placed between the skull screws so that the trepanation was covered. The outer surface of the silicone spacer was treated with high viscosity silicone oil and then wrapped with dental cement (see figure 2.12b). The silver wire, contacting the ground screw was integrated into the dental resin plug. When the dental cement cured, the silicone spacer was removed (see 2.12c) and the electrode was lowered into the brain (see 2.12c). When the target depth was reached, the space between the dental resin plug and the probe’s support adapter was filled with silicone oil and the probe housing was fixed to the dental resin plug using thick layers of dental cement. The pin plug connection to the ground screw was integrated on the outer side of the dental resin implant. The surface of the implant was smoothed by washing with 0.9 % saline and shaping with wet Q-tips. Sharp edges were removed using a scalpel or bone cutter tool. The scalp was stretched around the implant and the wound was closed with surgical suture. The wound was purged with sterile saline solution and betaisadonna (povidone-iod, Mundipharma GmbH) was applied generously as antiseptic. When the Linear Array Probe needed to be recovered from the implant, the animal was decapitated under deep anaesthesia with isoflurane. The whole implant was removed from the skull. A sharp scalpel blade was used to lever the probe housing from the dental resin implant.

2.4.4.2 Implantation of Flexible Array Probes

The Flexible Array probes were not recovered from the implant. After probe insertion, the support needle was removed and the whole agarose block, still supporting the probe, was covered with dental resin. When the first layer of dental resin was cured, the Flexible Array Probe plug housing was set upright and generously wrapped with dental resin. As for the Linear Array Probe implantation, the pin connector to the ground screw was integrated on the outer side of the dental resin implant. The implant was smoothed and the wound was closed and disinfected.

2.4.5 Lesioning Procedure & Sham Treatment

The high frequency microstimulation and multi-channel neuronal recording experiments were carried out in the awake and freely moving animal. Rats received lesion or sham treatment. In lesioned animals, neurotoxin solution was injected into the ventrolateral caudate putamen. Thereby, denervation of dopaminergic, nigrostriatal afferents was reached. Sham-treated animals received injection of 0.9 % sodium chloride into the same target area.
The neurotoxin solution was freshly prepared just before injection and was handled in the dark and on ice. Sterile, pyrogen-free 0.9 % saline (Berlin Chemie) was sonicated (Bandelin Sonorex TK52H, Schalltec GmbH) for 10 min to remove oxygen from the liquid. 50 mM ascorbic acid (Ref A7506, Sigma-
Aldrich) and 6-hydroxydopamine (Ref 2547, Tocris) stock solutions were prepared in sonicated saline. Then, 254μl 6-hydroxydopamine (50 mM), 76μl ascorbic acid (50 mM) and 670μl 0.9% saline were mixed and final concentrations of 12.7 mM 6-hydroxydopamine and 3.8 mM ascorbic acid were established.

2.4.5.2 Microinjection System

A 100μl GasTight® syringe (1710, Hamilton Bonaduz AG) was connected to 20 cm low diameter polyethylene tubing (ID 0.4 mm, OD 0.8 mm, Portex, Smiths Medical) and an injection needle (Hypodermic Needle, 27G, Braun Melsungen AG) by low-volume tubing adaptors (Ref 340 9500, CMA Microdialysis AB). A microdialysis probe adaptor was glued to the injection needle with epoxy resin, and the needle was mounted to the stereotaxic frame via a microdialysis probe clip (Ref 8309013, CMA Microdialysis AB) and navigation rod (see figure 2.13). The syringe was filled with the solution and placed into a microperfusion pump (Typ540101, TSE Systems International Group).

Figure 2.13: Microinjection into the ventrolateral Caudate Putamen.

2.4.6 Microstimulation and Recording Freely Behaving Animals

Three days after probe insertion, high frequency microstimulation and multi site neuronal recordings were performed in the awake and freely moving animal (see figure 2.14). The animal was placed into a 60 cm diameter bowl test cage (Rotameter System for Small Animals, TSE Systems) and the implanted probes were connected to the commercial hardware for stimulation and recording as described in section 2.2. The pin connector for the skull screw ground was connected to the amplifier’s ground and reference (see figure 2.11), as was the ground contact of the implanted probe and the an-
ode (positive terminal) of the WPI Isostim A320 Isostim stimulus isolator. The stimulation site at the tip of the implanted probe was connected to the cathode (negative terminal) of the stimulator. The seven recording sites of the implanted probe were connected to the ZIF Clip headstage as described in section 2.2.

Figure 2.14: Setup for the Chronic Experiment.

A passive voltage probe (10x) was connected to stimulation ground and source to measure the voltage response to current controlled stimulation on the implanted electrode using a digital oscilloscope TDS2004B, Tektronix. Data were recorded using LabView Signal Express Data Acquisition Software.

Figure 2.15: Animals with implanted probes were investigated for a period of up to 30 days. During this time timesweep experiments were performed with different stimulation current amplitudes, and currentsweep experiments were performed with subcutaneous injection of 5 mg/kg quinpirole (QP) or 0.9 % sodium chloride, 30 minutes before the experiment. At the end of the procedure, an apomorphine test was performed.
Wavetrain data were recorded with 24.414 kHz on seven channels via the recording sites of the implanted probe. For instant visualization, the recorded wavetrain data were bandpass filtered between 300 - 3000 Hz. Filtered and unfiltered raw data were stored in TDT data tanks in blocks of 60 s duration. The recording site, closest to the stimulation contact was recorded as channel 7.

When indicated, electrical high frequency microstimulation was applied between the stimulation site and ground of the implanted probe by monophasic, cathodal, constant current pulses with 60 μs duration and 8 ms interval. The pulse width and duty cycle of the rectangular pulses was constant for all experiments. As indicated, the current amplitude varied between 0.0, 0.1, 0.2, 0.3 and 0.4 mA.

Electrical high frequency microstimulation and neuronal multi-channel recording was performed in different experiments (see figure 2.15). Two sets of timesweep and currentsweep experiments, and an apomorphine test were performed in each animal with chronically implanted probes.

2.4.6.1 Timesweep Experiments

Timesweep experiments (see figure 2.16) were carried out in week one and three. The wavetrain signal was continuously recorded for 30 min in blocks of 60 s. Single trains of 60 s electrical high frequency stimulation were applied with different duration between the trains. The current amplitude was constant for all trains of stimulation. While high frequency microstimulation was applied, rotational behaviour was observed and video footage was recorded. Also, the voltage response to current stimulation was recorded using an oscilloscope and LabView Signal Express Data Aquisition Software.

Five timesweep experiments were carried out on consecutive days with increasing current amplitude in week one and three. The protocol for the timesweep experiment is listed in Appendix E.

2.4.6.2 Currentsweep Experiments

Currentsweep experiments (see figure 2.17) were performed in week two and four according to the time schedule in figure 2.15. The wavetrain signal was continuously recorded for 35 min in blocks of 60 s. Single trains of 60 s high frequency stimulation were applied with 5 min duration between the trains. Eventually, the recording blocks were extended before and after stimulation so that the stimulation artefact could be detected later. With each train of stimulation, the current amplitude was increased by 0.1 mA. While high frequency microstimulation was applied, rotational behaviour was observed and video footage was recorded. The voltage response to current stimulation was recorded using an oscilloscope, and LabView Signal Express Data Aquisition Software.

Two consecutive currentsweep experiments were carried out in week two and four. The first currentsweep experiment was performed 30 min after subcutaneous injection of 0.9 % sodium chloride and the second currentsweep ex-
In the *timesweep* experiment, the wavetrain signal was recorded continuously in blocks of 60 s duration (blue squares). Single trains of high frequency microstimulation of 60 s duration were applied after 3, 6, 11, 18 and 27 min with increasing time interval between stimulation (red boxes). Eventually, the recording blocks were extended before and after stimulation so that the stimulation artefact could be detected later. The current amplitude was kept constant in the *timesweep* experiment. While high frequency microstimulation was applied, video footage was recorded to analyse rotational behaviour (light green boxes) and voltage response to current controlled stimulation was recorded using an oscilloscope (dark green boxes).

The protocol for the *currentsweep* experiment is listed in Appendix E.

In the *currentsweep* experiment, the wavetrain signal was recorded continuously in blocks of 60 s duration (blue squares). Single trains of high frequency microstimulation of 60 s duration were applied after 5, 11, 17, 23 and 29 min with constant time interval between stimulation (red boxes). For each stimulation sequence, the current amplitude was increased by 0.1 mA. While high frequency microstimulation was applied, video footage was recorded to analyse rotational behaviour (light green boxes), and voltage response to current stimulation was recorded using an oscilloscope (dark green boxes).

2.4.6.3 Apomorphine Test

The apomorphine test was carried out at the end of the procedure, before animals were sacrificed and brains removed. For the apomorphine test, animals were placed into the bowl test cage, and rotational behaviour was observed continuously. The wavetrain signal was recorded in blocks of 60 s at certain timepoints during the experiment (see figure 2.18). After 10 min, the animal received subcutaneous injection of 5 mg/kg apomorphine. After that, rotations were continuously observed and blocks of wavetrain data were recorded.
were recorded for 35 min. The protocol for the apomorphine test is listed in Appendix E. After the apomorphine test, animals were decapitated under deep isoflurane anaesthesia, and brains were removed.

![Diagram](image)

Figure 2.18: In the apomorphine test, the wavetrain signal was recorded blocks of 60 s duration after 1, 3, 5, 7, 14, 20, 25, 30 and 35 min (blue squares). Subcutaneous injection of 5 mg/kg apomorphine was applied after 10 min. Video footage was recorded during the whole experiment to analyse rotational behaviour before and after apomorphine injection (light green boxes).

2.5 **Data Analysis**

2.5.1 **Groups & Parameters**

2.5.1.1 **Neuronavigation**

Two treatment groups were derived for the neuronavigation experiments (see section 2.4.3, and figure 2.19, light blue area). Each block of recorded data was exported as described in Appendix C. The parameters used to quantify neuronal activity, were calculated for the whole data block as described in section 2.5.4 and spike detection was performed according to section 2.5.5.

2.5.1.2 **Apomorphine Response**

Four treatment groups were derived for the apomorphine test experiments (see section 2.4.6.3 and figure 2.19, light green area). Each block of recorded data was exported as described in Appendix C. The parameters used to quantify neuronal activity were calculated for the whole data block as described in section 2.5.4 and rotational behaviour was analyzed according to section 2.5.1.6.

2.5.1.3 **Multi-site Recording and Microstimulation Experiments**

Eight treatment groups were derived for time- and currentsweep experiments (see sections 2.4.6.1 2.4.6.2, and figure 2.19, light red area). In each group, high frequency microstimulation was applied with 0.0, 0.1, 0.2, 0.3 and 0.4 mA. Each block of recorded data was exported as described in Appendix C. The exported data were sorted into the respective groups as listed in Listing D.1
2.5.1.4 Basal Neuronal Activity

Basal neuronal activity (see section 3.4) was determined from the blocks of data that were recorded before any electrical stimulation was applied. Parameters used to quantify basal neuronal activity were calculated from the whole data block as described in section 2.5.4.

2.5.1.5 Voltage Response

The voltage response to current stimulation on the electrode's stimulation sites was recorded with 1 MHz using a digital oscilloscope connected parallel to ground and source of the stimulus isolator. The voltage response between Linear- and Flexible Array Probes was compared and the long term performance of the implanted probes was established by comparing the voltage response in the early set of experiments in week one with the late set of experiments in week four (see section 3.3).

2.5.1.6 Rotational Behaviour

Rotational behaviour in each group was analysed from the videos taken while high frequency microstimulation was applied, or before and after apomorphine injection. Full rotations were counted in the video footage, and rotations per minute were calculated.

2.5.1.7 Neuronal Response to High Frequency Microstimulation

To determine the neuronal response to high frequency microstimulation (see section 3.6) the exported and sorted data were merged to obtain wavetrain data blocks containing wavetrain data before, during and after high frequency microstimulation (see section 2.5.2.2). Then, the stimulation artefact was removed using gradient based edge detection (see section 2.5.3). Parameters that were used to quantify the response of the neuronal network to high frequency microstimulation were calculated as described in section 2.5.4 for

Figure 2.19: Treatment groups for neuronavigation (light blue), apomorphine test (light green), as well as time- and currentsweep experiments (light red).
each second. Single-unit spike events were extracted from the wavetrain data as described in section 2.5.5 and the response of single-unit spike activity to high frequency microstimulation was analysed as described in section 2.5.6.

2.5.2 Signal Processing

2.5.2.1 Wavetrain Data

Wavetrain data blocks of 60 s duration recorded before, during and after high frequency microstimulation were merged together for each group and each channel to obtain a continuous wavetrain (see figure 2.20).

![Figure 2.20: Wavetrain data were merged from three blocks of recorded data. The wavetrain represents the recorded signal before, during and after high frequency microstimulation. The stimulation artefact is marked in red. Unfiltered data are shown.](image)

2.5.2.2 Stimulation Artefact

The stimulation artefact (see figure 2.21) is shown for Linear- (blue) and Flexible Array Probes (green). When high frequency stimulation was turned on manually by a turning switch on the stimulus isolator, the amplifier goes into saturation immediately. A sharp edge is visible in the wavetrain data (see figure 2.21a).

The close-up view of the stimulation artefact in figure 2.21b shows that, with our setup, it is impossible to record neuronal activity between the stimulation pulses since the system stays in saturation in the 8 ms time period between the pulses. As the stimulus isolator is turned off a sharp edge is visible as soon as the system desaturates (see figure 2.21c). It takes up to 400 ms until the 50 Hz noise becomes visible again in the unfiltered wavetrain data. The system goes back to initial conditions only about 900 ms after saturation. This behaviour is similar for Linear- and Flexible Array Probes.

2.5.3 Edge Detection

The stimulation artefact was removed from the wavetrain using gradient based edge detection (see Listing D.3). The gradient of the one dimensional data $\nabla data(t)$ was calculated and a threshold filter was applied with $thr =$
Figure 2.21: The stimulation artefact as recorded with Linear- (blue) and Flexible Array Probes (green).

10 * mean(data) (data_thr(t) = |\nabla data(t)| > thr). The first timepoint t_{min} of data_thr(t) was used as the left edge of the stimulation artefact and the last timepoint t_{max} of data_thr(t) was used as the right edge of the stimulation artefact. The result of the edge detection is shown in figure 2.22.

Figure 2.22: Edge detection from merged wavetrain data. The unfiltered wavetrain signal with the stimulation artefact is shown in light blue. The data after edge detection is shown in dark blue.

2.5.4 Wavetrain Derived Parameters

Statistical parameters derived from wavetrain data were determined from the merged wavetrain signal after removal of the stimulation artefact (see Listing D.3). Data were filtered at 400-4000 kHz using a standard 4th order Butterworth digital filter.
The root mean square is the mean value of the squared data, and was calculated as shown in equation 2.5

\[d_{\text{rms}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2} \]

(2.5)

The spectral density was calculated to characterize the frequency content of the signal. The mean spectral density was used to determine the magnitude of the signal over all frequencies between 400-4000 Hz. For the spectral density calculation, the `matplotlib.pyplot.psd` function was used with \(n = 256 \), and \(F_s = 24414 \) Hz. The one dimensional vector of wavetrain data was divided into \(i \) segments with length \(n \), and \(|fft(i)|^2 \) of each segment was calculated.

2.5.5 Spike Detection & Clustering

Spike detection was performed from the merged wavetrain signal after removal of the stimulation artefact (see Listing D.3). Data were bandpass filtered at 400-4000 kHz using a standard 4th order Butterworth digital filter.

![Figure 2.23: Spike detection from merged wavetrain data.](image)
Spikes were detected using a median based threshold filter (see equation 2.6) as proposed by Quiroga et al. (Quiroga 2004). Detected spikes were stored in 64 dp vectors and aligned at the maximum.

\[
\text{thr} = 5x\frac{\text{median}(|\text{data}|)}{0.6745}
\]

The detected spike shapes were grouped using \textit{kmeans} clustering after feature extraction by \textit{principal component analysis}. For that the \textit{C} Clustering Library was used together with the package \textit{Pycluster} (de Hoon et al. 2004). \textit{Principal component analysis} was used to extract spike shape features from all spike shapes. Feature vectors were determined from the eigenvalues of the covariance matrix and were clustered using \textit{kmeans} clustering with \(k = 10\) as number of clusters. The stepwise procedure from unfiltered \textit{wavetrain} data to the clustered spike shapes is shown in figure 2.23

\subsection{Spike Event Analysis}

Spike detection and clustering was performed for each block of merged and filtered \textit{wavetrain} data on each channel (see figure 2.24). The times of the spike events in each cluster were plotted as \textit{rasterplot} before and after high frequency microstimulation. From the spike event times, inter-spike intervals were calculated. A normed histogram of the inter-spike intervals (isi) was created using 100 bins. Parameters, describing the distribution of inter-spike intervals for each cluster were calculated to line out changes in the spiking activity before and after high frequency microstimulation (see Listing D.3).

\subsubsection{Median Inter Spike Interval}

The median of the inter-spike intervals \(\tilde{\text{isi}}_{-\text{HFS}}\) and \(\tilde{\text{isi}}_{+\text{HFS}}\) were determined in each cluster, representing the centre of gravity of the inter-spike interval distribution. To obtain a normalized measure \(\tilde{\text{isi}}_{-\text{HFS}}/(\tilde{\text{isi}}_{-\text{HFS}}+\tilde{\text{isi}}_{+\text{HFS}})\) and \(\tilde{\text{isi}}_{+\text{HFS}}/(\tilde{\text{isi}}_{-\text{HFS}}+\tilde{\text{isi}}_{+\text{HFS}})\) were calculated.

\subsubsection{Number of Spike Events}

The normalized number of spike events represents the \textit{mean firing rate per minute} \(n_{-\text{HFS}}/(n_{-\text{HFS}}+n_{+\text{HFS}})\) and \(n_{+\text{HFS}}/(n_{-\text{HFS}}+n_{+\text{HFS}})\) was calculated for each cluster.
Figure 2.24: Spikes were detected and spike shapes were clustered in each channel. The times of the spike events in each cluster were plotted as rasterplots before and after high frequency microstimulation (HFS). From the spike event times, inter-spike intervals were calculated and the distribution of the inter-spike intervals was plotted as a histogram plot before and after HFS. The resulting probability density function was fitted using a gamma distribution. The median of the inter-spike intervals was calculated and compared.

2.5.6.3 Spike Entropy

The spike entropy was calculated from the inter-spike interval histogram as a measure of regularity of spike events. \(h_{-HFS} \) and \(h_{+HFS} \) were calculated from equation 2.7.

\[
p(s_i) = \frac{1}{\sum_{i=1}^{n} s_i}
\]
\[
h(s) = \sum_{i=1}^{n} p(s_i) \log_2(p(s_i))
\]
3 RESULTS

3.1 Probe Characterization

The frequency response of the Linear- and Flexible Array Probes was characterized by impedance spectroscopy in the 0.1-100 kHz frequency range. The mean values and standard errors of the impedance Z and phase angle ϕ were calculated for the recording and stimulation sites of all electrodes and displayed in Bode- and Nyquist representation. The approximate Randles cell parameters were determined from the impedance spectra. Also, the graphs were fitted with the Randles cell equivalent circuit representation and the fit parameter R_s, R_{ct} and C_{dl} were calculated (see table 3.2).

3.1.1 Linear Array Probe Impedance Spectra

Figure 3.1 shows the frequency response of the Linear Array Probe recording- and stimulation sites in Bode- and Nyquist representation. The impedance Z is plotted against the frequency on a double-logarithmic scale (see figure 3.1a). The curves for the best fit are included for recording- and stimulation sites. At low frequencies, high impedance values are observed striving towards R_{ct}. For high frequencies, low impedances are observed striving towards the value for R_s. For frequencies lower than 10 kHz, recording and stimulation sites can be clearly distinguished from each other by means of impedance.

Figure 3.1b provides a close-up view on the characteristic areas in the Bode representation of the impedance spectrum. The linear region of the curve at 7-10 kHz was fitted using nonlinear regression resulting in a line in the double-logarithmic coordinate system and is displayed together with the low-frequency asymptote at R_{ct} and the high-frequency asymptote at R_s. From that, the cut-off frequency ω_c was determined. It lies beyond the physiological frequency range for recording- and stimulation sites (see table 3.2). At 1 kHz, the impedance of the recording sites is 63.04 % higher than the impedance at the stimulation sites.

The phase angle Φ is plotted against the frequency on a semi-logarithmic scale and the curves for the best fit are included for recording- and stimulation sites (see figure 3.1c). The phase shift at recording- and stimulation sites is similar over the whole frequency range. At 0.2-2 kHz and at frequencies higher than 10 kHz, the curve is linear. At 2-5 kHz, phase angles are constant. The close-up view at 1 kHz emphasizes the similarity between phase shifts at recording and stimulations sites and the transition from the linear to the constant phase occurring at 2 kHz (see figure 3.1d).

The Nyquist plot in figure 3.1e represents the complex nature of the measured impedance. The real- and imaginary parts were calculated from the impedance...
pedance Z and phase angle Φ and displayed in a cartesian coordinate system. The curves of the best fit are included for recording- and stimulation sites. The lower intersection with the real-axis is similar to the fitted R_s value. The diameter of the semicircle is similar to the fitted R_{ct} value at the recording- and stimulation sites. The solution resistance R_s at the origin of the semicircle does not differ much between recording- and stimulation sites whereas the diameter of the semi-circle differs considerably and seems to be dependent on the size of the contact area. The curve shape of the Nyquist plot describes a single semi-circle. In general, the Randles cell fit represents the measured impedance values for frequencies lower than 10 kHz. For higher frequencies, the fit seems to be inappropriate to describe the data.

![Figure 3.1: Frequency response of Linear Array Probes. Bode- and Nyquist representations of impedance and phase angle measurements are fitted using the Randles cell equivalent circuit.](image)
3.1.2 Flexible Array Probe Impedance Spectra

Figure 3.2 shows the frequency response of the Flexible Array Probe recording- and stimulation sites in Bode- and Nyquist representation.

![Impedance Spectra](image)

Figure 3.2: Frequency response of Flexible Array Probes. Bode- and Nyquist representations of impedance and phase angle measurements fitted using the Randles cell equivalent circuit.

The impedance Z is plotted against the frequency on a double-logarithmic scale (see figure 3.2a) and the curves for the best fit are included for recording- and stimulation sites. At low frequencies, high impedance values are observed striving towards R_{ct}. For high frequencies, low impedances are observed, striving towards the value for R_s. Recording and stimulation sites can be clearly distinguished from each other over the whole frequency range by means of impedance.

Figure 3.1b provides a close-up view on the characteristic areas in the Bode representation of the impedance Z. The linear region of the curve at 1-9 kHz was fitted using nonlinear regression resulting in a line in the double-
Table 3.1: Parameters of the \textit{Randles cell} equivalent circuit determined from the \textit{impedance spectra} in Bode- and Nyquist representation.

<table>
<thead>
<tr>
<th></th>
<th>Linear Array Probes</th>
<th>Flexible Array Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>recording sites</td>
<td>stimulation sites</td>
</tr>
<tr>
<td></td>
<td>R_s</td>
<td>R_s</td>
</tr>
<tr>
<td></td>
<td>11.11±3.29 kΩ</td>
<td>24.76±7.58 kΩ</td>
</tr>
<tr>
<td></td>
<td>10.18±3.20 kΩ</td>
<td>7.67±2.99 kΩ</td>
</tr>
<tr>
<td></td>
<td>24.76±3.29 kΩ</td>
<td>7.67±2.99 kΩ</td>
</tr>
<tr>
<td></td>
<td>24.76±7.58 kΩ</td>
<td>7.67±2.99 kΩ</td>
</tr>
<tr>
<td></td>
<td>106.25±38.13 kΩ</td>
<td>346.86±55.03 kΩ</td>
</tr>
<tr>
<td></td>
<td>300.0±11.87 kΩ</td>
<td>346.86±55.03 kΩ</td>
</tr>
<tr>
<td>C_{dl}</td>
<td>2.06±0.19 nF</td>
<td>2.21±0.07 nF</td>
</tr>
<tr>
<td></td>
<td>2.06±0.19 nF</td>
<td>3.03±0.05 nF</td>
</tr>
<tr>
<td></td>
<td>2.06±0.19 nF</td>
<td>5.09±1.29 nF</td>
</tr>
</tbody>
</table>

Logarithmic coordinate system and is displayed together with the \textit{low-frequency asymptote} at R_{ct} and the \textit{high-frequency asymptote} at R_s. From that, the \textit{cut-off frequency} of the high-pass filter \(\omega_c\) was determined for recording- and stimulation sites (see table 3.2). The \textit{cut-off frequencies}, however, lie beyond the physiological range at frequencies > 13 kHz. At 1 kHz, the \textit{impedance} of the recording sites is 40.94 \% higher than the \textit{impedance} of the stimulation sites.

The \textit{phase angle} \(\Phi\) is plotted against the frequency on a semi-logarithmic scale (see figure 3.2c) and the curves for the best fit are included for recording- and stimulation sites. The phase shift at recording- and stimulation sites is similar over the whole frequency range. The close-up view at 1 kHz shows that the transition from the linear into the constant phase occurs at 1 kHz and therefore earlier than with the \textit{Linear Array Probes}.

The \textit{Nyquist plot} for the complex \textit{impedance} of the \textit{Flexible Array Probes} is shown in figure 3.2e. The real- and imaginary parts were calculated from the \textit{impedance} Z and \textit{phase angle} \(\Phi\), and displayed in a cartesian coordinate system. The curves for the best fit are included for recording- and stimulation sites. The curve shape of the \textit{Nyquist plot} does not describe a full semi-circle. The intersection with the real axis occurs close to the fitted value for R_s and is similar for recording- and stimulation sites. Yet, there is no indication of a second semi-circle. Therefore, a first order system with a single \textit{time constant} seems suitable to describe the \textit{frequency response} of the \textit{Flexible Array Probes} but the \textit{Randles cell} might be too limited since it fails to describe the data at frequencies higher than 2 kHz.

3.1.2.1 Randles Cell Parameters

The parameter of the \textit{Randles cell} equivalent circuit R_s, R_{ct} and C_{dl} were determined from \textit{Bode-} and \textit{Nyquist plot}. R_s was determined from the \textit{impedance} at the high-frequency asymptote of the \textit{Bode plot} and R_{ct} was determined from the \textit{impedance} at the low frequency asymptote of the \textit{Bode plot}. The \textit{double layer capacitance} C_{dl} was calculated from the \textit{Nyquist plot} with C_{dl} = \(\frac{1}{2\pi f R}\) whereas the real part of the \textit{impedance} Z and the frequency at the apex were used (see table 3.1).

The parameters of the \textit{Randles cell} equivalent circuit were also calculated from the least squares fit of the \textit{impedance spectra}. The variance for the fitted
Table 3.2: Parameters of the Randles cell equivalent circuit determined by fitting the impedance spectra using a least squares fitting method.

<table>
<thead>
<tr>
<th></th>
<th>Linear Array Probes</th>
<th>Flexible Array Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>recording sites</td>
<td>stimulation sites</td>
</tr>
<tr>
<td>R_s</td>
<td>15.68 kΩ</td>
<td>13.96 kΩ</td>
</tr>
<tr>
<td>R_{ct}</td>
<td>135.51 kΩ</td>
<td>87.58 kΩ</td>
</tr>
<tr>
<td>χ^2</td>
<td>5.16 kΩ</td>
<td>4.47 kΩ</td>
</tr>
<tr>
<td>C_{dl}</td>
<td>1.23 nF</td>
<td>2.17 nF</td>
</tr>
</tbody>
</table>

Parameters was taken from the diagonal of the covariance matrix. Variances were always smaller than 1% of the value of the fitted parameter. The χ^2 error of the fit was calculated by taking the sum of the squared difference between the measured and the fitted impedance weighted by the measured impedance (see table 3.2).

3.1.2.2 Impedance - Area Relationship

The measured impedance at 1 kHz for the different geometric surface areas of the electrode contact sites are compared in figure 3.3a. The 1 kHz impedance is plotted against the geometric surface area of the electrode contact site. The data points were fitted by a log-log fit and a logarithmic relation between contact site surface area and impedance at 1 kHz was determined.

Phase angle values at 1 kHz do not seem to be related to the surface area. The values for the geometric surface area of the electrode contact sites as well as values for impedance and phase angle are summarized in table 3.3.

Figure 3.3: Relationship between the geometric surface area of the electrode contact sites and the measured impedance at 1 kHz.
3.2 Neuronavigation

The in vivo performance of Flexible- and Linear Array Probes was determined by neuronavigation. Regular measurements were performed while driving the probes deeper into the cerebral tissue on a determined trajectory. Based on anatomical and functional data (Paxinos & Watson 2007), the depth on the trajectory to the target structure was assigned to four different brain regions which were marked in the figures with alternating grey and white bars. Roughly, these four regions correspond to cortex, hippocampus, thalamus and zona incerta/subthalamic nucleus in the rat brain.

3.2.1 Wavetrain Appearance

Wavetrains were recorded and classified according to their region of origin (see figure 3.4). In general, both probe types show a good performance measuring wavetrain patterns from selected channels. The wavetrain signal for Linear Array Probes looks smooth at 0-2 mm and 2-4 mm. Despite low noise levels, little spike activity was observed in these regions. A larger amount of spike activity was measured with Flexible Array Probes at 2-5 mm. At 4-7 mm, distinct regular spiking and bursting activity was measured with both probe types. Generally, large single spikes were preferentially found in the wavetrains recorded with Linear Array Probes whereas lower amplitude bursts were often found in Flexible Array Probe recordings. Recordings in the subthalamic nucleus were very similar between Linear- and Flexible Array Probes. Large single spikes were observed together with bursts in the same recording.

3.2.2 Mean Spike Shapes

From the wavetrain data, measured in the respective depth area, spikes were extracted. Random spikes, extracted from wavetrains measured in the respective region were plotted in figure 3.5. In general, spike shapes measured in different depths do not differ much. Spikes were found in almost every re-
region with both probe types. Using Linear Array Probes, the spikes are much clearer in deeper regions (see figure 3.5a).

To see if different spike shapes can be measured from different regions and to determine features in which the spike shapes generally differ, the mean value of all spike shapes measured in the respective region was calculated and plotted in figure 3.6. Spike shapes, measured with Linear Array Probes generally belong to two types. Spikes, measured at 4-7 mm, seem to have a more pronounced hyperpolarized region before the positive peak and are slightly less hyperpolarized after the positive peak. Spike shapes from other regions cannot be distinguished by any feature when measured with the Linear Array Probes. Thus, there seems to be no correlation between the mean spike shape of all spikes measured in an area and the predominant type of neurons in that area.

Spike Measurements with the Linear Array Probes can be distinguished by three different features. The hyperpolarized region preceding the peak, the peak amplitude and the hyperpolarized region following the peak. Showing different combinations of these three features spike shapes from three regions can be distinguished from each other when measured with Flexible Array Probe (see figure 3.6b). Spikes, measured at 0-2 mm and 4-7 mm have a larger amplitude than spikes from the other areas but cannot be distinguished from each other. Spikes, measured at 2-4 mm, show a less pronounced hyperpolarized region following the peak whereas spikes, measured at 7-8.4 mm, show a less pronounced hyperpolarized region preceding the peak than spikes from all the other areas. Still, the mean spike shape of

Figure 3.4: Wavetrains, recorded during neuronavigation along the trajectory to the subthalamic nucleus using Linear- and Flexible Array Probes.
an area seems not to be useful for neuronavigation, since many spike have to be measured in order to find reliable differences.

3.2.3 Wavetrain Based Parameters

Although the occurrence of certain wavetrain patterns can be linked to depth of recording and therefore to a respective brain region, the prediction of a brain area by wavetrain pattern is not very accurate since no sharp distinction can be made between two subsequent wavetrains. Neuronavigation by means of spike shape analysis seems inadvisable. Instead of using wavetrain patterns or spike shapes for neuronavigation, wavetrain based param-
Table 3.4: Turning points calculated from the 10th order polynomial fit of the root mean square activity profile of Linear- and Flexible Array Probes.

<table>
<thead>
<tr>
<th>Turning point depth [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Array Probes</td>
</tr>
<tr>
<td>0.9 2.4 4.0 6.0 7.3</td>
</tr>
<tr>
<td>Flexible Array Probes</td>
</tr>
<tr>
<td>1.2 2.5 3.9 6.1 7.6</td>
</tr>
</tbody>
</table>

e ters were calculated for each depth step as proposed by Menne et al. and Ramrath et al. (Menne 2005, Ramrath et al. 2009) and plotted against the depth of the electrode tip in the brain. Mean values and standard errors of root mean square amplitude, mean firing rate, mean spectral density and spike entropy were calculated for all probe types. Using these values, activity profiles were generated for the target trajectory by plotting the data against the depth of the electrode tip. All activity profiles were fitted with a 10th order polynomial which, by visual impression, described the data best. The turning points of the fitted functions were determined using the second and third derivatives and marked in the graphs (see figures 3.7-3.10).

3.2.3.1 Root Mean Square

The root mean square activity profile for Linear- and Flexible Array Probes is shown in figure 3.7. The root mean square activity profile measured with Linear Array Probes shows a clear biphasic increase along the trajectory to the subthalamic nucleus. Two stationary phases are separated by phases of roughly linear increase. The values range from about 3 μV at low depths to around 5 μV at the target.

The root mean square activity profile measured with Flexible Array Probes shows the same range of amplitude, but larger error bars than observed with Linear Array Probes. Although no clear biphasic shape can be delineated from the graph, an increase of the root mean square is observed along the target trajectory.

The turning points, calculated from the root mean square activity profile measured with Linear Array Probes align well with the end of the marked cortical region at 2.0 mm and with the beginning and end of the marked thalamic region at 4.0 mm and 7.0 mm. Another turning point is found at 6.1 mm and aligns with the depth of the border to the ventral posteromedial thalamic nucleus according to (Paxinos & Watson 2007). Even if the root mean square activity profile measured with the Flexible Array Probes shows no clear structure, the location of the turning points align with the turning points found in the root mean square activity profile measured with Linear Array Probes (see table 3.4).
Figure 3.7: Root mean square activity profiles calculated from the wavetrain signal while neuronavigation along the trajectory to the subthalamic nucleus was performed using Linear- and Flexible Array probes. The turning points of the polynomial fit align with the transitions between cerebral structures.

3.2.3.2 Mean Spectral Density

The mean spectral density profile shows the negative decadic logarithm of the mean spectral density at 300-3000 Hz plotted against depth. Being the negative value, a negative slope reflects an increase in spectral activity. The spectral density profile measured with Linear Array Probes shows a biphasic shape similar to the root mean square activity profile. Here, three constant phases at 0-2 mm, 3-4 mm, and 7-8 mm alternate with two linear phases at 2-3 mm and 5-7 mm. The spectral density profile measured with Flexible Array Probes has no characteristic structure and large error bars.

The turning points, calculated from the mean spectral density profile measured with Linear Array Probes align well with the end of the marked cortical region at 2.0 mm as well as with the beginning marked thalamic region at 4.0 mm. A turning point, marking the end of the thalamic region, is missing. Instead, the possible marker for the transition to the ventral thalamus is present at 5.7 mm. The mean spectral density profile shows an additional turning point at 7.8 mm, which marks the depth of the subthalamic nucleus at the electrode tip according to (Paxinos & Watson 2007). The turning points of the mean spectral density profile measured with Linear Array Probes appear as well in the mean spectral density profile measured with Flexible Array Probes (see table 3.5).
Figure 3.8: The *mean spectral density* represented by the negative decadic logarithm of the *mean spectral density* at 300-3000 Hz while *neuronavigation* was performed along the trajectory to the *subthalamic nucleus* using *Linear- and Flexible Array Probes*.

3.2.4 Spike Based Parameters

From the *wavetrain* data, measured in the respective depth area, spike signals were extracted. Spike based parameters were calculated from the timing of the spike events occurring in the respective region.

3.2.4.1 Mean Firing Rate & Entropy

From the timing of the detected spikes, *mean firing rate* and *entropy* were calculated. *Spike activity profiles* (see figure 3.9) and *entropy profiles* (see figure 3.10) were plotted. The curve shape for both differs from the curve shape of the *activity profiles* derived from *wavetrain* data. Few spikes were detected.

Table 3.5: Turning points calculated from the 10th order polynomial fit of the spectral activity profile of Linear- and Flexible Array Probes.

<table>
<thead>
<tr>
<th>Turning point depth [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Array Probes</td>
</tr>
<tr>
<td>Flexible Array Probes</td>
</tr>
<tr>
<td>0.4 2.3 4.1 5.7 7.8</td>
</tr>
<tr>
<td>0.6 1.7 3.9 7.0 7.7</td>
</tr>
</tbody>
</table>
in the cortical region with Linear Array Probes. The spike activity- and entropy profiles are flat in this region. In hippocampus, at 2-4 mm, spike activity is rising and then falling again. Linearly rising spike activity is observed at 4.8-6.8 mm, which is the depth of thalamus in the rat brain. After 7.0 mm, the spike activity is constant.

More spike activity in the cortex was measured with Flexible Array Probes whereas little was observed in hippocampus. The spike activity was rising in alignment with the marked area for the thalamus at 4 mm but large error bars make it difficult to delineate a clear curve shape.

Figure 3.9: Spike activity represented as mean firing rate, calculated from the number of spikes while neuronavigation along the trajectory to the subthalamic nucleus was performed using Linear- and Flexible Array Probes.

The turning points, calculated from the polynomial fit of the spike activity profiles and measured with Linear Array Probes, do not align with the beginning but with the end of the marked cortical region at 4.0 mm. Also, the turning points at the possible transition to ventral thalamic region at 6.0 mm and to the subthalamic nucleus can be found in the spike activity profiles. Again, most turning points reappear in the spike activity profiles measured with Flexible Array Probes (see table 3.6).

The entropy profile measured with Linear- and Flexible Array Probes has much the same shape as the spike activity profile with smaller error bars in the profile measured with Linear Array Probes and larger error bars in the profile measured with Flexible Array Probes (see figure 3.10). The entropy is related to the firing rate. The more spikes were detected, the more regular the timing of the spike events.
Table 3.6: Turning points calculated from the 10th order polynomial fit of the spike activity profile of Linear- and Flexible Array Probes.

<table>
<thead>
<tr>
<th></th>
<th>Turning point depth [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Array Probes</td>
<td>1.0 2.8 4.2 6.0 7.1 7.9</td>
</tr>
<tr>
<td>Flexible Array Probes</td>
<td>1.0 2.0 4.9 6.1 7.0 7.9</td>
</tr>
</tbody>
</table>

Figure 3.10: Entropy profile with the entropy being calculated from spike times at each step while neuronavigation along the trajectory to the subthalamic nucleus was performed using Linear- and Flexible Array Probes.

The turning points, calculated from the polynomial fit of the entropy profile measured with Linear Array Probes do not differ much from the turning points determined from the mean firing rate. When the entropy profile was measured with Flexible Array Probes, only four turning points were observed missing the markers at 7.0 mm and 7.8 mm (see table 3.7).

3.2.4.2 Turning Points of the Activity Profile

Turning points for all activity profiles measured with Linear- and Flexible Array Probes disregarding the respective amplitude are summarized in figure 3.11. Brain regions and borders for cortex, hippocampus, thalamus and
Table 3.7: Turning points calculated from the 10th order polynomial fit of the entropy profile of Linear- and Flexible Array Probes.

<table>
<thead>
<tr>
<th>Turning point depth [mm]</th>
<th>Linear Array Probes</th>
<th>Flexible Array Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.7 2.7 4.2 6.0 7.1 7.8</td>
<td>1.2 2.0 4.0 6.5 7.0 7.7</td>
</tr>
</tbody>
</table>

zona incerta/subthalamic nucleus with values taken from Paxinos et al. (Paxinos & Watson 2007) are marked by alternating grey and white areas. Additionally, dotted lines mark the first turning point observed in a group. Clearly, the dotted lines align with the grey and white marked areas. The dotted lines in the cortical region are shifted by 0.2 mm but align for the deeper regions. Two additional dotted lines at 5.6 mm and 7.8 mm align with the determined values for the dorsal border of the ventral posteromedial thalamic nucleus and the subthalamic nucleus.

Figure 3.11: Turning points calculated from root mean square activity-, spectral density-, spike activity-, and entropy profiles with their amplitude set to y=1. Dotted lines mark the first turning point in a group, determined from the profiles measured with Linear Array Probes.

3.3 **Voltage Response**

Current controlled electrical stimulation with 0.0-0.4 mA was applied via the stimulation sites of Linear- and Flexible Array Probes at different time points after implantation. Figure 3.12 shows the average voltage response to a 60 μs current pulse with 0.0-0.4 mA via the Linear- and Flexible Array Probe stimulation sites after one- and four weeks of implantation. The voltage response curves display charge- and discharge phases with exponential rise and decay which are typical for RC circuits. After charging, a maximal potential, depending on the current amplitude, is reached. After one week of implantation (see figures 3.12a and 3.12c), higher maximum electrode poten-
tials are reached than after for weeks of implantation. This effect is especially prominent at current amplitudes higher than 0.2 mA (see figures 3.12b and 3.12d). The average maximum electrode potential at 0.4 mA drops by 62 % between week one and four of implantation with both probe types.

Figure 3.12: Voltage response to current stimulation on the stimulation site of chronically implanted Linear- and Flexible Array Probes. Measurements were taken after one and four weeks of implantation.

Figure 3.13: Maximum electrode potentials determined from the voltage response to current controlled stimulation with 0.0-0.4 mA at the Linear- and Flexible Array Probe stimulation sites.

The maximum electrode potential was determined from the voltage response of the different probe types after one and four weeks of implanta-
Table 3.8: Maximum electrode potential during 0.1 and 0.4 mA current controlled stimulation at Linear- and Flexible Array Probe stimulation sites.

<table>
<thead>
<tr>
<th>Current</th>
<th>Linear Array Probes</th>
<th>Flexible Array Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>week 1</td>
<td>week 4</td>
</tr>
<tr>
<td>0.1 mA</td>
<td>6.3±0.57 V</td>
<td>6.1±0.88 V</td>
</tr>
<tr>
<td>0.4 mA</td>
<td>17.7±1.54 V</td>
<td>11.1±0.3 V</td>
</tr>
</tbody>
</table>

Maximum electrode potentials are shown in figure 3.13. The voltage response at Linear Array Probe stimulation sites after one and four weeks of implantation diverges from 0.2 mA stimulation amplitude upwards. The voltage response at Flexible Array Probe stimulation sites after one and four weeks implantation diverges from 0.3 mA upwards.

This effect was further investigated, and the time constant \(\tau \) was determined for the average voltage response at Linear- and Flexible Array Probe stimulation sites during stimulation with 0.1-0.4 mA current amplitude. Exponential increase of potential was assumed, so that \(V(t) = V(1 - e^{-t/\tau}) \), and \(V(t) = 1 - e^{-1} = 0.63 \) when \(t = \tau \). Therefore, \(\tau \) values for Linear- and Flexible Array Probes at week one and four, were taken from the curves displayed in figure 3.12 as the time points where the potential reached 63.2 % of its maximum value, and displayed in figures 3.14a and 3.14b. The \(\tau \) values seem to be scattered randomly for the different time points with Linear- and Flexible Array probes. Therefore a single time constant \(\tau \) was calculated from the mean value and standard error of the extracted \(\tau \) values at 0.1-0.4 mA and the one- and four week time points for each of the two probe types (see table 3.9).

![Figure 3.14](image-url)
(a) Linear Area Probes
(b) Flexible Area Probes

Figure 3.14: Time constants of the exponential capacitive increase in potential after current stimulation at Linear- and Flexible Array Probe stimulation sites, after one and four weeks of implantation.
Table 3.9: Time constants for the voltage response of Linear- and Flexible Array Probes, calculated from the voltage response curves at 0.1-0.4 mA after one and four weeks of implantation.

<table>
<thead>
<tr>
<th>probes</th>
<th>τ [(\mu s)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Array Probes</td>
<td>16.78 ± 1.34</td>
</tr>
<tr>
<td>Flexible Array Probes</td>
<td>12.60 ± 0.62</td>
</tr>
</tbody>
</table>

3.4 Basal Neuronal Activity

The neuronal activity in lesioned and sham-treated animals was determined using the root mean square value as parameter of the wavetrain signal, and the mean firing rate as parameter calculated from detected spike events. The basal neuronal activity was measured in lesioned as well as sham-treated animals after subcutaneous injection of 0.9% sodium chloride, 5 mg/kg, apomorphine and 5 mg/kg quinpirole (see figure 3.15).

![Figure 3.15](image)

Figure 3.15: Neuronal activity in lesioned and sham-treated animals after injection with 0.9% sodium chloride (NaCl), 5 mg/kg quinpirole (QP) and 5 mg/kg apomorphine (Apo), administered by subcutaneous injection prior to the measurement. The neuronal activity is represented by the root mean square value of the measured wavetrain signal and mean firing rate of detected spike events measured with Linear Array Probes in the awake and unrestrained animal.

The dopamine depletion in the caudate nucleus in lesioned animals does not seem to affect the basal neuronal activity as measured by the root mean square value (see figure 3.15a). A two-way ANOVA test confirms that the lesion has the same effect on the above described treatments ($F = 2.16, DFn = 1, DFd = 341, p = 0.1164$) and that the basal neuronal activity of lesioned and sham-treated animals is not significantly different ($F=0.42, DFn=1, DFd=341, p = 0.5179$).

The selective D2,3 dopamine receptor agonist quinpirole does not influence the basal neuronal activity compared to sodium chloride. The non-selective dopamine receptor agonist apomorphine, however, leads to a decrease in
overall subthalamic activity. This decrease is observed in both, lesioned and sham-treated animals. The effect is significant with $p = 0.0017$ for sham-treated and $p < 0.001$ for lesioned animals (unpaired t-test, two-tailed). Along with that, the two-way ANOVA reveals a highly significant effect of the treatment on the neuronal activity as measured using the root mean square value of the wavetrain signal ($F = 14.04$, $DFn = 2$, $DFd = 341$).

Whereas no difference between lesioned and sham-treated animals can be observed from the root mean square value of the wavetrain signal, the lesion does lead to an increase in the mean firing rate of detected spike events for the above described treatments. A two-way ANOVA confirms that the lesion has a significant effect on the above described treatments ($F = 7.28$, $DFn = 1$, $DFd = 272$, $p = 0.0074$). This effect is the same for all treatments ($F = 0.41$, $DFn = 2$, $DFd = 272$, $p = 0.6625$). A post-hoc t-test revealed a significantly decreased mean firing rate under quinpirole treatment as compared to sodium chloride, with $p = 0.033$ for lesioned and $p = 0.017$ for sham-treated animals.

3.5 Rotational Behaviour

3.5.1 Apomorphine Induced Rotational Behaviour

Rotational behaviour was studied to determine the extent of the nigrostriatal denervation in lesioned and sham-treated animals using subcutaneous injection of the non-selective dopamine agonist apomorphine (Da Cunha et al. 2008) (see figure 3.16). Apomorphine treatment leads to a significant increase in the number of full rotations per minute in lesioned animals with $p < 0.001$ (unpaired t-test, two-tailed). Yet, although not significant with $p = 0.4950$, an increased number of rotations was also observed in a few sham-treated animals. The preferred direction of apomorphine induced rotational behaviour was clockwise, ipsilateral to the side of probe implantation (see figure 3.17).

Figure 3.16: Rotational response to treatment with $5 \, \text{mg/kg}$ apomorphine in lesioned and sham-treated animals. The number of full rotations per minute is displayed for each group.
3.5.2 Rotational Behaviour Induced by Subthalamic High-frequency Microstimulation

Rotational behaviour is not only induced by pharmacological stimulation of the dopaminergic activity but also by subthalamic high-frequency microstimulation. Constant current pulses with 0.0, 0.2 and 0.3 mA amplitude at the stimulation site of the implanted probe were used to determine the efficacy of the applied electrical stimulation on a behavioural level (see figure 3.18). Thirty minutes after subcutaneous injection of 0.9 % sodium chloride (+NaCl) or 5 mg/kg quinpirole (+QP), lesioned and sham-treated animals were subjected to high-frequency microstimulation (HFS) with currents of 0.0, 0.2 and 0.3 mA.

When lesioned and sham-treated animals were treated with 0.9 % sodium chloride, increased rotational response was observed at 0.3 mA (see figure 3.18a) with p = 0.0264 and p = 0.0041 (unpaired t-test, two-tailed).
When animals received quinpirole injection, increased rotational response is observed in lesioned animals compared to sham-treated animals for all current amplitudes (two-way ANOVA, p = 0.0392). Increased rotational response compared to 0.0 mA stimulation is observed at 0.2 mA. The effect is increasing at 0.3 mA (see figure 3.18b). Due to large error bars, significance with p = 0.0134 can only be established for 0.3 mA constant current stimulation in lesioned animals pre-treated with subcutaneous injection of 5 mg/kg quinpirole (unpaired t-test, two-tailed).

When high-frequency microstimulation was applied in the subthalamic nucleus, the preferred direction of the rotational response was counterclockwise, contralateral to the side of probe implantation (see figure 3.17).

Figure 3.19: Subthalamic high-frequency microstimulation induced counterclockwise rotational behaviour, directed contralateral to the side of the stimulation, in lesioned and sham-treated animals.

3.6 Network Response to High-frequency Microstimulation

The electrophysiological response to subthalamic high-frequency microstimulation with 0.0, 0.1, 0.2, 0.3 and 0.4 mA was measured in lesioned and sham-treated animals after injection of 0.9 % sodium chloride and in sham-treated animals after injection of 5 mg/ml quinpirole. Constant current stimulation was applied via the stimulation site at the tip of the Linear Array Probes and via the deepest stimulation site at the Flexible Array Probes. The wavetrain signal was recorded for 60 s before high-frequency microstimula-
tion (HFS) was applied for 60 s and for 60 s after high-frequency microstimulation was applied.

3.6.1 Signature Curves of Neuronal Activity

From the wavetrain signal, recorded with 24.414 kHz, the root mean square per second and the mean spectral density per second were calculated and normalized to the median of the baseline before HFS (-60, -2). Signature curves, representing the mean value of all experiments (n > 3), are displayed for all channels. Since the experiment was carried out to characterize the non immediate effect of subthalamic high-frequency stimulation events occurring from -2 to 2 s are greyed out and not included in the analysis.

When Linear Array Probes were used for high-frequency microstimulation and electrophysiological recordings, clean signature curves were recorded for channels 1 to 7 (see figure 3.20).

![Signature Curves of Neuronal Activity](image)

Figure 3.20: High-frequency microstimulation and multi-site recording was carried out with implanted Linear Array Probes. The normalized root mean square per second was calculated from the wavetrain signal and is displayed for a period of 60 s before high-frequency microstimulation was applied (before HFS, -60 to -2 s) and for a period of 60 s after high-frequency microstimulation was applied (after HFS, 2 to 60 s). High frequency microstimulation was applied for 60 s and is indicated by a dotted line in each graph. The delayed network response at > 2 s after high-frequency microstimulation is evaluated. Events, occurring between -2 and 2 s, are greyed out and are not included in the analysis.

In sham-treated animals which received injection of 0.9 % sodium chloride 30 min before the measurement, a delayed electrophysiological response to high-frequency microstimulation is observed at 0.4 mA on channels 1, 3 and 5 about 15 s after high-frequency microstimulation ceases. The root mean square per second increases for a period of about 15 s until it returns to baseline level.

In sham-treated animals which received subcutaneous injection of 5 mg/ml quinpirole, the root mean square per second increases on channels 3, 5 and 7 about 3 s after high-frequency microstimulation ceases. The increase lasts
about 15 s. Similar results are observed in lesioned animals which receive injection of sodium chloride. Although the peak amplitude is considerably lower, increased root mean square per second is observed directly after stimulation with 0.2 mA and after 0.4 mA stimulation with about 15 s delay.

Although recording with Flexible Array Probes results in noisier data and less clear signature curves in figure 3.21, the root mean square per second increases after 0.2 mA high-frequency microstimulation via the deepest stimulation site in all groups.

![Figure 3.21](image-url)

Figure 3.21: High-frequency microstimulation and multi-site recording was carried out with implanted Flexible Array Probes. The normalized root mean square per second was calculated from the wavetrain signal and is displayed for a period of 60 s before high-frequency microstimulation was applied (before HFS, -60 to -2 s) and for a period of 60 s after high-frequency microstimulation was applied (after HFS, 2 to 60 s). High-frequency microstimulation was applied for 60 s and is indicated by a dotted line in each graph. The delayed network response at > 2 s after high-frequency microstimulation is evaluated. Events, occurring between -2 and 2 s are greyed out and are not included in the analysis. Little data were available for 0.1 and 0.4 mA in sham-treated animals which received injection of quinpirole.

In sham-treated animals, receiving sodium chloride injection, a biphasic increase in root mean square per second occurs after 0.2 mA high-frequency microstimulation with the first peak at about 2 - 15 s and the second peak at about 30 - 40 s.

Low amplitude root mean square per second increase occurs about 4 s after 0.2 mA high-frequency microstimulation in lesioned animals which, before the measurement, received sodium chloride injection. A similar response is observed in sham-treated animals which received injection of 5 mg/ml quinpirole prior to the experiment. Little data were obtained for 0.1 and 0.4 mA high-frequency microstimulation in sham-treated animals which received injection of quinpirole.

To verify the results obtained from the root mean square per second, the mean spectral density per second was calculated to obtain a second parameter based on the wavetrain signal data. The normalized mean spectral density per second, allows to make the same statements for implanted Linear Array Probes and Flexible Array Probes as the root mean square per second.
Figure 3.22: High frequency microstimulation and multi-site recording was carried out with implanted Linear Array Probes. The normalized mean spectral density per second was calculated from the waveform signal and is displayed for a period of 60 s before high-frequency microstimulation was applied (before HFS, -60 to -2 s) and for a period of 60 s after high-frequency microstimulation was applied (after HFS, 2 to 60 s). High frequency microstimulation was applied for 60 s and is indicated by a dotted line in each graph. The delayed network response at > 2 s after high-frequency microstimulation is evaluated. Events, occurring between -2 and 2 s, are greyed out and are not included in the analysis.

Figures 3.22 and 3.23 show the signature curves for the mean spectral density per second, before and after high-frequency microstimulation was applied in animals with implanted Linear- and Flexible Array Probes. For both electrode types, the mean spectral density per second peaks occur largely simultaneous with the root mean square per second peaks described above. The mean spectral density per second peak amplitude is more pronounced compared to the root mean square per second peak amplitude. Accordingly, the mean spectral density per second seems to be more sensitive to artefacts and noise since the signature curves are not as clean as for the root mean square per second.

3.6.2 Averaged Network Response

Statistically relevant data about the effect of high-frequency microstimulation on the root mean square per second and the mean spectral density per second were obtained from all channels that show a response to high-frequency microstimulation at the respective current amplitude (see figures 3.20 to 3.23).

The effect of high-frequency microstimulation on the root mean square per second and the mean spectral density per second with implanted Linear Array Probes is summarized in figure 3.24.

Mean value and standard error of the normalized root mean square per second and mean spectral density per second are plotted against time in seconds for sham-treated animals which received injection of 0.9 % sodium chloride before and after 0.4 mA high-frequency microstimulation, for lesioned
animals which received injection of 0.9 % sodium chloride before and after 0.2 mA high-frequency microstimulation and for sham-treated animals which received quinpirole injection before and after 0.2 mA high-frequency microstimulation.

The area under the curve (AUC) for both wavetrain data based parameters (see figures 3.24c and 3.24d) was calculated from the sum of the respective wavetrain based parameter per second from 15 to 30 s for sham-treated animals which received injection of sodium chloride injection, and from 4 to 19 s for lesioned animals which received sodium chloride injection and sham-treated animals receiving injection of quinpirole. The area under the curve after high-frequency microstimulation in each group is compared to the respective area under the curve from -17 to -2 s before high-frequency microstimulation was applied.

In sham-treated animals which received injection of sodium chloride, wavetrain based parameter clearly increase 15 s for about 15 s after 0.4 mA stimulation. A second and third peak with shorter duration and smaller amplitude occur about 35 s and 55 s after high-frequency microstimulation ceased. The maxima of this oscillatory response lie at 22, 37 and 53 s resulting in a mean interval of 15.5 s between peaks. Thus, an oscillatory frequency of 0.065 Hz is calculated. The area under the curve of the first peak after high-frequency microstimulation is significantly larger compared to the area under the curve before high-frequency microstimulation with p < 0.0001 for the root mean square per second and p = 0.007 for the mean spectral density (unpaired t-test, two-tailed).
In lesioned animals, pretreated with sodium chloride, the response to stimulation with 0.2 mA occurs faster, already after about 4 s after high-frequency microstimulation ceased. Two overlapping peaks are visible. The first peak occurs from 4 to 15 s and the second from 15 to 20 s with smaller amplitude. The peak maxima lie at 6 s and 19 s with a 15 s interval between peaks. The increase in the area under the curve of the root mean square per second after high-frequency microstimulation is significant compared to the area under the curve before high-frequency microstimulation with \(p = 0.0174 \) (unpaired t-test, two-tailed).

In sham-treated animals receiving quinpirole injection, the response to 0.2 mA stimulation occurs, similar to lesioned animals, directly after high-frequency microstimulation from 3 to 20 s. The response amplitude is smaller compared to the lesioned group. Although multiple peaks cannot be distinguished, the relatively long duration of the response indicates that the response to high-frequency microstimulation might, too, originate from oscillatory activity as it is observed in animals that do not receive quinpirole treatment. Despite the small response amplitude, the area under the curve increases significantly after 0.2 mA high-frequency microstimulation compared to the area under the curve before high-frequency microstimulation with \(p = 0.0079 \) for the root mean square per second and \(p = 0.0056 \) for the mean spectral density per second (unpaired t-test, two-tailed).

The effect of high-frequency microstimulation on the root mean square per second and the mean spectral density per second with implanted Linear Array Probes is summarized in figure 3.25. Data are presented as explained for figure 3.24.

Mean value and standard error of the normalized root mean square per second and mean spectral density per second are plotted against time in seconds for sham-treated animals which received sodium chloride injection before and after 0.2 mA high-frequency microstimulation, for lesioned animals which received sodium chloride injection before and after 0.2 mA high-frequency microstimulation and for sham-treated animals which received quinpirole injection before and after 0.2 mA high-frequency microstimulation.

The area under the curve (AUC) for both wavetrain data based parameters (see figures 3.24c and 3.24d) was calculated from the sum of the respective wavetrain based parameter per second from 4 to 19 s in all groups and compared to the area under the curve from -17 to -2 s before high-frequency microstimulation was applied.

In sham-treated animals which received sodium chloride injection, wavetrain based parameter show a triphasic increase as seen with implanted Linear Array Probes after 0.2 mA stimulation occurring not delayed but directly after high-frequency microstimulation ceased. The maxima of this oscillatory response lie at 9, 34 and 53 s resulting in a mean interval of 22.0 s between peaks with an oscillatory frequency of 0.045 Hz. The area under the curve of the first peak after high-frequency microstimulation is significantly larger compared to the area under the curve before high-frequency microstimulation with \(p = 0.0047 \) (unpaired t-test, two-tailed).
Figure 3.24: Neuronal response to high-frequency microstimulation quantified by means of wavetrain based parameters, in animals with implanted Linear Array Probes. Mean values and standard error of the relevant signature curves are shown. The area under the curve of the largest peak after high-frequency microstimulation (after HFS) is compared to the area under the curve before high-frequency microstimulation (before HFS) of the respective group.

In lesioned animals, pretreated with sodium chloride, the response occurs, as well, directly after high-frequency microstimulation with 0.2 mA. The biphasic increase is visible in the mean spectral density per second. The peak maxima lie at 6 s and 16 s with 10 s interval between peaks. The increase in the area under the curve of the root mean square per second and mean spectral density after high-frequency microstimulation is significant compared to the area under the curve before high-frequency microstimulation with p < 0.0001 (unpaired t-test, two-tailed).

In sham-treated animals, which received quinpirole injection the response to 0.2 mA stimulation is similar to the response described for implanted Linear Array Probes. Despite lower amplitudes, the area under the curve for the root mean square per second and the mean spectral density per second are significantly different with p = 0.0002 and p = 0.0103 since the standard deviation is considerably smaller for animals receiving quinpirole injection (unpaired t-test, two-tailed).
3.7 Single Unit Response to High-frequency Microstimulation

The effect of high-frequency microstimulation on single unit spike activity in the vicinity of the stimulation site was investigated. Spike events were detected from the recorded wavetrain signal for a period of 60 s before and 60 s after high-frequency microstimulation. Similar spike shapes, occurring in the wavetrain signal of each channel were grouped into clusters. The parameters Δn, Δisi, and $\Delta entropy$ were calculated from the difference in number and frequency of spike events before and after high-frequency microstimulation. To group spike shapes occurring in a set of experiments, the mean spike shape of the individual spikes in each group was clustered again. Groups of spike shapes with individual parameters Δn, Δisi, and $\Delta entropy$ were obtained, and, in each group of spike shapes (clusters), the relative sum of the parameters $\Sigma (\Delta n)$, $\Sigma (\Delta isi)$, $\Sigma (\Delta entropy)$ was calculated.

If $\Sigma (\Delta n)$, $\Sigma (\Delta isi)$ or $\Sigma (\Delta entropy)$ in a certain cluster was greater than zero, the individual values Δn, Δisi, and $\Delta entropy$ of spikes in this cluster were, in tendency, larger after high-frequency microstimulation.
Spike activity in sham-treated animals with implanted Linear Array Probes was analysed after 0.0, 0.1, 0.2, 0.3 and 0.4 mA high-frequency microstimulation (rows 1 - 5). For each stimulation current, spike shapes were grouped. Each colour represents a group of spike shapes. The parameters $\Sigma(\Delta n)$, $\Sigma(\Delta isi)$ and $\Sigma(\Delta entropy)$ were calculated from the spike activity in each group before and after high-frequency microstimulation was applied (column 2 - 4). The threshold for random events is derived from the range of parameter values at 0.0 mA stimulation and is marked as a grey area in all subfigures. Increased spike activity is likely when parameters exceed the threshold in negative direction and decreased spike activity is likely when parameters exceed the threshold in negative direction.

If $\Sigma(\Delta n)$, $\Sigma(\Delta isi)$ or $\Sigma(\Delta entropy)$ in a certain cluster was less than zero, the individual values Δn, Δisi, and $\Delta entropy$ of spikes in this cluster were, in tendency, smaller after high-frequency microstimulation. For $\Sigma(\Delta n)$ that means that, if $\Sigma(\Delta n) > 0$, the overall number of spike events was larger, and spike activity increased after high-frequency microstimulation. For $\Sigma(\Delta isi)$ that means that, if $\Sigma(\Delta isi) > 0$, the intervals between spike events were larger and spike activity decreased after high-frequency microstimulation. For $\Sigma(\Delta entropy)$ that means that, if $\Sigma(\Delta entropy) > 0$, the entropy of the spike events was larger after high-frequency microstimulation and spikes occurred more regular with predetermined timing.

Random increase and decrease, however, occurs for all parameters. Therefore, the threshold for random events was determined from the range (min to max) of $\Sigma(\Delta n)$, $\Sigma(\Delta isi)$ and $\Sigma(\Delta entropy)$ values when 0.0 mA current stimulation was applied.
When the values of all three parameters describing a certain cluster of spikes exceed the threshold of random events, it is likely that high-frequency microstimulation with the respective current induced altered spike activity in this distinct cluster. If \(\sum(\Delta n) \) and \(\sum(\Delta entropy) \) exceed the threshold of random events for a certain cluster in positive direction, and \(\sum(\Delta isi) \) exceeds the threshold of random events for the same cluster in negative direction, increased spike activity due to high-frequency microstimulation is reported for this cluster. Decreased spike activity due to high-frequency microstimulation is reported for this cluster, when \(\sum(\Delta n) \) and \(\sum(\Delta entropy) \) and \(\sum(\Delta isi) \) behave the opposite way.

Figure 3.27: Spike activity in lesioned animals with implanted Linear Array Probes was analysed after 0.0, 0.1, 0.2, 0.3 and 0.4 mA high-frequency microstimulation (rows 1-5). For each stimulation current spike shapes were grouped and each colour represents a certain group of spike shapes. The parameters \(\sum(\Delta n) \), \(\sum(\Delta isi) \) and \(\sum(\Delta entropy) \) were calculated from the spike activity in each group before and after high-frequency microstimulation was applied (column 2-4). The threshold for random events is derived from the range of parameter values at 0.0 mA stimulation and is marked as a grey area in all subfigures. Increased spike activity is likely when parameters exceed the threshold in positive direction and decreased spike activity is likely when parameters exceed the threshold in negative direction.
3.7.1 Single Unit Activity at Implanted Linear Array Probes

The spike shapes and the parameters $\sum(\Delta n)$, $\sum(\Delta isi)$ and $\sum(\Delta entropy)$, derived from the spike activity before and after high-frequency microstimulation with 0.0, 0.1, 0.2, 0.3 and 0.4 mA measured with implanted Linear Array Probes are shown in figure 3.26 for sham-treated animals and in figure 3.27 for lesioned animals.

The detected spike events for all current amplitudes recorded with Linear Array Probes show the shape of clear extracellular single unit activity with 1-2 ms duration (see figure 3.26 and figure 3.27, column 1). Spike shapes differ by the width and amplitude of the initial hyperpolarisation peak, in the range of 0.25-1 ms and -100 to -20 μV. Initial hyperpolarisation, however, seems to be no obligatory feature. The positive peak ranges between 50 and 100 μV in amplitude and is usually wider than the initial hyperpolarisation peak. In some cases, hyperpolarisation occurs after the positive peak. Hyperpolarisation peaks that follow after the positive peak are with durations up to 0.5 ms narrower than initial hyperpolarization peaks and usually also smaller in amplitude.

The shape of the detected spike event is not influenced by high-frequency microstimulation. The described general features of spike shapes, recorded with Linear Array Probes, do not differ in lesioned and sham-treated animals.

The parameters $\sum(\Delta n)$, $\sum(\Delta isi)$ and $\sum(\Delta entropy)$ derived from spike event number and timing, are shown in figure 3.26 and figure 3.27 in columns 1 to 3. The threshold of random events, determined from the range of all parameter values at 0.0 mA (row 1), is marked as a grey area in all subfigures.

In figures 3.26 and figure 3.27 it is visible, that, in certain clusters, the value of $\sum(\Delta n)$, $\sum(\Delta isi)$ and $\sum(\Delta entropy)$ exceeds the threshold of random events in positive or negative direction when high-frequency microstimulation is applied.

When all three parameters, describing a certain cluster exceed the threshold and behave in the above described way the cluster is marked with a large dot in the respective scatter plot in figures 3.28 and 3.29. If increased spike activity due to high-frequency microstimulation is detected for a certain cluster, the respective dot appears in the right column of the scatter plot. If decreased spike activity due to high-frequency microstimulation is recorded for a certain cluster, the respective dot appears in the left column of the scatter plot. When altered spike activity is detected for a certain cluster, the mean value of all individual spike shapes in this cluster is shown in row 4.

Altered spike activity in sham-treated animals with implanted Linear Array Probes occurs after 0.1 mA current stimulation (see figure 3.26 row 1) in cluster 2, 4 and 5, after 0.2 mA current stimulation (see figure 3.26 row 2) in cluster 3, 4 and 5, after 0.3 mA current stimulation (see figure 3.26 row 3) in cluster 9 and after 0.4 mA current stimulation (see figure 3.26 row 4) in cluster 2, 4, 5 and 7.
Figure 3.28: Increased and decreased spike activity in sham-treated animals with implanted Linear Array Probes. Stimulation currents of 0.0, 0.1, 0.2, 0.3 and 0.4 mA high-frequency microstimulation are directly compared with each other in columns 1 to 5. The right column in each scatter plot shows clusters in which parameter values are higher, after high-frequency microstimulation, indication increased spike activity. The left column in each scatter plot shows clusters in which parameter values are lower after high-frequency microstimulation. The scatter plots for the $\Sigma(\Delta n)$, $\Sigma(\Delta isi)$ and $\Sigma(\Delta entropy)$ are arranged in rows 1 to 3. The mean spike shapes for the clusters in which decreased or increased spike activity was detected are shown in row 4.

Altered spike activity in lesioned animals with implanted Linear Array Probes occurs after 0.1 mA current stimulation (see figure 3.27 row 1) in many clusters (0, 2, 3, 5, 6). After 0.2 mA current stimulation, imbalances, exceeding the random level only slightly, occur in cluster 1 and 7 (see figure 3.27 row 2). After 0.3 mA current stimulation (see figure 3.27 row 3) only cluster 0 shows an above threshold increase, and after 0.4 mA current stimulation (see figure 3.26 row 4) no effect is observed.

Spike activity increase and decrease in sham-treated and lesioned animals with implanted Linear Array Probes in response to high-frequency microstimulation with increasing amplitude is directly compared in figure 3.30.

In sham-treated animals, 0.2 mA stimulation seems to be most effective to suppress spiking in certain clusters. In lesioned animals, the most effective suppression is observed already at 0.1 mA. Increasing spike activity in certain clusters is observed at 0.3 and 0.4 mA stimulation, whereas 0.4 mA stimulation seems to be most effective in sham-treated animals. In lesioned animals, only a few clusters respond with increased spiking activity after 0.2
Figure 3.29: Increased and decreased spike activity in lesioned animals with implanted Linear Array Probes. Stimulation currents of 0.0, 0.1, 0.2, 0.3 and 0.4 mA high-frequency microstimulation are directly compared with each other in columns 1 to 5. The right column in each scatter plot shows clusters in which parameter values are higher, after high-frequency microstimulation, indication increased spike activity. The left column in each scatter plot shows clusters in which parameter values are lower after high-frequency microstimulation. The scatter plots for the $\sum(\Delta n)$, $\sum(\Delta isi)$ and $\sum(\Delta entropy)$ are arranged in rows 1 to 3. The mean spike shapes for the clusters in which decreased or increased spike activity was detected are shown in row 4.

and 0.3 mA. Suppression of spiking activity in lesioned animals is observed at lower currents. Only a few clusters show increased spiking activity after high current, high-frequency microstimulation in lesioned animals. High current, high-frequency microstimulation in sham-treated animals leads to a clear increase of spiking activity in certain clusters.

3.7.2 Single Unit Activity at Implanted Flexible Array Probes

The spike shapes and the parameters $\sum(\Delta n)$, $\sum(\Delta isi)$ and $\sum(\Delta entropy)$, derived from the spike activity before and after high-frequency microstimulation with 0.0, 0.1 and 0.2 mA, measured with implanted Flexible Array Probes are shown in figure 3.31 for sham-treated animals and in figure 3.32 for lesioned animals.

The detected spike events for all current amplitudes recorded with Flexible Array Probes show the shape of extracellular single unit activity. The duration of events measured is 0.5-2.5 ms (see figure 3.26 and figure 3.27,
Figure 3.30: Comparison between the stimulation current dependency of spike activity increase and decrease in sham-treated and lesioned animals with implanted Linear Array Probes. The $\Sigma(\Delta n)$ parameter is shown for sham-treated animals (row 1) and lesioned animals (row 2) at 0.1 - 0.4 mA high-frequency microstimulation (columns 1 - 4).

Figure 3.31: Spiking behaviour in sham-treated animals with implanted Flexible Array Probes was analysed after 0.0, 0.1, 0.2 mA high-frequency microstimulation. The spike shapes of the individual spike events in each group are shown in the first column. The $\Sigma(\Delta n)$, $\Sigma(\Delta isi)$ and $\Sigma(\Delta entropy)$ parameters, derived from the number of spikes, the interval between spikes and the spike entropy, are shown in column 2, 3, 4. The range of random imbalances occurring at 0.0 mA (row 1) is used as a threshold to detect imbalances in spiking behaviour occurring due to high-frequency microstimulation with 0.1 and 0.2 mA (rows 2, 3).

Spike shapes are mostly distinguished by the amplitude of the positive peak, which is in the range of 50-100 µV. A long initial hyperpolarization peak with up to 1 ms duration and -70 µV amplitude. Spike events, missing initial hyperpolarization are also recorded. The overall duration of these events is usually shorter. A second hyperpolarisation peak occurs after the positive peak in most cases. The amplitude and duration of the sec-
ond hyperpolarization is in the same range of the initial hyperpolarization period. Spike events recorded with *Flexible Array Probes* seem to be more symmetric, than spike events, recorded with *Linear Array Probes*.

![Graphical representation of the data](image)

Figure 3.32: Spiking behaviour in lesioned animals with implanted *Flexible Array Probes* was analysed after 0.0, 0.1, 0.2 mA *high-frequency microstimulation*. The spike shapes of the individual spike events in each group are shown in the first column. The $\sum(\Delta n)$, $\sum(\Delta isi)$ and $\sum(\Delta entropy)$ parameters, derived from the number of spikes, the interval between spikes and the spike entropy, are shown in column 2, 3, 4. The range of random imbalances occurring at 0.0 mA (row 1) is used as a threshold to detect imbalances in spiking behaviour occurring due to *high-frequency microstimulation* with 0.1 and 0.2 mA (rows 2, 3).

The shape of the detected spike event is not influenced by *high-frequency microstimulation*. The described general features of spike shapes, recorded with Linear Array Probes do not differ in lesioned and sham-treated animals.

When all three parameters, describing a certain cluster, exceed the threshold and behave in the above described way, the cluster is marked with a large dot in the respective scatter plot in figures 3.33a and 3.33b.

If increased spike activity due to *high-frequency microstimulation* is detected for a certain cluster, the respective dot appears in the right column of the scatter plot. If decreased spike activity due to *high-frequency microstimulation* is recorded for a certain cluster, the respective dot appears in the left column of the scatter plot. When altered spike activity is detected for a certain cluster, the mean value of all individual spike shapes in this cluster is shown in row 4.

In sham-treated animals with implanted *Flexible Array Probes*, decreased spike activity occurs after 0.1 mA only in cluster 7. Increased spike activity in cluster 0, 3, 5 and 6 is observed after 0.2 mA *high-frequency microstimulation* in sham-treated animals with implanted *Flexible Array Probes*.

In lesioned animals with implanted *Flexible Array Probes* spike activity increases stimulation in cluster 3 and 4 after 0.1 mA. After 0.2 mA, min-
imal increased spike activity occurs in cluster 6 in lesioned animals with implanted Flexible Array Probes.

Spike activity is most effectively induced with 0.1 mA current stimulation in lesioned animals, and with 0.2 mA current stimulation in sham-treated animals. Also, it seems more likely to see increased spiking activity in certain clusters after high-frequency microstimulation.

![Scatter plots showing increased and decreased spike activity in sham-treated and lesioned animals](image)

Figure 3.33: Increased and decreased spike activity in sham-treated and lesioned animals with implanted Flexible Array Probes. Stimulation currents of 0.0, 0.1 and 0.2 mA high-frequency microstimulation are directly compared with each other in columns 1 to 3. The right column in each scatter plot shows clusters in which parameter values are higher, after high-frequency microstimulation, indication increased spike activity. The left column in each scatter plot shows clusters in which parameter values are lower after high-frequency microstimulation. The scatter plots for the $\sum(\Delta n)$, $\sum(\Delta isi)$ and $\sum(\Delta entropy)$ are arranged in rows 1 to 3. The mean spike shapes for the clusters in which decreased or increased spike activity was detected are shown in row 4.
Deep brain stimulation in the subthalamic nucleus is a well established clinical treatment. Yet, in the last 15 years, the technique did not advance considerably. Today, more and more deep brain stimulation implants are given to younger patients and treatment of parkinsonian motor symptoms by subthalamic deep brain stimulation remains but one of a widespread range of applications in various cerebral target regions. The dramatic increase in number of implanted deep brain stimulation devices and the increased demand in long-term stability which comes with longer total implantation times, creates the need for improved techniques and devices (Coffey 2009).

Currently, device development is directed towards closed-loop systems enabling feedback-controlled deep brain stimulation in a clinically relevant setting. The battle for improved deep brain stimulation devices is fought on different levels. Miniaturized multi-channel bioamplifiers with signal processing modalities and low-power consumption are developed together with high-efficiency stimulation devices and high-capacity batteries for power supply. Major research efforts are focused towards the development of new neuronal probes as cerebral interfaces for neuronal recording and stimulation (Stieglitz 2002, HajjHassan et al. 2008).

Modern neuronal probes provide multiple channels for high-resolution neuronal recordings and are required to integrate modalities for electrical stimulation to facilitate feedback-controlled deep brain stimulation. Ideally, recording and stimulation sites are distributed over a wide area. This allows to acquire neuronal feedback from many different neuronal elements. Further, presence of multiple recording and stimulation sites allows to compensate implantation inaccuracies facilitating single-step probe implantation followed by neuronavigation. Ideally, probes would support automated neuronavigation procedures to allow quick and precise probe insertion, keeping surgery times at a minimum. Yet, to avoid cerebral bleeding and tissue damage by insertion, lead sizes must be kept as small as possible (Coffey 2009, Menne 2005).

The need for small lead sizes, and a multitude of recording and stimulation sites poses a problem which requires to rethink the current mode how electrical stimulation is applied to the tissue. Currently, large size macroelectrodes are used. Yet, it is shown, that the effect of the electrical stimulation in the tissue mainly depends on the charge which is injected per pulse. If high charge densities in small electrodes can be reached without causing electrolytic damage and material deposition in the tissue, electrical stimulation via small sized microelectrodes would be as effective (HajjHassan et al. 2008).

To allow for feedback controlled high-frequency microstimulation, probe performance of chronically implanted probes needs to be ensured over a
long time range. Foreign body response leads to exclusion of the probe from the neuronal tissue. The use of flexible probes produced from biocompatible materials leads to minimized tethering forces. Thereby, micromovements of the probe are avoided (Biran et al. 2005).

Research on the device perspective goes along with research about the performance of the newly developed devices in the tissue. New studies indicate that the effect of electrical stimulation in the tissue might be a specific effect on GABAergic neurons, but there is still no widely accepted molecular mechanism that explains the actions of deep brain stimulation (Feuerstein et al. 2011). Thus, finding parameters for feedback controlled stimulation is difficult and requires empirical observation for the respective probe type and target area.

In the current work, we used a new type of a metal microelectrode with metal microwires inserted into a metal tube cannula and microwire contact sites arranged as a lateral array along the probe shaft. A stimulation modality is provided by a larger microwire contact site at the tip of the electrode.

Metal microelectrodes represent the most widely used neural probes. They are easy to produce and reliable for long term chronic implantations. Yet, they come with the problem that increasing the number of recording sites requires increasing the number of wires which results in a linear increase in overall probe size and causes undesirable neural tissue damage. The Linear Array Probes that were used in the current work take advantage of the metal wire microelectrodes used earlier (Hammad et al. 2010, Porada et al. 2000, Tsai & Yen 2003) and overcome the limitations of standard metal wire microelectrodes by borrowing from the linear array design of neural probes developed using MEMS processing (Wise et al. 2004). The layout of the silicon on insulator based ACREO probes produced using a MEMS based process are the design model for the probes used in the current study (Hofmann et al. 2006, Kindlundh et al. 2004, Norlin et al. 2002). By combination of the two leading techniques for production of neural probes, bimodal neural interfaces for high-resolution neuronal recording with stable and ultra-thin shaft design were produced.

The design of the Flexible Array Probe takes the advantages of the Linear Array Probes even one step further. The polymer polyimide is used as a carrier for metal contact sites to form a biocompatible interface between the probe and the brain tissue (Richardson et al. 1993). Due to the flexible design, tethering forces to the probe are reduced by 65–94 % (Subbaroyan et al. 2005). Thus, the probe is floating in the brain tissue and micromovements of the electrode are reduced drastically. Although flexible probes have been used as surface electrodes on the cortex, intracerebral implantation of these probes has been an issue (Kisban et al. 2007). Here, we report long term chronic recordings and stimulation with Flexible Array Probes intracerebrally implanted into the subthalamic nucleus using a precise stereotaxic technique. Since this has, to our knowledge, never been done before, we use Linear Array Probes to provide a standard for comparison of Flexible Array
Probe performance to the best known technique for two-directional neuronal interfacing.

To demonstrate clinical relevance of the new designs of neuronal interfaces, we propose an automizeable technique for neuronavigation along the full depth of a stereotaxic trajectory. Thereby, we show that implantation of the new probes could be achieved in a one step process which, together with fast precise and objective information about the current location in the brain, would save valuable time in a stereotaxic surgery (Moll et al. 2005).

By performing acute recording in all regions along the trajectory to the subthalamic nucleus we show that both probe types are capable of recording high quality single- and multi-unit potentials, especially in the basal ganglia and the thalamus. At the same time, the impedance of Linear- and Flexible Array Probes is tailored to support recording of neuronal background activity. This makes them an ideal tool for neuronavigation relying on the various levels of neuronal activity (Johansson et al. 2009, Starr et al. 2006).

Beyond recording of neuronal activity, we used the stimulation modality on both probe types to exert functional high-frequency microstimulation in the subthalamic nucleus in the rat. By repeating sequences of high-frequency microstimulation with different current amplitudes over a time period of four weeks, we established the suitability of Linear- and Flexible Array Probes for long term usage. For stimulation, we used charge per phase values which were reported as functionally effective. But since the geometric surface area of Linear- and Flexible Array Probes is so small, keeping threshold values for functional stimulation was at the cost of high current densities. Thus, we drove the electrodes towards the limits of their current delivery capacity and risk occurrence of faradic reactions on the electrode surface (Kuncel & Grill 2004). Yet, recording and stimulation performance of Linear- or Flexible Array Probes was not notably impaired after repeated high-frequency microstimulation.

In addition to acute recordings of neuronal activity and concurrent high-frequency microstimulation in the subthalamic nucleus, we provide data about the long term performance of chronically implanted Linear- and Flexible Array Probes. Even after four weeks of implantation it was still possible to record neuronal activity in the freely behaving animal, to detect the neuronal response to high-frequency microstimulation and to induce rotational behaviour in response to high-frequency microstimulation. By monitoring the voltage response to current stimulation on Linear- and Flexible Array Probes, we determined how the foreign-body response of the tissue influences the effect of stimulation. We provide neurophysiological evidence that, even when Flexible Array Probes are implanted deep into the brain tissue, biocompatibility is improved compared to the rigid Linear Array Probes tethered to the skull as it has been shown using post-mortem histology (Biran et al. 2007, Richter et al. 2012).

On top of the device perspective, we analysed the effect of subthalamic high-frequency microstimulation on the behavioural level by observing rotational response to high-frequency microstimulation (Bergmann et al. 2004).
Additionally, we provide possible feedback parameters for the closed-loop approach of feedback-controlled deep brain stimulation which are derived from neuronal response to high-frequency microstimulation on a semi-transient time scale.

Also, our results indicate a specific effect of high-frequency electrical stimulation on spike activity since certain neuronal elements seem to be activated or inhibited as a result of electrical stimulation with different current amplitudes. These results corroborate findings from current neurochemical research (Feuerstein et al. 2011).

Taking together the results presented in the current work, we present bimodal neural interfaces for chronic implantation into neuronal tissue allowing high resolution neuronal recording and functional electrical stimulation over a long time range. Further, we present candidate parameters for feedback controlled deep brain stimulation and evidence supporting modern theories on the fundamental mechanism of action of electrical stimulation in neuronal tissue.

Linear- and Flexible Array Probe recording sites are tailored to record high-quality neuronal discharge activity with low thermal noise content

Before the above described probes were implanted, the frequency response was determined on all stimulation- and recording sites. Thereby, quality control of the recording- and stimulation sites was performed and information about the frequency range of the recorded signals was gathered. Impedance spectroscopy measures the phase shift of a signal and its attenuation over a certain frequency range. The frequency response of an electrode depends on the electrode-electrolyte interface on its polarized surface in ionic solution. According to the surrogate equivalent circuit, the signal is attenuated and shifted in phase. Yet, how much attenuation occurs is dependent on the frequency of the signal.

Neuronal activity produces different kinds of electrical signals referring to different neuronal processes and containing different kinds of information. The different types of neuronal activity can be distinguished by their frequency content, as for example, low frequency local field potentials and high-frequency neuronal discharge activity which can be detected close to neuronal elements. High frequency neuronal discharge activity, measured by extracellular electrodes, originates from the summation of ionic currents across the neuronal membrane (Logothetis 2003). The volume, over which the summation occurs, determines if single- or multi-unit potentials are measured. Thus, the quality of the measurement of neuronal activity directly depends on the design of the electrode and its interface with the surrounding electrolyte.

By choosing the electrode design, it is possible to tune the electrode towards the neuronal activity with the most information content for the respective application. For the current study, electrodes were desirable that provide high-quality multi- and single-unit potentials and low noise levels to
facilitate long term in vivo measurement. In the current study, we focused on high-frequency neuronal activity as represented by single- and multi-unit spike activity. Yet, we expect that it is possible to extract local field potentials from the low-frequency range of the measured signal.

The biggest energy content in the frequency spectrum of single-unit potentials has been shown to reside in the frequency range between 300 Hz and 6 kHz with the maximum at approximately 1 kHz (Grünes & Roubik 2008). Electrodes, which are supposed to measure single-unit potentials, must be provided with small diameter recording sites which show a good frequency response in this frequency range. Electrodes with small dimensions, ideal for single-unit recordings display high impedances and increased thermal noise content in the recorded signal. Therefore, high impedance electrodes mostly are exclusive to large amplitude single-unit potentials in close vicinity to the recording site. To record neuronal spiking patterns from more than a single neuronal element, electrodes with low noise levels are required. Thus, size requirements can not be as strict as for single-unit recordings. When multi-unit potentials are recorded, larger diameters of recording sites are used.

To measure the full range of patterns resulting from high-frequency neuronal discharge activity, it is essential that electrodes possess well balanced impedance characteristics which allow them to record neuronal discharge activity over a wide area. This is of importance to characterize the response to subthalamic high-frequency microstimulation on the single cell level, since high-frequency microstimulation affects many cells in an area wider than the area from which signals can be recorded. According to the results in the current work, the effect of high-frequency stimulation can be inhibitory or excitatory towards different neuronal elements.

The Linear- and Flexible Array Probes were designed to measure extracellular single- and multi-unit potentials, resulting from the described high-frequency discharge processes at the neuronal membrane. The impedance spectra of Linear- and Flexible Array Probes show the frequency response of a high-pass filter, leading to stronger attenuation of low-frequency neuronal activity. By the linear slope of the phase shift in the frequency range between 0.3-6 kHz a constant phase delay between frequencies can be assumed so that signal distortion is supposedly minimal. Thus, Linear- as well as Flexible Array Probes are tailored to measure high-frequency neuronal discharge activity with low levels of thermal noise. Linear Array Probe recording sites have a characteristic 1 kHz impedance of 99.40±20.27 kΩ whereas Flexible Array Probe recording sites have a 1 kHz impedance of 306.19±51.72 kHz.

The 1 kHz impedance at the Flexible Array Probe recording sites is, with 300 kΩ, about three times larger, than the 1 kHz impedance on the Linear Array Probes. Thus, Flexible Array Probe recordings might be prone to contain higher ratios of thermal noise. Still, the impedance of the Flexible Array Probe recording sites is well below 1 MΩ which is reported as criterion to measure single-unit activity exclusively. Thus, larger noise levels and clearer single spike events at the recording sites of the Flexible Array Probes explain the differences between Linear- and Flexible Array Probes with respect to
neuronavigation. Here, Flexible Array Probes performed better in areas with high density of neurons and high spike activity, whereas the performance of Linear Array Probes was stable in all regions, since Linear Array Probes are capable of detecting neuronal background activity in a relatively large volume.

Around 1 kHz, the phase angle is linear, implying a constant phase delay for that frequency range. This safely allows to assume little distortion for signals originating from high-frequency neural discharge. Yet, signal distortion was not investigated in the work at hand, and detailed descriptions cannot be made.

The 1 kHz impedance values, measured for Linear- and Flexible Array Probes, comply with impedances of equally sized probes, found in the literature. At 1 kHz, a impedance of 355.75 kΩ was measured at 9x10⁻⁶ cm² gold/chromium recording sites of flexible, polyimide based microelectrodes (Rousche et al. 2001). Silicon based microelectrodes with exposed tips of 1.6x10⁻⁵ cm² were reported having 1 kHz impedances of 250±91 kΩ and were used to record neuronal spike activity in the motor cortex with post-hoc clustering of single-unit activity (Suner et al. 2005). Electrodes with a 1 kHz impedance of 1 MΩ are reported to record clean single-unit activity (Seifried et al. 2011, Miocinovic et al. 2007). Following from their frequency response, Linear- and Flexible Array Probes are tailored to provide high quality recordings of mixed single- and multi-unit neuronal discharge activity. From the recordings, single-unit potentials might be extracted by post-hoc spike detection and clustering.

A surrogate equivalent circuit can be used to deduct the building blocks of the electrode-electrolyte interface

Beyond measuring the impedance spectra, we attempted to use the data to model and describe the surrogate equivalent circuit which characterizes the electrode-electrolyte interface in ionic solution.

Impedance models describe the electrode-electrolyte interface. Thus, they allow to deduct the components that lead to an electrode’s specific frequency response. Mostly, equivalent circuits are used to model the impedance characteristics of an electrode (Geddes 1997, Franks et al. 2005, McAdams et al. 1995). The variety of existing impedance models is overwhelming. Due to absence of a generalized approach, models are adjusted and optimized depending on the application. The simplest approach and building block in many impedance models is the Randles cell. The Randles cell does not account for diffusion processes, different ionic species and, most importantly, for the capacitance of the tissue surrounding the electrode (Onaral & Schwan 1982, Butson & McIntyre 2005). Therefore, the impedance model described in this work, characterizes the electrode in an ionic electrolyte and needs to be extended for implanted electrodes by follow-up work.

Still, the Randles cell is a good starting point to develop an impedance model for Linear- and Flexible Array Probes. At low signal amplitudes of 10 mV, which were used for impedance measurements, the Randles cell mo-
Del fits the measured impedance data well. Thus, the model allows some assumptions about the electrode-electrolyte interface on Linear- and Flexible Array Probes at low current amplitudes.

From fitting the impedance spectra measured at Linear- and Flexible Array Probe recording- and stimulation sites with the Randles cell equivalent circuit, we learn about the properties of the electrode-electrolyte interface and the characteristics of the charge transfer between electrode and electrolyte. For frequencies larger than the determined cut-off frequency, which is > 9 kΩ for the different types of contact sites, charge transfer becomes ohmic whereby the impedance turns closer towards the spreading resistance which represents the serial resistance R_s of electrode and electrolyte. Therefore, the spreading resistance is similar for the different types of contact sites and independent from the geometric surface area. Since the determined cut-off frequencies are far beyond the physiological range, charge transfer processes at the electrode-electrolyte interface are, by the definition of the surrogate circuit model, opposed by a capacitive resistance which depends on the frequency of the transferred signal.

The frequency dependent resistance increases towards lower frequencies. At the low-frequency asymptote of the high-pass filter, the charge transfer resistance R_{ct} is reached which, in the surrogate equivalent circuit, is the resistance in the parallel RC component. Since the parallel RC component of the Randles cell describes the ordered double layer of ions at the polarized electrode surface, the charge transfer resistance varies between the different contact sites which were investigated. The charge transfer resistance depends on the geometric surface area of the contact site. It is larger at smaller contact sites. As shown in the current work, a logarithmic relationship exists between the geometric surface area of the Linear- and Flexible Array Probe recording- and stimulation sites and their impedance at 1 kHz, which is close to the low-frequency asymptote.

Since the charge transfer resistance is relevant for low frequencies in the physiological range and, most importantly, for frequencies around 100 Hz with which high-frequency microstimulation in neuronal tissue is usually applied, it plays a major role in equivalent circuit models including the tissue capacitance as a serial RC element in addition to the Randles cell. Using such models, the characteristics of the voltage response at the electrode-tissue interface during electrical stimulation can be explored (Wei & Grill 2009).

Using the Nyquist plot to represent the characteristics of the complex impedance of the electrode-electrolyte interface, the charge transfer resistance and the spreading resistance can be determined from the intersection with the real axis, since both are ohmic resistances. The double layer capacitance C_{dl} is responsible for the phase shift of the signal and can be determined from the apex of the Nyquist plot. As it can be seen from the values of the double layer capacitance for the different types of electrodes measured in the current work, the values for C_{dl} are smaller for recording sites and larger for stimulation sites. This is expected, since capacitance and geometric surface area are directly proportional with $C = \epsilon_r\epsilon_0A/d$. But also, the capacitance...
differs between Linear- and Flexible Array Probes. This is probably due to the material properties of the capacitance with \(\epsilon_r \) being the relative static permittivity, defining material properties. Since the dielectric of the double layer capacitance is represented by ordered water dipoles at the interface between electrode and electrolyte, the properties of the dielectric of the capacitance are mainly determined by diffusion kinetics resulting in the relaxation of the ordered double layer. These diffusion kinetics might be influenced by the properties of the electrode surface. Surface roughness of the electrode may play a major role in the properties of the dielectric of the double layer capacitance (McAdams et al. 1995). Thus, we can conclude that, due to the different manufacturing processes, the surface roughness of the gold contact sites at Linear- and Flexible Array Probes is different, leading to different values for the double layer capacitance at the electrode-electrolyte interface. Yet, the effects of the double layer capacitance are not strong enough to be visible in the logarithmic relationship between geometric surface area and impedance, since both probe types can be fitted into the same line in the double logarithmic coordinate system.

Since only one apex can be determined from the Nyquist plot, which is the shape of a single semi-circle, one can conclude that the electrode-electrolyte interface is determined by a single capacitance. Thus, the processes at the electrode-electrolyte interface can be described by a first-order electrochemical reaction with a single time constant.

The electrode's voltage response depends on the current density at the stimulation site

The voltage response to current controlled stimulation at the stimulation sites of Linear- and Flexible Array Probes describes a waveform which is typical for RC circuits. This indicates that the charge transfer during high-frequency microstimulation might be based on the same principles as described above for the electrode-electrolyte interface. Parallel RC circuits have been used in many studies to model the charge transfer at a stimulation electrode in the complex electrolyte of the brain (Gileadi et al. 1976, Robinson 1968, Wei & Grill 2009). Yet, a series combination of resistance and capacitance seems to be necessary to include the properties of the tissue (Onaral & Schwan 1982, Ragheb & Geddes 1990, Ragheb et al. 1992, Schwan 1968). With a combination of serial RC and parallel RC, the complex impedance of the electrode-tissue interface would be dependent on frequency, as well as current density. The study of Onaral & Schwan showed, that the series resistance decreased and the series capacitance increased with increasing current density at a frequency of 100 Hz (Onaral & Schwan 1982). Wei et al. reported that high current densities at the stimulation site lead to lower impedance magnitudes at the electrode-tissue interface (Wei & Grill 2009).

The findings, that the impedance is dependent on the current density, and that the impedance at a certain frequency decreases, when the charge density increases are directly applicable to the results found for the voltage response on the stimulation sites of Linear- and Flexible Array Probes. The maximum
electrode potentials for the larger surface stimulation sites of *Linear Array Probes* are larger than the maximum electrode potentials for the stimulation sites of *Flexible Array Probes* with smaller geometric surface area. Intuitively, that seems to be paradox, since electrodes with higher *impedance* are expected to have larger resistivity than electrodes with low *impedance*. When the properties of the *serial RC circuit*, representing the tissue *resistance* and *capacitance*, are taken into account, the results become explicable by increased *current density* at small sized electrode surfaces.

When it is assumed that the stimulation electrode is surrounded by a layer of electrolyte with high conductivity, the *voltage response* at the stimulation site is dependent on the *charge transfer resistance*, which becomes the *faradic resistance* in the electrode-tissue interface model of Wei et al, and the current density at the electrode surface. Wei et al. reason that the monotonic decrease of *faradic resistance* with increasing frequency may reflect that, at high frequencies, the voltage polarity across the electrode changes so rapidly that the electrochemical reactants for the reactions to be reversed are more readily available adjacent to the electrode surface. The frequency dependence of the *double layer capacitance* at the electrode-electrolyte interface was suggested to be a result of the rearrangement of ordered dipoles, which act as a dielectric in the *double layer capacitance* (Bockris & Conway 1958, Geddes 1997, McAdams et al. 1995). Further, the authors explain that the decrease of *faradic resistance* with increasing *current density*, seen when electrode entered the nonlinear region, is due to the initiation of new reaction mechanisms at the electrode surface, capable of accommodating the increased current beyond the limits of the available reacting species. The increase of *double layer capacitance* with increasing *current density*, seen when electrode entered the nonlinear region, is possibly due to the increased fraction of the electrode surface covered by adsorbed chemical species with a preferential orientation at the interface acting to separate charge (Ragheb & Geddes 1990, Geddes 1997). Reversible *faradic reactions* on *thin-film gold* were investigated by et al. (Pettit et al. 2006). Formation of adsorbed hydroxide species on the *gold* surface as shown in equation 4.1 was reported. The adsorbed hydroxide species \(\text{OH}_{\text{ads}} \) may retain a partial negative charge depending on the electrolyte. The reversible *faradic reaction* in equation 4.1 occurred in 0.1 M NaF + 1 mM NaF solution at a cathodic charge density of 0.40 mC/cm\(^2\) and an anodic charge density of 0.35 mC/cm\(^2\). Accordingly, *faradic reactions* may also occur on the *stainless steel* shaft of the *Linear Array Probes*. The *faradic resistance* on *stainless steel* is lower compared to noble metals and electrochemistry might occur at even lower charge densities (Mayer et al. 1992).

\[
\text{Au} + \text{H}_2\text{O} \leftrightarrow \text{Au} - \text{OH}_{\text{ads}} + \text{H}^+ + e^- \quad (4.1)
\]

The results of Wei et al. demonstrate that the *faradic resistance* decreased and the *double layer capacity* increased which results in a decrease of the magnitude of the *impedance* at the electrode-tissue interface when the *current density* at the electrode increases.
Since the stimulation sites of the Linear- and Flexible Array Probe are made of gold, faradic reactions are expected to occur at charge densities of about 0.4 mC/cm² (Pettit et al. 2006). For high-frequency microstimulation current amplitudes of 0.1-0.4 mA were used and pulse duration was 60 μs. Thus, at stimulation sites of Flexible Array Probes, current densities of 0.33 mC/cm² are reached at 0.2 mA current amplitude and current densities are >0.4 mC/cm² at larger current steps. Since the geometric surface area of Linear Array Probes was larger, current densities do not exceed the 0.4 mC/cm² threshold and are 0.21 mC/cm² at the maximal stimulation current of 0.4 mA.

Still, as it is indicated by the observed values for the double layer capacitance at Linear- and Flexible Array Probes, the ratio between electrochemical surface area and geometric surface area might be larger at Flexible Array Probes, leading to increased charge delivery capacity. Yet, a value for the charge delivery capacity cannot be derived from the results in the current work. To characterize the ratio of faradic reactions at the stimulation site of Flexible Array Probe this value needs to be established in terms of follow-up work.

In conclusion, higher ratios of faradic reactions are likely to occur at the stimulation sites of Linear Array Probes as, in the current work, lower impedances for the voltage response at Flexible Array Probes are observed.

In current research, impedance models which integrate processes occurring at high potentials, are used to characterise the voltage response of the electrode. Mostly, models are based on the Randles Cell, but incorporate faradic charge transfer processes. Stimulation resistances of < 5 kΩ during high-frequency microstimulation with 5.98x10⁻² cm² Medtronic macroelectrodes were measured by Wei et al. (Wei & Grill 2009). Using a 8x10⁻⁶ cm² iridium oxide microelectrode, a charge transfer resistance of 73 kΩ was established after stimulation (Weiland & Anderson 2000). The impedance during stimulation was estimated to be 88.89 kΩ at a 3.6x10⁻⁶ cm² Michigan probe contact sites (Field & Ghovanloo 2006). The data are difficult to compare to the measurements which were made in the work at hand, but resistances < 10 kΩ during stimulation at small sized Michigan probe contact sites corroborate the conclusion that high current densities lead to a lower charge transfer resistance and thus lower impedances for the voltage response to current controlled high-frequency microstimulation in the brain.

At this point, it becomes very clear that the impedance model of the Randles cell must be expanded and optimized to understand the charge transfer processes which occur at the stimulation sites of the bimodal Linear- and Flexible Array Probes during high-frequency microstimulation. Although, the Randles cell model worked well for low signal amplitudes in ionic electrolyte, adaptations have to be made to account for tissue capacitance and resistance as well as for non-capacitive charge transfer during neuronal stimulation exceeding reported charge per phase values necessary to achieve an effect on neuronal activity.

Beyond the modelling perspective, increased charge densities and higher probability of faradic reactions at the stimulation sites of Flexible Array Pro-
explain the lower impedances we observed for the voltage response at Flexible Array Probes compared to Linear Array Probes with larger geometric surface areas.

The voltage response at Flexible Array Probe stimulation sites is less affected by long term implantation

When current controlled high-frequency microstimulation is applied at the stimulation sites of Linear- and Flexible Array Probes, curve shapes of the voltage response look like the RC waveforms which were described above. The Linear- and Flexible Array Probes were implanted for four weeks and changes in the voltage response can be determined between the acute stage in the first week after implantation and the chronic stage after four weeks of implantation. Although the time constants, determined from the exponential increase in potential remained stable over time, the maximum electrode potential determined from the peak maxima of the voltage response to current controlled high frequency microstimulation at Linear- and Flexible Array Probes was different between the first week and the last week of implantation. The effect was dependent on the current amplitude of high-frequency microstimulation.

At Linear Array Probe stimulation sites, the maximum electrode potential was lower after four weeks of implantation as compared to the maximum electrode potential after one week of implantation for stimulation amplitudes with >0.1 mA constant current. The effect was stronger with higher currents. At Flexible Array Probe stimulation sites, the effect was visible at higher stimulation amplitudes with currents >0.2 mA. The effect was stronger with higher currents, but still less pronounced than the effect observed at Linear Array Probe stimulation sites. This means, that the resistances for high-frequency microstimulation with higher currents were lower in the chronic stage than in the acute stage. Further, the observed effect was more pronounced and visible at lower currents at Linear Array Probes. Thus, allowing the conclusion that the long term performance of polyimide based Flexible Array Probes with respect to high-frequency microstimulation out-runs the performance of rigid, metal based neural probes.

The effect, that the characteristics of the charge transfer are altered depending on the duration of the implantation has been reported in many studies (Hemm et al. 2004). It can, again, be described by the serial RC properties of the electrode-tissue interface at low frequencies and high charge densities (Yousif et al. 2007, 2008). Using such impedance models, it has been shown that the electrode-tissue interface at the neural implant influences the induced electric field by shunting the current in the acute stage, and shielding the tissue from the stimulus at the chronic stage so that there is a need to top up the stimulating amplitude (Yousif et al. 2007, 2008).

Commonly, when material is implanted into the cerebral tissue, a so-called foreign body response is observed. In many studies, it is reported that the electrode is isolated from neuronal tissue by encapsulation tissue, which contains reactive astrocytes, meningeal fibroblasts and macrophages. The for-
eign body response result in so-called glial sheathing excluding the electrode from neuronal cells. Glial sheathing supposedly acts as an electrical insulator towards recording and stimulation electrodes. It hinders diffusion and, by the encapsulation, the distance between the electrode and adjacent neurons increases (Schultz & Willey 1976, Turner et al. 1999, Roitbak & Syková 1999, Biran et al. 2005). In a simplified approach which helps to explain the occurring changes at the electrode-tissue interface, two stages are defined. The so-called acute stage after probe insertion is characterized by cerebrospinal fluid filling a peri-electrode space between the electrode surface and the tissue. In the acute stage, the complex electrolyte of the cerebrospinal fluid is surrounding the newly implanted electrode. At the so-called chronic stage, encapsulation tissue forms at the electrode surface and excludes the electrode from the tissue (Yousif et al. 2007).

Investigation of the stimulation waveforms in the acute and chronic stage was performed by Yousif & Liu. The authors found different shapes of RC waveforms in the acute and chronic stage. Smaller maximum electrode potentials in the chronic stage as compared to the acute stage were reported, too (Yousif & Liu 2009). It was proposed that, to explain these results, it is crucial to consider the electrode-brain interface situated in a peri-electrode space filled with highly conductive electrolyte in addition to a layer of homogeneous neural tissue (Yousif et al. 2007, Xie et al. 2006, Butson & McIntyre 2005). It was shown that the composition of the peri-electrode space changes after electrode implantation from extracellular fluid of high conductivity and low permittivity to reactive giant cells of high impedance and permittivity. Thus, at acute stages after implantation, the tissue capacitance dominates with the low-pass filter behaviour of the serial RC circuit and, at chronic stages after implantation, the capacitance of the encapsulation itself takes over leading to waveform attenuation of the voltage response to current controlled high-frequency microstimulation.

Assuming a peri-electrode space which is, as proposed by Yousif et al., filled with electrolyte in the acute stage, the charge density dependency of the electrode-tissue impedance at Linear- and Flexible Array Probes explained above is valid for the first week after implantation.

Later, in the chronic stage after four weeks of implantation, Yousif et al. proposed the formation of a capacitive layer wrapped tightly around the electrode in form of a layer of encapsulation tissue which the authors called giant reactive cells. Yousif et al. proposed that, as the impedance of the electrode-tissue interface is governed by the described RC circuit in the acute stage, the impedance of the electrode-tissue interface at the chronic stage is governed by the capacitance of the encapsulation layer which attenuates the waveform of the voltage response to current controlled high-frequency microstimulation.

Taken together, the implications of encapsulation capacitance and current density effects might lead to the properties which are observed at the stimulation sites of Linear- and Flexible Array Probes when current controlled high-frequency microstimulation was repeatedly performed over a time period of four weeks.
The observed attenuation of the voltage response was smaller when Flexible Array Probes were used. That implies, that the proposed high capacitive layer in the chronic stage (Yousif et al. 2007) was less developed when Flexible Array Probes were used. In a comparative study with rigid electrodes tethered to the skull and untethered rigid electrodes with a flexible link were floating in the brain tissue, it was observed that initial inflammation and glial sheathing around the electrode implantation site was diminished in untethered electrodes (Biran et al. 2007). Also, it was shown that the glial sheath was almost fully developed already after two weeks (Biran et al. 2005). These data suggest that histological evaluation of the implanted Flexible Array Probes might lead to the finding of a thinner capacitive layer around Flexible Array Probes which is probably not only due to the biocompatibility of the polyimide carrier material, but also due to the lack of tethering forces at the Flexible Array Probe which is floating int the brain tissue (Biran et al. 2005, 2007, Lago et al. 2007).

Microstructured probes foster precise neuronavigation in areas with high neuronal activity

The performance of each implanted probe was tested by neuronavigation which was performed during probe insertion prior to implantation. With impedances in the 100 kΩ range, using bipolar configuration and recording, contact sizes of 20 μm should be capable of isolating single- and multi-unit potentials reflecting neural group activity on the level of high-frequency neuronal discharge (Gross et al. 2006). Phasically, as well as tonically active neurons were observed, as well as burst-firing neurons, in the respective region (Sterio et al. 2002). Recorded wavetrains, however, rarely showed single-unit activity exclusively. Multi-unit activity, such as the simultaneous activity of bursting and tonically active cells was often observed on the wavetrain signal of a single channel. Yet, using post-hoc spike detection and spike shape clustering, single-unit spike activity could be isolated.

Originally, the clinical approach to neuronavigation includes mapping of the subthalamic nucleus to find the best target area for deep brain stimulation (Machado et al. 2006, Coenen et al. 2008). To delineate the target structure, the characteristics and patterns of neuronal discharges on the wavetrain signal were used. Additionally, using microstimulation, the nature of the evoked responses of the neurons in the target nucleus allowed further characterization (Gross et al. 2006, Starr et al. 2006).

Today, automated, parameter based methods gain importance due to development of computer aided neuronavigation systems. Impedance aided neuronavigation was among the first parameter based methods used. It allows delineation of grey- and white matter (Johansson et al. 2009, Laitinen et al. 1966). Further, the change in mean signal amplitudes was shown to indicate passage from structure of grey matter to another (Yokoyama et al. 1998). Novak et al. used the spectral density of the neural background activity as parameter for neuronavigation (Novak et al. 2007). It was shown,
that parameter based neuronavigation is accurate as well as objective (Novak et al. 2011).

Following the work of Menne & Ramrath (Menne 2005, Ramrath et al. 2009), four different parameters for neuronavigation were calculated in the work at hand. The root mean square of the wavetrain data is a measure of signal amplitude, which is not biased by negative values, as is the mean value of the signal, which was used in (Yokoyama et al. 1998). The mean spectral density was used according to (Novak et al. 2011). Both, the root mean square and the mean spectral density represent measures of neuronal background activity, based on recorded wavetrain data (Novak et al. 2007, Logothetis 2003, Shin et al. 2007). Beyond neuronal background activity, statistical parameters of spike activity were used in order to reflect the observer based method of neuronavigation, which is directed towards the frequency and pattern of spike events in the observed area (Gross et al. 2006, Kipke et al. 2008). To extract spike events from the wavetrain data, spike detection and clustering was performed for each channel as to obtain events resulting from single-unit neuronal discharge activity (Logothetis 2003, Quiroga 2004, Seifried et al. 2011). Then, the mean firing rate was calculated to indicate the relative abundance of spike events in the respective region. The spike entropy was determined as a measure of regularity of occurring spike events (Molina-Picó et al. 2011).

Activity profiles, created from the wavetrain parameters, showed reproducible patterns. Although different in amplitude, the trend of the root mean square and mean spectral density was comparable for all probes of one type. The activity patterns, recorded for Linear- and Flexible Array Probes were different since the higher impedance of Flexible Array Probes leads to reduction of the neural background component of the recorded signal, but to increased ratios of thermal noise in the recorded signal (Abidian & Martin 2008).

The activity profiles, created from neuronal discharge activity were more variable from measurement to measurement. Since the radius in which spikes were detected in the vicinity of the probe is probably lower than 100 μm (Logothetis 2003), the detection of high-quality spike activity is always also a matter of luck. Yet, the mean firing rate is related to the spike entropy, since both activity profiles show the same trend.

Observing the curve trends of the activity patterns, it becomes obvious that activity is increasing or decreasing when the border between brain structures is crossed. This effect was obvious in the studies of Yokoyama et al. and Novak et al. as well. Therefore, turning points were determined from the polynomial fit of the activity pattern. Surprisingly, although the curve trends seemed different between Linear- and Flexible Array Probes and the different parameters which were determined, the estimated turning points fit well with the borders between brain structures as compared to the histological atlas of the rat brain (Paxinos & Watson 2007).

Generally, the turning points fit better with the borders of areas when activity profiles were created from Linear Array Probe measurements. In the thalamus and subthalamic nucleus, theoretical borders fit well with the activ-
ity profiles generated from Flexible Array Probe measurements. High spiking activity is a reported feature of these regions (Hutchison et al. 1998, Novak et al. 2011, Gross et al. 2006).

Since Linear Array Probes allow to measure neuronal background activity in a larger volume, their performance at neuronavigation might be more stable compared to the performance of Flexible Array Probes even when little high amplitude spike activity is present close to the electrode. In regions with high spike activity, Linear Array Probes allow high quality recordings of multi-unit activity. Although noise levels in Flexible Array Probe recordings are larger and less background neuronal activity is recorded, Flexible Array Probes perform well in the deep brain regions of the thalamus and subthalamic nucleus and qualify to map out borders between deep brain structures with high spike activity.

Thus, Flexible Array Probes support mapping procedures focused on the basal ganglia. This fits to the strategy which is currently applied in clinics (Moll et al. 2005). Using Linear Array Probes with lower impedances, whole depth neuronavigation becomes possible, which is an interesting feature as more and more target regions for deep brain stimulation lie outside of the basal ganglia and in regions with less spontaneous firing activity (Nuttin et al. 2003, Mayberg et al. 2005, Maciunas et al. 2007).

Injections of 6-hydroxydopamine lead to a partial loss of nigrostriatal dopamine without producing striatal dopamine supersensitivity

Unilateral injections of the neurotoxin 6-hydroxydopamine into the ventrolateral caudate putamen were performed to model the loss of dopaminergic neurons in the substantia nigra pars compacta, which is observed in patients with Parkinson’s disease (Schapira 1999, DeLong & Wichmann 2007).

The neurotoxin 6-hydroxydopamine, which is taken up via the catecholamine transporter system, specifically destroys catecholamine containing cells (Ungerstedt 1968, Hökfelt & Ungerstedt 1973). Striatal injections of the neurotoxin lead to degeneration of nigrostriatal dopaminergic neurons and terminals. The dopaminergic denervation becomes evident within three days (Neve et al. 1982). Despite the acute onset, the disappearance of nigrostriatal dopaminergic neurons is reported to be a progressive process. The main decrease in dopaminergic activity seems to happen within two weeks after injection but is not complete until after eight weeks (Neve et al. 1982, Sauer & Oertel 1994). The progressive characteristics of this process are probably caused by rapid destruction of dopaminergic terminals and subsequent retrograde degeneration of nigral dopaminergic cell bodies due to a lack of target derived trophic support (Cadet et al. 1991, Carman et al. 1991, Sauer & Oertel 1994).

Therefore, the dopaminergic lesion in animals which received 6-hydroxydopamine injection is most probably not a complete lesion and residual dopaminergic activity in the striatum must be taken into account. Even if interpretation of the results might be more difficult, it has been argued that partial lesions of nigrostriatal dopamine have greater relevance for models
of Parkinson’s disease, since loss of dopaminergic cells is not complete in diseased patients either (Kirik et al. 1998).

When the lesioned animals in the work at hand are challenged with low doses of the non-selective dopamine agonist apomorphine, they express rotational behaviour, which is directed towards the side of the lesion. The direction of the induced turning behaviour can be explained as a function of the loss of dopaminergic neurons and striatal dopamine depletion. Animals with loss of dopaminergic neurons below a certain level do not present turning behaviour, whereas those with increased, but partial loss of dopaminergic neurons present ipsilateral turning behaviour. Those animals, that lost almost all dopaminergic neurons present contralateral turning behaviour (Da Cunha et al. 2008). These findings are compatible with the results of a recent study in which post-synaptic dopamine receptor supersensitivity was reported, only when more than 60 % of dopamine activity was lost (Francardo et al. 2011). In that case, compensatory dopamine receptor upregulation on the side of the lesion would lead to dopamine receptor supersensitivity and administration of apomorphine would lead to increased dopaminergic activation on the lesioned side compared to the unlesioned side. Thus, contralateral rotational behaviour would be induced. This effect is reported for many studies involving 6-hydroxydopamine injections into the substantia nigra or medial forebrain bundle (Hudson et al. 1993, Moser et al. 2003a, Canales & Graybiel 2000). The occurrence of ipsilateral lesions is an indication, that the loss of dopaminergic activity is less than 60 %, but is still large enough that the imbalance in dopaminergic activity becomes evident, favouring the unlesioned side, when the dopaminergic agent apomorphine is administered systemically.

Taking into account, that the loss of dopamine activity is not complete in patients suffering from Parkinson’s disease, incomplete lesions of the nigrostriatal dopaminergic pathway might represent a better animal model for Parkinson’s disease. The incomplete lesion following injection of 6-hydroxydopamine into the ventrolateral caudate nucleus of the rat, even shows a pattern of progression which is an important factor for the typical phenotype of neurodegenerative disorders. Although for these reasons, incomplete striatal lesions should be preferred over complete lesions of the nigrostriatal pathway induced by injection of 6-hydroxydopamine into the medial forebrain bundle or the substantia nigra, hemiparkinsonian models investigating rotational response often resort to the classical complete lesions since reliable unidirectional rotational behaviour is observed with these models (Deumens et al. 2002).

In the current work, a model is presented in which partial lesions of the nigrostriatal system are induced reliably by injection of 6-hydroxydopamine into the ventrolateral caudate nucleus. The described method does not cause dopamine receptor supersensitivity on the side of the lesion. Thus, global dopamine activation will lead to ipsiversive rotational behaviour whereas the number of rotations is similar to the numbers of rotations observed in models with complete lesions of the nigrostriatal pathway (Moser et al. 2003a).
Therefore, the described model might present an option to model Parkinson’s disease in the rat more realistically whereby rotational behaviour is preserved as a parameter from which the effect of experimental interventions can be quantified conveniently.

Subthalamic microstimulation compensates striatal dopamine loss

Opposed to ipsilateral rotations caused by apomorphine, contralateral rotations could be induced by subthalamic high-frequency microstimulation in lesioned, as well as sham-treated rats.

These results corroborate the successful stereotaxic implantation of Linear Array Probes into the subthalamic nucleus. Comparable studies have shown that induction of contralateral rotations only occurs when high-frequency microstimulation is applied in the subthalamic nucleus or the region of the zona incerta dorsal to the subthalamic nucleus (Chang et al. 2003, Bergmann et al. 2004). Administration of high-frequency microstimulation using the implanted Flexible Array Probes eventually leads to rotations in some cases but results were unreproducible and not conclusive. Therefore, it seems likely that implantation with a guiding rod could not ensure the required precision to target the subthalamic nucleus precisely (see section 2.4.3.2). Consequently, the following discussion is limited on the implications of the rotational behaviour induced by subthalamic high-frequency microstimulation at Linear Array Probe stimulation sites.

Balanced neuronal activity in the basal ganglia motor circuit and its subcircuits is supposed to be a pre-requisite for movement and movement control. The striatum and the subthalamic nucleus receive input from the cerebral cortex whereas the internal segment of the globus pallidus and the substantia nigra pars reticulata provide output to the thalamus and brainstem.

Whereas activation of excitatory D$_1$ dopamine receptors on striatal GABAergic neurons leads to inhibition of the basal ganglia output nuclei via a monosynaptic direct pathway, the activation of inhibitory D$_2$/3 dopamine receptors on striatal GABAergic neurons leads to disinhibition of the basal ganglia output nuclei via a polysynaptic indirect pathway which includes the external globus pallidus and the subthalamic nucleus.

When striatal dopamine is released, the balanced action of the direct and indirect pathways results in a net reduced output activity of the basal ganglia which eventually translates into increased movement through inhibition of thalamocortical projection neurons (Wichmann & DeLong 1996, DeLong & Wichmann 2007).

Thus, the apomorphine induced ipsilateral rotations directly follow from DeLong’s explanation of the basal ganglia motor circuit (DeLong & Wichmann 2007). Compared to the lesioned side, the unlesioned side receives increased dopaminergic activation, by additive effect of physiological dopamine and apomorphine. This leads to increased movement on the unlesioned side, resulting in ipsilateral rotations. According to this model, the contralateral rotations, that are induced by subthalamic high-frequency stimulation, result from decreased basal ganglia output activity on the stimu-
lated side. This decrease in activity seems to be largely independent from the striatal dopamine content, since the effect is the same in lesioned and sham-treated animals. A net decrease in subthalamic output activity might result from direct inhibition of subthalamic projection neurons or from retrograde activation of inhibitory GABA medium spiny neurons as frequently discussed (Vitek 2002, Feuerstein et al. 2011). These results show that subthalamic high-frequency microstimulation with 0.3 mA current amplitudes delivered via Linear Array Probe stimulation sites is sufficient to overcompensate the loss of dopamine in the striatum. Since overcompensation is a method to quantify the efficacy of high-frequency microstimulation, but not a desired therapeutic effect, current amplitudes for therapeutic high-frequency microstimulation are probably much smaller than 0.3 mA.

The clinical usefulness of neural probes providing high-frequency microstimulation depends on the ability to provide safe levels of therapeutic stimulation over a long time range of chronic implantation (Cogan 2008). The ideal electrode for neuronal stimulating satisfies the following requirements which were defined by Merrill et al.: Material tissue compatibility, mechanical stability, efficacy of stimulation, safety of stimulation and stability of performance (Merrill et al. 2005).

To be compatible with the neuronal tissue, the electrode material should not induce neuronal damage or excessive foreign body response. The materials used in Linear- and Flexible Array Probes are stainless steel, gold and polyimide. According to the classification by Stensaa, gold is a non-reactive electrode material where little or no gliosis occurred, and normal brain tissue with synapses was observed within 5 μm distance to the electrode-tissue interface (Stensaas & Stensaas 1978, Merrill et al. 2005). The shaft of the Linear Array Probe is made from stainless steel. The material was determined to be non-toxic as a piece of stainless steel which was implanted for two month into the cerebral cortex of the cat did not lead to significantly greater tissue damage than a puncture made from the same material which was immediately withdrawn (Dymond et al. 1970). The support material of the Flexible Array Probes is polyimide. This material was reported to be biocompatible and thus, should be perfectly suited for long-term implantation (Stieglitz & Meyer 1999). Although, swelling and unstable performance in the first week has been an issue in some studies, stable long-term performance of polyimide based probes has been established (Rousche et al. 2001, Lago et al. 2007, Kisban et al. 2007, Richardson et al. 1993). In the current work, we did not recognize any indications of initial unstable performance, but after implantation, animals were allowed to recover for three days at least and swelling as well as initial tissue reactions might have been subsided by this time.

Although mechanical stability can be an issue with glass pipette microelectrodes or silicon based electrodes since breaking of the implanted electrodes was reported, the materials used in the current work are not prone to break or shatter. The probes were most sensitive during implantation. If ever, probes tended to break during mounting. Intracerebral implantation of polyimide based microelectrodes presents a methodical challenge. Ongoing
research focuses towards development of biodegradable coatings to provide transient stability facilitating insertion of flexible probes (Lind et al. 2010, Kozai & Kipke 2009, Hassler et al. 2011). In the current work, a stainless steel support cannula was used, mounted onto a punch hole at the tip of the Flexible Array Probe to drag the probe into the tissue. Although this technique might be prone to inaccuracies, it allows to perform neuronavigation during insertion and would facilitate functional testing at the target. Advancing the support-cannula based method, used in the current work, could yield precise implantation together with on-line use of recording and stimulation modalities at the Flexible Array Probe. After implantation, micromovements of probes which were tethered to the skull have shown to increase tissue gliosis (Biran et al. 2007). Due to reduction of tethering forces, micromovements of flexible probes are supposed to be minimal (Subbaroyan et al. 2005).

Stimulation efficacy of Linear Array Probes has been demonstrated in the current work by eliciting rotational behaviour in hemiparkinsonian rats with incomplete lesions of the nigrostriatal pathway. Although rotational response was not reproducible in animals with implanted Flexible Array Probes, that does not mean that high-frequency microstimulation via Flexible Array Probes in ineffective. Functional electrical stimulation is supposed to trigger above threshold depolarization of some portion of the neuronal membrane and to elicit action potentials (Merrill et al. 2005). Excitability of neuronal tissue varies depending on the density of neurons around the stimulation electrode and the passive and active properties of the neuronal membrane close to the stimulation electrode. Since there is no precise algorithm which predicts neuronal excitability, stimulation parameters for functional neuronal stimulation have always been determined empirically (Kuncel & Grill 2004, Volkmann et al. 2002). Although thresholds for functional electrical stimulation in the tissue can be as low as 0.001 μC/phase in the cortex or nervous tissue, clinically effective deep brain stimulation is usually performed at charge per phase values of 0.1-0.4 μC/phase (Cogan 2008, Kuncel & Grill 2004, Merrill et al. 2005). Thus, during one cathodic deep brain stimulation pulse, a charge of 0.1-0.4μC is injected into the tissue. Transferring this amount of charge via a macroelectrode with a geometric surface area of 0.06 cm² results in moderate charge densities of 2.3-6.7 μC/cm². Safety limits for deep brain stimulation via macroelectrodes are established at charge densities around 30 μC/cm² (Merrill et al. 2005, Kuncel & Grill 2004).

Transferring the charge needed for functional deep brain stimulation via small sized microelectrodes results in charge densities which lie far beyond the clinically established limits for safe stimulation. Yet, functional subthalamic deep brain stimulation in the rat has been observed after charge injection of 10 nC per phase (Bergmann et al. 2004). Neurochemical response to high-frequency microstimulation was observed in the nucleus caudatus of the rat at 18 nC per phase (Hiller et al. 2007). Although charge densities of 4.8 μC/cm² exceeded the safety threshold reported by McCreery et al., Hiller et al. did not observe any tissue damage due to the stimulation (McCreery et al. 1990, Hiller et al. 2007).
Harnack et al. investigated noble metal microelectrodes and did not find any tissue damage with current densities of 26 μC/cm2 (Harnack et al. 2004). In the current study, injected charge per phase values of 6-24 nC for functional high-frequency microstimulation were comparable to those reported by earlier studies (Hiller et al. 2007, Harnack et al. 2004). Yet, due to the small geometric surface area, charge densities of 53-212 μC/cm2 at Linear Array Probe stimulation sites and 167-667 μC/cm2 at Flexible Array Probe stimulation sites were way beyond any reported value for safe stimulation. Still, successful high-frequency microstimulation was carried out repeatedly over a time period of one month. During that time period, voltage response at the electrode did not change much at Flexible Array Probes where charge densities were highest. The voltage response at Linear Array Probes changed slowly over a time period of weeks, but not after each individual stimulation cycle. Further, using cyclic voltammetry at thin-film gold electrodes in electrolyte, Petitti et al. determined the threshold for electrolysis to occur at a cathodic charge density of 400 μC/cm2 (Petitti et al. 2006). Although histological evaluation of the tissue damage, inflicted by high-frequency microstimulation with the parameters used in the current work, has to be performed by follow-up work to make a clear statement, some results indicate that the high charge densities observed at Linear- and Flexible Array Probe stimulation sites might still be acceptable.

Taken together, the results of the current work show that bimodal Linear Array Probes with a microelectrode sized stimulation modality can be used to exert effective stimulation of neuronal tissue which is sufficient to induce behavioural effects. Thus, the use of bimodal microelectrodes might proof to be the right choice as neuronal interfaces for future feedback controlled deep brain stimulation devices, even so more distinguished stimulation sequences and possible tissue damage need to be investigated.

Quinpirol results in the same net effect as subthalamic high-frequency microstimulation

When challenged with the selective dopamine D$_{2,3}$ receptor agonist quinpirole, contralateral rotations were observed in lesioned, but not in sham-treated animals.

Following DeLong’s model of the basal ganglia motor circuit, systemic administration of quinpirole activates the indirect pathway and leads to increased disinhibition of the external globus pallidus. GABAergic inhibition of the subthalamic nucleus follows, resulting in enhanced motor activity on the stimulated site. Thus, contralateral rotational behaviour is induced.

When high-frequency microstimulation was applied in quinpirole treated animals, contralateral rotations increased with current amplitude in lesioned and sham-treated animals. A larger number of rotations was observed in lesioned animals, compared to sham-treated animals.

Already in 1987, quinpirole was proposed as an antiparkinsonian drug, reversing the effects of known monoamine antagonists and not prone to induce behavioral supersensitivity. Yet, the substance, and D$_2$ dopamine re-
Receptors agonists in general were rarely used in animal models of parkinson's disease since it was shown that, for D₂ receptor activation, 50–60 % dopamine activity needs to be preserved (Dziewczapolski et al. 1996, Hu et al. 1990, Kreiss et al. 1997). When quinpirole was administered after pretreatment with a dopamine agonist, it was shown to inhibit pathological subthalamic firing behaviour, which it also the net effect reported for deep brain stimulation (Park et al. 2007, Shen & Johnson 2012, Benabid et al. 2005).

From the basal neuronal activity in sham-treated and lesioned animals, pretreated with sodium chloride, apomorphine or quinpirole, it becomes obvious, that the lesion does not influence the background neuronal activity, but leads to an increase in spike activity as reflected by the mean firing rate, which increases from 9.41±1.01 Hz in sham-treated animals to 19.64±2.01 Hz in lesioned animals, when not additionally challenged. In a primate model of parkinson's disease, the spontaneous firing rate of subthalamic neurons was significantly increased from 19±10 Hz before, to 26±15 Hz after treatment with MPTP (Bergman et al. 1994). Similar results were observed in the 6-hydroxydopamine rat model (Strauss et al. 2008, Benazzouz et al. 1993, Chang et al. 2003), and are evident in clinical studies in patients with parkinson's disease (Lozano et al. 2002, Vitek 2002).

When sham-treated and lesioned animals were additionally challenged with apomorphine, the mean firing rate is not affected, but the neuronal background activity decreases. This is in agreement with the findings for the rotational activity. Beneficial activity of apomorphine has been reported for the management of sudden, unexpected and refractory levodopa-induced 'off' states in fluctuating parkinson's disease (Deleu et al. 2004, Di Rosa et al. 2003).

Challenged with the selective dopamine D_{2/3} agonist quinpirole, the firing rate in subthalamic neurons is decreased in sham-treated and lesioned animals compared to treatment with sodium chloride. In lesioned animals, the mean firing rate under quinpirole treatment is reduced to normal levels of 10.03± 1.61 Hz. In patch-clamp studies, it has been shown that quinpirole mimicked the dopamine action in the subthalamic nucleus more effectively than a dopamine D₁ receptor agonist (Zhu et al. 2002). Also, it was reported that, D₂ like dopamine receptors and muscarinic M₃ receptors may regulate the excitability of subthalamic neurons by acting presynaptically to alter GABA release (Shen & Johnson 2000). Selective GABA release as a mechanistic basis of high-frequency stimulation used for the treatment of neuropsychiatric diseases was discussed by Feuerstein et al. (Feuerstein et al. 2011).

Subthalamic high-frequency stimulation leads to very low frequency oscillatory activity

The response to subthalamic high-frequency microstimulation was observed over a time range of 1 min after stimulation. In sham-treated animals, three peaks of neuronal background activity were observed, occurring at < 0.1 Hz with decreasing amplitude. The first peak occurred about 15 s after high-
frequency microstimulation ceased. In lesioned animals, the first peak occurred directly after the stimulation. The frequency seemed to increase so that the peaks overlapped. The same effect was observed in sham-treated animals, which received systemic injection of quinpirole before the experiment.

Very slow or infra-slow oscillations occurring at < 0.1 Hz are known for over 50 years (Aladjalova 1957). Recent fMRI studies provide consistent evidence that, during the resting state, the brain exhibits prominent fluctuations at <0.1 Hz in the BOLD signal, that identify functional anatomical networks, termed resting state networks (Damoiseaux et al. 2006, De Luca et al. 2006, Fox et al. 2007, Mantini et al. 2007). The relationship between these fluctuations and neuronal activity are under debate (Hughes et al. 2011, Logothetis 2010). Although the origins of infra slow oscillations are not well understood, a key involvement of the thalamus is proposed (Zhang et al. 2008). There, infra slow oscillations have been observed in anaesthetized and freely moving animals, and are evident in local field potential-, single-unit- and intracellular recordings (Lorincz et al. 2009). Since strong apomorphine induced periodicities in firing rate are observed in the output nuclei of the basal ganglia, it has been proposed, that infra slow oscillations are modulated by dopamine receptor activation (Ruskin et al. 1999, 2003). Our results show, that decreased dopamine activity induced by a nigrostriatal lesion, or by administration of the dopamine D_{2/3} receptor agonist quinpirole, leads to decreased amplitude and increased frequency of recorded infra slow oscillations in response to subthalamic high-frequency microstimulation. In compliance with that, Ruskin et al. reported, a shift of infra slow oscillation frequency toward shorter periods, after treatment with apomorphine as well as simultaneous D_{1} and D_{2} receptor activation.

From the results of the current study, and available data in the literature, we conclude, that infra slow oscillations in connection with deep brain stimulation might provide a further aspect of subthalamic high-frequency microstimulation. By their long time range, infra slow frequency oscillations could provide a parameter for feedback controlled deep brain stimulation in the future.

Subthalamic High frequency stimulation leads to specific excitation and inhibition of neural elements

Recent neurochemical studies suggest that a selective release of the neurotransmitter GABA might be the unique mechanism of high-frequency stimulation in the brain (Feuerstein et al. 2011). In 2011, Feuerstein et al. summarized the work that has been done on finding a unique mechanism of action of high-frequency stimulation in the central nervous system. The authors traced various observations made in connection with high-frequency stimulation back to a common denominator, which they defined as the specific release of GABA from axon terminals of GABAergic cells. A wide spectrum of in vitro and in vivo studies was shown to support the formulated hypothesis (Mantovani et al. 2006, 2009, Li et al. 2004, 2006, Hiller et al. 2007, Löffler
et al. 2008). Yet, most of these studies were providing neurochemical evidence for the GABA hypothesis.

A highly specific mechanism of action like this is still controversially discussed since the possibility of bulk excitation or inhibition of neuronal tissue by high-frequency microstimulation is preferred by many researchers.

In the current work, single-unit activity was isolated from recordings of multi-unit neuronal discharge activity before and after high-frequency stimulation was applied in the subthalamic nucleus. The frequency and pattern of single-unit spike activity was analyzed in response to high-frequency microstimulation. By comparison of the frequency and pattern of specific single-unit spike activity before and after stimulation, we found that single-unit spike activity in certain groups decreased, increased or remained constant. Thus, we conclude, that high-frequency stimulation does not lead to bulk excitation or inhibition of neuronal elements, but rather exerts a specific effect on certain neuronal elements. Therefore, our data corroborate a specific effect of high-frequency microstimulation on neuronal elements in the subthalamic nucleus.

Using Linear- and Flexible Array Probes, multi-unit spike activity was recorded in response to high-frequency microstimulation via recording and stimulation modalities. Using spike detection and kmeans clustering of the detected spikes’ principal components, spike shapes were grouped into different clusters. With durations of up to 2.5 ms and amplitudes in the range of 30-150 mV, the clustered spike shapes showed characteristic features of single-unit extracellular potentials (Lewicki 1999, Quiroga 2004, Pavlov et al. 2007).

Although clear spike shapes were detected, this does not allow to draw conclusions about the type of neuronal element from which the activity is recorded. Gold et al. analyzed spike shapes of extracellularly recorded potentials and concluded that, although sizes of the soma and proximal dendrites constitute an important factor determining the amplitude of the detected spike shape, the details of cell morphology have relatively little impact (Gold et al. 2006). Therefore, the detected spike shape might mainly relate to the orientation of the electrode to the source of neuronal discharge activity.

Comparing the frequencies and patterns of single-unit potentials before and after high-frequency microstimulation, we detected increasing as well as decreasing activity in some clusters. In other clusters, activity remained the same before and after stimulation. Interestingly, decreased activity seems to be induced at lower current amplitudes than increased activity. To draw conclusions about the origin of the observed inhibition and excitation, further experiments need to be conducted blocking specific transmembrane currents.

Yet, performing extracellular recordings of neuronal discharge activity and subthalamic high-frequency microstimulation with bimodal Linear- and Flexible Array Probes we succeeded to detect a specific effect of electrical stimulation on neuronal spike activity in the awake and freely moving animal.
Thus, our study can corroborate the previous findings of a specific effect of high-frequency stimulation of neurochemistry.
REFERENCES

O. Bergmann, C. Winter, W. Meissner, D. Harnack, A. Kupsch, R. Morgenstern, & T. Reum. Subthalamic high frequency stimulation induced rotations are differentially mediated by D1 and D2 receptors.

C. R. Butson, C. B. Maks, & C. C. McIntyre. Sources and effects of electrode impedance during deep brain stimulation. Clinical Neurophysiology, 117:

P. Gatev, O. Darbin, & T. Wichmann. Oscillations in the basal ganglia under normal conditions and in movement disorders. *Movement*

C. M. Gray, P. E. Maldonado, M. Wilson, & B. McNaughton. Tetrodes markedly improve the reliability and yield of multiple single-unit

D. Harnack, C. Winter, W. Meissner, T. Reum, A. Kupsch, & R. Morgenstern. The effects of electrode material, charge density and stimulation

the Brain., pages 60--64. Univ. of Texas Press for Hogg Foundation for Mental Health, 1961.

K. Z. Shen & S. W. Johnson. Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro. The Journal of physiology, 525 Pt 2:

F. Urbano, E. Leznik, & R. Llinás. Cortical activation patterns evoked by afferent axons stimuli at different frequencies: an in vitro voltage-sensitive dye imaging study. *Thalamus and Related Systems*, 1:

ACKNOWLEDGEMENTS

This work was funded by the “Bundesministerium für Bildung und Forschung” (BMBF) within the nanotechnology research project BiCIRTS. Further, I received generous funding from the “German Academic Exchange Service” (DAAD) and the Carl Bennet AB (Sweden).

“If I have seen further, it is by standing on the shoulders of Giants ”
— Issac Newton

I wish to thank my supervisors Prof. Moser and Prof. Hofmann. Prof. Moser endured me with incredible patience. He guided me back on the path, when I had, again, completely lost it. His conviction and massive knowledge will be something I will look up to in my whole life. I thank Prof. Hofmann for his unimaginable creative energy, for seeing the good, when all I saw was largely mediocre, and for creating a truly inspiring and familiar atmosphere in his group. I will remember the “biosignal group” forever, and will always be proud to have been part of it.

My deeply felt gratitude to Prof. Agneta Richter Dahlfors, and the “Swedish Medical Nanoscience Center” for trusting and believing in me, and for making the last year such a rich experience. Many thanks to Prof. Mertins for welcoming me in his institute, and to Frau Ehlers for holding a firm grip on organization. Thanks to Prof. Tronnier for providing a bridge to the “real world” of clinics.

Further I want to thank our cooperation partners in the BiCIRTS project Dr. Peter Detemple and Dr. Jens Wüsten from the IMM in Mainz, Wolfgang Noack und Saschka Busch from the Inomed GmbH in Freiburg as well as Prof. Wolfgang Parak from the biophotonics research group at the Phillips Universität in Marburg for productive, interdisciplinary collaboration.

Beyond scientific supervision, I was lucky to have the “ladies from the liquorlab”, guiding me through all the worldly matters. My heartily felt gratitude to Katharina Schnackenberg, for …just everything… I have no means of expressing it. Thanks to Gisa Brunk and Marie Luise Reher for being like mothers and sisters and for taking good care of me.

People say, that you are partly like the people you meet and the people you work with. I sincerely hope that this saying is true, since I had the chance to meet people that are plainly amazing, and I’m unspeakable grateful to call some of them friends. Thanks to Dr. Anja Hiller and Dr. Fatimunissa Quadri who got me started on neuroscience, and to Dr. Noel for good advice and helping me find the right way to deal with animal experiments. Thanks, David for pulling out the geek in me and showing me, that you can do anything, if you are just stubborn enough. Thanks Yijing, for amazing collaboration. You are the master in not showing off how great you are.
Thanks Kunal for your wise comments and for whiteboard sessions in the Biosig lab. Thanks Aritra. You are my model for just how much people can grow. Thanks Mehrnaz for being so ravishingly intelligent. Thanks Sofyan for brewing the most delicious tee in the middle of the night, and for staying calm when I got mad. Thanks, Simon for trying to make a difference. Thanks Olaf & Matthias for coffee and trying to explain things, I will never understand…and for the washing machine. Thanks to the crew of the "awesome office" for just making the office so ...awesome. Thanks Kalle, It is an honour to build up on the work of a genius. Thanks Jorrit for not letting me be a lonely geek. You lead the way. Tack så mycket, världens bästa Karin! Nu ska vi snart sluta att kämpa!

There is another saying, that your friend believe in you, when you stop believing in yourself. In these last few years, it was your friendship that kept me going. Thank you Matthias, Charlotte & Romy for inviting me to sunday night dinner on skype. Thank you Michael, Luise & Jonathan for generously sharing your happiness and making me feel loved. Thanks, Arnika & Anette for all those good times. Thank you Albert for nerd talk, astra and long walks. Thanks to the best WG of the world! Thank you my old friend Carthago, I miss you so much. Thanks, Carina, for being my sister. Thanks, for never giving up on me and for never letting my excuses count! Thanks to my family for letting me go, and find my way back.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The action potential</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Neuronal cells and synapses</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>The electrode-electrolyte interface</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Impedance & Nyquist plot</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>Bode Plot</td>
<td>13</td>
</tr>
<tr>
<td>1.6</td>
<td>Neuronavigation to the subthalamic nucleus</td>
<td>14</td>
</tr>
<tr>
<td>1.7</td>
<td>Rat Parkinson Model</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>Linear Array Probe</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Flexible Array Probe</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Flexible Array Probe Layouts</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Flexible Array Probe Connections</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Stereotaxic Targets</td>
<td>33</td>
</tr>
<tr>
<td>2.6</td>
<td>Stereotaxic Surgery</td>
<td>34</td>
</tr>
<tr>
<td>2.7</td>
<td>Skull Reference Points</td>
<td>34</td>
</tr>
<tr>
<td>2.8</td>
<td>Mounting the micropositioning stage</td>
<td>36</td>
</tr>
<tr>
<td>2.9</td>
<td>Insertion of Flexible Array Probes</td>
<td>37</td>
</tr>
<tr>
<td>2.10</td>
<td>Procedure of step by step Flexible Array Probe insertion</td>
<td>38</td>
</tr>
<tr>
<td>2.11</td>
<td>Chronic Implant</td>
<td>38</td>
</tr>
<tr>
<td>2.12</td>
<td>Linear Array Probe Implantation</td>
<td>40</td>
</tr>
<tr>
<td>2.13</td>
<td>Microinjection System</td>
<td>41</td>
</tr>
<tr>
<td>2.14</td>
<td>Chronic Experiment Setup</td>
<td>42</td>
</tr>
<tr>
<td>2.15</td>
<td>Chronic Experiment Schedule</td>
<td>42</td>
</tr>
<tr>
<td>2.16</td>
<td>Timesweep Experiment</td>
<td>44</td>
</tr>
<tr>
<td>2.17</td>
<td>Currentsweep Experiment</td>
<td>44</td>
</tr>
<tr>
<td>2.18</td>
<td>Apomorphine Test</td>
<td>45</td>
</tr>
<tr>
<td>2.19</td>
<td>Treatment Groups</td>
<td>46</td>
</tr>
<tr>
<td>2.20</td>
<td>Wavetrain Data</td>
<td>47</td>
</tr>
<tr>
<td>2.21</td>
<td>Stimulation Artefact</td>
<td>48</td>
</tr>
<tr>
<td>2.22</td>
<td>Edge Detection</td>
<td>48</td>
</tr>
<tr>
<td>2.23</td>
<td>Spike Detection</td>
<td>49</td>
</tr>
<tr>
<td>2.24</td>
<td>Spike Event Analysis</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Frequency Responce of Linear Array Probes</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>Frequency response of Flexible Array Probes</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Impedance Area Relationship</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>Neuronavigation by Wavetrain Pattern</td>
<td>59</td>
</tr>
<tr>
<td>3.5</td>
<td>Neuronavigation by Spike Shape</td>
<td>60</td>
</tr>
<tr>
<td>3.6</td>
<td>Neuronavigation by Spike Shapes</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>Root Mean Square Activity Profile</td>
<td>62</td>
</tr>
<tr>
<td>3.8</td>
<td>Spectral Density Profile</td>
<td>63</td>
</tr>
</tbody>
</table>
3.9 Spike Activity Profile 64
3.10 Entropy Profile 65
3.11 Activity Profile Turning Points 66
3.12 Voltage Response Curves 67
3.13 Maximum Electrode Potential 67
3.14 Time Constants of the Voltage Response 68
3.15 Basal Neuronal Activity 69
3.16 Apomorphine induced Rotational Response 70
3.17 Apomorphine Induced Ipsilateral Rotations 71
3.18 Rotational Response Induced by Subthalamic Microstimulation 71
3.19 Contralateral Rotations Induced by Subthalamic Microstimulation 72
3.20 Root Mean Square Response after Linear Array Probe Microstimulation 73
3.21 Root Mean Square Response after Flexible Array Probe Microstimulation 74
3.22 Mean Spectral Density Response after Linear Array Probe Microstimulation 75
3.23 Mean Spectral Density Response after Flexible Array Probe Microstimulation 76
3.24 Oscillatory Neuronal Response to Linear Array Probe Microstimulation 78
3.25 Oscillatory Neuronal Response to Linear Array Probe Microstimulation 79
3.26 Altered Spike Activity in Sham treated Animals due to Linear Array Probe Microstimulation 80
3.27 Altered Spike Activity in Lesioned Animals due to Linear Array Probe Microstimulation 81
3.28 Increased and decreased spike activity in sham-treated animals with implanted Linear Array Probes depending on current amplitude .. 83
3.29 Increased and decreased spike activity in lesioned animals with implanted Linear Array Probes depending on current amplitude .. 84
3.30 Spike activity in Sham treated and Lesioned Animals 85
3.31 Imbalances in Spiking Behaviour in Sham Treated Animals due to Flexible Array Probe microstimulation 85
3.32 Imbalances in Spiking Behaviour in Lesioned Animals due to Flexible Array Probe microstimulation 86
3.33 Stimulation amplitude dependent spiking activity in sham-treated and lesioned animals with implanted Flexible Array Probes 87
LIST OF TABLES

1.1 Save charge injection capacities ... 10
1.2 Parameters for *deep brain stimulation* 15
1.3 Neurostimulator output capability 18
1.4 Deep Brain Stimulation Leads ... 19

2.1 Charge densities at *Linear-* and *Flexible Array Probe* stimulation sites .. 30
2.2 Stereotaxic Coordinates .. 35
2.3 Target depths ... 37

3.1 Randles cell parameters ... 56
3.2 Fitted Randles cell Parameters .. 57
3.3 Characteristic Impedances and Phase angles 58
3.4 Root Mean Square Activity Profile Turning Points 61
3.5 Spectral Activity Profile Turning Points 63
3.6 Spike Activity Profile Turning Points 65
3.7 Entropy Profile Turning Points ... 66
3.8 Maximum Electrode Potential .. 68
3.9 Time Constants .. 69
LIST OF LISTINGS

<p>| B.1 | LCR800_FREQSweep.m | B-3 |
| B.2 | LCR800_COMMANDS.m | B-5 |
| B.3 | LCR800_GOONLINE.m | B-6 |
| B.4 | LCR800_GOOFFLINE.m | B-6 |
| B.5 | LCR800_SETPARAMS.m | B-6 |
| B.6 | LCR800_GETPARAMS.m | B-7 |
| B.7 | LCR800_SETFREQ.m | B-7 |
| B.8 | LCR800_START.m | B-7 |
| B.9 | LCR800_READVAL.m | B-8 |
| B.10 | LCR800_GETSECOVAL.m | B-8 |
| B.11 | LCR800_GENOUTPUT.m | B-8 |
| C.1 | defineVars.m | C-3 |
| C.2 | exportTDTtoMat.m | C-3 |
| C.3 | getTankParams.m | C-5 |
| C.4 | saveChannel.m | C-6 |
| D.1 | groupdict.py | D-3 |
| D.2 | Main.py | D-9 |
| D.3 | Utils.py | D-9 |
| D.4 | getdata.py | D-20 |</p>
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6OHDA</td>
<td>6-hydroxydopamine</td>
</tr>
<tr>
<td>AC</td>
<td>alternating current</td>
</tr>
<tr>
<td>AcbSh</td>
<td>accumbens nucleus shell</td>
</tr>
<tr>
<td>AMPA</td>
<td>2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid</td>
</tr>
<tr>
<td>AP</td>
<td>anterior-posterior</td>
</tr>
<tr>
<td>B</td>
<td>bregma</td>
</tr>
<tr>
<td>BOLD</td>
<td>blood oxygen level dependent [effect]</td>
</tr>
<tr>
<td>CPu</td>
<td>caudate putamen</td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>DV</td>
<td>dorsal-ventral</td>
</tr>
<tr>
<td>FDA</td>
<td>food and drug association</td>
</tr>
<tr>
<td>FFC</td>
<td>flat flexible cable</td>
</tr>
<tr>
<td>fMRI</td>
<td>functional magnetic resonance tomography</td>
</tr>
<tr>
<td>G</td>
<td>ground</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-aminobutyric acid</td>
</tr>
<tr>
<td>IAP</td>
<td>inter aural point</td>
</tr>
<tr>
<td>MEMS</td>
<td>microelectronic and microelectromechanical systems</td>
</tr>
<tr>
<td>ML</td>
<td>medial-lateral</td>
</tr>
<tr>
<td>MPTP</td>
<td>1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin</td>
</tr>
<tr>
<td>PCB</td>
<td>printed circuit board</td>
</tr>
<tr>
<td>SNC</td>
<td>substantia nigra pars compacta</td>
</tr>
<tr>
<td>STN</td>
<td>subthalamic nucleus</td>
</tr>
</tbody>
</table>
Susanne Löffler

November, 4th 1983 in Sonneberg, Germany

Address: Sichelreuther Strasse 1, 96524 Neuhaus-Schierschnitz
Phone: +49 36764 139560
Email: susanne.loeffler@neuro.uni-luebeck.de

Education

Postgraduate Studies

since 10/2010 Swedish Medical Nanoscience Center, Karolinska Institute, Sweden
Project: Development and Biomedical Application of Organic Bioelectronic Devices

Courses: Laboratory Animal Science, Cat. B FELASA, certified by GV-SOLAS

Master's Programme

10/2005 - 12/2007 Molecular Life Science, University of Lübeck, Germany
Master Thesis: Characterization of HFS induced GABA release in the corpus striatum of the rat in vivo
Degree: M. Sc.
Focus of Studies: Cell biology, Treatment strategies, Drug design, Structural Analysis, Biophysics, Bioinformatics
Lab Courses: Biomedical optics, Molecular dynamics, In vitro differentiation of murine embryonic stem cells
Cardiovascular tissue engineering - bioreactors for cell and tissue growth
Radiation protection course
Positions: Student Assistant, Institute for Neurology
Bachelor's Programme

10/2005 - 12/2007 Molecular Life Science, University of Lübeck, Germany

Bachelor Thesis: High frequency stimulation of the caudate nucleus in vivo - Determination of GABA and glutamate neurotransmitter

Degree: B. Sc.

Focus of Studies: Fundamentals of Natural & Medical Sciences, Structural Analysis, Computer Science, Statistics

Lab Courses: Statistical Analysis using the SAS, Plant Biotechnology (Institute for Botanics, Leibnitz University, Hannover, Germany)

Qualification for Higher Education

08/1994 - 06/2002 A-levels, 1. Staatliches Gymnasium Sonneberg, Germany

Skills & Competences

Language
- German: native
- English: fluent
- Swedish

Computer Skills
- Operating systems: GNU/Linux, MacOS X, MS Windows
- Prog. Languages: Python, Shell Script, BťăX, Java, Matlab, R
- Applications: Scientific Python, LabVIEW, GraphPad Prism SAS, SPSS, Comsol Multiphysics
- Office: OpenOffice, MS Office

Academic Interests
- Basal ganglia circuit models, Deep brain stimulation,
- Microstimulation, Interface reactions at brain implants,
- Conductive Polymers, Organic Electrochemical Transistors,
- Transistor based Biosensors, Organic Bioelectronic Devices

Personal Interests
- Long-distance running, Cross-country skiing,
- Swimming, Cycling, Horseback riding, Rock Climbing
To measure the impedance and phase angle spectrum, a frequency sweep experiment was performed by calling the LCR800_FREQSWEEP function (see Listing B.1).

The LCR800_FREQSWEEP function sequentially calls several utility functions so that a Frequency Sweep Experiment is performed.

First, the command variables are loaded with the LCR800_COMMANDS function (see lst Listing B.2). To compile the hexadecimal command variables, a reference command list supplied by the vendor. The hexadecimal digits were written and read via the RS232 serial port.

The instrument is set to online mode by using the LCR800_GOONLINE and LCR800_GOOFFLINE functions (see Listing B.4 and Listing B.3). The measurement parameter variables are loaded by the LCR800_GETPARAMS function (see Listing B.6) and set with the LCR800_SETPARAMS function (see Listing B.5). To store the parameters, the instrument status was toggled between online and offline. The newly set parameters were read using the LCR800_GETPARAMS function (see Listing B.5) and wrote into the `params` variable.

A predefined list of frequencies is defined in the `freqs` variable. This list can be altered by adding hexadecimal codes for the frequency commands in LCR800_COMMANDS (see Listing B.2) and adjusting the `freqs` array in the LCR_FREQSWEEP function (see Listing B.1).

The instrument sweeps through the list of frequencies in the `freqs` variable and the impedance and phase angle are measured for each frequency. The frequency is set by the LCR800_SETFREQ function (see Listing B.7), and the measurement is started when the LCR800_START function (see Listing B.8) is called. The LCR800_START function calls LCR800_READVAL (see Listing B.9) to read the measured impedance Z and LCR800_GETSECOVAL (see Listing B.10) to read the measured phase angle Φ.

After the measurement, all parameters and raw data are formatted into a `.txt` file using the LCR800_GENOUTPUT function (see Listing B.11).

Listing B.1: LCR800_FREQSWEEP.m

```matlab
function [] = LCR800_FREQSWEEP(n)
% check if n is given as input argument
if nargin == 1
    error('Wrong number of input arguments')
end

% TIMER
  t1 = timer('TimerFcn', @mycallback, 'Period', 10);

% INITIALIZE SERIAL PORT
  s = 'offline';
  s = LCR800_INITSERIAL(s);

% Get the Command Strings for the LCR800
  LCR800_COMMANDS;

% LCR800 GO ONLINE
  LCR800_GOOFFLINE(s, t1, GOONLINE, ONLINE);
```

B-3
display('LCR800 is ONLINE');

% LCR800 SET PARAMETER
display('setting parameters...')
LCR800_PARAMS =
 [SPEED, DISPLAY, MODE, CIRCUIT, VOLTAGE, TRIGGER, RANGEHOLD, CONSTVOLT, INTBIAS, EXTBIAS, NOMVAL, AVERAGE];
SET_PARAMS = [SET_SPEED, SET_DISPLAY, SET_MODE, SET_CIRCUIT, SET_VOLTAGE, SET_TRIGGER, SET_RANGEHOLD, SET_CONSTVOLT, SET_INTBIAS, SET_EXTBIAS, SET_NOMVAL, SET_AVERAGE];

for j=1:length(SET_PARAMS);
 SET_PARAM = SET_PARAMS[j];
 PARAM = PARAMS[j];
 LCR800_SETPARAMS(s, t1, SET_PARAM, PARAM);
end

% Switching it OFF and ON
LCR800_GOODLINE(s, t1, GODLINE, OFFLINE);
LCR800_GOODLINE(s, t1, GODLINE, ONLINE);

% create a string for writing params into output file
params = ' ';

% LCR800 GET PARAMETER
display('getting parameters...')
GET_PARAMS = [GET_SPEED, GET_DISPLAY, GET_MODE, GET_CIRCUIT, GET_VOLTAGE, GET_TRIGGER, GET_RANGEHOLD, GET_CONSTVOLT, GET_INTBIAS, GET_EXTBIAS, GET_NOMVAL, GET_AVERAGE];
PARAMS = [SPEED, DISPLAY, MODE, CIRCUIT, VOLTAGE, TRIGGER, RANGEHOLD, CONSTVOLT, INTBIAS, EXTBIAS, NOMVAL, AVERAGE];

for j=1:length(GET_PARAMS);
 GET_PARAM = GET_PARAMS[j];
 PARAM = PARAMS[j];
 param = LCR800_GETPARAMS(s, t1, GET_PARAM, PARAM);
 params = strcat(params, '#', param, '
');
end

% FREQUENCIES
freqs = [Hz000000, Hz000200, Hz000300, Hz000500, Hz001000, Hz002000, Hz003000, Hz005000, Hz010000, Hz020000, Hz050000, Hz100000, Hz200000, Hz500000, Hz1000000];

% CREATE DATA MATRIX
Z_matrix = zeros(length(freqs), n+1);
Phi_matrix = zeros(length(freqs), n+1);

for k=1:n
 % LOOP THROUGH FREQUENCIES
 display(strcat('Measurement m=', int2str(k), ' running... '));
 for j=1:length(freqs)
 % LCR800 SET FREQUENCY
 FREQ = freqs[j];
 freq = LCR800_SETFREQ(s, t1, MAINFREQ, FREQ, END, FREQUENCY);
 Z_matrix(j,1) = str2double(freq(10:length(freq)));
 Phi_matrix(j,1) = str2double(freq(10:length(freq)));

 % START MEASUREMENT
 [Z, phi] = LCR800_START(s, t1, START, IMPEDANCE, PHASE);
 if exist(phi(17)) == 1 & phi(17) == 'k'
 phix = str2double(phi(10:16));
 zx = str2double(Z(10:length(Z)));
 else
 phix = str2double(phi(10:16));
 zx = str2double(Z(10:length(Z)))/1000;
 end
 Z_matrix(j,k+1) = zx;
 end
end
Listing B.2: LCR800_COMMANDS.m

% COMMAND FILE

% End

GOOFFLINE = ['43H'; '4FH'; '4DH'; '55H'; '3AH'; '4FH'; '46H'; '46H'; '0AH'; '0EH'; '0EH'];
GOONLINE = ['43H'; '4FH'; '4DH'; '55H'; '3FH'; '0AH'; '0DH'];
START = ['4EH'; '41H'; '49H'; '4EH'; '3AH'; '53H'; '54H'; '41H'; '52H'; 'H'; '0AH'; '0DH'];

% Command structure to set the frequency: MAINFREQ + FREQ + END

MAINFREQ = ['4DH'; '41H'; '49H'; '4EH'; '3AH'; '46H'; '52H'; '45H'; '51H'; '20H'];
Hz100000 = ['31H'; '30H'; '30H'; '2EH'; '30H'; '30H'; '30H'];
Hz050000 = ['30H'; '35H'; '30H'; '2EH'; '30H'; '30H'; '30H'];
Hz020000 = ['30H'; '32H'; '30H'; '2EH'; '30H'; '30H'; '30H'];
Hz010000 = ['30H'; '31H'; '30H'; '2EH'; '30H'; '30H'; '30H'];
Hz005000 = ['30H'; '30H'; '35H'; '2EH'; '30H'; '30H'; '30H'];
Hz003000 = ['30H'; '30H'; '33H'; '2EH'; '30H'; '30H'; '30H'];
Hz002000 = ['30H'; '30H'; '32H'; '2EH'; '30H'; '30H'; '30H'];
Hz001000 = ['30H'; '30H'; '31H'; '2EH'; '30H'; '30H'; '30H'];
Hz000500 = ['30H'; '30H'; '30H'; '2EH'; '30H'; '30H'; '30H'];
Hz000300 = ['30H'; '30H'; '30H'; '2EH'; '30H'; '30H'; '30H'];
Hz000200 = ['30H'; '30H'; '30H'; '2EH'; '30H'; '30H'; '30H'];
Hz000100 = ['30H'; '30H'; '30H'; '2EH'; '30H'; '30H'; '30H'];
END = ['0AH'; '0DH'];

GET_SPEED = ['43H'; '41H'; '49H'; '4EH'; '3AH'; '53H'; '50H'; '0AH'; '0EH'];
GET_DISPLAY = ['43H'; '41H'; '49H'; '4EH'; '3AH'; '44H'; '49H'; '0AH'; '0EH'];
GET_MODE = ['43H'; '41H'; '49H'; '4EH'; '3AH'; '40H'; '49H'; '0AH'; '0EH'];
GET_CIRCUIT = ['43H'; '41H'; '49H'; '4EH'; '3AH'; '43H'; '49H'; '0AH'; '0EH'];
GET_VOLTAGE = ['43H'; '41H'; '49H'; '4EH'; '3AH'; '56H'; '4FH'; '0AH'; '0EH'];
GET_TRIGGER = ['43H'; '41H'; '49H'; '4EH'; '3AH'; '54H'; '52H'; '0AH'; '0EH'];
GET_RANGEHOLD = ['43H'; '41H'; '49H'; '4EH'; '3AH'; '52H'; '2EH'; '0AH'; '0EH'];
GET_CONSVOLT = ['43H'; '41H'; '49H'; '4EH'; '3AH'; '43H'; '2EH'; '0AH'; '0EH'];
GET_INITIALIZER = ['43H'; '41H'; '49H'; '4EH'; '3AH'; '49H'; '4EH'; '0AH'; '0EH'];
GET_EXTBIAS = ['4DH'; '41H'; '49H'; '4EH'; '3AH'; '45H'; '58H'; '-' 54H'; '42H'; '3FH'; '0AH'; '00H'];
GET_NOMVAL = ['53H'; '4FH'; '52H'; '54H'; '3AH'; '4EH'; '4FH'; '4EH 54H'; '56H'; '3FH'; '0AH'; '00H'];
GET_AVERAGE = ['53H'; '54H'; '45H'; '50H'; '3AH'; '41H'; '56H'; '-' 45H'; '52H'; '3FH'; '0AH'; '00H'];

Listing B.3: LCR800.GOONLINE.m

function [] = LCR800.GOONLINE(s, t1, GOONLINE, ONLINE)

for i=1:length(GOONLINE):
 fwrite(s, int16(sscanf(GOONLINE(i,:),'%x')));
end
wait(t1);

idn = sscanf(s);

l = length(ONLINE);
if idn(1:l) == ONLINE(1:l);
else
 LCR800.GOONLINE(s, t1, GOONLINE, ONLINE);
end

Listing B.4: LCR800.GOOFFLINE.m

function [idn] = LCR800.GOOFFLINE(s, t1, GOOFFLINE, OFFLINE)

%GOOFFLINE = ['43H'; '4FH'; '4DH'; '55H'; '3AH'; '4FH'; '46H'; '46H-- '; '2EH'; '0AH'; '00H'];

for i=1:length(GOOFFLINE):
 fwrite(s, int16(sscanf(GOOFFLINE(i,:),'%x')));
end

idn = sscanf(s);

l = 0;
if length(idn) == 1;
else
 LCR800.GOOFFLINE(s, t1, GOOFFLINE, OFFLINE);
end

Listing B.5: LCR800.SETPARAMS.m
function [] = LCR800_SETPARAMS(s, t1, SET_PARAM, PARAM)

 for i=1:length(SET_PARAM);
 fwrite(s, int16(sscanf(SET_PARAM(i,:), '%x')));
 end
 wait(t1);
 idn = fscanf(s);

 l = length(PARAM);
 if length(idn) == l && sum(eq(idn(1:l), PARAM(1:l))) == l;
 display(idn);
 else
 display('trying to get a value');
 LCR800_SETPARAMS(s, t1, SET_PARAM, PARAM)
 end

Listing B.6: LCR800_GETPARAMS.m

function [param] = LCR800_GETPARAMS(s, t1, GET_PARAM, PARAM)

 for i=1:length(GET_PARAM);
 fwrite(s, int16(sscanf(GET_PARAM(i,:), '%x')));
 end
 wait(t1);
 idn = fscanf(s);

 l = length(PARAM);
 if length(idn) == l && sum(eq(idn(1:l), PARAM(1:l))) == l;
 display(idn);
 else
 param = LCR800_GETPARAMS(s, t1, GET_PARAM, PARAM);
 end

 param = idn;

Listing B.7: LCR800_SETFREQ.m

function [freq] = LCR800_SETFREQ(s, t1, MAINFREQ, FREQ, END, →

 for i=1:length(MAINFREQ);
 fwrite(s, int16(sscanf(MAINFREQ(i,:), '%x')));
 end
 for i=1:length(FREQ);
 fwrite(s, int16(sscanf(FREQ(i,:), '%x')));
 end
 for i=1:length(END)-1;
 fwrite(s, int16(sscanf(END(i,:), '%x')));
 end
 wait(t1);
 idn = fscanf(s);

 l = length(FREQUENCY);
 if length(idn) == l && sum(eq(idn(1:l), FREQUENCY(1:l))) == l;
 display(idn);
 else
 LCR800_SETFREQ(s, t1, MAINFREQ, FREQ, END, FREQUENCY);
 end

 freq = idn;
Listing B.8: LCR800.getStart.m

```matlab
function [Z, phi] = LCR800_START(s, t1, START, IMPEDANCE, PHASE)

%START = ['4DH'; '41H'; '49H'; '4EH'; '3AH'; '53H'; '54H'; '41H'; '0AH'; '0DH'; '0IMH'];
for i=1:length(START);
    fwrite(s.int16(sscanf(START(i,:), '%x')));
end

idn = LCR800_READVAL(s, t1);

l = length(IMPEDANCE);
if length(idn) >= l && sum(eq(idn(1:l), IMPEDANCE)) == l;
    Z = idn;
    disp('got impedance value');
    disp(idn)
    disp(PHASE)
    wait(t1);
    phi = LCR800_GETSECOVAL(s, t1, START, PHASE);
else
    [Z, phi] = LCR800_START(s, t1, START, IMPEDANCE, PHASE);
    disp('waiting for impedance value');
end
```

Listing B.9: LCR800_ReadVal.m

```matlab
function [idn] = LCR800_READVAL(s, t1)
wait(t1);
idn = fscanf(s);
```

Listing B.10: LCR800_GetSecoval.m

```matlab
function [phi] = LCR800_GETSECOVAL(s, t1, START, PHASE)
wait(t1);
idn = fscanf(s);

l = length(PHASE);
if length(idn) >= l && sum(eq(idn(1:l), PHASE)) == l;
    phi = idn;
    disp('got phi value');
else
    disp('waiting for phi value');
    phi = LCR800_GETSECOVAL(s, t1, START, PHASE);
end
```

Listing B.11: LCR800_Genoutput.m

```matlab
function [] = LCR800_GENOUTPUT(params, Z_matrix, Phi_matrix)

time = datenstr(clock);
timestamp = strcat(time(1:11), '_', time(12:14), time(16:17), time(19:20));
filename = strcat(pwd, '\LCR800_results\', 'LCR800_', timestamp, '.txt' );
dirname = strcat(pwd, '\LCR800_results\');

%check if results subfolder exists. If not, create it.
if exist(dirname) == 7;
```

B-8
else
 mkdir(dirname);
end

out = fopen(filename, 'w');
fprintf(out, '#Measurement parameter:
');
fprintf(out, '#Measurement results:
');
fprintf(out, '#Frequencies, Impedance Z in kOhm
');

for i=1:size(Z_matrix,1)
 line = Z_matrix(i,:);
 for a=1:length(line)
 fprintf(out, '%f', line(a));
 fprintf(out, ' ');
 end
 fprintf(out, '
');
end

fprintf(out, '#Frequencies, Phase angle Phi in degree (n)
');
for i=1:size(Phi_matrix,1)
 line = Phi_matrix(i,:);
 for a=1:length(line)
 fprintf(out, '%f', line(a));
 fprintf(out, ' ');
 end
 fprintf(out, '
');
end

fclose(out);
TDT Export only works on Windows PCs with ActiveX. The TDT Hardware needs to be switched on. Then, the TTank Monitor from the Sys3 Software package must be used to open and the data tanks that are to be exported. The function `defineVars()` is used to set a bunch of variables (see Listing C.1). The 'stores' variable sets the type of data that is exported. 'NoFi', specifying the unfiltered data was used for all experiments. From the MATLAB command line, `exportTDTtoMat(tankname, projectname)` (see Listing C.2) is called to export the unfiltered wavetrain data for each recorded block into a single `.mat file, named like the block in the DataTank. The `exportTDTtoMat` function calls the function `getTankParams(tankname, projectname)` to find the names of all data Blocks (see Listing C.3). Also, the function `saveChannel(channel, TTX, store, filename)` is called, which saves each channel, recorded in a block into a .mat file (see Listing C.4). The file will contain a variable 'samplerate', as well as variables 'wavearray_ch1', ..., 'wavearray_chn' which contain the recorded wavetrain data for all channels.

Listing C.1: defineVars.m

```matlab
function [path, stores] = defineVars()
    path = 'E:\TDTprojects';
    stores = 'NoFi';
```

Listing C.2: exportTDTtoMat.m

```matlab
function [] = exportTDTtoMat(tankname, projectname)
    [project, tank, blocks, stores, matfilepath] = getTankParams(tankname, projectname);
    TTX = actxcontrol('TTank.X');

    % Then connect to a server
    s1_connected = TTX.ConnectServer('Local', 'Me');
    if s1_connected == 1
        display('connected to local activeX Server')
    else
        display('connection to local activeX Server refused')
        return
    end

    % open tank for reading
    s2_open = TTX.OpenTank(tank, 'R');
    if s2_open == 1
        display(['DataTank ' tank ' open'])
    else
        display(['DataTank ' tank ' not found'])
        return
    end

    if exist(matfilepath) == 0
        mkdir(matfilepath);
    else
        content = dir(matfilepath);
        size = 0;
        for c = 1:length(content)
            if content(c).bytes > 200
```
size = size + 1;
else
size = size + 0;
end
end

if size >= length(content)-2
 display(['DataTank ' tank ' has already been fully exported'])
 return
else
 display(['an error occurred for DataTank ' tank ' trying again'])
end
end

% Select the block to access
for a = 1:length(cellstr(blocks))
 block = blocks(a,:);
 split = strfind(block, '\');
 split = split(end);
 block = block(split+1:end);
 s3_blockfound = TTX.SelectBlock(block);
 if s2_open == 1
 else
 display(['Block ' tank ' not found'])
 return
 end
 end

 if length(cellstr(stores)) == 1
 store = stores;
 display(['exporting block: ' block ', event: ' store]);
 %filename
 filename = strcat(matfilepath, '\', block, '_', store, '.', 'mat');
 %getting some waveform data to extract sampling frequency
 Nrecs=TTX.ReadEventsV(1000, store, 0, 0, 0, 10, 'ALL');
 %get sampling frequency
 samplerate = TTX.ParseEvInfoV(0, 0, 9);
 %get channel number
 channels = TTX.ParseEvInfoV(0, 0, 4);
 %save sample frequency to mat file
 save(filename, 'samplerate');
 for i = 1:channels
 channel = int2str(i);
 saveChannel(channel, TTX, store, filename)
 end
 else
 for b = 1:length(stores)
 %select the event to read
 store = stores(b,:);
 display(['exporting block: ' block ', event: ' store]);
 %specifying the filename
 filename = strcat(matfilepath, '\', block, '_', store, '.', 'mat')
 end
 end
end
\% getting some waveform data to extract sampling frequency
Nrecs = TTX.ReadEventsV(1000, store, 0, 0, 10, 'ALL');

\% get sampling frequency
samplerate = TTX.ParseEvInfoV(0, 0, 9);
channelnum = TTX.ParseEvInfo(0, 0, 4)

\% save sample frequency to mat file
save(filename, 'samplerate');

for i = 1:channels
 saveChannel(channel, TTX, store, filename)
end
end
end
TTX.CloseTank();
TTX.ReleaseServer();

Listing C.3: getTankParams.m

function [project, tank, blocks, stores, matfilepath] = getTankParams(tankname, projectname)

[path, stores] = defineVars();

projects = dir(path);
for i = 3:length(projects)
 if strcmp(char(projects(i).name), projectname) == 1
 project = projectname;
 end
end

if exist('project', 'var') == 0
 project = 'undefined';
end

datatanks = dir(strcat(path, '\', project, '\', 'DataTanks'));
for i = 3:length(datatanks)
 if strcmp(char(datatanks(i).name), tankname) == 1
 tank = tankname;
 end
end

if exist('tank', 'var') == 0
 tank = 'undefined';
end

blocks = [];
blockdirs = dir(strcat(path, '\', project, '\', 'DataTanks', '\', tank));
for i = 3:length(blockdirs)
 b = strcat(path, '\', project, '\', 'DataTanks', '\', 'Tbk', char(blockdirs(i).name));
 s = dir(b);
 if exist(b, 'dir') && length(s) > 2 && strcmp(char(s(3).name(3:end-3:end)), '.') == 1
 blocks = [blocks; b];
 end
end
matfilepath = strcat(path, '\', project, '\', 'Matfiles', '\', 'tank');

Listing C.4: saveChannel.m

function [] = saveChannel(channel, TTX, store, filename)
 % select one channel after another for all channels recorded
 TTX.SetGlobals(strcat('Channel=', channel));
 % retrieves the data for current block and current event, but
 % maximal 32 MB (for this one channel), different variables ←
 for
 % each channel to append to mat file
 if strcmp(channel, '1') == 1
 wavearray_ch1 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch1');
 elseif strcmp(channel, '2') == 1
 wavearray_ch2 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch2');
 elseif strcmp(channel, '3') == 1
 wavearray_ch3 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch3');
 elseif strcmp(channel, '4') == 1
 wavearray_ch4 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch4');
 elseif strcmp(channel, '5') == 1
 wavearray_ch5 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch5');
 elseif strcmp(channel, '6') == 1
 wavearray_ch6 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch6');
 elseif strcmp(channel, '7') == 1
 wavearray_ch7 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch7');
 elseif strcmp(channel, '8') == 1
 wavearray_ch8 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch8');
 elseif strcmp(channel, '9') == 1
 wavearray_ch9 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch9');
 elseif strcmp(channel, '10') == 1
 wavearray_ch10 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch10');
 elseif strcmp(channel, '11') == 1
 wavearray_ch11 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch11');
 elseif strcmp(channel, '12') == 1
 wavearray_ch12 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch12');
 elseif strcmp(channel, '13') == 1
 wavearray_ch13 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch13');
end

C-6
else if strcmp(channel, '14') == 1
 wavearray_ch14 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch14');
else if strcmp(channel, '15') == 1
 wavearray_ch15 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch15');
else if strcmp(channel, '16') == 1
 wavearray_ch16 = TTX.ReadWavesV(store);
 save(filename, '-append', 'wavearray_ch16');
end
Experiments were grouped into eight groups, with five subgroups each for high frequency microstimulation with current amplitudes of 0.0, 0.1, 0.2, 0.3 and 0.4 mA (see Listing D.1)

Listing D.1: groupdict.py

groupdict = {

'Stiff_Apo_Sham':
(("NiotrodeChronic240910d", (("01", "02", "03", "04", "05", "06", "07", "08", "09"))),
(("NiotrodeChronic240910d", (("01", "02", "03", "04", "05", "06", "07", "08", "09"))),

'Stiff_Apo_Lesioned':
(("NiotrodeChronic270910", (("01", "02", "03", "04", "05", "06", "07", "08", "09"))),
(("NiotrodeChronic240910c", (("01", "02", "03", "04", "05", "06", "07", "08", "09"))),

'Flex_Apo_Sham':
(("NiotrodeChronic270910c", (("01", "02", "03", "04", "05", "06", "07", "08", "09"))),
(("NiotrodeChronic270910c", (("01", "02", "03", "04", "05", "06", "07", "08", "09"))),

'Flex_Apo_Lesioned':
(("NiotrodeChronic270910a", (("01", "02", "03", "04", "05", "06", "07", "08", "09"))),
(("NiotrodeChronic270910b", (("01", "02", "03", "04", "05", "06", "07", "08", "09"))),
(("NiotrodeChronic270910d", (("01", "02", "03", "04", "05", "06", "07", "08", "09"))),

'Stiff_Sham_NaCl_0.0mA':
(("NiotrodeChronic270810", (("03", "04", "05"), ("06", "07", "08"), "11", "12", "13"), ("18", "19", "20"), ("27", "28", "29")),
(("NiotrodeChronic020910a", (("03", "04", "05"), ("06", "07", "08"), "11", "12", "13"), ("18", "19", "20"), ("27", "28", "29")),
(("NiotrodeChronic300810", (("03", "04", "05"), ("06", "07", "08"), ("11", "12", "13"), ("18", "19", "20"), ("27", "28", "29")),
(("NiotrodeChronic210910a", (("02", "03", "04"), ("05", "06", "07")),
(("NiotrodeChronic300810b", (("02", "03", "04"), ("05", "06", "07")),
(("NiotrodeChronic300910a", (("02", "03", "04"), ("05", "06", "07")),

'Flex_Sham_NaCl_0.0mA':
(("NiotrodeChronic300910a", (("03", "04", "05"), ("06", "07", "08"), ("11", "12", "13"), ("18", "19", "20"), ("27", "28", "29")),
(("NiotrodeChronic160910a", (("03", "04", "05"), ("06", "07", "08"), ("11", "12", "13"), ("18", "19", "20"), ("27", "28", "29")),
(("NiotrodeChronic250910a", (("02", "03", "04"), ("05", "06", "07")),
(("NiotrodeChronic170910", (("02", "03", "04"), ("05", "06", "07")),
(("NiotrodeChronic130910d", (("02", "03", "04"), ("05", "06", "07")),

'Stiff_Lesioned_NaCl_0.0mA':
(("NiotrodeChronic260810", (("03", "04", "05"), ("06", "07", "08"), ("11", "12", "13"), ("18", "19", "20"), ("27", "28", "29")),
(("NiotrodeChronic210910b", (("02", "03", "04"), ("05", "06", "07")),

"D-3"
The step wise procedure of data analysis is listed in Listing D.2). Wavetrain data were merged to receive continuous wavetrains with data before, during
and after high frequency microstimulation (see functions getmergedwave\-traindatafiles(path, groupdict, groupname) in Listing D.4). Then, the stimulation artefact was found using gradient based edge detection Listing D.3, edgedetection(data), and removed from the unfiltered wavetrain data. Statistical parameters were calculated from the wavetrain signal. Also, spike detection and clustering was performed.

Listing D.2: Main.py

```python
import getdata
import groupdict

path = '/media/BigBang/NeuroData/NeuroData2/

NiotrodeChronicExperiments

groupdict = groupdict.groupdict

groupnames = ('Stiff_Sham_NaCl_0.0mA', 'Stiff_Sham_NaCl_0.1mA', 'Stiff_Sham_NaCl_0.2mA', 'Stiff_Sham_NaCl_0.3mA', 'Stiff_Sham_NaCl_0.4mA', 'Stiff_Lesioned_NaCl_0.0mA', 'Stiff_Lesioned_NaCl_0.1mA', 'Stiff_Lesioned_NaCl_0.2mA', 'Stiff_Lesioned_NaCl_0.3mA', 'Stiff_Lesioned_NaCl_0.4mA', 'Stiff_Sham_QP_0.0mA', 'Stiff_Shamp_0.1mA', 'Stiff_Sham_QP_0.2mA', 'Stiff_Sham_QP_0.3mA', 'Stiff_Sham_QP_0.4mA', 'Stiff_Lesioned_QP_0.0mA', 'Stiff_Lesioned_QP_0.1mA', 'Stiff_Lesioned_QP_0.2mA', 'Stiff_Lesioned_QP_0.3mA', 'Stiff_Lesioned_QP_0.4mA', 'Flex_Sham_NaCl_0.0mA', 'Flex_Sham_NaCl_0.1mA', 'Flex_Sham_NaCl_0.2mA', 'Flex_Sham_NaCl_0.3mA', 'Flex_Sham_NaCl_0.4mA', 'Flex_Lesioned_NaCl_0.0mA', 'Flex_Lesioned_NaCl_0.1mA', 'Flex_Lesioned_NaCl_0.2mA', 'Flex_Lesioned_NaCl_0.3mA', 'Flex_Lesioned_NaCl_0.4mA', 'Flex_Sham_QP_0.0mA', 'Flex_Sham_QP_0.1mA', 'Flex_Sham_QP_0.2mA', 'Flex_Sham_QP_0.3mA', 'Flex_Sham_QP_0.4mA', 'Flex_Lesioned_QP_0.0mA', 'Flex_Lesioned_QP_0.1mA', 'Flex_Lesioned_QP_0.2mA', 'Flex_Lesioned_QP_0.3mA', 'Flex_Lesioned_QP_0.4mA',

for groupname in groupnames:
    print(groupname)

gedata.getmergedwave\-traindatafiles(path, groupdict, groupname)
gedata.getalignedwave\-traindata(path, groupdict, groupname)

gedata.getstatspersecond(path, groupdict, groupname)
gedata.getgroupstatdata(path, groupdict, groupname)

gedata.getspikedataforgroup(path, groupdict, groupname)

gedata.getgroupspikedata(path, groupdict, groupname)

gedata.rasterplots(path, groupname)

gedata.plotspike\-shapes(path, groupname)

gedata.getspikeinfo(path, groupname)

gedata.plotisidistribution(path, groupname)

gedata.getgroupspikeinfo(path, groupname)

gedata.exportspikeinfo(path, groupname)

gedata.exportspikedata(path, groupname)

Listing D.3: \texttt{Utils.py}

```
import Pycluster
import scipy.io
import scipy.signal
import scipy.stats
import scipy.fftpack
import os
import glob
import matplotlib.mlab

class Utils():
 def __init__(self, diri):
 self.diri = diri
 self.numnum = 'only needed for neuronav'
 self.channelconfig = {'wavearray_ch1': 1,
 'wavearray_ch2': 2,
 'wavearray_ch3': 3,
 'wavearray_ch4': 4,
 'wavearray_ch5': 5,
 'wavearray_ch6': 6,
 'wavearray_ch7': 7}
 self.wavetraindata = 'wavetraindata'
 self.spikedata = 'spikedata'
 self.results = '/results'
 self.fsample = 24414
 self.cutoff_low = 4000
 self.cutoff_high = 400
 self.offset = 50
 if diri == '':
 pass
 else:
 self.resultpath = diri+self.results
 self.spikepath = self.resultpath+'/spikes'
 self.statspath = self.resultpath+'/statspersecond'
 self.stackedwavetraindatapath = self.resultpath+/
 'stackedwavetraindata'
 self.stackedandalignedwavetraindatapath = self.resultpath+/
 'stackedandalignedwavetraindata'

 if os.path.exists(self.spikepath) == False:
 os.makedirs(self.spikepath)
 else:
 pass
 if os.path.exists(self.statspath) == False:
 os.makedirs(self.statspath)
 else:
 pass
 if os.path.exists(self.stackedwavetraindatapath) == False:
 os.makedirs(self.stackedwavetraindatapath)
 else:
 pass
 if os.path.exists(self.stackedandalignedwavetraindatapath) == False:
 os.makedirs(self.stackedandalignedwavetraindatapath)
 else:
 pass

 self.maxtime = 10000
 self.minspike = 10
 self.filtfactor_ar = 9
 self.filtfactor_sd = 5
 self.filtiv = 64
 self.windowwidth = 244140
 self.colors = ('blue', 'green', 'red', 'cyan', 'magenta', 'purple', 'yellow', 'brown', 'grey', 'black', 'blue', 'green')
self.k = 10
self.minspike = 10
self.maxspike = 50000

def bpfilt(self, data):
 #filter data by butterworth filter order 4
 #set fsample via SpikeUtils.fsampel, lower cut off freq via ←
 #high cut off frequency via SpikeUtils.Off_high
 #data: 1D array
 wlowpass = self.cutoff_low/(self.fsample/2.0)
 whighpass = self.cutoff_high/(self.fsample/2.0)
 [b, a] = scipy.signal.butter(4, wlowpass, btype='low', analog=0, ←
 output='ba')
 lowfiltsig = scipy.signal.filtfilt(b, a, data)
 [b, a] = scipy.signal.butter(4, whighpass, btype='high', analog←
 = 0, output= 'ba')
 bpfiltsig = scipy.signal.filtfilt(b, a, lowfiltsig)
 return(bpfiltsig)

def downsample(self, data, cycles):
 #downsample data by factor 2 per cycle
 #data: 1D array
 #cycle: int
 #set fsample via SpikeUtils.fsampel
 fsample = self.fsample
 for c in range(cycles):
 data = data[::2]
 fsample = fsample/2
 return(data, fsample)

def artefactfilter(self, data):
 threshold = self.filtfactor_ar*numpy.median((numpy.abs(data)←
 /0.6745))
 a = numpy.where(data > threshold)[0]
 b = numpy.where(data < -1*threshold)[0]
 artefacts = numpy.hstack((a, b))
 artefacts = numpy.unique(artefacts)
 if len(artefacts) > 0:
 extendedartefacts = []
 for i in artefacts:
 if i >= self.filtiv and i < len(data)-self.filtiv:
 extension = numpy.arange(i-self.filtiv, i+self.filtiv, 1)
 elif i < self.filtiv:
 extension=numpy.arange(0, i+self.filtiv, 1)
 elif i > len(data)-self.filtiv:
 extension=numpy.arange(i+self.filtiv, len(data), 1)
 extendedartefacts.append(extension)
 extendedartefacts = numpy.hstack(extendedartefacts)
 extendedartefacts = numpy.unique(extendedartefacts)

 data[extendedartefacts] = 0
 return(data)

def findcenter(self, data, center, counter):
 if data[center] == numpy.max(data[center-(self.filtiv/2):(center←
 +self.filtiv/2)]):
return center
else:
 if counter < 10:
 return self.findcenter(data, center+1, counter + 1)
 else:
 return 'none'
def spikedetection(self, data):
t = len(data)/self.fsample
timeinms = t*1000
threshold = self.filtfactor_sd*numpy.median((numpy.abs(data)-
/0.6745))
a = numpy.where(data > threshold)[0]
b = numpy.where(data < -1*threshold)[0]
overthreshold = numpy.hstack((a,b))
overthreshold = numpy.unique(overthreshold)
spikes = []
spiketimes = []
if len(overthreshold) < t*500:
centers = []
for i in overthreshold:
 if i > (self.filtiv+10) and i < len(data)-(self.filtiv+10):
 newcenter = self.findcenter(data, i, 0)
 if newcenter == 'none':
 pass
 else:
 centers.append(newcenter)
else:
 pass
for center in centers:
 spike = data[(center-self.filtiv/2):center+(self.filtiv/2)]
if numpy.shape(spike)[0] == 64:
 time = float(center)/float(self.fsample)*1000
 if time < timeinms:
 spikes.append(spike)
 spiketimes.append(time)
 else:
 pass
else:
 pass
print(len(spikes), len(spiketimes), timeinms)
return(spikes, spiketimes, timeinms)
def kcluster(self, spikes):
n = self.k
print('clustering '+str(len(spikes))+' spikes')
try:
 clusterids, error, nfound = Pycluster.kcluster(spikes, n, npass=10)
except ValueError:
 print('ValueError')
 clusterids = [0]
except TypeError:
 print('TypeError')
 clusterids = [0]
return(clusterids, n)
def getmfr(self, spiketimes):
um = len(spiketimes)
if num > 1:
 lastspike = spiketimes[-1]
 mfr = (num*1000.0)/lastspike
else:
 mfr = 0
return(mfr)

def getisis(self, spiketimes):
 isis = []
 for i in range(len(spiketimes)-1):
 isi = spiketimes[i+1]-spiketimes[i]
 isis.append(isi)
 return(isis)

def getspikeentropy(self, isis):
 X = scipy.linspace(1,100, num=100)
 ns, bins = numpy.histogram(isis, X, normed = 1)
 n = ns[numpy.where(ns>0)]
 h = numpy.divide(numpy.array(n, numpy.float), numpy.sum(n))
 H = -1*numpy.sum(h *numpy.log2(h))
 return(H)

def getdatawindow(self, data):
 if numpy.mod(len(data), self.windowwidth) == 0:
 data = numpy.reshape(data, (-1, self.windowwidth))
 else:
 data = data[0:int(len(data)/float(self.windowwidth))]:self.windowwidth
 return self.getdatawindow(data)
 rms = numpy.sqrt(float(numpy.sum(numpy.power(data,2)))/float(len(data)))
 #print(data)
 medians = []
 rmss = []
 for i, row in enumerate(data):
 rms = numpy.sqrt(float(numpy.sum(numpy.power(row,2)))/float(len(row)))
 rmss.append(rms)
 median = numpy.median(row)
 medians.append(numpy.abs(median))
 median = numpy.min(medians)
 rms = numpy.min(rmss)/1e6
 #print(median)
 #print(rms)
 if rms < 10:
 data = data[numpy.where(medians == median)][0]
 else:
 data = numpy.zeros(self.windowwidth)
 return(data)

def quickview(self, allchdata, name):
 fig = pylab.figure()
 ax = fig.add_subplot(1,1,1)
 offset = 50
 for i, data in enumerate(allchdata):
 time = numpy.arange(0, len(data)*(1.0/self.fsample), 1.0/self.fsample)
 ax.plot(time, 1e6*(numpy.array(data)+offset*i, color = 'blue'))
 ax.set_xlabel('time in s')
 ax.set_title(name)
 ax.set_ylabel('potential in 1e-6 V')
def neuronav(self, matfiles, area, dp):
 for key in self.channelconfig.keys():
 if 'wavearray' in key:
 fig = pylab.figure(figsize=(15, 5))
 ax = fig.add_subplot(1, 1, 1)
 for i, matfile in enumerate(matfiles):
 num = string.split(matfile, '_')[self.numnum]
 matdata = scipy.io.loadmat(matfile)
 data = matdata[key][:, 0]
 data = self.artefactfilter(data)
 data = data[:0:dp]
 data, fsample = self.downsample(data, 4)
 time = numpy.arange(0, len(data) / (1.0 / fsample), 1.0 / fsample)
 ax.plot(time, (1e6 * data) + (self.offset * i), color='blue',
)
 ax.set_title(area)
 ax.set_xlabel('time in s')
 ax.set_ylabel('potential in 1e-6 V')

 if os.path.exists(self.resultpath + '/neuronav') == False:
 os.makedirs(self.resultpath + '/neuronav')
 channel = self.channelconfig[key]
 ch = str(channel)
 pylab.savefig(self.resultpath + '/neuronav/' + area + '_' + ch + '.svg')

 return

def getrms(self, wavetraindata):
 rms = numpy.sqrt(float(numpy.sum(numpy.power(wavetraindata, 2))) /
 float(len(wavetraindata)))
 rms = rms * 1e6
 return rms

def getpsd(self, wavetraindata):
 pxx, freqs = matplotlib.mlab.psd(wavetraindata, 512, self.
 fsample)
 pxx = numpy.mean(pxx)
 return (pxx)

def getsignalentropy(self, wavetraindata):
histogram, bins = numpy.histogram(wavetraindata, bins=100, normed=1)
histogram_length = numpy.sum(histogram)
print(histogram_length, len(data))

h_i = []
for h in histogram:
p_i = float(h) / histogram_length
if p_i != 0:
h_i = p_i * (numpy.log2(p_i))
else:
pass
entropy = -1*numpy.sum(h_is)
print(entropy)
return (entropy)

 def getsignalentropy(self, wavetraindata):
 num = len(wavetraindata)
if num > 0:
 X = scipy.linspace(1, 100, num=100)
ns, bins = numpy.histogram(wavetraindata, X, normed = 1)
n = ns[numpy.where(ns>0)]
h = numpy.divide(numpy.array(n, numpy.float), numpy.sum(n))
H = -1 * numpy.sum(h * numpy.log2(h))
else:
 H = 0
return(H)

def chunkdata(self, data, chunksizeinsec):
 dp = len(data)
 freq = self.fs

 exess = numpy.mod(dp, (freq * chunksizeinsec))
data = data[:0:dp-exess]
splitf = int(len(data) / (freq * chunksizeinsec))

 chunkeddata = numpy.reshape(data, (splitf, -1))
return(chunkeddata)

def getstats_persecond(self, matfile):
 matfileout = string.split(matfile, '/*')[1][-1]
 matfileout = string.replace(matfileout, '"', '')
 matfileout = string.replace(matfileout, 'stackedandalignedwavetraindata', 'stats_persecond')

 if os.path.exists(self.statspath + '/*=matfileout):
 print('stats per second data already exists, skipping stats')
else:
 print(matfile)
 matdata = scipy.io.loadmat(matfile)
datadict = {}
for key in self.channelconfig.keys():
 print(key)
 channel = string.split(key, '_')[-1]
data = matdata[key][:, 0]
data = self.bpfilt(data)

 rms = []
 psd = []
 entropy = []
 chunkeddata = self.chunkdata(data, 1.0)
 for chunk in chunkeddata:
 rms.append(self.getrms(chunk))
 psd.append(self.getpsd(chunk))
 entropy.append(self.getsignalentropy(chunk))

 #print(len(rms), rms)
 #print(len(psd), psd)
 #print(len(entropy), entropy)
 datadict['rms' + channel] = rms
datadict['psd' + channel] = psd
datadict['entropy' + channel] = entropy

 print('saving ' + self.statspath + '/' + matfileout)
scipy.io.savemat(self.statspath + '/' + matfileout, datadict)

def mergewavetraindata(self, matfiles, group, nexp):
 matfile = matfiles[0]
 matfileout = string.split(string.split(matfile, '/*')[1], '.')

 if os.path.exists(self.stackespeciallydata + '/' + matfileout):
 print('merged wavetraindata already exist, skipping this step')
else:
 stackedwavetrainadatadict = {}
 for key in self.channelconfig.keys():
 stackchdata = []
 for matfile in matfiles:
 matdata = scipy.io.loadmat(matfile)
 stackchdata.append(matdata[key])
 stackchdata = numpy.vstack(stackchdata)
 stackedwavetrainadatadict[key] = stackchdata

 matfileout = string.split(string.split(matfile, '/')[-1], '_')
 matfileout = 'stackedwavetrainadata_' + group + '_matfileout[0]' + '...' + matfileout[1] + '_matfileout[2]' + '...' + str(nexp) + '.mat'
 print('saving ' + self.stackedwavetrainadatapath + '/' + matfileout, self.stackedwavetrainadatadict)

 def removedoubles(self, spikes, spiketimes):
 newspiketimes = []
 newspikes = []
 prevtime = 0
 for i in range(len(spiketimes)):
 time = int(spiketimes[i])
 if prevtime == time:
 pass
 else:
 newspiketimes.append(spiketimes[i])
 newspikes.append(spikes[i])
 prevtime = time
 return (newspikes, newspiketimes)

 def rearrangespikedata(self, spikes, spiketimes, clusterids, totaltime):
 newtime = numpy.arange(totaltime)
 newtime = numpy.array(newtime, 'float')
 newclus = numpy.zeros(len(newtime))
 newclus = numpy.array(newclus, 'float')

 newspikes = numpy.zeros((len(spikes), len(spikes[0])+2))

 for i in range(len(spikes)):
 t = spiketimes[i]
 c = clusterids[i]
 s = spikes[i]**e6
 newspikes[i][0] = t
 newspikes[i][1] = c
 newspikes[i][2:] = s
 #print(newspikes)
 spiketimecounter = 0
 for i in range(len(newtime)):
 if spiketimecounter > len(spiketimes) - 1:
 newtime[i] = numpy.nan
 newclus[i] = numpy.nan
 elif i == int(spiketimes[spiketimecounter]):
 newtime[i] = spiketimes[spiketimecounter]
 newclus[i] = clusterids[spiketimecounter]
 spiketimecounter = spiketimecounter + 1
 else:
 newtime[i] = numpy.nan
 newclus[i] = numpy.nan
 return(newspikes, newtime, newclus)

 def alignspikedata(self, spikes, spiketimes, clusterids):
spikes = spikes
spiketimes = numpy.array(spiketimes)
clusterids = numpy.array(clusterids)

if len(spikes) > 0:
 timesinspikes = spikes[:, 0]
 differences = numpy.setdiff1d(spiketimes, timesinspikes)
 differenceswithoutnan = numpy.isfinite(differences)
 for differencewithoutnan in differenceswithoutnan:
 indexestodelete = numpy.where(spiketimes == differencewithoutnan)[0]
 spiketimes[indexestodelete] = numpy.nan
 clusterids[indexestodelete] = numpy.nan
 differences = numpy.setdiff1d(timesinspikes, spiketimes)
 differenceswithoutnan = numpy.isfinite(differences)
 rowstodeletefromspikes = []
 for differencewithoutnan in differenceswithoutnan:
 rowstodeletefromspikes.append(numpy.where(timesinspikes == differencewithoutnan)[0][0])
 spikes = numpy.delete(spikes, rowstodeletefromspikes, 0)
 spiketimes = spikes[:, 0]

if len(spikes) == len(spiketimes[numpy.isfinite(spiketimes)]) == len(clusterids[numpy.isfinite(clusterids))):
 pass
else:
 print('Warning: spikeshapes and clusters do not match')

spikes = []
spiketimes = []
clusterids = []

return (spikes, spiketimes, clusterids)

def filterspikes(self, spikes):
 #print(len(spikes))
 rows, cols = numpy.shape(spikes)
 rowstodeletefromspikes = []
 for row in range(rows):
 spike = spikes[row, 2::]
 toobig = numpy.where(numpy.abs(spike) > 150)[0]
 if len(toobig) > 0:
 #print('too big')
 rowstodeletefromspikes.append(row)
 else:
 pass
 if numpy.max(spike) < 30:
 #print('too small')
 rowstodeletefromspikes.append(row)
 else:
 pass

 spikes = numpy.delete(spikes, rowstodeletefromspikes, 0)
 for clus in range(self.k):
 if len(spikes) > 0:
 spikeclusters = spikes[:, :]
 spikesinclus = numpy.where(spikeclusters == clus)[0]
 #print(clus, len(spikeclusters), len(spikesinclus))
 if len(spikesinclus) < 120:
spikes = numpy.delete(spikes, spikesinclus, 0)
else:
 pass
else:
 spikes = []
return(spikes)

def getspikesandclusters(self, matfile):
 matfileout = string.split(matfile, '/')[-1]
 matfileout = string.replace(matfileout, 'selfspiketimes' 'spikes')
 #print(matfileout)
 if os.path.exists(self.spikepath+'/'+matfileout):
 spikedata = scipy.io.loadmat(self.spikepath+'/'+matfileout)
 for channel in self.channelconfig.keys():
 ch = string.split(channel, '_')[1]
 spikes = spikedata['spikes_'+ch]
 clusterids = spikedata['clusters_'+ch]
 spiketimes = spikedata['spiketimes_'+ch]
 if len(spikes) == len(spiketimes) == len(clusterids) and len(spikes) > 0:
 spikes = self.filterspikes(spikes)
 spikes, spiketimes, clusterids = self.alignspikedata(spikes, spiketimes, clusterids)
 else:
 spikes = []
 spiketimes = []
 clusterids = []
 newspikedict['spikes_' + ch] = spikes
 newspikedict['spiketimes_' + ch] = spiketimes
 newspikedict['clusters_' + ch] = clusterids
 else:
 matdata = scipy.io.loadmat(matfile)
 datadict = []
 for key in matdata.keys():
 if key in self.channelconfig.keys():
 shortkey = string.split(key, '_')[-1]
 data = matdata[key][:, 0]
 data = self.bpfilt(data)
 spikes, spiketimes, timeinms = self.spikedetection(data)
 spikes, spiketimes = self.removedoubles(spikes, spiketimes)
 clusterids, n = self.kcluster(spikes)
 if len(spikes) == len(spiketimes) == len(clusterids):
 spikes, spiketimes, clusterids = self.rearrangespikedata(spikes, spiketimes, clusterids, timeinms)
 spikes = self.filterspikes(spikes)
 spikes, spiketimes, clusterids = self.alignspikedata(spikes, spiketimes, clusterids)
 else:
 spikes = []
 spiketimes = []
 clusterids = []
 datadict['spikes_' + shortkey] = spikes
 datadict['spiketimes_' + shortkey] = spiketimes
 datadict['clusters_' + shortkey] = clusterids
 else:
 pass
 scipy.io.savemat(self.spikepath+'/'+matfileout, datadict)

def stripmatfile(self, matfile):

D-18
matdata = scipy.io.loadmat(matfile)
for key in matdata.keys():
 if 'wavearray_' in key:
 dp = int(len(matdata[key]) / 2)
 data = matdata[key]
 data = data[:, dp]
 matdata[key] = data
scipy.io.savemat(matfile, matdata)

def align_wavetraindata(self, matfile):
 matfileout = string.split(matfile, '/')[-1]
 if os.path.exists(self.stackedandalignedwavetraindata + '/' + matfileout):
 print('wavetraindata are already aligned, skipping that step')
 return
 stackedandalignedwavetraindata = {}
 stackedandalignedwavetraindata = scipy.io.loadmat(matfile)

 lendata_actual = []
 for key in self.channelconfig.keys():
 data = stackedwavetraindata[key]
 data = data.flatten()
 data = self.edgedetection(data)
 stackedandalignedwavetraindata[key] = data
 lendata_actual.append(len(data))

 lendata_target = numpy.zeros(7)
 lendata_target[:] = self.fsample * 60 * 2

 #print(lendata_actual, lendata_target)
 if numpy.array_equal(lendata_actual, lendata_target):
 print('saving +self.stackedandalignedwavetraindata/' + matfileout)
 scipy.io.savemat(self.stackedandalignedwavetraindata + '/' + matfileout, stackedandalignedwavetraindata)
 stackedandalignedwavetraindata/' + matfileout)
 return

 def edgedetection(self, data):
 gradient = numpy.gradient(data)
 threshold = numpy.abs(numpy.mean(data)) * 10
 overthreshold = numpy.where(gradient > threshold)
 underthreshold = numpy.where(gradient < (-1 * threshold))
 sixtyseconds = self.fsample * 60

 if len(overthreshold[0]) > 0 and len(underthreshold[0]) > 0:
 thresholds = (overthreshold[0][0], overthreshold[0][-1],
 underthreshold[0][0], underthreshold[0][-1])

 leftedge = numpy.min(thresholds)
 rightedge = numpy.max(thresholds)

 #print(leftedge, rightedge)

 if leftedge - sixtyseconds > 0 and rightedge - sixtyseconds > 0:
 newdata = numpy.hstack((data[leftedge - sixtyseconds : leftedge],
 data[rightedge - sixtyseconds :])
 else:
 newdata = numpy.hstack((data[:, leftedge], data[rightedge :]))
 else:
 newdata = numpy.hstack((data[:, sixtyseconds:], data[len(data) - sixtyseconds :]))
else:
 newdata = numpy.hstack((data[0:sixtyseconds], data[len(data)-sixtyseconds::]))
else:
 newdata = numpy.hstack((data[0:sixtyseconds], data[len(data)-sixtyseconds::]))

print(len(newdata))

edges = (leftedge, rightedge)
space = numpy.zeros(rightedge-leftedge)
newdata = numpy.hstack((data[0:leftedge], space, data[rightedge-::]))
pylab.plot(data[:10], lw=3)
pylab.plot(newdata[:10])
pylab.show()

return(newdata)

def spikematrixtospikedict(self, spikematrix):
 spikedict = {}
 for spike in spikematrix:
 clus = spike[1]
 if clus in spikedict.keys():
 spikedict[clus].append(spike)
 else:
 spikedict[clus] = []
 spikedict[clus].append(spike)
 return(spikedict)

def spikedicttospikematrix(self, spikedict):
 spikematrix = []
 for key in spikedict.keys():
 clus = key
 spikes = spikedict[key]
 for spike in spikes:
 spikematrix.append(spike)
 if len(spikematrix) > 0:
 spikematrix = numpy.vstack(spikematrix)
 else:
 pass
 # print(nump.shape(spikematrix))
 return(spikematrix)

def getinfofromspiketimes(self, spiketimes):
 n = float(len(spiketimes))
 isis = self.getisis(spiketimes)
 hist, bins = numpy.histogram(isis, bins = 50, normed = 1)
 entropy = self.getspikeentropy(isis)
 isimedian = numpy.median(isis)
 alphaparams = scipy.stats.alpha.fit(isis)
 gammafit_a, gammafit_loc, gammafit_scale = scipy.stats.gamma.fit(isis)
 gammacurve = scipy.stats.gamma.pdf(bins, gammafit_a, loc=gammafit_loc, scale=gammafit_scale)

 return(n, entropy, isimedian, (hist, bins), (gammafit_a, gammafit_loc, gammafit_scale), gammacurve)
import glob
import shutil
import scipy.stats
import pickle

def getmergedwavetraindatafiles(path, groupdict, groupname):
 group = groupdict[groupname]
 for exp in group:
 diri = path + '/Experiments/+exp[0]
 U = Utils(diri)
 if len(exp[1]) == 9:
 cyclefiles = []
 nexp = 1
 for fid in exp[1]:
 fname = glob.glob(diri + '/+wavetraindata/+/'+fid+_fid+')'[0]
 size = os.path.getsize(fname)
 if size < 70000000:
 cyclefiles.append(fname)
 else:
 print('warning: '+fname+' file size exceeds limit, file → stripped')
 U.stripmatfile(fname)
 cyclefiles.append(fname)
 U.mergewavetraindata(cyclefiles, groupname, nexp)
 elif len(exp[1]) > 3 or len(exp[1]) == 2:
 for n, cycle in enumerate(exp[1]):
 nexp = n + 1
 cyclefiles = []
 for fid in cycle:
 fname = glob.glob(diri + '/+wavetraindata/+/'+fid+_fid+')'[0]
 size = os.path.getsize(fname)
 if size < 70000000:
 cyclefiles.append(fname)
 else:
 print('warning: '+fname+' file size exceeds limit, file → stripped')
 U.stripmatfile(fname)
 cyclefiles.append(fname)
 U.mergewavetraindata(cyclefiles, groupname, nexp)
 else:
 cycle = exp[1][0]
 nexp = 1
 cyclefiles = []
 for fid in cycle:
 fname = glob.glob(diri + '/+wavetraindata/+/'+fid+_fid+')'[0]
 size = os.path.getsize(fname)
 if size < 70000000:
 cyclefiles.append(fname)
 else:
 print('warning: file size exceeds limit, file stripped')
 U.stripmatfile(fname)
 cyclefiles.append(fname)
 U.mergewavetraindata(cyclefiles, groupname, nexp)
 def getalignedwavetraindatafiles(path, groupdict, groupname):
 group = groupdict[groupname]
 for exp in group:
 diri = path + '/Experiments/+exp[0]
 U = Utils(diri)
 stackedwavetraindatafiles = glob.glob(diri + '/results/+stackedwavetraindata/+groupname+mat')
 for stackedwavetraindatafile in stackedwavetraindatafiles:
 U.align_wavetraindata(stackedwavetraindatafile)
```python
def getstatspersecond(path, groupdict, groupname):
    group = groupdict[groupname]
    for exp in group:
        diri = path+'/Experiments/+/exp[0]
        U = Utilities(diri)
        stackedandalignedwavetraindatafiles = glob.glob(diri+'/+results/stackedandalignedwavetraindata/*groupname='+groupname+'.*.mat')
        for stackedandalignedwavetraindatafile in stackedandalignedwavetraindatafiles:
            U.getstats_persecond(stackedandalignedwavetraindatafile)

def getspikedataforgroup(path, groupdict, groupname):
    group = groupdict[groupname]
    for exp in group:
        diri = path+'/Experiments/+/exp[0]
        U = Utilities(diri)
        stackedandalignedwavetraindatafiles = glob.glob(diri+'/+results/stackedandalignedwavetraindata/*groupname='+groupname+'.*.mat')
        for stackedandalignedwavetraindatafile in stackedandalignedwavetraindatafiles:
            U.getspikesandclusters(stackedandalignedwavetraindatafile)

def groupstatsdata(path, groupdict, groupname):
    group = groupdict[groupname]
    grouppath = path+'/'+Groups+'/'+groupname
    if os.path.exists(grouppath+'/'+'stats'):
        pass
    else:
        os.makedirs(grouppath+'/'+'stats')
    statfilestripped = glob.glob(path+'/Experiments/+/results/stackspersecond/stacks*stats/+/+groupname='+'.*.mat')
    for statfilestripped in statfilestripped:
        shutil.copyfile(statfilestripped, grouppath+'/'+'stats/+/+string.+/statfilesstripped,/+groupname=['+'.'][::-1])

def groupspikedata(path, groupdict, groupname):
    group = groupdict[groupname]
    grouppath = path+'/'+Groups+'/'+groupname
    if os.path.exists(grouppath+'/'+'spikes'):
        pass
    else:
        os.makedirs(grouppath+'/'+'spikes')
    spikefilestripped = glob.glob(path+'/Experiments/+/results/spikes/spikes+/+groupname='+'.*.mat')
    for spikefilestripped in spikefilestripped:
        shutil.copyfile(spikefilestripped, grouppath+'/'+'spikes/+/+string.+/spikefilestripped,/+groupname=['+'.'][::-1])

def exportstatsgroup(path, groupname):
    colors = ('blue', 'green', 'red', 'cyan', 'magenta', 'purple', ' yellow', 'brown', 'grey', 'black', 'blue', 'green', 'red', ' cyan', 'magenta', 'purple', ' yellow', 'brown', 'grey', 'black')
    channels = (ch1, ch2, ch3, ch4, ch5, ch6, ch7, ch8)
    results = ('rms', 'psd', 'entropy')
    grouppath = path+'/'+Groups+'/'+groupname
    statfiles_stripped = glob.glob(grouppath+'/+'+'stats'+'+'+'statspersecond'+')
```
for result in results:
 for c, channel in enumerate(channels):
 targetkey = result+"-"+channel
 if os.path.exists(grouppath+'/'+stats+'/'+result) == False:
 os.makedirs(grouppath+'/'+stats+'/'+result)
 else:
 pass
 targetpath = grouppath+'/'+stats+'/'+result
 targetdata = []
 for statfile_stripped in statfiles_stripped:
 print(statfile_stripped)
 statdata_stripped = scipy.io.loadmat(statfile_stripped)
 for key in statdata_stripped.keys():
 if key == targetkey:
 data = numpy.array(statdata_stripped[key]).flatten()
 print(statfile_stripped, key, len(data))
 preHFSmedian = numpy.median(data[0:60])
 normdata = data/preHFSmedian
 print(len(normdata))
 targetdata.append(normdata)
 else:
 pass
 if len(targetdata) > 1:
 targetdata = numpy.vstack(targetdata)
 numpy.savetxt(targetpath+"-result-"+groupname+"-"+channel+".txt",
 numpy.transpose(targetdata), delimiter = " ")
 foo = open(targetpath+"-result-"+groupname+"-"+channel+".txt",
 "w")
 #alldata = string.replace(alldata, 'nan', '')
 #alldata = string.replace(alldata, 'inf', '')
 #alldata = string.replace(alldata, '0', '0')
 foo.close()
 foo = open(targetpath+"-result-"+groupname+"-"+channel+".txt",
 "w")
 foo.write(alldata)
 foo.close()
 else:
 pass
def rasterplots(path, groupname):
 U = Util('')
 colors = ('blue', 'green', 'red', 'cyan', 'magenta', 'purple', 'yellow', 'brown', 'grey', 'blue', 'green', 'red', 'cyan', 'magenta', 'purple', 'yellow', 'brown', 'grey', 'black')
 channels = ('ch1', 'ch2', 'ch3', 'ch4', 'ch5', 'ch6', 'ch7')
 grouppath = path+"/Groups/+groupname"
 if os.path.exists(grouppath+"/spikes/rasterplots") == False:
 os.makedirs(grouppath+"/spikes/rasterplots")
 else:
 pass
 targetpath = grouppath+"/spikes/rasterplots"
 spikefiles_stacked = glob.glob(grouppath+"/spikes/"+"spikes"+"/spikes")
 for spikefile_stacked in spikefiles_stacked:
 figname = string.split(spikefile_stacked, '\/')[-1][0:4]+'.svg'
 figfileout = targetpath+'/'+figname
 if os.path.exists(figfileout):
 print('spikesshapes exist, skipping this step')
 else:
 fig = pylab.figure()
 spikedata = scipy.io.loadmat(spikefile_stacked)
allch = []
for c, channel in enumerate(channels):
 ch = int(string.strip(channel, 'ch'))
clusterkey = '_clusters' + channel
clusterids = numpy.linspace(0, 120000/1000, 120000)
ax = fig.add_subplot(4, 2, ch)
ax.set_title(channel)
ax.plot(time, numpy.zeros(len(time)), lw=0)

spikes = numpy.array(spikedata[clusterkey]).flatten()
spikesincluster = numpy.where(clusterids == clus)[0]
if len(spikesincluster) > 0:
 cluster = numpy.zeros(len(spikesincluster))
else:
 pass
 ax.bar(59, U.k+1, width = 2, color = 'grey')
#ax.set_yticklabels(yticklabels)
ax.set_ylim((0, 11))
fig.subplots_adjust(wspace = 0.2, hspace = 0.6)
fig.savefig(figfileout)
fig.clf()
pylab.close()

def plotspikes(path, groupname):
 U = Utils()
 colors = ('blue', 'green', 'red', 'cyan', 'magenta', 'purple', 'yellow', 'brown', 'grey', 'black')
channels = ('ch1', 'ch2', 'ch3', 'ch4', 'ch5', 'ch6', 'ch7')
grouppath = path + '/Groups/' + groupname

if os.path.exists(grouppath + '/spikes/spikesshapes') == False:
 os.makedirs(grouppath + '/spikes/spikesshapes')
 pass

targetpath = grouppath + '/spikes/spikesshapes'
spikefile_stacked = glob.glob(grouppath + '/spikes/+spikes/+spikes/+')
for spikefile_stacked in spikefiles_stacked:
 figname = string.split(spikefile_stacked, '/')[-1][0:-4] + '.svg'
 figfileout = targetpath + '/'+figname
 if os.path.exists(figfileout):
 print('spikes shapes exist, skipping this step')
 else:
 fig = pylab.figure()
 spikedata = scipy.io.loadmat(spikefile_stacked)
 allch = []
 for c, channel in enumerate(channels):
 ch = int(string.strip(channel, 'ch'))
 spikekey = '_spikes' + channel
 ax = fig.add_subplot(4, 2, ch)
for key in spikedata.keys():
 if key == spikekey:
 spikes = spikedata[key]
spikedict = U.spspikematrixtospikedict(spikes)
for key in spikedict.keys():
 clus = int(key)
spikes = spikedict[key]
for i in range(20):
 spike = spikes[i][2::]
 ax.plot(spike, lw=1, color = colors[clus])
else:
 pass
 ax.set_title(channel)
 ax.set_xlim((-150, 150))
else:
 pass
fig.subplots_adjust(wspace = 0.2, hspace = 0.6)
fig.savefig(figfileout)
fig.clf()
pylab.close()

def getspikeinfo(path, groupname):
 U = Utils()
 channels = ('ch1', 'ch2', 'ch3', 'ch4', 'ch5', 'ch6', 'ch7')
 grouppath = path+'Groups/'+groupname
 if os.path.exists(grouppath+'/spikes/spikeinfo')==False:
 os.makedirs(grouppath+'/spikes/spikeinfo')
 else:
 pass
 targetpath = grouppath+'/spikes/spikeinfo'
 spikefiles = glob.glob(grouppath+'/*spikes_*.pkl')
 for spikefile in spikefiles:
 spikedata = scipy.io.loadmat(spikefile)
 for channel in channels:
 ch = int(string.strip(channel, 'ch'))
 clusterkey = 'clusters_'+channel
 clusterids = spikedata[clusterkey]

 spikekey = 'spikes_+channel
 spikeshapes = spikedata[spikekey]

 if len(clusterids) > 0 and len(spikeshapes) > 0:
 clusterids = numpy.array(clusterids).flatten()
 spikeshapeclusterids = spikeshapes[:, 0]
 spiketimes = spikeshapes[:, 1]
 for clus in range(U.k):
 spikesinclusterindexes = numpy.where(spikeshapeclusterids == clus)[0]
 spikeshapecluster = spikeshapes[spikeshapeclusterids == clus][0]
 spikeshapesincluster = spikeshapes[spikeshapeclusterindexes, 2::]
 spiketimesincluster = spiketimes[spikeshapesinclusterindexes
 spiketimesincluster == spikeshapesinclusterindexes]
 spikesincluster = numpy.where(clusterids == clus)[0]
 if len(spiketimesincluster) > 0:
 preHFSspikes = spiketimesincluster[numpy.where(spiketimesincluster<60000)]
 postHFSspikes = spiketimesincluster[numpy.where(spiketimesincluster>60000)]
 preHFSspikeshapes = spikeshapesincluster[numpy.where(preHFSspikes<spiketimesincluster<60000)]
 postHFSspikeshapes = spikeshapesincluster[numpy.where(preHFSspikes>spiketimesincluster>60000)]
if len(preHFSspikes) > 2 and len(postHFSspikes) > 2:
 #return(n, entropy, isimedian, (hist, bins), (gammait_a, ->
 #gammait_loc, gammait_scale), gammacurve)
preHFSparams = U.getinfofromspiketimes(preHFSspikes)
postHFSparams = U.getinfofromspiketimes(postHFSspikes)

ns = preHFSparams[0], postHFSparams[0]
entropys = preHFSparams[1], postHFSparams[1]
isimedians = preHFSparams[2], postHFSparams[2]

print(ns)
print(len(preHFSspikeshapes), len(postHFSspikeshapes))
isidistributions = preHFSparams[3][1], preHFSparams[3][0], ->
 postHFSparams[3][1], postHFSparams[3][0]
gamma_shapes = preHFSparams[4][0], postHFSparams[4][0]
gamma_locs = preHFSparams[4][1], postHFSparams[4][1]
gamma_scales = preHFSparams[4][2], postHFSparams[4][2]
gammacurves = preHFSparams[5], postHFSparams[5]

shapes = preHFSspikeshapes, postHFSspikeshapes

spikeinfokey = ‘spikeinfo_’+channel+’_clus’+str(clus)
spikeshapekey = ‘spikeshape_’+channel+’_clus’+str(clus)

spikeinfodict[spikeinfokey] = [ns, isimedians, entropys, <-
 isidistributions, gamma_shapes, gamma_locs, <-
 gamma_scales, gammacurves]
spikeinfodict[spikeshapekey] = shapes

else:
 pass
else:
 output = open(spikeinfoout, ‘wb’)
pickle.dump(spikeinfodict, output)
output.close()

def plotisdistribution(path, groupname):
 U = Utils(‘’)
)
grouppath = path+’/Groups’+’/+groupname

if os.path.exists(grouppath+’/spikes/isdistributionplots’): == <-
 False:
 os.makedirs(grouppath+’/spikes/isdistributionplots’)
else:
 pass

targetpath = grouppath+’/isdistributionplots’
spikefiles = glob.glob(grouppath+’/+spikes/spikeinfo/spikeinfo_’+<-
 ’’)

for spikefile in spikefiles:
 figname = ‘isdistribution_’+string.split(spikefile, ‘/’)+<-
 ‘_clus’’)-1[0:-4]+’.svg’
 figfileout = targetpath+’/+figname
if os.path.exists(figfileout):
 print(‘is distribution plots exist, skipping this step’)
 else:
 pkl_file = open(spikefile, ‘rb’)
 spikedata = pickle.load(pkl_file)
pkl_file.close()
```python
fig = pylab.figure()
subplot_counter = 0
for channel in channels:
    for clus in range(U.k):
        color = colors[clus]
        subplot_counter = subplot_counter + 1
        ax = fig.add_subplot(len(channels), 2*U.k, subplot_counter)
        ax.set_xticklabels(())
        ax.set_yticklabels(())
        if subplot_counter in [1, 21, 41, 61, 81, 101, 121]:
            ax.set_ylabel(channel)
        else:
            pass
        if subplot_counter in [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]:
            ax.set_title('clus'+str(clus+1), fontsize = 12)
        else:
            pass
        subplot_counter = subplot_counter + 1
        bx = fig.add_subplot(len(channels), 2*U.k, subplot_counter)
        bx.set_xticklabels(())
        bx.set_yticklabels(())
        key = 'spikeinfo_' + 'channel' + '_clus' + str(clus)
        if key in spikedata.keys():
            clusterinfo = spikedata[key]
            isidistributions = clusterinfo[3]
            gammacurves = clusterinfo[7]

            xlim = numpy.max((numpy.max(isidistributions[0]), numpy.max(isidistributions[2])))
            ylim = numpy.max((numpy.max(isidistributions[1]), numpy.max(isidistributions[3])))

            preHFSn = isidistributions[0][0:-1]
            preHFSn[numpy.where(preHFSn > xlim)] = xlim
            preHFShist = isidistributions[1]
            preHFShist[numpy.where(preHFShist > ylim)] = ylim
            preHFSgamma = gammacurves[0][0:-1]
            preHFSgamma[numpy.where(preHFSgamma > ylim)] = ylim

            postHFSn = isidistributions[2][0:-1]
            postHFSn[numpy.where(postHFSn > xlim)] = xlim
            postHFShist = isidistributions[3]
            postHFShist[numpy.where(postHFShist > ylim)] = ylim
            postHFSgamma = gammacurves[1][0:-1]
            postHFSgamma[numpy.where(postHFSgamma > ylim)] = ylim

            ax.bar(preHFSn, preHFShist, color = color, edgecolor = color)
            ax.plot(preHFSn, preHFSgamma, color = 'black', linestyle = '--', lw = 1)
            bx.bar(postHFSn, postHFShist, color = color, edgecolor = color)
            bx.plot(postHFSn, postHFSgamma, color = 'black', linestyle = '--', lw = 1)
        ax.set_xlim((0, xlim))
        ax.set_ylim((0, ylim))
        bx.set_xlim((0, xlim))
        bx.set_ylim((0, ylim))
    else:
        pass
fig.subplots_adjust(wspace = 0.2, hspace = 0.6)
fig.savefig(figfileout)
fig.clf()
```
def plotspikeparamquotients(path, groupname):
 U = Utils()
 colors = ('blue', 'green', 'red', 'cyan', 'magenta', 'purple',
 'yellow', 'brown', 'grey', 'black', 'blue', 'green', 'red',
 'cyan', 'magenta', 'purple', 'yellow', 'brown', 'grey', 'black',
)
 channels = ('ch1', 'ch2', 'ch3', 'ch4', 'ch5', 'ch6', 'ch7')
 grouppath = path+'/'+Groups+'-groupname

 if os.path.exists(grouppath+'/'+spikes/spikeparamquotientplots') == False:
 os.makedirs(grouppath+'/'+spikes/spikeparamquotientplots')
 else:
 pass

 targetpath = grouppath+'/'+spikes/spikeparamquotientplots'
 spikefiles = glob.glob(grouppath+'/'+spikes/spikeinfo/spikeinfo_
 '_*')

 for spikefile in spikefiles:
 figname = 'spikeparamquotients'+string.split(spikefile, '/')
 figname = [10:-4] 'svg'
 figfileout = targetpath+'/'+figname
 if os.path.exists(figfileout):
 print('spike param quotients already plotted, skipping this step')
 else:
 pkl_file = open(spikefile, 'rb')
 spikedata = pickle.load(pkl_file)
 pkl_file.close()
 fig = pylab.figure()
 subplot_counter = 0
 for channel in channels:
 for clus in range(U.k):
 color = colors[clus]
 subplot_counter = subplot_counter + 1
 ax = fig.add_subplot(len(channels), U.k, subplot_counter)
 ax.set_xticklabels(()
 ax.set_yticklabels(()
 if subplot_counter in [1, 11, 21, 31, 41, 51, 61]:
 ax.set_ylabel(channel)
 else:
 pass
 if subplot_counter in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
 ax.set_title('clus'+str(clus+1), fontsize = 12)
 else:
 pass

 key = '_spikeinfo_[channel+'_clus'+str(clus)
 if key in spikedata.keys():
 clusterinfo = spikedata[key]
 ns = clusterinfo[0]
 isimedians = clusterinfo[1]
 entropys = clusterinfo[2]
 gamma_shapes = clusterinfo[4]
 gamma_locs = clusterinfo[5]
 gamma_scales = clusterinfo[6]

 width = 0.75
 space = 0.25
 barcounter = 0
 maxheight = 10
 for q in (ns, isimedians, entropys, gamma_scales, gamma_locs,
 gamma_scales):
 barheight = q[1]/q[0]
 if barheight > 10:

D-28
barheight = 10
else:
 pass
barloc = 0.5 + (barcounter * width) + (barcounter * space)
barcounter = barcounter + 1
alpha = 1.0 / 6.0 * barcounter
edgecolor = color, alpha = alpha
ax.set_xlim((0, barloc+width+0.5))
ax.set_ylim((0, 10))
else:
 pass
fig.subplots_adjust(wspace = 0.2, hspace = 0.6)
fig.savefig(figfileout)
fig.clf()
def groupspikeinfo(path, groupname):
 U = Utils()
 channels = ('ch1', 'ch2', 'ch3', 'ch4', 'ch5', 'ch6', 'ch7')
grouppath = path+'/Groups/'+groupname
if os.path.exists(grouppath+'/spikes/exportparams') == False:
 os.makedirs(grouppath+'/spikes/exportparams')
else:
 pass
paramfileout_pkl = grouppath+'/spikes/exportparams/groupparams_spikeinfo_'+groupname+'.pkl'
spikeinfofiles = glob.glob(grouppath+'/spikes/spikeinfo/spikeinfo_*.*.pkl')
paramdict = {}
tags = []
preHFSspikesshapes = []
postHFSspikesshapes = []

preHFSsns = []
postHFSsns = []
preHFSisimedians = []
postHFSisimedians = []
preHFSentropys = []
postHFSentropys = []
preHFSgammasshapes = []
postHFSgammasshapes = []
preHFSgammalocs = []
postHFSgammalocs = []
preHFSgammascales = []
postHFSgammascales = []

for spikeinfofile in spikeinfofiles:
 pkl_file = open(spikeinfofile, 'rb')
 spikeinfo = pickle.load(pkl_file)
 pkl_file.close()
 for channel in channels:
 for clus in range(U.k):
 infokey = 'spikeinfo_'+channel+'_clus'+str(clus)
 shapekey = 'spikeshape_'+channel+'_clus'+str(clus)
 if infokey in spikeinfo.keys():
 clusterinfo = spikeinfo[infokey]
shapeinfo = spikeinfo[shapekey]
tags.append(string.split(spikeinfofile, '/')[−1][0:−4]∗"＋str(clus))
preHFSspikeshapes.append(shapeinfo[0])
postHFSspikeshapes.append(shapeinfo[1])
preHFSNs.append(clusterinfo[0][0])
postHFSNs.append(clusterinfo[0][1])
preHFSisimedians.append(clusterinfo[1][0])
postHFSisimedians.append(clusterinfo[1][1])
preHFSEntropys.append(clusterinfo[2][0])
postHFSEntropys.append(clusterinfo[2][1])
preHFSgammashapes.append(clusterinfo[4][0])
postHFSgammashapes.append(clusterinfo[4][1])
preHFSgammalocs.append(clusterinfo[5][0])
postHFSgammalocs.append(clusterinfo[5][1])
preHFSgammascalerappend(clusterinfo[6][0])
postHFSgammascalerappend(clusterinfo[6][1])
else:
 pass
ns = numpy.vstack((preHFSns, postHFSns))
isimedians = numpy.vstack((preHFSisimedians, postHFSisimedians))
entropys = numpy.vstack((preFSEntropys, postHFSentropys))
gammashapes = numpy.vstack((preHFSgammashapes, postHFSgammashapes))
gammalocs = numpy.vstack((preHFSgammalocs, postHFSgammalocs))
gammascaler = numpy.vstack((preHFSgammascaler, postHFSgammascaler))

#exportmatrix = numpy.vstack((ns, isimedians, entropys, gammashapes, gammalocs, gammascaler))

shapes = preHFSspikeshapes, postHFSspikeshapes

paramdict[‘ns’] = ns
paramdict[‘isimedians’] = isimedians
paramdict[‘entropys’] = entropys
paramdict[‘gammashapes’] = gammashapes
paramdict[‘gammalocs’] = gammalocs
paramdict[‘gammascaler’] = gammascaler
paramdict[‘spikeshapes’] = shapes
paramdict[‘tags’] = tags

numpy.savetxt(grouppath+’/spikes/exportparams/ns_spikeshape_’+→
groupname+’.txt’, numpy.transpose(ns))
numpy.savetxt(grouppath+’/spikes/exportparams/isimedians_spikeshape_’+→
groupname+’.txt’, numpy.transpose(isimedians))
numpy.savetxt(grouppath+’/spikes/exportparams/entropys_spikeshape_’+→
groupname+’.txt’, numpy.transpose(→
entropys))
numpy.savetxt(grouppath+’/spikes/exportparams/gammashapes_spikeshape_’+→
groupname+’.txt’, numpy.transpose(→
gammashapes))
numpy.savetxt(grouppath+’/spikes/exportparams/gammalocs_spikeshape_’+→
groupname+’.txt’, numpy.transpose(gammalocs))
numpy.savetxt(grouppath+’/spikes/exportparams/gammascaler_spikeshape_’+→
groupname+’.txt’, numpy.transpose(→
gammascaler))
output = open(paramfileout_pkl, 'wb')
pickle.dump(paramdict, output)
output.close()

def exportspikeinfo(path, groupname):
 U = Utilities()
 channels = ['ch1', 'ch2', 'ch3', 'ch4', 'ch5', 'ch6', 'ch7']
 grouppath = path + '/Groups/' + groupname
 spikeinfofile = grouppath + '/spikes/exportparams/' +
 groupparams_spikeinfo_ + groupname + '.pkl'
 spikeinfofileout = grouppath + '/spikes/exportparams/spikeinfo_' +
 groupname + '.pkl'
 pkl_file = open(spikeinfofile, 'rb')
 spikeinfo = pickle.load(pkl_file)
pkl_file.close()

 preHFSspikeshapes, postHFSspikeshapes = spikeinfo['spikeshapes']
 tags = spikeinfo['tags']
 ns = spikeinfo['ns']
 isimedians = spikeinfo['isimedians']
 entropys = spikeinfo['entropys']

 spikes = []
 deltans = []
 deltaisis = []
 deltahs = []
 for i in range(len(preHFSspikeshapes)):
 stack = numpy.vstack((preHFSspikeshapes[i], postHFSspikeshapes[i]))
 stackmean = numpy.mean(stack, axis = 0)
 if len(numpy.where((ns[1][i], ns[0][i], isimedians[1][i],
 isimedians[0][i], entropys[1][i], entropys[0][i]) < 0)[0]) == 0:
 deltan = float(ns[1][i] - ns[0][i])/float(ns[1][i] + ns[0][i])
 deltai = float(isimedians[1][i] - isimedians[0][i])/float(isimedians[1][i] + isimedians[0][i])
 deltah = entropys[1][i] - entropys[0][i]
 spikes.append(stackmean)
 deltans.append(deltan)
 deltaisis.append(deltai)
 deltahs.append(deltah)
 else:
 pass
 flattenedspikes = []
 flattenedtags = []
 flatteneddeltan = []
 flattenedentropie = []
 for i in range(len(spikes)):
 flattenedtags.append(tags[i])
flattenedn.append(deltans[i])
flattenedsisim.append(deltaisis[i])
flattenedentropie.append(deltahs[i])
flattenedspikes.append(spikes[i])

clusterids, n = U.kcluster(flattenedspikes)

newdict = {}
newdict['spikes'] = flattenedspikes
newdict['tags'] = flattenedtags
newdict['clusterids'] = clusterids
newdict['ns'] = flattenedn
newdict['sisim'] = flattenedsisim
newdict['entropy'] = flattenedentropie

scipy.io.savemat(spikeinfofileout, newdict)

def exportspikedata(path, groupname):
 U = Utils()
 colors = ('#0000ff', '#ff0000', '#800080', '#ffff00', '#008000', '#008080', '#0008ff', '#00ff00', '#08ff00', '#80ff00', '#8000ff', '#00ffff', '#800000', '#ff00ff')
 currents = ('0.0mA', '0.1mA', '0.2mA', '0.3mA', '0.4mA')
 channels = ('ch1', 'ch2', 'ch3', 'ch4', 'ch5', 'ch6', 'ch7')
 grouppath = path + '/Groups' + groupname

 if os.path.exists(grouppath + '/spikes/spikeexport/') == False:
 os.makedirs(grouppath + '/spikes/spikeexport')
 else:
 pass

datafile = glob.glob(path + '/Groups' + groupname + '/spikes/spikeexport/*exportparams/*.mat')[0]
data = scipy.io.loadmat(datafile)

spikes = data['spikes']
tags = data['tags']
clusterids = data['clusterids']
dn = data['ns']
disi = data['sisim']
dh = data['entropy']

sumsn = []
sumsd = []
sumsdh = []
for clus in range(U.k):
 indexes = numpy.where(clusterids == clus)[0]

 if len(spikes) > 0 and len(indexes) > 0:
 spikesinclus = spikes[indexes]
 dninclus = dn[indexes]
 diisinclus = disi[indexes]
 dhinclus = dh[indexes]
 sumsdn = append(float(numpy.sum(dninclus))/float(len(dninclus)), sumsdn)
 sumsd = append(float(numpy.sum(disinclus))/float(len(disinclus)), sumsd)
 sumsdh = append(float(numpy.sum(dhinclus))/float(len(dhinclus)), sumsdh)

 numpy.savetxt(grouppath + '/spikes/spikeexport/' + groupname + '_' + str(clus) + '_spikesinclus' + '.txt', spikesinclus)
 numpy.savetxt(grouppath + '/spikes/spikeexport/' + groupname + '_' + str(clus) + '_dninclus' + '.txt', dninclus)
 numpy.savetxt(grouppath + '/spikes/spikeexport/' + groupname + '_' + str(clus) + '_diisinclus' + '.txt', diisinclus)
 numpy.savetxt(grouppath + '/spikes/spikeexport/' + groupname + '_' + str(clus) + '_dhinclus' + '.txt', dhinclus)
stringn = ''
for sumdn in sumsdn:
 stringn = stringn + str(sumdn) + ' , '
fn = open(grouppath + '/spikes/spikeexport/' + groupname + '_sum_dn.txt', 'w')
fn.write(stringn)
fn.close()

stringi = ''
for sumdi in sumsdi:
 stringi = stringi + str(sumdi) + ' , '
fi = open(grouppath + '/spikes/spikeexport/' + groupname + '_sum_di.txt', 'w')
fi.write(stringi)
fi.close()

stringh = ''
for sumdh in sumsdh:
 stringh = stringh + str(sumdh) + ' , '
fh = open(grouppath + '/spikes/spikeexport/' + groupname + '_sum_dh.txt', 'w')
fh.write(stringh)
fh.close()

numpy.savetxt(grouppath + '/spikes/spikeexport/' + groupname + '_sum_dn.txt', sumsdn, delimiter = ' , ')
numpy.savetxt(grouppath + '/spikes/spikeexport/' + groupname + '_sum_di.txt', sumsdi, delimiter = ' , ')
numpy.savetxt(grouppath + '/spikes/spikeexport/' + groupname + '_sum_dh.txt', sumsdh, delimiter = ' , ')

Implantation Protocol for BiCIRTS chronic Experiments

expID:
projectID:
animal info:
weight:

Anaesthesia:

<table>
<thead>
<tr>
<th>time</th>
<th>substance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stereotaxy:

IAL:
IAR:
ΔIR:

Bregma: Lambda:

AP
ML
DV

DV
DV

E-3
1st Stereotaxic Target (ventrolateral Cpu, right side)

\begin{align*}
\text{AP}_{\text{CPU}} & = \text{AP}_B + 0.02 = \\
\text{ML}_{\text{CPU}} & = \text{ML}_B - 0.30 = \\
\text{DV}_{\text{CPU}} & = \text{DV}_B - 0.45 = \\
\end{align*}

2nd Stereotaxic Target (STN, right side)

\begin{align*}
\text{AP}_{\text{STN}} & = \text{AP}_{\text{IAP}} + 0.56 = \\
\text{ML}_{\text{STN}} & = \text{ML}_{\text{IAP}} - 0.26 = \\
\text{DV}_{\text{STN}} & = \text{DV}_{\text{IAP}} - 0.84 = \\
\end{align*}

Fixation Screws

\begin{align*}
= 0.30 - \text{AP}_{\text{STN}} + 0.30 = \\
= 0.10 - \text{ML}_{\text{STN}} + 0.10 = \\
\end{align*}

Ground Screw

\begin{align*}
\text{AP}_G & = \text{AP}_{\text{IAP}} + 0.25 = \\
\text{ML}_G & = \text{ML}_{\text{IAP}} + 0.25 = \\
\end{align*}

Trepanation

Fixation & Ground Screws: 0.9 mm
Injection: 1.4 mm
Recording: 2.9 mm
Reference Injection Needle

\[AP_{B,S} : \]
\[ML_{B,S} : \]
\[DV_{B,S} : \]

Target (CPu) Injection Needle

\[APCPU_{S} = AP_{B,S} + 0.02 = \]
\[MLCPU_{S} = ML_{B,S} - 0.30 = \]
\[DVCPU_{S} = DV_{B,S} - 0.45 = \]

CPu Injection

load substance:
perfuse 10 min, 1\(\mu\)l/min
wait 5 min (in situ)

Reference Electrode (Support Needle)

\[AP_{IAP,E} : \]
\[ML_{IAP,E} : \]
\[DV_{IAP,E} : \]

Target (STN) Electrode

\[AP_{STN,E} = AP_{IAP,E} + 0.56 = \]
\[ML_{STN,E} = ML_{IAP,E} - 0.26 = \]
\[DV_{STN,E} = DV_{IAP,E} - 0.84 = \]

Electrode Insertion

place Fixation & Ground Screws
place Agar 0.75% (made with NaCl 0.9%)
place electrode and navigate to target
Schedule for chronic DBS/Multisite Recording experiments – time sweep

Animal ID: ____________________________ Implant: ____________________________
Electrode: ____________________________

Multisite Recording Settings:
- TDTSys3
- Project: Niotrode wsp
- Circuit: Niotrode.rcx
- Controller: controller_1.xpc
- Data Tank: ____________________________

- TDT G&RG shortcut
- Signal ground
 - electrode shaft
 - skull screw
- WPI Isostim A320 (+)
- Signal ground connected to TDT G&RG
- Chronic plug provides 3 shortcut connector pins connected to electrode shaft (signal ground).
- Electrode recording channels 1-7 correspond to TDT recording channels 1-7 channels.
- TDT channels 8-10 connected to signal ground
- Electrode channel 8 connected to WPI Isostim A320 (-)

Noise Level:
- RMS filtered (BP 300/4000): ________________
- RMS unfiltered: ____________________________

Preconditions:
- Day after Implant: ____________________________
- CPu Lesion: ____________________________
- Injections prior to recording: ____________________________
- Previous experiments: ____________________________
- Current amplitude: ____________________________
- Stimulator: ____________________________
<table>
<thead>
<tr>
<th>time [min]</th>
<th>desc</th>
<th>name</th>
<th>num</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>rec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>rec 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>rec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>rec 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>rec 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>rec 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>rec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>rec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>rec 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>rec 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>rec 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>rec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>rec 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>rec 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>rec 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>rec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>rec 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>rec 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>rec 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>rec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>rec 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>rec 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>rec 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>rec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>rec 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>rec 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>rec 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>rec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>rec 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>rec 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>rec 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>rec 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>rec 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>rec 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>rec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>rec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>rec 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>rec 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>rec 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E-7
Schedule for chronic DBS/Multisite Recording experiments – current sweep

AnimalID: ____________________________ Implant: ______________________
Electrode: ____________________________

Multisite Recording Settings:
- TDT Sys3
- Project: Nastrode.wsp
- Circuit: Nastrode.nex
- Controller: controller_1.xpc
- Data Tank: ____________________________

- TDT G&R shortcut
- signal ground
- electrode shaft
- skull screw
- WPI Isostim A320 (+)
- signal ground connected to TDT G&R
- chronic plug provides 3 shortcut connector pins connected to electrode shaft (signal ground)
- electrode recording channels 1-7 correspond to TDT recording channels 1-7 channels
- TDT channel 8-10 connected to signal ground
- electrode channel 8 connected to WPI Isostim A320 (-)

Noise Level
- RMS filtered (BP 300/4000):
- RMS unfiltered:

Preconditions:
- Day after Implant: _______________________
- CPu Lesion: ___________________________
- Injections prior to recording: ________________
- Previous experiments: ______________________
- Current amplitude: ________________________
- Stimulator: ____________________________
<table>
<thead>
<tr>
<th>time</th>
<th>desc</th>
<th>name</th>
<th>num</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rec1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>rec2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>rec3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>rec4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>rec5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DBS1</td>
<td>Current: 0.0 mA</td>
<td>DBS Signal file: _______________________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Video file:</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>rec1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>rec2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>rec3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>rec4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>rec5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DBS2</td>
<td>Current: 0.1 mA</td>
<td>DBS Signal file: _______________________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Video file:</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>rec1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>rec2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>rec3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>rec4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>rec5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>DBS3</td>
<td>Current: 0.2 mA</td>
<td>DBS Signal file: _______________________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Video file:</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>rec1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>rec2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>rec3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>rec4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>rec5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>DBS4</td>
<td>Current: 0.3 mA</td>
<td>DBS Signal file: _______________________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Video file:</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>rec1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>rec2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>rec3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>rec4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>rec5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>DBS5</td>
<td>Current: 0.4 mA</td>
<td>DBS Signal file: _______________________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Video file:</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>rec1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>rec2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>rec3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>rec4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>rec5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Schedule for chronic DBS/Multisite Recording experiments – apomorphine test

Animal ID: ____________________________ Implant: ____________________________
Electrode: ____________________________

Multisite Recording Settings:
- TDTSys3
- Project: Niotrode.wsp
- Circuit: Niotrode.rcx
- Controller: controller_1.xpc
- Data Tank: ____________________________
- TDTG&R shortcut
- Signal ground
 - Electrode shaft
 - Skull screw
- Chronic plug provides 3 shortcut connector pins connected to electrode shaft (signal ground).
- Electrode recording channels 1-7 correspond to TDT recording channels 1-7 channel
- TDT channel 8-10 connected to signal ground

Noise Level:
- RMS filtered (BP 300/4000):
- RMS unfiltered:

Preconditions:
- Day after Implant: ____________________________
- CPu Lesion: ____________________________
- Previous experiments: ____________________________
- Apomorphine: ____________________________
DBS/Multisite Recording Scheme:

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>file name prefix</th>
<th>video file</th>
<th>recording</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>preapo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>preapo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>preapo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>preapo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>preapo</td>
<td></td>
<td>Video file: ____________________________</td>
</tr>
<tr>
<td>6</td>
<td>preapo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>preapo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>preapo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>preapo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>preapo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Apomorphine Injection: 200µl, 0.5mg/kg KG

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>action</th>
<th>video file</th>
<th>recording</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>apo</td>
<td></td>
<td>Video file: ____________________________</td>
</tr>
<tr>
<td>17</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>apo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>