
Aus dem Institut für Softwaretechnik und Programmiersprachen
der Universität zu Lübeck

Direktor: Prof. Dr. Martin Leucker

QUBE – Array Programming with
Dependent Types

Inauguraldissertation
zur

Erlangung der Doktorwürde
der Universität zu Lübeck

Aus der Sektion Informatik/Technik

vorgelegt von

Dipl.-Inf. Kai Trojahner
aus Flensburg

Lübeck 2011

1. Berichterstatter: Prof. Dr. Till Tantau

2. Berichterstatter: Dr. Clemens Grelck

Vorsitzender des Prüfungsausschusses: Prof. Dr. Martin Leucker

Tag der mündlichen Prüfung: 1. Juni 2011

Walter Dosch

1947 – 2010

Zusammenfassung

Arrayprogrammiersprachen wie APL oder MATLAB verwenden multidimensio-
nale Arrays als grundlegende Datenstrukturen. Rank-generische Operationen
sind gleichermaßen auf Vektoren, Matrizen, und höherdimensionale Arrays an-
wendbar. Bei vielen Operationen unterliegen die Operanden jedoch spezifischen
Einschränkungen bezüglich der Typen ihrer Elemente und ihrer Form. Beispiels-
weise überprüft die MATLAB-Operation A + B zur Laufzeit, ob beide Operan-
den die gleiche Form haben und ob die Addition der Elemente definiert ist. Im
Falle einer Anwendung auf inkompatible Operanden wird die Ausführung des
gesamten Programms abgebrochen.
In dieser Arbeit stelle ich die Programmiersprache QUBE vor, welche die statische
Verifikation von Arrayprogrammen unterstützt, so dass Fehler schon während
der Übersetzung entdeckt werden. Dazu verwendet QUBE abhängige Typen, die
sowohl den Elementtyp als auch die Form eines Arrays beschreiben. Weil Ar-
rays unterschiedlicher Form verschiedene Typen haben, können die erlaubten
Argumente einer Funktion genau angegeben werden. Das Typsystem kann Ele-
menttypfehler, Formfehler und Indexfehler ausschließen.
Als formales Modell von QUBE definiere ich die Kernsprache QUBECORE. Eine
operationelle Semantik definiert die korrekte Auswertung von QUBECORE und
die möglichen Laufzeitfehler. Das Typsystem von QUBECORE wird durch eine
Menge von Ableitungsregeln für wohlgeformte Typen, die Subtyprelation und die
Typüberprüfung von Ausdrücken beschrieben. Ich beweise, dass bei der Auswer-
tung von wohlgetypten Ausdrücken keine Laufzeitfehlern auftreten können.
Um zu untersuchen, wie abhängige Typen genutzt werden können, um aus rank-
generischen Spezifikationen effiziente Programme zu erzeugen, habe ich zusam-
men mit meinen Studenten einen Übersetzer für QUBE konstruiert. Der Über-
setzer verwendet für die Typüberprüfung einen Theorembeweiser für das SMT
Problem. Da QUBE-Programme statisch verifiziert werden, brauchen sie keine
dynamischen Tests wie etwa Bereichstests durchzuführen. Multidimensionale
Arrays werden als reine Sequenzen von Daten ohne Typannotationen oder Form-
deskriptoren repräsentiert. Erste Experimente zeigen, dass für einige interes-
sante Benchmarks QUBE-Programme ähnlich schnell wie C-Programme sind.

v

Abstract

Array programming languages such as APL or MATLAB use multidimensional ar-
rays as the primary data structures. Rank-generic operations apply transparently
to vectors, matrices, and arrays with an even higher rank. Often, these opera-
tions require that the ranks, shapes, and the elements of their arguments satisfy
certain constraints. For example, in MATLAB, the element-wise addition A + B
dynamically checks that both arrays have the same shape. In case of an improper
application, the entire program aborts with an error message.
In this thesis, I present QUBE, a new programming language that checks array
programs at compile time, such that errors are detected before a program is run.
For this purpose, QUBE employs an advanced type system based on dependent
types, i. e., types that depend on values. Since dependent types distinguish be-
tween arrays of different shapes, the allowed arguments of a function can be
precisely characterised. The type system is sufficiently expressive to statically
rule out base type errors, shape errors, and even array boundary violations.
As a formal model of QUBE, I define the core language QUBECORE. An opera-
tional semantics defines both the proper evaluation of QUBECORE as well as the
potential run-time errors. The type system of QUBECORE is described by a set
of inference rules that formally specify well-formed types, the subtype relation,
and type checking of QUBECORE expressions. I provide a proof that QUBECORE is
type-safe, i. e., evaluating a well-typed expression will not cause a run-time error.
To explore how the power of dependent types can be harnessed to generate ef-
ficient code from rank-generic programs, I, with help from my students, have
constructed a compiler for QUBE. The compiler performs type checking in col-
laboration with an SMT solver. Due to static verification, programs do not need
to perform any dynamic checks such as array bounds checks. Moreover, multidi-
mensional arrays are represented as mere sequences of data without additional
type tags or shape descriptors. Early experiments show that for some interesting
benchmarks, the run-time performance of QUBE programs is comparable with
handwritten C code.

vii

Acknowledgements

I dedicate this thesis to Walter Dosch, who was my initial thesis advisor. When I
was a freshman at the University of Lübeck, he introduced me to the wonderful
world of functional programming. For my dissertation, he encouraged me to
develop my own programming language, then called the Lübeck Array Language,
and patiently guided me through my research. Walter Dosch passed away far too
soon in August 2010.
In July 2010, Till Tantau graciously consented to take care of me in the final
stages of my thesis. I especially thank him for taking over and providing helpful
comments as well as inspiring discussions.
A great deal of thanks goes to Clemens Grelck who initiated me to the SAC array
programming language and compiler project. He supervised my diploma thesis
and motivated me to make my own contributions to the field.
Several students helped me implement the QUBE compiler in its various incarna-
tions. Without Florian Büther, the compiler surely wouldn’t be here, but also
Markus Weigel, Johannes Blume, and Sebastian Hungerecker made valuable
contributions.
I thank my colleagues from the Institute of Software Technology and Program-
ming Languages, namely Bastian Dölle, Hedwig Hellkamp, Annette Stümpel,
and Dietmar Wolf, for all the good times and the cakes we had together. Martin
Leucker kindly provided me with an office after my contract with the university
expired.
Markus Hinkelmann deserves thanks for proofreading this document and for
some very enlightening discussions on theoretical computer science.
I am particularly grateful to my parents who supported me during my studies.
My wife Silke deserves the most thanks. For cheering me up when my research
stalled, for celebrating with me when there was a breakthrough, and for moti-
vating me to finish this thesis at all times.

ix

Contents

1 Introduction 1

I Foundations 11

2 The λ-Calculus and Type Systems 13
2.1 The λ-Calculus . 14
2.2 An Applied λ-Calculus . 17
2.3 Simple Types . 20

3 Decidable First-Order Theories 29
3.1 Propositional Logic . 30
3.2 First-Order Logic . 33
3.3 Quantifier-Free Fragments of First-Order Theories 36
3.4 Array Properties . 38

II A Formal Treatment of QUBE 41

4 A Core Language for Array Programming 43
4.1 QUBEλ: a Functional Foundation . 45
4.2 QUBE→: Integer Vectors . 50
4.3 QUBE[]: Multidimensional Arrays . 53
4.4 Properties of Evaluation . 59

xi

5 Type Checking QUBECORE 61
5.1 Well-Formed Types . 63
5.2 Joining Structured Vectors . 64
5.3 Subtyping . 66
5.4 Type Checking . 67
5.5 Correctness of Type Checking . 74
5.6 SMT-Based Validity Checking . 91

III The QUBE Programming Language 97

6 The QUBE Programming Language 99
6.1 Expression Syntax . 99
6.2 Module System . 102
6.3 Stateful Computations . 104

7 Language Implementation 107
7.1 Design of the QUBE Compiler . 107
7.2 Compilation at a Glance . 109
7.3 Descriptor-Free Array Representation 112

8 Rank-Generic Array Operations 117
8.1 Type Abbreviations . 118
8.2 Element-Wise Computations . 118
8.3 Selection Functions . 120
8.4 Structural Functions . 121
8.5 Higher-Order Functions . 124

9 Evaluation 127
9.1 Matrix Multiplication and Inner Product 127
9.2 Rank-Generic Convolution . 129
9.3 Quicksort . 132

10 Conclusion and Future Work 135

1
Introduction

Some “very high-level languages”, like APL, are normally interpreted
because there are many things about the data, such as size and shape
of arrays, that cannot be deduced at compile time.

Aho, Sethi, Ullman: Compilers: Principles, Techniques, and Tools [1]

This thesis presents QUBE, a new programming language that combines the ex-
pressiveness of array programming with the power of dependent types. I claim
that this combination makes particular sense for three reasons: First, dependent
array types can distinguish between arrays of different shapes, allowing array
operations to be assigned accurate types that precisely specify the allowed ar-
guments and how the type of the result depends on them. Second, dependent
types provide static safety guarantees for array programs. QUBE uses a combina-
tion of type checking and automatic theorem proving to statically rule out large
classes of program errors, in particular array boundary violations. Third, the in-
formation provided by dependent types is sufficient to compile array programs
into efficient target programs, even if the shapes of the arrays involved cannot
be determined at compile time. By virtue of static verification, QUBE programs
do not need to check whether an operation has been applied to appropriate ar-
guments or whether an array is accessed outside its boundaries. Furthermore,
multidimensional arrays can be represented as mere sequences of elements with-
out additional type or shape tags.

1

2 CHAPTER 1. INTRODUCTION

Array Rank Shape vector

1 0 []
�

1 2 3
�

1 [3]
�

1 2 3
4 5 6

�

2 [2 3]

4 5 6

1 2 3

10 11 12

7 8 9

3 [2 2 3]

Figure 1.1: Ranks and shape vectors

Array programming languages like APL [55, 35], J [57], MATLAB [76], ZPL [25],
and SAC [89], use multidimensional arrays as the primary data structures. Such
arrays may be vectors, matrices, or tensors with an even higher number of axes;
degenerate arrays without any axes are isomorphic to scalar values. Formally,
an r-dimensional array organises a collection of homogeneous elements along
r orthogonal axes. Each element is identified by a vector of r natural numbers
called the element’s index vector.

Multidimensional arrays are characterised by two essential properties, namely
their rank and their shape vector. The rank of a multidimensional array is a
natural number that denotes its number of axes, i. e., the common length of the
elements’ index vectors. The shape vector is a vector of natural numbers that
describe the extent of each axis. It is thus an element-wise upper bound for
all index vectors into the array; the product of the shape components equals
the number of array elements. Figure 1.1 shows the basic properties of some
example arrays. Rank zero arrays such as 1 do not have any axes and hence
their shape vector is empty. Note that shape and index vectors are themselves
arrays of rank one.

Array programming is renowned for its conciseness. Programs are composed
from general-purpose array operations that apply to entire arrays rather than
individual elements. In particular, many array operations are rank-generic, i. e.,
they are applicable to arrays with an arbitrary number of axes, each of which
may have arbitrary length. For example, the expression A + B computes the
element-wise sum of the arrays A and B without explicit loops over the elements.
Similarly, the APL inner product A +.* B generalises matrix multiplication to ar-

3

rays of arbitrary (positive) rank. The high abstraction level of the individual
operations allows the programmer to solve problems in large conceptual steps
with very few lines of code. Often, programs that would require several pages
of code in conventional programming languages can be expressed in a one-line
array program. Moreover, many array operations are inherently data parallel
as they homogeneously apply to a large number of elements. This makes ar-
ray programs well-suited for implicit parallelisation [39]. The recent advent of
multi-core processors [93] has created new interest in the paradigm [24, 23, 38].

Despite its power and expressiveness, rank-generic programming also introduces
a host of subtle programming pitfalls. Typically, array operations can only be
evaluated if the arguments satisfy specific constraints between ranks, shapes,
and even element values. For example, element-wise arithmetic can only be
performed on arrays that have the same number of axes, the same shape, and
elements that are compatible with the operation at hand. Similarly, the inner
product requires that the last axis of the first array is as long as the first axis of
the second array. Even array indexing is more intricate in a rank-generic setting.
Array elements are indexed by means of an integer vector whose length must
match the number of array axes. Furthermore, each index must range between
zero and the corresponding element of the array shape.

Interpreted array languages like APL, J, and MATLAB are dynamically typed.
When the interpreter encounters an array operation, it checks whether the op-
eration has been applied to appropriate arguments and, if so, performs the com-
putation, typically by invoking a (well-optimised) native implementation of the
operation. In case of an improper application, the program aborts with an error
message. The combination of interpretation and dynamic typing allows for rapid
program development. The programmer can interact with the programming sys-
tem, new code can be loaded at run-time, and even an eval function, that allows
arbitrary data to be executed as code, is a common feature of interpreted array
languages. However, the absence of static types makes bugs hard to find because
errors are typically reported at a location different from where the programming
mistake was made. Thus, long-running or safety-critical applications must be
carefully coded and thoroughly tested in order to find bugs and avoid that the
program terminates abruptly, potentially after it has been deployed.

Beyond safety considerations, dynamic checks also carry a performance penalty.
The run-time system must tag arrays with type and shape information so that
these properties can be dynamically inspected. Checking and tagging both add
a constant overhead to array operations that can even outweigh the actual com-
putation when small arrays are processed. This is particularly unfavourable for
algorithms that loop over individual array elements instead of applying opera-
tions to entire arrays.

4 CHAPTER 1. INTRODUCTION

To counter these issues, compiled array languages such as FORTRAN-90, HPF,
FISH, ZPL, and SAC have been developed. Naturally, compilation rules out in-
teractive program development and an eval function. But unlike interpreters,
compilers can employ a broad range of optimisations to improve program effi-
ciency. In particular, scalars can often be identified statically so that they can be
stored in processor registers rather than on the heap and applications of complex
array operations can be replaced with simple processor instructions. By means
of type checking, compilers can perform some of the required consistency checks
at compile time, which eliminates the need to check for these properties dynam-
ically. The amount of bugs that can be statically found and thus the amount of
dynamic checks that can be avoided depends on the strength of the type system.

FISH [59, 58] is a compiled array programming language with an impure call-
by-value semantics and support for polymorphic higher-order functions. Multidi-
mensional arrays are supported as homogenous nestings of vectors. By means of
shape analysis, the FISH compiler determines the shapes of all intermediate array
expressions such that appropriate amounts of memory can be allocated statically.
To describe array shapes, FISH uses expressions of a special kind size, which are
evaluated by the compiler. Each function f is accompanied by a shape function
#f that maps the size of the arguments to the size of the result. Shape analysis
proceeds by first inlining all functions and then evaluating all shape functions.
FISH rejects all programs that contain non-constant array shapes. Since arrays
are indexed by run-time integers whereas array sizes are determined at compile
time, shape-analysis is insufficient to statically capture array boundary viola-
tions. Still, applications of functions to arguments of incompatible shape will be
reported as shape errors, so that combinations of functions that are free of array
bounds errors will produce programs without bounds errors.

SAC [42, 89, 94] is a compiled array programming language with a pure call-
by-value semantics. The design of SAC aims at high run-time performance and
automatic parallelisation [39]. In SAC, multidimensional arrays are the only
available data structures, even scalar values are considered arrays [90]. The lan-
guage provides just a few array operations as built-in functions. Rank-generic ar-
ray operations are specified by means of a powerful array comprehension called
WITH-loop. An extensive standard library provides numerous high-level, general-
purpose array operations whose implementations are based on WITH-loops. SAC
programs are typically assembled from these building blocks. This style of pro-
gramming leads to lean and concise specifications, but also introduces many
intermediate arrays. To achieve competitive run-times, the SAC compiler em-
ploys a host of powerful program optimisations that chiefly aim at avoiding the
creation of temporary arrays whenever possible [44, 88, 40].

More liberal than FISH, the type system of SAC classifies arrays with a hierar-

5

chy of types [89]. While the type of array elements is always monomorphic,
arrays are described at four different levels of accuracy: there are types for ar-
rays of statically known value (AKV, for example int[2,2]{1,2,3,4}), types for
arrays of known shape (AKS, for example int[2,2]), types for arrays of known
dimensionality (AKD, for example int[.,.]), and types for arrays of unknown
dimensionality (AUD, for example int[*]). Via subtyping, an expression of some
specific type can be safely used in a position where a less specific type is required.
In contrast, when an expression of some unspecific type is used in a position
where a more specific type is expected, the compiler inserts a run-time shape
check that potentially aborts the program with an error message.

The amount of program errors that can be statically detected by the SAC type
system corresponds to the available type information. Array boundary violations
will only be captured at compile time when the array has at most an AKS type and
when the index vector has an AKV type. Shape errors will only be found when
both the actual type and the expected type are at most AKS types. Similarly, rank
errors will only be reported by the compiler if both types are at most AKD types.
When an expression has an AUD type, or when an AUD type is expected at some
position, only base type errors can be detected statically.

Run-time checks that stay prevalent in compiled code cause overhead both di-
rectly through their mere execution and indirectly by hampering program opti-
misation. To improve the available type information and reduce run-time checks,
the SAC compiler uses code specialisation [43] and partial evaluation tech-
niques [51]. Symbolic array attributes serve as a uniform scheme to infer and
represent structural information in shape-generic array programs such that it
may be used by optimisations [98]. Recently, the SAC compiler has been ex-
tended with a framework for dynamic recompilation at run-time when all struc-
tural properties of arrays are known [46].

This thesis contributes QUBE, a new array programming language that verifies
rank-generic array programs entirely statically such that no dynamic checks are
necessary. For this purpose, QUBE features an advanced type system based on de-
pendent types, i. e., types that are parameterised by values [72, 7, 36, 86]. Like
SAC, QUBE is a compiled language with a pure call-by-value semantics that only
provides the most essential array operations as language primitives. However,
QUBE does not follow the everything is an array paradigm. The type system dis-
tinguishes between multidimensional arrays and other data structures, namely
unboxed scalars, tuples, and first-class functions.

The type system of QUBE classifies arrays using types of the form [T|e] where
the type T describes the array elements and the expression e is an integer vector
that represents the array shape. For example, a 2 × 3 integer matrix has type
[int|[2,3]], but also type [int|[1+1,1+2]], because [1+1,1+2] evaluates to

6 CHAPTER 1. INTRODUCTION

[2,3]. Types of the form intvec e describe integer vectors of length e that are
used as shape vectors and index vectors.
The potential run-time values of an expression can be restricted with refinement
types [36, 86]. A type of the form {x:T | e } describes the set of all values x of
type T for which the expression e evaluates to true. For example, nat is the type
of natural numbers and index n is the type of all integers that are valid indices
into a vector of length n.
type nat = { x:int | 0 <= x }
type index n:nat = { x:int | 0 <= x & x < n }

Vector types can be refined, too. In such refinements, the vector predicate
vfa v1, .., vm p (vector for all) expresses that a property p holds for all cor-
responding elements of some vectors v1, .., vm. The property p has the form
(x1, .., xm → e) where the variable x i represents an element from the vector
vi in the boolean expression e. For example, the type natvec n, which describes
vectors of natural numbers of length n, is defined in terms of vfa. Similarly,
indexvec r s describes valid index vectors into an array of rank r and shape s.
type natvec n:nat = { x:intvec n | vfa x (xi → 0 <= xi) }
type indexvec r:nat s:(natvec r) =

{ x:intvec r | vfa x,s (xi,si → 0 <= xi & xi < si) }

The type system is sufficient to statically rule out array boundary violations. For
all accesses a.[x] into an array a of rank r and shape s, the type checker verifies
that the index x has type indexvec r s. For example, the type system rejects the
following definition of foo because the array access will fail for m< 2 or n< 3.
let foo m:nat n:nat a:[int|[m,n]] = a.[[1,2]]

Type error in file test/abc.q, line 1, column 36:
Index may violate the array boundaries.

Dependent function types of the form x:T → Tx allow the result type Tx of a
function to depend on the argument value x . Together with refinement types
and array types, dependent function types can be used to precisely specify the
constraints a function imposes on the ranks, shapes, and values of its arguments
and the result. Based on this information, the type checker can statically detect
base type errors, rank errors, shape errors, and illegal argument values, even in
a rank-generic setting. For example, the type of the rank-generic array addition
add makes clear that the function takes two integer arrays of some arbitrary but
equal shape s and yields a result of the same shape.
val add : r:nat. s:(natvec r). [int|s]. [int|s] → [int|s]

The type of the inner product ip, which generalises matrix multiplication to
arrays of arbitrary rank, makes the constraints on the arguments explicit: the
last axis of the first array must be as long as the first axis of the second array.

7

val ip : m:nat. n:nat. r:(natvec m). s:nat. t:(natvec n).
[int|r,[s]]. [int|[s],t] → [int|r,t]

Dual to dependent function types, QUBE supports dependent tuple types of the
form (x:T,Tx), i. e., tuples where the type of the second component depends
on the value of the first. Dependent tuples are useful to form packages of arrays
and their shape properties, so that arrays of different shape can be stored in
a common data structure. QUBE uses dependent tuples to represent strings as
pairs of an integer that describes the string length and a vector of characters. The
command-line arguments passed to a program are represented as a dependent
tuple that combines the number of arguments with an array of strings.

type string = (len:nat, [char|[len]])
val commandline_args : (argc: nat, [string|[argc]])

As pointed out above, the dependent type of an expression is not unique. The
type of an array may be [int|[2,3]], or [int|[1+1,1+2]], or even [int|f x]
if the expression f x happens to evaluate to [2,3]. In order to decide whether
the array types [T|e1] and [T|e2] are equal, the type checker must decide
whether the expressions e1 and e2 denote the same value. Furthermore, to check
whether a refinement type {x:T | e1 } is a subtype of some other refinement
type {x:T | e2 }, the type checker must prove that all values x that satisfy e1

also satisfy e2. Since arbitrary expression are allowed to appear in types, both
problems are undecidable.

To sidestep this problem, the QUBE type checker encodes the constraints to be
checked as first-order formulas in the decidable fragment of uninterpreted func-
tions and linear arithmetic. The resulting formulas are then verified in collabora-
tion with the YICES theorem prover [33]. The encoding is sound but, naturally,
incomplete: if an encoded formula is valid, the original constraint is valid, too.
However, not all valid constraints are encoded as valid formulas. In effect, type
checking behaves conservatively. It rules out all programs with type errors, but
it also rejects some programs that would actually behave well at run-time.

The type system of QUBE provides static guarantees that well-typed array pro-
grams do not cause run-time errors. Beyond rendering dynamic checks obsolete,
the type system also allows for a particularly efficient run-time representation
of multidimensional arrays. To make ranks and shape vectors dynamically ac-
cessible, for example to compute memory locations of array elements, language
implementations typically associate each array with a shape descriptor. The im-
plementation of QUBE dispenses with shape descriptors and represents arrays as
mere sequences of elements [97]. The compiler uses information from the array
types to statically annotate programs with expressions that evaluate to ranks and
shape vectors wherever these values will be required at run-time.

8 CHAPTER 1. INTRODUCTION

Other Related Work The contribution of QUBE is positioned at the intersec-
tion of array programming, functional programming, and dependently typed
programming. The following paragraphs briefly outline work from the differ-
ent areas of research related to this thesis.

Attempts have been made to compile the classical array languages like APL and
MATLAB in order to improve program efficiency, although the flexibility of these
languages renders compilation difficult. The APEX compiler [11] translates an
extended subset of ISO APL into SISAL, a functional vector language. Recently,
APEX has been modified to target SAC, instead. A compiler for MATLAB is com-
mercially available from MathWorks. However, instead of improving efficiency,
the goals of the MATLAB compiler are chiefly to create standalone executables
or libraries from MATLAB programs, and code obfuscation. Rediscovering array
properties for better compilation of untyped array languages such as MATLAB is
an area of ongoing research, see for example [31, 74, 61]. In QUBE, the array
types contain everything the programmer knows about the structural properties
of the program, eliminating the need for such work.

The field of functional array programming was pioneered by SISAL [21] and
NESL [14], although neither language supports rank-generic programming. SISAL

demonstrated that functional array programming and implicit parallelisation can
achieve competitive run-time performance, despite the aggregate update prob-
lem [53]. While SISAL restricts itself to (one-dimensional) vectors of homo-
geneously nested vectors, NESL also supports irregularly nested vectors. In-
spired by NESL, work has been going on to integrate nested data-parallelism
into HASKELL [24, 23]. Recently, support for rank-generic programming has
been added to DATA PARALLEL HASKELL as a library [63]. Although the HASKELL

type system cannot detect array boundary violations, many rank and shape er-
rors can be detected statically.

Another field of related work is the research area of dependently typed program-
ming [92]. Dependent types naturally lend themselves for describing arrays as
they allow the use of (dynamic) terms to index within families of types. Indeed,
the classical example for dependently typed programming is the index family of
vectors from which an element with a particular length is selected [83]. The
expressive power of dependent types renders deciding type equality generally
undecidable as it boils down to deciding whether any two expressions denote the
same value. For example, CAYENNE [4] is a fully dependently typed language.
Its type system is undecidable and it lacks phase distinction. Both problems can
be overcome by restricting the type language as done in EPIGRAM [73, 2], which
rules out general recursion in type-forming expressions to retain decidability.

Languages with light-weight forms of dependent types such as DML [102], ap-
plied type system [100], and indexed types [103] have been developed. These

9

languages allow indexing into type families only with compile-time expressions
of certain linear index sorts. The problem of deciding whether two types are
equal or in a subtype relation is reduced to constraint solving on these sorts,
which is decidable. Light-weight dependent types are sufficient to rule out ar-
ray boundary violations for arrays of fixed rank [101]. An early version of QUBE

extended indexed types for rank-generic programming [96]. To automatically in-
fer dependent types for programs, logically qualified data types, or LIQUID TYPES,
that combine Hindley-Milner type inference with predicate abstraction have been
proposed [86].

Outline The remainder of this thesis is organised in three parts.
The first part covers the theoretical foundations on which this work relies. Chap-
ter 2 briefly recapitulates essential concepts of programming languages and type
systems. The chapter presents formalisms based on the λ-calculus that allow
us to reason about syntax, semantics, and the type system of a language with
mathematical rigour. Chapter 3 gives a brief introduction to propositional logic,
first-order logic, and the relevant fragments of first-order theories that will be
relevant in the remainder of the thesis.
The second parts formally discusses the syntax, semantics, and the type system of
QUBE. To achieve a rigourous presentation, the discussion focusses on QUBECORE,
a simplified language that captures the essential concepts of QUBE without syn-
tactic sugar or convenience features. Chapter 4 presents the syntax and opera-
tional semantics of QUBECORE and shows that evaluation of QUBECORE expressions
is deterministic. Chapter 5 explains the type system of QUBECORE and provides
a formal proof of type safety. The main results are a progress and a preserva-
tion theorem for QUBECORE. These state that a well-typed expression is either a
value or can be further evaluated, and that the type of an expression is preserved
under evaluation. Furthermore, the chapter describes how type constraints are
encoded as logical formulas.
The third part presents the implementation of QUBE. Chapter 6 describes the
syntax of the actual QUBE programming language. Chapter 7 explains the com-
pilation process that translates QUBE programs via a series of intermediate rep-
resentations into code for the Low-Level Virtual Machine (LLVM), which in turn
emits native code. Chapter 8 illustrates the expressiveness of QUBE. A host of
rank-generic array operations, that are typically provided as built-ins primitives
by interpreted array languages, are defined as type-safe QUBE functions. Chap-
ter 9 evaluates the QUBE language and its implementation by means of more
complex example programs. Finally, Chapter 10 concludes the thesis and out-
lines some directions for future work.

10 CHAPTER 1. INTRODUCTION

Part I

Foundations

11

2
The λ-Calculus and Type Systems

This chapter gives an introduction to the formal treatment of programming lan-
guages and type systems. The presented formalisms allow us to specify and rea-
son about syntax, semantics, and typing rules of a language with mathematical
rigour. The presentation recapitulates concepts from textbooks on programming
language theory, mainly from [82] but also from [83, 64].
The λ-calculus [26, 5, 8, 52, 64] is a formal system which was introduced by
Church and Kleene in the 1930s to investigate function definition, function appli-
cation, and recursion. In the 1960s, Landin recognised [67] that the λ-calculus
captures the essence of many programming languages and that their more elab-
orate features may be understood by explaining them in terms of the calculus.
λ-calculi exist in untyped and typed flavours. The untyped λ-calculus was in-
fluential in the development of early functional programming languages such as
LISP. Typed λ-calculi form the foundation of modern type systems used in both
typed programming languages and mechanical proof assistants. By classifying
expressions according to the kinds of values they compute, type systems help to
identify program errors early in the development cycle [82].
The remainder of this chapter is structured as follows: Section 2.1 introduces the
most essential definitions and properties of the untyped λ-calculus. Section 2.2
presents an applied λ-calculus with a call-by-value semantics that resembles a
simple programming language and examines its basic properties. Section 2.3
extends the applied calculus with simple types that warrant orderly evaluation
of expressions.

13

14 CHAPTER 2. THE λ-CALCULUS AND TYPE SYSTEMS

2.1 The λ-Calculus

This section formally introduces essentials of the λ-calculus by explaining its
grammar, notational conventions, capture-avoiding substitution, β-reduction,
normal forms, and fundamental evaluation strategies.

In the following, the metavariables x , y range over variables, and the metavari-
ables e, e′, ei represent λ-expressions.

Definition 2.1 (λ-calculus)

For a countably infinite set of variables V , the set of expressions in the λ-
calculus is defined by the following grammar.

e ::= x (Variable)
�

� λx . e (Abstraction)
�

� e e (Application)

In the λ-calculus, all variables x are themselves expressions. The abstraction
λx . e abstracts a variable x from the body e, essentially creating a function that
depends on x . The application e1 e2 applies the operator e1 to the operand e2.

The above syntax of the λ-calculus is given as an abstract syntax and thus is
inherently ambiguous. We use parentheses to disambiguate the structure of ex-
pressions, subject to the following conventions: applications associate to the left,
whereas abstraction bodies extend to the utmost right, for example a b c stands
for the same expression as ((a b) c) and λ f .λx . f x abbreviates (λ f . (λx . (f x))).

An abstraction λx . e binds the variable x in the body e. The latter is also referred
to as the scope of the binder λx . An occurrence of a variable x is said to be bound
if it appears inside the scope of a binder λx otherwise the occurrence is free.

Definition 2.2 (Free variables)

The set FV(e) of free variables of an expression e is defined inductively:

FV(x) = {x}
FV(λx . e) = FV(e) \ {x}
FV(e1 e2) = FV(e1) ∪ FV(e2)

A λ-expression e is closed iff FV(e) = ;. Other expressions are called open. Closed
expressions are also known as combinators. A prominent combinator is the iden-
tity function λx . x which merely yields its argument x .

2.1. THE λ-CALCULUS 15

Expressions that differ only in the names of bound variables are said to be syntac-
tically equivalent or α-equivalent, written e1 ≡ e2. For example, λx . x ≡ λy. y. We
may freely convert between α-equivalent expressions by consistent renaming of
bound variables. Without loss of generality, we adopt the following convention
(also known as the Barendregt convention [5]):

Convention 2.3 (Variable convention)

If e1, ..., en appear in a certain mathematical context (definition, proof), then
in these expressions all bound variables are chosen to be different from the
free variables.

The variable convention allows us to provide a straightforward definition of
capture-avoiding substitution. The function e[x 7→ e′] replaces all free occur-
rences of a variable x in an expression e by an expression e′. For example,
(λx . y)[y 7→ z] = λx . z, (λx . x)[y 7→ z] = λx . x , and (f y)[f 7→ λx . x] =
(λx . x) y.

Definition 2.4 (Substitution)

The substitution function e[x 7→ e′] is defined recursively:

x[x 7→ e′] = e′

y[x 7→ e′] = y if y 6= x
(λy. e)[x 7→ e′] = λy. (e[x 7→ e′]) if y 6= x , y /∈ FV(e′)
(e1 e2)[x 7→ e′] = (e1[x 7→ e′]) (e2[x 7→ e′])

The variable convention ensures that the condition in the third clause always
holds so that no further clauses are required.
Evaluation of λ-expressions is performed via β-reduction which captures the idea
of function application. The application of abstractions to operands is explained
in terms of substitution.
Definition 2.5 (Redex, β-reduction)

An application of the form (λx . e1) e2 is called a reducible expression, β-redex,
or simply redex. The β-reduction rule replaces a redex (λx . e1) e2 by the ab-
straction body e1 in which all free occurrences of x are substituted with the
operand e2.

(λx . e1) e2→β e1[x 7→ e2]

Given two λ-expressions e and e′, we say that e is β-reducible to e′, written
e →∗β e′, iff there exists a finite, potentially empty sequence of β-reductions

16 CHAPTER 2. THE λ-CALCULUS AND TYPE SYSTEMS

e →β ...→β e′ that transforms e into e′. The evaluation of a λ-expression stops
once no further redices remain in an expression. From an operational point of
view, such a normal form may be regarded as a computational result.
Definition 2.6 (Normal form)

A λ-expression is said to be in normal form if it cannot be reduced any further.
A λ-expression e is said to have a normal form if e →∗β e′ holds for some λ-
expression e′ in normal form.

Not every λ-expression has a normal form. A simple counterexample of this is
the divergent combinator ω whose evaluation incessantly yields itself.

ω≡ (λx . x x) (λx . x x)→β (λx . x x) (λx . x x)≡ω.

Typically, an expression under evaluation contains more then one redex to choose
from for the next evaluation step. This gives rise to evaluation strategies that re-
duce the individual redices of a λ-expression in a deterministic order. A choice
for a particular strategy has significant impact on both the semantics and the
implementation of a programming language.

• Under normal order reduction (leftmost-outermost), the leftmost redex of
an expression that is not contained in any other redex is reduced first.
This means that operations are applied to unevaluated operands thereby
deferring the operands’ evaluation.

• Under applicative order reduction (leftmost-innermost), the leftmost redex
of an expression that does not contain any further redices is reduced first.
Therefore, both the operator and the operand of an application are reduced
before the application itself.

Normal order evaluation has the advantage that it will reach the normal form
of an expression if one exists. As a downside, normal-order evaluation can en-
tail significant overhead as redices in the unevaluated operand may be copied,
thereby duplicating computations.
Applicative order will not normalise an expression if the evaluation of the operand
does not terminate (for example (λx . e) ω). However, if the evaluation of the
operand terminates, the result will only be computed once and can potentially
be used many times in the body of the abstraction.
Functional programming languages such as SML [75, 70, 49], OCAML [69, 22],
HASKELL [81, 13, 54], and CLEAN [84] employ strategies that, unlike the strate-
gies presented so far, do not evaluate expressions inside of abstractions. Instead
of transforming expressions into full normal forms, these strategies merely com-
pute weak normal forms [91, 80].

2.2. AN APPLIED λ-CALCULUS 17

Definition 2.7 (Weak normal form)

A λ-expression is said to be in weak normal form iff it is an abstraction that
may contain redices in its body.

Restricting the above evaluation strategies to weak normal forms gives rise to
the two predominant evaluation strategies used by language implementations.

• The call-by-name strategy restricts normal order reduction. The opera-
tor is reduced to weak normal form and then applied to the unevaluated
operand. To avoid multiple evaluation of the operand, concrete implemen-
tations such as HASKELL and CLEAN refine this strategy even further to a
variant called call-by-need or lazy evaluation. Instead of copying the uneval-
uated argument to all variable locations in the syntax tree, only a pointer to
a common thunk containing the argument is propagated. Upon first evalu-
ation of the argument, the thunk is updated to hold the appropriate value
for future access.

• Similarly, the call-by-value regime restricts applicative order reduction such
that both the operator and the operand are merely reduced to weak nor-
mal forms before β-reduction is performed. Call-by-value is fairly easy to
implement in an efficient way and therefore is the most widely used eval-
uation strategy. For example, SML and OCAML implement call-by-value
evaluation.

2.2 An Applied λ-Calculus

This section presents an applied λ-calculus that extends the bare λ-calculus with
the usual representations of truth values and integers along with primitive op-
erators. We define δ-reduction, values, the evaluation relation, and formally
discuss essential properties of the latter.
Definition 2.8 (δ-redex, δ-reduction)

An application of a primitive operator to legitimate arguments is called a
δ-redex. δ-reduction, written e ⇒δ e, replaces the redex by the result.

Legitimate arguments are those, on which the operator is defined. For example,
* 6 7 ⇒δ 42. For the sake of readability, applications of binary operations may
also be written in infix notation with the usual precedence rules.
Figure 2.1 defines the syntax and the operational semantics of an applied λ-
calculus with a call-by-value semantics that may be regarded as a simple pro-
gramming language. The top half defines a set of expressions, a set of constant

18 CHAPTER 2. THE λ-CALCULUS AND TYPE SYSTEMS

Syntax

e ::= x
�

� λx . e
�

� e e
�

� c
�

� if e then e else e Expressions
c ::= B

�

� Z
�

� f 1
�

� f 2 Constants
f 1 ::= not Unops
f 2 ::= ↔

�

� &
�

� |
�

� =
�

� <
�

� +
�

� -
�

� * Binops

v ::= λx . e
�

� c
�

� f 2 v Values

Evaluation e ⇒ e

e1 ⇒ e′1 (E-APP1)
e1 e2 ⇒ e′1 e2

e2 ⇒ e′2 (E-APP2)
v1 e2 ⇒ v1 e′2

(λx . e1) v2 ⇒ e1[x 7→ v2] (E-ABSAPP)

f 1(v) ⇒δ v′
(E-PRFAPP1)

f 1 v ⇒ v′
f 2(v1, v2) ⇒δ v3 (E-PRFAPP2)
(f 2 v1) v2 ⇒ v3

ep ⇒ e′p
(E-COND)

if ep then et else ee ⇒ if e′p then et else ee

if true then et else ee ⇒ et (E-THEN)

if false then et else ee ⇒ ee (E-ELSE)

Figure 2.1: An applied λ-calculus with call-by-value evaluation

symbols and a set of values. In the remainder, the metavariables v, v′, vi range
over values, the metavariable c represents constant symbols, and a metavariable
f n represents function symbols of arity n.

The set of expressions consists of the expressions of the λ-calculus, constant
symbols c and the conditional expression if ep then et else ee, with the predicate
ep and the two branch expressions et , ee. The set of constant symbols comprises
the truth values B = {true,false}, the integers Z = {..,−1,0, 1, ..}, and some
of the usual logical, relational, and arithmetic operators. A value is either a λ-
abstraction, a constant symbol c, or an application f 2 v of a binary operator to a
single argument.

Definition 2.9 (Value)

A value v is an expression that is considered a valid evaluation result.

2.2. AN APPLIED λ-CALCULUS 19

The bottom half of Figure 2.1 defines the operational semantics of the language
by means of inference rules.

Definition 2.10 (One-step evaluation relation, multi-step evaluation relation)

The one-step evaluation relation e ⇒ e is the smallest relation that satisfies
the inference rules. The multi-step evaluation relation e ⇒∗ e is the reflexive,
transitive closure of e ⇒ e.

The evaluation relation captures the call-by-value strategy: the rules E-APP1
and E-APP2 process applications from left to right and bottom-up; when the
operator is an abstraction and the operand is a value, E-ABSAPP performs a β-
reduction step. The definition of the capture-avoiding substitution carries over
from Section 2.1, mutatis mutandis. The rules E-APPPRF1 and E-APPPRF2 eval-
uate applications of primitive functions to legitimate arguments by means of
δ-reduction. Evaluation of the conditional is defined by the final three rules.
E-COND evaluates the predicate. When it evaluates to either true or false, the
entire conditional is evaluated to et (E-THEN) or ee (E-ELSE), respectively. No
evaluation takes place inside of abstractions.
Every expression in normal form that is not a value is said to be a stuck expres-
sion [82]. For example, not 42, (λx . x) + 0, if 42 then true else false. The
intuition behind stuck expressions is that due to a run-time error, the machine
has entered a meaningless state in which no further evaluation is possible.
We can now formally discuss essential properties of the evaluation relation. First,
we check that every value is in normal form, a crucial property of every language
definition.
Theorem 2.11

Every value v is in normal form.

Proof : Immediate. There are no rules that evaluate abstractions λx . e, constant symbols
c, or partially applied binary operators f 2 v.

The next theorem states that one-step evaluation is deterministic, i. e., the result
of an expression that makes an evaluation step will always be the same.

Theorem 2.12 (Determinacy of one-step evaluation)

If e ⇒ e′ and e ⇒ e′′, then e = e′′.

Proof : By induction on a derivation of e ⇒ e′. For every rule E, we assume that e
evaluates to e′. We show that no other rule that matches e than E is applicable. In
consequence, e′′ can only be derived from e by rule E. By the induction hypothesis,
evaluation of the subexpressions is deterministic and hence e′ = e′′.

20 CHAPTER 2. THE λ-CALCULUS AND TYPE SYSTEMS

1. Case E-APP1: e = e1 e2 with e1 ⇒ e′1. Since e1 is not a value, no other rule matches
e. By the hypothesis e′1 = e′′1 and hence e′ = e′′.

2. Case E-APP2: e = v1 e2 with e2 ⇒ e′2. Similar.

3. Case E-ABSAPP: e = (λx . e1) v2. Both the operator and the operand are values, so
no other rule matches e. Substitution is deterministic, so that e′ = e′′.

4. Case E-PRFAPP1: e = f 1 v with f 1(v) ⇒δ v′. No other rule matches and δ-
reduction is deterministic, so that e′ = e′′

5. Case E-PRFAPP2: e = (f 2 v1) v2 with f 2(v1, v2) ⇒δ v3. Similar.

6. Case E-COND: e = if ep then et else ee with ep ⇒ e′p. Since ep is not a value, no
other rule matches e. By the hypothesis, e′p = e′′p and thus e′ = e′′.

7. Case E-THEN: e = if true then et else ee. No other rule matches e and therefore
e′ = e′′.

8. Case E-FALSE: e = if false then et else ee. Similar.

An immediate corollary of the determinacy of one-step evaluation is that multi-
step evaluation is also deterministic.
Corollary 2.13 (Uniqueness of normal forms)

If e ⇒∗ e′ and e ⇒∗ e′′ where e′ and e′′ are normal forms, then e′ = e′′.

In addition to the facilities for function definition and application, an applied
λ-calculus features built-in constant symbols and operators whose operational
semantics is defined in terms of δ-reduction. This section introduced an applied
λ-calculus with a call-by-value evaluation regime that serves as a language nu-
cleus in the remainder of the thesis. We showed that evaluation is deterministic
and that every value is in normal form. All language extensions must retain these
essential properties.

2.3 Simple Types

Every terminating evaluation sequence either yields a value or ends at a stuck
expression, i. e., an expression for which no evaluation rule applies although it is
not considered a valid result. A type system identifies such errors by classifying
expressions according to the values they evaluate to. This section augments the
applied λ-calculus from the previous section with simple types. We define the
typing relation and discuss essential properties of the typed calculus, such as
type safety.
Figure 2.2 shows a typed version of the applied λ-calculus from Section 2.2 by
providing a syntax, an evaluation relation, and a typing relation.

2.3. SIMPLE TYPES 21

Syntax

T ::= B
�

� T → T Types
B ::= bool

�

� int Base types

e ::= x
�

� λx : T . e
�

� e e
�

� c
�

� if e then e else e Expressions
c ::= B

�

� Z
�

� f 1
�

� f 2 Constants
f 1 ::= not Unops
f 2 ::= ↔

�

� &
�

� |
�

� =
�

� <
�

� +
�

� -
�

� * Binops

v ::= λx : T . e
�

� c
�

� f 2 v Values

Γ ::= ·
�

� Γ, x : T Context

Evaluation e ⇒ e
e1 ⇒ e′1 (E-APP1)

e1 e2 ⇒ e′1 e2

e2 ⇒ e′2 (E-APP2)
v1 e2 ⇒ v1 e′2

(λx : T . e1) v2 ⇒ e1[x 7→ v2] (E-ABSAPP)

f 1(v) ⇒δ v′
(E-PRFAPP1)

f 1 v ⇒ v′
f 2(v1, v2) ⇒δ v3 (E-PRFAPP2)
(f 2 v1) v2 ⇒ v3

ep ⇒ e′p
(E-COND)

if ep then et else ee ⇒ if e′p then et else ee

if true then et else ee ⇒ et (E-THEN)

if false then et else ee ⇒ ee (E-ELSE)

Typing Γ ` e : T
x : T ∈ Γ (T-VAR)
Γ ` x : T

Γ ` c : type(c) (T-CONST)

Γ, x : T1 ` e : T2 (T-ABS)
Γ ` λx : T1. e : T1→ T2

Γ ` e1 : T11→ T12 Γ ` e2 : T11 (T-APP)
Γ ` e1 e2 : T12

Γ ` ep : bool Γ ` et : T Γ ` ee : T
(T-COND)

Γ ` if ep then et else ee : T

Figure 2.2: The applied λ-calculus with simple types

22 CHAPTER 2. THE λ-CALCULUS AND TYPE SYSTEMS

In addition to expressions, constants, and values, the syntax defines a set of types
and a set of typing contexts. In the following, the metavariables T, T ′, Ti range
over types and the metavariables Γ,Γ′,Γi range over contexts.
The set of types consists of the base types bool and int, that describe boolean
and integer expressions, and function types T1→ T2 that describe functions with
the domain T1 and codomain T2. The function type associates to the right, so that
T1 → T2 → T3 stands for T1 → (T2 → T3). The expressions and values resemble
those from Section 2.2, except that abstractions λx : T . e are annotated with the
type of the bound variable.
A type context or environment is a sequence ·, x1 : T1, ..., xn : Tn that, starting with
the empty context ·, associates variables with types. Convention 2.3 extends to
the variables bound in a context, so that a variable can appear in a context Γ
at most once. The function dom(Γ) yields the set of variables bound in Γ. The
notation x : T ∈ Γ means that in Γ, the variable x is associated with type T .
The evaluation relation e ⇒ e is, apart from the rule E-ABSAPP the same as in
Section 2.2. The bottom of the figure defines the ternary typing relation Γ ` e : T
by a set of inference rules.
Definition 2.14 (Typing relation, well-typed expression)

The typing relation Γ ` e : T is the smallest ternary relation between typing
contexts, expressions, and types that satisfies the inference rules. An expres-
sion e is said to be well-typed under a context Γ iff there is some T such that
Γ ` e : T .

The typing rule T-VAR assigns a variable x the type T if x : T appears in the
context Γ. The rule T-CONST gives types to constants c according to the table
shown in Figure 2.3. The typing rule T-ABS for abstractions assign the abstrac-
tion λx : T . e the type T → T ′ when e has type T ′ under the extended context
Γ, x : T . Applications e1 e2 are checked by the rule T-APP. When the operator e1

is a function of type T → T ′ and when the operand e2 is an argument of type
T , then the application result has type T ′. Finally, the typing rule T-COND for
conditionals if ep then et else ee ensures that the predicate ep is a boolean
expression and that the branch expressions et , ee have the same type T .
The goal of type checking is to rule out programs whose evaluation might get
stuck at some point. This property is called safety or soundness. To formally
prove that simple types indeed provide type-safety, two theorems are required.
The progress theorem states that every (closed) well-typed expression is either a
value or able to make an evaluation step. The preservation theorem (or subject
reduction) states that evaluation preserves the type of an expression such that
the progress theorem applies again.
A basic assumption about the constant and function symbols in the calculus is

2.3. SIMPLE TYPES 23

true,false : bool

not : bool→ bool

↔,&,| : bool→ bool→ bool

..,-1,0,1, .. : int

=,< : int→ int→ bool

+,-,* : int→ int→ int

Figure 2.3: Types of the constant symbols

that every symbol has a type and that δ-reduction of a function symbol behaves
as declared by its type.

Axiom 2.15 (Constant symbols are well-behaved)

Each constant symbol c has a type type(c) such that: if type(f 1) = T1 → T2,
then δ-reduction f 1(v1) ⇒δ v2 is defined for all values v1 with · ` v1 : T1

so that · ` v2 : T2. The axiom also applies to binary functions f 2, mutatis
mutandis.

The canonical forms lemma recapitulates the possible forms the values of a given
type may have. The proof is omitted as it is straightforward from the syntax of
values, the types of constants, and the typing rules.

Lemma 2.16 (Canonical forms)

1. If v is a value with · ` v : bool then v ∈ B.

2. If v is a value with · ` v : int then v ∈ Z.

3. If v is a value with · ` v : T1 → T2 then v = f 1, v = f 2, v = f 2 v1, or
v = λx : T . e.

With the canonical forms lemma, the progress theorem can be formalised and
proved.

Theorem 2.17 (Progress)

If · ` e : T then e is a value or there is some e′ with e ⇒ e′.

Proof : By induction on type derivations · ` e : T .

1. Case T-VAR: e = x
e is not closed.

2. Case T-CONST: e = c
e is a value.

24 CHAPTER 2. THE λ-CALCULUS AND TYPE SYSTEMS

3. Case T-ABS: e = λx : T . e
e is a value.

4. Case T-APP: e = e1 e2 with · ` e1 : T ′→ T and · ` e2 : T ′

By the hypothesis, the subexpressions e1 and e2 are either values or can make an
evaluation step. If e1 can make a step, E-APP1 applies. If e1 is a value and e2 can
make a step then E-APP2 applies. If both expressions are values, the application
can have four different forms according to the canonical forms lemma:

(a) Case e1 = f 1: E-PRFAPP1 applies because of axiom 2.15.
(b) Case e1 = f 2: e = f 2 e2 is a value.
(c) Case e1 = f 2 v1: E-PRFAPP2 applies because of axiom 2.15.
(d) Case e1 = λx : T ′. e′: E-ABSAPP applies.

5. Case T-COND: e = if ep then et else ee with · ` ep : bool
By the hypothesis, ep is a value or it can make an evaluation step. If e1 can make a
step, then E-COND applies. If e1 is a value, then by the canonical forms lemma, it
is either true or false and therefore either E-THEN or E-ELSE applies.

In order to prove preservation, some basic lemmas are required. The weakening
lemma states that extending a context with a fresh variable x does not change
the type of a well-typed expression. The proof is a straightforward induction on
typing derivations Γ1,Γ2 ` e : T .
Lemma 2.18 (Weakening)

If Γ1,Γ2 ` e : T then Γ1, x : Tx ,Γ2 ` e : T .

The substitution lemma states that substituting an identifier x of type Tx with an
expression ex of the same type Tx in an expression e preserves the type of e.
Lemma 2.19 (Substitution lemma)

If Γ1, x : Tx ,Γ2 ` e : T and Γ1 ` ex : Tx then Γ1,Γ2 ` e[x 7→ ex] : T .

Proof : By induction on the derivation of Γ1, x : Tx ,Γ2 ` e : T .

1. Case T-CONST: Γ1, x : Tx ,Γ2 ` c : type(c), c[x 7→ ex] = c
By T-CONST, Γ1,Γ2 ` c : type(c).

2. Case T-VAR: Γ1, x : Tx ,Γ2 ` x ′ : T , x ′ : T ∈ (Γ1, x : Tx ,Γ2).

(a) Case x ′ = x: x ′[x 7→ ex] = ex
Since Tx = T , Γ1 ` ex : T . By weakening, Γ1,Γ2 ` ex : T .

(b) Case x 6= x ′: x ′[x 7→ ex] = x ′

Since x 6= x ′, x ′ : T ∈ (Γ1,Γ2). By T-VAR, Γ1,Γ2 ` x ′ : T .

3. Case T-ABS: Γ1, x : Tx ,Γ2 ` λx ′ : T1. e : T1→ T2, Γ1, x : Tx ,Γ2, x ′ : T1 ` e : T2.
By the variable convention 2.3, x 6= x ′ and x ′ 6∈ FV(ex). By the hypothesis,
Γ1,Γ2, x ′ : T1 ` e[x 7→ ex] : T2. By T-ABS, Γ1,Γ2 ` λx ′ : T1. e[x 7→ ex] : T1→ T2.

2.3. SIMPLE TYPES 25

4. Case T-APP: e = e1 e2: By the induction hypothesis and T-APP.

5. Case T-COND: e = if ep then et else ee: By the induction hypothesis and T-COND.

The evaluation of β-redices involves substituting identifiers with expressions.
The proof of the preservation theorem thus relies on the substitution lemma.

Theorem 2.20 (Preservation)

If Γ ` e : T and e ⇒ e′ then Γ ` e′ : T .

Proof : By induction on type derivations Γ ` e : T .

1. Case T-VAR: e = x
There is no e′ with x ⇒ e′.

2. Case T-CONST: e = c
e is a value.

3. Case T-ABS: e = λx : T ′. e
e is a value.

4. Case T-APP: e = e1 e2 with Γ ` e1 : T ′→ T and Γ ` e2 : T ′

The application can make an evaluation step in five possible ways:

(a) Case E-APP1: e1 ⇒ e′1 then e′ = e′1 e2
The result follows from the induction hypothesis and T-APP.

(b) Case E-APP2: e1 = v1 and e2 ⇒ e′2 then e′ = v1 e′2
Similar.

(c) Case E-APPAPS: e1 = λx : T ′. eb and e2 = v2 then e′ = eb[x 7→ v2]
By the substitution lemma, Γ ` eb[x 7→ v2] : T .

(d) Case E-PRFAPP1: e1 = f 1 and e2 = v2 with f 1(v2) ⇒δ v then e′ = v
By axiom 2.15, δ-reduction is type-preserving.

(e) Case E-PRFAPP2: e1 = f 2 v1 and e2 = v2 with f 2(v1, v2) ⇒δ v then e′ = v
Similar.

5. Case T-COND: e = if ep then et else ee with Γ ` ep : bool, Γ ` et : T , Γ ` ee : T
The conditional can make an evaluation step in three possible ways:

• Case E-COND: ep ⇒ e′p then e′ = if e′p then et else ee
By the hypothesis and T-COND.

• Case E-THEN: ep = true then e′ = et
Immediate, since Γ ` et : T .

• Case E-ELSE: ep = false then e′ = ee
Similar.

Unlike the untyped λ-calculus, the simply-typed λ-calculus is strongly normal-
ising, i. e., the evaluation of every well-typed expression eventually terminates

26 CHAPTER 2. THE λ-CALCULUS AND TYPE SYSTEMS

yielding a value. For example, there is no typed form of the divergent combina-
tor ω= (λx . x x) (λx . x x) as the inherent self-application x x cannot be typed.
Lemma 2.21 (Self-application is ill-typed)

There is no context Γ and no type T so that Γ ` x x : T .

Proof : By reductio ad absurdum. Suppose that under some context Γ, there is some
type T so that Γ ` x x : T . By inversion of the typing rule T-APP, there must be some T ′

with Γ ` x : T ′→ T and simultaneously Γ ` x : T ′. Therefore the proposition is wrong.

To nonetheless enable the specification of recursive programs, typed λ-calculi are
commonly extended with some kind of fixed-point expression that reproduces
itself upon evaluation.

Summary

This chapter presented essential concepts of the λ-calculus, operational seman-
tics, and type systems. By restricting the set of allowed expressions, types enable
a compiler to statically rule out erroneous programs. Type checking is inherently
conservative: only programs for which the absence of certain behaviours can be
proved are accepted. As a downside, a type system may also reject well-behaved
programs as ill-typed. To increase the number of typeable programs, more ad-
vanced typing schemes have been studied.
In the simply-typed λ-calculus, an abstraction λx : T . e may be regarded as an
expression that is parameterised by another expression of type T . Figure 2.4
shows Barendregt’s λ-cube [6, 82] that nicely visualises three orthogonal exten-
sions of this basic system. The cube places the simply typed λ-calculus in the
lower left front corner as λ→. Each of its three axes represents a new form of
abstraction.

1. The vertical axis introduces type abstractions that map types to expressions
and thereby give rise to polymorphism. The resulting calculus is known as
System F or the second-order λ-calculus.

2. The perpendicular axis introduces type operators, i. e., types that depend
on types. The system λω is thus called the simply-typed λ-calculus with
type operators. The combination with System F is known as System Fω.

3. The horizontal axis introduces dependent types, i. e., types that depend
on expressions. The λ-calculus with dependent types has become widely
known as the logical framework LF. The calculus of constructions (CC)
combines all three forms of abstraction.

2.3. SIMPLE TYPES 27

λ→

λω

F

Fω

LF

·

·

CC

Figure 2.4: Barendregt’s λ-cube [6, 82]

28 CHAPTER 2. THE λ-CALCULUS AND TYPE SYSTEMS

3
Decidable First-Order Theories

The type system of QUBE uses dependent types to accurately model array shapes
and to restrict the potential run-time values of expressions. Type checking pro-
ceeds in collaboration with an automatic theorem prover for the Satisfiability
Modulo Theories problem. This chapter gives a brief introduction to proposi-
tional logic, first-order logic, and the relevant fragments of first-order theories
that will be used in later chapters. More detailed presentations of these top-
ics can be found in textbooks on logic and computer aided verification, such
as [66, 17, 50].

The remainder of this chapter is structured as follows: First, Section 3.1 intro-
duces propositional logic and basic terminology. Section 3.2 then gives a brief
account of first-order logic, which extends propositional logic with non-logical
function symbols, predicate symbols and quantifiers. Next, Section 3.3 presents
some decidable quantifier-free fragments of first-order theories that the QUBE

compiler uses to reason about programs, namely the theory of uninterpreted
functions and equality as well as linear integer arithmetic. Section 3.4 presents
array properties, a decidable fragment of quantified first-order logic that is used
by the QUBE compiler to model integer vectors.

29

30 CHAPTER 3. DECIDABLE FIRST-ORDER THEORIES

3.1 Propositional Logic

This section gives a brief introduction to propositional logic (PL) and explains ba-
sic terminology such as validity, satisfiability, essential normal forms, soundness
and completeness.
Given an enumerable set V of propositional variables, an atomic formula is a
propositional variable x ∈ V . A propositional logic formula is generated from
atomic formulae using the logical connectives ¬ (negation), ∧ (conjunction), ∨
(disjunction),→ (implication), and↔ (equivalence).
Definition 3.1 (Syntax of propositional logic formulas)

The set P of propositional logic formulas ϕ is defined by the grammar:

ϕ ::= a
�

� ¬ϕ
�

� ϕ ∧ϕ
�

� ϕ ∨ϕ
�

� ϕ→ ϕ
�

� ϕ↔ ϕ Formulas
a ::= x Atoms

The above syntax of PL formulas is ambiguous. We use parentheses to disam-
biguate the structure of formulas. To avoid excessive bracketing, the following
conventions about the priorities of the logical connectives apply: ¬ has the high-
est priority, ∧ and ∨ are next,→ and↔ have the lowest priorities.
The meaning of a propositional logic formula is a truth value, i. e., an element
from the set B = {>,⊥} with > 6= ⊥. In general, the truth value of a formula
depends on the valuation of its propositional variables.
Definition 3.2 (Assignment)

An assignment α : V → B is a function that maps propositional variables to
truth values.

Given a formula and an assignment, the truth value of a formula may be eval-
uated. The evaluation function ¹.º (.) : P → (V → B) → B is defined induc-
tively. In the definition, the truth functions not : B → B, and : B× B → B, and
or : B×B→ B have the usual meanings.

¹xº (α) = α(x)
�

¬ϕ
�

(α) = not(
�

ϕ
�

(α))
�

ϕ1 ∧ϕ2

�

(α) = and(
�

ϕ1

�

(α),
�

ϕ2

�

(α))
�

ϕ1 ∨ϕ2

�

(α) = or(
�

ϕ1

�

(α),
�

ϕ2

�

(α))
�

ϕ1→ ϕ2

�

(α) = or(not(
�

ϕ1

�

(α)),
�

ϕ2

�

(α))
�

ϕ1↔ ϕ2

�

(α) = or(and(
�

ϕ1

�

(α),
�

ϕ2

�

(α)),
and(not(

�

ϕ1

�

(α)), not(
�

ϕ2

�

(α))))

3.1. PROPOSITIONAL LOGIC 31

Given an assignment α, a formula ϕ is said to hold under α, written α |= ϕ, iff
�

ϕ
�

(α) =>.
Definition 3.3 (Validity, satisfiability)

A formula ϕ is called valid, written |= ϕ, iff ϕ holds under all assignments,
otherwise ϕ is called invalid. A formula ϕ is called satisfiable iff ϕ holds
under some assignment α, otherwise ϕ is called unsatisfiable.

Satisfiability and validity are dual concepts. A formula is valid iff its negation
is unsatisfiable. Vice versa, a formula is invalid iff its negation is satisfiable. A
satisfying assignment of a formula ϕ is also called a model of ϕ. An assignment
that satisfies ¬ϕ is said to be a counterexample of ϕ. Valid formulas are also
called tautologies.
Definition 3.4 (Equivalence, implication)

Two formulas ϕ1 and ϕ2 are said to be equivalent, written ϕ1 ⇔ ϕ2, if they
evaluate to the same truth values under all assignments. I. e., for all assign-
ments α, α |= ϕ1 iff α |= ϕ2, i. e., |= ϕ1↔ ϕ2.
The formula ϕ1 is said to imply the formula ϕ2, written ϕ1 ⇒ ϕ2, if every
assignment α satisfying ϕ1 also satisfies ϕ2. I. e., for all assignments α, if
α |= ϕ1, then α |= ϕ2, i. e., |= ϕ1→ ϕ2.

A normal form imposes syntactic restrictions on formulas. The process of decid-
ing whether a formula is satisfiable usually starts with transforming the formula
to some normal form that is appropriate for the decision procedure at hand.
Definition 3.5 (Negation normal form (NNF))

A formula is in negation normal form (NNF) if it is generated from literals
using the logical connectives ∧ and ∨. A literal is an atom or its negation.

ϕnnf ::= l
�

� ϕnnf ∧ϕnnf

�

� ϕnnf ∨ϕnnf NNF formulas
l ::= a

�

� ¬a Literals

Every PL formula can be transformed into an equivalent formula in NNF by ex-
haustively replacing the left hand sides of the following equivalences with the
respective right hand sides.

¬¬ϕ ⇔ ϕ

¬(ϕ1 ∧ϕ2) ⇔ ¬ϕ1 ∨¬ϕ2

¬(ϕ1 ∨ϕ2) ⇔ ¬ϕ1 ∧¬ϕ2

ϕ1→ ϕ2 ⇔ ¬ϕ1 ∨ϕ2

ϕ1↔ ϕ2 ⇔ (ϕ1→ ϕ2)∧ (ϕ2→ ϕ1)

32 CHAPTER 3. DECIDABLE FIRST-ORDER THEORIES

Definition 3.6 (Conjunctive normal form (CNF))

A formula is in conjunctive normal form if it is a conjunction of clauses. A
clause is a disjunction of literals.

ϕcn f ::=
∧

i

∨

j li, j CNF formulas

A formula can be transformed into an equivalent formula in CNF by first trans-
forming the formula into NNF and then distributing the conjunction symbols by
exhaustively applying the following equivalences from left to right.

(ϕ1 ∧ϕ2)∨ϕ3 ⇔ (ϕ1 ∨ϕ3)∧ (ϕ2 ∨ϕ3)
ϕ1 ∨ (ϕ2 ∧ϕ3) ⇔ (ϕ1 ∨ϕ2)∧ (ϕ1 ∨ϕ3)

The decision problem is to determine whether a formula is valid. Because of the
duality of validity and satisfiability, determining the satisfiability of the negated
formula is an equivalent problem. We are interested in automatic procedures to
determine the validity (or the unsatisfiability) of a given formula.

Definition 3.7 (Decision procedure)

A procedure for the decision problem is sound if when it returns valid (un-
satisfiable), the formula is indeed valid (unsatisfiable). A procedure for the
decision problem is complete if it terminates on every input, and when the
formula is valid (unsatisfiable), it returns valid (unsatisfiable).
A procedure is called a decision procedure if it is sound and complete.

The satisfiability problem of boolean formulas (SAT) is naïvely decidable because
the number of potential assignments is finite. Given a formula with n proposi-
tional variables, a decision procedure may simply enumerate all 2n assignments
and report whether any of these satisfies the formula.

SAT was the first knownNP-complete problem [27]. It is thus unknown whether
there is an algorithm that finds a satisfying assignment for all satisfiable for-
mulas in polynomial time. Nonetheless, the theoretical and practical signifi-
cance of the problem has motivated the development of extremely powerful SAT
solvers. Based on the Davis-Putnam-Loveland-Logemann (DPLL) algorithm [29,
28], solvers like CHAFF [77] and MINISAT [34] are used in the industrial practice
to solve CNF formulas with hundreds of thousands or even millions of boolean
variables in reasonable amounts of time.

3.2. FIRST-ORDER LOGIC 33

3.2 First-Order Logic

First-order logic (FOL), also called predicate logic, extends propositional logic
with non-logical function and predicate symbols and quantification. Terms eval-
uate to objects, predicates take objects to truth values. Quantifiers express prop-
erties of entire sets of objects.
A signature fixes the set of non-logical symbols that may appear in a first-order
formula.
Definition 3.8 (Signature)

A signature Σ = (F,P) consists of a family F= (Fn)n∈N of function symbols, and
a family P= (Pn)n∈N of predicate symbols. n is called the arity of a symbol. We
assume all sets to be mutually disjoint.

Nullary function symbols may be regarded as constant symbols. Given a signa-
ture Σ = (F,P) and an enumerable set V of variables, a term is either a variable
x ∈ V , or an application of a function symbol fn ∈ Fn to n terms. An atomic
formula is an application of a predicate symbol pn ∈ Pn to n terms. A first-
order formula consists of atomic formulas,combined with the logical connectives
¬ (negation), ∧ (conjunction), ∨ (disjunction),→ (implication), and↔ (equiv-
alence), and the quantifiers ∀x (for all x) and ∃x (for some x).
Definition 3.9 (Syntax of terms and first-order formulas)

The set T of terms t and the set F of first-order formulas ϕ over Σ and V are
defined by the following grammar:

ϕ ::= a
�

� ¬ϕ
�

� ϕ ∧ϕ
�

� ϕ ∨ϕ
�

� ϕ→ ϕ
�

� ϕ↔ ϕ Formulas
�

� ∀x .ϕ
�

� ∃x .ϕ
a ::= pn(t1, ..., tn) Atoms
t ::= x

�

� fn(t1, ..., tn) Terms

As before, we use parentheses to disambiguate the structure of first-order for-
mulas. The following conventions about the order of operations apply: ¬ is eval-
uated first, ∧ and ∨ are evaluated next, then quantifiers are evaluated, before
finally→ and↔ are evaluated.
In analogy with the λ-calculus, a variable is called free in a formula ϕ, iff at least
one occurrence is not bound by a quantifier. The set FV(ϕ) contains all free
variables of ϕ. A formula that contains no free variable is called a closed formula
or a sentence.
An interpretation gives meaning to a signature. It provides a domain for in-
terpreting variables and terms, for example, the integers or real numbers, and

34 CHAPTER 3. DECIDABLE FIRST-ORDER THEORIES

explains function symbols as actual functions, and predicate symbols as actual
predicates.
Definition 3.10 (Interpretation, assignment)

An interpretation I = (D,FI ,PI) of a signature Σ = (F,P) provides

• a non-empty set of objects D as the domain of interpretation,

• for every function symbol f ∈ Fn a function f I : Dn→ D, and

• for every predicate symbol p ∈ Pn a predicate pI : Dn→ B.

An assignment α : V → D maps variables to objects from the domain D. The
altered assignment α[x 7→ d] is defined as

α[x 7→ d](y) =
�

d if x = y
α(y) if x 6= y

With an interpretation I = (D,FI ,PI) and an assignment α, we may evaluate
formulas by evaluating terms to objects and formulas to truth values. The eval-
uation function ¹.ºI (.) : T → (V → D)→ D which determines the value of terms
is defined inductively.

¹xºI (α) = α(x)
�

f (t1, ..., tn)
�

I (α) = f I(
�

t1

�

I (α), ...,
�

tn
�

I (α))

Similarly, the evaluation function ¹.ºI (.) : F → (V → D) → B that determines
the truth value of a formula in an interpretation I is also defined inductively.

�

p(t1, ..., tn)
�

I (α) = pI(
�

t1

�

I (α), ...,
�

tn
�

I (α))
�

¬ϕ
�

I (α) = not(
�

ϕ
�

I (α))
�

ϕ1 ∧ϕ2

�

I (α) = and(
�

ϕ1

�

I (α),
�

ϕ2

�

I (α))
�

ϕ1 ∨ϕ2

�

I (α) = or(
�

ϕ1

�

I (α),
�

ϕ2

�

I (α))
�

ϕ1→ ϕ2

�

I (α) = or(not(
�

ϕ1

�

I (α)),
�

ϕ2

�

I (α))
�

ϕ1↔ ϕ2

�

I (α) = or(and(
�

ϕ1

�

I (α),
�

ϕ2

�

I (α)),
and(not(

�

ϕ1

�

I (α)), not(
�

ϕ2

�

I (α))))
�

∀x .ϕ
�

I (α) =
�

> if for all d ∈ D :
�

ϕ
�

I (α[x 7→ d])
⊥ else

�

∃x .ϕ
�

I (α) =
�

> if for some d ∈ D :
�

ϕ
�

I (α[x 7→ d])
⊥ else

Given an interpretation I and an assignment α, a first-order formula ϕ is said to

3.2. FIRST-ORDER LOGIC 35

hold in I under α, written α |=I ϕ, iff
�

ϕ
�

I (α) = >. A formula ϕ is said to hold
in I , written |=I ϕ, iff ϕ holds in I under any assignment.

Definition 3.11 (Validity, satisfiability)

A first-order sentence ϕ is valid, written |= ϕ, iff ϕ holds in all interpretations,
otherwise ϕ is invalid. The sentence ϕ is satisfiable, iff ϕ holds in some
interpretation, otherwise ϕ is unsatisfiable.

Validity and satisfiability are only defined for closed formulas. By convention,
we say that a (non-closed) formula ϕ is valid, iff its universal closure ∀ ∗ .ϕ is
valid. Dually, we call ϕ satisfiable, iff its existential closure ∃ ∗ .ϕ is satisfiable.
The normal forms of propositional logic have counterparts in first-order logic.
We restrict the presentation to the first-order extension of negation normal form
as we will use it later in Section 3.4.
Definition 3.12 (Negation normal form (NNF))

A first order formula is in negation normal form (NNF) if it contains only ¬,
∧, and ∨ as logical connectives and negation appears only in literals. A literal
is an atom or its negation.

ϕnnf ::= l
�

� ϕnnf ∧ϕnnf

�

� ϕnnf ∨ϕnnf NNF formulas
�

� ∀x .ϕnnf

�

� ∃x .ϕnnf

l ::= a
�

� ¬a Literals

In order to transform a first-order formula to an equivalent formula in negation
normal form, the equivalences for normalising propositional logic formulas from
Section 3.1 may be applied from left to right. Additionally, the following two
equivalences push down negation symbols into quantified formulas.

¬∀x .ϕ ⇔ ∃x .¬ϕ
¬∃x .ϕ ⇔ ∀x .¬ϕ

The function and predicate symbols of a signature are purely syntactic. Their
meanings are subject to interpretation. Coincidentally, we may decide to in-
terpret the function symbol + ∈ F2 as integer addition, but entirely different
interpretations are possible, too. A first-order theory restricts the interpretation
of non-logical symbols by specifying additional axioms.

Definition 3.13 (First-order theory)

A theory T = (Σ,A) is defined by a signature Σ and a set A of axioms that
provide meaning to the non-logical symbols of Σ. Each axiom is a Σ-sentence.

36 CHAPTER 3. DECIDABLE FIRST-ORDER THEORIES

The concepts of validity and satisfiability can be refined to take theory-specific
axioms into account.
Definition 3.14 (T -validity, T -satisfiability)

For a given theory T = (Σ,A), a Σ-sentence ϕ is said to be T -valid iff all
interpretations that satisfy the axioms in A also satisfy ϕ. The sentence ϕ is
called T -satisfiable, iff there is an interpretation that satisfies both the axioms
of T and ϕ.

A theory restricts the interpretation of the non-logical symbols in formulas. In
contrast, restricting the syntax of a logic language yields a fragment of that logic.
For example, the quantifier-free fragment of a theory T is the set of all T -valid
formulas without quantifiers.

3.3 Quantifier-Free Fragments of
First-Order Theories

This section briefly describes the quantifier-free fragments of first-order theories
that the QUBE compiler uses to reason about expressions. Specifically, these are
the theory of equality and uninterpreted functions, and linear integer arithmetic.
A simple but useful first-order theory is the theory of equality in conjunction with
uninterpreted functions (and predicates).

Definition 3.15 (Equality with uninterpreted functions)

The theory of equality with uninterpreted functions TEU F extends an arbitrary
signature Σ = (F,P) with a single interpreted equality predicate =∈ P2.

The axioms of equality logic ensure that = denotes an equivalence relation by
prescribing that = should be reflexive, symmetric, and transitive.

1. ∀x . x = x (Reflexivity)

2. ∀x , y. x = y↔ y = x (Symmetry)

3. ∀x , y, z. x = y ∧ y = z→ x = z (Transitivity)

Furthermore, all interpretations of function and predicate symbols should be-
have consistent: functions and predicates must always evaluate to equal values
when given equal arguments. Apart from functional consistency, symbols are
uninterpreted.
The following axioms ensure that term and predicate construction is compatible
with equality, such that it becomes a congruence relation.

3.3. QUANTIFIER-FREE FRAGMENTS OF FIRST-ORDER THEORIES 37

4. for all function symbols f ∈ Fn

∀xn, yn.
�
∧

i x i = yi

�

→ (f (xn) = f (yn)) (Function congruence)

5. for all predicate symbols p ∈ Pn

∀xn, yn.
�
∧

i x i = yi

�

→ (p(xn)↔ p(yn)) (Predicate congruence)

Satisfiability checking in the quantifier-free fragment of TEU F is decidable. In
computer aided verification, uninterpreted functions are widely used as substi-
tutes for functions whose exact semantics is either too complex for mechanical
proof or even entirely irrelevant for proving the formula at hand.

Example 3.16 (Equality checking with uninterpreted functions)

Functional consistency is sufficient to prove the equality of the expressions
1. let x = a ∗ b in let y = x ∗ c in y, and

2. (a ∗ b) ∗ c.
Rewrite in TEU F , and prove the validity of

x = fmul(a, b)∧ y = fmul(x , c)→ y = fmul(fmul(a, b), c) ,

or equivalently, prove the unsatisfiability of

x = fmul(a, b)∧ y = fmul(x , c)∧ y 6= fmul(fmul(a, b), c) .

Merely relying on functional consistency is insufficient to prove all correct state-
ments. Thus, validity checking of an arbitrary formula by approximating it in
TEU F is sound but not complete. For example, equalities arising from the com-
mutativity of addition such as a+ b = b+ a cannot be proved in TEU F . However,
in the context of array programming, where ranks, shapes, and array indices are
all (vectors of) integers, it is particularly important to accurately reason about
(in-)equalities of integers. The theory of linear integer arithmetic allows us to
express and reason about such constraints.

Definition 3.17 (Linear integer arithmetic)

The signature of the theory of linear integer arithmetic provides an infinite
set F0 = Z of constant symbols, an infinite set of unary function symbols
F1 = {c · | c ∈ Z}, two binary function symbols F2 = {+ ,−} and two binary
predicate symbols P2 = {= ,<}.

Intuitively rather than axiomatically, the theory is interpreted in the domain of
integers where the constant symbols have interpretations as integer values. Sim-
ilarly, the function and predicate symbols are interpreted as the corresponding
functions and relations over the integers.

38 CHAPTER 3. DECIDABLE FIRST-ORDER THEORIES

Linear integer arithmetic is an extension of Presburger arithmetic [85]. Addi-
tional functions and predicates can be expressed in terms of the existing, for
example, a ≤ b ↔ a = b ∨ a < b. However, the theory cannot be extended to
capture true multiplication as this would yield Peano arithmetic which, according
to Gödel’s first incompleteness theorem [48], is undecidable.

3.4 Array Properties

The theories presented in the previous sections allow us to express linear con-
straints between integer variables. In the context of rank-generic array pro-
gramming, we also need to express constraints between entire vectors of inte-
gers although their lengths may not be statically known. For example, when
an array of rank r and shape vector s is passed to a function that expects an
array of shape r ′ and shape vector s′, the compiler must verify that r = r ′ and
∀i. 0≤ i < r → s[i] = s′[i]. Such vector constraints can be expressed in the array
property fragment [18] which is a decidable fragment of quantified array logic.
In array logic, there are two basic array operations: reading and writing. The
term a[i] reads the element at position i from a. The term a[i← e] denotes the
array a where the element at position i has been replaced by e. The theories
used to reason about the indices and the elements are called the index theory
and the element theory, respectively.
Definition 3.18 (Array property)

A formula is called an array property if and only if it has the form

∀x i.ϕI → ϕV ,

where the variable x i belongs to a designated set of index identifiers. The
formula must satisfy the following syntactic conditions:

1. The index guard ϕI must obey the grammar

ϕI ::= ϕI ∧ϕI

�

� ϕI ∨ϕI

�

� t i ≤ t i

�

� t i = t i Index guards
t i ::= x i

�

� t Index terms
t ::= Z

�

� Z · x
�

� t + t Terms

The identifier x used in a term must not be an index identifier.

2. In the value constraint ϕV , the index identifier x i may only be used in
array read functions of the form a[x i]. The read cannot be nested, for
example, a[b[x i]] is not allowed.

The satisfiability problem for a formula in the array property fragment is decided

3.4. ARRAY PROPERTIES 39

by reduction to an equisatisfiable quantifier-free formula that uses the index and
element theories. Given a formula ϕ, the reduction proceeds in the following
steps:

1. Convert ϕ to NNF.

2. Remove writes from ϕ by applying the write rule exhaustively:

ϕ(a[i← v])
(WRITE)

ϕ(a′)∧ a′[i] = v ∧ (∀ j. j 6= i→ a[j] = a′[j])

where a′ is a fresh variable. Rephrase j 6= i to meet the syntax of array
properties.

3. Replace all existential quantifications ∃i.ϕE(i) in ϕ by ϕE(j), where j is a
fresh variable.

4. Instantiate the universal quantifiers. Replace quantifications of the form
∀i.ϕA(i) by

∧

i∈I(ϕ)ϕA(i), where the index set I(ϕ) contains all relevant
symbolic indices that occur in the entire formula ϕ after step 3:

I(ϕ) = {t | ·[t] ∈ ϕ such that t is not a universally quantified variable}
∪ {t | t occurs as a term in an index guard}

The resulting formula can then be decided with the corresponding decision pro-
cedures.
The syntax of the array property fragment demands that universally quantified
variables x i may only be used in the value constraint in array selections of the
form a[x i]. Neither nested reads of the form b[a[x i]] nor any kind of arithmetic
expressions involving universally quantified variables such as x i+1 are allowed.
It was shown in [18] that permitting either of the above expressions yields a
fragment for which the satisfiability problem is undecidable.
As a consequence, array properties can only be used to compare vector elements
at corresponding index positions. The fragment suffices to express that all ele-
ments of some vectors v and w of length n are equal. For the sake of brevity, we
write 0≤ i < n instead of 0≤ i ∧ i ≤ n+ 1.
Example 3.19 (Vector equality)

∀i. 0≤ i < n → v[i] = w[i]

For an access into a multidimensional array a of rank r and shape vector s with
an index vector v, all elements of v must range between 0 and the corresponding
elements of s. There is an array property for that, too.

40 CHAPTER 3. DECIDABLE FIRST-ORDER THEORIES

Example 3.20 (Bounded vector)

∀i. 0≤ i < n → 0≤ v[i]∧ v[i]< s[i]

As a negative example, the concatenation of vectors v and v′ with respective
lengths n and n′ cannot be interpreted in the array property fragment as this
requires index shifting.

Example 3.21 (Concatenation is not expressible with array properties)

∀i. (0≤ i < n → w[i] = v[i])∧ (n≤ i < n+ n′ → w[i] = v′[i− n])

Similarly, dropping m elements from the beginning of a vector v of length n is
also not expressible as an array property.

Example 3.22 (Drop is not expressible with array properties)

∀i. 0≤ i < n−m → w[i] = v[i+m]

Summary

First-order logic is a framework that provides a generic syntax for defining cus-
tom theories that restrict the non-logical function and predicate symbols. The
QUBE compiler uses the quantifier-free fragments of the theory of equality and
uninterpreted functions as well as linear integer arithmetic to statically reason
about programs. Using the Nelson-Oppen procedure [78, 79, 66], the decision
procedures for both theories can be combined so that a decision procedure for
the combined theory is obtained. Hence, many modern SMT (Satisfiability Mod-
ulo Theories) solvers such as YICES [33], Z3 [30] provide support for these
theories.
In order to reason about integer vectors, which represent array shapes and index
vectors, the QUBE compiler uses the array property fragment which reduces to
the aforementioned theories.

Part II

A Formal Treatment of QUBE

41

4
A Core Language for
Array Programming

This chapter formally discusses the syntax and the operational semantics of the
QUBE programming language. To achieve a rigourous presentation, we specify
a core language QUBECORE that captures the essential concepts of QUBE without
syntactic sugar or convenience features. QUBECORE is a typed language that uses
type annotations to guide the type system. The syntax of QUBECORE is designed to
superficially resemble the syntax of OCAML so that readers familiar with OCAML

should recognise many of the language elements.
The language comprises three conceptual layers. Its foundation QUBEλ (QUBE

fun) is an applied λ-calculus with dependent types that provides essential pro-
gramming features like abstractions, applications, tuples and let-bindings. The
next layer QUBE→ (QUBE vector) adds support for specifying and manipulating
integer vectors that serve as shape and index vectors. The topmost layer QUBE[]
(QUBE array) provides means for defining, accessing and manipulating multidi-
mensional arrays.
Figure 4.1 shows the abstract syntax of QUBECORE in extended Backus-Naur form.
For every layer, the language defines types T , expressions e, and values v. Values
form a designated subset of expressions which are accepted as legal results of
evaluation when no further step is possible. Types classify expressions according
to the values they compute.
The notational conventions and the variable convention carry over from Chap-

43

44 CHAPTER 4. A CORE LANGUAGE FOR ARRAY PROGRAMMING

Syntax

T ::= Tλ
�

� T→
�

� T[] Types

e ::= eλ
�

� e→
�

� e[] Expressions

v ::= vλ
�

� v→
�

� v[] Values

Tλ ::= B
�

� {x:T | e }
�

� x:T → T
�

� (x:T,T) Types
B ::= bool

�

� int Base types

eλ ::= c
�

� x
�

� fun x:T → e
�

� e e Expressions
�

� let x = e in e
�

� if :T e then e else e
�

� (e:T)
�

� (e,e:(x:T,T))
�

� let (x,x) = e in e
c ::= B

�

� Z
�

� f 1
�

� f 2 Constants
f 1 ::= not Unops
f 2 ::= ↔

�

� &
�

� |
�

� =
�

� !=
�

� <
�

� <=
�

� >=
�

� >
�

� +
�

� -
�

� *
�

� /
�

� % Binops

vλ ::= c
�

� f 2 v
�

� fun x:T → e
�

� (v,v:(x:T,T)) Values

T→ ::= intvec e Vector type
e→ ::= [

�

e
�

,e
	�

]
�

� e.(e)
�

� e.(e)← e
�

� vec e e Vector exprs.
�

� vmap e e
�

,e
	

(x
�

,x
	

→ e)
�

� vfa e e
�

,e
	

(x
�

,x
	

→ e)
v→ ::= [

�

Z
�

,Z
	�

] Vector value

T[] ::= [T|e
�

,e
	

] Array type
e[] ::= [

�

e
�

,e
	�

: T|[
�

Z
�

,Z
	�

]]
�

� e.[e
�

,e
	

]
�

� e.[e
�

,e
	

]← e
�

� reshape e
�

,e
	

e Array exprs.
�

� gen :T e
�

,e
	

with x
�

,x
	

→ e
�

� loop x:T = e; e
�

,e
	

with x
�

,x
	

→ e

v[] ::= [
�

v
�

,v
	�

: T|[
�

Z
�

,Z
	�

]] Array value

Figure 4.1: Abstract syntax of QUBECORE

4.1. QUBEλ: A FUNCTIONAL FOUNDATION 45

ter 2. As before, e[x 7→ e′] denotes capture-avoiding substitution of all free
occurrences of the variable x in the expression e with e′. Similarly, the notation
T[x 7→ e] denotes capture-avoiding substitution of all free occurrences of the
variable x in the type T with e. The following table gives an overview of the
metavariables that we use in the remainder of the part.

Metavariable Represented set
e expressions
T types
v values
x variables
c, f 1, f 2 constant and function symbols
n, i integer constants

We use overlined metavariables such as a to represent finite sequences of comma-
separated metavariables a0, .., a|a|−1 where |a| denotes the length of the sequence.
The remainder of this chapter is organised as follows: Section 4.1 describes the
functional language QUBEλ that forms the foundation of QUBECORE. Section 4.2
presents the language layer QUBE→ that provides syntax for handling integer vec-
tors. Support for multidimensional arrays in QUBE[] is described in Section 4.3.
After QUBECORE has been presented entirely, Section 4.4 presents essential prop-
erties of the evaluation relation.

4.1 QUBEλ: a Functional Foundation

The language fragment QUBEλ (QUBE fun) forms the basis of QUBECORE. It aug-
ments an applied λ-calculus with constant symbols, let-bindings, conditional ex-
pressions, and tuples. As its most significant features, QUBEλ provides dependent
types and refinement types.
Fig 4.2 shows the abstract syntax of QUBEλ in isolation. In the course of this
section, we will explain the types T and the expressions e in the same order as
they appear in the figure. For every expression, we simultaneously discuss both
its syntax and its operational semantics which is shown in Figure 4.3.
The types Tλ are either base types B or aggregate types. The base types bool
and int describe truth values and integers, respectively. Other base types such
as unit, double, or char may be added depending of the application.
A refinement type {x:T | e } describes the subset of values x of type T that satisfy
the boolean expression e. In particular, since true is satisfied by any x , the type
{x:T |true} is equivalent to T .

46 CHAPTER 4. A CORE LANGUAGE FOR ARRAY PROGRAMMING

Syntax of QUBEλ

Tλ ::= B
�

� {x:T | e }
�

� x:T → T
�

� (x:T,T) Types
B ::= bool

�

� int Base types

eλ ::= c
�

� x
�

� fun x:T → e
�

� e e Expressions
�

� let x = e in e
�

� if :T e then e else e
�

� (e:T)
�

� (e,e:(x:T,T))
�

� let (x,x) = e in e
c ::= B

�

� Z
�

� f 1
�

� f 2 Constants
f 1 ::= not Unops
f 2 ::= ↔

�

� &
�

� |
�

� =
�

� !=
�

� <
�

� <=
�

� >=
�

� >
�

� +
�

� -
�

� *
�

� /
�

� % Binops

vλ ::= c
�

� f 2 v
�

� fun x:T → e
�

� (v,v:(x:T,T)) Values

Figure 4.2: Abstract syntax of QUBEλ

To illustrate refinement types, we define two type abbreviations that will be used
frequently in the remainder: a type nat for natural numbers and a type index
for integers that range between zero and an upper bound. Note that type ab-
breveations are not a part of QUBECORE. To obtain pure QUBECORE types, we only
need to replace the abbreveations with their definitions.

Example 4.1 (Refinement type)

type nat = { x:int | 0 <= x }
type index b:nat = { x:int | 0 <= x & x < b }

The dependent function type x:T1 → T2 binds the variable x of the domain
type T1 in the codomain type T2. This allows the result type of a function to
vary according to the supplied argument. For example, when an operator of
type x:T1 → T2 is applied to an operand e of type T1, the application has type
T2[x 7→ e]. The usual (non-dependent) function type is a special case of the
dependent function type whose codomain does not depend on the argument
value, i. e., T1→ T2 is equivalent to x:T1→ T2 if x /∈ FV(T2).
To exemplify dependent function types, we provide types that precisely specify
an integer identity function and safe integer division by means of refinement
types.

Example 4.2 (Dependent function type)

id : x:int → { v:int | v = x }
/ : x:int → y:{ v:int | not (v = 0) } → { v:int | v = x / y }

Similar to the dependent function type, the dependent tuple type (x:T1,T2)

4.1. QUBEλ: A FUNCTIONAL FOUNDATION 47

describes pairs (e1, e2) whose second components’ type depends on the value of
the first component, so that if e1 has type T1, then e2 has type T2[x 7→ e1]. The
dependent tuple type generalises the conventional Cartesian product: the type
(T1,T2) is equivalent to (x:T1,T2) if x /∈ FV(T2).

To illustrate dependent tuple types, we define type abbreviations for ascendingly
ordered pairs of integers and, as a borderline case, for complex numbers.

Example 4.3 (Dependent tuple type)

type ordered_pair = (x:int, { v:int | v >= x })
type cpx = (int,int)

We now describe the expressions of QUBECORE. The constant symbols c com-
prise the booleans B = {true,false}, the integers Z = {..,-1,0,1, ..}, as well as
the sets f 1, f 2 of built-in unary and binary functions. The only unary function
symbol is the logical negation not. Binary function symbols are the logical con-
nectives & (and), | (or),↔ (iff), the relational operators =, !=, <, <=, >=, >, and
the arithmetic operators +, -, *, /, %.

An abstraction fun x:T → e represents a function. It binds the variable x of
type T in the abstraction body e. An abstraction is a value by itself. In partic-
ular, abstraction bodies are never evaluated. As a simple example, we specify
a function for computing the arithmetic mean of two integers. Note that, like
λ abstractions, fun associates to the right.

Example 4.4 (Function value: arithmetic mean)

fun x:int → fun y:int → (x + y) / 2

An application e1 e2 consists of an operator e1 and an operand e2. Evaluation
of applications follows a call-by-value regime. E-APP1 first evaluates the opera-
tor e1 before E-APP2 evaluates the operand e2. If the application evaluates to a
β-redex (fun x:T → e) v, E-ABSAPP β-reduces the application by substituting all
free occurrences of x in e with the evaluated operand. Applications of function
symbols to legitimate arguments are evaluated via δ-reduction as described by
the rules E-PRFAPP1 and E-PRFAPP2. Ill-formed applications of function symbols
such as 1/0 or 0 = false cannot be evaluated and are thus “stuck” expressions.
Applications f 2 v of a binary function symbol to a single value f 2 v are consid-
ered values.

The conditional expression if :T ep then et else ee consists of the predicate ep

and the two branches et and ee. The annotation : T guides the type checking
mechanism by providing a common supertype for both branches. E-COND evalu-
ates the predicate. If it evaluates to either true or false, the entire conditional

48 CHAPTER 4. A CORE LANGUAGE FOR ARRAY PROGRAMMING

Evaluation rules e ⇒ e
e1 ⇒ e′1 (E-APP1)

e1 e2 ⇒ e′1 e2

e2 ⇒ e′2 (E-APP2)
v1 e2 ⇒ v1 e′2

(fun x:T → e) v ⇒ e[x 7→ v] (E-ABSAPP)

f 1(v) ⇒δ v′
(E-PRFAPP1)

f 1 v ⇒ v′
f 2(v1, v2) ⇒δ v3 (E-PRFAPP2)
(f 2 v1) v2 ⇒ v3

e1 ⇒ e′1 (E-LETE)
let x = e1 in e2 ⇒ let x = e′1 in e2

let x = v1 in e2 ⇒ e2[x 7→ v1] (E-LET)

e1 ⇒ e′1 (E-COND)
if :T e1 then e2 else e3 ⇒ if :T e′1 then e2 else e3

if :T true then e2 else e3 ⇒ e2 (E-CONDT)

if :T false then e2 else e3 ⇒ e3 (E-CONDE)

e ⇒ e′ (E-COERCES)
(e:T) ⇒ (e′:T) (v:T) ⇒ v (E-COERCE)

e1 ⇒ e′1 (E-TUP1)
(e1, e2:T) ⇒ (e′1, e2:T)

e2 ⇒ e′2 (E-TUP2)
(v1, e2:T) ⇒ (v1, e′2:T)

e1 ⇒ e′1 (E-UNPACKE)
let (x1, x2) = e1 in e2 ⇒ let (x1, x2) = e′1 in e2

let (x1, x2) = (v11, v12:T) in e2 ⇒ e2[x1 7→ v11][x2 7→ v12] (E-UNPACK)

Figure 4.3: Evaluation rules of QUBEλ

4.1. QUBEλ: A FUNCTIONAL FOUNDATION 49

evaluates to et (E-CONDT) or ee (E-CONDE), respectively. The following example
uses a conditional to define a safe integer division function.

Example 4.5 (Safe division)

fun a:int → fun b:int →
if :int b != 0 then a / b else 0

The let-binding let x = e1 in e2 binds the variable x to the value of the right-
hand side e1 in the body expression e2. E-LETE first evaluates the right-hand
side expression. If this yields a value v1, E-LET evaluates the entire let-binding
to e2[x 7→ v1].

As an example, we define a function squared_difference that uses a let-
binding to avoid redundant computation of the difference.

Example 4.6 (Let-binding)

let squared_difference = fun a:int → fun b:int →
let d = a - b in
d * d

in ...

The coercion (e:T) serves to up-coerce an expression e to a type T . The expres-
sion is evaluated by E-COERCES. If e evaluates to v, the entire coercion evaluates
to v after rule E-COERCE.

The tuple constructor (e1, e2:(x:T1,T2)) forms a (dependent) tuple with com-
ponents e1 and e2. The type annotation (x:T1,T2) is necessary as the typing of
dependent tuples is ambiguous. For example, the tuple (0,1) may be regarded as
a pair of integers (int,int), as an ordered pair (x:int,{ v:int | v >= x }),
or as any other type that describes the tuple. The rules E-TUP1 and E-TUP2 eval-
uate the expressions from left to right, yielding the value (v1, v2:(x:T1,T2)).

The unpack expression let (x1, x2) = e1 in e2 projects the component val-
ues from a tuple. The expression binds the variables x1 and x2 to the respec-
tive component values of the right-hand side e1 in the body expression e2. E-
UNPACKE evaluates the right-hand side expression. If e1 evaluates to a tuple
value (v11, v12:(x:T1,T2)), E-UNPACK evaluates the entire expression to e2, in
the process replacing x1 with v11 and x2 with v12, respectively. The example adds
the corresponding elements of two ordered pairs, which again yields an ordered
pair.

50 CHAPTER 4. A CORE LANGUAGE FOR ARRAY PROGRAMMING

Example 4.7 (Adding ordered pairs)

let ordered_add = fun a:ordered_pair → fun b:ordered_pair →
let (a1,a2) = a in
let (b1,b2) = b in
(a1 + b1, a2 + b2 : ordered_pair)

4.2 QUBE→: Integer Vectors

Building on QUBEλ, the language layer QUBE→ (QUBE vector) adds support for
integer vectors. In the context of array programming, these vectors are partic-
ularly important as array shapes and as index vectors into multidimensional ar-
rays. QUBE→ provides language elements for defining, accessing, and manipulat-
ing integer vectors. A vector comprehension allows the user to specify arbitrary
operations that combine corresponding elements from multiple vectors. These
operations can be encoded in the array property fragment of first-order logic, so
that the compiler can statically reason about the values of integer vectors.
Figure 4.4 shows the abstract syntax of QUBE→, its operational semantics is
shown in Figure 4.5. The evaluation rule E-SEQ defines the auxiliary relation
e ⇒seq e that evaluates sequences e of expressions from left to right.
To describe integer vectors, QUBE→ introduces a new type intvec e where the
expression e describes the length of the vector. Since vectors cannot have nega-
tive extent, e must denote a natural number. The vector type is refinable so that
properties of entire vectors can be encoded in the type.
The vector constructor [e] defines a vector with elements e. The evaluation rule
E-VECTOR makes use of the relation e ⇒seq e to evaluate the vector elements. If
all elements evaluate to integers, the resulting vector [Z] is a value.
The vector selection e.(ei) selects the element at index ei from the vector e. The
rules E-VSELV and E-VSELI evaluate the vector and the index, respectively. If

Syntax of QUBE→

T→ ::= intvec e Vector type
e→ ::= [

�

e
�

,e
	�

]
�

� e.(e)
�

� e.(e)← e
�

� vec e e Vector exprs.
�

� vmap e e
�

,e
	

(x
�

,x
	

→ e)
�

� vfa e e
�

,e
	

(x
�

,x
	

→ e)
v→ ::= [

�

Z
�

,Z
	�

] Vector value

Figure 4.4: Abstract syntax of QUBE→

4.2. QUBE→: INTEGER VECTORS 51

Evaluation rules, continued e ⇒ e

ei ⇒ e′i (E-SEQ)
v0, .., vi−1, ei , .., en−1 ⇒seq v0, .., vi−1, e′i , .., en−1

e ⇒seq e′
(E-VECTOR)

[e] ⇒ [e′]

e ⇒ e′ (E-VSELV)
e.(ei) ⇒ e′.(ei)

ei ⇒ e′i (E-VSELI)
v.(ei) ⇒ v.(e′i)

0≤ i < |v|
(E-VSEL)

[v].(i) ⇒ vi

e ⇒ e′ (E-VMV)
e.(ei)← ee ⇒ e′.(ei)← ee

ei ⇒ e′i (E-VMI)
v.(ei)← ee ⇒ v.(e′i)← ee

ee ⇒ e′e (E-VME)
v.(vi)← ee ⇒ v.(vi)← e′e

0≤ i < |v|
(E-VMOD)

[v].(i)← ve ⇒ [v[i 7→ ve]]
en ⇒ e′n (E-VECL)

vec en ee ⇒ vec e′n ee

ee ⇒ e′e (E-VECE)
vec vn ee ⇒ vec vn e′e

0≤ n (E-VEC)
vec n v ⇒ [v, .., v

︸ ︷︷ ︸

n

]

en ⇒ e′n (E-VMAPL)
vmap en e f ⇒ vmap e′n e f

e ⇒seq e′
(E-VMAPV)

vmap vn e f ⇒ vmap vn e′ f

0≤ n (n= |vi|)i (E-VMAP)
vmap n [v0], ..,[vm] (x0, .., xm→ e) ⇒ [e′]

where e′j = e[x0 7→ v0 j]..[xm 7→ vmj]

en ⇒ e′n (E-VFAL)
vfa en e p ⇒ vfa e′n e p

e ⇒seq e′
(E-VFAV)

vfa vn e p ⇒ vfa vn e′ p

0≤ n (n= |vi|)i (E-VFA)
vfa n [v0], ..,[vm] (x0, .., xm→ e) ⇒ e′0 & ..& e′n−1

where e′j = e[x0 7→ v0 j]..[xm 7→ vmj]

Figure 4.5: Evaluation rules of QUBE→

52 CHAPTER 4. A CORE LANGUAGE FOR ARRAY PROGRAMMING

the vector evaluates to a value [v] and the index evaluates to an integer i with
0≤ i < |v|, then E-VSEL yields the element vi.
The vector modification e.(ei)← ee yields a modified version of the vector e in
which the element at the index ei is replaced with the new element ee. Vector
modification is non-destructive, i. e., the original vector is preserved as its ele-
ments are copied to the new vector value. The rules E-VMV, E-VMI, and E-VME
evaluate the three subexpressions from left to right. If the vector and the index
expression evaluate to a vector value [v] and an appropriate integer index i,
and the new element successfully evaluates to a value ve, then E-VECE yields a
vector with elements v except that vi is replaced with ve.
The following example illustrates the non-destructive behaviour of the vector
modification. Vector b is defined as a modification of vector a. Whereas b.(2)
reflects the new element, the corresponding element of a remains unchanged.

Example 4.8 (Non-destructive vector modification)

let a = [1,2,3] in
let b = a.(2) ← a.(0) in (* b = [1,2,1] *)
a.(2) ⇒∗ 3,

Unlike the vector constructor [e] which creates a vector of fixed length with
distinct elements, the constant-value vector expression vec en ee defines a vector
of non-constant length en that only contains copies of the element ee. The length
and the element are evaluated by the rules E-VECL and E-VECE, respectively. If
the length evaluates to a non-negative integer n and the element evaluates to a
value v, the entire expression evaluates to a vector that contains n copies of v
after rule E-VEC.
To illustrate constant-value vectors, we define a null vector whose length is de-
termined by an expression.

Example 4.9 (Null vector with dynamic length)

let n = 1+3 in
vec n 0 ⇒∗ [0,0,0,0]

The vector comprehension vmap en e f simultaneously applies a k-ary function f
to all corresponding elements of the argument vectors e1, .., ek of length en, where
k ≥ 1. Intuitively, the resulting vector is specified by (vmap en e1, .., ek f).(i) =
f (e1.(i), .., ek.(i)). The function f has the form (x → e) and may be understood
as an in-place abstraction of the variables x from the body e. The length and
the argument vectors are evaluated by the rules E-VMAPL and E-VMAPV. if the
length evaluates to an integer n and all vectors evaluate to vector values of length

4.3. QUBE[]: MULTIDIMENSIONAL ARRAYS 53

n, then V-MAP evaluates the expression to a vector constructor. It applies the
function (x → e) to the respective vector elements by substituting the variables
x with the actual values.

As an example, we use vmap to specify an expression that computes the element-
wise sum of two vectors.
Example 4.10 (Vector sum)

let av = [1,2,3,4] in
let bv = [1,1,1,1] in
vmap 4 av,bv (a,b → a+b) ⇒∗ [2,3,4,5]

Similar to vmap, the vector predicate vfa en e p checks whether a k-ary predicate
p holds for all corresponding elements of the vectors e1, .., ek of length en, with
k ≥ 1. The result is specified by the formula ∀i. 0 ≤ i < en. p(e1.(i), .., ek.(i)).
The predicate is an in-place abstraction (x → e) with variables x and a body e.
The length and the argument vectors are evaluated by E-VFAL and E-VFAV. If the
length evaluates to an integer n and all vectors evaluate to vector values of length
n, then V-VFA evaluates the entire expression to a conjunction of applications of
p to the corresponding vector elements.

To illustrate how vector predicates may be used to refine vector types, we define
the type natvec for vectors of natural numbers and the type indexvec that de-
scribes vectors whose elements range between 0 and the corresponding elements
of a boundary vector.

Example 4.11 (Refining vector types)

type natvec n:nat = { xv:intvec n | vfa n xv (x → 0 <= x) }
type indexvec n:nat bv:(natvec n) =

{ xv:intvec n | vfa n xv,bv (x,b → 0 <= x & x < b) }

4.3 QUBE[]: Multidimensional Arrays

The third language layer QUBE[] (QUBE array) adds support for multidimen-
sional arrays and rank-generic programming. The layer relies on QUBE→ since ar-
ray shapes and indices into multidimensional arrays are integer vectors. QUBE[]
provides means for defining, accessing and modifying arrays. A rank-generic
array comprehension allows for the convenient specification of powerful array
operations. The abstract syntax of QUBE[] is shown in Figure 4.6, the corre-
sponding operational semantics is detailed in Figure 4.7.

54 CHAPTER 4. A CORE LANGUAGE FOR ARRAY PROGRAMMING

Syntax of QUBE[]

T[] ::= [T|e
�

,e
	

] Array type
e[] ::= [

�

e
�

,e
	�

: T|[
�

Z
�

,Z
	�

]]
�

� e.[e
�

,e
	

]
�

� e.[e
�

,e
	

]← e
�

� reshape e
�

,e
	

e Array exprs.
�

� gen :T e
�

,e
	

with x
�

,x
	

→ e
�

� loop x:T = e; e
�

,e
	

with x
�

,x
	

→ e

v[] ::= [
�

v
�

,v
	�

: T|[
�

Z
�

,Z
	�

]] Array value

Figure 4.6: Abstract syntax of QUBE[]

The type of arrays is [T|e] where T is the common type of the array elements
and e describes the array shape as a structured vector, i. e., a comma-separated
sequence of vectors. Structured vectors allow us to specify array shapes and
index vectors as compositions of multiple independent vectors. For example,
an integer matrix of shape [2,3] is described by the type [int|[2,3]] but also
by [int|[2],[3]] or even [int|fs,cs] for appropriate expressions fs and cs.
The type of the rank-generic outer product oprod makes use of a structured
array shape: given an array of type [int|sa] and an array of type [int|sb], the
function yields an array of type [int|sa,sb].

Example 4.12 (Type of rank-generic outer product)

oprod: ra:nat → rb:nat → sa:(natvec ra) → sb:(natvec rb) →
[int|sa] → [int|sb] → [int|sa,sb]

The array constructor [e : T|[n]] defines a multidimensional array with ele-
ments e of the element type T and shape [n] (and thus rank |n|). As a data
type invariant, the array shape must not have negative shape components and
the number of array elements must equal the product of the shape vector. Since
these restrictions go beyond mere syntax, they are enforced by the type checker.
The annotated element type serves two purposes. First, it provides a common
supertype for the array elements. Second, it allows the type checker to deter-
mine the type of an empty array such as [:int|[0,10]]. The evaluation rule
E-ARR evaluates the elements from left to right by applying the relation e ⇒seq e.
An array of values [v : T|[n]] is itself a value, where v is the data vector and
n is the shape vector. The data vector contains the array elements in row-major
order, i. e., the order of array elements in the data vector is determined by the
lexicographic order of their corresponding index vectors. Fig. 4.8 shows the
representation of some multidimensional arrays in QUBECORE.
The array selection ea.[e] selects the element indexed by the structured index

4.3. QUBE[]: MULTIDIMENSIONAL ARRAYS 55

Evaluation rules, continued e ⇒ e

e ⇒seq e′
(E-ARR)

[e : T|[n]] ⇒ [e′ : T|[n]]

ea ⇒ e′a (E-SELA)
ea.[e] ⇒ e′a.[e]

e ⇒seq e′
(E-SELI)

va.[e] ⇒ va.[e′]

|n|= |i1, .., im|
�

0≤ (i1, .., im) j < n j

�

j
(E-SEL)

[v : T|[n]].[[i1], ..,[im]] ⇒ vidx

where idx = ι n (i1, .., im)
ea ⇒ e′a (E-MA)

ea.[e]← ee ⇒ e′a.[e]← ee

e ⇒seq e′
(E-MI)

va.[e]← ee ⇒ va.[e′]← ee

ee ⇒ e′e (E-ME)
va.[v]← ee ⇒ va.[v]← e′e

|n|= |i1, .., im|
�

0≤ (i1, .., im) j < n j

�

j
(E-MOD)

[v : T|[n]].[[i1], ..,[im]]← ve ⇒ [v[idx 7→ ve] : T|[n]]

where idx = ι n (i1, .., im)
e ⇒seq e′

(E-RS)
reshape e ea⇒ reshape e′ ea

ea ⇒ e′a (E-RA)
reshape v ea⇒ reshape v e′a

�

0≤ i jk

�

jk

�

0< n j

�

j
(E-RSHP)

reshape [i1], ..,[im] [v : T|[n]] ⇒ [v′ : T|[i1, .., im]]

where v′k = vk mod
∏

n

e ⇒seq e′
(E-GENS)

gen :T e with x → eb ⇒ gen :T e′ with x → eb

�

0≤ ni j

�

i j
(E-GEN)

gen :T [n1], ..,[nm] with x1, .., xm→ eb ⇒ [e : T|[n1, .., nm]]

where |e| =
∏

(n1, .., nm)
ek = eb[x j 7→ [i j]] j such that ι (n1, .., nm) (i1, .., im) = k

Figure 4.7: Evaluation rules of QUBE[]

56 CHAPTER 4. A CORE LANGUAGE FOR ARRAY PROGRAMMING

Array Uniform array representation

1 [1 : int|[]]
�

1 2 3
�

[1, 2,3 : int|[3]]
�

1 2 3
4 5 6

�

[1, 2,3, 4,5, 6 : int|[2, 3]]

4 5 6

1 2 3

10 11 12

7 8 9

[1,2, 3,4, 5,6, 7,8, 9,10, 11,12 : int|[2, 2,3]]

Figure 4.8: Representation of multidimensional arrays in QUBECORE

vector e from the array ea. The array and the index vector are evaluated by
the rules E-SELA and E-SELI, respectively. The selection requires that the array
evaluates to a value [v : T|[n]] and that e evaluates to a sequence of integer
vectors [i1],..,[im] which jointly form a valid index vector iv = i1, .., im into the
array, i. e., the length of iv must equal the array’s rank |n| and all elements iv j

must range between 0 and the corresponding shape element n j. If all the pre-
conditions are met, the selection yields the array element vidx. The appropriate
linear offset idx into the data vector v is determined by the offset computation
function ι (iota).

Definition 4.13 (Offset computation function ι)

Let s with |s|= r be a shape vector and v with |v|= r be an appropriate index
vector into an array of shape s. The offset computation function ι s v (iota) is
defined as follows:

ι s v =
r−1
∑

j=0

(v j ·
r−1
∏

k= j+1

sk)

The example shows two equivalent selections into a matrix of shape [2,2], one
uses a single vector, the other a structured vector.

4.3. QUBE[]: MULTIDIMENSIONAL ARRAYS 57

Example 4.14 (Array selection)

[1,2,3,4 :int|[2,2]].[[0,1]] ⇒ 2
[1,2,3,4 :int|[2,2]].[[0],[1]] ⇒ 2

The array modification ea.[e] ← ee modifies the array ea by replacing the ele-
ment indexed by the (structured) index vector e with the new element ee. Array
modification is non-destructive: the original array is preserved as its elements
are copied to the new array value. The three subexpressions are evaluated from
left to right by the rules E-MA, E-MI, and E-ME. Similar to the selection, the
array modification requires that the array evaluates to a value [v : T|[n]] and
that the structured vector e evaluates to a valid index vector into that array. If ee

also evaluates to a value ve then E-MOD yields an array equal to the original one
except that the element idx in v is replaced with ve. The linear offset idx is once
more defined by the index computation function ι.

As an example, we show two equivalent modification of a matrix of shape [2,2],
one uses a single vector, the other a structured vector.

Example 4.15 (Array modification)

[1,2,3,4 :int|[2,2]].[[0,1]] ← 0 ⇒ [1,0,3,4 :int|[2,2]]
[1,2,3,4 :int|[2,2]].[[0],[1]] ← 0 ⇒ [1,0,3,4 :int|[2,2]]

The reshape operation reshape e ea gives a new shape e to an array ea. The eval-
uation rules E-RS and E-RA evaluate the new shapes and the array from left to
right. Provided that the array evaluates to a non-empty array value [v : T|[n]]
and that the new shape evaluates to non-negative integer vectors [i1],..,[im],
rule E-RSHP yields a new array [v′ : T|[i1, .., im]] whose elements are a repeti-
tion of the data vector v: the element v′k is the element vk mod

∏

n.

To illustrate reshape, we use it to conveniently specify an identity matrix of
shape [4, 4] using a structured shape.

Example 4.16 (Reshape)

reshape [4],[4] [1,0,0,0,0 :int|[5]]
⇒ [1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1 :int|[4,4]]

The array comprehension gen :T e with x → eb defines an array with the
structured shape e and element type T . For each shape vector e j, the compre-
hension binds an index vector x j in the body eb. The evaluation rule E-GENS
evaluates the shape vectors. If they all evaluate to non-negative integer vectors
[n1], ..,[nm], rule E-GEN evaluates the entire array comprehension to an array

58 CHAPTER 4. A CORE LANGUAGE FOR ARRAY PROGRAMMING

Evaluation rules, continued e ⇒ e

e ⇒seq e′
(E-LOOPS)

loop xa:T = ea; e with x → eb ⇒ loop x:T = ea; e′ with x → eb

�

0≤ ni j

�

i j
(E-LOOP)

loop xa:T = ea; [n1], ..,[nm] with x1, .., xm→ eb ⇒ fp−1 (...(f0 ea))

where p =
∏

(n1, .., nm)
fk = fun xa:T → eb[x j 7→ [i j]] j such that ι (n1, .., nm) (i1, .., im) = k

Figure 4.9: Evaluation rules of loop expressions

constructor [e : T|[n1, .., nm]]. Each element expression ek is obtained by in-
stantiating the index vectors x j in eb as vectors [i j] with ι (n1, .., nm) (i1, .., im) = k.

The following example shows two equivalent array comprehensions that specify
an array of shape [2, 2] whose elements equal the sum of their corresponding
index positions.

Example 4.17 (Array comprehension)

gen :int [2,2] with x → x.(0)+x.(1) ⇒∗ [0,1,1,2 :int|[2,2]]
gen :int [2],[2] with x,y → x.(0)+y.(0) ⇒∗ [0,1,1,2 :int|[2,2]]

Dual to gen, the loop expression loop xa:T = ea; e with x → eb specifies a
rank-generic reduction operation. Its semantics is shown in Figure 4.9. For
each shape vector e j, loop binds an index vector x j in the body eb. Starting
out with the initial value ea, the accumulator variable xa of type T , which is
also bound in eb, represents the intermediate loop result. E-LOOPS evaluates
the shape vectors. If all shapes evaluate to non-negative vectors [n1],..,[nm],
E-LOOP unfolds the loop into a sequence of function applications fp−1 (...(f0 ea))
where p is the product of all shape components and each function fk is defined
as fun xa:T → eb[x j 7→ [i j]] j with ι (n1, .., nm) (i1, .., im) = k.

To illustrate loop, we define an expression that computes the element-wise sum
of a multidimensional array. The loop unfolds into an expression that, starting
with 0, selects and adds all elements from the array a in ascending lexicographic
order.

4.4. PROPERTIES OF EVALUATION 59

Example 4.18 (Array sum)

let a = [1,2,3,4 :int|[2,2]] in
loop sum:int = 0; [2,2] with x → sum + a.[x]
⇒ ((fun sum:int → sum + a.[[1,1]])

((fun sum:int → sum + a.[[1,0]])
((fun sum:int → sum + a.[[0,1]])

((fun sum:int → sum + a.[[0,0]]) 0))))
⇒∗ 10

4.4 Properties of Evaluation

The previous sections introduced the language QUBECORE and its operational se-
mantics in the form of a small-step evaluation relation. This section shows that
the properties introduced in Section 2.2 hold for QUBECORE as well.
The set of values is a subset of expressions in normal form which are accepted
as legal results of evaluation, as formalised by the following theorem.

Theorem 4.19 (Every value is in normal form)

For all v there is no e with v ⇒ e.

Proof : By structural induction over v.

1. Case v = c: immediate, there is no rule to evaluate constants.

2. Case v = fun x:T → e: similar.

3. Case v = f 2 v′: only the rules E-APP1 and E-APP2 match the expression. By the
hypothesis, the two subexpression are in normal form, so neither rule is applicable.

4. Case v = (v1, v2:(x:T1,T2)): only the rules E-TUP1 and E-TUP2 match the ex-
pression. By the hypothesis, the two subexpression are in normal form, so neither
rule is applicable.

5. Case v = [v]: only E-VECTOR matches the expression. By the hypothesis, all
subexpressions are in normal form, hence E-SEQ and consequently E-VECTOR are
not applicable.

6. Case v = [v : T|[Z]]: only E-ARR matches the expression. By the hypothesis, all
subexpressions are in normal form, therefore E-SEQ and consequently E-ARR are
not applicable.

One-step evaluation of QUBECORE expression is deterministic, i. e., the result of
an expression taking an evaluation step will always be the same. The proof is

60 CHAPTER 4. A CORE LANGUAGE FOR ARRAY PROGRAMMING

omitted here because it is a straightforward extension of the proof of the corre-
sponding Theorem 2.12 for the applied λ-calculus.

Theorem 4.20 (Determinacy of one-step evaluation)

If e ⇒ e′ and e ⇒ e′′ then e′ = e′′.

As one-step evaluation is deterministic, so is multi-step evaluation. In conse-
quence, each expression has at most one normal form.

Summary

This chapter presented the syntax and the operational semantics of QUBECORE,
a variant of the functional array programming language QUBE. The language
comprises three conceptual layers: QUBEλ is a foundation that provides essential
features of functional programming, QUBE→ adds support for processing integer
vectors, and QUBE[] enables rank-generic programming with multidimensional
arrays.
We showed that the evaluation of QUBECORE expressions is deterministic and that
every value is in normal form. The converse proposition does not hold: not every
expression in normal form is a value, for example if :T 42 then e2 else e3, or
[1, 2,3, 4 : int|[2, 2]].[[0,3]]. These expressions are “stuck” in the evaluation
process. In the next chapter, we will present typing rules to rule out expressions
whose evaluation might get stuck.

5
Type Checking QUBECORE

This chapter explains how QUBECORE programs are type checked so that program
errors are statically ruled out. Rank-generic programming adds a host of addi-
tional constraints that cannot be addressed with conventional type systems. For
example, an element can only be selected from an array of rank r and shape
vector s with an index vector of length r whose elements all range between 0
and the corresponding element of s.
Type checking of QUBECORE is performed by several relations that act in concert.
Figure 5.1 shows the common typing context and gives an overview of how the
relations depend on each other.
The typing context Γ is either empty (·), a context Γ extended with a pair x : T
that associates a variable with a type, or a context Γ extended with a boolean
guard expression e that is assumed to hold under the context. Guard expres-
sions allow the type system to take path information about the branches of a
conditional into account [96, 86].
The typing relation Γ ` e : T assigns a type T to an expression e under a con-
text Γ. The relation Γ ` T checks whether a type T is well-formed under Γ. In a
type system with dependent types, both relations mutually depend on each other
since types appear in expressions and expressions appear in types. The typing
relation relies on the subtype relation Γ ` T <: T to check whether an expression
of some type T1 may be safely used in a position where an expression of some
other type T2 is expected.
To statically ensure that two array types have the same shape and to perform

61

62 CHAPTER 5. TYPE CHECKING QUBECORE

Typing context

Γ ::= ·
�

� Γ, x : T
�

� Γ, e Typing context

Typing relations

Γ ` e : T Γ ` T

Γ ` T <: T

Γ ` e

Γ ` e ./ e = (e, e)<e>

Figure 5.1: Overview of the type checking relations

array bounds checking at compile time, the type checker must reason about how
corresponding elements of structured vectors relate to each other. The relation
Γ ` e ./ e = (e, e)<e> statically joins two structured vectors into a sequence
of pairs of vectors of equal length so that corresponding vector elements are
aligned.

The proof relation Γ ` e which statically decides whether a boolean expression e
is valid under a context Γ is the spine of the type system. Following the approach
taken in [87, 36], this chapter presents two different flavours of the proof rela-
tion. In order to study the essential metatheoretic properties of QUBECORE, a con-
ceptually simple but undecidable formalisation is used. In contrast, the QUBE

compiler soundly approximates the proof relation in a decidable fragment of
first-order logic.

The remainder of this chapter is structured as follows: Section 5.1 formalises
when types are considered well-formed. Section 5.2 explains how correspond-
ing elements of structured vectors are statically aligned. Section 5.3 discusses
subtyping. With all pieces in place, Section 5.4 finally explains type checking of
QUBECORE expressions. Section 5.5 proofs essential soundness properties of the
type system. Finally, Section 5.6 outlines the actual implementation of the proof
relation by means of an SMT solver.

5.1. WELL-FORMED TYPES 63

Well-formed types Γ ` T

Γ ` B (WF-BTYPE)

Γ ` T1 Γ, x : T1 ` T2 (WF-FUN)
Γ ` x:T1→ T2

Γ ` T1 Γ, x : T1 ` T2 (WF-TUP)
Γ ` (x:T1,T2)

Γ ` e : nat (WF-INTVEC)
Γ ` intvec e

Γ ` T (Γ ` ei : natvec li)i (WF-ARR)
Γ ` [T|e]

T ∈ {bool,int,intvec _} Γ ` T Γ, x : T ` e : bool
(WF-REFTYPE)

Γ ` {x:T | e }

Figure 5.2: Well-formed types

5.1 Well-Formed Types

The relation Γ ` T checks whether a type T is well-formed under a context Γ.
The context is needed for type checking the expressions that appear in dependent
types. Figure 5.2 shows the rules of the well-formedness relation.
The base types bool and int are well-formed under any context as they contain
no expressions (WF-BTYPE).
Dependent function types x:T1 → T2 and dependent tuple types (x:T1,T2) are
checked by the rules WF-FUN and WF-TUP, respectively. Both types are well-
formed under Γ when T1 is well-formed under Γ and when T2 is also well-formed
under the additional assumption x : T1.
Integer vectors and array axes cannot have negative length. Consequently, a type
intvec e is only well-formed after rule WF-INTVEC when e has type nat. Simi-
larly, WF-ARR states that an array type [T|e] is well-formed if T is a well-formed
type and each shape vector e j has type natvec . As pointed out in Chapter 4, the
types nat and natvec are abbreviations for the respective refinement types.
The final rule WF-REFTYPE checks the well-formedness of refinement types.
Only the base types bool, int, and the vector type intvec e may be refined.
A refinement type {x:T | e } is well-formed if T is well-formed and when e has
type bool under the extended context Γ, x : T .

64 CHAPTER 5. TYPE CHECKING QUBECORE

5.2 Joining Structured Vectors

The array type and the array primitives make use of structured vectors to de-
scribe shapes and index vectors. During type checking, structured vectors must
be statically compared, for example, to determine whether an array of type
[T|e1, .., em] may be used in a position where an array of type [T|e′1, .., e′n] is
required, or to decide whether a selection a.[e1, .., em] into an array a of type
[T|e′1, .., e′n] violates the array boundaries.
The generalised selection gsel illustrates the problem. Given an array a whose
shape fs,cs consists of the frame shape fs and the cell shape cs, and an index
vector x that indexes into the frame shape, the function selects the slice of ele-
ments of a whose position is prefixed with x. The example uses an extended form
of let to conveniently define functions. The notation let f x:int = e in e’
is equivalent to let f = fun x:int → e in e’.

Example 5.1 (Generalised selection)

let gsel fr:nat fs:(natvec fr) cr:nat cs:(natvec cr)
x:(indexvec fr fs) a:[int|fs,cs] =

gen :int cs with y → a.[x,y]

(gsel 1 [2] 1 [2] [0]) [1,2,3,4 :int|[2,2]]

The partially applied function (gsel 1 [2] 1 [2] [0]) expects an argument of
type [int|[2],[2]] but is applied to an array of type [int|[2,2]]. The ar-
gument is legitimate because the structured vectors [2],[2] and [2,2] have the
same elements. In general however, structured vectors are not compile-time con-
stants. In order to check the selection a.[x,y], the type checker must prove that
all elements of the structured vector x,y range between 0 and the correspond-
ing elements of the structured shape fs,cs although neither the actual vector
elements nor even their number are known at compile time.

Figure 5.3 shows the relation Γ ` e ./ e = (e, e)<e> which statically joins two
structured vectors so that corresponding elements are aligned. Applied to two
structured vectors eV , eW , the relation yields a sequence of pairs of the form
(e1, e2)<el> where e1 and e2 are vectors of length el whose elements stem from
eV and eW , respectively. Structured vectors may be joined in either of three cases.
In the first case, handled by J-VECTORS, both structured vectors have the same
structure, i. e., they consist of the same number of vectors and corresponding
vectors are known to have the same (typically non-constant) length. As its re-
sult, the rule merely pairs corresponding vectors and augments each pair with a
length expression. In the example, J-VECTORS aligns fs with x and cs with y

5.2. JOINING STRUCTURED VECTORS 65

Join structured vectors Γ ` e ./ e = (e, e)<e>

�

Γ ` eV j : intvec e j Γ ` eW j : intvec e j

�

j
(J-VECTORS)

Γ ` eV1, .., eV n ./ eW1, .., eW n = (eV1, eW1)<e1>, ..,(eV n, eW n)<en>

Γ ` ⊕eV1, .., eV m = [e] Γ ` ⊕eW1, .., eW m = [e′] |e|= n= |e′|
(J-ELEMS)

Γ ` eV1, .., eV m ./ eW1, .., eW m = ([e],[e′])<n>

Γ ` false (J-EXFALSO)
Γ ` eV1, .., eV n ./ eW1, .., eW n = ([],[])<0>

Condense structured vector Γ ` ⊕e = [e]
�

Γ ` e j : intvec e′j ∃!n j.Γ ` n j = e′j
�

j
(CONDENSE)

Γ ` ⊕e1, .., em = [e1.(0), .., e1.(n1-1), .., em.(0), .., em.(nm-1)]

Figure 5.3: Rules for joining structured vectors

during type checking of the selection.

... (J-VECTORS)
Γ ` fs,cs ./ x,y= (fs,x)<fr>,(cs,y)<cr>

where Γ = fr:nat, fs:(natvec fr), cr:nat, cs:(natvec cr),
x:(indexvec fr fs), a:[int|fs,cs], y:(indexvec cr cs)

In the second case, handled by J-ELEMS, both structured vectors are known to
have the same (constant) number of elements. In this case, the auxiliary rule
CONDENSE yields a set of expressions that represent the individual elements of a
structured vector. To deduce the length of each vector, CONDENSE uses the aux-
iliary relation ∃!n.Γ ` e = n, which determines a unique integer constant n such
that Γ ` e = n. J-ELEMS yields a single pair of vectors. In the above example, J-
ELEMS is used to prove that the array [1,2,3,4 :int |[2,2]] is an appropriate
argument to the function gsel that expects an array of type [int|[2],[2]].

... (CONDENSE)
· ` ⊕[2],[2]= [2,2]

... (CONDENSE)
· ` ⊕[2,2]= [2,2]

(J-ELEMS)
· ` [2],[2] ./ [2,2]= ([2,2],[2,2])<2>

The last rule J-EXFALSO explicitly deals with the case that the context Γ is in-
valid. Under such a context, for example false, we can neither compare length
expressions (false ` e1 = e2 will always hold), nor can we use the relation

66 CHAPTER 5. TYPE CHECKING QUBECORE

Subtyping Γ ` T <: T

Γ ` B <: B (SUB-BTYPE)

Γ ` T21 <: T11 Γ, x : T21 ` T12 <: T22 (SUB-FUN)
Γ ` x:T11→ T12 <: x:T21→ T22

Γ ` T11 <: T21 Γ, x : T11 ` T12 <: T22 (SUB-TUP)
Γ ` (x:T11,T12)<: (x:T21,T22)

Γ ` e1 = e2 (SUB-VEC)
Γ ` intvec e1 <: intvec e2

Γ ` T1 <: T2 Γ ` e1 ./ e2 = (v, w)<l> (Γ ` vfa li vi , wi (x , y → x=y))i (SUB-ARR)
Γ ` [T1|e1]<: [T2|e2]

Γ ` T1 <: T2 Γ, x : T1 ` e1Ö e2 (SUB-REFTYPE)
Γ ` {x:T1 | e1 }<: {x:T2 | e2 }

Figure 5.4: Subtyping rules

∃!n.false ` e = n to find a unique n equal to e. During type checking, an invalid
context can only arise if an expression will never be evaluated at run-time, for
example the first branch et of the conditional if false then et else ee. To allow
type checking to proceed in these expressions, J-EXFALSO yields a pair of empty
vectors.

5.3 Subtyping

The subtype relation Γ ` T <: T for comparing (well-formed) types is shown
in Figure 5.4. By rule SUB-BTYPE, every base type B is a subtype of itself. For
(dependent) function types, SUB-FUN states that subtyping is contravariant for
the argument types and covariant for the result types. In contrast, SUB-TUP

states that subtyping on dependent tuple types is covariant in both component
types. Both rules bind the variable x to the lesser type in the context as x may
be referenced in the second part of the respective types.
The subtyping rule SUB-VEC for integer vector types states that a type intvec e1

is a subtype of intvec e2 when the lengths e1 and e2 are provably equivalent.
Similarly, the subtyping rule SUB-ARR for array types [T1|e1] and [T2|e2] is
covariant on the element types and requires that both structured vectors e1 and

5.4. TYPE CHECKING 67

e2 denote the same shape. To compare the array shapes, SUB-ARR joins the
structured vectors and compares the corresponding vector segments by proving
the validity of a suitable vector predicate.
The subtyping rule for refinement types SUB-REF captures the intuition that a re-
finement type {x:T1 | e1 } is a subtype of {x:T2 | e2 } when the former describes
a subset of the values described by the latter. The first premise checks that T1

is a subtype of T2. This means that both types are either bool, int, or intvec
of equal length, because of the restrictions on which types can be refined and
the above subtyping rules. The second premise establishes the subset relation by
checking whether e1 implies e2 under Γ, x : T1. As usual, the implication operator
e1Ö e2 is an abbreviation of (not e1)| e2.

5.4 Type Checking

This section presents the typing relation Γ ` e : T that associates QUBECORE ex-
pressions with types. Given the extensive syntax of QUBECORE, we incrementally
present the typing rules for QUBEλ, QUBE→, and QUBE[].
Type checking of QUBECORE requires to check the validity of boolean constraints
under a context Γ, for example Γ ` 0 ≤ i & i < n. The implemented decision
procedure for the proof relation converts the context and the boolean expression
into a logical formula and applies a theorem prover. In particular, the transla-
tion puts both the implicit function of vmap en e (x → e) and the predicate of
vfa en e (x → e) under a universal quantifier. To ensure that the resulting for-
mula stays in the array property fragment [18], we restrict the expressions that
may appear in the in-place function definitions (x → e) in both cases.

• Only constant and function symbols, variables, applications, conditional
expressions, up-coercions, and let-bindings are allowed in the function
body e.

• Only the bound variables x may be referenced in the function body e, i. e.,
FV(e)⊆ {x}.

To enforce these restrictions, we augment the typing relation Γ ὲ e : T with
an environment parameter ε ∈ {◦,•} that indicates whether an expression is
checked in a restricted (•) or unrestricted (◦) environment. Typing rules that are
not applicable under vfa or vmap require the parameter to be ◦ in the conclu-
sion. For example, abstractions cannot be typed under vfa and vmap because
the conclusion of the corresponding typing rule T-ABS reads Γ ◦̀ fun x:T → e :
(x:T → T ′). In contrast, variables may occur everywhere. Therefore, the typ-
ing rule T-VAR does not instantiate the environment parameter in its conclusion

68 CHAPTER 5. TYPE CHECKING QUBECORE

Γ ὲ x : T . When the typing relation is referred to in other sections as Γ ` e : T ,
this is equivalent to Γ ◦̀ e : T .

Type Checking QUBEλ

The typing rules for QUBEλ are shown in Figure 5.5. As indicated by the en-
vironment parameter ε, only constants, variables, applications, let-expressions,
conditionals, and coercions may appear under vmap and vfa. All other kinds of
expressions require an unrestricted context (◦).

The subsumption rule T-SUB connects the subtype relation and the typing rela-
tion. It states that if an expression e has a type T ′ that is a subtype of some
arbitrary well-formed type T , then e also has type T .

T-CONST gives types to constant and function symbols according to the table
shown in Figure 5.6. To model the semantics of the symbols as closely as possi-
ble, the types are defined in terms of the symbols itself. T-VAR projects the type
of a variable x from the context Γ.

The typing rule T-ABS for abstractions fun x:T → e checks that T is well-formed
under Γ. When e has type T ′ under the extended context Γ, x : T then the entire
abstraction has a function type x:T → T ′. Applications e1 e2 are checked by the
rule T-APP. When the operator has a (dependent) function type x:T1 → T2 and
when the operand has type T1, then the application has type T2[x 7→ e1].

T-LET checks let-bindings let x = e1 in e2. When the right-hand side e1 has
type T1 under Γ, the rule proceeds to check the body expression e2 under the
additional assumption x : T1. Its type T2 is also the type of the entire expression.
The antecedent Γ ` T2 enforces that T2 does not refer to x as it is not bound in
the outer context Γ.

The conditional expression if :T e then et else ee explicitly provides a common
type T for the two branches. The typing rule T-COND checks that T is well-
formed under Γ and that the predicate e actually is a boolean expression. The
antecedents that check the branches take the path information into account by
augmenting Γ with e and not e, respectively. When both branches have type T ,
the entire conditional has type T .

The coercion (e:T) serves to up-cast the type of an expression. Consequently, T-
COERCE checks the well-formedness of T and whether e has the annotated type.
Then, the entire coercion is associated with type T .

The typing rule T-TUP for tuple constructors (e1, e2:(x:T1,T2)) checks whether
the type annotation is well-formed. When the components have types T1 and
T2[x 7→ e1], respectively, the tuple constructor has the annotated type.

5.4. TYPE CHECKING 69

Type checking Γ ὲ eλ : T

Γ ὲ e : T ′ Γ ` T ′ <: T Γ ` T
(T-SUB)

Γ ὲ e : T

Γ ὲ c : type(c) (T-CONST)
x : T ∈ Γ (T-VAR)
Γ ὲ x : T

Γ ` T Γ, x : T ◦̀ e : T ′
(T-ABS)

Γ ◦̀ fun x:T → e : (x:T → T ′)

Γ ὲ e1 : (x:T1→ T2) Γ ὲ e2 : T1 (T-APP)
Γ ὲ e1 e2 : T2[x 7→ e2]

Γ ὲ e1 : T1 Γ, x : T1 ὲ e2 : T2 Γ ` T2 (T-LET)
Γ ὲ let x = e1 in e2 : T2

Γ ` T Γ ὲ e : bool Γ, e ὲ et : T Γ,not e ὲ ee : T
(T-COND)

Γ ὲ (if :T e then et else ee) : T

Γ ` T Γ ὲ e : T
(T-COERCE)

Γ ὲ (e:T) : T

Γ ` (x:T1,T2) Γ ◦̀ e1 : T1 Γ ◦̀ e2 : T2[x 7→ e1] (T-TUP)
Γ ◦̀ (e1, e2:(x:T1,T2)) : (x:T1,T2)

Γ ◦̀ e′ : (x:T1,T2) Γ, x1 : T1, x2 : T2[x 7→ x1] ◦̀ e : T Γ ` T
(T-UNPACK)

Γ ◦̀ let (x1, x2) = e′ in e : T

Figure 5.5: Typing rules for QUBEλ

70 CHAPTER 5. TYPE CHECKING QUBECORE

true : {x:bool| x }
false : {x:bool|not x }

not : x:bool→ {y:bool| y↔ not x }
◦ ∈ {↔,&,|} : x:bool→ y:bool→ {z:bool| z↔ x ◦ y }

n ∈ Z : {x:int| x = n}
◦ ∈ {=,!=,<,<=,>=,>} : x:int→ y:int→ {z:bool| z↔ x ◦ y }

◦ ∈ {+,-,*} : x:int→ y:int→ {z:int| z = x ◦ y }

◦ ∈ {/,%} : x:int→ y:{y ′:int| y ′!=0}→ {z:int| z = x ◦ y }

Figure 5.6: Types of constants and function symbols

Unpack expressions let (x1, x2) = e′ in e are handled similar to let-expressions.
First, T-UNPACK ensures that the right-hand side has a tuple type (x:T1,T2).
Then, the body expression is checked under the context Γ, x1 : T1, x2 : T2[x 7→ x1].
When its type T is well-formed under the outer context Γ (and thus does not
reference x1, x2), then the entire expression has type T .

Type Checking QUBE→

The typing rules for the language fragment QUBE→ are shown in Figure 5.7.
For type checking QUBECORE, static reasoning about integers and integer vectors
is essential. To capture the interrelationships of the expressions as precisely as
possible, the typing rules for QUBE→ reflect the semantics of each expression at
the type level.

None of the expressions in QUBE→ may appear under vmap or vfa, as indicated
by the environment parameter ◦. We use the notation 0 <= x < y as an abbre-
viation of 0 <= x & x < y. Likewise, the notation a ~=n b abbreviates the equal-
ity of two vectors a, b of common length n as defined by the vector predicate
vfa n a, b (x , y → x = y).

Vectors [e] are typed by the rule T-VECTOR. All subexpressions ei must be inte-
gers. The type of the vector expression is a refinement of intvec n that specifies
the value in terms of the vector constructor [e] itself.

T-VSEL and T-VMOD check vector selections e.(ei) and vector modifications
e.(ei)← ee, respectively. In both cases, e has to be a vector and the index ei must
range within the vector bounds. In case of the vector modification, the new ele-

5.4. TYPE CHECKING 71

Type checking, continued Γ ὲ e→ : T

(Γ ◦̀ e j : int) j
(T-VECTOR)

Γ ◦̀ [e] : {x:intvec |e|| x ~=|e| [e]}

Γ ◦̀ e : intvec en Γ ◦̀ ei : {x:int|0 <= x < en }
(T-VSEL)

Γ ◦̀ e.(ei) : {x:int| x = e.(ei)}

Γ ◦̀ e :intvec en Γ ◦̀ ei :{x:int|0 <= x < en } Γ ◦̀ ee :int
(T-VMOD)

Γ ◦̀ e.(ei)← ee : {x:intvec en | x ~=en
e.(ei)← ee }

Γ ◦̀ en : nat Γ ◦̀ ee : int
(T-VEC)

Γ ◦̀ vec en ee : {x:intvec en | x ~=en
vec en ee }

|e|= |x | Γ ◦̀ en :nat (Γ ◦̀ e j :intvec en) j x : int •̀ eb :int
(T-VMAP)

Γ ◦̀vmap en e (x → eb):{x ′:intvec en | x ′ ~=en
vmap en e (x → eb)}

|e|= |x | Γ ◦̀ en :nat (Γ ◦̀ e j :intvec en) j x : int •̀ eb :bool
(T-VFA)

Γ ◦̀ vfa en e (x → eb) : {x ′:bool| x ′↔ vfa en e (x → eb)}

where a ~=n b = vfa n a, b (x , y → x = y)

Figure 5.7: Typing rules for QUBE→

ment ee has to be an integer, too. The corresponding types {x:int| x = e.(ei)}
and {x:intvec en | x ~=en

e.(ei)← ee } reflect the expressions at the type level.
The constant-value vector expression vec en ee is well-typed when the vector
length en has type nat and when the element ee has type int. T-VEC associates
the expression with type {x:intvec en | x ~=en

vec en ee }.
The rule T-VMAP checks vector comprehensions of the form vmap en e (x → eb).
Under Γ, the vector length en is required to have type nat and all vectors e must
have type intvec en. The body eb is subject to the restrictions outlined in Sec-
tion 4.2: only a subset of simple expressions is permitted and no variable apart
from x may be referenced in eb. To ensure these requirements, eb is checked
with the environment parameter • under a context that only binds the variables
x as integers. When eb has type int, the type of the vector comprehension is a
refinement of intvec en that reflects the comprehension itself.
Vector predicates vfa en e (x → eb) are checked by rule T-VFA which is similar to
T-VMAP. The rule checks the same preconditions except that eb have type bool.
The type of the vector predicate is bool refined by the predicate itself.

72 CHAPTER 5. TYPE CHECKING QUBECORE

Type Checking QUBE[]

Figure 5.8 shows the typing rules for the language fragment QUBE[] that deals
with multidimensional arrays. Unlike base and vector types, array types cannot
be refined. In consequence, an array type such as [int|[1024,1024]] abstracts
away the potentially huge number of individual array elements. For our goal
of type checking array programs, reasoning about individual array elements is
inessential. It is sufficient to reason about ranks, shape and index vectors. None
of the expressions in QUBE[] may appear under vmap or vfa, as indicated by the
environment parameter ◦.

Array constructors [e : T|[n]] are checked by T-ARR. The premises ensure that
all shape components ni are non-negative and that the number of elements |e|
equals the shape product

∏

n. Furthermore, the annotated type T must be well-
formed and every element must have type T . Then the array has type [T|[n]].

Selections e.[ei] and array modifications e.[ei]← ee are checked by the rules E-
SEL and E-MOD, respectively. Both rules require that e is an array of some array
type [T|es]. To avoid array boundary violations, the structured shape vector
es has to be an upper bound for the structured index vector ei. The substituted
element ee is required to have type T , too. The result of a selection has the
element type T whereas the result of array modification has the same type as the
original array e.

T-RSHP checks reshaping expressions reshape e ea. As pointed out in Sec-
tion 4.3, the array ea can only be reshaped if it contains at least one element.
Thus, the third premise ensures that the array’s shape vectors es are all strictly
positive. The new shape vectors e must all have type natvec to rule out negative
shapes. Reshaping yields an array of type [T|e].

Array comprehensions gen :T e with x → eb are checked by T-GEN. The an-
notated type T has to be well-formed and all shape vectors e j are required to
have type natvec . Under the assumption that every x j denotes a vector that
ranges between ~0 and e j, the body expression eb must have type T . When all
preconditions are met, the result array has type [T|e].

T-LOOP checks loop expressions of the form loop xa:T = ea; e with x → eb. The
annotated type T must be well-formed and the initial value ea must of course
have type T . Furthermore, the loop bounds e have to be non-negative vectors.
Assuming that every x j is a vector that ranges between ~0 and e j, and that the
accumulator xa has type T , the loop body eb must also have type T . In conse-
quence, the result of the entire reduction also has type T .

5.4. TYPE CHECKING 73

Type checking, continued Γ ὲ e[] : T

�

0≤ ni
�

i |e|=
∏

n Γ ` T
�

Γ ◦̀ e j : T
�

j
(T-ARR)

Γ ◦̀ [e : T|[n]] : [T|[n]]

Γ ◦̀ e : [T|es]
Γ ` es ./ ei = (s, v)<r> (Γ ` vfa r j s j, v j (s, i→ 0 <= i < s)) j

(T-SEL)
Γ ◦̀ e.[ei] : T

Γ ◦̀ e : [T|es] Γ ◦̀ ee : T
Γ ` es ./ ei = (s, v)<r> (Γ ` vfa r j s j, v j (s, i→ 0 <= i < s)) j

(T-MOD)
Γ ◦̀ e.[ei]← ee : [T|es]

�

Γ ◦̀ ei : natvec _
�

i Γ ◦̀ ea : [T|es]
�

Γ ` pos er j es j

�

j
(T-RSHP)

Γ ◦̀ reshape e ea : [T|e]
where pos n v = vfa n v (x → 0< x)

|e|= |x | Γ ` T (Γ ◦̀ e j : natvec e′j) j Γ, x : T ◦̀ eb : T
(T-GEN)

Γ ◦̀ gen :T e with x → eb : [T|e]
where T j = {x ′:intvec e′j |vfa en j x ′, e j (x , y → 0<= x < y)}

|e|= |x | Γ`T Γ ◦̀ ea : T (Γ ◦̀ e j :natvec e′j) j Γ, x : T , xa : T ◦̀ eb : T
(T-LOOP)

Γ ◦̀ loop xa:T = ea; e with x → eb : T
where T j = {x ′:intvec e′j |vfa en j x ′, e j (x , y → 0<= x < y)}

Figure 5.8: Typing rules for QUBE[]

74 CHAPTER 5. TYPE CHECKING QUBECORE

5.5 Correctness of Type Checking

The previous sections have formalised the syntax, semantics, and typing rules of
QUBECORE. This section gives proof that QUBECORE is type-safe, which means that
no well-typed program can go wrong. As in Chapter 2.3, type-safety is shown
by proving the progress and preservation theorems. However, due to subtyping
and dependent types, additional lemmas are required. Apart from the support
for rank-generic programming, the metatheory of QUBECORE is similar to that
of other approaches that incorporate type checking and theorem proving, such
as [87, 36].
QUBECORE provides an extensive set of constant and function symbols. The follow-
ing axiom states that every symbol has a well-formed type and that δ-reduction
of a function symbol behaves as declared by its type.

Axiom 5.2 (Constant symbols are well-behaved)

Each constant symbol c has a type type(c) such that
1. · ` type(c)

2. If type(f 1) = x:T1 → T2, then the δ-reduction f 1(v1) ⇒δ v2 is defined
for all values v1 with · ` v1 : T1 so that · ` v2 : T2[x 7→ v1].

3. If type(f 2) = x:T1 → y:T2 → T3, then the δ-reduction f 2(v1, v2) ⇒δ v3

is defined for all values v1, v2 with · ` v1 : T1 and · ` v2 : T2[x 7→ v1] so
that · ` v3 : T3[x 7→ v1][y 7→ v2].

Well-formed types and well-typed expressions cannot contain any free variables
apart from those declared in the context Γ. As the relations are interdependent,
the proof is by simultaneous induction on the derivations.

Lemma 5.3 (Free variables)

1. If Γ ` T , then FV(T)⊆ dom(Γ).

2. If Γ ` e : T , then FV(e)∪FV(T)⊆ dom(Γ).

As part of the proof, it is necessary to reason about the proof relation Γ ` e
that checks the validity of a predicate e under a context Γ. For this purpose,
we use the undecidable but intuitive formalisation of the proof relation Γ ` e
shown in Figure 5.9 [87, 36]. The relation is defined in terms of substitutions
σ = x1 7→ v1, x2 7→ v2, ... that map variables to values. The auxiliary relation
Γ |= σ defines when a substitution σ is permitted by a context Γ. By S-EMPTY,
the empty context permits the empty substitution. By S-TYPE, a substitution
σ, x 7→ v is permitted by a context Γ, x : T if σ is permitted by Γ and there is some

5.5. CORRECTNESS OF TYPE CHECKING 75

Permitted substitution Γ |= σ

· |= ; (S-EMPTY)

Γ |= σ · ` v : T[σ]
(S-TYPE)

Γ, x : T |= σ, x 7→ v

Γ |= σ e[σ] ⇒∗ true
(S-GUARD)

Γ, e |= σ

Proof relation Γ ` e

∀σ.(if Γ |= σ, then e[σ] ⇒∗ true)
(PROOF)

Γ ` e

Figure 5.9: An undecidable formalisation of the proof relation

value v that has type T[σ] under the empty context. By S-GUARD, a substitution
σ is permitted by Γ, e if σ is permitted by Γ and the instance e[σ] of the guard
expression e evaluates to true. For example, a context x : nat, y : int, x <= y
permits the substitutions x 7→ 0, y 7→ 0 and x 7→ 0, y 7→ 1, but not x 7→ 1, y 7→ 0.

According to PROOF, the proof relation Γ ` e considers a predicate e valid under
a context Γ if it evaluates to true under all substitutions σ that are permit-
ted by the context. For example, x : nat, y : int, x <= y ` 0<= y is valid, but
x : nat, y : int, x <= y ` y <0 is not. In particular, any predicate is vacuously
valid if there is no σ with Γ |= σ. This happens when Γ contains a type that is
not inhabited by any values or an unsatisfiable guard expression. For example,
{v:int|0<= v <0} ` false and false ` false.

As an immediate observation, a substitution σ that has been derived from a
context Γ is defined exactly for the variables in Γ. The substitutes are values that
are well-typed under the empty context and thus, by Lemma 5.3, contain no free
variables.

Lemma 5.4 (Substitutes are closed)

If Γ |= σ, then dom(Γ) = dom(σ) and FV(cod(σ)) = ;.

As a corollary of the previous lemma, permuting the individual mappings of a
substitution does not affect the substitution result.

76 CHAPTER 5. TYPE CHECKING QUBECORE

Well-formed contexts ` Γ

` · (C-EMPTY) ` Γ Γ ` T (C-TYPE)` Γ, x : T
` Γ Γ ` e : bool (C-GUARD)` Γ, e

Figure 5.10: Well-formed contexts

Corollary 5.5 (Permutation of substitution)

If Γ |= σ1,σ2, then
1. for all expressions e, e[σ1,σ2] = e[σ2,σ1]

2. for all types T , T[σ1,σ2] = T[σ2,σ1]

The following lemma establishes a link between the structures of substitutions
and permitting contexts.

Lemma 5.6 (Structure of substitutions)

1. If Γ |= σ1,σ2, then there are contexts Γ1,Γ2 such that Γ = Γ1,Γ2 with
dom(Γ1) = dom(σ1) and dom(Γ2) = dom(σ2).

2. If Γ1,Γ2 |= σ, then there are substitutions σ1,σ2 such that σ = σ1,σ2

with dom(Γ1) = dom(σ1) and dom(Γ2) = dom(σ2).

3. Γ1,Γ2 |= σ1,σ2 with dom(Γ1) = dom(σ1) and dom(Γ2) = dom(σ2) iff
Γ1 |= σ1, Γ2[σ1] |= σ2.

Figure 5.10 shows the relation ` Γ that defines whether a context Γ is considered
well-formed. A well-formed context is either empty (·), a well-formed context
Γ extended with declaration of a type T that is well-formed under Γ, or a well-
formed context Γ extended with a guard expression e that has type bool under Γ.

The weakening lemma states that the context under which any given fact has
been derived may be freely extended with additional variable bindings.

5.5. CORRECTNESS OF TYPE CHECKING 77

Lemma 5.7 (Weakening)

If ` Γ1,Γ2 and Γ1 ` Tx , then
1. if Γ1,Γ2 ` e : T , then Γ1, x : Tx ,Γ2 ` e : T .

2. if Γ1,Γ2 ` T , then Γ1, x : Tx ,Γ2 ` T .

3. if Γ1,Γ2 ` T1 <: T2, then Γ1, x : Tx ,Γ2 ` T1 <: T2.

4. if Γ1,Γ2 ` e, then Γ1, x : Tx ,Γ2 ` e.

5. if ∃!n1.Γ1,Γ2 ` n1 = e, then either ∃!n2.Γ1, x : Tx ,Γ2 ` n2 = e with n1 = n2

or Γ1, x : Tx ,Γ2 ` false.

6. if Γ1,Γ2 ` e1 ./ e2 = (v, w)<l> and (Γ1,Γ2 ` vfa l j v j, w j f) j, then
Γ1, x : Tx ,Γ2 ` e1 ./ e2 = (v′, w′)<l ′> and (Γ1, x : Tx ,Γ2 ` vfa l ′j v′j, w′j f) j.

Proof : By simultaneous induction over the respective derivations. The proofs of 1.–3.
are straightforward inductions.

4. We show that ∀σ.(if Γ1, x : Tx ,Γ2 |= σ, then e[σ] ⇒∗ true), so that the result
follows from PROOF.

Assume Γ1, x : Tx ,Γ2 |= σ. By Lemma 5.6, Γ1 |= σ1, x : Tx[σ1] |= x 7→ vx , and
Γ2[σ1, x 7→ vx] |= σ2. Since x 6∈ FV(Γ2), Γ2[σ1] |= σ2. By Lemma 5.6, Γ1,Γ2 |=
σ1,σ2. Since x 6∈ e, e[σ1, x 7→ v,σ2] ⇒∗ true iff e[σ1,σ2] ⇒∗ true. By inversion
of PROOF for the assumption Γ1,Γ2 ` e, we already know that ∀σ.(if Γ1,Γ2 |=
σ1,σ2, then e[σ1,σ2] ⇒∗ true).

5. There is a unique n with ∀σ.(if Γ1,Γ2 |= σ, then (n = e[σ]) ⇒∗ true). Necessarily,
there must be at least one σ with Γ1,Γ2 |= σ and (n = e[σ]) ⇒∗ true.

By Lemma 5.6, Γ1,Γ2 |= σ iff Γ1 |= σ1 and Γ1[σ1] |= σ2. If there is a value vx
with · ` vx : Tx[σ1], then by S-TYPE, Γ1, x : Tx |= σ1, x 7→ vx . As x 6∈ FV(Γ2),
Γ2[σ1, x 7→ vx] |= σ2. By Lemma 5.6, Γ1, x : Tx ,Γ2 |= σ1, x 7→ vx ,σ2. Since x 6∈
FV(e), (n = e[σ1, x 7→ vx ,σ2]) ⇒∗ true. If there is no vx with · ` vx : Tx[σ1],
there is no σ satisfying Γ1, x : Tx ,Γ2 |= σ so that by PROOF, Γ1, x : Tx ,Γ2 ` false
is vacuously true.

6. By induction on the derivation of Γ1,Γ2 ` e1 ./ e2 = (v, w)<l>.

(a) Case J-VECTORS:
Γ1,Γ2 ` ev1, .., evn ./ ew1, .., ewn = (ev1, ew1)<l1>, ..,(evn, ewn)<ln>,
(Γ1,Γ2 ` ev j : intvec l j , Γ1,Γ2 ` ew j : intvec l j) j
By the hypothesis, the ev j , ew j keep their type under the extended context, so
that J-VECTORS applies, again yielding (ev1, ew1)<l1>,..,(evn, ewn)<ln>. By 4.,
(Γ1, x : Tx ,Γ2 ` vfa l j ev j , ew j f) j.

(b) Case J-ELEMS: Γ1,Γ2 ` ev1, .., evm ./ ew1, .., ewm = ([e],[e′])<n>,
Γ1,Γ2 ` ⊕ev1, .., evm = [e], Γ1,Γ2 ` ⊕ew1, .., ewm = [e′]

78 CHAPTER 5. TYPE CHECKING QUBECORE

J-ELEMS relies on the auxiliary rule CONDENSE to statically form the joined
vectors. We inspect the premises of CONDENSE. By the hypothesis, if Γ1,Γ2 `
e j : intvec e′j, then Γ1, x : Tx ,Γ2 ` e j : intvec e′j. CONDENSE then tries to
guess a constant length n j for each vector e j under the extended context. By
5., either the same length as before is guessed or the context is contradictory.
If ∃!n j .Γ1, x : Tx ,Γ2 ` n j = e′j, then CONDENSE and subsequently J-ELEMS ap-

ply as before, so that by 4., Γ1, x : Tx ,Γ2 ` vfa n [e],[e′] f . If the context
is contradictory, then by J-EXFALSO, Γ1, x : Tx ,Γ2 ` ev1, .., evn ./ ew1, .., ewn =
([],[])<0> and Γ1, x : Tx ,Γ2 ` vfa 0 [],[] f is trivially true.

(c) Case J-EXFALSO: Γ1,Γ2 ` e1 ./ e2 = ([],[])<0>, Γ1,Γ2 ` false
By 4., Γ1, x : Tx ,Γ2 ` false, so that J-EXFALSO applies again and Γ1, x : Tx ,Γ2 `
vfa 0 [],[] f is trivially true.

Similar to weakening, the guard weakening lemma states that the context under
which a given fact has been derived may be extended with additional guard
expressions. The proof is similar to the proof of the weakening lemma.

Lemma 5.8 (Guard weakening)

If ` Γ1,Γ2 and Γ1 ` eG : bool, then
1. if Γ1,Γ2 ` e : T , then Γ1, eG,Γ2 ` e : T .

2. if Γ1,Γ2 ` T , then Γ1, eG,Γ2 ` T .

3. if Γ1,Γ2 ` T1 <: T2, then Γ1, eG,Γ2 ` T1 <: T2.

4. if Γ1,Γ2 ` e, then Γ1, eG,Γ2 ` e.

5. if ∃!n1.Γ1,Γ2 ` n1 = e, then either ∃!n2.Γ1, eG,Γ2 ` n2 = e with n1 = n2 or
Γ1, eG,Γ2 ` false.

6. if Γ1,Γ2 ` e1 ./ e2 = (v, w)<l>, and (Γ1,Γ2 ` vfa l j v j, w j f) j,
then Γ1, eG,Γ2 ` e1 ./ e2 = (v′, w′)<l ′> and (Γ1, eG,Γ2 ` vfa l ′j v′j, w′j f) j

In a similar spirit, the narrowing lemma states that a context under which a fact
has been derived may be restricted by confining the types of variables in the
context. The proof is similar to the proof of the preceding lemmas.

5.5. CORRECTNESS OF TYPE CHECKING 79

Lemma 5.9 (Narrowing)

If ` Γ1, x : Tx ,Γ2 and Γ1 ` T ′x <: Tx , then
1. if Γ1, x : Tx ,Γ2 ` e : T , then Γ1, x : T ′x ,Γ2 ` e : T .

2. if Γ1, x : Tx ,Γ2 ` T , then Γ1, x : T ′x ,Γ2 ` T .

3. if Γ1, x : Tx ,Γ2 ` T1 <: T2, then Γ1, x : T ′x ,Γ2 ` T1 <: T2.

4. if Γ1, x : Tx ,Γ2 ` e, then Γ1, x : T ′x ,Γ2 ` e.

5. if ∃!n1.Γ1, x : Tx ,Γ2 ` n1 = e, then either ∃!n2.Γ1, x : T ′x ,Γ2 ` n2 = e with
n1 = n2 or Γ1, x : T ′x ,Γ2 ` false.

6. if Γ1, x : Tx ,Γ2 ` e1 ./ e2 = (v, w)<l> and (Γ1, x : Tx ,Γ2 ` vfa l j v j, w j) j,
then Γ1, x : T ′x ,Γ2 ` e1 ./ e2 = (v′, w′)<l ′>, (Γ1, x : T ′x ,Γ2 ` vfa l ′j v′j, w′j f) j

In QUBECORE, variables can occur in both expressions and types. Due to the vari-
able convention 2.3, all bound identifiers are different from the variable to be
substituted. Therefore, the substitution function for QUBECORE is a straightfor-
ward extension of the substitution function for the untyped λ-calculus 2.4.
The small-step semantics of QUBECORE only requires that values are substituted
instead of full-blown expressions. We therefore prove a simplified variant of the
substitution lemma which states that the type of an expression is preserved when
variables are substituted with values of appropriate types.

Lemma 5.10 (Substitution lemma)

If ` Γ1, x : Tx ,Γ2 and Γ1 ` vx : Tx , then
1. if Γ1, x : Tx ,Γ2 ` e : T , then Γ1,Γ2[x 7→ vx] ` e[x 7→ vx] : T[x 7→ vx].

2. if Γ1, x : Tx ,Γ2 ` T , then Γ1,Γ2[x 7→ vx] ` T[x 7→ vx]

3. if Γ1, x : Tx ,Γ2 ` T1<: T2, then Γ1,Γ2[x 7→ vx] ` T1[x 7→ vx]<: T2[x 7→ vx]

4. if Γ1, x : Tx ,Γ2 ` e, then Γ1,Γ2[x 7→ vx] ` e[x 7→ vx].

5. if ∃!n1.Γ1, x : Tx ,Γ2 ` n1 = e, then ∃!n2.Γ1,Γ2[x 7→ vx] ` n2 = e[x 7→ vx]
with n1 = n2.

6. if Γ1, x : Tx ,Γ2 ` e1 ./ e2 = (v, w)<l> and (Γ1, x : Tx ,Γ2 ` vfa l j v j, w j f) j,
then Γ1,Γ2[x 7→ vx] ` e1[x 7→ vx] ./ e2[x 7→ vx] = ((v, w)<l>)[x 7→ vx]
and (Γ1,Γ2[x 7→ vx] ` (vfa l j v j, w j f)[x 7→ vx]) j

Proof : By simultaneous induction over the respective derivations. Most cases are proved
by straightforward induction, similar to the proofs of the previous lemmas.

1. Straightforward induction over typing derivations Γ1, x : Tx ,Γ2 ` e : T , except for

80 CHAPTER 5. TYPE CHECKING QUBECORE

the case T-VAR, where Γ1, x : Tx ,Γ2 ` x ′ : T , x ′ ∈ dom(Γ1, x : Tx ,Γ2)

(a) Case x ′ = x: x ′[x 7→ vx] = vx
Since Tx = T , Γ1 ` vx : T . By lemma 5.3, x 6∈ FV(vx) ∪ FV(T), so that
T[x 7→ vx] = T . By weakening and guard weakening, Γ1,Γ2[x 7→ vx] ` vx : T .

(b) Case x ′ 6= x: x ′[x 7→ vx] = x ′

As x ′ 6= x , x ′ ∈ dom(Γ1,Γ2) and hence, x ′ : T[x 7→ vx] ∈ (Γ1,Γ2[x 7→ vx]). By
T-VAR, Γ1,Γ2[x 7→ vx] ` x ′ : T[x 7→ vx].

2. Straightforward induction over type derivations Γ1, x : Tx ,Γ2 ` T .

3. Straightforward induction over subtype derivations Γ1, x : Tx ,Γ2 ` T1 <: T2.

4. By Γ1, x : Tx ,Γ2 ` e and inversion of PROOF, we know that ∀σ.(if Γ1, x : Tx ,Γ2 |=
σ, then e[σ] ⇒∗ true). We show that for all substitutions σ with Γ1,Γ2[x 7→
vx] |= σ, there is a substitution σ′ with Γ1, x : Tx ,Γ2 |= σ′, so that the result follows
from PROOF.
Assume Γ1,Γ2[x 7→ vx] |= σ1,σ2. By Lemma 5.6, Γ1 |= σ1, Γ2[x 7→ vx][σ1] |= σ2.
By permutation of the substitution, Γ2[σ1, x 7→ vx] |= σ2. From Γ1 |= σ1 and
Γ1 ` vx : Tx and by S-TYPE, Γ1, x : Tx |= σ1, x 7→ vx . By Lemma 5.6, Γ1, x : Tx ,Γ2 |=
σ1, x 7→ vx ,σ2.

5. By 4., if Γ1, x : Tx ,Γ2 ` n= e, then Γ1,Γ2[x 7→ vx] ` n= e[x 7→ vx].

6. By induction on the derivation of Γ1, x : Tx ,Γ2 ` e1 ./ e2 = (v, w)<l>. Under substi-
tution, all rules apply as before.

A subtype relation must be reflexive and transitive, so that subtyping is a pre-
order on types.
Theorem 5.11 (Subtyping is a preorder)

1. If Γ ` T , then Γ ` T <: T (reflexivity)

2. If Γ ` T1 <: T2 and Γ ` T2 <: T3, then Γ ` T1 <: T3 (transitivity)

Proof : We show reflexivity and transitivity independently.

1. By induction on the derivation of Γ ` T .

(a) Case WF-BTYPE: T = B:
Immediate by SUB-BTYPE.

(b) Case WF-FUN: T = x:T1→ T2 with Γ ` T1 and Γ, x : T1 ` T2:
By the induction hypothesis, Γ ` T1 <: T1 and Γ, x : T1 ` T2 <: T2. The result
follows from SUB-FUN.

(c) Case WF-TUP: T = (x:T1,T2) with Γ ` T1 and Γ, x : T1 ` T2:
Similar.

(d) Case WF-INTVEC: T = intvec e with Γ ` e : nat:
By reflexivity of equality, Γ ` e = e. The result follows from SUB-VEC.

5.5. CORRECTNESS OF TYPE CHECKING 81

(e) Case WF-ARR: T = [T|e1, .., en] with Γ ` T and (Γ ` e j : natvec l j) j:
By the hypothesis, Γ ` T <: T . By J-VECTORS, Γ ` e1, .., en ./ e1, .., en =
(e1, e1)<l1>, ..,(en, en)<ln>. By reflexivity of equality, (Γ ` vfa l j e j , e j (x , y →
x = y)) j. The result follows from SUB-ARR.

(f) Case WF-REFTYPE: T = {x:T ′ | e } with Γ ` T ′ and Γ, x : T ′ ` e : bool:
By the hypothesis, Γ ` T ′ <: T ′. By reflexivity of implication, Γ, x : T ′ ` eÖ e.
The results follows from SUB-REFTYPE.

2. By induction on the derivations of Γ ` T1 <: T2 and Γ ` T2 <: T3. As each subtyping
rule compares two types of the same syntactic form, all three types must have the
same syntactic form. We can thus check the rules individually.

(a) Case SUB-BTYPE: T1 = B, T2 = B, T3 = B. Immediate.
(b) Case SUB-FUN: T1 = x:T11→ T12, T2 = x:T21→ T22, T3 = x:T31→ T32 with
Γ ` T21 <: T11, Γ, x : T21 ` T12 <: T22 and Γ ` T31 <: T21, Γ, x : T31 ` T22 <: T32
By the hypothesis: Γ ` T31 <: T11. By narrowing Γ, x : T21 ` T12 <: T22 we ob-
tain Γ, x : T31 ` T12 <: T22. With Γ, x : T31 ` T22 <: T32 and by the hypothesis,
Γ, x : T31 ` T12 <: T32. By SUB-FUN, Γ ` x:T11→ T12 <: x:T31→ T32.

(c) Case SUB-TUP: T1 = (x:T11,T12), T2 = (x:T21,T22), T3 = (x:T31,T32) with
Γ ` T11 <: T21, Γ, x : T11 ` T12 <: T22 and Γ ` T21 <: T31, Γ, x : T21 ` T22 <: T32
By the hypothesis, Γ ` T11 <: T31. By narrowing Γ, x : T21 ` T22 <: T32, we ob-
tain Γ, x : T11 ` T22 <: T32. With Γ, x : T11 ` T12 <: T22 and by the hypothesis,
Γ, x : T11 ` T12 <: T32. By SUB-TUP, Γ ` (x:T11,T12)<: (x:T31,T32).

(d) Case SUB-VEC: T1 = intvec e1, T2 = intvec e2, T3 = intvec e3 with
Γ ` e1 = e2 and Γ ` e2 = e3
By transitivity of equality, Γ ` e1 = e3. By SUB-VEC, Γ ` intvec e1 <: intvec e3.

(e) Case SUB-ARR: T1 = [T ′1|e1], T2 = [T ′2|e2], T3 = [T ′3|e3] with
Γ ` T ′1 <: T ′2, Γ ` e1 ./ e2 = (u, v)<m>, (Γ ` vfa mi ui , vi (x , y → x=y))i, and
Γ ` T ′2 <: T ′3, Γ ` e2 ./ e3 = (v, w)<n>, (Γ ` vfa ni vi , wi (x , y → x=y))i
By the hypothesis, Γ ` T ′1 <: T ′3. We split cases on how the structured vectors
may have been joined and show that all cases satisfy the premises of SUB-ARR,
so that Γ ` [T ′1|e1]<: [T ′3|e3].

i. Case J-EXFALSO, J-EXFALSO: Γ ` false
By J-EXFALSO, Γ ` e1 ./ e3 = ([],[])<0>. The element-wise equality of
the empty vectors Γ ` vfa 0 [],[] (x , y → x=y) is trivially valid.

ii. Case J-VECTORS, J-VECTORS: |e1|= |e2|= |e3|= n,
(Γ ` e1i : intvec li ,Γ ` e2i : intvec li , Γ ` e3i : intvec li)i
By J-VECTORS, Γ ` e1 ./ e3 = (e11, e31)<l1>, ..,(e1n, e3n)<ln> and by transi-
tivity of equality, (Γ ` vfa li e1i , e3i (x , y → x=y))i.

iii. Case J-ELEMS, J-ELEMS: Γ ` ⊕e1 = [e′1], Γ ` ⊕e2 = [e′2], Γ ` ⊕e3 = [e′3]
and |e′1|= |e

′
2|= |e

′
3|= n

By J-ELEMS, Γ ` e1 ./ e3 = ([e′1],[e′3])<n>. By transitivity of equality,
Γ ` vfa n [e′1],[e′3] (x , y → x=y).

82 CHAPTER 5. TYPE CHECKING QUBECORE

iv. Case J-VECTORS, J-ELEMS: |e1|= |e2|= m, (Γ ` e1i : intvec li ,
Γ ` e2i : intvec li)i, and Γ ` ⊕e2 = [e′2], Γ ` ⊕e3 = [e′3], |e′2|= |e

′
3|= n:

The shapes e1, e2 have the same structure. By CONDENSE, Γ ` ⊕e1 = [e′1].
By J-ELEMS, Γ ` e1 ./ e3 = ([e′1],[e′3])<n>. By transitivity of equality,
Γ ` vfa n [e′1],[e′3] (x , y → x=y).

v. Case J-ELEMS, J-VECTORS: Similar
(f) Case SUB-REF: T1 = {x:T ′1 | e1 }, T2 = {x:T ′2 | e2 }, T3 = {x:T ′3 | e3 } with
Γ ` T ′1 <: T ′2, Γ, x : T ′1 ` e1Ö e2 and Γ ` T ′2 <: T ′3, Γ, x : T ′2 ` e2Ö e3:
By the hypothesis Γ ` T ′1 <: T ′3. By narrowing Γ, x : T ′2 ` e2 Ö e3 we obtain
Γ, x : T ′1 ` e2 Ö e3. By transitivity of implication, Γ, x : T ′1 ` e1 Ö e3 and thus
by SUB-REF, Γ ` {x:T ′1 | e1 }<: {x:T ′3 | e3 }.

The following lemma captures the intuition that evaluation does not affect the
validity of a predicate.
Lemma 5.12 (Preservation of validity under evaluation)

If Γ ` eE[e] and e ⇒ e′, then Γ ` eE[e′].

Proof : From the assumption and by inversion of PROOF, we obtain ∀σ. (if Γ |= σ,
then eE[e][σ] ⇒∗ true). By Theorem 4.20, evaluation is deterministic and therefore,
eE[e][σ] ⇒∗ true iff eE[e′][σ] ⇒∗ true. The result follows from PROOF.

Similarly, evaluation has no effect on types.
Lemma 5.13 (Equivalence of types under evaluation)

If Γ ` T[e] and e ⇒ e′, then Γ ` T[e] ≡ T[e′], i. e., Γ ` T[e′] <: T[e] and
Γ ` T[e]<: T[e′].

Proof : By induction on type derivations Γ ` T .

1. Case WF-BTYPE: T = B
B contains no expressions.

2. Case WF-FUN: T = x:T1[e]→ T2[e], Γ ` T1[e], Γ, x : T1[e] ` T2[e]
By the hypothesis, Γ ` T1[e′]≡ T1[e] and Γ, x : T1[e] ` T2[e′]≡ T2[e]. By SUB-FUN,
Γ ` x:T1[e′]→ T2[e′]≡ x:T1[e]→ T2[e].

3. Case WF-TUP: T = (x:T1[e],T2[e]), Γ ` T1[e], Γ, x : T1[e] ` T2[e]
By the hypothesis, Γ ` T1[e′]≡ T1[e] and Γ, x : T1[e] ` T2[e′]≡ T2[e]. By SUB-TUP,
Γ ` (x:T1[e′],T2[e′])≡ (x:T1[e],T2[e]).

4. Case WF-INTVEC: T = intvec eE[e], Γ ` eE[e] : nat.
By Theorem 4.20, evaluation is deterministic. Therefore, eE[e] and eE[e′] will eval-
uate to the same value under all permitted substitutions, so that Γ ` eE[e] = eE[e′].
By SUB-VEC, Γ ` intvec eE[e]≡ intvec eE[e′].

5.5. CORRECTNESS OF TYPE CHECKING 83

5. Case WF-ARRAY: T = [T ′[e]|es[e]], Γ ` T ′[e], (Γ ` es j[e] : natvec el j) j
By the hypothesis, Γ ` T ′[e′] ≡ T ′[e]. Evaluation does not affect the structure of
a structured vector, so that by J-VECTORS, Γ ` es1[e′], .., esm[e′] ./ es1[e], .., esm[e] =
(es1[e′], es1[e])<el1>, ..,(esm[e′], esm[e])<elm>. By Theorem 4.20, evaluation is de-
terministic. Therefore, for each j, es j[e] and es j[e′] will evaluate to the same
value under all permitted substitutions, so that Γ ` es j[e′] ~=el j

es j[e]. By SUB-ARR,

Γ ` [T ′[e′]|es[e′]]≡ [T ′[e]|es[e]].

6. Case WF-REFTYPE: T = {x:T ′[e]| eE[e]}, Γ ` T ′[e], Γ ` eE[e] : bool.
By the hypothesis, Γ ` T ′[e′] ≡ T ′[e]. By Theorem 4.20, evaluation is determinis-
tic. Therefore, eE[e] and eE[e′] will evaluate to the same value under all permit-
ted substitutions, so that by reflexivity of implication Γ, x : T ′[e] ` eE[e] Ö eE[e′]
and Γ, x : T ′[e] ` eE[e′] Ö eE[e]. By SUB-REFTYPE, Γ ` {x:T ′[e′]| eE[e′]} ≡
{x:T ′[e]| eE[e]}

With all these facts in hand, we can now prove the preservation theorem.
Theorem 5.14 (Preservation of types under evaluation)

If Γ ` e : T and e ⇒ e′, then Γ ` e′ : T .

Proof : By induction on type derivations Γ ` e : T . We split cases on the potential
evaluation steps.

1. Case T-SUB: Γ ` e : T ′, Γ ` T ′ <: T , Γ ` T
By the hypothesis, Γ ` e′ : T ′ and thus the result follows from T-SUB.

2. Case T-VAR: e = x . There is no e′ with e ⇒ e′.

3. Case T-CONST: e = c. e is a value.

4. Case T-ABS: e = fun x:T1→ e′. e is a value.

5. Case T-APP: e = e1 e2, Γ ` e1 : (x:T1→ T2), Γ ` e2 : T1, T = T2[x 7→ e2]

(a) Case E-APP1: e1 ⇒ e′1, e′ = e′1 e2
By the hypothesis, Γ ` e′1 : (x:T1→ T2). The result follows from T-APP.

(b) Case E-APP2: e1 = v1, e2 ⇒ e′2, e′ = v1 e′2
By T-APP, Γ ` e′ : T2[x 7→ e′2]. By Lemma 5.13, Γ ` T2[x 7→ e′2] <: T2[x 7→ e2],
so that the result follows from T-SUB.

(c) Case E-APPABS: e1=fun x:T1→ eb, e2= v2, Γ, x : T1 ` eb : T2, e′ = eb[x 7→ v2]
By Lemma 5.10, Γ ` e′ : T2[x 7→ v2].

(d) Case E-PRFAPP1: e1 = f 1, e2 = v2, f 1(v2) ⇒δ v, e′ = v
By Axiom 5.2, Γ ` v : T2[x 7→ v2].

(e) Case E-PRFAPP2: e1 = f 2 v1, e2 = v2, f 2(v1, v2) ⇒δ v, e′ = v. Similar.

6. Case T-LET: e = let x = e1 in e2, Γ ` e1 : T1, Γ, x : T1 ` e2 : T , Γ ` T

(a) Case E-LETR: e1 ⇒ e′1, e′ = let x = e′1 in e2
The result follows from the induction hypothesis and T-LET.

84 CHAPTER 5. TYPE CHECKING QUBECORE

(b) Case E-LET: e1 = v1, e′ = e2[x 7→ v1]
By the substitution lemma, Γ ` e′ : T[x 7→ v1]. Since Γ ` T , x is not free in T
and thus Γ ` e′ : T .

7. Case T-COND: e = if :T ep then et else ee, Γ ` T , Γ ` ep : bool,
Γ ` et : T , Γ ` ee : T

(a) Case E-COND: ep ⇒ e′p, e′ = if :T e′p then et else ee
The result follows from the induction hypothesis and T-COND.

(b) Case E-CONDT: ep = true, e′ = et . Immediate.
(c) Case E-CONDE: ep = false, e′ = ee. Immediate.

8. Case T-COERCE: e = (e1:T), Γ ` T , Γ ` e1 : T

(a) Case E-COERCES: e1 ⇒ e′1, e′ = (e′1:T)
The result follows from the induction hypothesis and T-COERCE.

(b) Case E-COERCE: e1 = v1, e′ = v1. Immediate.

9. Case T-TUP: e = (e1, e2:(x:T1,T2)), Γ ` (x:T1,T2), Γ ` e1 : T1,
Γ ` e2 : T2[x 7→ e1], T = (x:T1,T2)

(a) Case E-TUP1: e1 ⇒ e′1, e′ = (e′1, e2:(x:T1,T2))
By the hypothesis, Γ ` e′1 : T1. By Lemma 5.13, Γ ` T2[x 7→ e1] <: T2[x 7→ e′1],
so that by T-SUB, Γ ` e2 : T2[x 7→ e′1]. The result follows from T-TUP.

(b) Case E-TUP2: e1 = v1, e2 ⇒ e′2, e′ = (v1, e′2:(x:T1,T2))
By the hypothesis, Γ ` e′2 : T2[x 7→ v1]. The result follows from T-TUP.

10. Case T-UNPACK: e = let (x1, x2) = e1 in e2, Γ ` e1 : (x:T1,T2),
Γ, x1 : T1, x2 : T2[x 7→ x1] ` e2 : T , Γ ` T

(a) Case E-UNPACKE: e1 ⇒ e′1, e′ = let (x1, x2) = e′1 in e2
The result follows from the induction hypothesis and T-UNPACK.

(b) Case E-UNPACK: e1 = (v1, v2:(x:T1,T2)), e′ = e2[x1 7→ v1][x2 7→ v2]
By inversion of T-TUP, Γ ` v1 : T1, Γ ` v2 : T2[x 7→ v1]. By the substitution
lemma 5.10 and because x1 is not free in T , Γ, x2 : T2[x 7→ x1][x1 7→ v1] `
e2[x1 7→ v1] : T . Since T2[x 7→ x1][x1 7→ v1] ≡ T2[x 7→ v1], and by the
substitution lemma, Γ ` e2[x1 7→ v1][x2 7→ v2] : T .

11. Case T-VECTOR: e = [e], (Γ ` e j : int) j, T = {x:intvec |e|| x ~=|e| [e]}
By E-SEQ and E-VECTOR, e ⇒seq e′ with |e| = |e′| so that e′ = [e′]. By T-VECTOR,
Γ ` e′ : {x:intvec |e|| x ~=|e| [e′]}. The result follows from Lemma 5.13 and
T-SUB.

12. Case T-VSEL: e = ev.(ei), Γ ` ev : intvec en, Γ ` ei : {x:int|0 <= x < en },
T = {x:int| x = ev.(ei)}

(a) Case E-VSELV: ev ⇒ e′v, e′ = e′v.(ei)
By the hypothesis, Γ ` e′v : intvec en. By T-VSEL, Γ ` e′ : {x:int| x = e′v.(ei)}.
The result follows from Lemma 5.13 and T-SUB.

(b) Case E-VSELI: ev = vv, ei ⇒ e′i , e′ = vv.(e′i)

5.5. CORRECTNESS OF TYPE CHECKING 85

By the hypothesis, Γ ` e′i : {x:int|0 <= x < en }. According to T-VSEL, Γ ` e′ :
{x:int| x = vv.(e′i)}. The result follows from Lemma 5.13 and T-SUB.

(c) Case E-VSEL: ev = [c], 0≤ ei = i < |c|, e′ = ci
By T-CONST, Γ ` e′ : {x:int| x = ci }. The result follows from Lemma 5.13
and T-SUB.

13. Case T-VMOD: e = ev.(ei)← ee, Γ ` ev : intvec en, Γ ` ei : {x:int|0 <= x < en },
Γ ` ee : int, T = {x:intvec en | x ~=en

ev.(ei)← ee }

(a) Case E-VMV: ev ⇒ e′v, e′ = e′v.(ei)← ee

(b) Case E-VMI: ev = vv, ei ⇒ e′i , e′ = vv.(e′i)← ee

(c) Case E-VME: ev = vv, ei = vi, ee ⇒ e′e, e′ = vv.(vi)← e′e
The results follow from the hypothesis, T-VMOD, Lemma 5.13, and T-SUB.

(d) Case E-VMOD: ev = [c], 0≤ ei = i < |c|, ee = ce, e′ = [c[i 7→ ce]]
By T-VECTOR, Γ ` e′ : {x:intvec |c|| x ~=|c| [c[i 7→ ce]]}. The result follows
from Lemma 5.13 and T-SUB.

14. Case T-VEC: e = vec en ee, Γ ` en : nat, Γ ` ee : int, T = {x:intvec en | x = vec en ee }

(a) Case E-VECL: en ⇒ e′n, e′ = vec e′n ee
By the hypothesis, Γ ` e′n : nat. By T-VEC, Γ ` e′ : {x:intvec e′n | x = vec e′n ee }.
The result follows from Lemma 5.13 and T-SUB.

(b) Case E-VECE: en = vn, ee ⇒ e′e, e′ = vec vn ve
By the hypothesis, Γ ` e′e : int. By T-VEC, Γ ` e′ : {x:intvec vn | x = vec vn e′e }.
The result follows from Lemma 5.13 and T-SUB.

(c) Case E-VEC: 0≤ en = n, ee = ce, e′ = [ce, .., ce]
By T-VECTOR, Γ ` e′ : {x:intvec n| x ~=n [ce, .., ce]}. The result follows from
Lemma 5.13 and T-SUB.

15. Case T-VMAP: e = vmap en ev (x → eb), Γ ` en : nat, (Γ ` ev j : intvec en) j,
x : int ` eb : int, T = {x ′:intvec en | x ′ ~=en

vmap en ev (x → eb)}

(a) Case E-VMAPL: en ⇒ e′n, e′ = vmap e′n ev (x → eb)
By the hypothesis, Γ ` e′n : nat. According to the typing rule T-VMAP, Γ `
e′ : {x ′:intvec e′n | x ′ ~=e′n

vmap e′n ev (x → eb)}. The result follows from
Lemma 5.13 and T-SUB.

(b) Case E-VMAPV: en = vn, ev ⇒seq e′v, e′ = vmap vn e′v (x → eb)
By the hypothesis, (Γ ` e′v j : intvec vn) j. According to T-VMAP, Γ ` e′ :

{x ′:intvec vn | x ′ ~=vn
vmap vn e′v (x → eb)}. The result follows from Lemma

5.13 and T-SUB.
(c) Case E-VMAP: 0≤ n= en, ev = [c0], ..,[cm], |ci|= n, e′ = [eb0, .., ebn−1] where

eb j = eb[x0 7→ c0 j]..[xm 7→ cmj]
By Lemma 5.10, (· ` eb j : int) j. According to the typing rule T-VECTOR, Γ `
e′ : {x ′:intvec n| x ′ ~=n [eb0, .., ebn−1]}. The result follows from Lemma 5.13
and T-SUB.

16. Case T-VFA: e = vfa en ev (x → eb), Γ ` en : nat, (Γ ` ev j : intvec en) j, x : int `

86 CHAPTER 5. TYPE CHECKING QUBECORE

eb : bool, T = {x ′:bool| x ′ ↔ vfa en ev (x → eb)}

(a) Case E-VFAL: en ⇒ e′n, e′ = vfa e′n ev (x → eb)
By the hypothesis, Γ ` e′n : nat. According to the typing rule T-VFA, Γ ` e′ :
{x ′:bool| x ′ ↔ vfa e′n ev (x → eb)}. The result follows from Lemma 5.13
and T-SUB.

(b) Case E-VFAV: en = vn, ev ⇒seq e′v, e′ = vfa vn e′v (x → eb)
By the hypothesis, (Γ ` e′v j : intvec vn) j. According to the typing rule T-VFA,

Γ ` e′ : {x ′:bool| x ′ ↔ vfa vn e′v (x → eb)}. The result follows from
Lemma 5.13 and T-SUB.

(c) Case E-VFA: 0 ≤ n = en, ev = [c0], ..,[cm], e′ = eb0 & .. & ebn−1 where eb j =
eb[x0 7→ c0 j]..[xm 7→ cmj]
By Lemma 5.10, (· ` eb j : bool) j. By T-APP, T-CONST, Γ ` e′ : {x ′:bool| x ′↔
eb0 & .. & ebn−1 }. The result follows from Lemma 5.13 and T-SUB.

17. Case T-ARR: e = [e : T ′|[n]], Γ ` T ′, (Γ ` e j : T ′) j, T = [T ′|[n]]
By E-SEQ and E-ARR, e ⇒seq e′ with |e|= |e′|. By the induction hypothesis,
(Γ ` e′j : T ′) j. Thus, the result follows by T-ARR.

18. Case T-SEL: e = ea.[ei], Γ ` ea : [T|es], Γ ` es ./ ei = (s, v)<r>,
(Γ ` vfa r j s j , v j (s, i→ 0<=i & i<s)) j
(a) Case E-SELA: ea ⇒ e′a, e′ = e′a.[ei]

By the hypothesis, Γ ` e′a : [T|es], so that the result follows from T-SEL.

(b) Case E-SELI: ei ⇒seq e′i , e′ = ea.[e′i]
By the hypothesis, the type of each ei j is preserved, so that e′i has the same

structure as ei. Hence, Γ ` es ./ e′i = (s, v′)<r>. According to Lemma 5.12,
(Γ ` vfa r j s j , v′j (s, i→ 0<=i&i<s)) j. By T-SEL, Γ ` e′ : T .

(c) Case E-SEL: ea = [v : T|[n]], ei = [i1], ..,[im], e′ = v(ι n (i1,..,im))
.

By inversion of T-ARR, (Γ ` v j : T) j and therefore Γ ` e′ : T .

19. Case T-MOD: e = ea.[ei]← ee, Γ ` ea : [T ′|es], Γ ` ee : T ′, Γ ` es ./ ei = (s, v)<r>,
(Γ ` vfa r j s j , v j (s, i→ 0<=i & i<s)) j, T = [T ′|es]

(a) Case E-MA: ea ⇒ e′a, e′ = e′a.[ei]← ee
By the hypothesis, Γ ` e′a : [T ′|es], so that the result follows from T-MOD.

(b) Case E-MI: ei ⇒seq e′i , e′ = ea.[e′i]← ee

By the hypothesis, the type of each ei j is preserved, so that e′i has the same

structure as ei. Hence, Γ ` es ./ e′i = (s, v′)<r>. By Lemma 5.12, (Γ `
vfa r j s j , v′j (s, i→ 0<=i&i<s)) j. The result follows from T-MOD.

(c) Case E-ME: ee ⇒ e′e, e′ = ea.[ei]← e′e
By the hypothesis, Γ ` e′e : T ′, so that the result follows from T-MOD.

(d) Case E-MOD: ea = [v : T ′|[n]], ei = [i1], ..,[im], ee = ve,
e′ = [v[ι n (i1, .., im) 7→ ve] : T ′|[n]].

5.5. CORRECTNESS OF TYPE CHECKING 87

By inversion of T-ARR, (Γ ` v j : T ′) j. Thus, by T-ARR, Γ ` e′ : [T ′|[n]]. Since
Γ ` ea : [T ′|es], we know that Γ ` [T ′|[n]] <: [T ′|es], and therefore by
T-SUB, Γ ` e′ : [T ′|es].

20. Case T-RSHP: e = reshape et ea, (Γ ` et j : natvec el j) j, Γ ` ea : [T ′|es],
(Γ ` vfa er j es j (x → 0< x)) j, T = [T ′|et]

(a) Case E-RS: et ⇒seq e′t , e′ = reshape e′t ea

By the hypothesis, (Γ ` e′t j : natvec el j) j. By T-RESHAPE, Γ ` e′ : [T ′|e′t]. By

Lemma 5.13, Γ ` [T ′|e′t]<: [T ′|et]. The result thus follows from T-SUB.
(b) Case E-RA: ea ⇒ e′a, e′ = reshape et e′a

By the hypothesis, Γ ` e′a : [T ′|es]. The result follows from T-RESHAPE.
(c) Case E-RSHP: et = [i1], ..,[im], ea = [v : T ′|[n]], (0< n j) j,

e′ = [v′ : T ′|[i1, .., im]], v′k = vk mod
∏

n

By T-ARR, Γ ` e′ : [T ′|[i1, .., im]]. By J-ELEMS, Γ ` [i1, .., im] ./ [i1], ..,[im]=
([i1, .., im],[i1, .., im])<r> and Γ ` vfa r [i1, .., im],[i1, .., im] (x , y → x = y)
holds because of the reflexivity of equality. By SUB-ARR, Γ ` [T ′|[i1, .., im]]<:
[T ′|[i1], ..,[im]], so that by T-SUB, Γ ` e′ : T .

21. Case T-GEN: e = gen :Tb es with x → eb, Γ ` Tb, (Γ ` es j : natvec er j) j,
Γ, x1 : indexvec er1 es1, .., xm : indexvec erm esm ` eb : Tb, T = [Tb|es]

(a) E-GENS: es ⇒seq e′s, e′ = gen :Tb e′s with x → eb

By the hypothesis, (Γ ` e′s j : natvec er j) j. By T-GEN, Γ ` e′ : [Tb|e′s]. By

Lemma 5.13, Γ ` [Tb|e′s]<: [Tb|es]. The result follows from T-SUB.

(b) E-GEN: es = [n1], ..,[nm], e′ = [e′b : Tb|[n1, .., nm]], e′bk = eb[x j 7→ [i j]] j

By construction, (Γ ` [i j] : indexvec er j es j) j. By the substitution lemma 5.10,
(Γ ` ebk : Tb)k. By T-ARR, Γ ` e′ : [Tb|[n1, .., nm]]. By rule J-ELEMS,
Γ ` [n1, .., nm] ./ [n1], ..,[nm]= ([n1, .., nm],[n1, .., nm])<r> and
Γ ` vfa r [n1, .., nm],[n1, .., nm] (x , y → x = y) holds because of the reflexiv-
ity of equality. By SUB-ARR, Γ ` [Tb|[n1, .., nm]] <: [Tb|[n1], ..,[nm]], so
that by T-SUB, Γ ` e′ : T .

22. Case T-LOOP: e = loop xa:T = ea; es with x → eb, Γ ` T , (Γ ` es j : natvec er j) j,
Γ ` ea : T , Γ, x1 : indexvec er1 es1, .., xm : indexvec erm esm, xa : T ` eb : T

(a) Case E-LOOPS: es ⇒seq e′s, e′ = loop xa:T = ea; e′s with x → eb
By the hypothesis, (Γ ` e′s j : natvec er j) j. By T-LOOP, Γ ` e′ : T .

(b) Case E-LOOP: (es j = [n j]) j, e′ = fp−1 (...(f0 ea)) with p =
∏

(n1, .., nm) and
fk = fun x:T → eb[x j 7→ [i j]] j such that ι (n1, .., nm) (i1, .., im) = k
By construction, (Γ ` [i j] : indexvec er j es j) j. By the substitution lemma 5.10,
Γ, xa : T ` eb[x j 7→ [i j]] j : T . By T-FUN, Γ ` fk : T → T . By several applica-
tions of T-APP, Γ ` e′ : T .

88 CHAPTER 5. TYPE CHECKING QUBECORE

The canonical forms lemma recapitulates the possible forms the values of a given
type may have. The lemma is a straightforward observation from the syntax of
values, the types of constants, and the typing rules.
Lemma 5.15 (Canonical forms)

1. If v is a value with · ` v : bool then v is either true or false.

2. If v is a value with · ` v : int then v ∈ Z.

3. If v is a value with · ` v : x:T1 → T2 then v = f 1, v = f 2, v = f 2 v1, or
v = fun x:T → e.

4. If v is a value with · ` v : (x:T1,T2) then v = (v1, v2:(x:T1,T2)).

5. If v is a value with · ` v : intvec e then v = [n] with e ⇒∗ |n| and
(ni ∈ Z)i.

6. If v is a value with · ` v : [T|e1, .., em] then v = [v : T|[n]] where
each element vi is a value with · ` vi : T and (ni ≥ 0)i, |v| =

∏

n.
Furthermore, (ei ⇒∗ [si])i with s1, .., sm = n.

7. If v is a value with · ` v : {x:T | e } then v is any value v′ with · ` v′ : T
and e[x 7→ v′] ⇒∗ true.

Finally, we are ready to prove the progress theorem for QUBECORE.

Theorem 5.16 (Progress)

If · ` e : T , then e is a value or there is some e′ with e ⇒ e′.

Proof : By induction on typing derivations · ` e : T .

1. Case T-SUB: e = e, · ` e : T ′, · ` T ′ <: T , · ` T
The result follows directly from the induction hypothesis.

2. Case T-VAR: e = x
e is not closed.

3. Case T-CONST: e = c
e is a value.

4. Case T-ABS: e = fun x:T → e′

e is a value.

5. Case T-APP: e = e1 e2, · ` e1 : x:T1→ T2, · ` e2 : T1
By the hypothesis, either e1 is a value or it can make an evaluation step; e2 similar.
If e1 is not a value, then E-APP1 applies. If e1 is a value and e2 is not,then E-APP2
applies. If both expressions are values, then by the canonical forms lemma either

• e1 = f 2 then e = f 2 v2 is a value, or
• e1 = f 1 and E-PRFAPP1 applies because of axiom 5.2, or

5.5. CORRECTNESS OF TYPE CHECKING 89

• e1 = f 2 v1 and E-PRFAPP2 applies because of axiom 5.2, or
• e1 = fun x:T ′→ e′ and E-ABSAPP applies.

6. Case T-LET: e = let x = e1 in e2
By the hypothesis, e1 is a value or it can make an evaluation step. If e1 is not a
value, then E-LETE applies, else E-LET applies.

7. Case T-COND: e = if e1 then e2 else e3, · ` e1 : bool
By the hypothesis, e1 is a value or it can make an evaluation step. If e1 is not a
value, then E-COND applies. If e1 is a value, then by the canonical forms lemma, it
is either true or false. Thus either E-CONDT or E-CONDE applies.

8. Case T-COERCE: e = (e1:T1)
By the hypothesis, e1 is a value or it can make an evaluation step. If e1 is not a
value, then E-COERCES applies, else E-COERCE applies.

9. Case T-TUP: e = (e1, e2:(x:T1,T2))
By the hypothesis, e1, e2 are values or they can make an evaluation step. If e1 is not
a value, then E-TUP1 applies. If e1 is a value and e2 is not, then E-TUP2 applies. If
both expressions are values, then e is a value.

10. Case T-UNPACK: e = let (x1, x2) = e1 in e2
By the hypothesis, e1 is a value or it can make an evaluation step. If e1 is not a
value, then E-UNPACKE applies. If e1 is a value, then by the canonical forms lemma
e1 = (v1, v2:(x:T1,T2)) and hence, E-UNPACK applies.

11. Case T-VECTOR: e = [e], (· ` e j : int) j
By the hypothesis, the expressions e are either values of or they can make an eval-
uation step. When an expression is not a value, then E-SEQ and E-VECTOR apply.
When all expressions are values, they must all be integers (canonical forms lemma)
and therefore, the vector is a value.

12. Case T-VSEL: e = ev.(ei), · ` ev : intvec el , · ` ei : {x:int|0<=x<el }
By the hypothesis, e and ei are either values or they can make an evaluation step. If
ev is not a value, then E-VSELV applies. If ev is a value and ei is not, then E-VSELI
applies. If both expressions are values, then, by the canonical forms lemma, ev
must be a vector [n] with el ⇒∗ |n| and ei must be an integer i with 0≤ i < |n|, so
that E-VSEL applies.

13. Case T-VMOD: Similar.

14. Case T-VEC: e = vec en ee, · ` en : nat, · ` ee : int
By the hypothesis, en and ee are either values or they can make an evaluation step.
If en is not a value, then E-VECL applies. If en is a value and ei is not, then E-VECE
applies. If both expressions are values, then by the canonical forms lemma, en must
be an integer n with 0≤ n and ei must be an integer, so that E-VEC applies.

15. Case V-MAP: e = vmap en e (x → eb), |e|= |x |, · ` en : nat, (· ` e j : intvec en) j
By the hypothesis, en and the expressions e are either values or they can make an
evaluation step. If en is not a value, then E-VMAPL applies. If en is a value, and an
ei is not, then E-SEQ and E-VMAPV apply. If all expressions are values then, by the

90 CHAPTER 5. TYPE CHECKING QUBECORE

canonical forms lemma, en must be an integer n with 0≤ n and each expression e j
must be an integer vector [m j] with |m j|= n. Since also |e|= |x |, E-VMAP applies.

16. Case T-VFA: e = vfa en e (x → eb). Similar.

17. Case T-ARRAY: e = [e : T|[n]], (· ` e j : T) j
By the hypothesis, each expressions ei is either a value of can make an evaluation
step. When some expression ei is not a value, then E-SEQ and E-ARR apply. When
all expressions are values, the array is itself a value.

18. Case T-SEL: e = ea.[e1, .., em], · ` ea : [T|es1, .., esn], · ` es1, .., esn ./ e1, .., em =
(s, v)<r>, (· ` vfa ri s j , v j (s, i→ 0<=i & i<s)) j
By the hypothesis, ea and the ei are either values or they can make an evaluation
step. If ea is not a value, E-SELA applies. If ea is a value, but some ei is not, then
E-SEQ and E-SELI apply. If all subexpressions are values, then, by the canonical
forms lemma, ea must be an array value [v : T|[n]] with (esi ⇒∗ [si])i so that
s1, .., sm = n. Moreover, each index vector e j must be an integer vector [i j]. The
remaining preconditions ensure that the shapes es and ei can be joined and that the
index vectors describe a valid position in ea, i. e., |i1, .., in|= |n| and (0≤ (i1, .., in) j <
n j) j. Thus, E-SEL applies.

19. Case T-MOD: e = ea.[ei]← ee. Similar.

20. Case T-RSHP: e = reshape e1, .., em ea, (· ` ei : natvec _)i, · ` ea : [T ′|es1, .., esn],
(· ` vfa er j es j (x → 0< x)) j
By the hypothesis, ea and the ei are either values or they can make an evaluation
step. If some ei is not a value, then E-SEQ and E-RS apply. If all ei are values, but
ea is not, then E-RA applies. If all subexpressions are values, then, by the canonical
forms lemma, ea must be an array value [v : T|[n]] with (esi ⇒∗ [si])i so that
s1, .., sm = n. By the precondition, (0 < n j) j. Moreover, each shape vector e j must
be a vector of natural numbers [i j]. Therefore, E-RSHP applies.

21. Case T-GEN: e = gen :Tb es with x → eb, · ` Tb, (· ` es j : natvec er j) j,
x1 : (indexvec er1 es1), .., xm : (indexvec erm esm) ` eb : Tb
By the hypothesis, the esi are either values or they can make an evaluation step.
If some ei is not a value, then E-SEQ and E-GENS apply. If all subexpressions are
values, then by the canonical forms lemma, each esi must be a vector of natural
numbers and therefore E-GEN applies.

22. Case T-LOOP: e = loop xa:T = ea; es with x → eb, · ` T , (· ` es j : natvec er j) j,
· ` ea : T , x1 : (indexvec er1 es1), .., xm : (indexvec erm esm), xa : T ` eb : T
By the hypothesis, the esi are either values or they can make an evaluation step. If
some ei is not a value, then E-SEQ and E-LOOPS apply. If all subexpressions are
values, then by the canonical forms lemma, each esi must be a vector of natural
numbers and therefore E-LOOP applies.

The progress theorem states that each closed and well-typed term is either a
value or can make an evaluation step. As stated by the preservation theorem,

5.6. SMT-BASED VALIDITY CHECKING 91

each evaluation step preserves the type of the expression, so that the progress
theorem applies to the result again. In our context, where we did not provide
facilities for general recursion, this means that any well-typed QUBECORE program
will terminate and yield a value.

5.6 SMT-Based Validity Checking

The previous section used a straightforward yet undecidable formalisation of the
proof relation Γ ` e to show that the type system is safe. This section describes
the actual, decidable implementation Γ `D e of the proof relation. The imple-
mentation maps information from the context and the expression to a formula in
the quantifier-free fragment of equality logic with uninterpreted functions and
linear integer arithmetic (UFLIA). Moreover, array properties [18, 17, 66] are
used to encode properties of integer vectors. The resulting formula can be de-
cided by current automatic theorem provers, namely solvers for the Satisfiability
Modulo Theories (SMT) problem of first-order logic [30, 33]. The relation Γ `D e
is a sound approximation of Γ ` e, so that Γ `D e implies Γ ` e. On the other
hand, we sacrifice completeness, so that Γ ` e does not imply Γ `D e. In ef-
fect, the QUBE type checker behaves conservative: it rules out all programs that
might get stuck during evaluation, but it also rejects some programs that actually
behave well at run-time.
The rule DPROOF explains the implementation of Γ `D e. The rule forms a
QUBECORE expression that will evaluate to true when the guard expressions
{eG | eG ∈ Γ} and the refinements {eR[x ′ 7→ x] | x : {x ′:T | eR } ∈ Γ} imply e.
Then, the expression is encoded as a first-order formula using the function C¹eº.

Valid C
�
∧
�

{eG | eG ∈ Γ} ∪ {eR[x ′ 7→ x] | x : {x ′:T | eR } ∈ Γ}
�

Ö e
�

(DPROOF)
Γ `D e

As an example, we show that the context x : {x ′:int|0<= x ′ }, y : int, x <= y
implies 0<= y. The encoding takes the refinement type of x into account. All
occurrences of x ′ in the refinement predicate 0<= x ′ are substituted with x .
The guard expression x <= y and the constraint 0<= y are translated straight-
forwardly.

Example 5.17 (Proving simple implications)

Valid (0≤ x ∧ x ≤ y → 0≤ y)
x : {x ′:int|0<= x ′ }, y : int, x <= y `D 0<= y

92 CHAPTER 5. TYPE CHECKING QUBECORE

The example only contains variables and applications of function symbols that
are readily available in the quantifier-free UFLIA fragment of first-order logic.
In general however, the encoding must also translate the other QUBECORE ex-
pressions, such as let-bindings, function definitions as well as vector and array
expressions. We now explain the translation in more detail.
The languages of SMT solvers such as YICES [33] or Z3 [30] are variants of
many-sorted first-order logic which generalises first-order logic as presented in
Chapter 3. Similar to programming languages that use types to classify expres-
sions, many-sorted logic uses sorts to classify terms. For the sake of simplicity, we
do not consider sorts or well-sorted terms. We just assume that there are primi-
tive sorts bool and int and that all our terms are well-sorted. Terms of sort bool
are called formulas, so that a syntactic distinction between terms and formulas
is redundant. Although the syntax of many-sorted logic permits arbitrary nest-
ings of terms and formulas, both can be disentangled so that the conventional
structure of first-order formulas can be restored.
In many-sorted logic, a term t is either a variable x , an application f (t1, ..., tn)
of a function symbol f to terms, a conditional term ite(t1, t2, t3), or a quantified
term ∀x . t or ∃x . t. Constants are nullary function symbols. The boolean function
symbols >, ⊥, ¬, ∨, ∧, ∨, →, and ↔ have the usual meaning. The sort int
introduces function symbols for the integers Z, the predicate symbols =, 6=, <,
≤, ≥, >, and the linear arithmetic functions +, −, and Z·. Moreover, there is
a special binary function symbol t1[t2] for reading an element with the integer
index t2 from an array t1.
Figure 5.11 shows the encoding function ¹eº(κ). The function takes a QUBECORE

expression e and a function κ, which maps QUBECORE variables to logic terms, for
processing local variable definitions. The result (t, T) consists of a term t that
approximates the expression and a set T of additional constraints, which are
also terms. The encoding function is defined using pattern matching: the first
equation whose left-hand side matches the expression applies.
The encoding function C¹·º used in DPROOF is defined in terms of ¹·º(·):

C¹eº=
∧

({t} ∪ T) where (t, T) = ¹eº(κ0)

The function κ0 : x → t yields a logical variable x̂ for every QUBECORE variable x .
The operation ·[· ← ·] alters a function κ such that κ[x ← t](x) = t. A variable
x̃ always represents a fresh uninterpreted function symbol.
¹xº(κ) encodes the variable x by applying κ. For let-bindings let x = e1 in e2,
the encoding follows the operational semantics. First, e1 is translated to (t1, T1).
Then, e2 is encoded under κ[x ← t1]which gives (t2, T2) so that the let-expression
can be encoded as (t2, T1 ∪ T2).

5.6. SMT-BASED VALIDITY CHECKING 93

Logical encoding of QUBECORE expressions ¹eº(κ) = (t, T)

¹xº(κ) = (κ(x),;)
�

let x = e1 in e2
�

(κ) = (t2, T1 ∪ T2)

where (t1, T1) =
�

e1
�

(κ),
(t2, T2) =

�

e2
�

(κ[x ← t1])
¹trueº(κ) = (>,;)
¹falseº(κ) = (⊥,;)

¹nº(κ) = (n,;)
¹not eº(κ) = (¬t, T) where (t, T) = ¹eº(κ)

◦ ∈ {↔,&,|}.
�

e1 ◦ e2
�

(κ) = (t1 ◦̂ t2, T1 ∪ T2) where (t i , Ti) =
�

ei
�

(κ)

◦ ∈ {=,<, ...}.
�

e1 ◦ e2
�

(κ) = (t1 ◦̂ t2, T1 ∪ T2) where (t i , Ti) =
�

ei
�

(κ)

◦ ∈ {+,-}.
�

e1 ◦ e2
�

(κ) = (t1 ◦̂ t2, T1 ∪ T2) where (t i , Ti) =
�

ei
�

(κ)

¹n * eº(κ) = (n ∗ t, T) where (t, T) = ¹eº(κ)

◦ ∈ {*,/,%}. ¹e ◦ nº(κ) = (t ◦̂n, T) where (t, T) = ¹eº(κ)
�

e1 e2
�

(κ) = (t1(t2), T1 ∪ T2) where (t i , Ti) =
�

ei
�

(κ)
�

if :T e1 then e2 else e3
�

(κ) = (ite(t1, t2, t3), T1 ∪ T2 ∪ T3)

where (t i , Ti) =
�

ei
�

(κ)
�

(e1, e2:T)
�

(κ) = (x̃ ,;)
�

let (x1, x2) = e1 in e2
�

(κ) =
�

e2
�

(κ)

¹(e:T)º(κ) = ¹eº(κ)
�

e1.(e2)
�

(κ) = (t1[t2], T1 ∪ T2) where (t i , Ti) =
�

ei
�

(κ)
�

e1.(e2)← e3
�

(κ) = (x̃ , { x̃[t2] = t3 ∧∀ j. j 6= t2→ x̃[j] = t1[j]} ∪ T)

where (t i , Ti) =
�

ei
�

(κ), T = T1 ∪ T2 ∪ T3

¹[e]º(κ) = (x̃ , { x̃[i] = t i}i ∪
⋃

i
Ti) where (t i , Ti) =

�

ei
�

(κ)
�

vec e1 e2
�

(κ) = (x̃ , { ỹ = t2 ∧∀ j. 0≤ j < t1→ x̃[j] = ỹ} ∪ T1 ∪ T2)

where (t i , Ti) =
�

ei
�

(κ)
�

vmap en e (y → eb)
�

(κ) = (x̃ , {∀ j. 0≤ j < tn→ x̃[j] = tb[yi 7→ t i[j]]i} ∪ T)

where T = Tn ∪
⋃

i
Ti , (t i , Ti) =

�

ei
�

(κ)
�

vfa en e (y → eb)
�

(κ) = (x̃ , { x̃ ↔∀ j. 0≤ j < tn→ tb[yi 7→ t i[j]]i} ∪ T)

where T = Tn ∪
⋃

i
Ti , (t i , Ti) =

�

ei
�

(κ)

¹eº(κ) = (x̃ ,;)

Figure 5.11: A mapping from QUBECORE expressions to logical formulas. The first
equation whose left-hand side matches the expression applies.

94 CHAPTER 5. TYPE CHECKING QUBECORE

Booleans and integer constants map to the corresponding logical constants. Sim-
ilarly, we encode applications of boolean operators, (linear) arithmetic opera-
tors, and conditional expressions as applications of the equivalent interpreted
functions. All other functions map to uninterpreted function symbols by the
bottom-most rule.
Tuples (e1, e2:T) are abstractly represented as uninterpreted functions x̃ . Simi-
larly, the encoding of unpack-expressions let (x1, x2) = e1 in e2 merely takes e2

into account, abstracting away from the relationship between the variables x1, x2

and the expression e1. The encoding function ignores type annotations (e:T).
In contrast, the encoding function emphasises the accurate representation of vec-
tors and vector operations. Selections e1.(e2) are encoded as logical array reads
t1[t2]. The vector modification e1.(e2) ← e3 represents a vector that is equal
to e1 at all position except e2, where it is e3. We thus encode the vector modi-
fication as a new logical array x̃ with the additional constraints x̃[t2] = t3 and
∀ j. j 6= t2 → x̃[j] = t1[j]. In a similar spirit, we encode vector constructors [e]
as fresh arrays x̃ with x[j] = t j for all j and constant-value vector expressions
vec e1 e2 as arrays x̃ with ỹ = t2 and ∀ j. 0≤ j < t1→ x̃[j] = ỹ.
Vectors defined by map expressions vmap en e (y → eb) are also converted to
new logical arrays x̃ . Modelling the operational semantics of vmap, the array is
constrained such that each element x̃[j]must equal tb[yi 7→ t i[j]]i, i. e., every yi

in tb gets replaced with t i[j]. The encoding of vector predicates vfa en e (x →
eb) is similar, but introduces x̃ as a truth variable that is constrained by the
universally quantified formula ∀ j. 0≤ j < tn→ tb[x i 7→ t i[j]]i.
All other expressions, namely abstractions, and the expressions from QUBE[], are
encoded as uninterpreted functions x̃ .
We now prove some essential properties of the transformation. Given an expres-
sion, the encoding function yields a term and a set of constraints that are lifted
out of their original context. In the presence of universal quantifiers, it is crucial
that no term that depends on a quantified variable is moved out of the scope of
the quantifier.
Proposition 5.18 (Expressions under vmap and vfa yield no constraints)

For map operations vmap en e (x → eb) and predicates vfa en e (x → eb),
encoding of the eb yields an empty constraint set, i. e.,

�

eb
�

(κ) = (tb,;)

Proof : Constraints are only generated by the encoding rules for [·], ·.(·) ← ·, vec,
vmap, and vfa. The typing rules treat eb as a restricted expression and thereby ensure
that none of the above expressions may appear in eb.

5.6. SMT-BASED VALIDITY CHECKING 95

An encoded formula may contain some universal quantifiers and thus may not
be immediately processed by an SMT solver. We show that the universally quan-
tified terms all belong to the decidable array property fragment [18], so that the
entire formula can be transformed into an equisatisfiable quantifier-free formula
by means of the decision procedure outlined in Section 3.4.

Proposition 5.19 (Quantified terms are array properties)

The universally quantified terms that result from encoding vector expressions
are array properties.

Proof : Only the encoding rules for ·.(·) ← ·, vec, vmap, and vfa emit universally
quantified terms. We inspect the rules individually.

1. Case e1.(e2)← e3:
The quantified term is ∀ j. j 6= t2 → x̃[j] = t1[j]. The index guard j 6= t2 is a
shorthand for j ≤ t2−1∨ t2+1≤ j. By construction, e2 and thus t2 cannot depend
on j, which allows us to abstract out t2 out of the index guard as a new variable.
In the value constraint x̃[j] = t1[j], the index variable j is only used to select into
arrays.

2. Case vec e1 e2:
The quantified term is ∀ j. 0 ≤ j < t1 → x̃[j] = ỹ. Similar to the above case, the
index guard may be rewritten as 0 ≤ j ≤ t1 − 1 and t1 may be abstracted out as it
cannot depend on j. The value constraint obeys the required grammar.

3. Case vmap en e (x → e):
The quantified term is ∀ j. 0 ≤ j < tn → x̃[j] = tb[yi → t i[j]]i. The index guard
may be transformed to meet requirements as in case 2. Since eb is a restricted
expression, the term tb can only contain constants, the variables x as integers,
logical and arithmetic functions and if-then-else terms. In particular, tb cannot
by itself reference j. Therefore, substituting the variables x i with t i[j] yields a
well-formed value constraint.

4. Case vfa en e (x → e): Similar.

The encoding function is accurate for boolean expressions, integers and linear
integer operations, vector expressions and let-bindings. All other expressions
are soundly abstracted away with uninterpreted function symbols. When only
expressions of the former group are used in program positions where the proof
relation is used to reason about values, the type checker will not report any false
type errors. Specifically, these positions are type refinements, length expres-
sions in vector types, shape expressions in array types, conditional predicates,
function arguments or tuple components when a value of some refinement type
is expected, length expressions in vec, vmap, and vfa, vector indices, shape

96 CHAPTER 5. TYPE CHECKING QUBECORE

expressions in reshape, gen, loop, and array index vectors. Despite the ex-
tensive list, many interesting array programs can be typed. Some examples will
be shown in Section 8. Moreover, in cases where the proof machinery fails to
accurately reason about the value of a complex expression, appropriate run-time
checks can be inserted manually.

Summary

This chapter presented the type system of QUBECORE and gave proof of its safety.
However, even with SMT-based constraint proving, the presented rules are not
immediately suitable for implementation. Responsible for this is the subsump-
tion rule T-SUB which applies to every expression arbitrarily often. In contrast,
all other rules are syntax directed: for every expression, there is one and only
one type checking rule that matches that expression. Thus, to implement a ter-
minating type checking algorithm, it is only necessary to tame the subsumption
rule.
QUBECORE is constructed such that type checking never requires to guess an ap-
propriate supertype for an expression. Instead, the language elements are an-
notated with these types. For example the conditional if :T e then et else ee

provides a common supertype T for both branches. Thus, in all situations where
the declarative rules use the subsumption rule to appropriately elevate the type
of an expression, it is sufficient to check whether the type is a subtype of the
required type and we can therefore eliminate T-SUB.

Part III

The QUBE Programming Language

97

6
The QUBE Programming Language

This chapter describes the actual syntax of the QUBE programming language.
The syntax of QUBE is heavily inspired by OCAML [69], a popular dialect of the
ML family of functional languages. Programmers familiar with OCAML should
be able to quickly learn QUBE, too. Aimed to be a practical language for ar-
ray programming with dependent types, QUBE extends QUBECORE with a richer
expression syntax, more base types, some syntactic sugar, an ML-style module
system [83], and support for stateful computations and I/O. The latter two ex-
tensions were added to the QUBE compiler by Florian Büther in the course of
his Diploma thesis [20]. Hence, this chapter only gives a brief overview of these
features and refers the reader to the aforementioned thesis for details.
The remainder of the chapter is organised as follows: Section 6.1 explains the
expression syntax of QUBE and how it extends QUBECORE. Section 6.2 outlines
the module system of QUBE. Finally, Section 6.3 explains how QUBE integrates
stateful computations and I/O operations by means of uniqueness types.

6.1 Expression Syntax

This section explains the expression syntax of QUBE and how it is different from
QUBECORE. Fig. 6.1 specifies an (abstract) grammar of QUBE expressions in ex-
tended Backus-Naur form.
To facilitate general-purpose computations, QUBE provides the additional base

99

100 CHAPTER 6. THE QUBE PROGRAMMING LANGUAGE

types char, float, and double along with the required constants, arithmetic
operations, and conversion operations.

QUBE generalizes the unary functions of QUBECORE to functions of arbitrary arity.
The n-ary function type has the form x1:T1. ... xn:Tn → Tn+1. The syntax of
function types allows the compiler to statically determine how many arguments
are required for an exact application of a given operator. The corresponding
abstraction has the form fun x1:T1 ... xn:Tn :Tn+1 → e, where the declaration of
the return type :Tn+1 is optional. The syntax of the extended application that
allows an operator to be applied to multiple operands is e e1 ... em, where m may
differ from the arity of e. The following example illustrates the definition of a
ternary function and its function type.

Example 6.1 (Function with multiple arguments)

(fun x:int y:int z:int :int → x+y+z) : x:int. y:int. z:int → int

Variables that denote binary functions can be enclosed in backticks and be used
as infix operators. For example, x ‘add‘ y is equivalent to add x y .

Similar to the generalisation of functions, QUBE generalises pairs to (dependent)
tuples with n components for n≥ 2. The dependent tuple type of length n has the
form (x1:T1,...,xn−1:Tn−1,Tn). The syntax of the dependent tuple constructor
is (e1,...,en:(x1:T1,...,xn−1:Tn−1,Tn)), whereas a non-dependent tuple may
simply be specified as (e1,...,en). The example shows how dependent triples
can be used to represent arrays of different rank and shape in a uniform way.

Example 6.2 (Dependent triples)

(1,[5] ,[1,2,3,4,5|[5]] : (r:nat, s:natvec r, [int|s]))
(2,[2,2],[1,2,3,4|[2,2]] : (r:nat, s:natvec r, [int|s]))

The type annotation at the conditional expression is optional in QUBE. In most
expressions if ep then et else ee, either the type of et is a supertype of the type
of ee, or vice versa. In these cases, the compiler will automatically assume the
greater type as the type of the conditional.

The let construct of QUBE combines the let and unpack expressions from
QUBECORE and adds support for mutually recursive function definitions. The non-
recursive binding let p1 = e1 and ... and pn = en in en+1 evaluates the expressions
e1, .., en in arbitrary order and matches the results with the patterns p1, .., pn such
that all variables from the patterns are bound to values in en+1. Patterns may be
variables x and tuple patterns (p1,...,pm) for m≥ 2.

The recursive binding let rec p1 = e1 and ... and pn = en in en+1 defines a
set of mutually recursive functions under the restriction that all patterns pi are

6.1. EXPRESSION SYNTAX 101

T ::= B
�

� {x:T | e }
�

�

��

x:
�

T.
	�

x:
�

T → T Types
�

� (
��

x:
�

T,
	+T)

�

� intvec e
�

� [T|e
�

,e
	

]| X
�

e
	

B ::= bool
�

� int
�

� char
�

� float
�

� double Base types

e ::= c
�

� x
�

� fun
�

x:T
	+ �:T

�

→ e
�

� e
�

e
	+ Expressions

�

� (e:T)
�

� (e
�

,e
	+�:T

�

)
�

� if
�

:T
�

e then e else e
�

� let
�

rec
�

l b
�

and l b
	

in e
�

� e.(e)
�

� e.(e)← e
�

� vec e e
�

� vmap e
�

,e
	

(x
�

,x
	

→ e)
�

� vfa e
�

,e
	

(x
�

,x
	

→ e)
�

� [
�

e
�

,e
	��

:T
��

|[
�

Z
�

,Z
	�

]
�

]
�

� e.[e
�

,e
	

]
�

� e.[e
�

,e
	

]← e
�

� reshape e
�

,e
	

e
�

� gen
�

:T
�

e
�

,e
	

with g
�

� loop x
�

:T
�

= e; e
�

,e
	

with g

l b ::= p = e
�

� x
�

x:T
	+ �:T

�

= e Let bindings
p ::= x

�

� (p
�

,p
	+) Patterns

g ::= vp
�

,vp
	

→ e
�

� rp
�

,rp
	

→ e | vp
�

,vp
	

→ e Generators
vp ::= x

�

� [
�

x
�

,x
	�

] Vector patterns
rp ::=

�

@r as
�

vp Range patterns
r ::= e

�

� e..
�

� ..e
�

� e..e Ranges

Figure 6.1: The expression syntax of QUBE

mere variables x i and that all right-hand side expressions ei are abstractions
fun x1 : T1 ... xn : Tn : Tn+1→ e that provide a result type.

As a convenience notation, QUBE provides a special let binding for function
definitions. The binding x f x1 : T1 ... xn : Tn : Tn+1 = e is equivalent to writing
x f = fun x1 : T1 .. xn : Tn : Tn+1 → e. In both notations, the result type is only
required for declaring recursive functions. To illustrate the let expression, we
define the well-known mutually recursive functions even and odd.

Example 6.3 (Mutually recursive functions)

let rec even n:nat :bool = if n = 0 then true else odd (n-1)
and odd n:nat :bool = if n = 0 then false else even (n-1)
in even 4

The vector and array expressions of QUBE differ very little from their counter-
parts in QUBECORE. Most notably, the vector constructor and the array constructor
have been fused into a common expression. The element type and shape anno-

102 CHAPTER 6. THE QUBE PROGRAMMING LANGUAGE

tations are optional. If the type annotation is missing, the compiler determines
a common supertype of all elements. For empty array constructors, the element
type defaults to int. If the shape annotation is missing, the array constructor
will be assumed to define a rank 1 array. Vectors with integer elements will be
given an intvec type, as described by rule T-VECTOR in Figure 5.7. Via an ad-
ditional subtyping rule, the compiler allows integer vectors to be used as rank 1
integer arrays. In QUBE, vmap and vfa do not require the vector length as an
argument.
The gen and loop expressions of QUBE employ a restricted form of pattern
matching on index vectors to allow the elements in a convex sub-region of the
index space to be computed from a different expression than all other elements.
An array comprehension of the form
gen s with @lb..ub as x → e | x’ → e’

specifies an array of shape vector s, whose elements are either computed from
the expression e or from the default expression e’. Which of these two expres-
sions is chosen depends on the element’s index vector. If the index vector is
within the range specified by the range pattern @lb..ub, where the lower bound
vector lb is inclusive and the upper bound vector ub is exclusive, e is chosen, oth-
erwise e’ is taken. In situations where the length of the index vector is constant,
QUBE allows the index vector to be alternatively specified as a vector pattern [x].
The element type of gen and the accumulator type of loop are optional as the
compiler can in many cases determine an appropriate type itself. To illustrate
range and vector patterns, we define an operation that concatenates two vectors
of doubles.
Example 6.4 (Range and vector patterns)

let concat m:nat n:nat a:[double|[m]] b:[double|[n]] =
gen [m+n] with
| @[0]..[m] as x → a.[x]
| [i] → b.[[i-m]]

6.2 Module System

To support large-scale programming beyond individual expressions, QUBE fea-
tures an elaborate module system [20, 83]. The system supports separate names-
paces, separate compilation, information hiding, and interfacing with foreign
functions.
A module consists of a signature that describes all the types and values provided
by the module and a structure that contains the actual definitions. Each source

6.2. MODULE SYSTEM 103

M ::= struct
�

b
	

end
�

�

�

m.
	

m
�

� M:I Module expressions
b ::= type X

�

x:T
	

= T
�

� let
�

rec
�

l b
�

and l b
	

Bindings
�

� structure m = M
�

� signature i = I
�

� open
�

m.
	

m
�

� external x : T = symbol

I ::= sig
�

d
	

end
�

�

�

m.
	

i Interface expressions
d ::= type X

�

x:T
	�

= T
�

�

� val x : T Declarations
�

� structure m: I
�

� signature i = I
�

� open
�

m.
	

m
�

� external x : T = symbol

T ::= ...
�

�

�

m.
	

X Types
e ::= ...

�

�

�

m.
	

x Expressions

Figure 6.2: The module syntax of QUBE

code file A.q implicitly defines a structure A. Similarly, a source code file A.qi
implicitly defines a signature A. Alternatively, structures and signatures can be
defined explicitly, even inside of other structures.
Figure 6.2 shows the module syntax of QUBE. In the figure, four different kinds
of identifiers are used. As before, the metavariables x and X represent value and
type identifiers, respectively. The metavariable m stands for a module identifier
and i stands for an interface identifier. Module identifiers must begin with an
uppercase letter, all other identifiers must begin with a lowercase letter.
To navigate through the module hierarchy, both value identifiers and type iden-
tifiers are extended with a module path. For example, Cpx.make selects the value
make from a module Cpx.
A module expression M is either a structure definition struct bs end that pack-
ages together related bindings bs, a path m1.... mn.m that selects a structure m
from a module tree, or a module expression of the form M : I that restricts the
interface of the module M to the interface I .
The binding type X x1 : T1 ... xn : Tn = Tn+1 defines a new type X that takes
arguments x i of type Ti as an abbreviation of the right-hand side type Tn+1. Sim-
ilar to the let expression, the let binding simultaneously defines a number of
(potentially recursive) values.
A binding of the form structure m = M binds a structure m that is defined by
the module expression M . Similarly, a binding of the form signature i = I binds
a signature i that is defined by the interface expression I .
A binding open m1.... mn.m makes all names from the module m1.... mn.m avail-
able in the current structure without the module path.
Finally, a binding of the form external x : T = symbol declares an externally

104 CHAPTER 6. THE QUBE PROGRAMMING LANGUAGE

structure Cpx = struct
type t = (double,double)
let make re:double im:double = (re,im)
let re c:t = let (re,_) = c in re
let im c:t = let (_,im) = c in im
(* ... *)

end : sig
type t
val make : double. double → t
val re : t → double
val im : t → double
(* ... *)

end

Figure 6.3: An example module for complex numbers

defined function x of type T that is implemented by the linker symbol symbol.
Analogue to module expressions, an interface expression is either a signature
definition sig ds end that packages a list ds of declarations, or a path m1.... mn.i
that selects an interface i from a module tree.

The declarations of a signature abstractly describe the bindings of a structure. A
type declaration may omit the implementation of the type to create an abstract
data type. A declaration of the form val x : T merely indicates the existence of
a value x of type t. Similarly, a structure can only be declared to have a certain
interface. In contrast, the signature, open, and external declarations are
equivalent to the corresponding bindings.

To illustrate some of the module syntax, Figure 6.3 shows an example module
Cpx that provides basic support for complex numbers. The structure implements
complex numbers as pairs of double and defines the necessary constructor and
destructor functions. The module is sealed by a signature that hides the imple-
mentation type of complex numbers such that values of type Cpx.t can only be
manipulated by functions from Cpx.

6.3 Stateful Computations

QUBE expressions are referentially transparent, i. e., an expression will always
evaluate to the same result when applied to the same arguments. While the
absence of state and side-effects makes it easy to reason about QUBE expressions,
additional measures are required to mimic the behaviour of imperative programs

6.3. STATEFUL COMPUTATIONS 105

T ::= TC

�

� *TC

�

� ?TC

�

� u^TC Types
TC ::= B

�

� {x:T | e }
�

�

��

x:
�

T.
	�

x:
�

T → T Core Types
�

� (
��

x:
�

T,
	+T)

�

� intvec e
�

� [T|e
�

,e
	

]| X
�

e
	

e ::= ...
�

� e!(e)
�

� e!(e)← e
�

� e![
�

e,
	

e]
�

� e![
�

e,
	

e]← e Expressions

Figure 6.4: Syntax for uniqueness types and destructive array operations

that manipulate the machine state or interact with the execution environment.
Similar to the programming languages CLEAN and SAC, QUBE uses uniqueness
types [9] to incorporate side-effects into the referentially transparent setting.
The implementation most closely resembles the approach described in [32].
A variable with a unique type must be referenced at most once. Unique objects
are thus explicit representations of state. To manipulate such a state, a function
must consume the corresponding unique object and produce a new unique ob-
ject that represents the new state. The data dependencies between producers
and consumers of unique objects then implicitly enforce the desired sequential
evaluation of unique expressions.
Figure 6.4 shows the syntax extensions for uniqueness types. The types have
been refined such that every type consists of a core type TC and a uniqueness
attribute. Core types are essentially the types as defined in Section 6.1. A type
*TC is unique. The absence of a uniqueness attribute implicitly makes a type
shared. A uniqueness variable u makes the type u^TC polymorphic with respect
to the uniqueness attribute. The type checker determines an appropriate instance
of u depending on how the corresponding value is used. The notation ?TC is a
convenience notation for u^TC where u is a fresh variable.
Each element of a data structure has its own uniqueness. In order to avoid
illegal sharing of unique elements, the uniqueness propagation rule must be
obeyed [84]: if a unique object is stored in a data structure, the data structure
becomes unique as well.
To enable interactive programs, QUBE defines an abstract type *world whose
values represent states of the execution environment. The function main, which
serves as the entry point of a QUBE program, must have type *world → *world.
The type captures the intuition that an interactive program transforms the exe-
cution environment from an initial to a final state. Using the library function
Io.print_endline of type string. *world → *world, we can write a Hello
World program.
Example 6.5 (Hello World)

let main w:*world = Io.print_endline "Hello␣World" w

106 CHAPTER 6. THE QUBE PROGRAMMING LANGUAGE

let swap n:nat arr:*[int|[n]] i:(index n) j:(index n) =
let (arr,ai) = arr![[i]] in
let (arr,aj) = arr![[j]] in
let arr = arr![[i]] ← aj in
let arr = arr![[j]] ← ai in
arr

Figure 6.5: Destructive swapping of array elements

In the context of array programs, uniqueness types have a desirable second ap-
plication. Since a unique array type describes an array that has at most one
reference to it, modifications of this array may be performed destructively. Thus,
the asymptotic complexity of array modification drops from O(n) to O(1).
QUBE provides a custom set of expressions to access and modify unique arrays.
The unique vector selection e!(e) and the unique array selection e![e, ..., e]
take unique arrays and shared indices. In order to preserve the array reference,
the expressions return a fresh reference to the array in addition to the selected
element. The unique vector modification e!(e)← e and the unique array modi-
fication e![e, ..., e]← e take unique arrays, shared indices, and shared substitute
elements.
To illustrate destructive array modification, Figure 6.5 defines a function swap
that takes a unique array and two valid array indices i and j. The operation
uses unique array selections to select the elements at the positions i and j, re-
spectively. Afterwards, the array is updated destructively and the final reference
to the array is returned.

Summary

This chapter presented the syntax of the QUBE programming language. Based
on QUBECORE, the language provides a number of features for practical array pro-
gramming with dependent types. The module system of QUBE allows complex
programs to be decomposed into smaller and more manageable modules that as-
semble related definitions. QUBE uses the module system to provide an extensive
standard library of predefined functions. Via uniqueness types, QUBE supports
stateful computations such as I/O and destructive array updates without losing
referential transparency.

7
Language Implementation

QUBE is implemented by a compiler that translates QUBE programs into code
for the Low-Level Virtual Machine (LLVM) which in turn emits machine-specific
assembly language. The compiler was implemented by Florian Büther, Markus
Weigel, Sebastian Hungerecker, and myself.

The remainder of this chapter is organized as follows: Section 7.1 characterises
the design goals of the QUBE compiler. Section 7.2 gives an overview of the com-
piler architecture and describes the individual phases of the compilation process.
The implementation dynamically represents multidimensional arrays as mere
sequences of elements. Section 7.3 explains how the QUBE compiler uses the
dependent array types to statically augment intermediate programs with infor-
mation about array ranks and shapes wherever these are required for evaluation.

7.1 Design of the QUBE Compiler

The design of the QUBE compiler aims at translating QUBE programs into well-
performing executables. A secondary goal was to explore how to use the rich
type information to produce even better code.

Most visible to the user, the compiler uses the types to statically detect program
errors such as array-boundary violations and give appropriate type error mes-
sages. Type checking is performed in collaboration with a Satisfiability Modulo

107

108 CHAPTER 7. LANGUAGE IMPLEMENTATION

Theories (SMT) solver. Programs that pass the type checker are known not to ex-
hibit program errors. In consequence, the compiler can avoid inserting dynamic
checks such as array bounds checks into the program.
QUBE’s type system is monomorphic. Therefore, all basic values have unboxed
representations. Only closures, tuples, and arrays are allocated on the heap.
Multidimensional arrays are represented solely by their linear data vectors. In-
stead of also providing the corresponding shape vectors at run-time, the compiler
uses the shape expressions from the array types to statically annotate the pro-
gram with shape information wherever necessary. The process will be described
in more detail in Section 7.3.
Integer vectors have a pre-eminent role in array programming. They represent
shapes and allow us to index elements from multidimensional arrays. Unfor-
tunately, the overhead of allocating a vector on the heap just to select a single
array element is prohibitive. To avoid integer vectors from manifesting at run-
time, the QUBE compiler employs two strategies. First, whenever the length of
an integer vector is statically known, the compiler represents the vector by its
individual elements. Operations on these vectors can in most cases be unrolled,
resulting in a number of scalar computations. Second, the compiler implements
index vector elimination (IVE) [12], a technique develop in the context of the SAC
compiler [42] that replaces linear operations on index vectors with equivalent
operations on scalar offsets.
QUBE is a higher-order language that supports first-class functions and nested
function declarations. Inner functions may refer to variables that are bound in
the surrounding function. The QUBE compiler uses lambda lifting [60] to elim-
inate free variables from inner functions. For each free variable, the procedure
introduces an additional function argument that must be passed at every appli-
cation. The closed functions are moved to the top-level.
The implementation of curried function applications takes advantage of QUBE’s
n-ary function types. As the arity of any given function f is statically known, the
compiler can determine whether an application f e1 .. en provides too few, too
many, or the right number of arguments. If the number of arguments matches
the function’s arity, an exact call is made. If there are too many arguments, the
compiler splits the application so that first an exact call is made whose result is
then applied to the remaining arguments. If the application has too few argu-
ments, the compiler generates a closure that combines a tuple (e1, .., en) with a
pointer to a new function that takes the tuple and the remaining arguments so
that it can make an exact call to f .
Another important feature of functional programming languages is automatic
memory management. The language implementation is responsible for allocat-
ing space for new data structures and releasing the memory once the data struc-

7.2. COMPILATION AT A GLANCE 109

tures are no longer used. Currently, the QUBE compiler relies on the Boehm-
Dehmers-Weiser conservative garbage collector [16] for storage reclamation. In
the future however, we would like to replace it with a memory management
scheme based on reference counting, since this would allow us to safely perform
destructive array updates even in the context of immutable arrays [45, 94].

The QUBE compiler targets the Low-Level Virtual Machine (LLVM) [68], a com-
piler infrastructure that supports a variety of processor architectures. LLVM
takes programs in a machine-independent typed assembly language and per-
forms extensive compile-time optimisations. The result is either statically com-
piled to machine code or stored as bytecode for interpretation (aided by just-
in-time compilation). A feature that makes compiling to LLVM particularly in-
teresting is its support for tail-call optimisation (TCO) [62], a technique that
substitutes function calls in tail position with more efficient jump instructions
into the called functions.

As LLVM can use the C calling conventions, the generated object files can be
linked with native libraries. Interfacing between QUBE and C programs is straight-
forward due to the similarities between the representations of QUBE data struc-
tures and the corresponding data structures in C. The interoperation works in
both directions: QUBE programs can access library functions written in C and,
vice versa, QUBE functions can serve as the trusted computational kernels of
programs written in any other language that can interface with C.

The QUBE compiler itself is written in OCAML [69, 22], a popular language in
the ML family of programming languages [70, 75]. OCAML offers inductive
data types and facilities to define recursive functions over these types by pattern
matching. In conjunction with type inference and automatic memory manage-
ment, these features make OCAML well-suited for compiler construction.

7.2 Compilation at a Glance

This section describes the compilation process of the QUBE compiler. Fig. 7.1
gives an overview of the compilation. The blocks represent the individual compi-
lation phases that lower the source program to a native object file a.out through
a series of intermediate representations.

The compiler accepts a QUBE program as a source file suffixed with .q. Scanning
and parsing of the program yields a Parsetree, an abstract syntax tree that closely
resembles the source program.

Type checking is performed in collaboration with the YICES theorem prover [33].
The implementation of the proof relation Γ `D e encodes the context and the

110 CHAPTER 7. LANGUAGE IMPLEMENTATION

Compilation process

Parsing

Type checking SMT solver

Normalization

Optimization

Index transformation

Lambda lifting

Memory management

Code generation

LLVM

.q

a.out

Function inlining
Constant folding
Common subexpression elimination
Dead code removal

Parsetree

Typedtree

Coretree

Coretree

Indextree

Indextree

Memtree

LLVM code

UFLIA formula

UNSAT/Model

Figure 7.1: The compilation process of QUBE

7.2. COMPILATION AT A GLANCE 111

negated property not e as a logical formula in the decidable UFLIA1 fragment
of first-order logic as described in Section 5.6. When the SMT solver yields
unsatisfiable then e is valid under Γ and thus the program is type correct. In case
that the SMT solver finds the encoded formula satisfiable, it reports a model,
i. e., an assignment of the program variables in Γ that satisfies the encoding of
not e. Since e may thus be invalid under Γ, the program is rejected with an
appropriate type error message.
Well-typed programs are emitted by the type checker in an intermediate repre-
sentation called Typedtree. This abstract syntax tree still largely resembles the
source program with a few notable differences. First, all user-defined types
are replaced by their definitions. Second, all bound identifiers are uniquely re-
named. Third, to admit descriptor-free representation, all language elements
that deal with vectors or arrays are annotated with expressions that represent
the vector lengths, array rank and shapes, respectively. The descriptor-free array
representation and the required compile-time annotations will be described in
more detail in section 7.3.
The Normalisation phase systematically eliminates complex subexpressions from
the syntax tree, yielding the intermediate representation Coretree. Similar to
administrative normal form [37], Coretree only allows functions to be applied to
trivial arguments, called atoms, which are either constants or identifiers. More
complex expressions must only appear on the right-hand side of a let-binding.
Thus, complex subexpressions are abstracted out of their original context and
bound to fresh variables.
Due to its regular structure, the Coretree representation is well-suited for program
optimisation. The side-effect free nature of (well-typed) QUBE programs allows
to straightforwardly apply a host of compiler optimisations without changing
the program semantics. Currently, the QUBE compiler performs the following
high-level program optimisations most of which are well-known from compiler
construction text books [1, 3, 47]:

• Function inlining: non-recursive functions whose size do not exceed a
certain threshold are inlined.

• Partial evaluation: the compiler reduces applications of the built-in logic
and arithmetic operations to constant arguments. Conditionals with con-
stant predicates are reduced to the adequate branch. Unpack expressions
are reduced when the definition of the tuple is known. For vectors and
arrays that are defined by a constructor, selections and modifications with
constant index vectors and reshape operations with constant shape vec-
tors are reduced. For vectors of known length, instances of vmap and vfa

1uninterpreted functions and linear integer arithmetic

112 CHAPTER 7. LANGUAGE IMPLEMENTATION

are expanded. Similarly, instances of gen and loop are expanded for small
shapes.

• Common subexpression elimination: identical right-hand sides of let-
bindings are eliminated to avoid redundant computations.

• Dead code removal: the compiler eliminates all bindings of unreferenced
variables as these cannot contribute to the program result.

After program optimisation, the compiler phase index transformation lowers the
multidimensional QUBE arrays to linear arrays that can be mapped to actual
computing hardware. In particular, index vectors into multidimensional arrays
are transformed into scalar offsets into the linear array representation. By means
of index vector elimination [12], the compiler converts many linear operations
on heap-allocated integer vectors into equivalent scalar operations that can be
performed in processor registers. The compiler phase maps the syntax tree to a
representation called Indextree that dispenses with dependent types in favour of
simple types.
The next phase Lambda lifting [60] eliminates nested function definitions. The
procedure augments inner functions with additional arguments for each free
variable and modifies all applications of these functions to pass the necessary
value. The closed functions are then moved out of their original context to the
top-level.
The Memory management phase augments the intermediate code with instruc-
tions that explicitly allocate and modify memory. In effect, the purely functional
QUBE programs are transformed into stateful programs that perform computa-
tions as a sequence of modifications of the machine state.
As the final stage of the QUBE compiler, code generation transforms the syntax
tree into code for the Low-Level Virtual Machine (LLVM) [68] which in turn
emits machine-specific object code.

7.3 Descriptor-Free Array Representation

Array ranks and shape vectors are essential for the evaluation of array programs:
for a matrix a:[int|[m,n]] stored in row-major order, the element a.[[i,j]]
is located in the linear memory representation of a at the offset i · n + j. To
provide rank and shape vector wherever necessary, language implementations
typically associate each array with an array descriptor that is maintained at run-
time in addition to the array itself. A descriptor-based array representation of a
takes the form of a tuple <2,[m,n],[d_1,...,d_p]> where the first component

7.3. DESCRIPTOR-FREE ARRAY REPRESENTATION 113

2 is the array rank, the second component [m,n] is the shape vector, and the
third component [d_1,...,d_p] is the data vector whose length p equals the
product of the shape vector elements. To the programmer, these arrays appear
as abstract data types that provide means for obtaining the array shape and
(safely) accessing the individual elements.

In the context of QUBE, a more compact representation of arrays can be em-
ployed [97]. The type of an array captures both its element type and its shape
as a structured vector. The QUBE compiler uses this information to statically
annotate the program with rank and shape information wherever these are re-
quired for evaluation. The above selection thus becomes a.[([m,n],[i,j])<2>],
removing the need for dynamically looking up the shape of a. The language
implementation can thus dispense with array descriptors and instead represent
arrays as mere sequences of elements.

Once all structural properties of arrays are represented explicitly in intermediate
code, they become subject to program optimisation. For example, dead code
removal eliminates superfluous computations of and on structural properties.
Likewise, common subexpression elimination avoids repeated computation of
identical shape information. Last not least, constant folding and algebraic sim-
plification contribute their share to optimise computations on rank and shape
expressions.

Fig. 7.2 shows the rules of the relation e ⇑ e which statically annotates programs
with the required array properties. Program annotation takes place during type
checking where the type of each expressions is determined. For the sake of
clarity, we avoid reformulating the entire set of typing rules from Chapter 5 and
omit the typing context Γ.

Each shape segment ei of an array type [T|e1, .., en] is annotated with its length
li. The array type becomes [T|e1<l1>, .., en<ln>].

The vector expressions vfa e (x → e) and vmap e (x → e) implicitly loop over
all input vectors e simultaneously to compute the result. Since type checking
ensures that all vectors have the same length l, it is sufficient to annotate the
expressions with l once, yielding vfa<l> e (x → e) and vmap<l> e (x → e).

Array selections ea.[e] are annotated with the result of joining the structured
shape vector of ea and the structured index vector e. Both vectors are required
to compute the offset into the linear representation of ea. As the join operation
ensures that corresponding shape and index segments have the same length, the
offset computation can be carried out without dynamically aligning the struc-
tured vectors. Array modifications ea.[e]← ee are annotated in the same way.

Evaluation of a reshape expression reshape e ea involves computing the number
of elements of ea as well as the number of elements in the result which is given

114 CHAPTER 7. LANGUAGE IMPLEMENTATION

(ei : intvec li)i (A-TARRAY)
[T|e1, ..., en] ⇑ [T|e1<l1>, .., en<ln>]

(ei : intvec l)i (A-VFA)vfa e1, .., en f ⇑ vfa<l> e1, .., en f

(ei : intvec l)i (A-VMAP)vmap e1, .., en f ⇑ vmap<l> e1, .., en f

(ei : intvec li)i ea : [T|e′1<l ′1>, .., e′m<l ′m>]
e′1, .., e′m ./ e1, .., en = (s1, v1)<r1>, ..,(so, vo)<ro> (A-SEL)
ea.[e1, .., en] ⇑ ea.[(s1, v1)<r1>, ..,(so, vo)<ro>]

(ei : intvec li)i ea : [T|e′1<l ′1>, .., e′m<l ′m>]
e′1, .., e′m ./ e1, .., en = (s1, v1)<r1>, ..,(so, vo)<ro> (A-MOD)

ea.[e1, .., en]← ee ⇑ ea.[(s1, v1)<r1>, ..,(so, vo)<ro>]← ee

(ei : intvec li)i ea : [T|e′1<l ′1>, .., e′m<l ′m>] (A-RSHP)
reshape e1, .., en ea⇑reshape<e′1<l ′1>, .., e′m<l ′m>> e1<l1>, .., en<ln> ea

(ei : intvec li)i (A-GEN)
gen e1, .., en with g ⇑ gen e1<l1>, .., en<ln> with g

(ei : intvec li)i (A-LOOP)
loop xa = ea; e1, .., en with g ⇑ loop xa = ea; e1<l1>, .., en<ln> with g

Figure 7.2: Static annotation of the required array properties

7.3. DESCRIPTOR-FREE ARRAY REPRESENTATION 115

by the product of the elements from e. Thus, we annotate the expression with
the entire shape of ea and the length of each vector ei.
The shape vectors of the array comprehension gen and the loop expression are
also annotated with their respective lengths, since these are required to deter-
mine the lengths of the corresponding index vectors and for computing the num-
ber of elements in the index space.
The idea of descriptor-free array representation is related to the compilation
scheme devised for rank-generic SAC programs [65]. The SAC compiler uses
different representations for arrays of statically known shape, arrays of statically
known rank (but unknown shape), and arrays of statically unknown rank and
shape to avoid creating run-time descriptors whenever possible. Thus the effi-
ciency of compiled code depends on the available shape information. To improve
the amount of static shape information, the SAC compiler uses a combination of
partial evaluation and function specialisation [43]. Recent work [98] proposed
symbolic array attributes as a uniform scheme to infer and represent structural
information in rank-generic array programs such that it may be used by op-
timisations. Descriptor-free array representation takes all these ideas to their
conclusion.

Summary

This chapter presented the implementation of the QUBE programming language.
The QUBE compiler translates programs to LLVM programs through a series of
intermediate representations. Most of the program transformations involved are
similar to those employed by compilers for other strict, higher-order functional
programming languages, with a few notable exceptions.
Type checking is performed in collaboration with an SMT solver to soundly de-
cide whether two expressions denote the same value and, in extension, whether
two types are equal.
Dependent array types represent array ranks and shape vectors in the type sys-
tem. The QUBE compiler uses this information to statically annotate intermediate
programs with array properties wherever these are required for evaluation. This
allows the program to dispense with dynamic representations of ranks and shape
vectors. Instead, arrays are stored as mere sequences of elements. Furthermore,
exposing rank and shape computations explicitly in intermediate code makes
them subject to compile time optimisation. In effect, the compiled programs
contain very little overhead.
QUBE’s n-ary function types provide static information about the arity of a (po-
tentially unknown) function. The compiler uses this information to determine

116 CHAPTER 7. LANGUAGE IMPLEMENTATION

whether an application is partial, exact, or an over application of a function.
For each situation, appropriate code that does not require dynamic branching
is generated. In contrast, compilers for languages such as HASKELL, SML, or
OCAML that only have unary function types (despite allowing to define n-ary
functions) must deal with function application dynamically by either of two ba-
sic approaches [71]. In the push/enter model, the caller pushes all arguments
to the stack. The called function, which knows its own arity, inspects the stack
to determine how many arguments it has been passed. If there are too few ar-
guments, the function must return an object representing a partial application,
if there are too many arguments, some of them must be left on the stack for
later consumption. In the eval/apply model, the caller, which statically knows
the number of arguments, evaluates the function and inspects the resulting clo-
sure to determine its arity. By case distinction, the caller chooses appropriate
code that either extends the closure, makes an exact call, or makes an exact call
followed by another application.

8
Rank-Generic Array Operations

Traditional array languages such as APL [55], J [56], and MATLAB [76] provide
a large number of built-in array operations from which more complex programs
are assembled. In contrast, QUBE allows the user to define her own set of type-
safe array operations by means of the versatile gen and loop expressions.

This chapter introduces a number of essential rank-generic array operations. The
assortment of operations is inspired by those available in SAC and the interpreted
array languages mentioned above. As the current implementation of QUBE does
not support polymorphism, we define all operations for arrays of integers. They
may be instantiated for other types as deemed necessary.

The remainder of the chapter is organised as follows: Section 8.1 defines some
common type abbreviations that will be used throughout the chapter. Section 8.2
illustrates element-wise array operations that apply a function to all elements
of an array or pairs of corresponding elements from two arrays. Section 8.3
defines selection functions that select larger chunks of array elements instead of
a single element. Section 8.4 presents structural array operations that affect the
organisation of elements inside an array. Finally, Section 8.5 presents powerful
higher-order array functions.

117

118 CHAPTER 8. RANK-GENERIC ARRAY OPERATIONS

8.1 Type Abbreviations

The program shown in Example 8.1 defines several type abbreviations that will
be used throughout the remainder of the chapter.

The type nat describes non-negative integers. natvec n is the type of vectors
of length n that only contain non-negative integers. The type index n describes
valid indices into a vector of length n. indexvec r s is the type of valid index
vectors into an array of rank r and shape s.

The types nat_le b and natvec_le n b are the types of naturals and vectors of
naturals of length n, respectively, that do not exceed the boundary (vector) b.
Conversely, the types int_ge b and intvec_ge n b describe integers and inte-
gers vectors of length n whose elements are greater or equal to the boundary
(vector) b.

Example 8.1 (Type abbreviations)

type nat = { v:int | 0 <= v }
type natvec n:nat = { v:intvec n | vfa v (vi → 0 <= vi) }

type index n:nat = { v:int | 0 <= v & v < n }
type indexvec r:nat s:(natvec r) =

{ v:intvec r | vfa v,s (vi,si → 0 <= vi & vi < si) }

type nat_le b:int = { v:int | 0 <= v & v <= b }
type natvec_le n:nat b:(intvec n) =

{ v:intvec r | vfa v,b (vi,bi → 0 <= bi & vi <= bi) }

type int_ge b:int = { v:int | b <= v }
type intvec_ge n:nat b:(intvec n) =

{ v:intvec n | vfa b,v (bi,vi → bi <= vi) }

8.2 Element-Wise Computations

An important class of array operations are element-wise operations that apply a
function to each element of an array or to pairs of corresponding elements from
two arrays of equal shape. In this section, we develop the rank-generic addition
operation add by incrementally generalising a shape-specific implementation.

We start with a shape-specific function that adds matrices of shape [2,2] by
selecting and adding the corresponding elements. The type system ensures that

8.2. ELEMENT-WISE COMPUTATIONS 119

add can only be applied to matrices of the required shape. As the new shape also
has shape [2,2], all array accesses are known to be correct.

Example 8.2 (Shape-specific Add)

let add a:[int|[2,2]] b:[int|[2,2]] =
[a.[[0,0]] + b.[[0,0]], a.[[0,1]] + b.[[0,1]],

a.[[1,0]] + b.[[1,0]], a.[[1,1]] + b.[[1,1]] | [2,2]]

Using dependent types, we can generalise add such that it becomes applicable
to arbitrary matrices of shape [m,n]. For this purpose, we abstract the shape
components m:nat and n:nat from the shape of the array types. Furthermore,
we replace the array constructor with an array comprehension that creates an
array of shape [m,n] and at each index x adds the corresponding elements from
a and b.
Example 8.3 (Shape-generic Add)

let add m:nat n:nat a:[int|[m,n]] b:[int|[m,n]] =
gen [m,n] with x → a.[x] + b.[x]

Even more general, by specifying the shape as a vector s:(natvec r) where
r:nat, we obtain a variant of add that is applicable to any two integer arrays of
shape s, no matter whether these are vectors, matrices, or anything else. It is
noteworthy that this generalisation does not require to change the function body
of add apart from the shape.

Example 8.4 (Rank-generic Add)

let add r:nat s:(natvec r) a:[int|s] b:[int|s] =
gen s with x → a.[x] + b.[x]

Other element-wise operations, like element-wise negation, subtraction or mul-
tiplication can be defined in the same way.

A slight variation of this scheme is the function sum that adds all elements of
an array. The rank-generic operation is implemented by means of a loop ex-
pression that, starting with the initial value 0, iterates over the array indices and
successively adds all array elements to the intermediate result.

Example 8.5 (Sum)

let sum r:nat s:(natvec r) a:[int|s] =
loop acc:int = 0; s with x → acc + a.[x]

120 CHAPTER 8. RANK-GENERIC ARRAY OPERATIONS

8.3 Selection Functions

The array selection a.[x] selects a single element from an array a. In many
situations it is desirable to simultaneously select larger chunks of data. With the
help of gen, many useful and type-safe generalisations of scalar selection can be
specified.
The generalised selection gsel and its dual fsel perform rank-generic array
slicing. Given an array a whose shape fs,cs consists of the frame shape fs and
the cell shape cs, and an index vector x that indexes into the frame shape, gsel
selects the slice of elements whose position in a is prefixed with x. Similarly,
given the array a and a vector y that indexes into the cell shape, the operation
fsel selects the slice of element whose position in a is suffixed with y.

Example 8.6 (Gsel and fsel: array slicing)

let gsel fr:nat fs:(natvec fr) cr:nat cs:(natvec cr)
x:(indexvec fr fs) a:[int|fs,cs] =

gen cs with y → a.[x,y]

let fsel fr:nat fs:(natvec fr) cr:nat cs:(natvec cr)
y:(indexvec cr cs) a:[int|fs,cs] =

gen fs with x → a.[x,y]

The function take selects an interval of items from an array. The operation takes
an array a of some shape s and a vector t whose magnitude defines the extent
of the interval along each axis of a. If t.(i) is positive, the interval starts at the
beginning of axis i. Otherwise, the interval ends at the tail of the axis. The dual
function drop takes an array a and a vector d. Depending on the sign of d.(i),
the operation discards the leading or the trailing |d.(i)| items along the axis i.
Example 8.7 (Take and drop)

let take r:nat s:(natvec r) a:[int|s]
t:{ v:intvec r | vfa s,v (si,vi → -si<=vi & vi<=si) } =

let off = vmap s,t (si,ti → if ti < 0 then si+ti else 0) in
gen vmap t (ti → if ti < 0 then -ti else ti) with x →

a.[vmap x,off (xi,oi → xi+oi)]

let drop r:nat s:(natvec r) a:[int|s]
d:{ v:intvec r | vfa s,v (si,vi → -si<=vi & vi<=si) } =

let off = vmap d (di → if di<0 then 0 else di) in
gen vmap s,d (si,di → if di<0 then si+di else si-di) with x →

a.[vmap x,off (xi,oi → xi+oi)]

8.4. STRUCTURAL FUNCTIONS 121

Using take and drop, we can conveniently define the function tile that, start-
ing at a position p, selects a block of elements of size ts from an array a. To
achieve the desired effect, the definition first drops p items from a and then
takes ts items from the result.
Example 8.8 (Tile)

let tile r:nat s:(natvec r) a:[int|s]
ts:(natvec_le r s)
p:(natvec_le r (vmap s,ts (si,tsi → si-tsi))) =

take r (vmap s,p (si,pi → si-pi)) ts (drop r s p a)

The indirect selection msel simultaneously performs multiple independent se-
lections. The function takes an array a and an array idxs of index vectors into
a. For every vector in idxs, msel performs a selection into a and yields the
array of results. It is worth noting that the arrays a and idxs may have dif-
ferent ranks and shapes as long as all elements of idxs are appropriate index
vectors into a. The index generator iota computes the set of all possible index
vectors into an array of a given shape s. For an array a of rank r and shape s,
msel r s r s (iota r s) a is equivalent to a.

Example 8.9 (Indirect selection and the index generator)

let msel di:nat si:(natvec di) r:nat s:(natvec r)
idxs:[indexvec r s | si] a:[int|s] =

gen si with x → let y = idxs.[x] in a.[y]

let iota r:nat s:(natvec r) =
gen s with x → (x : indexvec r s)

8.4 Structural Functions

This section defines functions that affect the structure of arrays, i. e. the organi-
sation of elements inside the array.
The operation reverse takes an array and reverses the order of its items by
subtracting the current index from the maximal array index.

Example 8.10 (Reverse)

let reverse r:nat s:(natvec r) a:[int|s] =
gen s with x → a.[vmap s,x (si,xi → si-xi-1)]

122 CHAPTER 8. RANK-GENERIC ARRAY OPERATIONS

The function condense drops every second item along each axis of a given array,
thereby halving the extent of each axis. The dual function scatter creates an
array whose extent in each axis is twice that of the corresponding axis from the
given array a. The elements of a are copied into every even index position of the
result array, the other elements initialised with a specified default element def.

Example 8.11 (Condense and scatter)

let condense r:nat s:(natvec r) a:[int|s] =
gen vmap s (si → si/2) with x → a.[vmap x (xi → 2 * xi)]

let scatter r:nat s:(natvec r) def:int a:[int|s]=
gen vmap s (si → 2*si) with x →

if vfa x (xi → xi % 2 = 0)
then a.[vmap x (xi → xi / 2)]
else def

Variants of condense or scatter for other constant strides can be specified
when required. However, generalising either function to some abstract stride
str requires that we perform an array bounds check for every selection. The
reason is that neither the multiplication of x by str nor the division of x by str
is expressible in linear integer arithmetic and thus the compiler cannot statically
verify the access into a.

The operation cat (catenate) joins two arrays a and b by appending the array b
at the end of the outermost axis of array a. Therefore, the shapes of both arrays
must have a common suffix s of length r.

Example 8.12 (Catenate)

let cat m:nat n:nat r:nat s:(natvec r)
a:[int|[m],s] b:[int|[n],s] =

gen [m+n],s with
| @[0]..[m] as [i],j → a.[[i],j]
| [i],j → b.[[i-m],j]

The function embed allows us to embed an array into a larger array of the same
rank and is thus complementary to tile. The operation takes an array a, a new
shape ns that must be at least as large as the shape of a, an outer array o of
shape ns and an index position p. It creates an array of shape ns into which
the elements of a are copied starting from the index p. The other elements are
initialised with the corresponding elements from o.

8.4. STRUCTURAL FUNCTIONS 123

Example 8.13 (Embed)

let embed r:nat s:(natvec r) a:[int|s] ns:(intvec_ge r s)
o:[int|ns] p:(natvec_le r (vmap ns,s (ni,si→ni-si))) =

let ub = vmap p,s (pi,si → pi+si) in
gen ns with
| @p..ub as x → a.[vmap x,p (xi,pi → xi-pi)]
| x → o.[x]

The function shift moves the elements of a given array a as specified by the
offset vector off, whose length must equal the rank of a. A positive entry in off
means that the elements are shifted to the left (i. e. towards the beginning) of
the corresponding axis. Vice versa, the elements are shifted to the right if the
entry in off is negative. The emerging vacancies are initialised with the default
element def.

The type of off statically ensures that not all elements can be shifted out of the
array. In case this functionality is required, a wrapper function can be written
that either shifts the elements or yields a new array entirely filled with def.

Example 8.14 (Shift)

let shift r:nat s:(natvec r) a:[int|s] def:int
off:{ v:intvec r | vfa s,v (si,vi → -si<vi & vi<si) } =

let lb = vmap off (oi → if oi < 0 then -oi else 0) in
let ub = vmap s,off (si,oi → if oi < 0 then si else si-oi) in
gen s with
| @lb..ub as x → a.[vmap x,off (xi,oi → xi+oi)]
| x → def

Similar to shift is the function rotate. As indicated by its name, the function
rotates each axis of a given array by as many elements to the left as are specified
by corresponding element of the rotation vector rot. The elements of rot must
range between 0 and the length of the axis. To achieve unbounded rotation, the
rotation vector would need to be pre-processed, for example, by element-wise
computation of rot % s.

The implementation realises multidimensional rotation as a sequence of rota-
tions along the individual axes. For each axis ax, the items at positions below
the boundary b = s.(ax)-rot.(ax) are obtained by adding rot.(ax) to the cur-
rent index. The items beyond b are obtained by subtracting b from the current
index.

124 CHAPTER 8. RANK-GENERIC ARRAY OPERATIONS

Example 8.15 (Rotate)

let rotate r:nat s:(natvec r) a:[int|s] rot:(indexvec r s) =
let null = vec r 0 in
loop a = a; [r] with [ax] →

let off = null.(ax) ← rot.(ax) in
let bound = null.(ax) ← (s.(ax) - rot.(ax)) in
gen s with
| @bound..s as x → a.[vmap x,bound (xi,bi → xi-bi)]
| y → a.[vmap y,off (xi,oi → xi+oi)]

8.5 Higher-Order Functions

A powerful feature of functional programming is the ability to define higher-
order functions, or functionals. These take functions as arguments or have a
function as a result. Higher-order functions are useful as they allow us to encap-
sulate programming patterns that repeat across different functions.
The higher-order functions map and map2 capture the pattern underlying element-
wise operations such as add that apply a function to every element of an array
and return the array of results. map takes a unary function f and applies it to
each element of an array. Similarly, map2 applies a binary operation to corre-
sponding elements of two arrays.
Example 8.16 (Map and Map2)

let map f:(int → int) r:nat s:(natvec r) a:[int|s] =
gen s with x → f a.[x]

let map2 f:(int. int → int) r:nat s:(natvec r)
a:[int|s] b:[int|s] =

gen s with x → f a.[x] b.[x]

By partial application of map2, we obtain an alternative rank-generic definition
of element-wise addition.
let add = map2 (fun x:int y:int → x+y)

In the same style, the construction principle underlying functions such as sum
can be condensed into a higher-order function. The operation fold_left uses
a loop to traverse an index space in ascending lexicographic order. Starting with
an abstract identity element id, the function uses an abstract binary operation
f to combine the intermediate result acc with the current loop element. Vice
versa, fold_right traverses the index space in descending lexicographic order.

8.5. HIGHER-ORDER FUNCTIONS 125

Example 8.17 (Fold)

let fold_left f:(int. int → int) id:int
r:nat s:(natvec r) a:[int|s] =

loop acc : int = id; s with x → f acc a.[x]

let fold_right f:(int. int → int) id:int
r:nat s:(natvec r) a:[int|s] =

loop acc : int = id; s with x →
f a.[vmap s,x (si,xi → si-xi-1)] acc

We use fold_left to simplify the definition of sum and to provide a function
prod that computes the product of all elements of an array.
let sum = fold_left (fun x:int y:int → x+y) 0
let prod = fold_left (fun x:int y:int → x*y) 1

The inner product ip is a generalisation of the matrix multiplication. Instead of
restricting its arguments to (suitable) matrices, ip allows the arguments to have
arbitrary shapes and an arbitrary number of axes as long as the last axis of the
first argument is as long as the first axis of the second argument. The function
combines from each vector along the last axis (rows) of the first array with each
vector along the first axis (columns) of the second array by applying the abstract
function g to corresponding elements. Each result vector is reduced using the
function f with identity id.

Example 8.18 (Inner product)

let ip f:(int. int → int) id:int g:(int. int → int)
m:nat n:nat r:(natvec m) s:nat t:(natvec n)
a:[int|r,[s]] b:[int|[s],t] =

gen r,t with i,j →
loop sum :int = id; [s] with [k] → sum ‘f‘

a.[i,[k]] ‘g‘ b.[[k],j]

We can specialise ip to the common matrix multiplication by appropriately in-
stantiating the shape vectors and the functions f as addition with the identity
element 0 and g as multiplication, respectively.
let matmul r:nat s:nat t:nat =

let add x:int y:int = x+y in
let mul x:int y:int = x*y in
ip add 0 mul 1 1 [r] s [t]

Similar to ip, the outer product op combines each element from an array a of
shape s with each element from array b of shape t by applying the abstract

126 CHAPTER 8. RANK-GENERIC ARRAY OPERATIONS

function g, yielding an integer array of shape s,t.

Example 8.19 (Outer product)

let op g:(int. int → int)
m:nat n:nat s:(natvec m) t:(natvec n)
a:[int|s] b:[int|t] =

gen s,t with x,y → a.[x] ‘g‘ b.[y]

Summary

This chapter presented how rank-generic operations that are usually provided as
built-in functions by array programming systems can be specified in QUBE itself.
By virtue of dependent types, these functions are automatically verified by the
compiler and can thus be trusted even in safety-critical applications. Moreover,
the argument types precisely document the sets of allowed function parameters.

9
Evaluation

This chapter evaluates the suitability of QUBE for practical program development
by considering a number of example programs. The programs chosen are all
well-known and nicely demonstrate QUBE language features. Ideally, the eval-
uation provides insights that motivate potential future extensions of the QUBE

language and compiler.
All measurements were performed on an Apple iMac with a 2.8 GHz Core 2
Duo processor and 4 GB RAM. The QUBE compiler uses LLVM version 2.8 as the
backend compiler. The reference C programs were compiled with GCC version
4.2.1.
The remainder of this chapter is structured as follows: Section 9.1 and Sec-
tion 9.2 compare the efficiency of rank-generic implementations of the inner
product and the convolution with C implementations of the algorithms. Sec-
tion 9.3 investigates a QUBE implementation of Quicksort that makes use of de-
structive array updates to achieve better run-time performance.

9.1 Matrix Multiplication and Inner Product

Matrix multiplication is an important operation in linear algebra. The inner
product generalises matrix multiplication to arrays of arbitrary rank. As a first
micro-benchmark, this section compares the rank-generic inner product with a
naive (but reasonable) implementation of matrix multiplication in C.

127

128 CHAPTER 9. EVALUATION

The inner product ip shown in Example 9.1 takes two arrays a and b, where the
last axis of a has to be as long as the first axis of b. The type of ip precisely
documents this constraint: for two vectors r and t and a natural number s, the
shape of a must be r,[s], and the shape of b has to be [s],t. The result has
shape r,t.
The body of ip consists of a gen expression that creates a new array where the
element at position i,j is the scalar product of row i from a and column j from
b that is computed by an appropriate loop.

Example 9.1 (Inner product (generalised matrix multiplication))

let ip m:nat n:nat r:(natvec m) s:nat t:(natvec n)
a:[double|r,[s]] b:[double|[s],t] :[double|r,t] =

gen r,t with i,j →
loop sum:double = 0.; [s] with [k] →

sum + (a.[i,[k]] * b.[[k],j])

When applied to arrays of some specific rank, the QUBE compiler will inline
the body of ip and create a rank-specific instance of the gen expression that
computes the result.
Example 9.2 shows a straightforward C implementation of matrix multiplication
that serves as a reference for comparing the run-time performance of ip. Unlike
the QUBE program, the types of the function arguments do not communicate
the shape constraints. Memory management and index computations must be
performed explicitly.

Example 9.2 (Matrix multiplication in C)

double *matmul(int m, int n, int o, double *a, double *b) {
int i,j,k;
double *c = malloc(m*o*sizeof(double));
for (i = 0; i < m; i++) {

for (j = 0; j < o; j++) {
double sum = 0.0;
for (k = 0; k < n; k++) {

sum += a[i*n+k] * b[k*o+j];
}
c[i*o+j] = sum;

}
}
return(c);

}

9.2. RANK-GENERIC CONVOLUTION 129

Figure 9.1 compares the run-times of the rank-generic inner product, a rank-
specific instance of the inner product and the C matrix multiplication when ap-
plied to arrays of shape [1024,1024].

0s

2s

4s

6s

8s

10s

QUBE: ip QUBE: matmul C: matmul

6.9s 6.5s
5.6s

Figure 9.1: Run-times of inner product in QUBE, matrix multiplication in QUBE,
and matrix multiplication in C for arrays of shape [1024,1024].

All programs perform roughly equally well. In particular, the rank-generic in-
stance performs so well because the compiler’s index vector elimination can re-
place the offset computations ι r i and ι t j with scalar indices such that neither
of the index vectors i and j manifests at run-time. The rank-specific QUBE pro-
gram performs somewhat better because the function is inlined into the applying
context where all shapes are constants. Somewhat mysteriously, the C program
performs even better. We attribute these improvements to differences between
the gcc and LLVM optimisation and code generation schemes.

9.2 Rank-Generic Convolution

As a second micro-benchmark, this section investigates array convolution. Rank-
generic convolution is a straightforward extension of the well-known convolu-
tion on time-discrete 1D signals f and g of length m and n≤ m, respectively.

(f ∗ g)(i) =
m
∑

j=0

(f (i+ j) · g(m− j))

m−n+1

i=0

Example 9.3 shows a rank-generic convolution function written in QUBE. For any
rank r, the function takes a rank r array f of some shape fs and another rank r

130 CHAPTER 9. EVALUATION

array g of some other shape gs that must not exceed fs. First, g is reverted by
means of the function reverse defined in Section 8.4. Then, a gen expression
moves the resulting array g’ over all subarrays of f of shape gs. At each position,
a loop computes the sum of the element-wise product of g’ and the underlying
subarray.

Example 9.3 (Rank-generic convolution)

let convolve r:nat fs:(natvec r) f:[double|fs]
gs:(natvec_le r fs) g:[double|gs] =

let g’ = reverse r gs g in
gen vmap fs,gs (fsi,gsi → fsi-gsi+1) with x →

loop sum:double = 0.; gs with y →
sum + f.[vmap x,y (xi,yi → xi+yi)] * g’.[y]

Again, we use a rank-specific C implementation of the algorithm as a reference
to evaluate the efficiency of convolve. Example 9.4 shows the corresponding
C program that computes a 2D convolution. With four nested for-loops and
extensive index computations, the program is substantially more complicated
than the QUBE program.

Example 9.4 (2D Convolution in C)

double *convolve(int fm, int fn, double *f,
int gm, int gn, double *g) {

int ri,rj,gi,gj;
double *gr = reverse(gm,gn,g);
int rm = fm-gm+1;
int rn = fn-gn+1;
double *r = malloc(rm*rn*sizeof(double));
for (ri = 0; ri < rm; ri++) {

for (rj = 0; rj < rn; rj++) {
double sum = 0.0;
for (gi = 0; gi < gm; gi++) {

for (gj = 0; gj < gn; gj++) {
sum += f[(ri+gi)*fn+rj+gj] * gr[gi*gn+gj];

}
}
r[ri*rn+rj] = sum;

}
}
free(gr);
return(r);

}

9.2. RANK-GENERIC CONVOLUTION 131

Figure 9.2 compares the run-times of the rank-generic convolution, a rank-specific
convolution in QUBE, and the C program. All programs have been applied to an
array of shape [10240,10240] and a [3,3] filter kernel.

0s

2s

4s

6s

8s

10s

QUBE: RG Conv QUBE: 2D Conv C: 2D Conv

6.1s

0.5s 0.8s

Figure 9.2: Run-times of rank-generic convolution in QUBE, 2D convolution in
QUBE, and 2D convolution in C for arrays of shape [10240,10240] and [3,3].

Almost eight times slower than the reference program, the rank-generic convo-
lution turns out to be a stress-test for the language implementation for three rea-
sons. First, since r is unknown, the gen and loop expressions cannot be mapped
to finite nestings of for-loops. Instead, both expressions are implemented by
means of recursive functions which causes some function call overhead. Sec-
ond, although the compiler’s index vector elimination scheme simplifies the off-
set computation ι fs (vmap x,y (xi,yi → xi+yi)) into (ι fs x)+(ι fs y),
it cannot further simplify the two offset computations such that they have be
computed by means of separate for-loops. Third, as both index vectors x and y
are required to determine the offset into f, memory for the two vectors must be
dynamically allocated. Since the amount of work performed by each instance of
the innermost loop is small, the memory management overhead is significant.

As a more positive result, the rank-specific instance of convolve, which is the
typical case, only consumes 63% of the time required by the reference program.
One reason for the good performance is that none of the problems hampering
the rank-generic program occurs in the rank-specific setting. Moreover, the QUBE

compiler inlines the definition of convolve into the applying context where the
loop boundaries and array sizes are constants instead of variables that must be
kept in registers.

132 CHAPTER 9. EVALUATION

9.3 Quicksort

Fig. 9.3 shows a type-safe implementation of Hoare’s quicksort algorithm for
sorting integer arrays. The program aims to mimic the well-known imperative
implementations of quicksort as closely as possible. To achieve good perfor-
mance, the program makes extensive use of uniqueness types that allow for de-
structive array updates.
The type bounded l u describes all integers in the inclusive interval [l,u]. The
auxiliary function swap takes a unique array and destructively exchanges the
elements at two given index positions i and j. The types of the indices ensure
that no out-of-bounds accesses can occur.
The function qsort takes a unique array arr of length n and two integers l
and r that specify the indices of the leftmost and the rightmost array element
to be sorted. When there are at least two elements to be sorted, the program
determines a pivot element and partitions the array such that all elements less
than or equal to the pivot element are moved to its left and all other elements
are moved to its right. Both parts of the array are then sorted recursively. The
result of qsort has polymorphic uniqueness, such that it may be used in places
where either a unique array or a shared array is expected.
The partitioning function partition takes the unique array, the interval of el-
ements to be sorted given by l and r and the initial position pivot_idx of
the pivot element in the interval. The function swaps the pivot element to the
rightmost position in the interval. Thereafter, it uses the tail-recursive function
ploop to rearrange the array elements. The function traverses the array with a
read index read and swaps all elements less than or equal to the pivot elements
to a store index store that marks the boundary between both parts of the in-
terval. At the end of the loop, the pivot element is swapped to the final index
store. partition returns the partitioned array and the new location of the
pivot element.
The second function qsort is merely a wrapper function that parameterises the
recursive quicksort function.
Figure 9.4 compares the run-times of a QUBE implementation of quicksort with
a corresponding reference implementation in C. As a worst-case input, both pro-
grams are applied to arrays with ten million integers that are initially sorted in
reverse order. The QUBE program takes 50% more time to sort the array than
the C program. The overhead stems from the memory management required to
allocate and garbage collect the tuples returned by partition. Since ploop is
a tail-recursive function that has no further call-sites, the LLVM inlines the func-
tion into the body of partition and subsequently converts the tail-recursion
into a loop.

9.3. QUICKSORT 133

type bounded l:int u:int = { v:int | l <= v & v <= u }

let swap n:nat arr:*[int|[n]] i:(index n) j:(index n) =
let (arr,ai) = arr![[i]] in
let (arr,aj) = arr![[j]] in
let arr = arr![[i]] ← aj in
let arr = arr![[j]] ← ai in
arr

let partition n:nat arr:*[int|[n]]
l:nat r:{v:int|v<n} pivot_idx:(bounded l r) =

let (arr,pivot) = arr![[pivot_idx]] in
let arr = swap n arr pivot_idx r in
let rec ploop arr:*[int|[n]] read:(bounded l r)

store:(bounded l read) :*(?[int|[n]],bounded l r) =
if read < r
then

let (arr,arr_read) = arr![[read]] in
if arr_read <= pivot
then ploop (swap n arr read store) (read+1) (store+1)
else ploop arr (read+1) store

else (swap n arr store r,store)
in
ploop arr l l

let rec qsort n:nat arr:*[int|[n]] l:nat r:{v:int|v<n} :?[int|[n]] =
if l < r
then

let pivot_idx = (l+r)/2 in
let (arr,pivot_idx) = partition n arr l r pivot_idx in
let arr = qsort n arr l (pivot_idx-1) in
let arr = qsort n arr (pivot_idx+1) r in
arr

else arr

let qsort n:nat a:*[int|[n]] = qsort n a 0 (n-1)

Figure 9.3: Quicksort in QUBE

134 CHAPTER 9. EVALUATION

0.00s

0.25s

0.50s

0.75s

1.00s

QUBE: QSort C: QSort

0.75s

0.5s

Figure 9.4: Run-times of quicksort in QUBE and in C for ten million elements.

Summary

This chapter evaluated the suitability of the QUBE programming language and its
implementation for actual program development by means of some well-known
example programs.
The rank-generic implementations of the inner product and the convolution are
at the same time simpler and more powerful than the corresponding rank-specific
C programs. In both cases, the dependent types are unobtrusive and naturally
document the constraints the functions impose on the arguments. The QUBE im-
plementation of quicksort uses uniqueness types and destructive array updates to
mimic the well-known imperative implementations of the algorithm. The com-
bination of dependent types and uniqueness types causes some notational over-
head, in particular since the partitioning loop maps to a tail-recursive function
that requires its own set of typed arguments.
At least in a rank-specific context, which is the typical case, the run-time perfor-
mance of the QUBE programs for inner product and convolution is on par with
the C functions. In the case of quicksort, we have identified tuple construction
as a source of overhead. An optimisation that replaces passing boxed tuples be-
tween functions with passing the individual components could eliminate large
parts of this overhead.

10
Conclusion and Future Work

Making the expressive power of dependent types available for practical program
development is a subject of ongoing research. It is a particular challenge to de-
sign programming systems with dependent types in a way such that the user is
not required to have expert knowledge in type theory. QUBE is a new program-
ming language that employs dependent types in the context of array program-
ming where their use is both intuitive and beneficial.
Dependent types are intuitive for array programs because rank and shape are
inherent properties of multidimensional arrays. Scientific programmers are used
to specifying their algorithms in terms of array shapes: each undergraduate
course on linear algebra teaches the function type of matrix multiplication as
Rm×n ×Rn×p → Rm×p. Dependent types allow the developer to concisely express
the constraints on the array shapes.
Dependent types are beneficial for array programs because base type errors, rank
errors, shape errors, and even array boundary violations can be statically ruled
out. Array programs with dependent types are thus correct by construction.
Since static verification makes dynamic checks such as array bounds checks ob-
solete, dependent types also help to improve the run-time efficiency of array
programs.
The syntax, semantics, and type system of QUBE have been formalised by means
of the core language QUBECORE that captures the essential concepts of QUBE with-
out any syntactic sugar. Multidimensional array types are parameterised by in-
teger vectors that represent the array shape. Integer vector types are in turn

135

136 CHAPTER 10. CONCLUSION AND FUTURE WORK

parameterised by integers that represent the vector length. As a significant re-
sult of this thesis, the type system of QUBECORE has a formal correctness proof,
i. e., a proof that well-typed expressions cannot exhibit any run-time errors.
Based on QUBECORE, the actual QUBE programming language adds a host of fea-
tures to facilitate practical programming, such as an ML-style module system
and support for stateful computations. QUBE is implemented by a compiler that
translates programs into efficient native code. In order to decide whether two
dependent types are equivalent or in a subtype relation, the compiler performs
type checking in collaboration with a theorem prover for the Satisfiability Mod-
ulo Theories problem of first-order logic. Since SMT solving proceeds fully au-
tomatically, the QUBE type checker behaves very much like a (very powerful)
type checker for a mainstream programming language that either accepts or re-
jects a program without further interaction with the user. Moreover, the QUBE

compiler uses the rank and shape information from the dependent types to in-
strument programs with corresponding expressions wherever these properties
are required at run-time, for example to compute memory offsets. The benefits
of this strategy are twofold: First, once the structural properties of arrays are
encoded explicitly in the intermediate program, they become subject to compiler
optimisation. Second, multidimensional arrays may be represented as mere se-
quences of data without additional shape descriptors or type tags. In effect, the
compiled programs contain very little overhead.
Unlike interpreted languages, QUBE does not provide a large number of built-in
array operations. Instead, the standard array operations can be defined in QUBE

itself by means of the versatile gen and loop expressions. Due to static typing,
these array operations are inherently type-safe. QUBE appears to be well-suited
for developing practical array programs. For most rank-generic functions, depen-
dent types are unobtrusive as they naturally express the constraints a function
imposes on its arguments. For the programs investigated, the run-time perfor-
mance of QUBE programs is roughly on par with corresponding C programs.
The development of QUBE has focused on static verification of rank-generic array
programs. There are several potential directions for future extensions of both the
language and the compiler.
The most glaring omission in QUBE’s type system is missing support for poly-
morphism. In the current system, functions must be re-implemented for each
argument type. Adding support for parametric polymorphism would allow the
user to define functions that operate on values of arbitrary types.
Furthermore, the QUBE compiler would greatly benefit from additional program
optimisation schemes. QUBE encourages a programming style where programs
are composed from predefined rank-generic array operations. Although elegant,
the resulting code is plagued with excessive creation of temporary arrays that

137

increase both the program’s time and memory demands. In order to avoid
temporary arrays, QUBE could employ similar techniques as the SAC compiler.
WITH-LOOP-FOLDING [88] is an effective deforestation technique that replaces
selections into arrays with the selected element’s definition. In QUBE, it should
be possible to perform deforestation even in a rank-generic setting by using the
SMT solver to determine the code that defines a given element.
Finally, due to its functional and side-effect free semantics and its focus on array
operations that uniformly apply to a large number of elements, QUBE lends it-
self well for non-sequential evaluation on multi-core processors or even general-
purpose graphics processing units. Since almost all array operations are defined
in terms of gen and loop expressions, the implementation efforts can be concen-
trated on these expressions. The evaluation of gen can be trivially distributed
over multiple worker threads. In contrast, the accumulator variable and the de-
terministic evaluation order of loop preclude a naive approach to concurrent
evaluation. Again, taking a leaf out of SAC’s book, a potential remedy could be
to define a parallel loop that does not guarantee a certain evaluation order
and uses an additional function to combine the partial results.
The current QUBE compiler may be used as a basis to explore all the directions
of future work outlined above.

138 CHAPTER 10. CONCLUSION AND FUTURE WORK

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison Wesley, Reading, Massachusetts, USA,
1986.

[2] Thorsten Altenkirch, Conor McBride, and James McKinna. Why Dependent
Types Matter. Manuscript, available online, April 2005.

[3] Andrew W. Appel. SSA is Functional Programming. ACM SIGPLAN No-
tices, vol. 33(4), pp. 17–20, 1998.

[4] Lennart Augustsson. Cayenne – A Language with Dependent Types. In Pro-
ceedings of the third ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’98, pp. 239–250. ACM Press, New York, NY,
USA, 1998.

[5] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, vol. 103
of Studies in Logics and the Foundations of Mathematics. North Holland,
Amsterdam, The Netherlands, 1981.

[6] Henk Barendregt. Introduction to Generalized Type Systems. Journal of
Functional Programming, vol. 1(2), pp. 125–154, 1991.

[7] Henk Barendregt. Lambda Calculi with Types, vol. 2 of Handbook of Logic
in Computer Science, pp. 117–309. Oxford University Press, Inc. New
York, NY, USA, 1992.

[8] Henk Barendregt and Erik Barendsen. Introduction to Lambda Calculus.
Technical report, Department of Computer Science, Catholic University of
Nijmegen, 1991.

[9] Erik Barendsen and Sjaak Smetsers. Conventional and Uniqueness Typ-
ing in Graph Rewrite Systems. In Rashmi K. Shyamasundar, editor, Foun-
dations of Software Technology and Theoretical Computer Science, 13th
Conference, FSTTCS’93, Lecture Notes in Computer Science, vol. 761, pp.
41–51. Springer Verlag, Berlin, Germany, 1993.

139

140 BIBLIOGRAPHY

[10] Robert Bernecky. Compiling APL. In Lenore M. Restifo Mullin et. al.,
editor, Arrays, Functional Languages, and Parallel Systems, pp. 19–33.
Kluwer Academic Publishers, 1991.

[11] Robert Bernecky. An Overview of the APEX Compiler. Technical Report
305/97, University of Toronto, Toronto, Canada, 1997.

[12] Robert Bernecky, Stephan Herhut, Sven-Bodo Scholz, Kai Trojahner,
Clemens Grelck, and Alex Shafarenko. Index Vector Elimination: Mak-
ing Index Vectors Affordable. In Zoltán Horváth and Viktória Zsók, editors,
Proceedings of the 18th International Symposium on Implementation and
Application of Functional Languages, IFL’06, Technical Report, vol. 2006-
S01. Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary,
2006.

[13] Richard S. Bird. An Introduction to Functional Programming using Haskell.
Series in Computer Science. Prentice Hall Europe, London, UK, second
edition, 1998.

[14] Guy E. Blelloch. Programming Parallel Algorithms. Communications of
the ACM, vol. 39(3), pp. 85–97, 1996.

[15] Johannes Blume. A Decision Procedure for Linear Vector Arithmetic. Bach-
elor’s thesis, Institut für Softwaretechnik und Programmiersprachen, Uni-
versität zu Lübeck, Lübeck, 2008.

[16] Hans Boehm, Alan Demers, and Scott Shenker. Mostly Parallel Garbage
Collection. In Proceedings of the ACM SIGPLAN 1991 Conference on Pro-
gramming Languages Design and Implementation, PLDI ’91, ACM SIG-
PLAN Notices, vol. 26, pp. 157–164. ACM Press, New York, NY, USA,
1991.

[17] Aaron R. Bradley and Zohar Manna. The Calculus of Computation.
Springer-Verlag, Berlin, Heidelberg, Germany, 2007.

[18] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s Decidable
About Arrays? In E. Allen Emerson and Kedar S. Namjoshi, editors, Ver-
ification, Model Checking, and Abstract Interpretation, 7th International
Conference, VMCAI 2006, Lecture Notes in Computer Science, vol. 3855,
pp. 427–442. Springer-Verlag, Berlin, Heidelberg, Germany, 2006.

[19] Florian Büther. A Compiler for Qube, a Functional Array Programming Lan-
guage with Dependent Types. Studienarbeit, Institut für Softwaretechnik
und Programmiersprachen, Universität zu Lübeck, Lübeck, 2008.

BIBLIOGRAPHY 141

[20] Florian Büther. Modules and State for the Functional Programming Lan-
guage Qube. Diploma thesis, Institut für Softwaretechnik und Program-
miersprachen, Universität zu Lübeck, Lübeck, 2010.

[21] David Cann. Retire Fortran? A Debate Rekindled. Communications of the
ACM, vol. 35(8), pp. 81–89, 1992.

[22] Emmanuel Chailloux, Pascal Manoury, and Bruno Pagano. Developing Ap-
plications with Objective Caml, 2000.

[23] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton Jones,
Gabriele Keller, and Simon Marlow. Data Parallel Haskell: a Status Report.
In Proceedings of the 2007 Workshop on Declarative Aspects of Multicore
Programming, DAMP ’07, pp. 10–18. ACM Press, New York, NY, USA,
2007.

[24] Manuel M.T. Chakravarty and Gabriele Keller. An Approach to Fast Arrays
in Haskell. In Johan Jeuring and Simon L. Peyton Jones, editors, Advanced
Functional Programming, 4th International School, AFP 2002, Lecture
Notes in Computer Science, vol. 2638, pp. 27–58. Springer-Verlag, Berlin,
Heidelberg, Germany, 2003.

[25] Bradford L. Chamberlain, Sung-Eun Choi, Steven J. Deitz, and Lawrence
Snyder. The High-Level Parallel Language ZPL Improves Productivity and
Performance. In Proceedings of the First Workshop on Productivity and
Performance in High-End Computing (PPHEC-04), pp. 66–75, 2004.

[26] Alonzo Church. The Calculi of Lambda Conversion. Princeton University
Press, Princeton, NJ, USA, 1941.

[27] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
STOC ’71, pp. 151–158. ACM Press, New York, NY, USA, 1971.

[28] Martin Davis, George Logemann, and Donald Loveland. A Machine Pro-
gram for Theorem-Proving. Communications of the ACM, vol. 5(7), pp.
394–397, 1962.

[29] Martin Davis and Hilary Putnam. A Computing Procedure for Quantifica-
tion Theory. Journal of the ACM, vol. 7(3), pp. 201–215, 1960.

[30] Leonardo M. de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In C.R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference,

142 BIBLIOGRAPHY

TACAS’08, Lecture Notes in Computer Science, vol. 4963, pp. 337–340.
Springer-Verlag, Berlin, Heidelberg, Germany, 2008.

[31] Luiz de Rose and David Padua. Techniques for the Translation of MATLAB
Programs into Fortran 90. ACM Transactions on Programming Languages
and Systems, vol. 21(2), pp. 286–323, 1999.

[32] Edsko de Vries, Rinus Plasmeijer, and David M. Abrahamson. Uniqueness
Typing Simplified. In Olaf Chitil, Zoltán Horváth, and Viktória Zsók, edi-
tors, Implementation and Application of Functional Languages, 19th In-
ternational Symposium, IFL’07, Lecture Notes in Computer Science, vol.
5083, pp. 201 – 218. Springer-Verlag, Berlin, Heidelberg, Germany, 2008.

[33] Bruno Dutertre and Leonardo M. de Moura. A Fast Linear-Arithmetic
Solver for DPLL(T). In Thomas Ball and Robert B. Jones, editors, Com-
puter Aided Verification, 18th International Conference, CAV 2006, Lec-
ture Notes in Computer Science, vol. 4144, pp. 81–94. Springer Verlag,
Heidelberg, Germany, 2006.

[34] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, SAT ’03, Lecture Notes in
Computer Science, vol. 2919, pp. 502–518. Springer-Verlag, Berlin, Hei-
delberg, Germany, 2003.

[35] Adin D. Falkoff and Kenneth E. Iverson. The Design of APL. IBM Journal
of Research and Development, vol. 17(4), pp. 324–334, 1973.

[36] Cormac Flanagan. Hybrid Type Checking. In Conference Record of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’06, pp. 245–256. ACM Press, New York, NY, USA, 2006.

[37] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
Essence of Compiling with Continuations. In Proceedings of the ACM SIG-
PLAN 1993 Conference on Programming Language Design and Implemen-
tation, PLDI ’93, pp. 237–247. ACM Press, New York, NY, USA, 1993.

[38] Anwar Ghuloum, Terry Smith, Gansha Wu, Xin Zhou, Jesse Fang, Peng
Guo, Byoungro So, Mohan Rajagopalan, Yongjian Chen, and Biao Chen.
Future-Proof Data Parallel Algorithms and Software on Intel Multi-Core Ar-
chitecture. Intel Technology Journal, vol. 11(4), pp. 333–346, 2007.

[39] Clemens Grelck. Shared Memory Multiprocessor Support for Functional
Array Processing in SAC. Journal of Functional Programming, vol. 15(3),
pp. 353–401, 2005.

BIBLIOGRAPHY 143

[40] Clemens Grelck, Karsten Hinckfuß, and Sven-Bodo Scholz. With-Loop Fu-
sion for Data Locality and Parallelism. In Andrew Butterfield, Clemens
Grelck, and Frank Huch, editors, Implementation and Application of
Functional Languages, 17th International Workshop, IFL’05, Lecture
Notes in Computer Science, vol. 4015, pp. 178–195. Springer-Verlag,
Berlin, Heidelberg, Germany, 2006.

[41] Clemens Grelck, Frank Penczek, and Kai Trojahner. CAOS: A Domain-
Specific Language for the Parallel Simulation of Cellular Automata. In Vik-
tor Malyshkin, editor, Parallel Computing Technologies, 9th International
Conference, PaCT’07, Lecture Notes in Computer Science, vol. 4671, pp.
410–417. Springer-Verlag, Berlin, Heidelberg, Germany, 2007.

[42] Clemens Grelck and Sven-Bodo Scholz. SAC: A Functional Array Language
for Efficient Multithreaded Execution. International Journal of Parallel Pro-
gramming, vol. 34(4), pp. 383–427, 2006.

[43] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. A Binding
Scope Analysis for Generic Programs on Arrays. In Andrew Butterfield,
Clemens Grelck, and Frank Huch, editors, Implementation and Applica-
tion of Functional Languages, 17th International Workshop, IFL’05, Lec-
ture Notes in Computer Science, vol. 4015, pp. 212–230. Springer-Verlag,
Berlin, Heidelberg, Germany, 2006.

[44] Clemens Grelck, Sven-Bodo Scholz, and Kai Trojahner. With-Loop Scalar-
ization: Merging Nested Array Operations. In Philip W. Trinder, Greg
Michaelson, and Ricardo Pena, editors, mplementation of Functional Lan-
guages, 15th International Workshop, IFL’03, Lecture Notes in Computer
Science, vol. 3145, pp. 118–134. Springer-Verlag, Berlin, Heidelberg, Ger-
many, 2004.

[45] Clemens Grelck and Kai Trojahner. Implicit Memory Management for SAC.
In Clemens Grelck and Frank Huch, editors, Implementation and Applica-
tion of Functional Languages: 16th International Workshop, IFL’04, Tech-
nical Report, vol. 0408, pp. 335–348. University of Kiel, 2004.

[46] Clemens Grelck, Tim van Deurzen, Stephan Herhut, and Sven-Bodo
Scholz. An Adaptive Compilation Framework for Generic Data-Parallel Ar-
ray Programming. In Andreas Krall and Gergö Barany, editors, 15th Work-
shop on Compilers for Parallel Computing, CPC’10. Institute of Computer
Languages, Vienna University of Technology, Vienna, Austria, 2010.

144 BIBLIOGRAPHY

[47] Dick Grune, Henri E. Bal, Ceriel J. H. Jacobs, and Koen G. Langendoen.
Modern Compiler Design. John Wiley & Sons, West Sussex, England, 2000.

[48] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme. Monatshefte für Mathematik und Physik, vol. 38,
pp. 173–198, 1931.

[49] Robert Harper. Introduction to Standard ML. Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA, 1993.

[50] John R. Harrison. Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press, 2009.

[51] Stephan Herhut, Sven-Bodo Scholz, Robert Bernecky, Clemens Grelck,
and Kai Trojahner. From Contracts Towards Dependent Types: Proofs by Par-
tial Evaluation. In Olaf Chitil, Zoltan Horváth, and Viktória Zsók, editors,
Implementation and Application of Functional Languages: 19th Interna-
tional Workshop, IFL’07, Lecture Notes in Computer Science, vol. 5083,
pp. 254–273. Springer-Verlag, Berlin, Heidelberg, Germany, 2008.

[52] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and
Lambda Calculus. London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, UK, 1986.

[53] Paul Hudak and Adrienne Bloss. The Aggregate Update Problem in Func-
tional Programming Systems. In Proceedings of the 12th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, POPL’85,
pp. 300–313. ACM Press, New York, NY, USA, 1985.

[54] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, et al. Report on the
Programming Language Haskell, A Non-strict, Purely Functional Language.
SIGPLAN Notices, vol. 27(5), 1992.

[55] Kenneth E. Iverson. A Programming Language. John Wiley, New York, NY,
USA, 1962.

[56] Kenneth E. Iverson. Programming in J. Iverson Software Inc., Toronto,
Canada, 1991.

[57] Kenneth E. Iverson. J Introduction and Dictionary. Iverson Software Inc.,
Toronto, Canada, 1995.

[58] C. Barry Jay. The FISh Language Definition. Technical report, School of
Computing Sciences, University of Technology, Sidney, Australia, 1998.

BIBLIOGRAPHY 145

[59] C. Barry Jay and Paul A. Steckler. The Functional Imperative: Shape! In
Chris Hankin, editor, Proceedings of the 7th European Symposium on
Programming, ESOP’98, Held as Part of the Joint European Conference
on Theory and Practice of Software, ETAPS’98, Lecture Notes in Com-
puter Science, vol. 1381, pp. 139–53. Springer-Verlag, Berlin, Heidelberg,
Germany, 1998.

[60] Thomas Johnsson. Lambda Lifting: Transforming Programs to Recursive
Equations. In Proceedings 1985 Conference on Functional Programming
Languages and Computer Architecture, Lecture Notes in Computer Sci-
ence, vol. 201. Springer-Verlag, Berlin, Heidelberg, Germany, 1985.

[61] Pramod G. Joisha and Prithviraj Banerjee. An Algebraic Array Shape Infer-
ence System for MATLAB. ACM Transactions on Programming Languages
and Systems, vol. 28(5), pp. 848–907, 2006.

[62] Guy L. Steele Jr. Debunking the “Expensive Procedure Call” Myth, or Proce-
dure Call Implementations Considered Harmful, or LAMBDA: The Ultimate
GOTO. In Proceedings of the 1977 Annual Conference, ACM’77, pp. 153–
162. ACM Press, New York, NY, USA, 1977.

[63] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Si-
mon Peyton Jones, and Ben Lippmeier. Regular, Shape-Polymorphic, Par-
allel Arrays in Haskell. In Proceedings of the 15th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP’10, pp. 261–272.
ACM Press, New York, NY, USA, 2010.

[64] Werner Kluge. Abstract Computing Machines: A Lambda Calculus Perspec-
tive. Springer-Verlag Berlin Heidelberg, 2005.

[65] Dietmar Kreye. A Compilation Scheme for a Hierarchy of Array Types. In
Thomas Arts and Markus Mohnen, editors, Implementation of Functional
Languages, 13th International Workshop, IFL’02, Lecture Notes in Com-
puter Science, vol. 2312, pp. 18–35. Springer-Verlag, Berlin, Heidelberg,
Germany, 2002.

[66] Daniel Kroening and Ofer Strichman. Decision Procedures. Springer-
Verlag, Berlin, Heidelberg, 2008.

[67] Peter J. Landin. The Mechanical Evaluation of Expressions. Computer Jour-
nal, vol. 6(4), pp. 308–320, 1964.

146 BIBLIOGRAPHY

[68] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Mas-
ter’s thesis, Computer Science Dept., University of Illinois at Urbana-
Champaign, Urbana, IL, Dec 2002.

[69] Xavier Leroy. The Objective Caml System release 3.11. INRIA, Rocquen-
court, France, 2008.

[70] David MacQueen, Robert Harper, Robin Milner, et al. Functional Pro-
gramming in ML. LFCS education, University of Edinburgh, Edinburgh,
Scotland, UK, 1987.

[71] Simon Marlow and Simon Peyton Jones. Making a Fast Curry: Push/En-
ter vs. Eval/Apply for Higher-Order Languages. In ICFP ’04: Proceedings
of the Ninth ACM SIGPLAN International Conference on Functional Pro-
gramming, pp. 4–15. ACM Press, New York, NY, USA, 2004.

[72] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[73] Conor McBride and James McKinna. The View from the Left. Journal of
Functional Programming, vol. 14(1), pp. 69–111, January 2004.

[74] Cheryl McCosh. Type-Based Specialization in a Telescoping Compiler for
MATLAB. Master Thesis TR03-412, Rice University, Houston, Texas, USA,
2003.

[75] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, Cambridge, Massachusetts, USA, 1990.

[76] Cleve Moler, John Little, and Steve Bangert. Pro-Matlab User’s Guide. The
MathWorks, Cochituate Place, 24 Prime Park Way, Natick, MA, USA, 1987.

[77] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings
of the 38th Annual Design Automation Conference, DAC’01, pp. 530–535.
ACM Press, New York, NY, USA, 2001.

[78] Greg Nelson and Derek C. Oppen. Simplification by Cooperating Decision
Procedures. ACM Transactions on Programming Languages and Systems,
vol. 1(2), pp. 245–257, 1979.

[79] Derek C. Oppen. Complexity, Convexity and Combinations of Theories. The-
oretical Computer Science, vol. 12(3), pp. 291 – 302, 1980.

BIBLIOGRAPHY 147

[80] Simon L. Peyton Jones. The Implementation of Functional Programming
Languages. Series in Computer Science. Prentice-Hall, Englewood Cliffs,
NJ, USA, 1987.

[81] Simon L. Peyton Jones. Haskell 98 Language and Libraries. Cambridge
University Press, Cambridge, UK, 2003.

[82] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cam-
bridge, MA, USA, 2002.

[83] Benjamin C. Pierce. Advanced Topics in Types and Programming Languages.
MIT Press, Cambridge, MA, USA, 2004.

[84] Marinus J. Plasmeijer and Marko van Eekelen. Concurrent Clean 2.0 Lan-
guage Report. University of Nijmegen, The Netherlands, 2001.

[85] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation
hervortritt. Comptes Rendus du I congrès de Mathématiciens des Pays
Slaves, Warszawa, vol. , pp. 92–101, 1929.

[86] Patrick M. Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid Types. In
Proceedings of the ACM SIGPLAN 2008 Conference on Programming Lan-
guage Design and Implementation, PLDI’08, SIGPLAN Notices, vol. 43(6),
pp. 159–169. ACM Press, New York, NY, USA, 2008.

[87] Patrick M. Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid Types. CSE
Techreport, University of California, San Diego, California, USA, 2008.

[88] Sven-Bodo Scholz. With-loop-folding in SAC — Condensing Consecutive Ar-
ray Operations. In Chris Clack, Tony Davie, and Kevin Hammond, editors,
Selected Papers from the 9th International Workshop on Implementation
of Functional Languages, IFL’97, Lecture Notes in Computer Science, vol.
1467, pp. 72–92. Springer-Verlag, Berlin, Heidelberg, Germany, 1998.

[89] Sven-Bodo Scholz. Single Assignment C — Efficient Support for High-Level
Array Operations in a Functional Setting. Journal of Functional Program-
ming, vol. 13(6), pp. 1005–1059, 2003.

[90] Sven-Bodo Scholz, Stephan Herhut, Clemens Grelck, and Frank Penczek.
SAC 1.0 – Single Assignment C – Tutorial. Technical Report 498, School of
Computer Science, University of Hertfordshire, Hatfield, United Kingdom,
2010.

148 BIBLIOGRAPHY

[91] Peter Sestoft. Demonstrating Lambda Calculus Reduction. In Torben Mo-
gensen, David Schmidt, and I. Hal Sudburough, editors, The Essence of
Computation: Complexity, Analysis, Transformation. Essays Dedicated to
Neil D. Jones, Lecture Notes in Computer Science, vol. 2566, pp. 420–
435. Springer-Verlag, Berlin, Heidelberg, Germany, 2002.

[92] Jan Smith, Bengt Nordström, and Kent Petersson. Programming in Martin-
Löf ’s Type Theory. Oxford University Press, 1990.

[93] Herb Sutter. A Fundamental Turn Toward Concurrency in Software. Dr.
Dobb’s Journal, vol. 30(3), pp. 16–23, 2005.

[94] Kai Trojahner. Implicit Memory Management for a Functional Array Pro-
cessing Language. Diploma thesis, Institut für Softwaretechnik und Pro-
grammiersprachen, Universiät zu Lübeck, Lübeck, Germany, 2005.

[95] Kai Trojahner. Assembling Concurrent Programs Correctly from Data-
Parallel Program Bricks. In Viktor Malyshkin, editor, Parallel Computing
Technologies, 9th International Conference, PaCT’07, Lecture Notes in
Computer Science, vol. 4671, pp. 410–417. Springer-Verlag, Berlin, Hei-
delberg, Germany, 2007.

[96] Kai Trojahner and Clemens Grelck. Dependently Typed Array Programs
Don’t Go Wrong. Journal of Logic and Algebraic Programming, vol. 78(7),
pp. 643–664, 2009. The 19th Nordic Workshop on Programming Theory
(NWPT 2007).

[97] Kai Trojahner and Clemens Grelck. Descriptor-Free Representation of Ar-
rays with Dependent Types. In Sven-Bodo Scholz and Olaf Chitil, editors,
Implementation and Application of Functional Languages, 20th interna-
tional symposium, IFL’08, Lecture Notes in Computer Science, vol. 5836.
Springer-Verlag, Berlin, Heidelberg, Germany, 2010.

[98] Kai Trojahner, Clemens Grelck, and Sven-Bodo Scholz. On Optimising
Shape-Generic Array Programs using Symbolic Structural Information. In
Zoltán Horváth and Viktória Zsók, editors, Implementation and Appli-
cation of Functional Languages, 18th International Symposium, IFL’06,
Lecture Notes in Computer Science, vol. 4449, pp. 1–18. Springer-Verlag,
Berlin, Heidelberg, Germany, 2007.

[99] Markus Weigel. Facilitating Array Programming with Dependent Types –
Precise Error Messages and Implicit Index Arguments for Qube. Master’s the-
sis, Institut für Softwaretechnik und Programmiersprachen, Universität zu
Lübeck, Lübeck, Germany, 2008.

BIBLIOGRAPHY 149

[100] Hongwei Xi. Applied Type System (extended abstract). In S. Baradi,
M. Coppo, and F. Damiani, editors, Types for Proofs and Programs, Third
International Workshop, TYPES’03, Lecture Notes in Computer Science,
vol. 3085, pp. 394–408. Springer Verlag, Berlin, Germany, 2004.

[101] Hongwei Xi and Frank Pfenning. Eliminating Array Bound Checking
through Dependent Types. In Proceedings of ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI’98, ACM
SIGPLAN Notices, vol. 33(5), pp. 249–257. ACM Press, New York, NY,
USA, 1998.

[102] Hongwei Xi and Frank Pfenning. Dependent Types in Practical Program-
ming. In Alexander Aiken, editor, Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL’99,
pp. 214–227. ACM Press, New York, NY, USA, 1999.

[103] Christoph Zenger. Indexed Types. Theorectical Computer Science, vol.
187(1-2), pp. 147–165, 1997.

	Introduction
	I Foundations
	The -Calculus and Type Systems
	The -Calculus
	An Applied -Calculus
	Simple Types

	Decidable First-Order Theories
	Propositional Logic
	First-Order Logic
	Quantifier-Free Fragments of First-Order Theories
	Array Properties

	II A Formal Treatment of Qube
	A Core Language for Array Programming
	Qube: a Functional Foundation
	Qube: Integer Vectors
	Qube[]: Multidimensional Arrays
	Properties of Evaluation

	Type Checking Qubecore
	Well-Formed Types
	Joining Structured Vectors
	Subtyping
	Type Checking
	Correctness of Type Checking
	SMT-Based Validity Checking

	III The Qube Programming Language
	The Qube Programming Language
	Expression Syntax
	Module System
	Stateful Computations

	Language Implementation
	Design of the Qube Compiler
	Compilation at a Glance
	Descriptor-Free Array Representation

	Rank-Generic Array Operations
	Type Abbreviations
	Element-Wise Computations
	Selection Functions
	Structural Functions
	Higher-Order Functions

	Evaluation
	Matrix Multiplication and Inner Product
	Rank-Generic Convolution
	Quicksort

	Conclusion and Future Work

