Anwendungspotentiale multipotenter Zellen aus der Regenbogenforellenlaut: Zellkulturen, Zytotoxizität und dreidimensionale Zellkultur

Inauguraldissertation zur Erlangung der Doktorwürde der Universität zu Lübeck

-Aus der Sektion Naturwissenschaften-

vorgelegt von
Sebastian Alexander Rakers
aus Nordhorn

Lübeck 2012
1. Berichterstatter: Prof. Dr. Charli Kruse
2. Berichterstatter: Prof. Dr. Ralf Paus

Meinen Eltern
Inhaltsverzeichnis

1 Zusammenfassung ............................................................................. 5
1 Abstract ........................................................................................... 7
2 Einleitung ........................................................................................... 9
   2.1 Evolution der Wirbeltiere (Craniota) – Phylogenie am Beispiel von Fisch, Ratte, Maus und Mensch .............................................................. 9
   2.2 Embryogenese bei Fisch und Mensch ................................................ 11
      2.2.1 Die Entwicklung der Haut .......................................................... 12
         2.2.1.1 Ursprung und Entwicklung .................................................. 13
         2.2.1.2 Strukturen und Zelltypen ..................................................... 16
   2.3 Definitionen von verschiedenen Zellen und Zellkulturen ............. 19
      2.3.1 Primärzellen ............................................................................... 19
      2.3.2 Zelllinien und Langzeit-Zellkulturen ......................................... 19
      2.3.3 Stammzellen ................................................................................ 19
   2.4 Embryonale Stammzellen bei Maus, Mensch und Fisch ............... 21
   2.5 Adulte Stammzellen ......................................................................... 23
      2.5.1 Lokalisation und Aufgaben ......................................................... 23
      2.5.2 Regeneration bei Mensch und Fisch .......................................... 25
      2.5.3 Adulte Stammzellen aus der Haut bei Mensch und Fisch .......... 27
   2.6 Testsysteme zur Untersuchung toxischer Substanzen ............... 29
      2.6.1 Akuter Fischtest, GenDarT-Test, Daphnien-Test und zellbasierte Toxizitätstests .......................................................... 29
      2.6.2 Fisch-Zelllinien als Werkzeuge für zellbasierte Testsysteme .......... 33
      2.6.3 3D-Hautmodelle als in vitro Testsysteme .................................... 34
   2.7 Zielsetzungen der Arbeit ................................................................. 37
3 Material und Methoden ...................................................................... 38
   3.1 Materialien ....................................................................................... 38
      3.1.1 Chemikalien ............................................................................... 38
      3.1.2 Arbeitslösungen ......................................................................... 42
      3.1.3 Medien und Seren .................................................................... 44
      3.1.4 Verbrauchsmittel ..................................................................... 45
Inhaltsverzeichnis

3.3.2.4 PAS-Färbung ................................................................. 71
3.3.2.5 EvG-Färbung ................................................................. 71
3.3.3 Subzelluläre Analyse ............................................................. 72
  3.3.3.1 Elektronenmikroskopie .................................................. 72
  3.3.3.2 Konfokalmikroskopie .................................................... 73
3.3.4 Immunfluoreszenz ............................................................... 73

3.4 Molekularbiologische Methoden ............................................. 75
  3.4.1 DNA-Isolation ................................................................. 75
  3.4.2 RNA-Isolation ................................................................. 75
  3.4.3 cDNA-Synthese .............................................................. 76
  3.4.4 Gradienten- und RT-PCR .................................................. 77
  3.4.5 Kapillargelektrophorese .................................................... 78

3.5 Bioinformatische Methoden ..................................................... 79
  3.5.1 Primerdesign ................................................................. 79

4 Ergebnisse ................................................................................ 80

4.1 Etablierung von Zellkulturen aus Fischzellen ............................... 80
  4.1.1 Etablierung und Charakterisierung von Zellen der Regenbogenforelle
        \( (\text{Oncorhynchus mykiss}) \) – Primärkultur Schuppenexplante ............... 81
  4.1.2 Etablierung und Charakterisierung von Zellen der Regenbogenforelle
        \( (\text{Oncorhynchus mykiss}) \) – Langzeit-Zellkultur OMYsd1x ..................... 85

4.2 Vergleich der Schuppenzellen und OMYsd1x – Zellen ................... 93
  4.2.1 Nachweis von Glykokonjugaten in der Zellkultur ...................... 95
  4.2.2 Genexpression von Zytokeratin 18, Vinculin und Kollagen Typ 1 in
        Schuppenzellen und OMYsd1x – Zellen ........................................ 96
  4.2.3 Analyse des Protein-Expressionsprofils ................................... 98

4.3 Versuche zur Generierung eines 3D-Fischhautmodells .................... 103
  4.3.1 Kombination von OMYsd1x- und Schuppenzellen .................... 105
  4.3.2 Integration von Schuppenzellen in die OMYsd1x-Langzeit-Zellkultur . 106

4.4 Testung der Zytotoxizität von unterschiedlichen Kupfersulfat
        \( (\text{CuSO}_4) \) -Konzentrationen an Fischzellen und Säugerzellen ............ 110
  4.4.1 Echtzeitmessungen ......................................................... 110
  4.4.2 Zeitraffer-Mikroskopie .................................................... 118

5 Diskussion .............................................................................. 119
<table>
<thead>
<tr>
<th>Inhaltspunkt</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Etablierung von primären und Langzeit-Zellkulturen aus Fischzellen.</td>
<td>119</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Charakterisierung der Schuppen-abgeleiteten Zellen</td>
<td>122</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Charakterisierung der Vollhaut-abgeleiteten Zellen</td>
<td>125</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Selbsterneuerung, Regenerationsfähigkeit und Wundheilung im Fischzell-Modell</td>
<td>133</td>
</tr>
<tr>
<td>5.2</td>
<td>Generierung eines 3D-Fischhautmodells</td>
<td>136</td>
</tr>
<tr>
<td>5.3</td>
<td>Untersuchung der Zytotoxizität von unterschiedlichen Kupfersulfat (CuSO₄) - Konzentrationen an Fischzellen und Säugerzellen</td>
<td>140</td>
</tr>
<tr>
<td>5.4</td>
<td>Fazit und Ausblick</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>Referenzen</td>
<td>148</td>
</tr>
<tr>
<td>7</td>
<td>Anhang</td>
<td>172</td>
</tr>
<tr>
<td>7.1</td>
<td>Ergänzende Tabellen und Abbildungen zum Ergebnisteil</td>
<td>172</td>
</tr>
<tr>
<td>7.2</td>
<td>Filme</td>
<td>176</td>
</tr>
<tr>
<td>7.3</td>
<td>Abbildungsverzeichnis</td>
<td>177</td>
</tr>
<tr>
<td>7.4</td>
<td>Tabellenverzeichnis</td>
<td>179</td>
</tr>
<tr>
<td>7.5</td>
<td>Abkürzungsverzeichnis</td>
<td>180</td>
</tr>
<tr>
<td>7.6</td>
<td>Eidesstattliche Versicherung</td>
<td>183</td>
</tr>
<tr>
<td>7.7</td>
<td>Danksagung</td>
<td>184</td>
</tr>
<tr>
<td>8</td>
<td>Sonstiges</td>
<td>185</td>
</tr>
<tr>
<td>8.1</td>
<td>Wissenschaftliche Publikationen</td>
<td>185</td>
</tr>
<tr>
<td>8.2</td>
<td>Diplom-Urkunde</td>
<td>189</td>
</tr>
</tbody>
</table>
1 Zusammenfassung

1 Zusammenfassung


Die Ergebnisse dieser Arbeit, insbesondere das dokumentierte Differenzierungspotential der Fischhautzellen sowie die Fähigkeit dieser Zellen zum spontanen dreidimensionalen Wachstum zeigten, dass multipotente Zellen aus Fischen mit Stammzell-ähnlichen Eigenschaften ein enormes Potential für die vergleichende und angewandte Zellforschung bergen.
1 Abstract

‘Application potential of multipotent cells from rainbow trout skin: cell culture, cell toxicity and three-dimensional cell culture’

1 Abstract

Adult stem cells are essential for animals and human beings for maintenance of organic systems and regeneration of tissues. Due to partly different wound healing strategies in fish and humans, adult stem cells could take over diverse tasks after wounding or loss of tissue. Fishes have a much bigger regeneration potential than humans. They are able to completely regenerate different organs after wounding, where progenitor cells, featuring a comparable differentiation potential as adult stem cells play a fundamental role. The analyses and exploitation of such potent progenitor cells from fish bears a huge potential for regenerative medicine. Such cells may likewise be used for other applications, for example as a tool in water toxicology or as component in food industry. Since little is known about adult stem cells and progenitor cells in fishes until now cells from rainbow trout skin have been isolated following a modified protocol for stem cells from adult tissues. These cells were successfully established as long-term culture. Furthermore, primary cultures were obtained from scales that showed features different from the cells of the long-term culture. The isolated cells have been analysed regarding their stem cell characteristics using molecularbiological and proteinbiochemical methods. It was shown that the long-term culture exhibited characteristics of differentiated epithelial- and fibroblast-like cells, and mostly persisted as a heterogeneous mixture. In culture, these cells showed features of multipotent cells. By combining cells from the long-term skin culture with primary scale cells, an improved survival of the latter cells was demonstrated. An outstanding characteristic of the long-term cell culture was the formation of threedimensional structures after permanent cultivation without subcultivation. Here, organoid-like structures, so-called organoid bodies (OBs), formed spontaneously. These OBs showed a modified protein pattern compared to the twodimensional cell culture.

The fish skin cells presented in this work as well as the combined cell cultures that were brought together for an in vitro skin model offer new and interesting options for the analysis of specific questions. Here, especially processes of epithelial-
Abstract

mesenchymal transition that possibly occur during in vitro cultivation of fish skin cells could answer important questions concerning wound healing, regeneration and tumor research.

Besides investigating the cell identity in comparison to their origin tissue and their differentiation potential, the possible applicability of fish cells as an ecotoxicological in vitro test system was examined. Therefore, different cell parameters were analyzed after addition of the toxin copper sulfate. Regarding copper sulfate, the cell-based toxicity test using impedance measurement was not as sensitive as established test systems with mammalian cells. However, it was possible to obtain comparable results for the IC$_{50}$/EC$_{50}$ values. Fish cell cultures are easy to handle during cultivation and can be maintained at room temperature. Therefore they offer an ideal platform for low-tech tests. Nevertheless, some optimized experiment designs are necessary before establishing fish cells as a promising test system.

The results of this work, especially the documented differentiation potential of the fish skin cells plus the capability of these cells to spontaneously form threedimensional structures showed that multipotent cells from fishes with stem cell-like characteristics hold an enormous potential for comparative and applied cell research.
2 Einleitung

2.1 Evolution der Wirbeltiere (Craniota) – Phylogenese am Beispiel von Fisch, Ratte, Maus und Mensch

Humanentwicklung noch ungeklärt sind, ist heute bekannt, dass der moderne Mensch vor etwa 200.000 Jahren in Afrika entstanden sein muss [Tattersall, 2009]. Doch wie ähnlich sind sich Fisch und Mensch noch? Beide bewohnen unterschiedliche Habitate (Wasser und Land) und haben sich entsprechend angepasst. Trotz der enormen Zeitdifferenz in der Evolution haben sich einige ihrer Organe, zum Beispiel das Pankreas, kaum, andere Organe wie die Haut hingegen sehr verändert. Da sich die Organe evolutiv gesehen ebenfalls stetig an die Umweltbedingungen angepasst haben, lässt sich vermuten, dass es unzählige Vorläufer dieser Organe gab, sodass die heute gefundenen Strukturen nur einen unzureichenden Einblick in das volle Spektrum der Organvariationen bieten [Rakers et al., 2010].

2 Einleitung

2.2 Embryogenese bei Fisch und Mensch


### 2.2.1 Die Entwicklung der Haut

Die Erforschung der Organentwicklung bei Knochenfischen wurde mit dem sich schnell entwickelnden Zebrafisch durchgeführt [Gilbert, 2006, Guellec et al., 2004]. Daher soll die Entwicklung der Haut in Knochenfischen zunächst anhand dieses Modellorganismus beschrieben und mit der Hautentwicklung im Menschen
2 Einleitung

verglichen werden. Die Grundprinzipien der Zebrafischhautentwicklung gelten ebenso für die Regenbogenforelle.

2.2.1.1 Ursprung und Entwicklung

2 Einleitung


2 Einleitung

2.2.1.2 Strukturen und Zelltypen

Die Haut der meisten Fischarten besteht grundsätzlich aus zwei Lagen, einer äußeren Epidermis und einer inneren Dermis (Abb. 2.3). Die äußere Oberfläche eines Fisches ist komplett von einer Schleimschicht überzogen, dem Fisch-Mukus, der wichtige Funktionen wie die Abwehr von Pathogenen, die Osmoregulation und die Verringerung des Strömungswiderstandes erfüllt.


Die Verbindung zwischen den Basalzellen der Epidermis, der Basalmembran und der sich anschließenden extrazellulären Matrix der Dermis wird von Hemidesmosomen gebildet [Friedman, 2010]. Hauptbestandteil neben der kollagenreichen Matrix, dem
2 Einleitung
dermalen Stroma, sind die Fibroblasten, die den Großteil des Kollagens synthetisieren (Abb. 2.2, 2.3). Sie wandern über die Verbindung von Dermis und Muskulatur, den Myosepten, in die Dermis ein. Neben den Fibroblasten sind Melanozyten ein wichtiger Zelltyp der Dermis der Fische. In der Regenbogenforelle sorgen sie gemeinsam mit den Iridophoren für das schillernd reflektierende Schuppenkleid des Fisches. Sie dienen nicht nur der Farbgebung, sondern schützen vor UV-Einstrahlung in tiefere Hautschichten und sind über das Melanin-konzentrierende Hormon (MCH), das als Neurotransmitter wirkt, an der neuromodulierten Nahrungsaufnahme beteiligt [Kawauchi, 2006].

Wie beim Menschen die Haare, so stellen die Schuppen, eingebettet in die Dermis, in der Fischhaut die einzigen Hautanhangsgebilde dar (Abb. 2.3). Die Schuppen der Fische sind rundliche, aus dem harten Bestandteil Dentin gebildete Strukturen der Dermis, die rundherum von einer dünnen, am freien hinteren Ende meist becherzellreichen, mukösen Epidermisschicht bedeckt sind. Bei den rezenten Fischen werden vier Haupttypen unterschieden: Zahnschuppen (Plakoidschuppen), kennzeichnend für die meisten Knorpelfische; Schmelzschuppen (Ganoidschuppen), die bei altertümlichen Strahlenflossern vorkommen sowie Kammschuppen (Ctenoidschuppen) und Rundschuppen (Cycloidschuppen) der eigentlichen Knochenfische, die als Elasmoidschuppen zusammengefasst werden [Sire, 1989, Westheide et al., 2004]. Die Elasmoidschuppen werden ausschließlich in der Dermis ohne Beteiligung der Epidermis [Schliemann, 2004] in sogenannten Schuppentaschen von mesenchymalen Osteoblasten, die auch als Skleroblasten bezeichnet werden, gebildet und bestehen aus nur zwei dünnen Schichten mit unterschiedlicher Feinstruktur und unterschiedlichem Kalkgehalt [Sharpe, 2001]. Die untere Schicht ist aus nahezu unverkalkten, lamellenartigen Kollagenfasern aufgebaut, die obere Schicht besteht aus spongiösem Hydroxylapatit. Die Schuppen liegen meist in regelmäßigen Reihen und überdecken sich nach hinten dachziegelartig [Schliemann, 2004]. Funktionell dienen Schuppen dem mechanischen Schutz. Darüber hinaus tragen sie aber auch dazu bei, dass die Strömung an der Grenzschicht zwischen Körperoberfläche und umströmendem Wasser laminar bleibt, wodurch der Strömungswiderstand optimal herabgesetzt wird [Schliemann, 2004]. Die schuppenbildenden Osteoblasten (Abb. 2.3) sorgen für ein sehr hohes

2 Einleitung

2.3 Definitionen von verschiedenen Zellen und Zellkulturen

2.3.1 Primärzellen

Als Primärzellen werden diejenigen Zellen bezeichnet, die unmittelbar aus einem Organ oder Gewebe isoliert wurden und die sich in der in vitro – Kultur nur beschränkt vermehren lassen. Sie besitzen eine begrenzte Teilungsfähigkeit und sind meist ausgereifte Zellen, die deshalb nur wenig proliferieren [Freshney, 2010a].

2.3.2 Zelllinien und Langzeit-Zellkulturen


2.3.3 Stammzellen

Stammzellen (engl. stem cells, SCs) weisen zwei charakteristische Eigenschaften auf. Zum Einen besitzen sie die Fähigkeit zur Selbsterneuerung durch symmetrische Teilung, das heißt, dass aus einer Stammzelle nach ihrer Teilung immer wieder zwei neue Tochter-SCs mit gleichen Eigenschaften entstehen können. Zum Anderen können Stammzellen durch asymmetrische Teilung verschiedene differenzierte Zelltypen hervorbringen und sich dabei selbst erhalten. Dadurch unterscheiden sich die SCs beispielsweise von den Progenitorzellen, die zwar in verschiedene Zelltypen differenzieren, aber sich nicht selbst erhalten können (Abb. 2.4) [Watt and Driskell, 2010]. SCs können aufgrund ihrer Potenz, also der Fähigkeit der SCs, in die drei Keimblätter (Ektoderm, Mesoderm, Endoderm) differenzieren zu können, und ihrer ontogenetischen Entwicklung unterschieden werden. Zellen der inneren Zellmasse, der Blastozyste, können in vitro in Zelltypen aller drei Keimblätter inklusive der
2 Einleitung


Abbildung 2.4 | Unterscheidungen zwischen Stamm- und Progenitorzellen.
2 Einleitung

2.4 Embryonale Stammzellen bei Maus, Mensch und Fisch


Bereits seit etwa 20 Jahren wird mit embryonalen Stammzellen aus Fischen gearbeitet [Gong et al., 2003, Fan and Collodi, 2006, Alvarez et al., 2007, Barnes et al., 2008, Hong et al., 2011], nachdem die ersten Techniken aus der embryonalen Mausstammzellforschung für den Zebrafisch (Danio rerio) und den Medaka (Reiskärling, Oryzias latipes) übernommen wurden [Collodi et al., 1992, Wakamatsu et al., 1994]. Dabei setzte man ebenfalls die feeder layer ein, um die ES-Zellen zu stimulieren. Doch auch feeder-freie Zellkulturen wurden etabliert [Hong et al., 2011]. Auf diese Weise konnten aus verschiedenen Fischen ES-Zellen gewonnen werden, zu denen unter anderem die Dorade (Sparus aurata [Béjar et al., 2002]), der Kabeljau (Gadus morhua [Holen et al., 2010]) oder der Steinbutt (Psetta maxima, [Holen and Hamre, 2004]) zählen. Neben den ES-Zellen wurden aus Fischen primordiale
2 Einleitung

Keimzellen (engl. *primordial germ cells*, PGCs) gewonnen [Xu et al., 2010], darunter auch PGCs aus der Regenbogenforelle (*Oncorhynchus mykiss*) [Yoshizaki et al., 2000]. Bislang wurden diese Zellen für Reproduktionstechnologien wie Gentargeting, Keimzell-Transplantationen oder Zellkerntransfer genutzt [Hong et al., 2011].

2.5 **Adulte Stammzellen**

2.5.1 Lokalisation und Aufgaben


Weitere Unterteilungen der adulten SCs sind hinsichtlich ihrer Differenzierungsfähigkeit möglich, da nicht jede adulte SC multipotent ist und in alle Zelltypen eines Keimblattes differenzieren kann. Zudem können adulte Stammzellen
2 Einleitung


Zebrafisch griffen jedoch das Potential adulter Stammzellen und deren Erforschung in Fischen auf [Diep et al., 2011].

Abbildung 2.6 | Die Stammzellnische. Stammzellen (SC) teilen sich symmetrisch in zwei neue Stammzellen (1) oder asymmetrisch in eine Stammzelle und eine differenzierte Zelle (DC) (2). Unter bestimmten Bedingungen kann eine differenzierte Zelle zur Stammzelle redifferenzieren (3). Verschiedene Komponenten der Stammzellnische sind dargestellt. Dazu gehören die extrazelluläre Matrix (EZM), Zellen in unmittelbarer Nähe der Stammzellen, die Nischenzellen, sezernierte Faktoren (wie zum Beispiel Wachstumsfaktoren) und physikalische Faktoren wie Sauerstoffzug, Festigkeit und Dehnbarkeit. Veränderte Abbildung nach [Watt and Driskell, 2010].

2.5.2 Regeneration bei Mensch und Fisch

2 Einleitung

permanent Blutkörperchen, Hautzellen oder Haare neu und ersetzt alte oder verlorene Zellen mit Hilfe gewebespezifischer Stammzellen (siehe 2.5.1 sowie [Barker et al., 2010]). Eine fakultative Regeneration findet in der humanen Leber statt, wo ein Großteil des Organs wieder ersetzt werden kann [Michalopoulos and DeFrances, 1997]. Die meisten seiner Organe und Extremitäten kann der Mensch jedoch nicht rekonstruieren, d. h. nach einer Amputation gehen ganze Strukturen verloren. Bei kleineren Verletzungen kommt es häufig zur Narbenbildung am Wundrand [Martin, 1997].

2 Einleitung
diese sich aufgrund ihrer räumlichen Position in vivo stärker voneinander unterscheiden, als Fibroblasten, die von gleicher Stelle, aber aus unterschiedlichen Individuen isoliert wurden [Chang et al., 2002].

2.5.3 Adulte Stammzellen aus der Haut bei Mensch und Fisch
Die Haut stellt ein sehr besonderes Organ dar. Sie ist mit einer durchschnittlichen Oberfläche von 1,7 m² nicht nur das größte Organ beim Menschen, sondern besitzt funktionell gesehen auch die höchste Vielseitigkeit. So dient sie nicht nur dem Schutz und der Abgrenzung gegenüber der Umgebung, sondern ist vielmehr ein Gewebe zur Kommunikation, zum Fühlen und zur Wahrung des Zellmetabolismus [Rakers et al., 2010].

2 Einleitung

Die Haut stellt insgesamt ein sehr interessantes Organ für die Stammzellforschung dar, deren Vielseitigkeit auch in Fischen deutlich wird. Entsprechend werden in der Fischhaut verschiedene Stammzellnischen vermutet [Rakers et al., 2010]. Bislang sind jedoch keine adulten Stammzellpopulationen aus der Fischhaut beschrieben worden. Ähnlich wie bei den humanen Haarfollikeln, könnten jedoch die Schuppentaschen der Fische eine Nische für Stammzellen darstellen [Kondo et al., 2001]. Ebenso können Vorläuferzellen in der Basalschicht vermutet werden, aus der sich immer wieder muköse Becherzellen sowie epitheliale Zellen entwickeln.
2 Einleitung

2.6 Testsysteme zur Untersuchung toxischer Substanzen

2.6.1 Akuter Fischtrest, GenDarT-Test, Daphnien-Test und zellbasierte Toxizitätstests


Seit 2005 werden nunmehr keine adulten Fische dafür eingesetzt, sondern Embryonen vom Zebrafisch, die zudem eine Ermittlung der genotoxischen Aktivität eines Stoffes erlauben (Early life stage test, OECD 210 und Genexpression-Danio rerio-Embryotest, GenDarT-Test (DIN 38 415-6, ISO 15088)). Hierbei wird dasExpressionsprofil eines bestimmten Sets an Schadstoff-sensitiven Markergenen vom Zebrafisch nach Zugabe des Toxins mit dem normalen Expressionprofil abgeglichen und somit Veränderungen auf transkriptioneller Ebene festgestellt [Yang et al., 2007].

Eine andere Testform stellt der Daphnien-Test (Wasserfloh, Daphnia magna (OECD 202, DIN EN ISO 6341)) dar, der das Schwimmverhalten der kleinen Flohkrebse über 24 bis 48 h in einem definierten Medium dokumentiert. Die Testorganismen Daphnia


2 Einleitung

Anwendungen, die einen generellen Einsatz ausschließen. Im Bereich der Umwelttoxikologie existieren bereits Systeme, die als Alternativen zum akuten Fischtest eingesetzt werden können, um die Gefährdung von Gewässern durch Schadstoffe abzuschätzen. Dazu zählt zum Beispiel der oben genannte Fischeitest, der in Deutschland anerkannt und zugelassen ist. Jedoch gelten für Abwasserbewertungen im Gegensatz zu Chemikalien keine internationalen Richtlinien. Ein weiteres Problem ist, dass Stoffe unterschiedlich auf Organismen wirken. So können Insektizide Invertebraten wesentlich schwerwiegender beeinflussen als Fische oder Algen [Helfrich et al., 2009].

2 Einleitung


2 Einleitung

Veränderungen in der Gesamtproteinkonzentration der Zellen, RNA und DNA-Konzentrationen, Zelladhäsion und Stoffaufnahme wie Stoffabgabe wichtige Zusatzinformationen liefern [Bols et al., 2005].

2.6.2 Fisch-Zelllinien als Werkzeuge für zellbasierte Testsysteme

2 Einleitung


2.6.3 3D-Hautmodelle als in vitro Testsysteme

Rekonstruierte Hautmodelle sind für die Humanmedizin sehr vielversprechende und häufig genutzte Systeme. Solche artifi ziellen Hautmodelle tragen dazu bei, Tierversuche zu reduzieren, da sie nicht von lebendem Tiermaterial abhängig sind, sondern aus bereits isolierten Zellen zusammengesetzt werden können. Anhand von
Einleitung

rekonstruierten Hautmodellen können die Effekte von neuen Chemikalien und Wirkstoffen in Crèmes und Pharmaka auf der Haut untersucht werden, ohne sie direkt am Menschen testen zu müssen [Ponec et al., 2002, Ponec, 2002, el Ghalbzouri et al., 2002, Gele et al., 2011, Brohem et al., 2011]. Eine Vielzahl von humanen Hautäquivalenten existiert bereits und wird aktiv vermarktet. Darunter befinden sich EpiDerm™ von MatTek (USA) und EpiSkin™ von SkinEthic / L’Oreal (Frankreich) als bekannteste Produkte (Abb. 2.8).


Abbildung 2.8 | Humane 3D Hautmodelle für den Einsatz in der klinischen Forschung. a) Hautäquivalent EpiDerm™ von MatTek (USA) und b) Hautäquivalent EpiSkin™ von SkinEthic / L’Oreal (Frankreich) Bildquellen: a: MatTek und b: SkinEthic.

Ein weiteres interessantes 3D-Modell könnte die Übertragung der Drei-dimensionalität auf andere Hautstrukturen wie die der Fische oder der Amphibien darstellen, sodass ein breites Spektrum an Hautmodellen zur Verfügung stünde. Auf diese Weise
können unterschiedliche Barrierefunktionen getestet werden, da beispielsweise die Fischhaut aufgrund der erhöhten Mukusproduktion anders reagiert als die keratinisierte humane Haut.

2.7 Zielsetzungen der Arbeit


Eine Kombination von Zellen der Langzeitkultur aus der Vollhaut der Regenbogenforelle mit Schuppenprimärzellen sollte aufzeigen, welche Wechselwirkungen sich durch die Kontaktaufnahme verschiedener zusammengehöriger Zelltypen ergeben. Die hieraus gewonnenen Erkenntnisse sollten als Basis für die Erzeugung eines dreidimensionalen Fischhautmodells dienen.
3 Material und Methoden

3.1 Materialien

3.1.1 Chemikalien

<table>
<thead>
<tr>
<th>Chemikalie / Kit / Substanz</th>
<th>Firma</th>
<th>Lagerung</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Diazabicyclo[2.2.2]octan (DABCO)</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
<td>2-8 °C</td>
<td>Immunzytochemie</td>
</tr>
<tr>
<td>2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure (HEPES) 1M</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>4’,6-Diamidin-2’-phenylindoldihydrochlorid (DAPI)</td>
<td>Roche Diagnostics GmbH, Mannheim</td>
<td>2-8 °C</td>
<td>Immunzytochemie</td>
</tr>
<tr>
<td>5-ethynyl-2’-deoxyuridine (EdU)</td>
<td>Invitrogen GmbH, Darmstadt</td>
<td>-20 °C</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Aceton</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>2-8 °C</td>
<td>Histologie, Immunzytochemie</td>
</tr>
<tr>
<td>Amphotericin</td>
<td>PAA Laboratories GmbH, Pasching, Österreich</td>
<td>-20 °C</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Ethyl-3-Aminobenzoat-Methansulfonsäure (MS-222; Tricain)</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
<td>RT</td>
<td>Fischbetäubung</td>
</tr>
<tr>
<td>Bovines Serum Albumin (BSA)</td>
<td>PAA Laboratories GmbH, Pasching, Österreich</td>
<td>2-8 °C</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Kalziumchlorid (CaCl2)</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Dimethylsulfoxid (DMSO)</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
<td>RT</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Material/Methoden</td>
<td>Hersteller</td>
<td>Temperatur</td>
<td>Anwendung</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Histologie</td>
</tr>
<tr>
<td>Ethanol 96 %, vergällt</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Ethanol Rotipuran® ≥ 99,8 %</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>Merck KGaA, Darmstadt</td>
<td>RT</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>Ethylenendiamintetraessigsäure (EDTA)</td>
<td>Merck KGaA, Darmstadt</td>
<td>RT</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Eukit Eindeckmedium</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Histologie</td>
</tr>
<tr>
<td>GeneJET™ Gel Extraktion Kit</td>
<td>Fermentas GmbH, St.Leon-Rot</td>
<td>RT</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>Biochrom AG, Berlin</td>
<td>2-8 °C</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>Biochrom AG, Berlin</td>
<td>-20 °C</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Kollagenase</td>
<td>Serva Electrophoresis GmbH, Heidelberg</td>
<td>2-8 °C</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Kupfer(II)-sulfat Pentahydrat (CuSO₄ · 5H₂O)</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
<td>RT</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Material</td>
<td>Hersteller</td>
<td>Lagerung</td>
<td>Fachgebiet</td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Mayer's Hämalaun</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Histologie</td>
</tr>
<tr>
<td>Methanol</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Immunzytochemie</td>
</tr>
<tr>
<td>Modified Eagle Medium</td>
<td>Biochrom AG, Berlin</td>
<td>2-8 °C</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>PCR-Kit Fermentas</td>
<td>Fermentas GmbH, St.Leon-Rot</td>
<td>-20 °C</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>Penicillin / Streptomycin (P/S) (100-fach, enthält 10.000 U/ml Penicillin, 10 mg/ml Streptomycin)</td>
<td>PAA Laboratories GmbH, Pasching, Österreich</td>
<td>-20 °C</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>PeqGold DNA Tissue Kit</td>
<td>peqLab Biotechnologie GmbH, Erlangen</td>
<td>RT</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>Perjodsäure</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Histologie</td>
</tr>
<tr>
<td>QIAamp DNA Investigator Kit</td>
<td>Qiagen GmbH, Hilden</td>
<td>RT</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>QIAxcel Alignment Marker 15 bp / 1000 bp</td>
<td>Qiagen GmbH, Hilden</td>
<td>2-8 °C</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>QIAxcel DNA Size Marker 25 / 450 bp</td>
<td>Qiagen GmbH, Hilden</td>
<td>2-8 °C</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>Material</td>
<td>Hersteller</td>
<td>Lagerung</td>
<td>Bereich</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------------------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>QIAxcel High Resolution Kit</td>
<td>Qiagen GmbH, Hilden</td>
<td>RT</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>Qtracker® 525 Cell Labeling Kit</td>
<td>Invitrogen GmbH, Darmstadt</td>
<td>2-8 °C</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Qtracker® 605 Cell Labeling Kit</td>
<td>Invitrogen GmbH, Darmstadt</td>
<td>2-8 °C</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>QuantiTect Reverse Transcription Kit</td>
<td>Qiagen GmbH, Hilden</td>
<td>-20 °C</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>Reagent A100 (Lysispuffer)</td>
<td>Chemometec A/S, Allerød, Dänemark</td>
<td>RT</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Reagent B (Stabilisierungspuffer)</td>
<td>Chemometec A/S, Allerød, Dänemark</td>
<td>RT</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>RNA-Later Solution</td>
<td>Invitrogen GmbH, Darmstadt</td>
<td>2-8 °C</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>RNeasy Mini Kit</td>
<td>Qiagen GmbH, Hilden</td>
<td>RT</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>Schiffs Reagenz</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Histologie</td>
</tr>
<tr>
<td>8-Mercaptoethanol</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
<td>RT</td>
<td>Molekularbiologie</td>
</tr>
</tbody>
</table>
### 3 Material und Methoden

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusammensetzung/Zusätze</th>
<th>Temperatur</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TissueTek®</td>
<td>Sakura Finetek Europe B.V., Alphen aan den Rijn, Niederlande</td>
<td>2-8 °C</td>
<td>Histologie</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
<td>RT</td>
<td>Immunzytochemie</td>
</tr>
<tr>
<td>Trypsin-EDTA (10-fach)</td>
<td>PAA Laboratories GmbH, Pasching, Österreich</td>
<td>-20 °C</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Vectashield</td>
<td>Vector Laboratories Inc., Burlingame, USA</td>
<td>2-8 °C</td>
<td>Immunzytochemie</td>
</tr>
<tr>
<td>Xylol</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>RT</td>
<td>Histologie</td>
</tr>
<tr>
<td>Ziegenormalserum</td>
<td>Vector Laboratories Inc., Burlingame, USA</td>
<td>2-8 °C</td>
<td>Immunzytochemie</td>
</tr>
</tbody>
</table>

#### 3.1.2 Arbeitslösungen

**Tabelle 3.2 | Arbeitslösungen.** Alle Chemikalien waren von der Qualität p.A. und den Firmen Roth, Merck und PAA.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusammensetzung/Zusätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldehydfuchsin-Lösung</td>
<td>50 ml (1,5 g Aldehydfuchsin in 200 ml 70 %-igen Ethanol) Aldehydfuchsin-Stammlösung, 150 ml 70 %-iges Ethanol, 2 ml 96-98 %-ige Essigsäure</td>
</tr>
<tr>
<td>Azophloxin-Lösung</td>
<td>0,5 g Azophloxin in 100 ml Aqua dest., 0,2 ml 96-98 %-ige Essigsäure</td>
</tr>
<tr>
<td>Digestionsmedium</td>
<td>4 mg (0.63 PZ/mg) Kollagenase in 20 ml Isolationsmedium</td>
</tr>
</tbody>
</table>
3 Material und Methoden

<table>
<thead>
<tr>
<th>Material</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastin Färbelösung nach Weigert</td>
<td>5,6 g/l Chinonimin Farbstoff, 0,02 g/l Chlorwasserstoff 25 % in 500 ml Aqua dest.</td>
</tr>
<tr>
<td>Eosin Färbelösung</td>
<td>600 ml 96 %-iger Ethanol, 1 g Eosin in 200 ml Aqua dest., einige Tropfen Eisessig</td>
</tr>
<tr>
<td>Ethanol 70 %</td>
<td>70 ml 96 %-iger Ethanol vergällt, 30 ml Aqua dest.</td>
</tr>
<tr>
<td>HEPES-Stammlösung</td>
<td>2,383 g HEPES in 100 ml Aqua bidest (pH 7,6)</td>
</tr>
<tr>
<td>Isolationsmedium</td>
<td>32 ml HEPES-Eagle-Medium, 8 ml 5% Rinderserumalbumin, 200 μl 0,1M Kalziumchlorid</td>
</tr>
<tr>
<td>Lichtgrün-Lösung</td>
<td>0,2 g Lichtgrün, 0,2 ml 96-98 %-ige Essigsäure in 200 ml Aqua dest.</td>
</tr>
<tr>
<td>Masson-Gebrauchslösung</td>
<td>1 g Ponceau de Xylidine, 1 g Säurefuchsin in 200 ml Aqua dest., 2 ml 96-98 %-ige Essigsäure</td>
</tr>
<tr>
<td>Methanol / Aceton</td>
<td>70 ml Methanol, 30 ml Aceton</td>
</tr>
<tr>
<td>Monti-Graziadei-Lösung</td>
<td>2 % Gluteraldehyd, 0,6 % Paraformaldehyd in 0,1 M Cacodylate-Puffer bei pH 7,2</td>
</tr>
<tr>
<td>Oxidationsgemisch AFG</td>
<td>0,5 g Kaliumpermanganat in 140 ml Aqua dest., 20 ml 5 %-ige Schwefelsäure</td>
</tr>
<tr>
<td>PBS 10x</td>
<td>80 g Natriumchlorid, 2 g Kaliumchlorid, 26,8 g Dinatriumhydrogenphosphat-Heptahydrat und 2,4 g Kaliumdihydrogenphosphat in 800 ml Aqua dest., pH 7,0</td>
</tr>
<tr>
<td>Phosphormolybdänäsure-Orange G – Lösung</td>
<td>5 g Phosphormolybdänäsure und 2 g Orange G in 100 ml Aqua dest.</td>
</tr>
<tr>
<td>Pikrofuchsin-Lösung</td>
<td>1 g/l Säurefuchsin, 16,6 g/l Pikrinsäure in 500 ml Aqua dest.</td>
</tr>
<tr>
<td>Reduktionsmittel AFG</td>
<td>6 g Natriummetabisulfit in 200 ml Aqua dest.</td>
</tr>
<tr>
<td>Säurefuchsin-Ponceau-Azophloxin-Lösung</td>
<td>20 ml Masson-Gebrauchslösung, 4 ml Azophloxin-Lösung, 176 ml Aqua dest., 0,4 ml 96-98 %-ige Essigsäure</td>
</tr>
<tr>
<td>Saures Hämalaun nach Mayer</td>
<td>1 g Hämostoxilin in 1 l Aqua dest., 0,2 g Natriumjodat, 50 g Kalialaun, 50 g Chloradhydrat, 1 g Zitronensäure</td>
</tr>
<tr>
<td>TBE-Puffer 10 %</td>
<td>108 g Tris, 55 g Borsäure, 40 ml 0,5M Natrium-EDTA in 1 l Aqua dest.</td>
</tr>
<tr>
<td>TritonX100 0.1 %</td>
<td>0,1 g Triton X in 100 ml PBS</td>
</tr>
<tr>
<td>Trypsin-EDTA (10-fach)</td>
<td>5,0 mg/ml Trypsin, 2,2 mg/ml EDTA in PBS (ohne Ca²⁺ und Mg²⁺)</td>
</tr>
</tbody>
</table>
3 Material und Methoden

<table>
<thead>
<tr>
<th>Material</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypsin-EDTA (1-fach)</td>
<td>10 ml Trypsin-EDTA (10-fach), 90 ml PBS (steril)</td>
</tr>
<tr>
<td>Weigerts Lösung A</td>
<td>20 g/l Hämatoxilin-Monohydrat in 500 ml Aqua dest.</td>
</tr>
<tr>
<td>Weigerts Lösung B</td>
<td>5 g/l Eisennitrat, 11,2 g/l Chlorwasserstoff 25 % in 500 ml Aqua dest.</td>
</tr>
</tbody>
</table>

3.1.3 Medien und Seren

Alle Medien wurden von der Firma Invitrogen GmbH bezogen, das Serum von der Firma PAA Laboratories.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 % Fötales Kälber serum (FKS) - Dulbecco’s Modified Eagle Medium (DMEM)</td>
<td>10 % (v/v) FKS, 1 % (v/v) P/S</td>
</tr>
<tr>
<td>20 % FKS-DMEM Medium (Standardkulturmedium Fischzellen)</td>
<td>20 % (v/v) FKS, 1 % (v/v) P/S</td>
</tr>
<tr>
<td>20 % FKS-DMEM Medium mit epithelialesem Wachstumsfaktor (EGF)</td>
<td>20 % (v/v) FKS, 1 % (v/v) P/S, 1 % (v/v) EGF</td>
</tr>
<tr>
<td>Einfriermedium</td>
<td>90 % (v/v) FKS, 10 % (v/v) DMSO</td>
</tr>
<tr>
<td>20 % FKS-Leibovitz-15 (L-15) Medium</td>
<td>20 % (v/v) FKS, 1 % (v/v) P/S</td>
</tr>
<tr>
<td>20 % FKS-Willams Medium E (WME) Medium</td>
<td>20 % (v/v) FKS, 1 % (v/v) P/S</td>
</tr>
<tr>
<td>EpiLife®-Medium</td>
<td>1 % (v/v) P/S</td>
</tr>
</tbody>
</table>
3 Material und Methoden

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fötales Kälberserum (FKS)</td>
<td></td>
</tr>
<tr>
<td>HEPES-Eagle-Medium</td>
<td>1 % (w/v) Glutamin in Modified Eagle Medium und 5 ml HEPES-Stammlösung</td>
</tr>
</tbody>
</table>

### 3.1.4 Verbrauchsmittel

- **Culture Slides (2-Kammer Kultivierungssystem)**
  - BD Biosciences Becton Dickinson GmbH, Heidelberg

- **Deckgläser (20 x 20 mm / 24 x 50 mm)**
  - Carl Roth GmbH + Co. KG, Karlsruhe

- **Einmalpipetten (5 ml / 10 ml / 25 ml / 50 ml)**
  - BD Biosciences Becton Dickinson GmbH, Heidelberg

- **E-Plate Mikrotiterplatte (16-Well / 96-Well)**
  - Roche Diagnostics GmbH, Mannheim

- **Eppendorf Reaktionsgefäße (1,5 ml / 2 ml)**
  - Eppendorf AG, Hamburg

- **Glaswaren**
  - Schott AG, Mainz

- **Handschuhe (Peha-soft powderfree, Größe L)**
  - Paul Hartmann AG, Heidenheim

- **Kanülen**
  - B. Braun Melsungen AG, Melsungen

- **Kryoröhrchen (2,0 ml)**
  - Techno Plastic Products AG (TPP), Trasadingen, Schweiz

- **Menzel-Objektträger SuperFrost Plus**
  - Thermo Fisher Scientific Germany Ltd. & Co. KG, Bonn

- **Mikrotiterplatte (Micro-Assay-Plate, 96-Well, black, clear-bottom)**
  - Greiner Bio-One GmbH, Frickenhausen

- **NucleoCassette**
  - Chemometec A/S, Allerød, Dänemark

- **Pasteurpipetten**
  - Carl Roth GmbH + Co. KG, Karlsruhe
### 3 Material und Methoden

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Lieferant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipettierspitzen / Biosphere Filter Tips (10 μl / 100 μl / 1000 μl)</td>
<td>Sarstedt AG &amp; Co., Nürnberg</td>
</tr>
<tr>
<td>Reaktionsgefäße (15 ml / 50 ml)</td>
<td>Sarstedt AG &amp; Co., Nürnberg</td>
</tr>
<tr>
<td>Skalpell</td>
<td>B. Braun Melsungen AG, Melsungen</td>
</tr>
<tr>
<td>Spritzen (verschiedene Größen)</td>
<td>B. Braun Melsungen AG, Melsungen</td>
</tr>
<tr>
<td>Zellkulturschalen (21 cm²)</td>
<td>Techno Plastic Products AG (TPP), Trasadingen, Schweiz</td>
</tr>
<tr>
<td>Zellkulturflaschen (25 cm² / 75 cm² / 150 cm²)</td>
<td>Techno Plastic Products AG (TPP), Trasadingen, Schweiz</td>
</tr>
<tr>
<td>Zellkultur-Mikrotiterplatte (6-Well / 12-Well / 24-Well)</td>
<td>Techno Plastic Products AG (TPP), Trasadingen, Schweiz</td>
</tr>
<tr>
<td>Zellschaber</td>
<td>Techno Plastic Products AG (TPP), Trasadingen, Schweiz</td>
</tr>
</tbody>
</table>
3 Material und Methoden


<table>
<thead>
<tr>
<th>mRNA</th>
<th>Vorkommen</th>
<th>Gene ID nach NCBI Datenbank</th>
<th>Verwendete Primer</th>
<th>Erwartete Produktlänge</th>
<th>Ta</th>
</tr>
</thead>
</table>
| Elongation factor alpha  | Ubiquitäres housekeeping Gen     | NM_001124339.1             | Forward: AGCCCTTCTGCTGCCCCTC  
                          |                                  | Reverse: CCTGAGCGGTGAAGGTGCCG |                         | 300 bp | 60 °C |
| Kollagen Typ 1           | Bindegewebe, EZM                 | NM_001124177.1             | Forward: ACAAGGCAGGAGCAGGATCGCA  
                          |                                  | Reverse: TTCGTCGCACATGACGGTGCA |                         | 130 bp | 59 °C |
| Vinculin                 | Zell-Zell-Kontakte, Fokale Adhäsionen | NM_001128681.1        | Forward: ATTGACGAGCCGCAGCAGGAG  
                          |                                  | Reverse: ATCAGCGCCCAGGCTCTCTT |                         | 299 bp | 58 °C |
| Zytokeratin 18           | Epitheliales Gewebe              | NM_001124724.1             | Forward: AGCGGGGACACTGCTCAGCAT  
                          |                                  | Reverse: TGCGGCCCATGTTGGTGTCAC |                         | 382 bp | 62 °C |
3.1.5 Antikörper

### Tabelle 3.4 | Verwendete Primärantikörper bei der qualitativen Immunchemie.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Wirt</th>
<th>Verdünnung</th>
<th>Hersteller / Bestellnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktin</td>
<td>Maus, monoklonal</td>
<td>1:200</td>
<td>Sigma-Aldrich / A 4700</td>
</tr>
<tr>
<td>Ki67</td>
<td>Kaninchen, polyklonal</td>
<td>1:500</td>
<td>Abcam / ab15580</td>
</tr>
<tr>
<td>Kollagen Typ 1 Fisch</td>
<td>Kaninchen, polyklonal</td>
<td>1:40</td>
<td>Antikörper Online / ABIN237021</td>
</tr>
<tr>
<td>Vigilin</td>
<td>Kaninchen, polyklonal</td>
<td>1:200</td>
<td>C. Kruse, Lübeck</td>
</tr>
<tr>
<td>Vinculin</td>
<td>Maus, monoklonal</td>
<td>1:400</td>
<td>Sigma-Aldrich / V9131</td>
</tr>
<tr>
<td>Zytokeratin 14</td>
<td>Maus, monoklonal</td>
<td>1:500</td>
<td>Santa Cruz / sc-58724</td>
</tr>
<tr>
<td>Zytokeratin 18</td>
<td>Maus, monoklonal</td>
<td>1:200</td>
<td>Santa Cruz / sc-51582</td>
</tr>
<tr>
<td>Zytokeratin 7</td>
<td>Kaninchen, polyklonal</td>
<td>1:500</td>
<td>Abcam / ab53123</td>
</tr>
</tbody>
</table>

### Tabelle 3.5 | Verwendete Sekundärantikörper bei der qualitativen Immunchemie.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Wirt, Isotyp</th>
<th>Konjugation</th>
<th>Verdünnung</th>
<th>Hersteller / Lotnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Maus Sekundär-Antikörper</td>
<td>Ziege, IgG (H+L)</td>
<td>Cy3</td>
<td>1:400-1:800</td>
<td>Dianova / 87376</td>
</tr>
<tr>
<td>Anti-Kaninchen Sekundär-Antikörper</td>
<td>Ziege, IgG (H+L)</td>
<td>FITC</td>
<td>1:200-1:400</td>
<td>Dianova / 90999</td>
</tr>
</tbody>
</table>
### 3 Material und Methoden

#### 3.1.6 Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Firma</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutschrank (95 % Luftfeuchte, 5 % CO₂, 37 °C)</td>
<td>BINDER GmbH, Tuttlingen</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Brutschrank Hepa Class 100 (95 % Luftfeuchte, 1,9 % CO₂, 20 °C)</td>
<td>Thermo Fisher Scientific Germany Ltd. &amp; Co. KG, Bonn</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Färbegläser Histologie (80 ml / 200 ml)</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
<td>Histologie</td>
</tr>
<tr>
<td>Feinwaage Kern 770</td>
<td>Kern &amp; Sohn GmbH, Balingen</td>
<td>Zellkultur, Histologie</td>
</tr>
<tr>
<td>Gefriermikrotom Cryotom Cryostar HM 560 MV</td>
<td>Thermo Fisher Scientific Germany Ltd. &amp; Co. KG, Bonn</td>
<td>Histologie</td>
</tr>
<tr>
<td>Gefrierschrank (-20 °C)</td>
<td>LIEBHERR Hausgeräte GmbH, Ochsenhausen</td>
<td>Zellkultur, Molekularbiologie</td>
</tr>
<tr>
<td>Konfokales Laserscanningmikroskop LSM 710</td>
<td>Carl Zeiss AG, Jena</td>
<td>Immunzytochemie</td>
</tr>
<tr>
<td>Kühlplatte Tissue Cool Plate COP 20</td>
<td>Medite GmbH, Burgdorf</td>
<td>Histologie</td>
</tr>
<tr>
<td>Kühlschrank (4 °C)</td>
<td>LIEBHERR Hausgeräte GmbH, Ochsenhausen</td>
<td>Zellkultur, Molekularbiologie, Histologie, Immunzytochemie</td>
</tr>
</tbody>
</table>
3 Material und Methoden

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Hersteller</th>
<th>Bereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastercycler</td>
<td>Eppendorf AG, Hamburg</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>Microm HM355S</td>
<td>Thermo Fisher Scientific Germany Ltd. &amp; Co. KG, Bonn</td>
<td>Histologie</td>
</tr>
<tr>
<td>Microplate Reader LB 940</td>
<td>BERTHOLD TECHNOLOGIES GmbH &amp; Co. KG, Bad Wildbad</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Mikromanipulator TransferMan NK2</td>
<td>Eppendorf AG, Hamburg</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Micropipette Puller P-97</td>
<td>Sutter Instrument Co., USA</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Microforge MF-900</td>
<td>Narishige, Japan</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Microgrinder EG-400</td>
<td>Narishige, Japan</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Mikroskop Axioskop 2 Mot Plus, mit AxioCam MRc5 und ebq-Lampe</td>
<td>Carl Zeiss AG, Jena</td>
<td>Immunzytochemie</td>
</tr>
<tr>
<td>Mikroskop Axiovert 40C</td>
<td>Carl Zeiss AG, Jena</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Mikroskop IX81, mit CLR Farbkamera</td>
<td>Olympus Europa GmbH, Hamburg</td>
<td>Zeitraffer-Mikroskopie</td>
</tr>
<tr>
<td>Mikroskop Observer Z1, mit CCD-Kamera und HXP 120 - Lampe</td>
<td>Carl Zeiss AG, Jena</td>
<td>Zellkultur, Immunzytochemie</td>
</tr>
<tr>
<td>Mikroskop Axiovert 200M</td>
<td>Carl Zeiss AG, Jena</td>
<td>Zeitraffer-Mikroskopie</td>
</tr>
<tr>
<td>NucleoCounter® NC-100™</td>
<td>Chemometec A/S, Allerød, Dänemark</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Objektträgerstrecktisch OTS 40</td>
<td>Medite GmbH, Burgdorf</td>
<td>Histologie</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Paraffin – Einbettungsmaschine</td>
<td>Thermo Fisher Scientific Germany Ltd. &amp; Co. KG, Bonn</td>
<td>Histologie</td>
</tr>
<tr>
<td>Microm STP 120</td>
<td>Thermo Fisher Scientific Germany Ltd. &amp; Co. KG, Bonn</td>
<td>Histologie</td>
</tr>
<tr>
<td>pH-Meter Lab 850</td>
<td>Schott AG, Mainz</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Pipettierhilfe Pipetus®</td>
<td>Eppendorf AG, Hamburg</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>QiaCube</td>
<td>Qiagen GmbH, Hilden</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>QiaXcel</td>
<td>Qiagen GmbH, Hilden</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>Scanning Elektronenmikroskop SEM 505</td>
<td>Koninklijke Philips Electronics N.V., Eindhoven, Niederlande</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Schüttler 3031</td>
<td>Gesellschaft für Labortechnik GmbH, Burgwedel</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Spectrophotometer NanoDrop ND-1000</td>
<td>PeqLab Biotechnologies GmbH, Erlangen</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>Sterilbank Biowizard</td>
<td>Kojair Tech Oy, Vilppula, Finnland</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>Tiefkühlschrank (-80 °C)</td>
<td>Sanyo Sales &amp; Marketing Europe GmbH, München</td>
<td>Zellkultur, Molekularbiologie, Histologie</td>
</tr>
<tr>
<td>Vortexer MS 2 Minishaker</td>
<td>IKA® Werke GmbH &amp; Co. KG, Staufen</td>
<td>Zellkultur</td>
</tr>
</tbody>
</table>
3 Material und Methoden

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller und Adresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserbad</td>
<td>Gesellschaft für Labortechnik GmbH, Burgwedel</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>Memmert GmbH + Co. KG, Schwabach</td>
</tr>
<tr>
<td>xCELLigence Real-Time Cell Analyzer (RTCA) SP und DP</td>
<td>Roche Diagnostics GmbH, Mannheim</td>
</tr>
<tr>
<td>Zentrifuge 5415 R</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Zentrifuge 5804 R</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Zentrifuge Allegra® X-15 R</td>
<td>Beckman Coulter GmbH, Krefeld</td>
</tr>
</tbody>
</table>
3 Material und Methoden

### 3.1.7 Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Firma</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AxioVision4 Rel. 4.8.</td>
<td>Carl Zeiss AG, Jena</td>
<td>Analyse</td>
</tr>
<tr>
<td>BioCalculator 3.0</td>
<td>Qiagen GmbH, Hilden</td>
<td>Analyse</td>
</tr>
<tr>
<td>DNASTAR® LASERGENE® Software for Sequence Analysis</td>
<td>DNASTAR, Inc., Madison, USA</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>ImageJ</td>
<td>National Institute of Health (NIH),</td>
<td>Immunzytochemie</td>
</tr>
<tr>
<td></td>
<td>Bethesda, USA</td>
<td></td>
</tr>
<tr>
<td>Primer-BLAST</td>
<td>National Center for Biotechnology Information (NCBI), Bethesda, USA</td>
<td>Molekularbiologie</td>
</tr>
<tr>
<td>RTCA Software 1.2.1</td>
<td>Roche Diagnostics GmbH, Mannheim</td>
<td>Zellkultur</td>
</tr>
<tr>
<td>ZEN Software</td>
<td>Carl Zeiss AG, Jena</td>
<td>Immunzytochemie</td>
</tr>
</tbody>
</table>

### 3.1.8 Versuchstiere

Als primäres Versuchstier zur Untersuchung und Isolation von Hautstammzellen diente die Regenbogenforelle (*Oncorhynchus mykiss*). Die für die Versuche verwendeten Tiere wurden in Aquarien in der Fraunhofer Einrichtung für Marine Biotechnologie (EMB) gehalten (Genehmigung Tierversuchs-Nr. 41/A01/09).

3 Material und Methoden


3.1.9 Zellkulturen

Die in dieser Arbeit eingesetzten Zellkulturen wurden im Folgenden dann als Primärkulturen angesehen, wenn sie sich nicht länger als eine Passage kultivieren ließen und typischerweise nur ein paar Tage bis wenige Wochen überlebensfähig blieben. Als Langzeit-Zellkultur wurden daher nur Kulturen bezeichnet, die mehrfach erfolgreich passagiert wurden (Subkultivierung). Der Begriff Zelllinie wurde hier nicht verwendet, da der Nachweis der Immortalisierung nicht erbracht wurde und die Zellen nicht aus einem Klon stammten.

3.1.9.1 Fischzellen

Für diese Arbeit wurde eine Langzeit-Zellkultur aus Vollhautgewebe (Epidermis + Dermis) der Regenbogenforelle (Oncorhynchus mykiss) gewonnen und charakterisiert. Sie wurde als OMYsd1x bezeichnet.

Primärkulturen stellten die aus Schuppentaschen der Regenbogenforellen (O. mykiss) gewonnenen Zellen dar. Da diese Zellen nicht länger als eine Passage überlebten, wurde keine spezielle Bezeichnung eingeführt.

3.1.9.2 Humane Zellen

Als humane Vergleichszellkultur wurden die in der EMB isolierten Hautprogenitorzellen aus Vollhautgeweben (Epidermis+Dermis) verwendet. Die bereits etablierte Langzeit-Zellkultur trägt den Namen CEsd8b.
3 Material und Methoden

3.1.9.3 Murine Zellen

Als murine Vergleichzellkultur wurden die gekaufte Fibroblastenzelllinie NIH-3T3 aus Mausembryo und die in der EMB etablierte Langzeit-Rattenzellkultur RA3d85b aus Rattenvollhautgewebe verwendet.

3.2 Zellbiologische Methoden

3.2.1 Allgemeines Arbeiten in der Zellkultur


3.2.2 Anlegen einer Zellkultur aus Fischzellen und Subkultivierung

Für diese Arbeit wurden von verschiedenen Regenbogenforellen unterschiedlichen Alters je 2-3 cm große Gewebeproben aus der Haut entnommen. Die Zellen der Langzeit-Zellkultur OMYsd1x entstammten einer ein Jahr alten Regenbogenforelle (20 cm ± 2 cm).
3 Material und Methoden

3.2.2.1 Explantat

Mit Hilfe von Scheren und Pinzetten wurden 2-3 cm große Stücke aus der Vollhaut ausgeschnitten und kurz in Phosphat-gepuffertem Kochsalz (Phosphate buffered saline, PBS) gewaschen. Die Haut wurde anschließend mit einem Skalpell von Unterhautgewebe und Muskelfleisch befreit und in etwa 1 x 1 mm² große Stücke zerteilt. Diese Stücke wurden mit der Außenseite nach oben liegend, unter der Sterilbank auf 6-Well Platten (9 cm²) platziert und für etwa eine halbe Stunde angetrocknet. Die Wells wurden danach mit 2,5 ml frischem Medium gefüllt und Antibiotika (Gentamycin und Amphotericin, jeweils 1:100) vorsorglich hinzugegeben.

Neben der Explantat-Methodik wurden auch noch zwei weitere Protokolle für die Isolation von Zellen aus der Haut ausgetestet. Diese waren ein Trypsin-Verdau und ein Kollagenase-Verdau, die in der Fraunhofer EMB etabliert sind [Kruse et al., 2004], [Kruse et al., 2006b]. Da beide Methoden jedoch für die Fischhaut nicht erfolgreich waren, wird hier nicht weiter auf diese Methoden eingegangen.

3.2.2.2 Kultivierung

Die Standardkultivierung aller Fischzellkulturen von Fischen der gemäßigten Klimazone erfolgte in einem Brutschrank bei einer Temperatur von 20 °C, 1,9 % CO₂ und 95 % relativer Luftfeuchte. Nach zwei Tagen waren erste Zellen am Boden der Wells zu erkennen. Danach wurde noch etwa 5-7 Tage gewartet, ehe die ausgewanderten Zellen in einem ersten Passagierungsschritt (bei den Hautzellen zusammen mit den Explantaten) in größere Flaschen (25 cm²) überführt wurden. Dazu wurde das Medium abgesaugt, die adhärenten Zellen mit 2-3 ml PBS gewaschen um das Kulturmedium vollständig zu entfernen und anschließend mit 1 ml 0,05 % Trypsin für eine Minute bei 37 °C inkubiert. Trypsin entfaltet bei dieser Temperatur seine optimale Wirkung und löst die Zellen von der Zellkulturplastik ab. Bei den Säugerzellen erfolgte die Kultivierung bei 37 °C und 5% CO₂ sowie 95% Luftfeuchte. Hier wurde bei Subkultivierung nach dem gleichen Schema verfahren, allerdings wurde die Inkubationszeit aufgrund der langsameren Abtrennung auf zwei Minuten erhöht. Tabelle 3.6 zeigt die für jeweiligen verwendeten Mengen an Medium, PBS, Trypsin und Einfriermedium je Flaschengröße. Solange die Zellen nach
3 Material und Methoden


Tabelle 3.6 | Verwendung von Medium, PBS, Trypsin und Einfriermedium (EM) je Flaschen- oder Schalengröße.

<table>
<thead>
<tr>
<th></th>
<th>Kleine Flasche (25 cm²)</th>
<th>Mittlere Flasche (75 cm²)</th>
<th>Große Flasche (150 cm²)</th>
<th>6-Well (9 cm²)</th>
<th>12-Well</th>
<th>24-Well</th>
<th>Petrischale Ø 5 cm</th>
<th>2-Well Chamber Slides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>5 ml</td>
<td>15 ml</td>
<td>30 ml</td>
<td>2,5 ml</td>
<td>1 ml</td>
<td>500 µl</td>
<td>5 ml</td>
<td>1,5 ml</td>
</tr>
<tr>
<td>PBS</td>
<td>2-3 ml</td>
<td>5-10 ml</td>
<td>10-15 ml</td>
<td>1-1,5 ml</td>
<td>0,5-1 ml</td>
<td>&lt;500 µl</td>
<td>2-3 ml</td>
<td>1 ml</td>
</tr>
<tr>
<td>Trypsin</td>
<td>1 ml</td>
<td>2 ml</td>
<td>4 ml</td>
<td>500 µl</td>
<td>200 µl</td>
<td>100 µl</td>
<td>1 ml</td>
<td>250 µl</td>
</tr>
<tr>
<td>EM</td>
<td>500 µl</td>
<td>750 µl</td>
<td>1 ml</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Aus sämtlichen Well-Platten sowie Petrischalen wurde nicht eingefroren.
Für die Gewinnung von Schuppenzellen wurden die Tiere mit Tricain betäubt, die Schuppen durch vorsichtiges Schaben mit einem Skalpell direkt abgestriift und in PBS gewaschen. Einzelschuppen wurden unter der Sterilbank mit Hilfe eines Mikroskops mit feinen Pinzetten herausgenommen und auf 12-Well Platten transferiert, wo sie maximal 5 min antrocknen konnten. Pro Well wurden 5-10 Schuppen aufgebracht, wobei darauf geachtet wurde, dass die Außenseite der Schuppen oben lag. Nach 5 min wurde vorsichtig 1 ml frisches Kulturmedium hinzugegeben und im Brutschrank bei 20 °C, 1,9 % CO₂ und 95 % relativer Luftfeuchte kultiviert. Schuppenzellauswüchse wurden für mindestens 2-3 Wochen kultiviert, konnten jedoch nach der Subkultivierung nicht proliferativ gehalten werden und wurden aufgrund dessen nur als Primärkulturen oder für Mischkulturen (siehe 3.2.7 und 3.2.8) verwendet.

Definierte Zellzahlen wurden für die meisten der im Folgenden beschriebenen Versuche benötigt. Für die Zählung wurden die Zellen wie bei einer Subkultivierung (siehe 3.2.2.2) und je nach Kultivierungsgefäß mit PBS gewaschen, anschließend mit 0,05 % Trypsin gelöst und mit frischem Medium resuspendiert (siehe Tab. 3.6). 50 μl der Zellsuspension wurden mit 50 μl eines Lysis-Puffers (Reagent A100) durch wiederholtes Auf- und Abpipettieren gemischt (Lysat) und dann mit 50 μl Stabilisierungspuffer (Reagent B) versetzt (stabilisiertes Lysat). Anschließend wurde die Mischung mit einer propidiumiodidhaltigen Nucleocassette (Abb. 3.1) aufgenommen. Mit Hilfe des Zellzählers Nucleocounter® NC-100™ mit integriertem Fluoreszenzmikroskop wurden die Zellkerne gezählt. Dabei wurde das Signal des an die DNA der Zellen bindenden fluoreszierenden Farbstoffs Propidiumiodid (PI) aus der Nucleocassette detektiert. Somit kann eine Gesamtzellkonzentration bestimmt werden. Die von dem Nucleocounter errechnete Zellzahl/ml muss mit der Verdünnung der Puffer und der Verdünnung durch das Medium multipliziert werden, um die Gesamtzellzahl zu erhalten.
3 Material und Methoden


Die Berechnung der Viabilität bezog sich daher auf folgende Formel:

Gleichung 1:

\[
\% \text{Adhäsion} = \left( \frac{C_{\text{Ges24h}}}{C_{\text{Ges Einsaat}}} \right) \times 100 \%
\]

3.2.4 Kryokonservierung und Auftauen von Zellen

Zellen wurden für die Kryokonservierung zunächst wie bei einer Subkultivierung (siehe 3.2.2.2) trypsiniert, zentrifugiert und das Pellet anschließend in eiskaltem Einfriermedium, bestehend aus Fötalem Kälber serum (FKS) und Dimethylsulfoxid
(DMSO) im Verhältnis 9:1, aufgenommen (siehe Tab. 3.6) und in 2 ml Kryoröhrchen transferiert. Die Röhrchen wurden sofort in einer auf 4 °C vorgekühlten Isopropanol-Box kontrolliert um 1 °C/min auf -80 °C herunter gekühlt und schließlich in flüssigem Stickstoff bei -145 °C gelagert. Für das Auftauen von eingefrorenen Zellen wurde 10 ml frisches Kulturmedium auf 20 °C (Fischzellen) oder 37 °C (humane Zellen) vorgewärmt, die Zellen im Kryoröhrchen aus dem flüssigen Stickstoff geholt und in einer Transportbox bei -20 °C ins Labor gebracht. Dort wurden die Zellen kurz bei 37 °C im Wasserbad angetaut und dann möglichst rasch ins Kulturmedium überführt. Das Zentrifugenröhrchen mit der Zellsuspension wurde für 5 min bei 130 x g zentrifugiert, anschließend der Überstand verworfen, das Pellet in adäquatem Volumen an frischem Kulturmedium resuspendiert und in die passende Flaschengröße ausgesät (Tab. 3.6).

3.2.5 Charakterisierung der Stammzellpopulationen

Die Stammzellen aus der Vollhaut wurden für Genexpressionsanalysen (siehe 3.4) in 75 cm² Zellkulturflaschen konfluent herangezogen. Für weitere immunzytochemischen Untersuchungen wurden Zellen zudem in 2-well Kamern eingesät (siehe 3.3.4). Weitere Analysen zur Zellcharakterisierung werden im Folgenden beschrieben.

3.2.5.1 Testen unterschiedlicher Temperaturen und Medienzusätze für Fischzellen

3 Material und Methoden

- Dulbeccos Modified Eagle Medium (DMEM) + 20 % FKS
- 20 % FKS-DMEM + 1 % Epithelialer Wachstumsfaktor (EGF)
- EpiLife® Medium
- Leibovitz 15 Medium (L-15) + 20 % FKS
- Williams Medium E (WME) + 20 % FKS

Alle von Gibco, Invitrogen, Deutschland

Ferner wurden unterschiedliche Konzentrationen (5 %, 10 % und 20 %) an FKS zum DMEM- und WME-Medium zugesetzt und untersucht.


3.2.5.2 Click-it® EdU Zellproliferationsassay

Um die Proliferationskapazität von Vollhaut-abgeleiteten Zellen der Regenbogenforelle (OMYsd1x) abschätzen zu können, wurden 2 x 10^4 Zellen der Passage 37 in ein Chamber-slide ausgesät und 10 μM 5-ethynyl-2´-deoxyuridine (EdU) nach 24 Stunden hinzugegeben. Nach einer Inkubationszeit von drei Tagen unter Standardkulturbedingungen (20 ºC, 1,9 % CO2, 95 % Luftfeuchte) wurden die Zellen mit 1 ml Methanol/Azeton (7:3) mit 1 μl/ml 4’,6-Diamidin-2´-phenylindoldihydrochlorid (DAPI) für 15 min bei Raumtemperatur fixiert. Für die Detektion von EdU wurde ein Reaktionsmix nach den Herstellerangaben (Invitrogen, Deutschland, Kat. No. C10337) angesetzt. Die Zellen wurden zweimal in 3 %-igem Rinderserumalbumin (BSA) in PBS gewaschen, dann mit dem Reaktionsmix versetzt
3 Material und Methoden


3.2.5.3 **xCELLigence RealTimeCellAnalysis**

Mit dem *xCELLigence® RTCA System* können in Echtzeit Zellstatus über den elektrischen Widerstand gemessen und so verschiedene Parameter wie Proliferation, Überleben, Zellzahl und Zellmorphologie abgeschätzt werden (Abb. 3.2). Das Prinzip beruht auf der Messung der Änderung des elektrischen Widerstandes (Impedanz), der durch die Adhäsion der eingesetzten Zellen entsteht und mit Hilfe von kleinen, in 16- oder 96-Well Zellkulturplatten integrierten Elektroden gemessen wird. Da sich die Zellen aufgrund der isolierenden Eigenschaften ihrer Membran wie dielektrische Partikel verhalten, wird mit zunehmendem Bewuchs der Elektrode die Impedanz zunehmen, bis sich eine konfluente Zellschicht gebildet hat.

Die relative Veränderung der Impedanz, bezogen auf den Zellstatus, wird durch den dimensionslosen Parameter Zellindex (engl. *cell index*, CI) beschrieben. Dieser ergibt sich aus dem Quotienten von aktueller Widerstandsänderung ($Z_i$) abzüglich des Wertes für die Hintergrundmessung ($Z_0$) und dem nominalen Widerstandswert für die Elektroden bei der Nutzung von PBS als Hintergrundkontrolle (bei 10 kHz Frequenz sind es 15 Ω):

\[
CI = \frac{(Z_i - Z_0)}{15 \Omega}
\]

Für die Messungen wurden OMYsd1x – Zellen in unterschiedlichen Aussaatdichten und mit unterschiedlichen Medien und Zusätzen (siehe oben) in eine 16-Well oder 96-Well Zellkulturplatte ausgesät. Aussaatdichten von $2.5 \times 10^3$, $0.5 \times 10^4$, $1 \times 10^4$, $2 \times 10^4$, $3 \times 10^4$ und $4 \times 10^4$ Zellen/0.31 cm² wurden gewählt. Um optimale Wachstumsbedingungen für die Zellen zu schaffen, wurden die unter 3.2.5.1
genannten verschiedenen Wachstumsmedien in Form von drei technischen Replikaten getestet. Hierzu wurden als Kontrollen jeweils 100 μl aller Medien auch ohne Zellen getestet. Das Medium wurde einmal 24 h nach Versuchsbeginn gewechselt. Die Impedanz der Zellen wurde alle 15 min automatisch durch das *xCELLigence® System* gemessen.


**3.2.6 Zytotoxizität von unterschiedlichen Kupfersulfat Pentahydrat (CuSO₄·5 H₂O) -Konzentrationen an Fischzellen und humanen Zellen**

**3.2.6.1 Echtzeitbeobachtungen mit dem xCELLigence RTCA**

Die Reaktion von Fischhautzellen auf die Zugabe von Toxinen sollte beobachtet und mit anderen Säugerzellen verglichen werden, um eine Einschätzung zur Eignung der
3 Material und Methoden

Zellen für Testsysteme vornehmen zu können. Anhand des xCELLigence® RTCA kann in Echtzeit nachvollzogen werden, ob nach Zugabe von Toxinen Änderungen der Impedanzen auftreten, da die dreidimensionale Form tierischer Zellen mit hoher Sensitivität auf Veränderungen im Stoffwechsel oder auf eine chemische, biologische oder physikalische Beeinflussung reagiert. Dabei kann es zu stoffabhängigen Kurvenverläufen kommen, die mögliche Anzeiger für eine Schädigung der DNA, gestörte Mitosen, Veränderungen des Zytoskeletts oder der Zytostatik sein können (Abb. 3.3). Die Profile können als Vorhersagemodell für die Bewertung von Stoffaktivitäten herangezogen werden. Für die Messungen wurden OMYsd1x – Zellen bei 20 °C, 1,9% CO₂ und CEsd8b – Zellen, Rasd85b – Zellen und NIH-3T3 – Zellen bei 37 °C, 5% CO₂ in einer Aussaatdichte von 1x 10⁴ Zellen/0.31 cm² beziehungsweise 7,5x 10³ Zellen/0.31 cm² (NIH-3T3) in jeweils eine 16-Well Platte wie unter 3.2.5.3 beschrieben ausgesät und für 72 Stunden im Brutschrank inkubiert. Danach wurde Kupfersulfat Pentahydrat (der Einfachheit halber künftig als CuSO₄ abgekürzt) in Konzentrationen von 100 μg/ml, 200 μg/ml, 1 mg/ml und 2 mg/ml in frischem DMEM mit 20 % FKS (beziehungsweise 10 % FKS) hinzugegeben. Für jede Konzentration wurden drei technische Replikate eingesetzt. Die Messung wurde dann noch für mindestens 92 Stunden fortgesetzt. Mit Hilfe der RTCA Software wurden Berechnungen und Auswertungen zu Dosis-Wirkungskurven und EC₅₀-Werten durchgeführt. Die Software berechnet nach Angabe der verwendeten Wells aus den zugeordneten Impedanzen automatisch eine Dosis-Wirkungskurve. Dafür muss vom Benutzer der Zeitpunkt der Messung festgelegt werden. Für den durchgeführten Versuch wurden drei Zeitpunkte, 1 h, 24 h und 92 h nach Zugabe des CuSO₄ ausgewählt. Aus der Dosis-Wirkungskurve kann die Software zudem den EC₅₀ - Wert zum gewählten Zeitpunkt bestimmen und für eine statistisch abgesicherte Aussage den R²-Wert bestimmen. Die Berechnung des EC₅₀ – Wertes beruht auf dem Logarithmus einer Konzentration, bei der 50% des Zellindex reduziert werden im Vergleich zum maximalen Zellindex der Kontrolle (100%). R² gibt den Anteil der erklärten Streuung an der Gesamtstreuung an und drückt damit die Güte der Anpassung der Dosis-Wirkungskurve an die Lage der Werte aus. R² ist als prozentualer Wert zu verstehen und liegt daher stets zwischen Null und Eins. Wird R² gleich Eins, so wird die gesamte Streuung durch das Regressionsmodell aufgeklärt –
es besteht also ein perfekter linearer Zusammenhang. Je kleiner $R^2$ ausfällt, desto stärker weicht der vorliegende Fall von diesem Zusammenhang ab.


3.2.6.2 Zeitraffer-Mikroskopie

Mittels Zeitraffer-Mikroskope können Zellen in Echtzeit visuell beobachtet werden. Dazu trägt eine spezielle Anordnung aus Mikroskop (Olympus IX81 oder Zeiss Axiovert 200M), Inkubationskammer und Kamera bei, die optimale Bedingungen für die Zelldokumentation schaffen.

3 Material und Methoden


3.2.7 Markierungstechnik durch Nanopartikel

Um festzustellen, ob und inwieweit Fischzellen fluoreszenzmarkierte Nanopartikel aufnehmen und an ihre Tochterzellen weitergeben, wurden OMYsd1x – Zellen der Passage 18 mit Qtracker 605® und Qtracker 525® Nanopartikeln inkubiert und nach 24, 48 und 96 Stunden die Anzahl markierter Zellen analysiert. Dazu wurde zunächst je 1 μl der Qtracker Komponenten A und B in einem Eppendorf Reaktionsgefäß vermischt und 5 min bei Raumtemperatur inkubiert. Dann wurde 0,2 ml frisches Kulturmedium hinzugefügt und 30 s mit einem Vortexer vermischt. 1 x 10⁶ OMYsd1x – Zellen in 6-Wells wurden mit der Suspension versetzt und die Probe unter Standardkulturbedingungen im Brutschrank für eine Stunde inkubiert. Danach wurden die Zellen mit frischem Medium zweimal gewaschen und anschließend nach den oben genannten Zeitpunkten am Mikroskop analysiert.

Zudem wurde geprüft, ob bei einer Kokultivierung von mit Nanopartikeln markierten Schuppenzellen und Hautzellen a) die Schuppenzellen adhären und proliferieren und b) die verschiedenen Zellen wiedergefunden und so die Ursprungsquellen nachgewiesen werden können. Dazu wurden die Schuppenzellen mit Qtracker 525 und die Hautzellen mit Qtracker 605 nach dem oben beschriebenen Protokoll einzeln markiert, dann trypsiniert (siehe Kapitel 3.2.2.2) und zusammen in einer neuen Kulturschale ausgesät. Die Fluoreszenz wurde im Mikroskop beobachtet und dokumentiert.
3.2.8 Generierung eines 3D-Fischhautmodells

Um die unterschiedlichen Zelltypen einer Fischhaut in vitro wieder zusammen zu bringen, wurde mit Hilfe eines Mikromanipulators eine mit OMYsd1x – Zellen konfluent bewachsene Fläche der Passage 14 partiell abgeschabt. Dazu wurde zunächst mit dem Micropipette Puller P-97 eine Glaskanüle gezogen und diese mit einem heißen Glühdraht (Microforge) und Schleifstein (Microgrinder) in die richtige Form gebracht. Die Glaspipette kann am Mikromanipulator in die Halterung eingesetzt werden und so eine exakte Position für die Entfernung der Zellen angefahren werden. Zusätzlich wurde eine Kanüle eingesetzt, die die losgelösten Zellen absaugte. In die frei gewordene Stelle der Zellkulturschale wurde mit Hilfe eines Tropfens Silikon eine isolierte Schuppe der Regenbogenforelle eingesetzt und bei 20 °C und 1,9 % CO₂ weiter im Brutschrank inkubiert. Das Auswachsen der Zellen wurde im Mikroskop beobachtet und dokumentiert.

3.3 Analytische Methoden

3.3.1 Paraffin- und Kryofixierung

Um das Vorkommen von Proteinen in Geweben mit dem Vorkommen von Proteinen in Zellen zu vergleichen, wurden von Vollhautgeweben der Regenbogenforelle Gefrier- und Paraffinschnitte angefertigt. Die Vollhautgewebe von je ca. 2 x 2 cm² Größe wurden einer jungen Regenbogenforelle entnommen, für die Kryofixierung direkt in TissueTek® eingebettet und bei -80 °C im Tiefkühlschrank gefroren. Mit der gleichen Methode wurden auch organoide bodies (OBs), die aus der Zellkultur entnommen wurden, behandelt. Für die Paraffinfixierung wurde das Gewebe im Einbettungsautomat über Nacht in Formalin fixiert, dann in einer Alkoholreihe bis ins Xylol entwässert (70 %, 80 %, 96 %, 100 %, Xylol) und dann in flüssig-heißem Paraffin konserviert (Tab. 3.7). Nach Entnahme aus dem Automat wurden die Schnitte manuell in flüssig-heißem Paraffin in Metallschalen eingebettet. Danach wurde die Probe auf einer Kühlplatte zum Paraffinblock gekühlt und ausgehärtet. Die Blöcke wurden bei Raumtemperatur gelagert.
3 Material und Methoden

Tabelle 3.7 | Arbeitsschritte im Einbettautomaten

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Zeit (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formalin I</td>
<td>1</td>
</tr>
<tr>
<td>Formalin II</td>
<td>1</td>
</tr>
<tr>
<td>Ethanol 70 vol %</td>
<td>0:30</td>
</tr>
<tr>
<td>Ethanol 80 vol %</td>
<td>0:30</td>
</tr>
<tr>
<td>Ethanol 96 vol %</td>
<td>0:30</td>
</tr>
<tr>
<td>Ethanol 100 vol %</td>
<td>1</td>
</tr>
<tr>
<td>Ethanol 100 vol %</td>
<td>1</td>
</tr>
<tr>
<td>Ethanol 100 vol %</td>
<td>1</td>
</tr>
<tr>
<td>Xylol I</td>
<td>1:30</td>
</tr>
<tr>
<td>Xylol II</td>
<td>1:30</td>
</tr>
<tr>
<td>Flüssig-Paraffin I</td>
<td>2</td>
</tr>
<tr>
<td>Flüssig-Paraffin II</td>
<td>2</td>
</tr>
</tbody>
</table>


3.3.2 Histologie

3.3.2.1 Entparaffinierung

Um unspezifische Hintergrundfärbungen beziehungsweise eine Inhibition der spezifischen Färbung zu vermeiden, wurde vor jeder Färbung mit Paraffinschnitten das Paraffin entfernt. Dazu wurden die Schnitte über Xylol und eine absteigende
3 Material und Methoden

Alkoholreihe (100%, 96%, 80%, 70%) entparaffiniert und in Aqua dest. rehydriert. Dieser Schritt ist in den folgenden Färbeprotokollen jeweils enthalten.

Es wurden vier verschiedene histologische Färbungen durchgeführt: die Hämostoxylin-Eosin-Färbung (HE-Färbung), die Aldehydfuchsin-Goldner-Färbung (AFG-Färbung), die Perjodessigsäurefärbung (PAS-Färbung) und die Elastica van Gieson-Färbung (EvG-Färbung). Die für jede Färbung angegebenen Schritte sind als Eintauchen der Objektträger in die Chemikalie zu verstehen, sodass jeder Schnitt auf dem Objektträger optimal von der Färbelösung bedeckt ist. In der Regel wurden dazu einfache Färbegläser oder Küvetten (80 - 200 ml) der Firma Roth verwendet.

### 3.3.2.2 HE-Färbung

Die Hämostoxylin-Eosin-Färbung ist eine Übersichtsfärbung, wobei das Hämostoxylin (ein natürlicher Farbstoff aus dem Blauholzbaum) als basisches Hämalaun aufbereitet wird und alle sauren beziehungsweise basophilen Strukturen blau färbt, insbesondere Zellkerne mit der darin enthaltenen Desoxyribonukleinsäure (DNA) und das mit Ribosomen angereicherte raue endoplasmatische Retikulum (rER). Eosin färbt alle azidophilen beziehungsweise basischen (eosinophilen) Strukturen rot, darunter vor allem die Zellplasmaproteine. Tabelle 3.8 gibt eine Übersicht über die einzelnen Färbeschritte.

| Schritt | Arbeitsschritte | Zeit
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Färben in Mayers Hämalaun</td>
<td>10-12 min</td>
</tr>
<tr>
<td>2.</td>
<td>Bläuen in warmem Leitungswasser (&gt; 35 °C)</td>
<td>10 min</td>
</tr>
<tr>
<td>3.</td>
<td>Gegenfärbung in alkalischer Eosinlösung</td>
<td>45 s</td>
</tr>
<tr>
<td>4.</td>
<td>Differenzieren in Ethanol 70 vol %</td>
<td>ca. 5 s</td>
</tr>
<tr>
<td>5.</td>
<td>Entwässern in Ethanol 80 vol %</td>
<td>10x eintauchen</td>
</tr>
<tr>
<td>6.</td>
<td>2x Entwässern in Ethanol 96 vol %</td>
<td>10x eintauchen</td>
</tr>
<tr>
<td>7.</td>
<td>2x Entwässern in Ethanol 100 vol %</td>
<td>10x eintauchen</td>
</tr>
<tr>
<td>8.</td>
<td>2x Inkubieren in Xylol</td>
<td>10x eintauchen</td>
</tr>
<tr>
<td>9.</td>
<td>Eindecken in Eukit</td>
<td></td>
</tr>
</tbody>
</table>
3 Material und Methoden

3.3.2.3 AFG-Färbung

Die Aldehydfuchsin-Färbung, kombiniert mit der Trichromfärbung nach Goldner, ist ebenfalls eine Übersichtsfärbung, die sehr farbintensiv ist. Dabei werden Zellkerne braun-schwarz, das Cytoplasma rosa-violett, die Muskulatur rot, elastisches Bindegewebe violett und kollagenes Bindegewebe grün angefärbt. Auch muköses Sekret wird hellviolett dargestellt. Tabelle 3.9 gibt eine Übersicht über die einzelnen Färbeschritte.

Tabelle 3.9 | Arbeitsschritte der AFG-Färbung

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Arbeitsschritt</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Oxidation (Kaliumpermanganat und Schwefelsäure)</td>
<td>2 min</td>
</tr>
<tr>
<td>2.</td>
<td>Reduktion (Natriummetabisulfit)</td>
<td>2 min</td>
</tr>
<tr>
<td>3.</td>
<td>Eintauchen in Aqua dest.</td>
<td>10x</td>
</tr>
<tr>
<td>4.</td>
<td>Eintauchen in Ethanol 70 vol %</td>
<td>10x</td>
</tr>
<tr>
<td>5.</td>
<td>Färben in Aldehydfuchsin-Gebrauchslösung</td>
<td>5 min</td>
</tr>
<tr>
<td>6.</td>
<td>Eintauchen in Ethanol 70 vol %</td>
<td>1 min</td>
</tr>
<tr>
<td>7.</td>
<td>Eintauchen in Aqua dest.</td>
<td>1 min</td>
</tr>
<tr>
<td>8.</td>
<td>Färben in Mayers Hämalaun</td>
<td>2-3 min</td>
</tr>
<tr>
<td>9.</td>
<td>Bläuen in warmem Leitungswasser (&gt; 35 °C)</td>
<td>10 min</td>
</tr>
<tr>
<td>10.</td>
<td>Färben in Säurefuchsin-Ponceau-Azophloxin-Gebrauchslösung</td>
<td>30 min</td>
</tr>
<tr>
<td>11.</td>
<td>3x Eintauchen in 1 %-ige Essigsäure</td>
<td>1 min</td>
</tr>
<tr>
<td>12.</td>
<td>Färben in Phosphormolybdän säure-Orange G-Lösung</td>
<td>30 s</td>
</tr>
<tr>
<td>13.</td>
<td>3x Eintauchen in 1 %-ige Essigsäure</td>
<td>1 min</td>
</tr>
<tr>
<td>14.</td>
<td>Färben in Lichtgrün-Lösung</td>
<td>2 min</td>
</tr>
<tr>
<td>15.</td>
<td>Eintauchen in 1 %-ige Essigsäure</td>
<td>5 min</td>
</tr>
<tr>
<td>16.</td>
<td>Eintauchen in Isopropanol</td>
<td>10x</td>
</tr>
<tr>
<td>17.</td>
<td>2x Eintauchen in Isopropanol</td>
<td>je 5 min</td>
</tr>
<tr>
<td>18.</td>
<td>Eindecken in Eukit</td>
<td></td>
</tr>
</tbody>
</table>
3 Material und Methoden

3.3.2.4 PAS-Färbung


<table>
<thead>
<tr>
<th>Tabelle 3.10</th>
<th>Arbeitsschritte der PAS-Färbung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hydrolyse mit Perjodsäure 1 %</td>
</tr>
<tr>
<td>2.</td>
<td>Bläuen in warmem Leitungswasser (&gt; 35 °C)</td>
</tr>
<tr>
<td>3.</td>
<td>2x mit Aqua dest. spülen</td>
</tr>
<tr>
<td>4.</td>
<td>Färben mit Schiff's Reagenz (Raumtemperatur)</td>
</tr>
<tr>
<td>5.</td>
<td>Mit warmem Leitungswasser (&gt; 35 °C) waschen</td>
</tr>
<tr>
<td>6.</td>
<td>Kurz in Aqua dest. eintauchen</td>
</tr>
<tr>
<td>7.</td>
<td>Färben in Mayers Hämalaun</td>
</tr>
<tr>
<td>8.</td>
<td>Bläuen in warmem Leitungswasser</td>
</tr>
<tr>
<td>9.</td>
<td>Differenzieren in Ethanol 70 vol %</td>
</tr>
<tr>
<td>10.</td>
<td>Entwässern in Ethanol 80 vol %</td>
</tr>
<tr>
<td>11.</td>
<td>2x Entwässern in Ethanol 96 vol %</td>
</tr>
<tr>
<td>12.</td>
<td>2x Entwässern in Ethanol 100 vol %</td>
</tr>
<tr>
<td>13.</td>
<td>2x Inkubieren in Xylol</td>
</tr>
<tr>
<td>14.</td>
<td>Eindecken in Eukit</td>
</tr>
</tbody>
</table>

3.3.2.5 EvG-Färbung

Die Elastika van Gieson-Färbung, die sich aus Weigerts Eisenhämatoxylin, Pikrofuchsin nach van Gieson und der Resorcin-Fuchsin-Lösung nach Weigert zusammensetzt, ermöglicht eine Differenzierung zwischen Kernen, Bindegewebe, Muskulatur und elastischen Fasern. Dabei werden Kerne schwarz-braun, Bindegewebe rot,
3 Material und Methoden

Muskulatur gelb, und elastische Fasern schwarz gefärbt. Das Färbeprotokoll ist in Tabelle 3.11 dargestellt.

<table>
<thead>
<tr>
<th>Tabelle 3.11</th>
<th>Arbeitsschritte der EvG-Färbung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Färben mit Elastin Färbelösung nach Weigert 10 min</td>
</tr>
<tr>
<td>2.</td>
<td>Spülen mit fließendem Leitungswasser 1 min</td>
</tr>
<tr>
<td>3.</td>
<td>Färben mit Weigerts Lösung A &amp; B (1:1) 5 min</td>
</tr>
<tr>
<td>4.</td>
<td>Spülen mit fließendem Leitungswasser 1 min</td>
</tr>
<tr>
<td>5.</td>
<td>Färben in Pikrofuchsin-Lösung 2 min</td>
</tr>
<tr>
<td>6.</td>
<td>Differenzieren in Ethanol 70 vol % 1 min</td>
</tr>
<tr>
<td>7.</td>
<td>Entwässern in Ethanol 80 vol % 10x</td>
</tr>
<tr>
<td>8.</td>
<td>2x Entwässern in Ethanol 96 vol % 10x</td>
</tr>
<tr>
<td>9.</td>
<td>2x Entwässern in Ethanol 100 vol % 10x</td>
</tr>
<tr>
<td>10.</td>
<td>2x Inkubieren in Xylol 10x</td>
</tr>
<tr>
<td>11.</td>
<td>Eindecken in Eukit</td>
</tr>
</tbody>
</table>

3.3.3 Subzelluläre Analyse

3.3.3.1 Elektronenmikroskopie

Die Elektronenmikroskopie wurde zur ultrastrukturellen Analyse der Schuppen und ihrer Auswüchse herangezogen. Die Proben (Schuppen, Auswüchse aus Schuppen) wurden in Monti-Graziadei-Lösung für 2 h fixiert und anschließend in einer aufsteigenden Alkoholreihe dehydriert (30%, 40%, 50%, 60%, 70%, 80%, 90% und 100% Ethanol für jeweils 15 min). Nach Trocknung wurden die Proben auf Aluminiumplättchen platziert und anschließend mit Carbongold besputtert. Danach wurden sie mit einem Scanning Elektronenmikroskop (SEM 505; Philips, Eindhoven, Niederlande) analysiert. Die Dehydrierung und Analyse wurde bei PD Dr. Matthias Klinger am Institut für Anatomie der Universität Lübeck von Frau Jutta Endler durchgeführt.
3 Material und Methoden

3.3.3.2 Konfokalmikroskopie
Für detailliertere Aufnahmen bei immunzytochemischen und toxikologischen Untersuchungen wurden einzelne Präparate mit Hilfe des konfokalen Laserscanningmikroskops (LSM) betrachtet und dokumentiert. Die Schnitte oder Zellen auf den Objektträgern konnten nach der Fluoreszenzfärbung (siehe 3.3.4) ohne weitere Vorbereitungen untersucht werden. Laserlicht einer definierten Wellenlänge wird dazu genutzt, die Fluoreszenzfarbstoffe anzuregen. Dabei kann man sich die besondere Eigenschaft des LSM zu Nutze machen, dass im Strahlengang des detektierten Lichts eine Lochblende (englisch: *Pinhole*) angebracht ist, die Licht außerhalb der Schärfeebene blockiert und so die Schärfentiefe erheblich verringert. Dies hat zur Folge, dass die Auflösung entlang der optischen Achse (z-Richtung) ansteigt, wodurch auch dickere Schnitte mit höherer Präzision aufgenommen werden können.

3.3.4 Immunfluoreszenz
Die immunchemischen Untersuchungen wurden überwiegend mit human- und mausspezifischen Antikörpern durchgeführt, da nur sehr wenig fischspezifische Antikörper vorlagen (siehe 3.1.5). Für die Färbungen auf Geweben der Regenbogenforellen haut und bei den OBs wurden 14 μm und 8 μm dicke Kryoschnitte angefertigt. Zellen und Schuppenkulturen wurden in 2-Well Kammern für maximal fünf Tage unter Standardkulturbedingungen kultiviert (siehe 3.2.2.2). Die Schnitte wurden für 10 min getrocknet und anschließend drei Mal in PBS gewaschen. Auch die Zellen wurden mit PBS gewaschen. Danach folgte die Fixierung und Permeabilisierung des Materials in Azeton/Aqua dest. (7:3, Gewebe) oder Methanol/Azeton (7:3, Zellen) mit 1 μl/ml DAPI für 10 beziehungsweise 5 min bei Raumtemperatur. Folgend wurden alle Proben mit PBS gespült und für mindestens 20 min bei RT in 1,65 % Ziegennormalserum inkubiert, wobei die Schnitte mindestens eine Stunde inkubiert wurden. Gewebe sowie Zellen wurden ohne zu spülen mit den Erstantikörpern, die nach den Herstellerangaben in TBST mit 0,1 % BSA verdünnt wurden (Tab. 3.4), in einer feuchten Kammer über Nacht bei 4 °C inkubiert. Nachdem die Proben drei Mal mit PBS gespült wurden, kamen sie mit dem
3 Material und Methoden

3 Material und Methoden

3.4 Molekularbiologische Methoden

3.4.1 DNA-Isolation

Die Isolation der genomischen DNA aus der Regenbogenforelle wurde nach dem Protokoll des QIAamp DNA Investigator Kit nach Herstellerangaben durchgeführt. Um die DNA aus den Gewebeproben zu isolieren, war als erstes ein Aufschluss der Zellen durch Lyse mit Proteinase K bei 56 °C über Nacht erforderlich. Das DNA-Isolationsverfahren des verwendeten Kits beruht auf der Bindung der DNA an eine Silikat-Gel-Membran durch Zentrifugation und ihre Aufreinigung über verschiedene Waschschritte, bevor die DNA in 50 μl ATE-Puffer eluiert wurde. Der Gehalt der DNA wurde mit dem NanoDrop 1000 Spektrophotometer bestimmt, wofür nur 2 μl Probe benötigt wurden, und danach sofort verwendet oder bei -20 °C gelagert.

3.4.2 RNA-Isolation

Um die Fischstammzellen auch molekularbiologisch näher charakterisieren zu können, wurde vorbereitend die Gesamt-RNA von OMYsd1x – Zellen der Passagen 6, 15, 19 und 21 aus jeweils einer konfluent bewachsenen 75 cm² Zellkulturflasche (etwa 1 x 10⁶ - 1 x 10⁷ Zellen) isoliert. Die RNA-Isolation erfolgte mit Hilfe des QIAgen RNeasy Plus Mini Kits nach Herstellerangaben. Das Kit ist sowohl für Zellen als auch für alle Organe außer der Milz anwendbar. Alle molekularbiologischen Arbeiten mit RNA wurden mit RNase-freien Pipettenspitzen und Behältern durchgeführt.

3 Material und Methoden

Resuspendierung des Zellpellets mit 350 μl RLT-Puffer und 3,5 μl β-Mercaptoethanol, was mit einer Kanüle (0,9 mm Durchmesser) durch fünfmaliges auf- und absaugen durchgeführt wurde. Das Lysat wurde danach auf eine gDNA Eliminator-Säule gegeben und 30 s bei >8.000 x g zentrifugiert, um nicht erwünschte genomische DNA zu entfernen. Es folgte die Zugabe eines Volumens (350 μl) 70 %-igen Ethanols zum Filtrat. Die Probe wurde dann auf eine RNeasy-Säule gegeben und 15 s bei >8.000 x g zentrifugiert, um die RNA an die Säulenmembran zu binden und sie somit von den anderen Zellbestandteilen zu trennen. Weitere Verunreinigungen und Fremdstoffe sollten durch das anschließende Waschen entfernt werden. Dazu wurde nacheinander mit 700 μl RW1-Puffer und 500 μl RPE-Puffer gewaschen, nach Zugabe wurde für je 15 s bei >8.000 x g zentrifugiert. Anschließend erfolgte die Trocknung (Evaporierung des Ethanols) durch erneute Zugabe von 500 μl RPE-Puffer und 2 min Zentrifugation bei >8.000 x g. Eluiert wurde durch Zugabe von 40 μl RNase freiem Wasser und erneuter Zentrifugation bei >8.000 x g für 1 min. Der Gehalt der RNA wurde ebenfalls mit dem NanoDrop 1000 Spektrophotometer bestimmt. Die Extinktion wurde bei 260 nm für Ribonukleinsäuren und bei 280 nm für Proteine gemessen. Die Ratio der beiden Messwerte (OD260/280) wird als Maß für die Reinheit der Probe herangezogen. Bei einem Wert von 1,8 -2,0 kann von einer reinen Nukleinsäurelösung gesprochen werden. Die gemessenen RNA-Konzentrationen waren für die nachfolgende Reverse Transkriptase-PCR (RT-PCR) hoch genug (siehe Tab. 7.3 im Anhang). Nach der photometrischen Bestimmung wurden die RNA-Proben zur anschließenden Bearbeitung (zB. cDNA-Synthese) auf Eis gelegt oder bei -20 °C für kurze beziehungsweise -80 °C für längere Zeit gelagert. Für die RT-PCR wurden immer 500 ng an RNA eingesetzt, was etwa 0,5 μl bis 5 μl Probe entsprach.

3.4.3 cDNA-Synthese

Für die Reverse Transkription Polymerasekettenreaktion (RT-PCR) wurden 500 ng RNA des jeweiligen Gewebes eingesetzt, wobei die Konzentration stets oberhalb von 100 ng/μl lag (siehe Tab. 7.3 im Anhang). Die cDNA (engl. copied DNA) Synthese wurde mit dem QuantiTect Reverse Transcription Kit entsprechend der Anleitung durchgeführt. Sie muss zunächst erfolgen, da generell in der RT-PCR keine RNA
3 Material und Methoden

sondern DNA eingesetzt wird. Die RNA, der gDNA-Wipeout Puffer, die Quantiscript Reverse Transkriptase (RT), der Quantiscript Puffer, der RT-Primer Mix und das RNase freie Wasser wurden zunächst auf Eis aufgetaut. 2 μl gDNA-Wipeout Puffer (7x) und 500 ng RNA wurden mit RNase freiem Wasser auf 14 μl aufgefüllt, gemischt und für 2 min bei 42 °C inkubiert, danach auf Eis gestellt. Anschließend wurde ein Mastermix auf Eis pippetiert, bestehend aus 1 μl Quantiscript RT, 4 μl Quantiscript RT Buffer (5x) und 1 μl RT-Primermix (mit Mg²⁺ & dNTPs) pro Probe. Je nach Probenzahl wurde ein Mastermix n+1 angesetzt und jeweils der Mastermix für die negativ Kontrolle (–RT). Der Mastermix wurde dann in jedes Reaktionsgefäß zu den Proben gegeben beziehungsweise für die –RT mit 14 μl Wasser versetzt und für 30 min bei 42 °C inkubiert. Die Quantiskript RT schreibt während dieser Zeit die mRNA in cDNA um. Danach folgte eine Inkubation bei 95 °C für 3 min, um die Quantiskript RT zu inaktivieren. Der 20 μl cDNA-Ansatz wurde für den Einsatz in der PCR 1:10 verdünnt (20 μl Probe + 180 μl Wasser) und bis zur weiteren Verwendung bei -20 °C gelagert.

3.4.4 Gradienten- und RT-PCR

Die Reverse-Transkriptase-Polymerasenkettenreaktion (RT-PCR) vermag Nukleinsäureabschnitte exponentiell zu amplifizieren und dient somit dem Nachweis der Expression spezifischer Gene in Blutserum, Zellen und Geweben. Dabei wird eine hitzestabile DNA-Polymerase (z.B. DreamTaq-Polymerase) dazu genutzt, von einem freien 3'-OH-Ende eines kurzen doppelsträngigen DNA-Abschnitts ausgehend einzelsträngige DNA zu duplizieren. Für jeden PCR-Ansatz wurden jeweils 5 μl 10x DreamTaq-Puffer, 5 μl 5 μM Primerpaarmix der spezifischen Primer (bestehend aus 10 μl 100 μM Vorwärts-Primer, 10 μl 100 μM Rückwärts-Primer und 180 μl RT-Wasser), 5 μl 2 mM dNTP-Mix (bestehend aus je 20 μl 100 mM dATP, dCTP, dGTP, dTTP und 920 μl RT-Wasser), 0,25 μl Dream-Tag-Polymerase (5 U/μl), 10 μl cDNA beziehungsweise 0,15 μg gDNA angesetzt und mit Aqua dest. auf eine Gesamtmenge von 50 μl aufgefüllt. Je nachdem, wie viele Ansätze (n) vorlagen, wurde ein Mastermix von n+1 angesetzt. Optional können 2-5 μl 50%-iges DMSO (entspannt sekundäre Strukturen) oder bis zu 3 M Betain (unterstützt die PCR) zum
3 Material und Methoden

Ansatz zugegeben werden. Bei der Negativkontrolle wird statt der gDNA oder cDNA Aqua dest. verwendet.


3.4.5 Kapillargelektrophorese

Um die in der PCR gewonnenen Nukleinsäurestränge nach ihrer molekularen Größe aufzutrennen, wurde eine Kapillargelektrophorese mit dem QIAXcel (Qiagen, Deutschland) analog zur herkömmlichen Agarose-Gelelektrophorese durchgeführt. Dabei wird durch Anlegen eines elektrischen Spannungsfeldes (5kV) eine Wanderung der negativ geladenen Nukleinsäuren zum positiven Pol der mit einem Polymergel gefüllten Kapillare (QIAXcel DNA Screening Kit) erzeugt. Die kürzeren Nukleinsäurestränge wandern schneller durch die mit Ethidiumbromid-Polymergel gefüllte Kapillare als die längeren, was von einem Fluoreszenzdetektor erkannt und über einen Photomultiplier in eine elektronische Datei umgewandelt wird. Diese wiederum kann am Computer mit Hilfe der BioCalculator Software als Elektropherogramm und Gelbild dargestellt und bearbeitet werden.

3 Material und Methoden


3.5 Bioinformatische Methoden

3.5.1 Primerdesign

Da auf Grund von unvollständigen Datenbanken zwar eine beträchtliche Anzahl an sequenzierten Genen, aber nur wenige chemisch synthetisierte sequenzspezifische Oligonukleotide (sogenannte Primer) für die Regenbogenforelle vorlagen, wurden für die mRNAs von Zytokeratin 18, Kollagen Typ 1, Elongation factor alpha (elfa) und Vinculin selbstständig Primer entwickelt.

4 Ergebnisse

4.1 Etablierung von Zellkulturen aus Fischzellen


Gegenstand dieser Arbeit war die genauere Charakterisierung zweier neu etablierter Zellkulturen aus der Regenbogenforellenhaut, eine Primärkultur und eine Langzeit-Zellkultur, die mit unterschiedlichen Methoden gewonnen wurden. Eine Quelle für Zellen stellten auf Zellkulturplastik explantierte Fischschuppen dar, wobei sich die Zellen lediglich für kurze Zeit halten ließen und deshalb als Primärkultur verwendet wurden. Die Langzeit-Zellkultur wurde aus Explanten der Vollhaut der Regenbogenforelle gewonnen, benannt als Oncorhynchus mykiss Vollhaut (engl. skin derived) 1 Explant (OMYsd1x). Beide Zellkulturen wurden charakterisiert und für erste Versuche zur Generierung eines dreidimensionalen Modells zusammengeführt. Die sich anschließende anwendungsspezifische Fragestellung bezüglich eines Einsatzes
von Fischzellen für Zytotoxizitäts-Assays wurde mit der OMYsd1x – Zellkultur bearbeitet.

4.1.1 Etablierung und Charakterisierung von Zellen der Regenbogenforelle (*Oncorhynchus mykiss*) – Primärkultur Schuppenexplante

Die Isolierung der Schuppen und die damit verbundene Gewinnung von primären, überwiegend epithelialen Zellen erfolgten nach der unter 3.2.2.3 beschriebenen Methode. Ein erstes Auswachsen von epithelialen Schuppenzellen entlang der Schuppenränder wurde bereits nach 4-6 Stunden (h) beobachtet. Es wurden überwiegend unregelmäßig geformte Epithelzellen, aber auch kreisrunde Zellen ohne erkennbaren Kern gefunden (Abb. 4.1a). Letztere waren teils erhoben über den epithelialen Strukturen (Abb. 4.1a, Pfeilspitzen). Zellen am Rand der Wachstumsfläche waren meist abgeflacht oder bildeten Pseudopodien (Abb. 4.1b).

Wurden die aus den Schuppen ausgewachsenen Zellen nach Zeiträumen von drei Tagen bis drei Wochen subkultiviert, so adhärierten sie zwar, jedoch ohne weitere Proliferationsaktivität zu zeigen. Sie bildeten kleine Kolonien von großen runden Zellen aus (Abb. 4.1c), die schließlich entweder statisch oder apoptotisch wurden und sich vom Schalenboden lösten. Dieser Vorgang wurde wiederholt beobachtet.

Abbildung 4.1 | Morphologie von Schuppenzellen der Regenbogenforelle (*Oncorhynchus mykiss*) in der Primärkultur. a) und b) Primärkulturen in Passage 0. Unter den epithelialen Schuppenzellen sind auch kreisrunde erhobene Zellen zu sehen (a und b, Pfeilspitzen). Zellen am Rand der Proliferationslinie sind sehr flach (a, Stern) oder migrieren aus dem Zellverband heraus, wie an den zahlreichen Pseudopodien zu sehen ist (b, Pfeile). c) Schuppenzellen nach der ersten Passage. Die Zellen werden sehr flächig und breit und proliferieren nicht mehr. Die Größenbalken entsprechen a) 200 μm und b), c) 50 μm.
4 Ergebnisse

Mittels ultrastruktureller Analyse wurde sowohl die Beschaffenheit der Schuppen nach der Explantation geprüft als auch die Oberfläche der Schuppenzellen untersucht. Dazu wurden einzelne Schuppen in Petrischalen platziert und nach dem in Abschnitt 3.3.3.1 beschriebenen Verfahren behandelt.

Deutlich zu sehen war eine einlagige Zellschicht auf einer Seite der Schuppe (Abb. 4.2a). Diese Zellschicht bedeckte etwa ein Drittel der Gesamtoberfläche der Schuppe. Der freiliegende Teil der Schuppe war von einer markanten Ringstruktur durchzogen, wobei die Ringe unterschiedlich starke Ausprägungen und Abstände zueinander hatten. Feine, fadenartige Fasern überwuchsen diese Ringe (Abb. 4.2b). Bei näherer Betrachtung der Zellschicht konnte eine plattenförmige Epithelstruktur gefunden werden, die als epitheliale Schicht (ES) bezeichnet wurde. Einige Zellen hatten sich während der Fixierung aus dem Verband gelöst, derweilen andere fixiert auf der Oberfläche aufsäßen (Abb. 4.2c). Es wurden zudem einzelne Zellen außerhalb der Schuppen gefunden (Abb. 4.2d). Diese Zellen wiesen eine auffällige Oberflächenstruktur auf. Kleine Kanälchen (engl. microridges) waren prominent auf der Oberfläche verteilt. Es wurden mehrere solcher Zellen mit microridges gefunden.

Abbildung 4.2 | Abbildungsunterschrift siehe Seite 83.
4 Ergebnisse

Abbildung 4.2 | (S.82) Elektronenmikroskopische Aufnahmen einer Regenbogenforellenschuppe. a) Gut sichtbar sind die für Schuppen typischen Ringstrukturen (R) und die von Zellen bedeckte Seite der Schuppe, die als epitheliale Schicht (ES) benannt wurde. b) Ausschnitt der Ringstruktur. Feine, fadenartige Gebilde bedecken die Schuppe. c) Die epitheliale Schicht besteht aus eng verknüpften Epithelzellen, wobei sich einige Zellen abgekugelt hatten. d) Einige Zellen hatten sich aus dem Verband gelöst und lagen isoliert vor. Deutlich zu erkennen sind die kleinen Kanälchen auf der Oberseite der Zelle, die sogenannten *microridges*. Größenbalken entsprechen in a) 100 μm mit vergrößerten Ausschnitten in b) und c), sowie in d) 2 μm. Abbildung a aus [Rakers et al., 2011].

Abbildung 4.3 | Zeitrafferaufnahmen von Zellauswüchsen einer explantierten Regenbogenforellen-Schuppe über eine Dauer von 54 h. Ausgehend von der Schuppentasche (Stern) wachsen die Zellen unterhalb und entlang der Schuppe (gestrichelter Pfeil) bis an den Rand (Pfeil). Nach 18 h sind die ersten adhärenen Zellen außerhalb der Schuppe zu sehen (Pfeil). Bis 36 h nach Explantation der Schuppe teilen und vermehren sich die Zellen, ehe sich nach 42 h die ersten Zellen aus dem Verband lösen und so Freiflächen entstehen (Pfeile). Nach 54 h können nur noch Zellinseln beobachtet werden. Die Größenbalken entsprechen 200 μm.

### 4.1.2 Etablierung und Charakterisierung von Zellen der Regenbogenforelle (Oncorhynchus mykiss) – Langzeit-Zellkultur OMYsd1x

Die zunächst in der Primärkultur erhaltene heterogene Zellpopulation aus der Vollhaut war ein Gemisch aus fibroblasten-ähnlichen Zellen und großflächigen unregelmäßig geformten bis runden Epithelzellen, die aus den Explantaten auf die Oberfläche der Zellkulturschale migrierten. Erste Zellen waren hier bereits nach 4-6 h zu sehen. Die erste Subkultivierung wurde frühestens eine Woche nach Explantation durchgeführt. Zu diesem Zeitpunkt hatte sich meist ein großflächiges Areal aus Zellen um die Explante herum gebildet (Abb. 4.4a, ein Teil des Explantats ist am Bildrand rechts unten erkennbar). Während der ersten Subkultivierungen wurde ein langsames Wachstum der beiden Zelltypen beobachtet. Es konnte zunächst keine flächige Ausbreitung beobachtet werden. Stattdessen formten sich kleinere Inseln aus Zellen, die sich im Zentrum der Inseln langsam teilten und übereinander wuchsen (Abb. 4.4b, Pfeil), wodurch sich keine konfluente Zellfläche ausbildete. Somit wurde in den ersten Passagen stets bei Semikonfluenz subkultiviert, die nach etwa 20-30 Tagen erreicht wurde. Ab etwa der siebten Subkultivierung entstand nach dem Aussäen ein
4 Ergebnisse


4 Ergebnisse

Proliferation der Passage 12 am höchsten. Nach fünf Tagen hatte sich die Zellzahl bereits verdoppelt und nach weiteren zehn Tagen wurde eine mittlere Zellzahl von $2,34 \times 10^5$ Zellen/ml gemessen. Die Endkonzentration bei Passage 19 mit gleicher Kultivierungstemperatur betrug $8,22 \times 10^4$ Zellen/ml. Geringer waren die Werte für eine Temperatur von $16 \, ^\circ C$. Hier konnte lediglich ein leichter Anstieg der mittleren Zellzahl nach 15 Tagen verzeichnet werden, sie lag für Passage 12 bei $2,54 \times 10^4$ Zellen/ml und für Passage 19 bei $3,13 \times 10^4$ Zellen/ml.

Abbildung 4.5 | Wachstumskurven von OMYsd1x – Zellen der Passagen 12 und 19. Die Zellen wurden bei Temperaturen von $16 \, ^\circ C$ und $20 \, ^\circ C$ kultiviert und einen Tag nach Aussaat (Tag 1) sowie an Tag 5, 10 und 15 gezählt. Die Startzellzahl lag bei $2 \times 10^4$ Zellen/ml. Zellen der Passage 12 zeichnen sich durch deutlich schnelleres Wachstum bei $20 \, ^\circ C$ im Vergleich zu $16 \, ^\circ C$ und zu Passage 19 aus. Angegeben sind die jeweiligen Mittelwerte der technischen Replikate ($n = 3$) und die Standardabweichungen.

OMYsd1x – Zellen wurden mit dem xCELLigence® RTCA auf ihre Adhäsions- und Proliferationseigenschaften untersucht (Abb. 4.6). Dazu wurde zunächst Passage 12 mit unterschiedlichen Zelleinsaatdichten getestet. Bei verdoppelter Einsaatdichte stieg der Zellindex nachlassend an. So wurde nach 2-3 h und einer Einsaatdichte von $1 \times 10^4$ Zellen/0,31 cm² ein Zellindex von etwa 2,0 gemessen, während bei $2 \times 10^4$ Zellen/0,31 cm² ein Wert von 4,0 und bei $4 \times 10^4$ Zellen/0,31 cm² ein Wert von 6,8
4 Ergebnisse

ermittelt werden konnte. Besonders auffällig war ein Abfall des Zellindex nach etwa 4 h bei allen Einsaatdichten. Je mehr Zellen eingesät wurden, desto stärker war dieser Abfall (Abb. 4.6a, Pfeile). Nach 48 h wurde ein lokales Minimum erreicht. Danach stieg der Wert des Zellindex bei allen Kurven wieder an. Am Ende der Messung fiel der Wert bei einer Einsaatdichte von $4 \times 10^4$ Zellen/0,31 cm² wieder leicht ab, während bei $2 \times 10^4$ Zellen/0,31 cm² die Kurve ein Plateau erreichte. Hier lag der CI bei 5,9, gleichzeitig war dies der höchste Abschlusswert. Die Differenz aus dem Zellindex nach 10 Tagen (240 h) und dem lokalen Minimum nach 48 h ergab die Ergebnisse für die stärksten Wiederanstiege, welcher für $2 \times 10^4$ Zellen/0,31 cm² mit 3,7 Punkten am höchsten war. Der zweitstärkste Anstieg wurde bei $1 \times 10^4$ Zellen/0,31 cm² verzeichnet, der Zellindex stieg von 1,5 auf 4,5 (Abb. 4.6a, Pfeilspitzen). Bei geringeren Einsaatdichten stieg der Zellindex deutlich weniger stark an.

Ein zweiter Versuch diente der Untersuchung unterschiedlicher Medien und des Einflusses von Wachstumsfaktoren auf das Verhalten der OMYsd1x – Zellen (Abb. 4.6b). Getestet wurden neben dem Standardkulturmedium (20 % FKS-DMEM Medium) noch DMEM Medium ohne FKS, 20 % FKS-DMEM Medium mit 1 % EGF und ein Medium für humane Keratinozyten- und korneale Epithelzellen, sogenanntes EpiLife® Medium. $2 \times 10^4$ Zellen/0,31 cm² wurden hierfür jeweils ausgesät. Insgesamt waren die Zellindizes mit Werten zwischen 0,5 und 3,0 niedrig. Die Kurven für das Standardkulturmedium und DMEM Medium mit 1 % EGF verliefen parallel, wobei das DMEM Medium mit 1 % EGF zwischen 0,3 und 0,6 CI-Punkten unter dem Standardkulturmedium lag (Abb. 4.6b, Stern und Pfeil). Wie bei dem ersten Test fiel auch hier der Zellindex nach etwa 4 h bei allen Kurven ab, stieg jedoch beim Standardkulturmedium und dem DMEM mit 1 % EGF nach etwa 84 h erneut an. Die Kurve für das EpiLife® Medium hatte einen wellenförmigen Verlauf mit einem Maximalwert von 1,5 nach 168 h (Abb. 4.6b, Pfeilspitze). Ein starker Abfall des Zellindex wurde für reines DMEM gefunden. Hier ging der Wert bis auf 0,3 am Ende des Versuchs zurück, obwohl der Index nach 2-3 h noch mit 1,6 über dem Wert für das EpiLife® Medium von 1,2 lag.
Abbildung 4.6 | Wachstumskurven der Langzeit-Zellkultur OMYsd1x der Passage 12 mit unterschiedlichen Aussaatdichten (a) und unterschiedlichen Medien (b). Gemessen wurden jeweils drei Replikate in einer 96-Well Platte anhand des xCELLigence® RTCA Systems. a) 4 h nach Einsaat der Zellen wurde der höchste Zellindex bei einer Aussaatdichte von 4 x 10⁴ Zellen/0,31 cm² gemessen (Stern). Nach 4 h konnte ein Absinken aller Kurven beobachtet werden. Je größer die Aussaatdichte war, desto stärker war der Rückgang des Zellindex (Pfeile). Nach etwa 10 Tagen wurden die stärksten Wiederanstiege für Aussaatdichten von 1 und 2 x 10⁴ Zellen/0,31 cm² gefunden (Pfeilspitzen). b) Bei einer Aussaatdichte von 2 x 10⁴ Zellen/0,31 cm² wurden unterschiedliche Medien getestet. 4 h nach Beginn des Experiments wurde der stärkste Anstieg des Zellindex für 20 % FKS-DMEM beobachtet (Stern). Ebenfalls stieg der Zellindex bei 20 % FKS-DMEM mit 1% EGF an, allerdings blieben die Werte stets etwa 0,2-0,4 Punkte geringer. Bereits nach etwa 2 Tagen sank der Wert für DMEM ohne FKS auf unter 1 und bis zum Ende des Experiments auf ca. 0,2. Einen wellenförmigen Verlauf zeigte die Kurve für das EpiLife® Medium (Pfeilspitze). Der höchste Zellindex wurde für 20 % FKS-DMEM nach 252 h (etwa 10 Tagen) gefunden (Pfeil).
4 Ergebnisse

Wiederholungsversuche (Abb. 7.3 im Anhang) mit verschiedenen Passagen von OMYsd1x – Zellen wiesen hohe Zellindizes-Anstiege bei einer Einsaatdichte von $1 \times 10^4$ Zellen/0,31 cm² auf. Auch wenn für die Passage 12 der OMYsd1x – Zellen das Optimum an Zellwachstum bei $2 \times 10^4$ Zellen/0,31 cm² lag, wurden in den folgenden Versuchen stets $1 \times 10^4$ Zellen/0,31 cm² eingesetzt.

Ein dritter Versuch diente dazu, das Verhalten der Zellen in drei verschiedenen Medien und mit unterschiedlichen Konzentrationen an FKS zu dokumentieren (Abb. 4.7). So sollte einerseits festgestellt werden, ob sich die Zellen einer anderen Passage unterschiedlich zu den bislang getesteten Zellen verhalten oder ob sich Ähnlichkeiten beziehungsweise deutliche Muster nachweisen lassen. Andererseits sollte der Einfluß des FKS auf das Wachstum der Zellen überprüft werden. Dazu wurden FKS-Konzentrationen von DMEM und WME-Medium mit 5 %, 10 % und 20 % gewählt und mit reinem Medium sowie EpiLife®-Medium verglichen. Als Kontrolle diente DMEM-Medium mit 20 % FKS ohne Zellen. Alle Medien wurden über einen Zeitraum von 192 h getestet (Abb. 4.7a, b). Bei eingesetzten $1 \times 10^4$ Zellen/0,31 cm² lagen die Zellindizes insgesamt bei Werten zwischen 0,5 und 5,0. Der Index für DMEM mit 10 % FKS fiel nach Adhäsion der Zellen (ca. 4-6 h nach Einsaat) zunächst ab, während der Index für DMEM mit 20 % FKS erst langsam anstieg und nach einer Plateauphase (30-64 h) wieder stark anwuchs. Nach etwa 72 h verliefen die Kurven für das Standardkulturmedium und DMEM mit 10 % FKS parallel (Abb. 4.7a). Beide Kurven erreichten nach 192 h Endwerte, die zwischen 4,6 und 5,2 CI-Punkten lagen. Das DMEM-Medium mit 5 % FKS wies deutlich geringere Werte auf. Hier lag der finale Wert bei 2,7. Noch geringer waren die Zellindex-Endwerte bei reinem Medium und bei EpiLife® Medium mit jeweils 0,9. Auffällig war beim EpiLife® Medium der erneut wellenförmige Verlauf der Kurve (Abb. 4.7a). Bei WME-Medien mit 10 % FKS (CI= 4,1) und 20 % FKS (CI= 5,1) konnten ähnliche Schlusswerte wie bei DMEM-Medien gemessen werden (Abb. 4.7b), jedoch fiel die Kurve für 10 % FKS gegen Ende der Messungen ab. Ein geringer Wert wurde bei WME-Medium mit 5 % FKS gefunden. Er lag bei 2,0. Mit einem Zellindex von 1,4 am Schluss der Messungen wies das WME-Medium ohne FKS den geringsten Wert auf. Weitere Versuche wurden nach diesen Ergebnissen mit 20% FKS-DMEM Medium durchgeführt.
4 Ergebnisse

Abbildung 4.7 | Wachstumskurven der Langzeit-Zellkultur OMYsd1x der Passage 37 mit unterschiedlichen Medien und FKS-Konzentrationen. a) DMEM-Medium und EpiLife® Medium. b) WME-Medium. Die Zellen wurden mit einer Einsaatdichte von $1 \times 10^4$ Zellen/0,31 cm² in eine 96-Well Platte mit unterschiedlichen Konzentrationen an FKS in je drei Replikaten eingesät. Zu EpiLife® Medium wurde kein zusätzliches FKS zugesetzt. Dabei wurden stärkste Anstiege des Zellindex für 10 % und 20 % FKS-Zusatz gemessen, während geringe Werte für 5 % FKS-Zusatz und das EpiLife® Medium gemessen wurden. Medien ohne FKS-Zusatz hatten ebenfalls geringe Indizes.

OMYsd1x–Zellen wurden nach dem beschriebenen Verfahren (3.2.4) ohne Probleme eingefroren und nach unterschiedlich langer Lagerungszeit bei -196 °C im Stickstofftank wieder aufgetaut. Nach dem Auftauen zeigte sich in den frühen Passagen zunächst ein erkennbar langsames Wachstum als bei Zellen, die nicht eingefroren wurden. Dazu trug insbesondere die in 4.1.2 beschriebene Zellinselbildung in frühen Passagen bei. In späteren Passagen, ab etwa Passage 12, war diese Verlangsamung nicht mehr so deutlich. OMYsd1x–Zellen konnten in
4 Ergebnisse

DMEM mit 20 % FKS weiterkultiviert werden, ohne dass Zellinselbildungen auftraten. Dabei hatten aufgetaute Zellen eine ähnliche Wachstumsgeschwindigkeit wie Zellen, die nicht eingefroren waren.

Um abschätzen zu können, wie viabel die OMYsd1x–Zellen nach einer Subkultivierung sind, wurde die Rate der adhärierten OMYsd1x–Zellen 24 h nach Subkultivierung der Passage 29 ermittelt (Tab.4.1). Hier konnte eine durchschnittliche Adhäsionsrate von 76 % gemessen werden. Dabei lag die Standardabweichung der technischen Replikate bei 19 %.

Tabelle 4.1 | Viabilitätsbestimmung anhand der Passage 29 der Langzeit-Zellkultur OMYsd1x.

<table>
<thead>
<tr>
<th>Eingesetzte Zellen/ml</th>
<th>Zellzahl/ml nach 24h</th>
<th>Adhäsionsrate in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.000</td>
<td>51.000</td>
<td>64</td>
</tr>
<tr>
<td>80.000</td>
<td>62.400</td>
<td>78</td>
</tr>
<tr>
<td>80.000</td>
<td>90.000</td>
<td>113</td>
</tr>
<tr>
<td>80.000</td>
<td>57.000</td>
<td>71</td>
</tr>
<tr>
<td>80.000</td>
<td>65.400</td>
<td>82</td>
</tr>
<tr>
<td>80.000</td>
<td>51.900</td>
<td>65</td>
</tr>
<tr>
<td>80.000</td>
<td>70.200</td>
<td>88</td>
</tr>
<tr>
<td>80.000</td>
<td>38.700</td>
<td>48</td>
</tr>
<tr>
<td><strong>Mittelwerte±Standardabweichung</strong></td>
<td><strong>60.825±15.320</strong></td>
<td><strong>76±19</strong></td>
</tr>
</tbody>
</table>
4 Ergebnisse

4.2 Vergleich der Schuppenzellen und OMYsd1x – Zellen


4 Ergebnisse

4.2.1 Nachweis von Glykokonjugaten in der Zellkultur

Um spezifische Zellformen wie Becherzellen in der Zellkultur nachweisen zu können, wurde eine PAS-Färbung nach Protokoll (siehe 3.3.2.4) durchgeführt.


Abbildung 4.9 | PAS-Färbungen a) bei Vollhaut in vivo, b) bei Schuppenauswüchsen und c) bei OMYsd1x – Zellen der Passage 46 in vitro. Während in der Primärkultur der Schuppen (b) PAS-positive Zellen (magenta-pink: Pfeile und kleines Bild) zu sehen sind, können in der Zellkultur der Vollhautzellen (c) keine PAS-positiven Zellen gefunden werden. Die zur Kontrolle gefärbte Vollhaut zeigt, dass PAS-positive Zellen in Form von Becherzellen in der Epidermis liegen (a, Pfeile). Stern: Schuppe, Zellkerne in blau. Die Größenbalken entsprechen 50 μm (a und b, Ausschnitt), 400 μm (b) sowie 200 μm (c).
4.2.2 Genexpression von Zytokeratin 18, Vinculin und Kollagen Typ 1 in Schuppenzellen und OMYsd1x – Zellen

Um die Populationen der Schuppenzellen und der OMYsd1x – Zellen hinsichtlich ihres Differenzierungspotentials zu untersuchen, wurde die Expression der Marker Zytokeratin 18 (engl. cytokeratin, CK18), Kollagen Typ 1 und Vinculin analysiert. Als Kontrolle wurde das Housekeeping-Gen elfa (engl. elongation factor 1-alpha) gewählt (Abb. 4.10a). Es wurde in allen Proben deutlich detektiert, auch wenn die Menge der PCR-Produkte leicht variierte. Eine Negativkontrolle ohne die Reverse Transkriptase (-RT) ergab keine Bande und zeigte somit an, dass keine Verunreinigung durch DNA in den Proben vorhanden war (Abb. 4.10).

4 Ergebnisse

Abbildung 4.10 | Nachweis der Expression von elfa (a), Zytokeratin 18 (b), Vinculin (c) und Kollagen Typ 1 (d) in der Schuppen-Primärkultur und in verschiedenen Passagen der Langzeit-Zellkultur OMYsd1x. Dargestellt sind die durch Kapillargelelektrophorese aufgetrennten Produkte der Reversen Transkriptase – PCR, durch die CK18 und Vinculin in verschiedenen Passagen von OMYsd1x und Kollagen 1 in Passage 19 nachgewiesen werden konnten. Als interne Kontrolle diente der elongation factor alpha (elfa). Die Negativkontrolle ist die Template-RNA ohne Quantiskript RT. Für die Überprüfung der Fragmentgröße wurde ein DNA-Größenstandard verwendet.
4 Ergebnisse

4.2.3 Analyse des Protein-Expressionsprofils


Der dritte Antikörper war gegen Kollagen Typ 1 gerichtet, welches meist in faserigem Gewebe wie Sehnen, Bändern und Haut vorhanden ist und daher als spezifisch für mesodermale Strukturen angesehen wird. Im Gewebe färbte es die Dermis und eingebettete Schuppen deutlich an, während die Epidermis ungefärbt blieb (Abb.4.11g). Ebenfalls negativ war die Färbung der Schuppenzellen, während es in OMYsd1x – Zellen wiederholt detektiert werden konnte (Abb.4.11h, f+i).

Vigilin, ein ubiquitär vorkommendes Multi-(KH)-Domäne Protein, das eine aktive Proteinbiosynthese nachweist, wurde als viert Antikörper eingesetzt. Es konnte sowohl in epidermalen als auch in dermalen Strukturen der Haut nachgewiesen werden, wobei die Detektion in der Epidermis stärker war als in der Dermis (Abb.4.11k). In den Zellkulturen konnte Vigilin nicht nur in den Schuppenzellen, sondern auch in den OMYsd1x – Zellen nachgewiesen werden (Abb.4.11l-m).
Ein weiterer eingesetzter Antikörper war Vinculin, das bei Zell-Zell-Kontakten und der fokalen Adhäsion von Zellen eine Rolle spielt. Dieser Antikörper wurde lediglich auf den OMYsd1x-Zellen sowie im Gewebeschnitt in der Epidermis (nicht gezeigt) nachgewiesen (Abb. 4.11i). Tabelle 7.2 im Anhang führt alle benutzten Antikörper und die Detektion ihrer Antigene in den untersuchten Geweben und Zellen auf.

**Abbildung 4.11 | Abbildungsunterschrift siehe S.100.**
4 Ergebnisse

Abbildung 4.11 | (S.99) Immunfluoreszenz-Färbungen von Regenbogenforellenhaust (a, d, g, k), primären Schuppenzellkulturen (b, e, h, l) und OMYsd1x–Zellen (c, f, i, m). Reihe a-c zeigt den immunzytochemischen Nachweis von Zytokeratin 18 (CK18, rot). In den Gewebeschnitten kann CK18 in der Epidermis entlang der Schuppen und in der Hypodermis detektiert werden (Pfeile). Ebenfalls positiv ist CK18 in Schuppen- und OMYsd1x – Zellen. d-f: Expressionsmuster von Zytokeratin 7 (CK 7, rot). In Gewebeschnitten sind Zellen entlang der Schuppen und in den Myosepten positiv gefärbt. Im Gegensatz zu den Färbungen des Gewebes wird CK7 in den primären Zellkulturen der Schuppen nur vereinzelt (e, Pfeil) und in den Langzeit-Zellkulturen der Passage 18 nicht gefunden. Zusätzlich zu CK7 wird bei der Analyse der Langzeit-Zellkulturen Kollagen Typ 1 markiert (grün) und bestätigt damit die folgende Färbung. g-i: Markierung von Kollagen Typ 1. Kollagen Typ 1 wird deutlich in der Dermis und um die Schuppen des Gewebeschnitte detektiert, ebenso bei den OMYsd1x – Zellen zusammen mit Vinculin (i, rot). Vinculin wurde gefärbt, um fokale Kontakte der Zellen der Langzeit-Zellkultur zur Wachstumsoberfläche zu demonstrieren. In den ausgewachsenen Schuppenzellen kann kein Kollagen Typ 1 detektiert werden, wohingegen die Schuppe selbst positiv markiert ist. Reihe k-m zeigt die Detektion von Vigilin. Vigilin kann im Gewebe sowie in beiden Zellkulturen nachgewiesen werden. Die Größenbalken entsprechen 50 μm (a, c, g, k, m), 100 μm (f, i) und 200 μm (b, d, e, h, l).


b) OMYsd1x – Zellen der Passage 37. Durchschnittlich 66 % der Zellen sind positiv für EdU (grün), mit schwacher bis starker Fluoreszenz, je nach Einbau des EdU (Pfeile). Die Größenbalken entsprechen 50 μm.

Um die Expressionsmuster der positiv getesteten Marker CK18 und Kollagen Typ 1 noch genauer zu untersuchen, wurden Zellauswuchse aus Vollhautexplantaten der Regenbogenforelle zu zwei verschiedenen Zeitpunkten untersucht. Dabei zeigte sich, dass CK18 drei Tage nach der Explantation kaum detektiert werden konnte, nach weiteren drei Tagen jedoch viele Zellen eindeutig positiv waren (Abb. 4.13a, b). Kollagen 1 konnte zu beiden Zeitpunkten in 99 % der Zellen detektiert werden, jedoch in unterschiedlichen Ausprägungen. So war Kollagen Typ 1 an Tag 3 in den Zellen gleichmäßig schwach im Zytoplasma verteilt. An Tag 6 jedoch konnten schwach und diffus fluoreszierende, Plattenepithel-ähnliche Zellverbände von stark fluoreszierenden Fibroblasten-ähnlichen Zellen unterschieden werden (Abb. 4.13c, d).
4 Ergebnisse

4.3 Versuche zur Generierung eines 3D-Fischhautmodells

Die Bildung dreidimensionaler Strukturen konnte durch fortlauende Kultivierung über den konfluenten Status hinaus erreicht werden, sodass sich ein „Häutchen“ aus der Zellmasse bildete (Abb.4.14a). Dieses konnte nach wenigen Wochen mit Hilfe eines Schabers vom Schalenboden abgelöst und mit Pinzetten vorsichtig angehoben werden (Abb.4.14b). Das Häutchen war sehr elastisch, was durch die starke Formveränderung nach Anheben und Ziehen des Häutchens deutlich wurde (Abb.4.14c).


Wurden OMYsd1x – Zellen für einen längeren Zeitraum (> 1 Monat in einer Petrischale) über den konfluenten Zustand hinaus kultiviert, konnte beobachtet werden, dass die Zellen sich selbstständig vom Schalenboden ablösten und größere Aggregate in Form von organoid bodies (OBs) bildeten (Abb. 4.15). Die Entstehung dieser OBs konnte in Timelapse-Aufnahmen dokumentiert werden (siehe Film 2 im Anhang).

Weiterhin wurde beobachtet, dass die OBs, die sich in den Schalen häufig vom Boden ablösten, beim Umsetzen in neue Schalen wieder anwuchsen. Um zu untersuchen, in welchen Bereichen dieser 3-dimensionalen Gebilde eine Proliferation stattfand, wurden OBs mit EdU markiert, anschließend in TissueTek® fixiert und Kryoschnitte angefertigt. Immunfluoreszenzaufnahmen zeigten EdU-markierte Zellen im Randbereich der OBs an (Abb.4.16a). Im inneren Teil des OBs waren hingegen nur wenige Zellen positiv für EdU. Weitere immunzytochemische Analysen mit spezifischen Markern ergaben positiv markierte Zellen für CK7, CK14 und CK18 sowie für Kollagen 1 (Abb. 4.16b-e). Dabei waren fast alle Zellen positiv für CK18 und Kollagen Typ 1, wobei letzteres die in Abbildung 4.14 gefundene Elastizität
bestätigt. Für CK7 konnten schätzungsweise mehr als 80% positive Zellen detektiert werden und für CK14 waren nur vereinzelte Zellen positiv.

Abbildung 4.16 | Immunfluoreszenz-Färbungen von OMYsd1x – OB- Kryoschnitten.


4.3.1 Kombination von OMYsd1x- und Schuppenzellen


Jeweils 5 nM Nanopartikel QTracker 605 (rote Fluoreszenz) beziehungsweise 5 nM QTracker 525 (grüne Fluoreszenz) wurden mit OMYsd1x –Zellen und primären Schuppenzellen der Regenbogenforelle inkubiert und zunächst beobachtet. Nach


4.3.2 Integration von Schuppenzellen in die OMYsd1x-Langzeit-Zellkultur

Zur Etablierung eines ersten komplexen Hautmodells aus Fisch musste eine neue Methode entwickelt werden, da sich die in 4.3.1 beschriebene Kombination von Schuppenzellen und OMYsd1x-Zellen mit Hilfe von Nanopartikeln als nicht effizient genug darstellte. Um die Zusammenführung zweier Zelltypen effektiv und in Echtzeit beobachten zu können, wurde deshalb ein konfluenter Zellrasen aus OMYsd1x –
4 Ergebnisse


Abbildung 4.18 | Mikromanipulation. Beispiel für die Schaffung einer Freifläche auf einer mit Fischhautzellen (OMYsd1x P14) konfluently bewachsenen Zellkulturplastik durch Schneiden mit Hilfe einer ultrafeinen Glaskapillare (rechts im Bild) und anschließendem Absaugen mit einer kleinen Pipette (links im Bild).

 Ergebnisse

Tagen wurde beobachtet, dass die Schuppenzellen in unmittelbarem Kontakt zu den OMYsd1x – Zellen standen (Abb. 4.19c).

Abbildung 4.19 | Schuppenintegration I: OMYsd1x – Zellen der Passage 14 mit eingesetzter Schuppe. a) nach 4 h wachsen erste Zellen aus der Schuppe aus (Pfeile). b) nach drei Tagen (3 d) hat sich bereits ein großer Zellrasen rund um die Schuppe entwickelt, teils bilden die Zellen migratorische Ausläufer (Pfeile). Es ist noch kein Kontakt zwischen Schuppenzellen und OMYsd1x – Zellen (oberer Bildrand) sichtbar. c) nach 11 Tagen (11 d) haben Schuppenzellen und OMYsd1x – Zellen direkten Kontakt (Pfeile). Größenbalken entsprechen 200 μm.

Abbildung 4.20 | Schuppenintegration II: Aktin-Färbung von OMYsd1x – Zellen der Passage 14 mit aus Schuppen ausgewachsenen Epithelzellen. a) Es bilden sich längere Ausläufer der OMYsd1x – Zellen, die bis an die Epithelzellen reichen (Pfeile). b) Stärkere Vergrößerung eines anderen Bereiches der Kontaktstellen (Pfeile) von OMYsd1x – Zellen und Schuppenzellen. Maßstabsbalken entsprechen 200 μm (a) und 50 μm (b).
### 4.4 Testung der Zytotoxizität von unterschiedlichen Kupfersulfat (CuSO₄) -Konzentrationen an Fischzellen und Säugerzellen

Die Sensitivität von Fischzellen auf Kupfersulfat im Vergleich zu Säugerzellen (murine und humane Zellen) sollte ermittelt werden um zu evaluieren, inwieweit Fischzellen eine alternative Quelle für Zytotoxizitätstestsysteem darstellen. Dazu wurde die hier etablierte OMYsd1x – Langzeit-Zellkultur gewählt und mit drei weiteren Langzeit-Zellkulturen verglichen. Diese stammten aus humaner Vollhaut, benannt mit CEsd8b, sowie aus Rattenhaut, benannt mit RAsd85b, die beide ebenfalls in der Fraunhofer EMB etabliert wurden [Kruse et al., 2006b], und aus einem Mausembryo, welche als kommerziell erhältliche Zelllinie NIH-3T3 vorlag. Kupfersulfat-Pentahydrat (CuSO₄ · 5 H₂O, im Folgenden der Einfachheit halber nur CuSO₄ genannt) wurde in den Konzentrationen von 0,1 mg/ml, 0,2 mg/ml, 1 mg/ml und 2 mg/ml eingesetzt. Als Positivkontrolle dienten Zellen, die nur mit Standardkulturmedium versorgt wurden. Als Mediumkontrollen ohne Zellen wurden 20% FKS-DMEM (Fischzellen) beziehungsweise 10% FKS-DMEM (Säugerzellen) eingesetzt.

#### 4.4.1 Echtzeitmessungen

Um eine Echtzeitmessung durchführen zu können, wurde für die ersten Tests das xCELLigence® RTCA System genutzt. 1 x 10⁴ Zellen/0,31 cm² wurden eingesät und nach 72 h CuSO₄ in den entsprechenden Konzentrationen zugegeben.

Zunächst wurde bei den OMYsd1x – Zellen beobachtet, dass ähnlich den in 4.1.2 erzielten Ergebnissen bei etwa 4 h ein lokales Maximum des Zellindex von ca. 5,5 erreicht wurde (Pfeilspitze), wonach der Wert jedoch wieder auf etwa 4,0 abfiel (Abb. 4.21). Diese mit der Passage 24 ermittelten Werte lagen damit 2,5-mal so hoch wie die Werte der Passage 12 (vgl. 4.1.2). Die Kurvenverläufe blieben jedoch ähnlich. Nach 56 h folgte ein erneuter Anstieg des Zellindex, der nach 72 h bei 5,0 lag. Durch Zugabe des CuSO₄ nach 72 h konnten je nach Konzentration sehr unterschiedliche Zellindizes gemessen werden. Bei einer hohen Konzentration von 2,0 mg/ml CuSO₄ wurde ein unmittelbarer Abfall auf unter 0,5 festgestellt. Dieser Wert änderte sich in der Folge auch nicht mehr und deutet daher auf ein Absterben der Zellen hin. Für
Ergebnisse

1,0 mg/ml CuSO₄ war die Situation ähnlich. Hier kam es zunächst zu einem kurzen Anstieg des Index, bevor nach 74 h der Index ebenfalls auf Werte unterhalb von 0,5 abfiel. Weniger stark war der Abfall bei 0,2 mg/ml CuSO₄, wo der Index nach kurzer Zeit auf 5,7 kontinuierlich bis auf einen Wert von 1,0 am Ende des Versuches sank. Bei einer Konzentration von 0,1 mg/ml CuSO₄ konnte kein deutscher Unterschied zur Positivkontrolle ohne CuSO₄ (20 % FKS-DMEM) gefunden werden. Nach einem kurzen Anstieg auf einen Wert von 5,2 fiel die Kurve auf 4,0 ab und stieg dann nach 102 h kontinuierlich auf einen Endwert von 5,9 (0,1 mg/ml CuSO₄). Die Positivkontrolle fiel auf 3,6 ab und stieg etwas stärker auf 6,5 am Ende an.

Abbildung 4.21 | Effekt von Kupfersulfat (CuSO₄) auf OMYsd1x – Zellen der Passage 24.

Dargestellt ist der Plot der Mittelwerte dreier Replikate aller über das xCELLigence RTCA System aufgenommener Zellindizes. Die Markierungen zeigen die Maxima nach Einsaat (Pfeilspitze links) und nach Zugabe des Toxins (Pfeil rechts) an. Besonders schnell war ein Zusammenbruch des CI für 1-2 mg/ml CuSO₄ zu beobachten, während der Index bei 0,2 mg/ml langsamer sank. Sowohl für 0,1 mg/ml CuSO₄ als auch für die Kontrolle wurden nach kurzem Abfall Anstiege des CI verzeichnet.

Der Vergleichstest mit den CEsd8b aus Passage 20 (Abb. 4.22) ergab ein ähnliches Resultat zu den vorher getesteten OMYsd1x – Zellen. Es wurden 1 x 10⁴ Zellen/0,31 cm² eingesät und nach 72 h CuSO₄ in den beschriebenen Konzentrationen zugegeben. Das erste Maximum wurde nach 4 h erreicht, wobei der Wert des
Zellindex bei maximal 5,75 lag. Die Kurven fielen danach deutlich auf Werte um 2,5 ab. Nachdem kein erneuter Anstieg erfolgte, wurde CuSO₄ in den beschriebenen Konzentrationen hinzugegeben, woraufhin ein direkter Rückgang auf 0,5 bei 2 mg/ml CuSO₄ erfolgte. Zeitlich versetzte fiel auch der Wert für 1,0 mg/ml CuSO₄ auf 0,3. Für 0,2 mg/ml CuSO₄ wurde ein kurzer Anstieg verzeichnet, danach sank die Kurve auf einen Index von 2,7 ab, stieg nach 85 h für ca 10 h wieder leicht an und fiel schließlich kontinuierlich bis auf einen Endwert von 0,7. Eine Konzentration von 0,1 mg/ml CuSO₄ im Medium hatte einen umgekehrten Effekt. Hier stieg der Zellindex nach Zugabe an und erreichte am Ende des Versuchs mit einem Zellindex von 4,0 einen sehr viel höheren Wert als die Positivkontrolle (10 % FKS-DMEM) mit 2,2.


Ein weiterer Test mit RAsd85b-Zellen der Passage 8 ergab im Vergleich zu OMYsd1x und CEsd8b ein anderes Gesamtbild (Abb. 4.23). Bei gleicher Zellzahl von $1 \times 10^4$
4 Ergebnisse

Zellen/0,31 cm² war das erste Maximum nach 4 h mit einem Zellindex von 3 erreicht. Die Kurven fielen danach leicht auf Werte um 2,5 ab. Es folgte ein starker Anstieg auf einen Zellindex von 4,5, bei dem nach 72 h CuSO₄ in den Konzentrationen von 2 - 0,1 mg/ml hinzugegeben wurde. Bei 2 mg/ml und 1 mg/ml CuSO₄ erfolgte ein direkter Abfall des Index auf 0. Nach kurzem Abfall des Zellindex bei 0,2 mg/ml und 0,1 mg/ml stieg er 30 h nach Zugabe des Toxins jeweils stärker an als der Index für Zellen ohne Toxin. Bei 0,2 mg/ml CuSO₄ wurde ein Index von 6,1 am Ende des Versuches gemessen, der Wert für 0,1 mg/ml CuSO₄ lag bei 5,3. Der Vergleichswert der Positivkontrolle (10 % FKS-DMEM) ohne Toxin erreichte am Ende 4,4 Punkte.

Abbildung 4.23 | Effekt von CuSO₄ auf RA85b P8 (1 x 10⁴ Zellen/0,31 cm²)

Abbildung 4.23 | Effekt von CuSO₄ auf RA85b – Zellen der Passage 8. Dargestellt ist der Plot der Mittelwerte dreier Replikate aller über das xCELLigence RTCA System aufgenommener Zellindizes. Die Maxima nach Einsaat und nach Zugabe des Toxins werden durch Pfeilspitze und Pfeil gezeigt. Für Konzentrationen von 1-2 mg/ml CuSO₄ fiel der Cl nach Zugabe sofort auf Null. Bei einer Konzentration von 0,2 mg/ml wurde zunächst ein leichter Rückgang verzeichnet, danach stieg die Kurve kontinuierlich bis auf einen Wert von 6,1 an. Einen etwas schwächeren, jedoch sehr ähnlichen Kurvenverlauf hatte die Konzentration von 0,1 mg/ml. Für 0,1 mg/ml konnte am Ende ein höherer Wert (5,3) ermittelt werden als für die Positivkontrolle ohne CuSO₄, deren Kurvenverlauf ab 72 h um 4,4 pendelte.

NIH 3T3 - Zellen der Maus, Passage 43, wurden aufgrund der hohen Proliferationskapazität der Zellen nur mit 7,5 x 10² Zellen/0,31 cm² eingesät (Abb.
4 Ergebnisse

4.24). Zunächst wurden nur sehr geringe Zellindizes gemessen, die nach 4 h bei etwa 0,5 lagen. Die Indizes stiegen jedoch sehr schnell an, sodass bei Zugabe von CuSO\textsubscript{4} nach 72 h bereits Werte von 2,6 – 3,4 erreicht waren. Bei 1 mg/ml, 0,2 und 0,1 mg/ml CuSO\textsubscript{4} erfolgte ein gestaffelter Abfall des Index auf 0. Bei 1 mg/ml CuSO\textsubscript{4} fand ein direkter Abfall statt, zeitlich verzögert passierte dies bei 0,2 mg/ml ebenfalls. Für 0,1 mg/ml CuSO\textsubscript{4} wurde zunächst ein kurzer Anstieg beobachtet und etwa 14 h nach Zugabe des Toxins ein starker Abfall der Kurve. Bei 2 mg/ml CuSO\textsubscript{4} im Medium wurde ein direkter Abfall beobachtet, allerdings war dieser nur gering und die Kurve sank danach kontinuierlich auf 1,5 ab. Der Vergleichswert der Kontrolle (DMEM 10 %) ohne Toxin stieg auf einen CI von 6 mit einem kleinen Einbruch zum Ende der Messungen, der vermutlich auf die Konfluenz des Wells zurückzuführen ist.

Abbildung 4.24 | Effekt von CuSO\textsubscript{4} auf NIH 3T3 – Zellen der Passage 43. Dargestellt ist der Plot der Mittelwerte dreier Replikate aller über das xCELLigence RTCA System aufgenommener Zellindizes. Die Maxima nach Einsaat und nach Zugabe des Toxins werden durch Pfeilspitze und Pfeil gezeigt. Bei der höchsten Konzentration an Kupfersulfat konnte ein direkter Abfall auf einen CI von 1,7 beobachtet werden, der dann langsam weiter bis auf 1,5 sank. Geringere Konzentrationen fielen allesamt auf einen CI von 0 ab, allerdings zeitlich versetzt und in Abhängigkeit zur eingesetzten CuSO\textsubscript{4} Konzentration. Die Positivkontrolle ohne Kupfersulfat stieg bis auf einen CI von 6 an und fiel nach etwa 150 Stunden vermutlich aufgrund der Konfluenz des Wells auf 5,5 ab.

Die Berechnung der Dosis-Wirkungskurven und des EC₅₀ – Wertes für die OMYsd1x – Zellen der Passage 24, gemessen 1 h, 24 h und 92 h nach Zugabe des Toxins, ergab Werte für den EC₅₀ (CuSO₄) von etwa 1,3 x 10⁻¹ g/ml CuSO₄ nach 1 h, 3,1 x 10⁻⁴ g/ml CuSO₄ nach 24 h und 8,2 x 10⁻⁵ g/ml CuSO₄ nach 92 h. Die R²-Werte lagen zwischen 0,75 und 0,96, weshalb stets ein unmittelbar linearer Zusammenhang bestand. Deutlich wurde vor allem ein Unterschied im Verlauf der Dosis-Wirkungskurven zu den verschiedenen Zeitpunkten. Nach 1 h verlief die Kurve steil abfallend, nach 24 h nahezu linear und nach 92 h flach abfallend (Abb. 4.25). Das bedeutet, dass bei einer akuten Toxizität innerhalb von 24 h ein deutlicher Effekt zu beobachten ist, der sich bei längerer Exposition zunehmend abschwächt.

Der Vergleich der Dosis-Wirkungskurven aller verwendeten Zelllinien und Zellkulturen zeigte deutliche Unterschiede der EC₅₀-Werte zwischen den Zellkulturen (Abb. 4.26). Dabei lag der R²-Wert nur nach 1 h bei allen Kulturen über 0,8, sodass zu diesem
4 Ergebnisse

Zeitpunkt von einem linearen Zusammenhang der Varianz ausgegangen werden konnte. Allerdings hatten die Fischzellen nach 1 h einen um den Faktor 1000 höheren Wert. Die größte Ähnlichkeit nach 1 h wiesen die beiden murinen Zellkulturen auf, mit EC$_{50}$ - Werten von $3,2 \times 10^{-3}$ g/ml CuSO$_4$ bei RAsd85b und $2,0 \times 10^{-3}$ g/ml CuSO$_4$ bei NIH 3T3. Nach 24 h war keine Ähnlichkeit der EC$_{50}$ - Werte von NIH 3T3 mit den anderen Zellkulturen mehr gegeben. Zu diesem Zeitpunkt und nach 92 h zeigten die humanen Zellen CEsd8b und die Fischzellen OMYsd1x ähnliche Kurvenverläufe und jeweils eine starke Korrelation mit R$^2$-Werten von 0,7 – 0,8. Die EC$_{50}$-Werte für die OMYsd1x – Zellen lagen mit $8,2 \times 10^{-5}$ g/ml CuSO$_4$ etwas höher als für die CEsd8b –Zellen mit $7,1 \times 10^{-5}$ g/ml CuSO$_4$, entsprechend war die Kurve etwas steiler abfallend. Der EC$_{50}$-Wert für die RAsd85b – Zellen lag wiederum niedriger bei $6,2 \times 10^{-5}$ g/ml CuSO$_4$. Die Kurve für die NIH 3T3 – Zellen zeigte einen anderen Verlauf und wies mit $6,9 \times 10^{4}$ g/ml CuSO$_4$ einen extrem hohen EC$_{50}$ - Wert auf (Abb.4.26).
Abbildung 4.26 | Dosis-Wirkungskurven und EC50 - Werte der getesteten Zellkulturen zu verschiedenen Zeitpunkten. Aufgetragen ist der Logarithmus der Konzentrationen in g/ml gegen die Basislinie des Zellindex. Die Bestimmungen zur Dosis-Wirkungskurve mit den Zelllinien CEsd8b der Passage 20, RAsd85b der Passage 8, NIH-3T3 der Passage 43 und OMYsd1x der Passage 24 ergaben unterschiedliche EC50 – Werte nach 1 h, 24 h und 92 h. Nach 1 h zeigten alle Zellkulturen noch sehr unterschiedliche EC50 - Werte mit der größten Ähnlichkeit von RA8d85b und NIH 3T3, dort lag die halbe inhibierende Konzentration bei 3,2 x 10⁻³ g/ml beziehungsweise bei 2,0 x 10⁻³ g/ml. Zu späteren Zeitpunkten wurden die größten Ähnlichkeiten zwischen den humanen Zellen und den Fischzellen gefunden. Hier zeigte die Referenz-Zelllinie NIH 3T3 starke Abweichungen.
4.4.2 Zeitraffer-Mikroskopie

Nach den Ergebnissen der xCELLigence®-Versuche sollte geprüft werden, was mit den Zellen im Hinblick auf ihre Morphologie und ihr Verhalten nach Zugabe von Kupfersulfat passiert. Dazu wurde für die Zeitraffer-Aufnahmen die Konzentration von 0,2 mg/ml CuSO₄ ausgewählt und diese OMYsd1x-Zellen der Passage 32 in konfluentem Zustand zugesetzt. Die Kulturschale wurde unter kontrollierten Bedingungen (20°C, 1,9% CO₂) über einen Zeitraum von zwei Tagen mit einem Zeitraffermikroskop beobachtet. In den ersten Stunden nach der Zugabe konnte kein auffälliger Effekt seitens der Zellmorphologie oder des Zellverhaltens gefunden werden. Nach 8 h schrumpften vermehrt die ersten Zellen, kugelten sich ab oder lösten sich vollständig vom Schalenboden. In den folgenden Stunden nahm die Zahl der zusammengezogenen oder abgekugelten Zellen zu, bis nach 20 h geschätzte 95% der Zellen zusammengeschrumpft waren (Abb. 4.27). Nach dieser Zeit verharrten die Zellen im geschrumpften oder abgekugelten Zustand oder wurden vom Mediumstrom weggespült (siehe Film 3 im Anhang).

Abbildung 4.27 | Zeitraffer-Aufnahmen von OMYsd1x-Zellen der Passage 32 nach Zugabe von 0,2 mg/ml Kupfersulfat. Nach 1 – 4 h sind rein morphologisch keine Veränderungen der Zellen zu sehen. Ein dichter Zellrasen bedeckt die Kulturschale. Nach 8 h kugeln sich erste Zellen ab (Pfeile) und lösen sich nach weiteren 4 h vom Schalenboden. Nach 20 h haben sich schätzungsweise 95% der Zellen abgekugelt oder zusammengezogen.
5 Diskussion

5.1 Etablierung von primären und Langzeit-Zellkulturen aus Fischzellen


5 Diskussion


5 Diskussion


Neben der Temperatur ist das Wachstum der Zellen in der Kultur stark abhängig von diversen Faktoren wie Nährstoffverfügbarkeit, Aussaatdichte oder Adhäsionsfähigkeit [Lamche et al., 1998]. Weniger wichtig für die Etablierung einer Fischzellkultur
5 Diskussion


In dieser Arbeit konnte gezeigt werden, dass im Vergleich zu den Säugerzellkulturen die CO₂-Konzentration der Fischzellkulturen auf 1.9 % angepasst werden musste. Die gewählte Konzentration von 1.9 % CO₂ simuliert die Bedingungen der Zellen in vivo. Hier liegt der physiologische pCO₂-Wert bei 10 mmHg oder weniger im Vergleich zu 30-40 mmHg bei Säugern [Lamche et al., 1998, Graham, 2006]. Wie oben bereits erwähnt, ist der Art des Puffersystems nicht entscheidend, weshalb HEPES-gepuffertes DMEM eingesetzt wurde. Die niedrigere CO₂-Konzentration hat in Form des Hydrogencarbonats aus der chemischen Bindung von CO₂ einen direkten Einfluss auf die Stabilität des pH-Wertes im DMEM-Zellkulturmedium. Fischzellen setzen durch die geringere CO₂-Konzentration weniger H+-Ionen frei, wodurch das Medium langsamer angesäuert wird. Eine Konzentration von 5 % CO₂ hätte zu einer zu schnellen Versauerung des Mediums geführt.


5.1.1 Charakterisierung der Schuppen-abgeleiteten Zellen

In dieser Arbeit wurden zwei unterschiedliche Explantate aus der Haut der Regenbogenforelle eingesetzt. Einerseits Vollhautgewebe, das sowohl die Epidermis
5 Diskussion
der Epithelzellen beschränkt blieb. Diese Ergebnisse bestärken die Annahme, dass die
terminal differenzierten Epithelzellen in der Kultur ohne Zugabe von speziellen
Wachstumsfaktoren wie EGF oder anderen, proliferationsfördernden Substanzen
nicht über einen längeren Zeitraum überleben können. Eventuell hat auch der
Initierungsgrad der Apoptose einer einzelnen Zelle unmittelbare Effekte auf die
benachbarten Zellen. In den Zeitraffer-Aufnahmen war zu erkennen, dass sich
zunächst einzelne Zellen aus dem Verband heraus lösten, wobei die Löcher durch
Proliferation und Migration von benachbarten Zellen wieder gefüllt wurden. Danach
lösten sich jedoch genau in diesem Bereich ähnlich einem Domino-Effekt immer mehr
Zellen ab. Verbliebene Zellen waren nicht mehr in der Lage, die freigewordenen
Flächen durch Zellteilung zu besetzen. Solche Effekte wurden auch für epitheliale
Säugerzellen beobachtet [Gordon et al., 2000]. Eine weitere Möglichkeit, die dazu
beigetragen haben könnte, dass diese Zellen nicht länger kultivierbar waren, ist der
Verlust der Polarität. In humanen epidermalen Keratinozyten führt ein solcher
Polaritätsverlust, hervorgerufen durch einen Defekt des Kindlin-1 Gens, zur Reduktion
der Proliferation bis hin zur Apoptose [Herz et al., 2006]. Kindlin-1 ist in humanen
epidermalen Keratinozyten an der dermalen-epidermalen Grenze lokalisiert, wo es in
fokalen Adhäsionen mit Integrin B1 und Integrin B3 interagiert und ein wichtiges
Protein für die Verbindung von Aktin mit der Extrazellulären Matrix (EZM) darstellt
[Herz et al., 2006]. In den immunzytochemischen Untersuchungen (Abb. 4.11) zeigte
sich, dass Kollagen Typ 1, ein Protein der EZM, in vivo deutlich erkennbar entlang der
Schuppen angefärbt wurde, in den Schuppenrändern in vitro hingegen nicht. Dies
könnte darauf hinweisen, dass epitheliale Zellen, möglicherweise durch den Verlust
des Kontaktes mit der EZM, Kindlin-1 nicht mehr exprimieren und dadurch ihre
Orientierung verlieren [Lamche et al., 1998]. Darüber hinaus nimmt ihre
Proliferationsaktivität ab. Ohne die EZM haben die aus den Schuppen migrierenden
Epithelzellen folglich eine nur sehr begrenzte Lebensdauer. Bereits Li et al. (2005)
zeigten für humane epitheliale Hornhautstammzellen aus dem Auge, dass eine
Beschichtung der Zellkulturschale mit verwandtem Kollagen Typ IV die Isolation und
Anreicherung dieser Zellen begünstigt hat. Auch Petschnik et al. (2011) konnten mit
Hilfe von Kollagen Typ IV beschichteten Schalen Nestin-positive Zellen aus humanen
Schweißdrüsen isolieren und etablieren. Für die epithelialen Schuppenzellen der
Fische wäre deshalb eventuell eine Beschichtung der Kultivierungsfläche mit Kollagen Typ 1 förderlich.

### 5.1.2 Charakterisierung der Vollhaut-abgeleiteten Zellen


In der Kultur wurden zunächst sowohl Zellen mesodermalen als auch ektodermalen Ursprungs vermutet. Das Ziel war, unter diesen isolierten Fischzellen die Zellen mit Stammzelleigenschaften zu finden. Sie sollten nicht nur hochproliferativ sein, sondern möglichst eine Multipotenz aufweisen und in verschiedene Zelltypen differenzieren.

**5 Diskussion**


5 Diskussion

1100 Tagen (abzüglich kurzer und längerer Kryokonservierungen) sind rein rechnerisch mittlerweile über 150 Populationsverdopplungen erreicht. Vermutlich kommt es bei Fischzellen zu einer spontanen Immortalisierung, weshalb die OMYsd 1x-Zellen noch lange Zeit proliferieren. Spontane Immortalisierung beziehungsweise unbegrenztes Wachstum von Fischzellkulturen wurde häufig beobachtet [Bols et al., 2005].


5 Diskussion


Kollagen Typ 1 hingegen wird in höheren Organismen im Bindegewebe gebildet und in die EZM eingebaut. Es wird von Fibroblasten gebildet, die jedoch bislang noch sehr schlecht charakterisiert sind. So existiert beispielsweise eine große Variabilität von humanen Fibroblasten-Phänotypen [Werner et al., 2007]. Mesenchymale Zellen wie Adipozyten können in Fibroblasten de-differenzieren, während dermale Fibroblasten einen neuen Differenzierungsstatus erhalten können und in Myofibroblasten differenzieren [Werner et al., 2007]. In jungen Zebrafischen kann während der Entwicklung der Haut Kollagen in Form von Prokollagen aber auch von epithelialen Zellen gebildet werden [Guellec et al., 2004], was vermuten lässt, dass diese Moleküle zunächst über Exozytose aus den Zellen in den subepidermalen Raum verfrachtet werden. Diese Fragen konnten jedoch bislang noch nicht beantwortet werden. Sobald jedoch Fibroblasten in die Dermis eingewandert sind, übernehmen sie die Kollagenproduktion von epidermalen Zellen [Guellec et al., 2004]. Es ist bislang nicht erforscht, ob dies ebenso für die Zellkultur gilt.

Diskussion

aufweist. Dieser Zelltyp könnte eine Progenitorzelle mit multi- oder gar pluripotenten Eigenschaften sein, die einerseits in Epithelzellen, andererseits in Fibroblasten differenzieren kann (Abb. 5.1). Für Fischzellen kann aufgrund der fehlenden Stammzell-/Progenitorzellmarker darüber jedoch nur spekuliert werden. Bislang konnte man in Fischen durch Transplantation GFP-markierter Zellen Stammzellpopulationen, beispielsweise in der Niere, nachweisen [Diep et al., 2011]. Da in der humanen Haut verschiedene Stammzellpopulationen belegt wurden, darunter bulge SCs mit ausgewiesenem keimblatt-unabhängigem, pluripotenten Stammzellpotential [Zouboulis et al., 2008], kann auch für die Fischhaut vermutet werden, dass sich dort Stammzellpopulationen befinden.


5.1.3 Selbsterneuerung, Regenerationsfähigkeit und Wundheilung im Fischzell-Modell

Die Möglichkeit, dass der EMT-Prozess dazu beiträgt, die Selbsterneuerungsfähigkeit von Zellen zu vermitteln, wurde von Mani et al. (2008) in Betracht gezogen. In der Tat sind die Prozesse zumindest oberflächlich gesehen mit denen vergleichbar, die bei Gewebereparatur und Regeneration auftreten. Diese erlauben adulten Stammzellen,

5 Diskussion

keratinozyte) Zellen wie Becherzellen oder Ionozyten, die den aktiven Ionentransport bewerkstelligen und entsprechend an der Osmoregulation des Fisches beteiligt sind, aus einem gemeinsamen Vorläufer entstehen, der über das Gen *grhl1* (*engl. grainyhead-like1*) erkannt werden kann [Janicke et al., 2010]. Ein solches Gen in der *in vitro* Kultur nachzuweisen würde zeigen, dass dort Zellen mit Progenitorstatus vorliegen.

5 Diskussion

OMYsd1x – Zellen ausgesät (siehe 4.3), war das Überleben der epithelialen Zellen verbessert, was diese These stützt. Eine Orientierungsmöglichkeit für Zellen in der Kultur kann daher hilfreich sein, wenn man bestimmte differenzierte Zelltypen erhalten möchte. Die fibroblasten-ähnlichen Zellen der OMYsd1x könnten dazu beitragen, epitheliale Zellen aus den Schuppen \textit{in vitro} zu integrieren. Wie wichtig die zelluläre Mikroumgebung für das Überleben von Zellen ist, zeigten Jeanes et al. [Jeanes et al., 2011] für Brustepithelzellen. Sie erklären zudem, dass die zelluläre Umgebung wichtiger für die Proliferation von Epithelzellen sei als Wachstumsfaktoren.

5.2 Generierung eines 3D-Fischhautmodells

5 Diskussion


5 Diskussion

5 Diskussion

5.3 Untersuchung der Zytotoxizität von unterschiedlichen Kupfersulfat (CuSO4) - Konzentrationen an Fischzellen und Säugerzellen

5 Diskussion

5 Diskussion

Die Länderarbeitsgemeinschaft Wasser (LAWA) hat als Zielvorgabe zum Schutz von Oberflächengewässern als vertretbare Konzentration für Kupfer (d.h. in Wasser gelöste, bioverfügbare Kupferionen wie Cu²⁺, CuOH⁺, Cu₂OH²⁺) auf der Basis der vierfachen mittleren natürlichen Hintergrundkonzentration einen Wert von 4 μg Cu/L empfohlen. Zur Toxizität von Kupfer für Gewässerorganismen schwanken die in der Literatur vorhandenen Angaben im Bereich von bis zu zwei Zehnerpotenzen [Spangenberg, 1999]. Für Fische (Vertreter O. mykiss) wurde als LC₅₀ - Richtwert für den akuten Toxizitätstest 10 mg Cu/L bei einer Expositionsduer von 96 h im Durchfluss ausgegeben. LC₅₀ - Werte für Kupfer in Form von CuSO₄ liegen bei etwa 74 μg/L für den Zebrafisch D. rerio [Campagna et al., 2008, Hernández und Allende, 2008]. Die in dieser Arbeit gemessenen EC₅₀ - Werte für OMYsd1x von durchschnittlich 310 mg CuSO₄/L nach 24 h Exposition müssen aufgrund des eingesetzten Pentahydrats noch anhand der molaren Massengewichte umgerechnet werden. Dadurch sind in 309 mg CuSO₄ • 5 H₂O reell ca.198 mg CuSO₄ und ca. 79 mg Cu-Ionen enthalten. Die Werte lagen damit um ca. den Faktor tausend höher als beim Zebrafisch in vivo. Bei einem Einsatz von 79 mg Cu/L zeigten also 50% der Zellen einen Effekt. Dieser muss aber nicht zwangsläufig letal sein. Wie Abb. 4.21 zeigt, war der Zellindex bei Zugabe von umgerechnet 100 mg CuSO₄/L nach 92 h ähnlich hoch wie bei der Kontrolle. Hier hatte das verfügbare Kupfer follicg keinen oder sogar einen leicht stimulierenden Effekt. Nach den Ergebnissen ist ein Effekt, der den Zellindex um 50% reduziert, zwischen 100 mg und 200 mg CuSO₄/L zu erwarten. Ein Absinken des Zellindex kann mit verringrigerter Adhäsion der Zellen korreliert werden, was auf eine mögliche Letalität der Zellen hinweist. Auf die Regenbogenforelle bezogen liegen die Werte nach 24 h damit um den Faktor 8 höher als in vivo nach 96 h. Schirmer (2006) zeigte, dass Fischzellen im Vergleich zum lebenden Fisch etwa zehnmal weniger sensitiv reagierten, aber die Daten mit den Ergebnissen der in vivo Versuche korrelierten. Die hier gemessenen Werte bestätigen daher die Literaturdaten, erhärten jedoch nicht die aus den Vorversuchen gezogenen Annahmen einer höheren Sensitivität gegenüber humanen Zellen.

Die deshalb zusätzlich durchgeführten Zeitraffer-Aufnahmen (Abb. 4.27) zeigten deutlich, dass bei einer Konzentration von 200 mg/L nach bereits kurzer Einwirkung von CuSO₄ Zellen offensichtlich apoptotisch wurden und sich zusammenzogen. Die
5 Diskussion
durch den Abfall des Zellindex angedeutete toxische Wirkung des CuSO₄ konnte deshalb an dieser Stelle bestätigt werden.


5 Diskussion


5 Diskussion

5 Diskussion

5.4 Fazit und Ausblick


In dieser Arbeit wurden die beiden Zellpopulationen erstmals in vitro zusammengeführt, um zu prüfen, ob dadurch das Überleben der Schuppen-abgeleiteten Zellen verbessert werden kann und ob dabei die Wechselwirkungen zwischen den Zellpopulationen eine Rolle spielen. In ersten Ansätzen konnte bestätigt werden, dass die Schuppenzellen in die Zellkultur der fibroblasten-ähnlichen Zellen integrierten und dort länger überlebten. Somit bietet dieses System eine neue Möglichkeit, Untersuchungen zu Zell-Zell-Wechselwirkungen durchzuführen. Weitere
5 Diskussion

Versuche wären hier interessant, beispielsweise der Nachweis von Zellkontakten über immunzytochemische Marker, ein Wachstumsfaktor-Antikörper-Array oder ein *Enzyme-linked Immunosorbent Assay* (ELISA), um sezernierte Faktoren wie Zytokine nachzuweisen.


Dabei sind die einfache Verfügbarkeit der einfrierbaren Langzeit-Zellkultur aus Fischhautzellen einerseits und die tierversuchsfreundliche Beschaffung der Schuppen andererseits deutlich vorteilhaft gegenüber etablierten zellulären Testsystemen.
6 Referenzen


6 Referenzen


6 Referenzen


Bildnachweise


7 Anhang

7.1 Ergänzende Tabellen und Abbildungen zum Ergebnisteil

Tabelle 7.1 | In der Fraunhofer EMB etablierte Zellkulturen und gelagerte Zellen aus verschiedenen Fischarten.

<table>
<thead>
<tr>
<th>Spezies</th>
<th>Wissenschaftlicher Name</th>
<th>Tier, Organe</th>
<th>Name</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sibirischer Stör</td>
<td>Acipenser baerii</td>
<td>Larve, Kopfniere</td>
<td>ABAnie 1b</td>
<td>Ciba et al. 2008</td>
</tr>
<tr>
<td>Atlantischer Stör</td>
<td>Acipenser oxyrinchus oxyrinchus</td>
<td>Larve, Pankreas, Gehirn, Körper*, Herz</td>
<td>AOXpan 2y</td>
<td>Rakers et al. (in Vorbe reitung)</td>
</tr>
<tr>
<td>Hering</td>
<td>Clupea harengus</td>
<td>Pylorus</td>
<td>CHApyl 1b</td>
<td>Langner et al. 2010</td>
</tr>
<tr>
<td>Regenbogenforelle</td>
<td>Oncorhynchus mykiss</td>
<td>Larve, Haut, Gehirn, Körper*, Leber, Kopfniere, Hypophyse, Gonaden</td>
<td>OMYsd 1x</td>
<td>Rakers et al. 2011</td>
</tr>
<tr>
<td>Maräne</td>
<td>Coregonus maxillaris</td>
<td>Larve</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wels</td>
<td>Silurus glanis</td>
<td>Juvenil</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Europäischer Aal</td>
<td>Anguilla anguilla</td>
<td>Juvenil</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stöcker</td>
<td>Trachurus trachurus</td>
<td>Haut</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Meerforelle</td>
<td>Salmo trutta fario</td>
<td>Larve</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zebrafisch</td>
<td>Danio rerio</td>
<td>Juvenil</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atlantischer Lachs</td>
<td>Salmo salar</td>
<td>Larve</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Körper entspricht einem Gemisch aus Muskel- und Hautgewebe, welches im Ganzen präpariert wurde. 1Zellen, die als Zellkultur noch nicht etabliert und beschrieben sind, aber in mindestens fünf Passagen im Cryo-Brehm gelagert sind, wurden ebenfalls aufgeführt. Organe etablierter Zellkulturen, die in eigenen Veröffentlichungen beschrieben wurden, sind rot markiert, in blau die weiteren vom Autor etablierten, bislang unveröffentlichten Zellkulturen.
Tabelle 7.2 | Übersicht über verwendete Antikörper für Detektionen an Gewebeschnitten, Schuppenzellen und den Vollhautzellen OMYsd1x.

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Marker von</th>
<th>Klonalität</th>
<th>Firma</th>
<th>Immunreakтивität im Gewebe</th>
<th>Immunreakтивität in Zellkultur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktin</td>
<td>Muskel</td>
<td>Maus mono-</td>
<td>Sigma</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>klonal</td>
<td></td>
<td></td>
<td>1x</td>
</tr>
<tr>
<td>Alpha-SMA</td>
<td>Muskel</td>
<td>Kaninchen</td>
<td>Abcam</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>polyklonal</td>
<td></td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>CK7</td>
<td>Epithelien</td>
<td>Kaninchen</td>
<td>abcma</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>polyklonal</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>CK18</td>
<td>Epithelium</td>
<td>Maus mono-</td>
<td>Santa Cruz</td>
<td>1</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>klonal</td>
<td></td>
<td></td>
<td>1x</td>
</tr>
<tr>
<td>Kollagen</td>
<td>Sekret,</td>
<td>Kaninchen</td>
<td>antikörper-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Typ 1</td>
<td>mesodermale</td>
<td>polyklonal</td>
<td>online</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Vigillin</td>
<td>Zytoplasma,</td>
<td>Kaninchen</td>
<td>Charli</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Translation</td>
<td>polyklonal</td>
<td>Kruse,</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lübeck</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Vimentin</td>
<td>Mesenchym-</td>
<td>Maus mono-</td>
<td>Dako</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td></td>
<td>male Zellen</td>
<td>klonal</td>
<td></td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Vinculin</td>
<td>Skelettmuskel</td>
<td>Maus mono-</td>
<td>Sigma</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Immunreakтивность bezieht sich auf die Intensität der Immunfluoreszenzfärbung, stellvertretend gilt ++ = hohe Intensität, + = mittlere Intensität, – = keine Färbung und o = nicht getestet. 1 Vinculin wurde entlang der Schuppen detektiert.
Tabelle 7.3 | Auflistung der RNA-Konzentrationen und 260/280 Ratio sowie der Konzentration der genomischen DNA von Regenbogenforellenhaut und verschiedenen Passagen der Zelllinie OMYsd1x. Es wurde stets eine Konzentration von \( >100 \text{ng/μl} \) für die weiteren Messungen herangezogen. Die Werte für die 260/280 Ratio liegen alle zwischen 1,8 und 2,2 und weisen somit eine hohe Reinheit auf.

<table>
<thead>
<tr>
<th>Organ/Zelllinie</th>
<th>ng/μl</th>
<th>260/280</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMY Haut I</td>
<td>241,7</td>
<td>1,82</td>
</tr>
<tr>
<td>OMY Haut II</td>
<td>195,6</td>
<td>1,83</td>
</tr>
<tr>
<td>OMYsd1xP6 I</td>
<td>150,4</td>
<td>2,17</td>
</tr>
<tr>
<td>OMYsd1xP6 II</td>
<td>140,2</td>
<td>2,20</td>
</tr>
<tr>
<td>OMYsd1xP6 III</td>
<td>394,0</td>
<td>2,10</td>
</tr>
<tr>
<td>OMYsd1xP15</td>
<td>650,7</td>
<td>2,13</td>
</tr>
<tr>
<td>OMYsd1x P19</td>
<td>2123,7</td>
<td>2,11</td>
</tr>
<tr>
<td>OMYsd1xP21</td>
<td>1613,0</td>
<td>2,12</td>
</tr>
<tr>
<td>OMYsd1xP22 I</td>
<td>545,3</td>
<td>2,15</td>
</tr>
<tr>
<td>OMYsd1xP22 II</td>
<td>937,0</td>
<td>2,13</td>
</tr>
<tr>
<td>genomische DNA</td>
<td>491,0</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 7.4 | Berechnung der Differenz der Zellindizes aus Maximum nach 10 d und Minimum nach 2 d.

<table>
<thead>
<tr>
<th>Eingesäte Zellzahl</th>
<th>2d</th>
<th>10 d</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>( 4 \times 10^4 )</td>
<td>3,5</td>
<td>5,2</td>
<td>2,7</td>
</tr>
<tr>
<td>( 2 \times 10^5 )</td>
<td>2,2</td>
<td>5,9</td>
<td>3,7</td>
</tr>
<tr>
<td>( 1 \times 10^6 )</td>
<td>1,4</td>
<td>4,4</td>
<td>3,0</td>
</tr>
<tr>
<td>( 0,5 \times 10^4 )</td>
<td>0,8</td>
<td>2,0</td>
<td>1,2</td>
</tr>
<tr>
<td>( 2,5 \times 10^3 )</td>
<td>0,3</td>
<td>0,9</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Abbildung 7.3 | Wachstumskinetiken verschiedener Passagen von OMYsd1x – Zellen gemessen am xCELLigence RTCA System. Pro well (Fläche: 0,31 cm²) wurden $1 \times 10^4$ Zellen ausgesät.

7.2 Filme

Alle Filme im avi/wmv.-Format befinden sich auf der beigefügten CD.


7 Anhang

7.3 Abbildungsverzeichnis

Abbildung 2.1 | Diversität der Vertebraten. ................................................................. 10
Abbildung 2.2 | Hautentwicklung beim Zebrafisch. ......................................................... 15
Abbildung 2.3 | Hautmodelle von Mensch und Fisch. .................................................... 18
Abbildung 2.4 | Unterscheidungen zwischen Stamm- und Progenitorzellen. ................. 20
Abbildung 2.5 | Ursprung der Stammzellen. ................................................................. 22
Abbildung 2.6 | Die Stammzellnische. ........................................................... 25
Abbildung 2.7 | Toxizitätstests in der Gewässerüberwachung. ........................................ 30
Abbildung 2.8 | Humane 3D Hautmodelle für den Einsatz in der klinischen Forschung. ................................................................................................................. 35
Abbildung 3.1 | Nucleocassette zur Messung von Zellzahlen. ............................................. 59
Abbildung 3.2 | Prinzip der xCELLigence® RTCA – Messungen. ...................................... 63
Abbildung 3.3 | Stoffabhängige mögliche Kurvenverläufe am xCELLigence® RTCA, bedingt durch Zugabe von Toxinen. ................................................................. 65
Abbildung 4.1 | Morphologie von Schuppenzellen der Regenbogenforelle (Oncorhynchus mykiss) in der Primärkultur. ................................................................. 81
Abbildung 4.2 | Elektronenmikroskopische Aufnahmen einer Regenbogenforellenschuppe. .................................................................................................................. 82
Abbildung 4.3 | Zeitrafferaufnahmen von Zellauswüchsen einer explantierten Regenbogenforellen-Schuppe über eine Dauer von 54 h. .................................................... 84
Abbildung 4.4 | Morphologie der Oncorhynchus mykiss Vollhaut 1 Explant (OMYsd1x) – Zellen in unterschiedlichen Passagen in vitro. ..................................................... 86
Abbildung 4.5 | Wachstumskurven von OMYsd1x – Zellen der Passagen 12 und 19. ....... 87
Abbildung 4.6 | Wachstumskurven der Langzeit-Zellkultur OMYsd1x der Passage 12 mit unterschiedlichen Einsaatdichten (a) und unterschiedlichen Medien (b). ............. 89
Abbildung 4.7 | Wachstumskurven der Langzeit-Zellkultur OMYsd1x der Passage 37 mit unterschiedlichen Medien und FKS-Konzentrationen. ........................................ 91
Abbildung 4.8 | Histologische Färbungen von Kryoschnitten der Regenbogenforellenhaut (O. mykiss). ........................................................................ 94
Abbildung 4.9 | PAS-Färbungen a) bei Vollhaut in vivo, b) bei Schuppenauswüchsen und c) bei OMYsd1x – Zellen der Passage 46 in vitro. ................................................. 95
Abbildung 4.10 | Nachweis der Expression von elfa (a), Zytokeratin 18 (b), Vinculin (c) und Kollagen Typ 1 (d) in der Schuppen-Primärkultur und in verschiedenen Passagen der Langzeit-Zellkultur OMYsd1x. ................................................................. 97
Abbildung 4.11 | Immunfluoreszenz-Färbungen von Regenbogenforellenhaut (a, d, g, k), primären Schuppenzellkulturen (b, e, h, l) und OMYsd1x–Zellen (c, f, i, m). .......... 99
Abbildung 4.13 | Immunfluoreszenz-Färbungen von OMYsd –Zellen aus Explanten in der Primärkultur (P0). .......................................................... 102
Abbildung 4.14 | Langzeitkultivierung von OMYsd1x – Zellen - Bildung eines Häutchens. .......................................................... 103
Abbildung 4.15 | Langzeitkultivierung von OMYsd1x – Zellen - Bildung von 3-dimensionalen Strukturen. .......................................................... 104
Abbildung 4.16 | Immunfluoreszenz-Färbungen von OMYsd1x - OB- Kryoschnitten. 105
Abbildung 4.17 | Nanopartikel auf Fischzellkulturen. .................. 106
Abbildung 4.18 | Mikromanipulation. ........................................... 107
Abbildung 4.19 | Schuppenintegration I ............................................ 108
Abbildung 4.20 | Schuppenintegration II ............................................ 109
Abbildung 4.21 | Effekt von Kupfersulfat (CuSO₄) auf OMYsd1x – Zellen der Passage 24. .......................................................... 111
Abbildung 4.22 | Effekt von CuSO₄ auf CEsd8b – Zellen der Passage 20. ................. 112
Abbildung 4.23 | Effekt von CuSO₄ auf RAsd85b – Zellen der Passage 8. .......................... 113
Abbildung 4.24 | Effekt von CuSO₄ auf NIH 3T3 – Zellen der Passage 43. .................. 114
Abbildung 4.25 | Dosis-Wirkungskurven und EC₅₀ - Werte nach Zugabe von CuSO₄ zu OMYsd1x – Zellen der Passage 24. .......................................................... 115
Abbildung 4.26 | Dosis-Wirkungskurven und EC₅₀ - Werte der getesteten Zellkulturen zu verschiedenen Zeitpunkten. .......................................................... 117
Abbildung 4.27 | Zeitraffer-Aufnahmen von OMYsd1x –Zellen der Passage 32 nach Zugabe von 0,2 mg / ml Kupfersulfat. ........................................... 118
Abbildung 5.1 | Szenario einer möglichen epithelialen Zellplastizität der in vitro Kultur von Regenbogenforellen-Hautzellen im Zuge der epithelialen-mesenchymalen-Transition (EMT). .......................................................... 133
Abbildung 5.2 | Artifizielles Fischhautmodell. ............................................ 139
Abbildung 7.1 | Zeitrafferaufnahme von Zellauswüchsen einer explantierten Regenbogenforellen-Schuppe. .......................................................... 175
Abbildung 7.2 | Mikroskopische Aufnahmen der Immunfluoreszenz von OMYsd – Zellen der Passage 18. .......................................................... 175
Abbildung 7.3 | Wachstumskinetiken verschiedener Passagen von OMYsd1x – Zellen gemessen am xCELLigence RTCA System. .......................................................... 176
7.4 Tabellenverzeichnis

Tabelle 3.1 | Chemikalien, Kits und Substanzen ........................................................... 38
Tabelle 3.2 | Arbeitslösungen. .................................................................................... 42
Tabelle 3.3 | Analysierte mRNAs. ................................................................................ 47
Tabelle 3.4 | Verwendete Primärantikörper bei der qualitativen Immunchemie. ............ 48
Tabelle 3.5 | Verwendete Sekundärantikörper bei der qualitativen Immunchemie. ........ 48
Tabelle 3.6 | Verwendung von Medium, PBS, Trypsin und Einfriermedium (EM) je Flaschen- oder Schalengröße ...................................................................................... 57
Tabelle 3.7 | Arbeitsschritte im Einbettautomaten ........................................................ 68
Tabelle 3.8 | Arbeitsschritte der HE-Färbung ................................................................ 69
Tabelle 3.9 | Arbeitsschritte der AFG-Färbung ............................................................ 70
Tabelle 3.10 | Arbeitsschritte der PAS-Färbung ............................................................ 71
Tabelle 3.11 | Arbeitsschritte der EvG-Färbung ............................................................ 72
Tabelle 4.1 | Viabilitätsbestimmung anhand der Passage 29 der Langzeit-Zellkultur ..... 92
Tabelle 7.1 | In der Fraunhofer EMB etablierte Zellkulturen und gelagerte Zellen aus verschiedenen Fischarten. ........................................................ 172
Tabelle 7.2 | Übersicht über verwendete Antikörper für Detektionen an Gewebeschritten, Schuppenzellen und den Vollhautzellen OMYsd1x. ....................... 173
Tabelle 7.3 | Auflistung der RNA-Konzentrationen und 260/280 Ratio sowie der Konzentration der genomischen DNA von Regenbogenforellenhaut und verschiedenen Passagen der Zelllinie OMYsd1x. ........................................ 174
Tabelle 7.4 | Berechnung der Differenz der Zellindizes aus Maximum nach 10 d und Minimum nach 2 d. ................................................................. 174
7.5 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFG</td>
<td>Aldehydfuchsin-Goldner</td>
</tr>
<tr>
<td>AMPs</td>
<td>antimikrobielle Peptide</td>
</tr>
<tr>
<td>ATCC</td>
<td><em>American Type Culture Collection</em></td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>cDNA</td>
<td><em>complementary DNA</em></td>
</tr>
<tr>
<td>CEsd8b</td>
<td>humane Vollhaut 8 Kollagenaseverdau</td>
</tr>
<tr>
<td>CI</td>
<td><em>cell index</em></td>
</tr>
<tr>
<td>CK</td>
<td><em>cytokeratin</em></td>
</tr>
<tr>
<td>c-Myc</td>
<td><em>myelocytomatosis transcription factor</em></td>
</tr>
<tr>
<td>CuSO₄</td>
<td>Kupfersulfat</td>
</tr>
<tr>
<td>Cy3</td>
<td>Cyanin 3</td>
</tr>
<tr>
<td>DAPI</td>
<td>4′,6-Diamidin-2′-phenylindoldihydrochlorid</td>
</tr>
<tr>
<td>DC</td>
<td><em>differentiated cell</em></td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung</td>
</tr>
<tr>
<td>DMEM</td>
<td><em>Dulbecco’s Modified Eagle Medium</em></td>
</tr>
<tr>
<td>DNA</td>
<td><em>Deoxyribonucleic acid</em></td>
</tr>
<tr>
<td>EC₅₀</td>
<td><em>effect concentration 50%</em></td>
</tr>
<tr>
<td>ECACC</td>
<td><em>European Collection of Cell Cultures</em></td>
</tr>
<tr>
<td>EdU</td>
<td>5-ethynyl-2′-deoxyuridine</td>
</tr>
<tr>
<td>EGF</td>
<td><em>Epithelial Growth Factor</em></td>
</tr>
<tr>
<td>EK-Zellen</td>
<td>embryonale Keimzellen</td>
</tr>
<tr>
<td>elfa</td>
<td><em>elongation factor 1-alpha</em></td>
</tr>
<tr>
<td>ELISA</td>
<td><em>Enzyme-linked Immunosorbent Assay</em></td>
</tr>
<tr>
<td>EMT</td>
<td><em>epithelial-mesenchymal transition</em></td>
</tr>
<tr>
<td>Epi-SZ</td>
<td>Epiblasten-Stammzellen</td>
</tr>
</tbody>
</table>
7 Anhang

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC</td>
<td><em>embryonic stem cell</em></td>
</tr>
<tr>
<td>ES-Zellen</td>
<td>embryonale Stammzellen</td>
</tr>
<tr>
<td>EvG</td>
<td>Elastika von Gieson</td>
</tr>
<tr>
<td>EZM</td>
<td>Extrazelluläre Matrix</td>
</tr>
<tr>
<td>FACS</td>
<td><em>Fluorescence-activated Cell Sorting</em></td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescin-Isothiocyanat</td>
</tr>
<tr>
<td>FKS</td>
<td>fetales Kälberserum</td>
</tr>
<tr>
<td>gDNA</td>
<td>genomische DNA</td>
</tr>
<tr>
<td>h</td>
<td>Stunden</td>
</tr>
<tr>
<td>hESC</td>
<td><em>human embryonic stem cell</em></td>
</tr>
<tr>
<td>IC&lt;sub&gt;50&lt;/sub&gt;</td>
<td><em>Inhibitory concentration 50</em></td>
</tr>
<tr>
<td>IHN</td>
<td><em>infectious hematopoietic necrosis</em></td>
</tr>
<tr>
<td>IPN</td>
<td><em>infectious pancreatic necrosis</em></td>
</tr>
<tr>
<td>iPS</td>
<td>induzierte pluripotente Stammzelle</td>
</tr>
<tr>
<td>IZM</td>
<td>innere Zellmasse</td>
</tr>
<tr>
<td>KGF</td>
<td><em>keratinocyte growth factor</em></td>
</tr>
<tr>
<td>Klf-4</td>
<td><em>Krüppel-Like Factor 4</em></td>
</tr>
<tr>
<td>LC&lt;sub&gt;50&lt;/sub&gt;</td>
<td><em>lethal concentration 50%</em></td>
</tr>
<tr>
<td>LD&lt;sub&gt;50&lt;/sub&gt;</td>
<td><em>lethal dosis 50%</em></td>
</tr>
<tr>
<td>LSM</td>
<td>Laser-Scanning-Mikroskop</td>
</tr>
<tr>
<td>MCH</td>
<td><em>Melanin concentrating hormone</em></td>
</tr>
<tr>
<td>mRNA</td>
<td><em>messenger RNA</em></td>
</tr>
<tr>
<td>NIH-3T3</td>
<td>National Institute of Health – 3T3 Mausembryo</td>
</tr>
<tr>
<td>OB</td>
<td>organoid body</td>
</tr>
<tr>
<td>Oct3/4</td>
<td><em>Octamer-binding Transcription factor 3 and 4</em></td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OMYsd1x</td>
<td>Oncorhynchus mykiss Vollhaut 1 Explant</td>
</tr>
<tr>
<td>P</td>
<td>Passage</td>
</tr>
<tr>
<td>PAS</td>
<td>Periodic Acid Schiff</td>
</tr>
<tr>
<td>PGCs</td>
<td>primordial germ cells</td>
</tr>
<tr>
<td>RAsd85b</td>
<td>Rattenvollhaut 85 Kollagenaseverdau</td>
</tr>
<tr>
<td>REACH</td>
<td>Registration, Evaluation, Authorisation of Chemicals</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse-Transkriptase Protein Chain Reaction</td>
</tr>
<tr>
<td>SCs</td>
<td>stem cells</td>
</tr>
<tr>
<td>Sox2</td>
<td>SRY (Sex determining Region Y) - Box 2</td>
</tr>
<tr>
<td>TGF-ß</td>
<td>transforming growth factor beta</td>
</tr>
<tr>
<td>VHS</td>
<td>viral hemorrhagic septicemia</td>
</tr>
<tr>
<td>WME</td>
<td>William's Medium E</td>
</tr>
<tr>
<td>xCELLigence® RTCA</td>
<td>xCELLigence® Real-Time Cell Analysis</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentralnervensystem</td>
</tr>
</tbody>
</table>
7.6 Eidesstattliche Versicherung


Lübeck, den 09.01.2012
7.7 Danksagung

Prof. Dr. Charli Kruse möchte ich für die Möglichkeit danken, meine Doktorarbeit an der Fraunhofer EMB in einem spannenden und anwendungsorientierten Forschungsfeld durchführen zu können. Danke für die wertvollen Anregungen, die Unterstützung bei meinen Vorhaben, die vielen Freiheiten während des Forschens und die Rückendeckung für meine Entscheidungen. All dies hat mich beeindruckt und geprägt, fachlich wie auch persönlich.

Prof. Dr. Ralf Paus danke ich sehr für die Übernahme des Zweitgutachtens und für die hochproduktiven Gespräche während der Anfertigung meiner Dissertation und bei den Seminaren in der Dermatologie.

Dr. Marina Gebert möchte ich für die außergewöhnlich gute Betreuung während meiner Doktorarbeit danken, insbesondere für die vielen Hilfestellungen bei der Erstellung der Arbeit, den interessanten wissenschaftlichen Gesprächen und für das hohe Engagement.

Allen Mitarbeitern der Fraunhofer EMB gebührt mein Dank, insbesondere der Arbeitsgruppe Aquatische Zelltechnologie für die gute Zusammenarbeit und die vielen fachlichen und freundschaftlichen Gespräche. Besonderer Dank geht an Dr. Phillip Ciba und Emel Singh für die Einführung in die Welt der Zellen, an Carolin Wiencke für die Aufnahmen am LSM und die Zellversorgung, an Tim Becker für die Hilfen an der Timelapse und an PD Dr. Matthias Klinger und Jutta Endler für die EM-Aufnahmen.

Mein Dank gilt auch der Landesforschungsanstalt für Landwirtschaft und Fischerei in Born und der Fischzucht Reese in Sarlhusen für die Regenbogenforellen.

Ich danke Anna E. Petschnik, Stephanie Langner, Lars Lüllwitz, Lea M. Sieker und Jessica Luttermann für die kritischen Anmerkungen und ihre Hilfestellungen bei der Korrektur der Arbeit.

Mein persönlicher Dank geht an „Room 5 and Friends“ für die tolle Zeit, den vielen Spaß und die Kraft während der letzten Jahre.

Mein größter Dank gilt meiner Familie, insbesondere meinen Eltern und Brüdern, die mich stets unterstützt und gefördert haben und immer für mich da sind, und an Jessi, für ihr großes Herz, ihren unermüdlichen Rückhalt und ihre große Liebe. Danke!
8 Sonstiges

8.1 Wissenschaftliche Publikationen

Artikel peer-reviewed:


→ Teile dieser Dissertation wurden in dieser Publikation vorab veröffentlicht.
**Rakers, S.,** Niklasson, L., Steinhagen, D., Kruse, C., Schauber, J. and Paus, R. 
Antimicrobial peptides (AMPs) from fish epidermis: What can fish mucus do for investigative dermatology and aquaculture? *In preparation.*

**Weitere Artikel:**


**Posterpräsentationen:**


**Rakers, S.,** Grunow, B., Gebert, M., and Kruse C. Fish Cells grown *in vitro* are able to build Organoid-Like Bodies and can be used for 3D-Cell Cultures. *Aquaculture Europe, August 2009, Trondheim (Norwegen).*


8 Sonstiges


**Vorträge:**


8 Sonstiges

Session-Chair: YouMaRes 2.0 conference, Session „Marine Technology“. September 2011, Bremerhaven.


Betreute Bachelorarbeiten

Caroline Weber
Generierung von Primern zur Untersuchung der mRNA-Expression in Fischzellen am Beispiel von *Oncorhynchus mykiss*. 2009 (Note: 1,3)

Joana Frobel
*In vitro* Assays zur Messung der Zytotoxizität bei Hautzellen der Regenbogenforelle (*Oncorhynchus mykiss*) im Vergleich zu humanen Hautzellen. 2010 (Note: 1,3)

Fabian Imse
Etablierung des PrestoBlue™-Assays als schnellen Zytotoxizitätstest an Fischzellen und Vergleich mit etablierten Assays. 2011 (Note: 1,3)
8 Sonstiges

8.2 Diplom-Urkunde

Die Carl von Ossietzky Universität Oldenburg, Fakultät für Mathematik und Naturwissenschaften, verleiht mit dieser Urkunde

Herrn Sebastian Rakers

geboren am 27. November 1980 in Nordhorn
den Hochschulgrad

Diplom-Biologe
(Dipl.-Biol.)
nachdem er die Diplomprüfung im Studiengang Biologie am 15. Juni 2007
mit der Gesamtnote SEHR GUT bestanden hat.


(Siegel)

Der Dekan der Fakultät
Universitätsprofessor Dr. Parisi

Die Vorsitzende
des Prüfungsausschusses
Hochschuldozentin Dr. Wilthe
apl. Professorin