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Summary      

 

A large number of protein sequences are being accumulated in genomic databases day by day. It 

has become a challenging task for researchers to identify the functions of these new proteins. 

Over the years, numerous methods to detect sequence similarity, such as BLAST and FASTA, 

have been developed and gained popularity due to their high success rates. However, these 

methods failed when the pairwise sequence similarities get lower and such an alignment-based 

method would rarely yield satisfactory prediction. Therefore, there is a need for alignment-free 

methods (machine learning models) for predicting functions of proteins and its inferences which 

remains as one of the most important research areas in bioinformatics [1-12].  

 

Application of machine learning techniques has significantly benefited diverse areas including 

cell and molecular biology. Machine learning methods have been broadly classified into two 

main categories : supervised and unsupervised machine learning methods. The main objective of 

the proposed thesis work is to develop new sequence analysis tools utilizing machine learning 

algorithms for molecular cell biology problems [1-5, 10]. 

 

In this thesis, the usefulness of support vector machine and random forest for protein function 

prediction are extensively tested by applying it to the classification of a variety of functionally 

distinguished classes of proteins. These include classical and non-classical secretory proteins, 

extracellular matrix proteins and subcellular location of apoptosis proteins [1, 4, 5]. These 

classes of proteins are suitable for testing support vector machine and random forest as they 

represent proteins of diversely different functions that cover protein synthesis regulation, 

regulation of host cell infection, protein self-association, molecular signaling and drug discovery. 

 

Some proteins may not have adequate sequence similarities although they share similar 

structures and biochemical functions. Identification of antifreeze and bioluminescent proteins 

from protein sequence is more interesting due to the low pairwise sequence similarity which 

often falls below the twilight zone [2, 3]. So far, no specific method has been reported to identify 

protein families (antifreeze and bioluminescent) from primary sequence. In this thesis work, we 
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have developed machine learning method to annotate hypothetical proteins of antifreeze and 

bioluminescent families. 

 

We have developed a classification model to predict proteins pertaining to post-translational 

pathway and tested the top ranked predicted protein candidates experimentally. This work has 

identified putative signals on mammalian protein sequences that sign statistically responsible for 

the translocation pathway. An improved model for this sorting process has potential practical 

applications i.e. in gene therapies and the understanding of pathogen physiology since it allows 

assignment of subpathways of topogenesis to different proteins that are secreted. 

 

In this thesis, various frequencies of amino acids were used to predict the cellular functions or 

location of proteins and protein functional families. Different feature selection and machine 

learning algorithms have been used to process the large amount of training and test data. The 

results obtained are quite good and validate the use of these machine learning methods. Thus, the 

tools developed by us will provide useful insights for both basic research and drug design. 
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1 Biological Background 

1.1 Motivation 

The understanding of the biological function of proteins remains a prodigious task in biology. 

Due to remarkable growth in molecular biology, the genome sequences of many prokaryotic and 

eukaryotic organisms were obtained. With the new advancement in DNA sequencing techniques, 

new putative proteins are added to the databases in a much faster rate than they can be tested 

experimentally to determine the function. Thus a fundamental challenge in computational 

biology is to develop efficient and accurate algorithms to classify putative proteins and associate 

them with families of proteins with known functions. 

 

Protein function classification is a vital aspect of genome annotation that primarily depends on 

sequence similarity (Lipman and Pearson, 1985). Over the years, numerous methods to detect 

sequence similarity, such as BLAST and FASTA, have been developed and gained popularity 

due to their high success rates (Pearson and Lipman, 1988; Altschul et al., 1990; Altschul et al., 

1997). However, these methods may fail when the pairwise sequence similarities get lower and 

such an alignment-based method would rarely yield satisfactory prediction. Therefore, there is a  

need for alignment-free methods (machine learning models) for predicting functions of  proteins 

and its inferences, which remains as one of the most important research areas in bioinformatics 

(Chou, 2011). 

 

Application of machine learning techniques has significantly benefited diverse areas including 

cell and molecular biology (Chou, 2011). Many algorithms have been devised so far to solve 

problems that can be broadly classified into three different categories viz. pattern 

recognition/classification, regression/function approximation and density estimation (Vapnik, 

1995). The main objective of the proposed thesis work is to develop new sequence analysis tools 

utilizing machine learning algorithms for molecular cell biology problems.  

 

In this thesis, recent developments in machine learning and artificial intelligence are explored. 

Emphasis is mainly made on solving important pattern recognition problems, for which the 

support vector machine (SVM) and random forest (RF) are used extensively. Machine learning 
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techniques like data compression, feature selection, dimension reduction, etc. are used (as a 

preprocessing step to main algorithm) to process the large amount of data. These algorithms 

were applied to biological problems like classical and non-classical protein secretion, 

extracellular matrix prediction, subcellular location of apoptosis proteins, antifreeze and 

bioluminescent proteins (explained in detail in the following chapters). The results obtained were 

quite good and therefore justify the use of these modeling methodologies. Thus, the tools 

developed in this thesis provide insights for both fundamental research and drug design.  

 

We developed a classification model to predict proteins pertaining to post-translational pathway. 

We tested the top ranked predicted protein candidates experimentally. This work has identified 

putative signals on mammalian protein sequences that sign statistically responsible for the 

translocation pathway (Rapoport, 2007). An improved model for this sorting process has 

potential practical applications i.e. in gene therapies and the understanding of pathogen 

physiology since it allows assignment of sub pathways of topogenesis to different proteins that 

are secreted. 

 

1.2 Biological Background 

1.2.1 From DNA to Proteins 

Cells are the essential working units of every living system. The nucleus of every cell in 

eukaryotic organisms (including animals and plants) contains a large DNA (Deoxyribonucleic 

acid) molecule, which carries the genetic information of every organism (Nelson and Cox, 2005). 

 

DNA consists of two long chains of nucleotides. Each nucleotide is composed of a nitrogenous 

base, one phosphate molecule and one sugar molecule. Four different bases are contained in 

DNA: adenine (A), thymine (T), cytosine (C), and guanine (G). The particular order of the bases 

in any of the DNA strands is called the DNA sequence. The two DNA strands are 

complementary, which means that they contain the same genetic information (the information is 

duplicated) and are held together by weak hydrogen bonds (Berg et al., 2002).  

 

The DNA sequence contains instructions for the synthesis of a protein. These are the specific 

sections of the DNA sequence usually called genes. The way how information stored in the DNA 
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is passed on for synthesis of proteins is called central dogma of molecular biology (Crick, 1958). 

A simplified scheme of this process is illustrated in Figure 1.1. This is commonly represented by 

two main steps as follows: 

 

 

Figure 1.1: Scheme of the central dogma of molecular biology (taken from 

http://medicinexplained.blogspot.com/) 

 

(i) Transcription (DNA → mRNA) 

Transcription is the process by which information coded in a specific segment of the DNA 

sequence (or gene) is passed to a RNA molecule called messenger RNA (mRNA). RNA 

molecules are similar to DNA in composition. They also consist of a chain of nucleotides, but 

contain only one strand and use different nitrogenous bases and sugars. The process by which 

genes are transcribed into a RNA molecule is usually called gene expression (Berg et al., 2002). 

 

(ii) Translation (mRNA → Protein) 

Translation is the process where genetic information now coded in the mRNA is used to 

synthesize a specific protein. This process is mediated by other macromolecules called 
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ribosomes and also other types of RNA molecules. The genetic information is translated from a 

chain of nucleotides (mRNA) to a chain of amino acids. This is done using the genetic code, 

where a nucleotide triplet (codon) is associated with a specific amino acid. The protein contains 

20 different amino acids. The final sequence of amino acids generated corresponds to what we 

know as a protein (Champe et al., 2004). 

 

1.2.2 Molecular biology databases 

Molecular biology databases play a vital role in Computational Biology (Baker et al., 1999). 

Currently, there are 1330 molecular biology databases available for computational analyses 

(Galperin and Cochrane, 2011). These databases are extremely useful for investigation purposes 

since they give researchers access to huge amounts of data, which can be searched, inspected, 

and used for any analysis. Table 1.1 illustrates some of the commonly used databases. 

 

Most molecular biology databases are very large: e.g. SWISS-PROT contains 529056 sequence 

entries comprising 187423367 amino acids abstracted from 198689 references (Release 

2011_06). There is an exponential growth rate in these databases. The growth rate and actual size 

of most molecular biology databases have become a serious problem: without automated 

methods such as data mining and knowledge discovery algorithms, the data collected cannot be 

fully exploited. 

 
Database 

Name 

Description Reference 

EMBL It maintains Europe's primary nucleotide sequence 

data resource 

http://www.ebi.ac.uk/embl/ 

(Stoesser et al., 2002) 

 
SWISS-PROT It contains high-quality annotation, non-redundant, 

and cross-referenced to several other databases 

(EMBL nucleotide sequence database, PDB and 

PROSITE pattern database) 

 

 

http://www.ebi.ac.uk/swissprot/ 

(Bairoch and  Apweiler, 2000) 

NCBI/GenBank It is a collection of publicly available annotated 

nucleotide sequences, including mRNA sequences 

with coding regions, segments of genomic DNA 

with a single gene or multiple genes, and ribosomal 

RNA gene clusters 

 

http://www.ncbi.nlm.nih.gov 

/Genbank/index.html 

(Benson et al., 2000) 

PDB It contains information about experimentally 

determined structures of proteins 

 

http://www.rcsb.org/pdb/ 

(Berman, 2008) 

IPI It describes the proteomes of higher eukaryotic 

organisms (Human) 

http://www.ebi.ac.uk/IPI/IPIhelp.html 

(Kersey et al., 2004) 
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PROSITE It consists information about biologically significant 

sites and patterns 

http://www.expasy.org/prosite/ 

(Sigrist et al., 2010) 

Pfam It is the collection of different protein families and 

domains 

http://www.sanger.ac.uk/resources/data

bases/pfam.html 

(Finn et al., 2010) 

 
Gene Ontology It standardizes the representation of gene and gene 

product attributes across various species and 

databases 

 

http://www.geneontology.org/ 

(Gene Ontology Consortium, 2010) 

 

MEDLINE 

 

It is a bibliographic database covering the fields of 

medicine, nursing, dentistry, veterinary medicine, and 

the preclinical sciences 

http://www.ncbi.nlm.nih.gov 

/PubMed/ 

(Roberts, 2001) 

 

 

Table 1.1: Common molecular biology databases 

 

1.3 Thesis Organization 

Chapter 2 describes the conventional machine learning methods, feature selection and feature 

encoding methods that have been used in our work.  

 

Chapter 3 presents the work on protein function classification. Knowledge about the function of 

proteins is vital in the understanding of biological processes. In this chapter, the usefulness of 

SVM and RF for protein function prediction is extensively tested by applying it to the 

classification of a variety of functionally distinguished classes of proteins. These include 

classical and non-classical secretory proteins, extracellular matrix proteins, and subcellular 

location of apoptosis proteins.   

 

Chapter 4 presents the work on protein family classification. Identification of antifreeze and 

bioluminescent proteins from protein sequence is more interesting due to the poor sequence 

identity which often falls below the twilight zone. In this chapter, we present machine learning 

methods to annotate hypothetical proteins of antifreeze and bioluminescent families. 

 

Chapter 5 describes co and post translocation. Interestingly, many proteins of the immune system 

seem to prefer the post-translational transport. We developed an in-silico model to predict 

proteins pertaining to the post-translational pathway. Top ranked candidate proteins were tested 

for their translocation behavior. Therefore, these proteins were analyzed in in vitro 
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translation/translocation assays suitable for co or post-translational protein translocation into ER-

membranes, respectively. 

 

Chapter 6 will give a conclusion of the thesis. 
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2 Machine learning algorithms and feature representation 
 

2.1 Machine learning 

Machine learning which deals with the study and analysis of large quantities of data in order to 

discover meaningful patterns. Most of the data mining algorithms need substantial amount of 

data in order to construct and train the models that will then be used to accomplish classification 

or regression. Machine learning methods have been applied broadly within the field of 

computational biology such as predicting protein subcellular location (Chou and Cai, 2002; Cai 

et al., 2002a), membrane protein types (Cai et al., 2003a; Cai et al., 2004a), protein structural 

classes (Cai et al., 2002b), specificity of GalNAc-transferase (Cai et al., 2002c), HIV protease 

cleavage sites in proteins (Cai et al., 2002d), beta-turn types (Cai et al., 2002e), protein signal 

sequences and their cleavage sites (Cai et al., 2003b), alpha-turn types (Cai et al., 2003c), 

catalytic triads of serine hydrolases (Cai  et al., 2004b), micro-array and gene expression analysis 

(Brown et al., 1999), Drug discovery (Burbidge et al., 2001; Zernov et al., 2003), biomarker 

discovery (Prados et al., 2004) and among many others. Machine learning is organized into 

taxonomy, based on the desired outcome of the algorithm.  

 

2.1.1 Supervised learning methods 

Supervised learning typically consists of relating a series of attributes of the data to a specific 

class or numerical value known as a label of that specific instance. Wide spread  algorithms used 

in supervised learning are Decision trees, Nearest neighbor classification, Artificial neural 

networks, Support vector machines, and Random forest (Tarca et al., 2007). 

 

2.1.2 Unsupervised learning methods 

In unsupervised learning, the data do not have class label. The task is to group the given data into 

clusters based on the common features they share. Principally, one needs to explore the data and 

discover similarities between the objects. Wide spread algorithms in unsupervised learning are 

hierarchical clustering, K-means clustering, self-organizing feature maps (SOFM), and principal 

component analysis (Hinton et al., 1999; Tarca et al., 2007). 
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2.2 Classification Algorithms 

2.2.1 Support Vector Machines  

The support vector approach originally proposed by Glucksman (Glucksman, 1966) and Vapnik 

(Vapnik, 1995) and later developed and popularized by a number of authors is also known 

universally as a feed forward network (Cortes and Vapnik, 1995; Burges, 1998; Scholkopf et al., 

1999; Cristianini et al., 2000). SVMs employ the structural risk minimization (SRM) principle. 

This principle is based on the fact that the error rate of a learning machine on test data is 

constrained by the sum of the training error rate and Vapnik-Chervonenkis (VC) dimension. The 

VC dimension is a measure of complexity of the decision space. It facilitates quantitative means 

of discriminating between the capacities of different classifiers. For non-linear and non-separable 

problems, the support vector methodology provides a decision space with a minimal VC 

dimension and training error so that the classifier has a low probability of generalization errors. 

 

2.2.1.1 SVM classifier for linearly separable patterns 

Consider a binary classification training sample {(xi, yi)} i=1, 2… N where  xi is the vector of the 

input pattern for the i
th

 example and yi is the corresponding target output. The pattern represented 

by the subset yi = +1 belongs to class 1 and the pattern represented by the subset yi = −1 belongs 

to class 2. For linearly separable data, there is a hyperplane defined by 

                        (2.1) 

that separates the data into two different classes for optimal separation, the distance between the 

closest data points to the hyperplane must be maximal. 

 

With the above constraint on w and b, it can be shown that (Figure 2.1) the distance between the 

closest point belonging to two different classes (margin) can be obtained as (Gunn, 1997) 
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Figure 2.1: Maximum margin-minimum norm classifier 

 

      (   )  
 

     
         (2.2) 

and the separating hyperplane satisfies 

        (       )                    (2.3) 

 

From the above equation, it can be found that the maximum margin hyperplane is obtained by 

minimizing the norm of the weight vector. It can be shown that such a norm minimization is 

equivalent to minimizing an upper bound on the VC dimension. Thus the maximum margin 

hyperplane has a very high probability of simultaneously having the least training error as well 

as generalization error. 

 

To maximize the margin, the task is therefore to minimize the function  

     ( )  (   )                (2.4)  

 

such that        (       )           . 
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The cost function (2.4) is a convex function of w and the constraints are linear in w. Thus, we can 

solve the constrained optimization problem by constructing the augmented Lagrangian function 

(Bishop, 2006) 

   (     )  
 

 
    ∑   ,  

 
   (       )   -                 (2.5) 

 

The solution of the constrained optimization problem is determined by the saddle point of the 

Lagrangian function L (w, b, α) which has to be minimized with respect to w and b. It is well 

known in the optimization literature, it would be useful to construct a dual problem. Expansion 

of the primal problem term-by-term and after suitable manipulation, the Wolfe dual Lagrangian 

can be written as 

    ( )  ∑    (   )∑         (    )
 
     

 
             (2.6) 

 

which must be maximized with respect to αi subject to the constraints 

                               (2.7) 

     ∑     
 
                  (2.8) 

 

So our task of binary classification reduces to the above maximization problem i.e. equations 

(2.6) to (2.8). It can be seen from equation (2.6) that the Lagrangian dual is cast entirely in terms 

of the training data. Also, we notice that the data points appear only inside the dot product. 

Solution of equations (2.6) - (2.8) determines the optimal separating hyperplane as   

 

     ̅  ∑   ̅  
 
               (2.9) 

 

                                  ̅     . 
 

 
/  ̅ ,     -       (2.10) 

                                       

 

The points for which Lagrange multipliers αi are non-zero and those which lie on the margin of 

the separation, are termed support vectors. For linearly separable data, all the support vectors 

will lie on the margin of separation and the number of support vectors will be small, the optimal 

hyperplane can be determined by a small subset of the training set. The hyperplane can be found 

out just by using these support vectors. Thus, a support vector machine summarizes information 
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content of a dataset using support vectors. Since no training errors are allowed, this optimization 

problem is called the hard margin. If the separating hyper plane is allowed to pass through the 

origin by selecting a fixed value b = 0, then in that case the SVM formulation is called the hard 

margin SVM without threshold. 

 

2.2.1.2 Optimal Hyperplane for linearly non-separable patterns 

For linearly non-separable data, it is not possible to construct a hyperplane without a certain 

amount of classification errors. We can find an optimal hyperplane that minimizes the 

probability of occurrence of classification errors, averaged over the training sets by introducing a 

set of non-negative scalar slack variables in the definition of the separating hyperplane in the 

form of a penalty function 

      (       )     
 
    i= 1, 2…  N     (2.11) 

where  
 
 ≥ 0. The generalized optimal separating hyperplane is determined by finding the vector 

w that minimizes the functional 

    (   )  (   )        ∑  
 

 
         (2.12) 

 

(where, C , is a given value) subject to the constraints in equation (2.11). 

 

The saddle point of the Lagrangian corresponds to the solution to the optimization problem of 

equation (2.12) under the constraints of equation (2.11). It can be shown that the dual solution 

can be obtained as 

 

     ( )        (   )∑ ∑   
 
   

 
         (    )   ∑   

 
        (2.13) 

 

with the constraints, 

0           i=1…  N     (2.14) 

                               ∑     
 
                         (2.15) 

Thus the problem for the case of linearly non-separable patterns is similar to that of the simple 

case of linearly separable patterns except that the constraints     ≥ 0 are now replaced by the 
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more stringent constraints 0 ≤     ≤ C. The parameter C controls the tradeoff between complexity 

of the support vector machine and the number of non-separable points. It may therefore be 

necessary to view this parameter in the form of a regularization parameter. This parameter has to 

be selected by the user. In case of non-separable data one needs to allow for training errors and 

the algorithm is usually called the soft margin SVM algorithm. 

 
2.2.1.3 Non-linear Support Vector Machines 

The methods developed in the above sections are for linear classifiers and as such cannot deal 

with non-linearly separable data. The task of generalizing SVMs to handle nonlinearly separable 

data can be accomplished by mapping the data into a richer higher dimensional feature space and 

by subsequently using a linear classifier. The mapping of the input data x in the feature space 

x→ Φ(x) where they are linearly separable is shown schematically in Figure 2.2.  

 

Figure 2.2: Mapping of data into feature space for linear separability 

 

Therefore in the higher dimensional feature space equation (2.13) can be written as 

 

  ( )   ∑   
 
    (   )∑       

 
        (  ) (  )                (2.16) 
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Working in a higher dimensional feature induces a computational problem of having to deal with 

very large vectors. This problem can be solved by introduction of implicit mapping by kernels. A 

kernel function is defined as 

      (     )   (  )   (  )    (2.17) 

The idea of kernel functions is to perform operations in input space rather than the very high 

dimensional feature space (Burges, 1998). In other words, an inner product in the feature space 

has an equivalent kernel in the input space. Thus equation (2.16) can be written in the form of 

kernel functions in the low dimensional input space as 

 

   ( )   ∑   
 
    (   )∑       

 
        (     )   (2.18) 

subject to the constraints 

0               … N       (2.19) 

∑     
 
               (2.20) 

 

After the optimal values of    have been found, the decision function is based on the sign of 

 

    ( )   ∑   
 
       (     )        (2.21) 

 

Since the bias b does not feature in the dual formulation, it is found from the primal constraints 

 

  (    ),     
*        +

( ∑        (      ))     
*        +

( ∑        (     ))- 

 

   *  +

 

 

    *  +

 

  (2.22) 

where m are the number of support vectors. 

 

It is the compact convex quadratic optimization form of SVM having a unique solution that has 

attracted researchers from different areas. One can thus map the SVM classification problem into 

a standard quadratic programming problem (QP) and solve it with the QP solvers. The kernel 



 

14 
 

function appearing in the problem can be selected by using the Mercer‟s theorem. The kernel 

matrix contains all the necessary information for the support vector machine learning algorithm 

and is generally known as the information bottleneck. A list of popular kernels is shown in Table 

2.1. The definitions of hard margin SVMs and soft margin SVMs are valid for the non-linear 

SVMs also. 

 

S. No Name of the kernel 

 

Expression 

 1 Polynomial 

 

K(     )   .(     )   /
p
 

2 Gaussian Radial Basis Function 

 

 (      )    (
‖     ‖ 

    
) 

3 Exponential Radial Basis Function 

 

 (      )    (
|     |

    
) 

4 Perceptron 

 

 (     )      ( (     )   ) 

5 Fourier Series 

 

 (     )  
   .  

 

 
/(     )

   .
 

 
/(     )

 

N= dimension of the space 

 

 

6 Tensor Product Splines 

 

 (     ) ∏   (       )
 
    

 

Table 2.1: Different types of kernel functions (Burges, 1998) 

 

2.2.2 Random Forests 

Random Forest is an ensemble decision tree classifier, which incorporates two effective machine 

learning techniques (bagging and selection of feature from random subspace) into a single 

method.  Random forest is a collection of decision trees, where each tree is grown using a subset 

of the possible attributes in the input feature vector, instead of using complete features in all 

trees. 

 

2.2.2.1 Introduction 

The concept of random forest (RF) was proposed by Leo Breiman in 1999. It is an ensemble of 

randomly constructed independent decision trees (Breiman et al., 1984). It is one of the most 

popular ensemble methods that are robust to noise, without overfitting, fast and offers 
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possibilities for explanation and visualization of its output. In the random forest method, a large 

number of classification trees are grown and combined. It uses bootstrap sampling technique, 

which is an improved version of bagging. It generally exhibits substantial performance 

improvement over single tree classifiers such as CART and C4.5 (Ross Quinlan, 1993; Breiman, 

2001). 

 

Decision trees provide an effective approach in a tree-like graph of model to predict the probable 

decision of a system by analysing various associated parameters. The random forest 

classification extends the concept of decision trees and has been successfully employed in 

developing solutions for a variety of problems in biology including tumor classification, 

microarray analysis, prediction of protein-protein interactions and classification of microRNAs 

etc (Dudoit et al., 2002; Svetnik et al., 2003; Wu et al., 2003; Chen and Liu, 2005; Lee et al., 

2005; Qi et al., 2005; Diaz-Uriarte and Alvarez de Andres, 2006; Jiang et al., 2007; Statnikov  et 

al., 2008).  

 

2.2.2.2 Algorithm 

In random forest, each tree differs from all others owing to the randomness introduced in random 

forest  algorithm in two ways: first,  in the sample dataset for growing the tree and second,  the 

choice of  subset of attributes for node splitting while growing each tree (Breiman, 2001). Such a 

RF is grown in the following manner:  

 

(i) From the training data of „n’ instances, draw a bootstrap sample (i.e. randomly sample, with 

replacement, „n‟ instances). 

(ii) For each bootstrap sample, a classification tree is grown with the following modification: 

choose the best split among a randomly selected subset of m (rather than all) features at each 

node. Each tree is grown to the maximum size. 

(iii) Repeat the above steps until (a sufficiently large number) N such trees are grown. 

 

For each tree, a bootstrap sample (with replacement) is drawn from the original training data set, 

i.e. a sample is taken from the training data set and is then replaced again in the data set before 

drawing the next sample. Likewise, „n‟ numbers of samples are taken to form „In-Bag‟ data for a 
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particular tree, where „n‟ is the size of the training data set. The main advantage of bootstrap 

sampling is to avoid over fitting the training data. In each of the bootstrap training sets, about 

one-third of the instances are unused for making the „In Bag‟ data on an average and these are 

called the Out-Of-Bag (OOB) data for that particular tree (Bylander, 2002). The classification 

tree is induced using this „In-Bag‟ data using the CART (Classification and Regression Trees) 

algorithm. 

 

In the CART algorithm for growing a single binary classification tree, each node is checked 

whether it is a leaf node or not (Breiman et al., 1984). If it is not a leaf node, i.e. if all the data 

doesn‟t belong to a single class, Gini Index is first calculated for each of the attributes „ai‟ in the 

following manner: If a node contains dataset T with examples from „n‟ number of classes, gini 

index, gini (T) is defined as: 

    ( )    ∑   
   

                                            (2.23)  

 
Where pj is the relative frequency of class „j‟ in dataset T. Gini (T) is minimum if the classes in T 

are skewed. As an impurity measure, class sizes at the node are equal if gini index reaches its 

maximum value and then all cases in a node belong to the same class if the Gini index is equal to 

zero (Strobl, 2005). After splitting T into two subsets T1 and T2 with sizes N1 and N2, the gini 

index of the split data is defined as: 

            ( )  
  

 
    (  )  

  

 
    (  )    (2.24)  

 

The attribute that provides the smallest split gini is finally chosen for splitting the node. Gini 

impurity for node splitting is the default criterion. Alternative criteria like twoing rule, 

information gain etc. are also available. This procedure is done until all pure nodes are obtained 

(i.e. if all the examples in one node belong to a single class). Then the trees are pruned to prevent 

over fitting. In random forest, while inducing each tree from the CART algorithm, the following 

modifications are made: Instead of choosing among all the unused attributes for node splitting, 

earlier decided 'm' number of unused attributes are chosen at random and the best split on these 

„m‟ is used to split the node. 'm' is maintained constant for all the trees. The tree is grown to the 

maximum possible size (Breiman, 2001). 
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Pruning is not necessary in RF, since Bootstrap sampling takes care of the over fitting problem. 

This further reduces the computational load of the RF algorithm. There is no need for a separate 

test data in RF for checking the overall accuracy of the forest. It uses the OOB data for cross 

validation. After all the trees are grown, the k
th

 tree classifies the instances that are OOB for that 

tree (left out by the k
th

 tree). In this manner, each case is classified by about one third of the 

trees. A majority voting strategy is then employed to decide on the class affiliation of each case. 

The proportion of times that the voted class is not equal to the true class of case „n‟, averaged 

over all the cases in the training data set is called as the OOB error estimate. Now after growing 

the forest, if an unseen validation test dataset is given for classification, each tree in the random 

forest casts a unit vote for the most popular class in the test data. The output of the classifier is 

determined by a majority vote of the trees. The classification error rate of the forest depends on 

the strength of each tree and the correlation between any two trees in the forest. The key to 

accuracy is to keep low bias and low correlation among the trees. If the value of „m‟ is decreased, 

the strength of each tree decreases, but with increase in „m‟ the correlation among the trees 

increases and the computational load may also increase. The default value of „m‟ is chosen as 

√ , where „M‟ is the total number of attributes. The range of 'm' employed is normally kept 

between √    and 2*√ . Minimizing the OOB error rate chooses the value of „m‟ and the 

number of trees (Breiman, 2001; Bylander, 2002). 

 

2.2.2.3 Advantage of Random Forest 

The important features of random forests are that they can handle any high dimensional and 

multi-class data easily and the threshold noise limit is more for random forest compared to other 

classification algorithms. It can be used even if the number of attributes is more than the number 

of examples. It can also be used to find the significance of each variable for classification. It can 

also handle missing data effectively using the proximities between the pairs of cases. The 

computed proximities can also be used in outlier detection and clustering (Breiman, 2001).  
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2.3 Data Encoding and Representation 

The protein sequences are composed of alphabetic letters rather than arrays of numerical values. 

The sophisticated statistical analyses of sequences are not performed due to the alphabetic data. 

Data mining algorithms require the protein sequences to be characterized as fixed length vectors. 

In our work, we applied different feature encoding methods. 

 

(i) Amino acid composition 

Protein information can be encapsulated in 20 dimensional vectors by calculating the amino acid 

compositions of the given protein sequence. Amino acid composition is the frequency of each 

amino acid in the protein. 

 

(ii) Frequency of function groups 

We categorized amino acids into 10 functional groups based on the presence of side chain 

chemical groups such as phenyl (F/W/Y), carboxyl (D/E), imidazole (H), primary amine (K), 

guanidino (R), thiol (C), sulfur (M), amido (Q/N), hydroxyl (S/T) and non-polar (A/G/I/L/V/P). 

Further, we categorized 20 amino acids into three groups, namely hydrophobic (FIWLVMYCA), 

hydrophilic (RKNDEP) and neutral (THGSQ) amino acid groups. 

 

The frequency of the 10 functional groups (number of occurrences of functional group „„X” 

divided by length of the protein) and the frequencies of hydrophobic, hydrophilic, neutral, 

positively charged, negatively charged, polar and non-polar amino acids were computed for 

every sequence. 

 

(iii) Frequency of tripeptides and short peptides  

We utilized tripeptide information for the classification. The frequencies of these 27 tripeptides 

(three amino acid groups: hydrophobic, hydrophilic, and neutral) were calculated for every 

sequence. Additionally, we incorporated the frequencies of short peptides (10 residue length) 

which are rich in hydrophobic, hydrophilic, neutral, polar and non-polar amino acids. For 

example, a short peptide with more than five hydrophobic residues, we consider it as a 

hydrophobic peptide. Similarly, we calculated hydrophilic, neutral, polar and non-polar short 

peptides. In addition, we incorporated the frequencies of short peptides which are rich in the 10 

functional amino acid groups. 
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(iv) Content of secondary structural element (SSE) 

Secondary structure information for every sequence was assigned using PSIPRED (McGuffin et 

al., 2000). PSIPRED provides two options for secondary structure prediction. The first option 

uses homologous sequence information and the second option predicts secondary structure from 

the query sequence without using homologous sequence information. We employed the second 

option of the PSIPRED method for all sequences. The overall composition of helix (H), beta 

sheet (E), coil (C) were calculated for each sequence. 

 

(v) Frequency of amino acid groups at SSE 

The frequencies of amino acid groups, hydrophobic, hydrophilic, neutral and polar amino acids 

at helix, sheet, and coil regions were calculated. 

 

(vi) Frequency of  short peptides 

We incorporated the frequency of short peptides (10 residue length) which are rich in 

hydrophobic or hydrophilic or neutral amino acids. For example, if a short peptide has more than 

six hydrophobic residues, then we consider this peptide as hydrophobic rich short peptide. 

Similarly, we calculated hydrophilic, neutral rich short peptides. The frequency of hydrophobic 

rich peptides (contains at least 6 hydrophobic amino acids) or hydrophilic rich peptides (contains 

at least 6 hydrophilic amino acids) or neutral amino acid rich peptides (contains at least 6 neutral 

amino acids) were calculated for each sequence. Similarly, the frequencies of short peptides rich 

in polar, non-polar, positive, negative and neutral amino acids were computed. 

 

(vii) Physicochemical properties  

We took 544 physicochemical properties from the UMBC AAIndex database (Kawashima et al., 

2008). For each sequence, a physicochemical property value was calculated as the sum of those 

values of all amino acids in the given sequence, divided by the number of amino acids in the 

sequence.  

 

(viii) Frequency of physicochemical groups 

On the basis physicochemical properties, we classified 20 amino acids into 7 groups such as 

hydrophobic, hydrophilic, neutral, positive, negative, polar and non-polar amino acid groups. 

The frequencies of physicochemical groups were computed for each sequence. 
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(ix) Pseudo amino acid composition 

This method represents the protein sequence into the fraction of amino acid in protein sequence 

along with sequence order and length information. The first 20 features of the sequence, derived 

from pseudo amino acid composition method represent the composition of the twenty amino 

acids. Remaining components represent the sequence order effect. These features can be 

calculated by using physical properties of amino acids. In our work, hydrophobicity, 

hydrophilicity and side chain mass of amino acids were used. These physical property values 

were taken from (Shen and Chou, 2008). The original values of these properties were converted 

into zero mean values (Chou, 2001). Then, other elements of pseudo amino acid composition 

were calculated using equations (2) - (6) of (Chou, 2001). 

 
 

2.4 Feature Selection 

Machine learning continually aims to handle an increased amount of data, which makes it 

necessary to extract the most important information from the huge amount of data abundant in 

irrelevant or low quality information. This irrelevant data not only increases the time complexity 

of the learning process, but also affects the accuracy of the process significantly. This makes the 

extraction of the relevant and the most useful information of paramount importance. Filter and 

wrapper methods serve as feature selection algorithms, which are essential for datasets 

containing large number of irrelevant attributes. 

 

The filter method is a preprocessing step, which filters out the irrelevant features before the 

actual learning process. It uses only the intrinsic characteristics of the data to select the “good” 

features and exclude the “bad” ones, and thus, does not depend on the induction algorithm to be 

used. The “goodness” of a feature is usually calculated using empirical yet simple statistical 

relations. In filter feature selection, every feature is scored independently and the top n features 

are used by the classifier. Different scoring functions like correlation, mutual information, t-

statistic, F-statistic, etc. were applied (Saeys et al., 2007). The filter approach is quite easy and it 

can be applied to huge datasets. 

 

The wrapper method on the other hand uses the induction algorithm as a method of extracting the 

relevant features from the dataset. The feature space is divided into various feature subsets, 

which are evaluated for percentage accuracy using the induction algorithm, and the feature 



 

21 
 

subset with the best accuracy is selected. Feature selection with the wrapper method can be 

thought of as a combinatorial problem, aimed at finding the smallest subset which gives the 

highest accuracy among all the large number of possible subsets. It is clear that for a large 

dataset, exhaustive search is not possible, thus heuristic search techniques were employed.  

 

2.4.1 Information Gain 

To identify the prominent features that separate the positive and negative classes, we used the 

Info Gain algorithm with the ranker method. This method was implemented using Weka 3.5 

(Frank et al., 2004). We calculated the information gain for each feature, and ranked them 

according to this measure, which indicated the gain of information (Haindl et al., 2006). 

 

2.4.2 ReliefF 

ReliefF is used to choose the descriptors that discriminate between two classes (Zhang et al., 

2008). ReliefF is used as a feature subset selection method. The idea of ReliefF is to compute 

their nearest neighbors and give more weight to features that discriminate the instance from 

neighbors of different classes. This method was implemented using Weka 3.5 (Frank et al., 

2004). 

 

2.4.3 Maximum Relevance Minimum Redundancy (mRMR) 

The minimal-redundancy-maximal-relevance (mRMR) algorithm is a sequential forward 

selection algorithm developed by Peng et al. to analyze the importance of different features. 

mRMR uses the mutual information to select M features that best fulfill the minimal redundancy 

and maximal relevance criterion. More detailed description of the mRMR algorithm can be 

found in (Peng et al., 2005). 

 

2.4.4 Genetic Algorithm 

Many feature subsets are scored based on classification performance (such as 5 fold cross-

validation accuracy or LOOCV) in the wrapper approach, and the best feature subset is used. The 

different methods available for subset selection are forward selection, backward selection and 

genetic algorithm (GA) etc. (Kohavi and John, 1997). This method is computationally expensive 

and it may overfit. The GA combines the principle of a survival of the fittest of natural evolution 

with the genetic propagation of characteristics, to arrive at a robust search and optimization 
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technique. The fixed length string is evolved with a GA by using two operators (crossover and 

mutation) along with a fitness function. It will determine how likely individuals are to reproduce 

and survive in the population. 

 

To select the most important features among different features, the evolution of the population 

was simulated. The population of the first generation was selected randomly. Each individual 

member in the population, defined by a chromosome of binary values, represented a subset of 

features. The number of the genes at each chromosome was equal to the number of the features. 

A gene was given the value of 1, if its corresponding feature was selected in the subset; 

otherwise, it was given the value of 0. The randomly initiated population of strings then evolves; 

its fittest members being selected to undergo mutation and crossover. More detailed information 

on GA can be found in (Goldberg, 1989; Holland, 2001). 

 

2.5 Performance assessment of a classifier 

The performance of various machine learning methods developed in this thesis was calculated by 

using threshold-based and threshold-independent parameters. In threshold-based parameters, we 

used sensitivity, specificity, overall accuracy and matthew's correlation coefficient (MCC) using 

the following equations. These measurements are expressed in terms of false negative (FN), true 

positive (TP), false positive (FP), and true negative (TN). 

 

Sensitivity: Percentage of correctly predicted true proteins within the positive classifications. 

            
  

     
      (2.25)  

Specificity: Percentage of correctly predicted false proteins within the negative classifications. 

                
  

     
          (2.26)  

Accuracy: Percentage of correctly predicted true and false proteins. 

              
(     )

(           )
     (2.27)   
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Matthews's Correlation Coefficient (MCC): It is an important statistical factor to assess the 

quality of a classifier and to take care of the unbalancing in data. The Matthew‟s correlation 

coefficient ranges from –1 ≤ MCC ≤ 1. A value of MCC = 1 indicates the best possible 

prediction while MCC = -1 indicates the worst possible prediction (or anti- correlation). Finally, 

MCC = 0 would be expected for a random prediction scheme. 

 

    
((     ) (     ))

√(     )(     )(     )(     )
     (2.28)  

Area under the Curve (AUC): Most of the above measures have the common drawback that their 

value depends on the selected threshold. The so-called Receiver Operating Curve (ROC) 

provides a threshold independent measure. The ROC is a plot between the false positive rate 

(FP/FP+TN) and the true positive rate (TP/TP+FN) (Bradley, 1997). 

 

2.6 Overview 

In this thesis, various insilico models were developed for predictions of cellular function or 

location and protein functional families. Machine learning algorithms require that the protein 

sequences to be represented as fixed length vectors. In this work, we have used various 

frequencies of amino acids to predict the cellular function or location of proteins and protein 

functional families. Different feature selection and machine learning algorithms were used to 

process the large amount of training and test data. Table 2.2 shows different case studies used in 

the thesis. The dataset, different type of features, feature selection methods, and classifier were 

described in the Table 2.2.   
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Case studies Dataset Features Total 

number 

of 

features 

Feature selection Classifier 

Identification of 

classical and non-

classical secretory 

proteins 

Training dataset: 

1200 protein 

sequences 

Test dataset: 

1560 protein 

sequences 

 

Frequency of function 

groups, frequency of 

tripeptides and short 

peptides, content of 

secondary structural 

element (SSE), frequency of 

amino acid groups at SSE, 

frequency of amino acid 

groups at SSE, 

physicochemical properties 

119 Info Gain, Relief F, 

Maximum Relevance 

Minimum 

Redundancy 

(mRMR) 

Random 

Forest 

Prediction of 

Extracellular matrix 

proteins 

Training dataset: 

600 protein 

sequences 

Test dataset: 

4032 protein 

sequences 

 

Frequency of 10 functional 

groups, physicochemical 

properties 

68 Info Gain, Relief F, 

Maximum Relevance 

Minimum 

Redundancy 

(mRMR) 

Random 

Forest 

Prediction of 

apoptosis protein 

locations 

Training dataset: 

317 protein 

sequences 

Test dataset: 98 

protein 

sequences 

Frequency of function 

groups, frequency of 

tripeptides and short 

peptides, content of 

secondary structural 

element (SSE), frequency of 

amino acid groups at SSE, 

frequency of amino acid 

groups at SSE, 

physicochemical properties 

119 Info Gain, Relief F, 

Maximum Relevance 

Minimum 

Redundancy 

(mRMR), Genetic 

Algorithm 

Support 

Vector 

Machine 

Prediction of 

antifreeze proteins 

Training dataset: 

600 protein 

sequences 

Test dataset: 

9374 protein 

sequences 

 

Frequency of functional 

groups, frequency of 

physicochemical groups, 

frequency of short peptides, 

content of secondary 

structural element (SSE), 

physicochemical properties 

119 Info Gain, Relief F, 

Maximum Relevance 

Minimum 

Redundancy 

(mRMR) 

Random 

Forest 
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Table 2.2: Overall workflow of different protein function/ family work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prediction of 

bioluminescent 

proteins 

Training dataset: 

600 protein 

sequences 

Test dataset: 

18343 protein 

sequences 

 

Physicochemical properties 544 Info Gain, Relief F, 

Maximum Relevance 

Minimum 

Redundancy 

(mRMR) 

Support 

Vector 

Machine 

Prediction of co and 

post-translational 

translocation 

Training dataset: 

334 protein 

sequences 

Test dataset: 

3853 protein 

sequences 

 

Pseudo amino acid 

composition 

50 Info Gain, Relief F, 

Maximum Relevance 

Minimum 

Redundancy 

(mRMR) 

Support 

Vector 

Machine 
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3 Protein Function Classification 

3.1 Introduction 

Proteins play a vital role in the living organism. Proteins are the molecular machinery that 

controls and accomplishes nearly every biological function (Krane and Raymer, 2006). 

Knowledge about the function of proteins is vital in the understanding of biological processes 

(Downward, 2001). In many cases, proteins concluded to share a remote common ancestor, 

amino acids determined to be homologous from aligned protein sequences not share strictly 

similar roles in function and stability, even though their correlation to an overall structural fold 

may be the same (Lau and, Chasman, 2004). Due to huge amount of data deposited in various 

databases, much attention has been devoted to the development of methods for the prediction of 

protein function (Fetrow and Skolnick, 1998; Koonin et al., 1998) from sequence information. 

These methods regulate the function of a protein by categorizing into a specific protein family or 

functional class based on protein sequence similarity or the presence of conserved sequence 

motifs. In the absence of sequence or structural similarities, the criteria for inclusion of distantly 

related proteins into a protein functional class becomes increasingly random. Therefore, an 

alternative classification method may need to be explored in facilitating the study of protein 

function. 

 

In this thesis, the usefulness of SVM and RF for protein function prediction is extensively tested 

by applying it to the classification of a variety of functionally distinguished classes of proteins. 

These include classical and non-classical secretory proteins, extracellular matrix proteins and 

subcellular location of apoptosis proteins. These classes of proteins are suitable for testing SVM 

and RF as they represent proteins of diversely different functions that cover protein synthesis 

regulation, regulation of host cell infection, protein self-association, molecular signaling, and 

drug discovery. Three different functionally diverse classes of proteins are explained below in 

detail. 
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3.2 Background of secretory proteins 

After protein synthesis in cytoplasm, newly made polypeptides must be transported to their final 

destination in the cell. The process of protein transport to a particular cellular location is known 

as protein sorting (Palade, 1975; Walter et al., 1984; Rothman and Wieland, 1996). Usually, 

eukaryotic protein secretion follows the classical secretory pathway that traverses the 

endoplasmic reticulum (ER) and golgi apparatus (Schatz and Dobberstein, 1996). Secretory 

proteins are usually characterized by short N-terminal signal peptides (14-60 amino acids) that 

have intrinsic signals for their transport and localization in the cell (Walter et al., 1984; Heijne, 

1990). Interestingly, several proteins have been found to be exported directly from the cytoplasm 

by molecular mechanisms that are independent from a signal peptide or any specific motif 

known to act as an export signal. The secretion of these proteins is referred to as non-classical or 

unconventional protein secretion (Müsch, 1990; Cleves, 1997; Hughes, 1999; Nickel, 2003). 

Some of the well-studied non-classical secretory proteins are fibroblast growth factors (FGF-1, 

FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins, thioredoxin, viral proteins and parasitic 

surface proteins potentially involved in the regulation of host cell infection (Mignatti and Rifkin, 

1991; Rubartelli et al., 1992; Mehul and Hughes, 1997; Denny et al., 2000; Trotman et al., 

2003). Although the phenomenon of non-classical secretion in eukaryotes was discovered more 

than a decade ago, the molecular mechanisms are still unknown. However, it might be possible 

that this group contains proteins that leave the cell by cell disruption and not by a well-defined 

pathway.  

 

Several methods have been proposed for the identification of secretory proteins that follow the 

classical secretory pathway (Bendtsen et al., 2004a; Guda, 2006).  The presence of the correct N-

terminal end of the pre-protein is required for many of well-known prediction methods for 

correct classification. Sometimes in the large scale genome sequencing projects, the 5‟ end of 

genes are assigned erroneously, and many proteins are annotated without the accurate N-terminal 

end which may lead to an incorrect subcellular localization annotation (Reinhardt and Hubbard, 

1998). Further, signal peptides are completely absent in secretory proteins that follow non-

classical secretion pathways. Therefore, an automated approach is required to predict classical 

and non-classical secretory proteins, irrespective of the N-terminal signal peptides. 
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Recently, a webserver SecretomeP has been developed to predict non-classically secreted 

proteins (Bendtsen et al., 2004b). It is a neural network based method that uses several features 

of a protein such as the number of atoms, positively charged residues, propeptide cleavage sites, 

protein sorting, low complexity regions, and transmembrane helices as an input for a neural 

network. Despite considering a large number of protein features, the method has achieved a 

sensitivity of only 40% (Bendtsen et al., 2004b). SRTPRED is another recently developed 

method which predicts secretory proteins irrespectively of N-terminal signal peptides. It achieves 

a sensitivity of 60.4% using hybrid modules (Garg and Raghava, 2008). In this work, we report a 

random forest method, SPRED, to identify classical and non-classical secretory proteins from 

protein sequence irrespective of N-terminal signal peptides. We scanned the entire human 

proteome by SPRED and predicted 566 proteins to be secreted by a non-classical secretory 

pathway. 

 

3.3 Materials and Methods 

3.3.1 Datasets 

A set of 9890 extracellular mammalian proteins (positive dataset) were extracted from the 

UniProt database based on subcellular localization annotations in the comments block (Bairoch 

and  Apweiler, 2000). The sequences without an experimental signal peptide annotation were not 

included in the dataset. Proteins with uncertain annotation labels such as „„probable”, „„potential” 

and „„by similarity” were removed. 3131 extracellular proteins which are annotated with 

experimental observations were selected from the 9890 proteins. To make the dataset completely 

non-redundant, we applied the CD-HIT software (Li et al., 2001) to remove sequences with 

greater than 40% sequence similarity to each other. Finally, 780 extracellular proteins were 

retained for the positive dataset. Similarly, a set of negative examples was constructed by 

extracting 20,610 mammalian proteins in UniProt which are annotated as residing in the 

cytoplasm and/or nucleus. 3891 proteins with experimental support were chosen from the 20,610 

proteins after excluding membrane proteins, proteins with uncertain labels, and partial 

sequences. 1980 sequences remained for the negative dataset after removing redundant 

sequences which have >40% sequence similarity to each other using CD-HIT (Li et al., 2001). 

Since non-classical secretory proteins lack N-terminal signal peptides, the method should have 

the capability to predict secretory proteins irrespective of N-terminal signal peptides. To achieve 
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this, we removed the signal peptides from the positive dataset. Finally, the training dataset 

consisted of 600 extracellular proteins that form the positive dataset and 600 cytoplasmic and/or 

nuclear proteins that form the negative dataset. The test dataset consisted of the remaining 180 

extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. 

 

3.3.2 Human proteome screening  

A human proteome database containing 86845 protein sequences was downloaded from the IPI 

database release 3.66 (http://www.ebi.ac.uk/IPI/) (Kersey et al., 2004). Transmembrane proteins 

were removed using TMHMM (Krogh et al., 2001). Finally, we obtained 65508 protein 

sequences for the prediction of novel putative classical or non-classical secretory proteins. 

 

3.3.3 Features 

In this work, each sequence was encoded by 119 features. The complete list is provided in Table 

3.1. 

 

Name of the feature Number of features 

Frequencies of 10 functional groups 10 

Frequencies of hydrophobic, neutral, hydrophilic, positive, negative, polar and non-

polar amino acids 

7 

Frequencies of secondary structurally elements (Helix, Strand and Coil) 3 

Frequencies of 10 functional groups at Helix, Strand and Coil regions 30 

Frequencies of hydrophobic, neutral, hydrophilic, positive, negative, polar and non-

polar amino acids at Helix, Strand and Coil regions 

21 

Frequencies of short peptides rich in 10 functional groups 10 

Frequencies of short peptides rich in hydrophobic, neutral, hydrophilic, positive, 

negative, polar and non-polar amino acids 

7 

Physicochemical properties 31 

Total 119 

 

Table 3.1: List of 119 features 
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3.3.4 Steps of the algorithm 

1. Get the protein sequence data from the UniProt database. 

2. Assign class labels: secretory proteins = +1 (positive class); non-secretory 

proteins = -1 (negative class). 

3. Convert all the sequences to 119 features.  

4. Get the top 50 features from Info Gain feature selection algorithm. 

5. Partition the data into training and test sets. 

6. Run the random forest classifier on the training set. 

7. Run the random forest classifier on the test set to assess the generalization. 

8. Screen the human proteome to find potential classical and non-classical 

secretory proteins. 

 

3.4 Results and Discussion  

3.4.1 Classification by SPRED  

We trained our random forest model on the training dataset containing 600 extracellular proteins 

secreted via classical and non-classical pathways and 600 cytoplasmic and/or nuclear proteins. 

As shown in Table 3.2, on the training data, an overall prediction training accuracy of 85.67% 

was obtained using all features.  

 

To identify the most prominent features, we carried out filter based feature selection methods: 

ReliefF, Info Gain, and mRMR. We selected five different feature subsets by decreasing the 

number of features, and the performance of each feature subset was evaluated (Table 3.2, Table 

3.3, and Table 3.4). 

 

In order to examine the performance of the newly developed model, we tested the trained model 

on a test dataset containing 180 extracellular proteins and 1380 cytoplasmic and/or nuclear 

proteins. As shown in Table 3.2, using the top 50 features, we obtained 82.18% accuracy with a 

sensitivity of 88.33% and a specificity of 81.38% (Info Gain).  

 



 

31 
 

The similar performance was obtained by ReliefF feature selection approach.  This result 

suggests that our feature reduction approach selected useful features by eliminating uncorrelated 

and noisy features. The best performance was achieved with Info Gain selecting 50 features. 

Hence, this is chosen as the final model for screening human proteome to identify potential 

classical and non-classical secretory proteins. 

 

Feature subset Sensitivity  

(%) 

Specificity  

(%) 

MCC  

 

Test 

Accuracy (%) 

Training 

Accuracy (%) 

10 79.44 80.51 0.4345 80.38 84.17 

25 83.89 80.94 0.4691 81.28 85.58 

50 88.33 81.38 0.5036 82.18 85.92 

75 90.56 81.23 0.5163 82.31 85.58 

100 89.44 81.16 0.5082 82.12 85.08 

119 90.56 80.80 0.5109 81.92 85.67 

MCC – Matthew‟s correlation coefficient 

Table 3.2: Performance of random forest on the test dataset (180 positive and 1380 negative 

sequences) using different feature subsets (Info Gain) 

 

 

Feature subset Sensitivity  

(%) 

Specificity  

(%) 

MCC  

 

Test 

Accuracy (%) 

Training 

Accuracy (%) 

10 74.44 83.84 0.4433 82.76 83.75 

25 80.56 82.17 0.4624 81.99 85.84 

50 88.33 81.23 0.5018 82.05 86.17 

75 90.00 81.67 0.5182 82.63 85.69 

100 88.89 81.23 0.5054 82.12 85.42 

119 90.56 80.80 0.5109 81.92 85.67 

MCC – Matthew‟s correlation coefficient 

Table 3.3: Performance of random forest on the test dataset (180 positive and 1380 negative 

sequences) using different feature subsets (ReliefF) 

 

 



 

32 
 

Feature subset Sensitivity  

(%) 

Specificity  

(%) 

MCC  

 

Test 

Accuracy (%) 

Training 

Accuracy (%) 

10 71.67 73.55 0.3106 73.33 76.50 

25 78.89 74.64 0.3680 75.13 79.00 

50 81.67 76.45 0.4042 77.05 82.25 

75 83.89 78.55 0.4412 79.17 82.09 

100 87.22 78.12 0.4581 79.17 83.50 

119 90.56 80.80 0.5109 81.92 85.67 

MCC – Matthew‟s correlation coefficient 

Table 3.4: Performance of random forest on the test dataset (180 positive and 1380 negative 

sequences) using different feature subsets (mRMR) 

 

Figure 3.1: ROC Plot for random forest models using the top 50 features and all features 

 (Info Gain) 

 

We also plotted the sensitivity versus specificity chart, i.e. the receiver operator curve (ROC). 

The area under curve for all features was 0.89 and for the top 50 features (Info Gain) was 0.91, 

respectively (Figure 3.1). 
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3.4.2 Prediction result for known non-classical secretory proteins  

For predicting non-classical secretory proteins, we did the following steps. First, SPRED tells us, 

whether the protein is secretory or non-secretory, and then we look whether the protein has a 

signal peptide or not. If not, we know that we have a non-classically secreted protein. As a final 

test we used 19 human proteins that are experimentally verified non-classical secretory proteins 

from various sources. Criteria for selection were clear experimental evidence from the literature 

for the given sequence entry. These secreted proteins without signal peptides are not found in 

any of the above datasets on which SPRED was trained or tested.  

 

SWISS-PROT ID Protein 

Annotation 

SPRED SecretomeP SRTpred 

P05230 Heparin-binding 

growth factor 1 

+ + + 

P09038 Heparin-binding 

growth factor 2 

+ + + 

P01584 Interleukin-1 beta + + + 

P01583 Interleukin-1 alpha + + - 

P17931 Galectin-3 + + - 

P14174 Macrophage 

migration inhibitory 

factor 

+ + - 

P26447 Protein S100-A4 + + - 

P09211 Glutathione S-

transferase P 

+ + - 

Q06830 Peroxiredoxin-1 + + - 

Q14116 Interleukin-18 + + - 

P27797 Calreticulin + - + 

P62805 Histone H4 + - - 

P29034 Protein S100-A2 + - - 

P09382 Galectin-1 + - - 

P10599 Thioredoxin + - - 

P26441 Ciliary 

neurotrophic factor 

- + + 

P19622 Homeobox protein 

engrailed-2 

- + - 

Q16762 Thiosulfate 

sulfurtransferase 

- + - 
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P09429 High mobility 

group protein B1 

- - - 

 

Table 3.5: Prediction result for 19 experimentally verified non-classical secretory proteins using 

SPRED, SecretomeP and SRTpred. "+" denotes proteins correctly predicted as non-classical 

secretory proteins and "-" denotes proteins incorrectly predicted as non-classical secretory 

proteins 

 

For comparison, we applied SPRED, SecretomeP (Bendtsen et al., 2004b) and SRTPRED (Garg 

and Raghava, 2008) to these 19 proteins. SPRED correctly predicted 15 proteins as non-classical 

secretory proteins whereas SecretomeP and SRTPRED predict 13 (with low score) and 5 

proteins, respectively. The prediction results are given in Table 3.5. 

 

3.4.3 Screening for classical and non-classical secretory proteins in the human proteome 

To identify novel candidates in the human proteome for non-classical secretory proteins, we 

scanned the human proteome using SPRED (Figure 3.2). With SPRED, we classified these 

65508 protein sequences into 44611 non-secreted proteins and 20897 proteins located outside of 

the nucleo-cytoplasm.  

 

We removed all the classical secretory proteins (9542 protein sequences) using SignalP, leaving 

11355 proteins which do not belong to the classical secretory pathway. Subsequently, we 

removed hypothetical proteins, fragmented proteins, mitochondrial proteins, peroxisomal 

proteins and false positive proteins. The remaining 566 protein sequences were finally classified 

as non-classical secretory proteins. 

 

Our analysis shows that these 566 proteins include well studied non-classical secretory proteins 

such as Galectin (Hughes, 1999), Interleukin 1 alpha, Interleukin 1 beta (Nickel, 2003), 

thioredoxin (Ubartelli et al., 1992), S100-A (Landriscina  et al., 2001), etc. which leave intact 

cells by defined pathways. 
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Figure 3.2: Screening for secretory proteins in human proteome 

 

However, as the classification of proteins in the training dataset into the positive dataset 

„„extracellular proteins” is often based on the detection of these proteins outside of cells without 

any knowledge about the export pathway, these predicted proteins may also include proteins that 

are released during cell disruption and are relatively stable in the  extracellular environment. 

 

3.4.4 Comparison of SPRED with other machine learning methods   

The proposed SPRED method was compared with several state-of-the-art classifiers such as the 

naïve bayes classifier (George and  Langley, 1995), instance learning based IBK algorithm (Aha 

and Kibler, 1991) and the support vector  machine (linear and RBF kernel) (Vapnik, 1995). The 
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optimal values of the SVM parameters were obtained using a five-fold cross-validation on the 

training dataset. We compared the performance of SPRED with the other models using the same 

feature subsets that are mentioned in Table 3.2.  

 

Method Sensitivity 

(%) 

Specificity 

(%) 

MCC Test Accuracy 

(%) 

Naïve Bayes 70.00 78.28 0.2639 77.79 

IBK 57.50 82.34 0.2344 80.88 

SVM (Linear) 82.78 82.90 0.4867 82.88 

SVM (RBF kernel) 78.89 80.87 0.4351 80.64 

SPRED 88.33 81.38 0.5036 82.18 

MCC – Matthew‟s correlation coefficient 

Table 3.6: Comparison of SPRED with other machine learning methods using the top 50 features 

(Info Gain) 

 

All models were tested on the test dataset containing 180 positive and 1380 negative sequences. 

With the top 50 features (Info Gain), SPRED and SVM (linear and RBF kernel) achieved 

comparable accuracy and specificity, however, the sensitivity of SPRED is still higher (Table 

3.6). 

 

3.4.5 Summary 

Protein secretion is a universal process which occurs in all organisms and has tremendous 

importance to biological research. Identification of classical and non-classical proteins is an 

essential and also difficult task in protein function annotation. We implemented a random forest 

approach to predict protein secretion using sequence derived properties. The validation of 

SPRED on a test dataset showed 82.18% accuracy with a sensitivity of 88.33% and a specificity 

of 81.38%. SPRED performed better than SecretomeP and SRTPRED.  
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3.5 Background of Extracellular matrix proteins 

The tissues of multicellular organisms are formed by cells and a network of macromolecules 

secreted by them, which is called extracellular matrix (ECM) (Lewin et al., 2007). It consists of 

glycosaminoglycans, proteoglycans, fibrous proteins like collagenes, adhesive glycoproteins, 

enzymes involved in formation and remodelling of the ECM, like metalloproteases, and other 

factors (Lewin et al., 2007). In the tissues, the ECM integrates the cells and provides structural 

support. In addition, it also influences the fate of cells during differentiation, morphogenesis, 

aging or pathogenesis (Schwartz et al., 1995; Burridge and Chrzanowska-Wodnicka, 1996; Wary 

et al., 1996). The ECM can coordinate cell functions by transducing signals across the plasma 

membrane. This can be achieved either directly by ECM molecules or indirectly by signal 

molecules, like growth factors, cytokines, chemokines, and hormones, which are sequestered in 

local depots within the ECM (Nelson and Bissell, 2006; Kim et al., 2011). At first glance, the 

extracellular matrix seems to be a static structure with a slow turnover. However, it turned out 

that the ECM can easily adapt to changing conditions by a dynamic remodelling of its 

compounds (Green and Lund, 2005). 

 

Malfunctions of ECM proteins lead to severe disorders that are linked to the structural functions 

of ECM molecules, such as the marfan syndrome, osteogenesis imperfecta, numerous 

chondrodysplasias, and skin diseases (Bruckner-Tuderman and Bruckner, 1998; Green and Lund, 

2005; Aszódi et al., 2006; Bateman et al., 2009). Moreover, tumor growth, metastasis, 

inflammation, and other disorders can occur as a consequence of ECM malfunctions (Nelson and 

Bissell, 2006; Campbell et al., 2010; Sorokin, 2010). Thus, extracellular matrix proteins promise  

great possibilities as therapeutic targets or diagnostic markers (Grønborg et al., 2006).   

 

Due to advances in sequencing technologies, tremendous amounts of DNA and protein 

sequences have accumulated in databases. Most of these sequences have unknown functions. It is 

very important to extract relevant biological information from sequences for functional 

annotation. Since the function of a protein is closely associated with its subcellular localization, 

the ability to predict the protein‟s subcellular localization will be useful in the characterization of 

the expressed sequences of unknown functions (Horton et al., 2007; Chou and Shen, 2010a). 
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Various machine learning methods are available for predicting protein subcellular localization 

(Chou and Shen, 2007a, Chou and Shen, 2007b; Shen and Chou, 2009; Chou and Shen, 2010b). 

Protein subcellular localization prediction for human (Chou and Shen, 2006a), eukaryotes 

(Chou and Shen, 2006b), plants (Chou and Shen, 2006c), virus (Chou and Shen, 2006d) and 

gram negative bacteria (Chou and Shen, 2006e) have also been carried out. Several methods 

have been proposed for the identification of secretory proteins that follow the classical secretory 

pathway (Bendtsen et al., 2004b) and non-classical secretory pathway (Kandaswamy et al., 

2010). Even though there are various tools available for predicting subcellular localization and 

protein secretion, there is no method with sufficient accuracy to predict ECM proteins among the 

secreted protein groups. 

 

Recently, an in-silico model (ECMPP) has been developed to predict ECM proteins (Jung et al., 

2010). It uses SVM and RF to distinguish ECM proteins based on thirteen distinctive features. 

However, the performance of this method mainly depends on the PSSM profile, which needs 

sufficiently many sequence homologs to derive a sequence alignment. In this work, we present a 

random forest method, EcmPred, to identify extracellular matrix (ECM) proteins from sequence 

derived properties such as frequency of amino acid/amino acid groups and physico chemical 

properties. EcmPred achieves 83.00% and 77.52% accuracy on training and test data, 

respectively. 

 

3.6 Materials and Methods 

3.6.1 Datasets 

We performed an extensive database and literature curation to collect sequences pertaining to 

extracellular matrix proteins. The dataset containing 17233 metazoan secreted protein sequences 

was obtained from SWISS-PROT release 67 (Boeckmann et al., 2003). Out of these 17233 

sequences, 1103 sequences are extracellular matrix proteins (positive dataset) and the remaining 

16130 proteins are secreted proteins without extracellular matrix annotation (negative dataset). 

The positive and negative datasets were made completely non-redundant by allowing a sequence 

identity between any two proteins of not more than 70% (Li et al., 2001). Finally, the training 

dataset consisted of 445 extracellular proteins that form the positive dataset and 4187 non-ECM 

proteins that form the negative dataset. 
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Training dataset:  

300 ECM proteins were randomly selected from the 445 ECM proteins for the positive training 

dataset. Similarly, 300 non-ECM proteins were randomly taken from the 4187 non-ECM 

proteins for the negative training dataset.  

 

Test dataset:  

The remaining 145 ECM proteins served as positive dataset for testing. The remaining 3887 non-

ECM proteins (after excluding 300 non-ECM proteins for training) were used as a negative 

dataset for testing. 

 

Human proteome screening:  

A human proteome database containing 86845 protein sequences was downloaded from the IPI 

database release 3.66 (http://www.ebi.ac.uk/IPI/) (Kersey et al., 2004). Transmembrane proteins 

were removed using TMHMM (Krogh et al., 2001).  Finally, we obtained 65508 protein 

sequences for the computational screening and identification of novel ECM proteins.  

 

3.6.2 Features 

Each sequence is encoded by 68 sequence based features (frequency of 10 functional groups and 

physicochemical properties). 

 

3.6.3 Steps of the algorithm 

1. Get the metazoan secreted protein sequences from SWISS-PROT release 67. 

2. Assign class labels: ECM proteins = +1 (positive class); non-ECM proteins 

= -1 (negative class). 

3. Convert all the sequences to 68 features.  

4. Get the top 40 features from mRMR feature selection algorithm. 

5. Partition the data into training and test sets. 

6. Run the random forest classifier on the training set. 

7. Run the random forest classifier on the test set to assess the generalization. 

8. Screen the human proteome to find potential ECM proteins. 
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3.7 Results and Discussion 

3.7.1 Classification by EcmPred 

We trained our random forest model on the training dataset containing 300 ECM proteins and 

300 non-ECM proteins. Our model achieved 82% training accuracy using all the features (68 

features). To identify the most prominent features, we carried out feature selection with mRMR, 

ReliefF and Info Gain. We selected six different feature subsets by decreasing the number of 

features, and the performance of each feature subset was evaluated. Using 40 features (mRMR), 

we obtained 83% training accuracy which is comparable to the accuracy obtained using 68 

features. A similar performance was observed using 10, 20, 30, 50 and 60 features. 

 

Feature subset Sensitivity 

(%) 

Specificity 

(%) 

MCC Test Accuracy 

(%) 

Training 

Accuracy (%) 

10 51.03 75.31 0.1123 74.44 73.00 

20 48.97 77.63 0.1171 76.60 80.34 

30 53.10 78.07 0.1378 77.17 81.84 

40 65.52 77.96 0.1906 77.52 83.00 

50 57.24 77.09 0.1493 76.38 82.67 

60 60.69 77.40 0.1661 76.80 83.17 

All features 63.45 76.24 0.1702 75.78 82.00 

MCC – Matthew‟s correlation coefficient 

Table 3.7: Performance of random forest using different feature subsets (mRMR) 

 

In order to examine the performance of the newly developed model, we tested our training model 

on a test dataset containing 145 ECM proteins and 3887 non-ECM proteins. As shown in Table 

3.7, we obtained 75.78% accuracy using all the features with a sensitivity of 63.45%, a 

specificity of 76.24%, and a MCC of 0.1702. Using 40 features, our model obtained 77.52% 

accuracy with 65.52% sensitivity, 77.96% specificity, and a MCC of 0.1906 (mRMR).  Even 

though training accuracies of ReliefF and Info Gain (40 features) were better (Table 3.8, Table 

3.9), the sensitivity and specificity values of mRMR was higher as compared to the other two 

approaches.  
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Feature subset Sensitivity 

(%) 

Specificity 

(%) 

MCC Test Accuracy 

(%) 

Training 

Accuracy (%) 

10 68.97 69.79 0.1552 69.76 79.84 

20 61.38 74.70 0.1520 74.22 81.84 

30 61.38 75.21 0.1551 74.71 84.34 

40 61.38 76.19 0.1612 75.66 84.67 

50 62.76 75.62 0.1634 75.16 83.50 

60 62.07 76.42 0.1655 75.90 82.67 

All features 63.45 76.24 0.1702 75.78 82.00 

MCC – Matthew‟s correlation coefficient 

Table 3.8: Performance of random forest using different feature subsets (Info Gain) 

 

Feature subset Sensitivity 

(%) 

Specificity 

(%) 

MCC Test Accuracy 

(%) 

Training 

Accuracy (%) 

10 73.79 72.20 0.1878 72.26 82.00 

20 66.21 77.42 0.1898 77.02 82.84 

30 64.14 77.60 0.1822 77.12 84.34 

40 59.31 76.99 0.1575 76.35 85.17 

50 62.76 76.50 0.1690 76.00 84.84 

60 62.07 76.73 0.1675 76.20 84.00 

All features 63.45 76.24 0.1702 75.78 82.00 

MCC – Matthew‟s correlation coefficient 

Table 3.9: Performance of random forest using different feature subsets (ReliefF) 

 

We also investigated the influence of the feature reduction by plotting Receiver Operating 

Characteristic (ROC) curves (Figure 3.3) derived from the sensitivity and specificity values for 

the classifiers using the top 40 features (mRMR) and all the features, respectively. The area 

under curve for all features was 0.76 and for the top 40 features was 0.79. 
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Figure 3.3:  ROC plot for random forest with all and the top 40 features (mRMR) 

 

3.7.2 Prediction result for known ECM proteins 

We collected 20 experimentally verified extracellular matrix proteins from human. Criteria for 

selection were clear experimental evidence within the literature for the given sequence entry. We 

tested the efficiency of EcmPred and ECMPP (Jung et al., 2010) using these 20 proteins (Table 

3.10). As shown in Table 3.10, EcmPred correctly predicts 15 proteins as extracellular matrix 

proteins, whereas ECMPP predicts only 6 proteins. 

 

 

SWISS-PROT ID 

 

Protein Annotation 

 

ECMPRED ECMPP 

 
Q9BY76 Angiopoietin-related protein + - 

P07355 Annexin A2 + - 

Q9BXN1 Asporin + + 

P01137 Transforming growth factor beta-1 - - 

Q8N6G6 ADAMTS-like protein 1 + - 

P27797 Calreticulin + - 
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Q76M96 Coiled-coil domain-containing 

protein 

+ + 

Q07654 Trefoil factor 3 - + 

O75339 Cartilage intermediate layer 

protein 1 

+ - 

Q15063 Periostin - - 

O43405 Cochlin + - 

Q96P44 Collagen alpha-1(XXI) chain + + 

P01009 Alpha-1-antitrypsin - - 

Q14118 Dystroglycan + - 

Q12805 EGF-containing fibulin-like 

extracellular matrix protein 1 

+ - 

Q75N90 Fibrillin-3 + + 

P09382 Galectin-1 + + 

Q8N2S1 Latent-transforming growth factor 

beta-binding protein 4 

+ - 

P27487 Dipeptidyl peptidase 4 - - 

P08253 72 kDa type IV collagenase + - 

 

Table 3.10: Prediction result for 20 experimentally verified extracellular matrix proteins using 

EcmPred and ECMPP. "+" represents proteins correctly predicted as extracellular matrix proteins 

and "-" represents proteins incorrectly predicted as extracellular matrix proteins 

 

3.7.3 Screening for ECM in human proteome 

To identify novel candidates in the human proteome as extracellular matrix proteins, we scanned 

the human proteome using SPRED (prediction of secretory protein) (Kandaswamy et al., 2010) 

and EcmPred (Figure 3.4). With SPRED, we classified these 65508 protein sequences into 44611 

non-secreted proteins and 20897 proteins located outside of the nucleo-cytoplasm. We predicted 

extracellular matrix proteins (6450) using EcmPred, leaving 14447 proteins which do not belong 

to the class of extracellular matrix proteins. Subsequently, we removed putative proteins, isoform 

sequences, hypothetical proteins, fragmented proteins and false positives. The remaining 2201 

protein sequences were classified as extracellular matrix proteins. 
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Figure 3.4: Screening for ECM proteins in the human proteome 

We investigated the top listed putative ECM proteins using Interpro (Hunter et al., 2009) and 

Gene ontology (GO) (Gene Ontology Consortium, 2010). Interpro annotation shows Collagen 

type XXI Alpha 1 and Adamts-like protein 2 as putative extracellular matrix proteins. Collagen, 

type V, alpha 1, Interphotoreceptor matrix proteoglycan 1, Protein Wnt, Galectin-1, and 

Galectin-7 were annotated with the Gene Ontology term „„extracellular matrix‟‟. Thus, as could 

be expected by the composition of our training set we identified both, proteins forming the ECM 

network and more mobile proteins interacting transiently with the network.  

 

3.7.4 Comparison of EcmPred with other machine learning methods 

The proposed EcmPred method was compared with several state-of-the-art classifiers such as 

J4.8, SVM, Bayesnet, Logistic regression, Decision Table, Multi-Layer-Perceptron, and 

Adaboost (Quinlan, 1993; Bishop, 1995; Vapnik, 1995; Kohavi, 1995; Sumner et al., 2005). The 

results based on 40 features (mRMR) are shown in Table 3.11. 
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Method Sensitivity 

(%) 

Specificity 

(%) 

MCC Test Accuracy  

(%) 

J4.8 57.93 66.83 0.0973 66.51 

Bayesnet 57.93 76.50 0.1485 75.83 

Adaboost 59.63 69.66 0.1107 59.99 

Decision table 54.95 68.97 0.0893 55.45 

Logistic regression 59.31 65.62 0.0971 65.39 

SVM 

(polynomial) 

56.55 68.60 0.1001 68.17 

MLP 58.63 68.97 0.1039 59.00 

EcmPred 65.52 77.96 0.1906 77.52  

MCC – Matthew‟s correlation coefficient 

Table 3.11:  Comparison of EcmPred with other machine learning methods 

 

All models were tested on the test dataset containing 145 positive and 3887 negative sequences. 

The prediction accuracy of random forest is about 22% and 12% higher than Decision table and 

Logistic regression classifiers, respectively. The specificity of SVM is about 9% less than 

random forest. Although the performance of EcmPred and Bayesnet are comparable, sensitivity 

is 8% less than with our model. 

 

3.7.5 Summary 

The extracellular matrix (ECM) is a major component of tissues of multicellular organisms. It 

provides physical scaffolding for the cellular constituents and initiates critical biochemical and 

biomechanical signals
 
required for tissue morphogenesis, differentiation,

 
and homeostasis. The 

extracellular matrix proteins promise great possibilities as therapeutic targets or diagnostic 

markers. Identification of ECM proteins is vital for large scale genome annotation. We 

implemented a random forest approach to predict ECM proteins based on sequence derived 

properties.  High prediction accuracies on the training and testing datasets show that EcmPred is 

a potentially useful tool for the prediction of extracellular matrix proteins from protein primary 

sequence. EcmPred performed better than ECMPP on experimental verified ECM proteins. The 

identification of ECM proteins will be helpful for the analysis of ECM-related functions and 

diseases.  
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3.8 Background of apoptosis protein subcellular locations 

Apoptosis is an essential process for controlling tissue homeostasis, embryonic development and 

the immune system by regulating a physiological balance between cell proliferation and death 

(Jacobson et al., 1997; Raff, 1998). Cell death and renewal are responsible for maintaining the 

proper turnover of cells, which ensures a constant controlled flux of fresh cells (Kerr et al., 

1972). Apoptosis can be triggered by internal or external signals and alteration in the subcellular 

localization of proteins may regulate it, e.g. Bcr-Abl sent to the nucleus causes apoptosis (Adams 

and Cory, 1998) and p53 dragged out of the nucleus is preventing it (Schulz et al., 1999; 

Vogelstein et al., 2000). Apoptosis entails not only protein degradation but also DNA 

fragmentation. As a result the destruction of a variety of cellular components occurs. 

Furthermore, the lipid composition of the plasma membrane changes and mitochondria become 

leaky. Programmed cell death and cell proliferation are tightly coupled (Jacobson et al., 1997). A 

malfunction of apoptosis may cause or aggravate a variety of formidable diseases such as e.g. 

cancer, autoimmune diseases, ischemic damage, neurodegenerative diseases, and sepsis (Adams 

and Cory, 1998; Evan and Littlewood, 1998; Reed and Paternostro, 1999; Schulz et al., 1999).  

 

When observing apoptosis one can assign a defined subcellular localization of a series of 

otherwise shuttling proteins. This explains why regular sequence based predictors of a protein's 

subcellular location do not perform well with these proteins, as these predictors are not trained 

explicitly for this cellular condition. And it renders rather obvious that the comparison of the 

performance of a regular and a specialized predictor's results may be indicative of an active or 

passive involvement of a protein in the molecular physiology of apoptosis (Suzuki et al., 2000; 

Dixon et al., 2009). 

Proteins contributing to apoptosis have been referred to as „apoptosis proteins‟ (Zhou and 

Doctor, 2003). Various algorithms for protein subcellular localization prediction are available in 

the literature (Zhang et al., 2006; Zhou et al., 2007; Chou and Shen, 2007a). Covariant 

discriminant function (Zhou and Doctor, 2003), support vector machine (SVM) (Huang and Shi, 

2005; Zhang et al., 2006; Zhou et al., 2007; Shi et al., 2008), increment of diversity (ID) (Chen 

and Li, 2007a), increment of diversity combined with support vector machine (ID_SVM) (Chen 

and Li, 2007b) and fuzzy K-nearest neighbor (FKNN) (Ding and Zhang, 2008) have been 
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proposed to predict subcellular localization of apoptosis proteins based on various amino acid 

composition or pseudo amino acid composition. The pseudo amino acid composition (PseAAC) 

was first proposed by Chou to efficiently improve prediction of protein subcellular localization 

(Chou, 2001; Chou and Shen, 2007a; Chou, 2009). 

In this work, we report a novel hybrid method that combines a genetic algorithm (GA) with a 

support vector machine (SVM) to predict the subcellular localization of apoptotic proteins on the 

basis of 119 sequence derived properties. A GA is used for feature selection to select a near-

optimal subset of informative features that is most relevant for the classification. Jackknife cross-

validation indicates the predictive capability of the proposed method on 317 apoptosis proteins. 

Our method achieved 89.91% accuracy for 25 features selected by the GA. Our models were 

examined by a test data of 98 apoptosis proteins. The predictive results of the proposed method 

has improved the predictive success rates, and therefore our current method plays an important 

role for the characterization of protein sequences of unknown proteins. 

3.9 Material and Methods 

3.9.1 Datasets 

In our work, we used the dataset constructed by Chen and Li (Chen and Li, 2007a). The training 

dataset consisted of 317 apoptosis proteins divided into six subcellular locations: cytoplasmic 

proteins (112), mitochondrial proteins (34), nuclear proteins (52), secreted proteins (17), 

membrane proteins (55) and endoplasmic reticulum proteins (47). In addition, the 98 apoptosis 

proteins containing cytoplasmic proteins (43), plasma membrane-bound proteins (30), 

mitochondrial proteins (13) and other proteins (12) were also used to estimate the effectiveness 

of the method. The numbers in the brackets represent the total number of proteins in the 

respective class. To remove the homologous sequences from the benchmark dataset, a cut-off 

threshold of 25% was imposed in (Chou and Shen, 2008; Chou and Shen, 2010a) to exclude 

those proteins from the benchmark datasets that have equal to or greater than 25% sequence 

identity to any other in a same subset. However, in this study we did not use such a stringent 

criterion because the currently available data do not allow us to do so. Otherwise, the numbers of 

proteins for some subsets would be too few to have statistical significance. 

Some proteins can simultaneously exist at more than one location site. This kind of multiplex 

proteins may have special functions and hence are particularly interesting to both drug discovery 
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(Chou and Shen, 2008; Smith, 2008) and basic research (Chou and Shen, 2010a; Chou and Shen, 

2010b; Chou and Shen, 2010c). However, the number of multiplex proteins in the existing 

apoptosis protein database is not large enough to allow us to construct a statistically meaningful 

benchmark dataset for studying multiplex nuclear proteins as done in (Chou and Shen, 2010a; 

Chou and Shen, 2010b) for the eukaryotic and plant protein systems. As a compromise, we 

studied the single-location apoptosis proteins.  

3.9.2 Features 

In this work, each sequence was encoded by 119 features. The complete list is provided in Table 

3.1. 

 

3.9.3 Multiclass SVM 

Subcellular localization of the apoptotic proteins are divided into six classes. Hence, this 

becomes a multiclass prediction problem. Normally, a „„One-against-one‟‟ or „„One-against-all‟‟ 

approach is employed for multiclass SVM classifiers (Hsu and Lin, 2002). In the present study, 

the „„One-against-one‟‟ approach was used. This method involves the construction of a binary 

SVM classifier corresponding to each pair of the classes. Hence, if there are K classes, a total of 

K (K-1)/2 classifiers will be constructed. Prediction of unseen test instances prediction follows 

the voting strategy. Predictions are made with each binary classifiers and the label is assigned to 

a class with maximum number of votes. In case of a tie, i.e. two classes have identical votes; the 

label assignment to the class is made on the basis of the smallest index. All the computations 

were performed using LIBSVM-2.81 (Chang and Lin, 2001). The various user-defined 

parameters, such as kernel parameter gamma (γ) and regularization parameter C were optimized 

on the training dataset. 

 

3.9.4 Genetic Algorithm and Support Vector Machine (GASVM) 

We report a novel hybrid method that combines the genetic algorithm (GA) and the support 

vector machine (SVM) approach to predict the subcellular localization of the apoptotic proteins 

using 119 sequence derived properties. A GA is used for selecting a near-optimal subset of 

informative features that are the most relevant for the classification. A hybrid GASVM system 

selects features from protein sequences and trains the SVM classifier simultaneously (Raymer et 

al., 2000; Mohamad et al., 2009). Figure 4.5 shows the model of the hybrid GASVM system, 
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where the feedback from the evaluation of the fitness function allows the GA to iteratively 

search for a feature subset that optimizes the fitness function value. Our aim was to optimize the 

following two objectives: minimization of the number of features used and maximization of the 

classification accuracy, which is a multi-objective optimization problem. The fitness function 

can be defined as: 

            (                 )  .   
(     )

  
/     )      (3.1) 

LOOCV- Leave One Out Cross Validation, TF- Total Features, SF- Selected Features, w1, w2 = 

weights given by the user, In our case w1 = 0.5; w2 = 0.5. 

 

Figure 4.5: Architectures of the GA based feature selection for SVM 
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3.10 Results and Discussion 

In statistical prediction, the following three cross-validation tests are often used to examine the 

power of a predictor: independent test dataset, sub-sampling test, and jackknife test. Of these 

three, the jackknife test is considered to be the most rigorous and objective one, and hence has 

been used frequently to determine the predictive power of various methods.  

 

Jackknife cross-validation is applied to test the performance of the proposed method on 317 

apoptosis proteins. Our method achieved 85.80% accuracy using all 119 features. Generally, not 

all features contribute equally to the classification; sometimes only few features play an 

important role in the classification model. In this work, we used filter and wrapper approaches to 

evaluate the performance of our model. The results are summarised in Table 3.12. 

Feature Subset Jackknife test (%)   

GASVM InfogainSVM ReliefFSVM mRMRSVM 

10 Features 83.91 65.62 79.49 63.72 

25 Features 89.91 79.81 88.95 72.87 

50 Features 88.64 87.07 88.01 80.75 

75 Features 89.59 87.47 89.27 86.11 

100 Features 86.75 86.75 88.64 89.27 

All Features 85.80 85.80 85.80 85.80 

 

Table 3.12: The predictive results on the 317 apoptosis proteins using GASVM, InfogainSVM, 

ReliefFSVM and mRMRSVM (different feature subsets) 

 

The filter approach is independent of the learning induction algorithm, computationally simple, 

fast and scalable. In this work, we have used Info Gain, ReliefF, and mRMR. Feature selection 

was performed by a five-fold cross-validation on the training dataset. Different models were built 

using the 10, 25, 50, 75 and 100 best features. The performance of the classification model is 

summarized in Table 3.12. It can be observed that all three approaches performed well. The 

feature selection generally does not deteriorate the classification performance much. With 75 

features, we obtain a training accuracy of 89.27% (ReliefF). The individual accuracy for each 

class is summarized in Table 3.13. The success rate of the proposed approach (ReliefF) for 

cytoplasm is 90.17%, for membrane proteins 89.09%, for nuclear proteins 88.46%, for secreted 
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proteins 94.11%, for endoplasmic reticulum proteins 89.36%, and for mitochondria proteins 

88.23%. 

The wrapper approach uses the inductive algorithm to estimate goodness of a given feature 

subset. A GA is used for selecting a subset of useful features that is most appropriate for the 

classification. We developed five different models (10, 25, 50, 75 and 100 best features) using 

genetic algorithms as shown in Table 3.12. The training accuracy of 89.91% was obtained using 

25 features. The success rate of the proposed approach (GASVM) for cytoplasm is 89.28%, for 

membrane proteins 92.72%, for nuclear proteins 86.53%, for secreted proteins 88.23%, for 

endoplasmic reticulum proteins 91.48% and for mitochondria proteins 91.17%.  

Location Jackknife test (%)   

GASVM InfogainSVM ReliefFSVM mRMRSVM 

Cytoplasmic proteins 89.28 87.50 90.17 88.39 

Mitochondrial proteins 91.17 88.23 88.23 85.29 

Nuclear proteins 86.53 86.53 88.46 88.46 

Secreted proteins 88.23 82.35 94.11 88.23 

Membrane proteins 92.72 90.90 89.09 92.72 

Endoplasmic reticulum 

proteins 

91.48 89.36 89.36 91.48 

Overall Accuracy 89.91 87.47 89.27 89.27 

 

Table 3.13: Individual accuracies for each location using GASVM, InfogainSVM, ReliefFSVM 

and mRMRSVM (317 apoptosis proteins) 

 

The overall accuracy of the proposed approach (GASVM) is 89.91% and about 2% higher than 

InfogainSVM and 0.5% higher than ReliefF and mRMR. We tested our model with a test dataset 

of 98 proteins (Table 3.15). Our model obtained an overall accuracy of 90.34%. The success rate 

of the proposed approach (GASVM)  for cytoplasm is 90.70%, for membrane proteins 86.67%, 

for mitochondria proteins 92.31%, and for others 91.70%. 

3.10.1 Comparison with other methods 

We compared the performance of our method with the well-known methods in the literature. As 

shown in Table 3.13, GASVM achieved 89.91% accuracy for the 317 proteins in the jackknife 

test. We compared our results with WoLF PSORT which yielded an overall accuracy of 37.55% 
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on these 317 proteins. Table 3.14 shows the detailed comparison of our method with ID (Chen 

and Li, 2007a), ID_SVM (Chen and Li, 2007b), WoLF PSORT (Horton et al., 2007) and 

IEPseAA (Shi et al., 2007) on 317 proteins. We can observe that the overall accuracy of our 

method is  higher than the other methods like ID, ID_SVM and IEPseAA. Moreover, in our 

method, the prediction accuracy for membrane proteins and mitochondria proteins are highest by 

92.72% and 91.17%, respectively.  

 

Model Sensitivity for each class (%) Overall 

Accuracy (%) 

(%) 

Cyto Mito Nucl Secr Memb Endo 

ID
a
 81.30 85.30 82.70 88.20 81.80 83.00 82.70 

 
ID_SVM

b
 

 

91.10 79.40 73.10 58.20 89.10 87.20 84.20 

PSORT
c
 51.78 41.17 50.00 82.35 0.00 0.02 37.55 

 
IEPseAA

d
 

 

90.20 82.40 86.50 88.20 90.90 91.50 89.00 

Our work 89.28 91.17 86.53 88.23 92.72 91.48 89.91 

a 
Chen and Li, 2007a, 

b
Chen and Li, 2007b, 

c
Horton et al., 2007, 

d
Shi et al., 2007 

Cyto - Cytoplasmic proteins (112), Mito - Mitochondrial proteins (34), Nucl - Nuclear proteins (52), Secr - Secreted 

proteins (17), Memb - Membrane proteins (55) and Endo - Endoplasmic reticulum proteins (47) 

Table 3.14: Prediction results with different models on 317 apoptosis proteins  

Model Sensitivity for each class (%) Test 

Accuracy (%) 

(%) 

Cyto Mito PMemb Other 

Covariant
a
 97.70 30.80 73.30 25.00 72.50 

Instab_SVM
b
 

 

76.80 92.50 83.30 50.00 77.60 

Dipep_Diver
c
 

 

88.40 92.30 90.00 50.00 84.70 

DWT_SVM 
d
 95.40 53.90 93.30 91.70 88.80 

 
Our work 90.70 92.31 86.67 91.70 90.34 

a
Zhou and Doctor, 2003, 

b Huang and Shi, 2005, 
c
Chen and Li, 2004,

d
Qiu et al., 2010 

Cyto - Cytoplasmic proteins (43), PMemb - Plasma membrane-bound proteins (30), Mito - Mitochondrial proteins 

(13) and other - Other proteins (12)  

Table 3.15:  Prediction results with different models on 98 apoptosis proteins  
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The evaluation on the 98 proteins in test data confirms that the overall predicted successful rate 

of our model is higher than other methods. As shown in Table 3.15, the test accuracy obtained by 

the proposed approach is 90.34%, which is 17.84 % higher than the performance of covariant 

(Zhou and Doctor, 2003), 12.74% higher than Instab_SVM (Huang and Shi, 2005), 5.64% higher 

than Dipep_Diver (Chen and Li, 2004) and 1.54% higher than the result of DWT_SVM (Qiu et 

al., 2009). 

3.10.2 Summary 

The comparison with different approaches on different datasets indicates that our method is 

effective and useful for predicting the subcellular localization of proteins during apoptosis. We 

hope that the encouraging results using novel features will improve the performance of protein 

subcellular location prediction of apoptosis proteins. This work will contribute to the 

understanding of the molecular physiology of apoptosis and with the hindsight of the associated 

diseases possibly contribute to the identification of targets for diagnostics or prognostic markers 

and therapeutic intervention. 

 

3.11 Conclusion 

The rapidly growing number of sequenced genomes needs an effective and reliable way of 

classifying the protein sequences into functional classes. In this work, we have analyzed and 

compared the accuracy of various protein classification and feature selection methods to classify 

an extremely diverged class of proteins (classical and non-classical secretory proteins, 

extracellular matrix proteins, and subcellular location of apoptosis proteins). We have not tested 

genetic algorithm for the prediction of secretory proteins and extracellular matrix proteins 

because genetic algorithm takes a long time to find an acceptable solution. Testing results on 

several diverged functional classes suggests that SVM and RF seems to be potentially useful 

tools for protein function prediction by means of classification of proteins into specific 

functional classes. We identified potential non-classical secretory proteins and extracellular 

matrix proteins by scanning the human proteome. Our models will contribute to functional 

annotation and drug discovery. 
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4 Protein Family Classification 

4.1 Introduction 

Protein family classification has several benefits as a basic approach for large-scale genomic 

annotation: (1) it helps the annotation of proteins, which is quite challenging to illustrate by  

pairwise sequence alignments  (2) it assist an error free annotation and  maintaining family based 

databases from various resources (3) it aids to recover substantial biological information from 

massive amounts of data (4) it exposes the essential gene families which is essential for the 

comparative genomics studies (Wu et al., 2003). 

 

So far a number of different classification methods have been developed to organize proteins. 

Among the variety of classification schemes are: (1) families/ superfamilies (Barker et al., 1996) 

in the PIR-PSD (2) protein domain families : Pfam (Finn et al., 2010) and ProDom (Bru et al., 

2005) (3) sequence motifs: PROSITE (Hulo, et al., 2006) and PRINTS (Attwood et al., 2002) (4) 

structural classes: SCOP (Andreeva, et al., 2008) and CATH (Greene et al., 2007) (5) 

combinations of various family classifications: iProClass (Wu et al., 2004) and InterPro 

(McDowall and Hunter, 2011).  

 

Although many protein families have a well conserved tertiary structure, their sequence identity 

is very low and in some cases falls within the twilight zone (< 25% sequence similarity) 

(Doolittle, 1986; Pearson, 1997). Assigning sequences to the respective family by sequence 

search methods is risky when the pairwise identity is below 25%. In above cases, alignment 

based methods will recognize the proteins incorrectly. With the rapid increase in newly found 

protein sequences entering into databanks, an efficient method is needed to identify protein 

families from the sequence databases. 

 

Some proteins may not have adequate sequence similarities although they share similar 

structures and biochemical functions. Identification of antifreeze and bioluminescent proteins 

from protein sequence is more interesting due to the low pairwise sequence similarity which 

often falls below the twilight zone. So far, no specific method has been reported to identify 

protein families (antifreeze and bioluminescent) from primary sequence. In this work, we have 
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developed machine learning method to annotate hypothetical proteins of antifreeze and 

bioluminescent families. 

 

4.2 Background of antifreeze proteins 

The surrounding environment plays a key role in the survival of living organisms. Extremely 

cold temperature causes intracellular ice formation which is considered to be lethal to the cell. 

Initially, it was thought that the coldest regions like Antarctica are uninhabitable due to 

extremely cold temperature which is lower than the freezing point of body fluids. In 1957, 

Scholander et al. observed that certain fish species were able to survive in the conditions where 

the temperature is lower than the freezing point of their body fluids (Scholander et al., 1957). 

Later it was reported that some overwintering plants such as Silenea caulis and Carex firma can 

survive at temperatures of less than -50
o
C (Sakai and Larcher, 1987; Moriyama et al., 1995; 

Yoshida et al., 1997). These findings suggest that these organisms and plants have special 

antifreeze mechanisms to protect themselves against freezing stress. This antifreeze activity 

makes the organisms less sensitive to cold temperatures. Previous studies reported that the 

antifreeze effect is due to a group of proteins called „„antifreeze proteins‟‟ (AFPs) (Davies and 

Sykes, 1997; Logsdon and Doolittle, 1997; Cheng, 1998; Ewart et al., 1999).  

 

Antifreeze proteins have the capacity to adsorb onto the surface of ice crystals. The interaction 

between AFPs and ice crystals has significant effects on the overall growth of ice (Davies et al., 

2002). Firstly, AFPs inhibit ice crystal growth and lower the freezing temperature of the water 

without altering the melting point. This process creates a difference between the freezing 

temperature and melting point which is known as thermal hysteresis (Urrutia et al., 1992). Each 

antifreeze protein has its own characteristic values for thermal hysteresis. Secondly, AFPs 

obstruct the recrystallization of ice, which includes the growth of larger ice crystals instead of 

smaller ice crystals (Yu and Griffith, 2001). Larger ice crystals increase the possibility of 

physical damage within frozen plant tissues (Griffith et al., 1997). Finally, AFPs also have the 

ability to interact with ice nucleators, which may result in either the inhibition or the 

enhancement of ice nucleation activity. Overwintering plants and animals adopt two strategies 

namely freeze tolerance and freeze avoidance to survive at low and subzero temperatures 

(Lewitt, 1980; Sformo et al., 2009). Freeze tolerance involves the activation or synthesis of ice-
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nucleating agents (INAs) on winter in freeze-tolerant species whereas freeze avoidance involves 

the inactivation or removal of ice-nucleating agents in freeze-avoiding species. 

 

AFPs have been discovered in various fish, insects, bacteria, fungi and overwintering plants 

including ferns, gymnosperms, monocotyledonous, dicotyledonous, angiosperms, etc. 

(Scholander et al., 1957; Urrutia et al., 1992; Moriyama et al., 1995; Davies and Sykes, 1997;  

Logsdon and Doolittle, 1997; Cheng, 1998; Ewart et al., 1999; Yu and Griffith, 2001; Davies et 

al., 2002). Analyses of AFPs from fish, insects and plants have shown that there is no consensus 

sequence or structure for an ice-binding domain. Some AFPs undergo structural changes at low 

temperatures (Davies et al., 2002). One explanation for AFP diversity is that ice can present 

many different surfaces with different geometric arrangements of oxygen atoms (Davies et al., 

2002). The ice binding domains and their interaction with ice varies from species to species. For 

example, the ice binding domains of fish and insect AFPs are relatively hydrophobic and their 

adsorption onto ice is a hydrophobic interaction whereas plant antifreeze proteins have multiple, 

hydrophilic ice binding domains (Davies et al., 2002). 

 

In fish, AFPs are classified into five known types namely AFGPs, AFP I, AFP II, AFP III and 

AFP IV (Davies and Hew, 1990; Chou, 1992; Davies et al., 2002). AFGPs are made up of 4 to 

more than 50 tandem repeats of Ala-Ala-Thr with a disaccharide attached to each Thr OH. It has 

an amphipathic polyproline type II helix fold. Type I AFPs are made up of alanine-rich, 

amphipathic helices. Type II AFPs are globular proteins with mixed secondary structure. Type 

III AFPs are made up of short beta-strands and one helix turn that gives it a unique flat-faced 

globular fold. Type IV AFPs are helix-bundle protein. Insect AFPs shows a beta helical structure 

(Graether et al., 2000). So far, crystal structure is not available for plant AFPs. 

AFPs have potential industrial, medical, biotechnological and agricultural application in different 

fields, such as food technology, preservation of cell lines, organs, cryosurgery and freeze-

resistant transgenic plants and animals (Griffith and Ewart, 1995; Breton et al., 2000). 

Identification of novel AFPs is important in understanding protein-ice interactions and also in 

creating novel ice-binding domains in other proteins. With the fast growth of protein sequences 

in various databases, the need for an automated and accurate tool to recognize AFP becomes 

increasingly important. 
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Encouraged by the overwhelming success of machine learning methods in engineering, medical 

and financial applications, many research groups have been using Neural networks, Support 

vector machines, KNN, Random forests and other machine learning algorithms in the biological 

field, especially in the classification and prediction of protein structures and functional profiles 

(Chou, 2001, 2005; Chou and Cai, 2005; Anand et al., 2008; Chou and Shen, 2009; Huang et al., 

2009; Qiu et al., 2009). So far, bioinformatics and statistical learning methods like  SVM and RF 

have not been explored for the prediction of antifreeze proteins. In this work, we report a random 

forest approach to identify antifreeze proteins from sequence information, irrespective of the 

sequence similarity. 

4.3 Materials and Methods 

4.3.1 Datasets 

We obtained 221 antifreeze protein sequences from seed proteins of the Pfam database 

(Sonnhammer et al., 1997). To enrich the dataset, we performed PSI-BLAST search for each 

sequence against non-redundant sequence database with stringent threshold (E value - 0.001) 

(Altschul et al., 1997). Each sequence was subjected to manual inspection to retain only 

antifreeze proteins. Proteins with incomplete sequences were excluded. The final positive dataset 

contained 481 non-redundant antifreeze proteins. The negative dataset was constructed from 

9493 seed proteins (representative members) of Pfam protein families, which are unrelated to 

antifreeze proteins (Sonnhammer et al., 1997). The sequences with >=40% sequence similarity 

were removed from the dataset using CD-HIT (Li et al., 2001). 

 

Training dataset:  

300 antifreeze domains were randomly selected from 481 antifreeze proteins for the positive 

dataset. Similarly, 300 non-antifreeze proteins were randomly taken from 9493 non-antifreeze 

proteins for the negative dataset.  

 

Test dataset:  

The remaining 181 antifreeze proteins domains served as a positive dataset for testing. The 

remaining 9193 non-antifreeze proteins (after excluding 300 non-antifreeze proteins that were 

used for training) were used as a negative dataset. 
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4.3.2 Features 

In this work, each sequence is encoded by 119 features (Table 3.1). 

 

4.3.3 Steps of the algorithm 

1. Get the protein sequence data from the Pfam database. 

2. Assign class labels: antifreeze proteins = +1 (positive class); non-antifreeze 

proteins = -1 (negative class). 

3. Encode each sequence into 119 features. 

4. Get the top 25 features from ReliefF feature selection algorithim. 

5. Partition the data into training and test sets. 

6. Run the random forest classifier on the training set. 

7. Run the random forest classifier on the test set to assess the generalization. 

8. Annotate the hypothetical proteins using AFP-Pred. 

 

4.4 Results and Discussion 

4.4.1 Prediction using PSI-BLAST 

PSI-BLAST is an widely used pair wise sequence search tool for recognizing homologous 

sequences (Altschul et al., 1997). The performance of PSI-BLAST was evaluated using 

jackknife cross validation, where each sequence in the positive dataset (481 antifreeze proteins) 

was used as a BLAST query sequence and remaining sequences (480 antifreeze proteins) were 

used as a BLAST database. Three iterations of PSI-BLAST were carried out at E value - 0.001. It 

was observed that only 280 antifreeze proteins showed similarity (BLAST hit) with other 

antifreeze proteins (E value - 0.001) and no hits were obtained for the remaining 201 AFPs. The 

result suggests that pair wise sequence similarity methods alone may not be the good choice for 

the annotation of antifreeze proteins. Therefore, we decided to explore machine learning methods 

to predict AFPs from sequence derived features such as frequency of amino acid groups, 

secondary structural elements, and physiochemical properties, etc. 
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4.4.2 Prediction of antifreeze proteins by AFP-Pred 

In this work, we report a random forest method for the prediction of antifreeze proteins from 

protein sequence using 119 sequence derived properties. We trained our random forest model on 

the dataset containing 300 antifreeze proteins and 300 non-antifreeze proteins. AFP-Pred 

achieved 82% training accuracy using all the features. In order to examine the performance of 

the newly developed model, we tested our training models on a dataset containing 181 antifreeze 

proteins and 9193 non-antifreeze proteins. In this work, we have used three different filter 

approaches namely ReliefF, Info Gain, and mRMR, to build an in-silico machine learning model.  

The number of features was stepwise reduced from 119 to 10 features. Table 4.1 shows the 

performance of our model on the test dataset using different feature subsets (10 to 119 features).  

As seen in Table 4.1, feature selection improves the classification accuracy until the number of 

features decreases to 25. Using all features, our model achieved 83.38% accuracy with 84.67% 

sensitivity, 82.32% specificity and MCC of 0.6674. The prediction accuracy was slightly 

improved when the features were reduced from 119 to 25. Using 25 features (ReliefF), AFP-Pred 

obtained 84.29% accuracy with 84.67% sensitivity, 83.98% specificity, and MCC of 0.6846. 

With Info Gain and mRMR (Table 4.2, Table 4.3), the sensitivity and specificity values were less 

as compared to ReliefF. The results suggest that the ReliefF feature reduction approach selected 

useful features by eliminating the uncorrelated and noisy features. 

 

Feature subset Sensitivity 

(%) 

Specificity 

(%) 

MCC Test 

Accuracy (%) 

Training 

Accuracy (%) 

10 Features 80.00 80.66 0.6052 80.36 80.17 

25 Features 84.67 83.98 0.6846 84.29 83.84 

50 Features 86.00 81.77 0.6749 83.69 83.34 

75 Features 84.00 82.87 0.6667 83.38 83.83 

100 Features 84.00 81.77 0.6553 82.78 80.67 

All Features 84.67 82.32 0.6674 83.38 82.00 

MCC – Matthew‟s correlation coefficient 

Table 4.1: Performance of random forest on test data containing 181 AFPs and 9193 non-AFPs 

using different feature subsets (ReliefF) 
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Feature subset Sensitivity 

(%) 

Specificity 

(%) 

MCC Test 

Accuracy (%) 

Training 

Accuracy (%) 

10 Features 74.03 81.22 0.5539 77.62 82.00 

25 Features 74.59 80.11 0.5478 77.35 80.84 

50 Features 72.38 76.80 0.4922 74.59 83.50 

75 Features 73.48 81.22 0.5486 77.35 82.34 

100 Features 72.38 82.87 0.5556 77.62 83.50 

All Features 84.67 82.32 0.6674 83.38 82.00 

MCC – Matthew‟s correlation coefficient 

Table 4.2: Performance of random forest on test data containing 181 AFPs and 9193 non-AFPs 

using different feature subsets (Info Gain) 

 

Feature subset Sensitivity 

(%) 

Specificity 

(%) 

MCC Test 

Accuracy (%) 

Training 

Accuracy (%) 

10 Features 75.14 80.66 0.5589 77.90 81.50 

25 Features 73.48 79.56 0.5314 76.52 81.00 

50 Features 72.93 78.45 0.5146 75.69 83.17 

75 Features 74.03 80.66 0.5482 77.35 82.34 

100 Features 71.27 85.08 0.5690 78.18 83.34 

All Features 84.67 82.32 0.6674 83.38 82.00 

MCC – Matthew‟s correlation coefficient 

Table 4.3: Performance of random forest on test data containing 181 AFPs and 9193 non-AFPs 

using different feature subsets (mRMR) 

 

We also investigated the influence of the feature reduction by plotting Receiver Operating 

Characteristic (ROC) curves (Figure 4.1) derived from the sensitivity (true positive rate) and 

specificity (false positive rate) values for the classifiers using all features and the 25 best 

performing features (ReliefF), respectively. The area under curve for all features was 0.87 and 

for the top 25 features was 0.89. 
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Figure 4.1: ROC Plot for random forest using all features and top 25 features (ReliefF) 

4.4.3 Performance of AFP-Pred, BLAST and HMM 

In the next step we evaluated our algorithm with an independent dataset obtained from 

INTERPRO and KEGG databases (Kanehisa and Goto, 2000; Hunter et al., 2009). The 

sequences that are present in the positive training dataset were removed from the list. Finally, we 

got 16 proteins which are annotated as „„antifreeze proteins‟‟(database annotation) (Table 4.4). 

Our approach correctly predicted 15 proteins as antifreeze proteins. The performance of our 

algorithm was compared with PSI-BLAST and HMM (Altschul et al., 1997; Eddy, 1998).  

 

PSI-BLAST search for each sequence was carried out against the SWISS-PROT database with 

an E value of 0.1. HMM search for each query sequence was performed against the HMM profile 

obtained from Pfam database (Pfam release 23) (Sonnhammer et al., 1997). Out of 16 proteins, 

BLAST search retrieved antifreeze protein hits from SWISS-PROT database for only 9 proteins. 

No hits were found for the remaining 7 proteins. Similarly, HMM search against Pfam database 

returned no hits for 11 proteins. As seen in Table 4.4, AFP-Pred, BLAST and HMM predicted 
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15, 9 and 5 proteins, respectively. This result indicates that AFP-Pred is a useful approach to 

predict AFPs from sequence information in the absence of sequence similarity. Out of 16 

proteins, 3 proteins are annotated as „„anti-freeze proteins‟‟ (NCBI definition) and the remaining 

14 proteins are annotated as „„unnamed protein product‟‟ or „„hypothetical proteins‟‟ in NCBI 

database. AFP-Pred correctly predicted all the hypothetical proteins as antifreeze proteins. This 

shows that AFP-Pred can be efficiently used to annotate hypothetical proteins. 

 

GI Code AFP-Pred BLAST HMM Source of  

annotation 

NCBI definition 

26325086 --- AFP AFP INTERPRO unnamed protein 

product 

26344193 AFP AFP --- INTERPRO unnamed protein 

product 

74221639 AFP AFP --- INTERPRO unnamed protein 

product 

12843602 AFP --- --- INTERPRO unnamed protein 

product 

257049854 AFP --- --- KEGG hypothetical protein 

30249105 AFP AFP AFP INTERPRO Type I antifreeze 

protein 

226941159 AFP AFP AFP INTERPRO Type I antifreeze 

protein 

126464034 AFP --- --- KEGG Type I antifreeze 

protein 

45435722 AFP AFP --- INTERPRO hypothetical protein 

281341260 AFP AFP AFP INTERPRO hypothetical protein 

2315605 AFP --- --- INTERPRO hypothetical protein 

260817607 AFP AFP AFP INTERPRO hypothetical protein 

26388908 AFP --- --- INTERPRO unnamed protein 

product 

26348120 AFP --- --- INTERPRO unnamed protein 

product 
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26333557 AFP --- --- INTERPRO unnamed protein 

product 

26332695 AFP AFP --- INTERPRO unnamed protein 

product 

AFP - Antifreeze proteins 

Table 4.4: Prediction result for 16 potential antifreeze proteins 

4.4.4 Comparison with other machine learning methods  

The proposed random forest method was compared with several state-of-the-art classifiers such 

as SVM, Naïve Bayes, MLP, and the K-nearest neighbor classifier (Aha and Kibler, 1991; 

George and Langley, 1995; Vapnik, 1995). We compared the performance of AFP-Pred with the 

other models using the same feature subsets (top 25 features from ReliefF) (Table 4.5). All 

models were tested on the test dataset containing 181 positive and 9193 negative sequences. The 

prediction accuracy of random forest is about 7% and 6% higher than Naïve Bayes and K-nearest 

neighbor classifiers (IBK), respectively. Although the performance of random forest, SVM and 

MLP is comparable, there is a slight improvement in the sensitivity and specificity values of 

random forest. This result shows that AFP-Pred can be used to predict antifreeze proteins with 

higher accuracy. 

 

Method Sensitivity 

(%) 

Specificity 

(%) 

MCC Test 

Accuracy (%) 

Naïve Bayes 66.60 84.53 0.5233 76.44 

MLP 80.00 80.66 0.6052 80.36 

IBK 78.67 75.69 0.5413 77.04 

SVM 82.67 80.11 0.6254 81.27 

AFP-Pred 84.67 82.32 0.6674 83.38 

MCC – Matthew‟s correlation coefficient 

Table 4.5:  Comparison of AFP-Pred with other machine learning methods 

 

4.4.5 Summary 

Identification of antifreeze proteins from sequence databases is difficult due to poor sequence 

similarity. We reported a random forest based approach, AFP-Pred, for the prediction of 

antifreeze proteins from sequence using sequence derived properties. Very high prediction 
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accuracies on the training and testing datasets show that AFP-Pred is a potentially useful tool for 

the prediction of antifreeze from protein primary sequence. Because of its simplicity, this 

approach can be easily extended to recognizing other specific families and functions and should 

be a useful tool for the high-throughput and large-scale analysis of proteomic and genomic data. 

 

4.5 Background of bioluminescent proteins 

Bioluminescence is an enchanting process in which light is produced by a chemical reaction 

within an organism (Hastings, 1995; Wilson, 1995). Bioluminescence is found in various 

organisms like ctenophora, bacteria, certain annelids, fungi, fish, insects, algae, squid, etc. 

(Lloyd, 1978; Hastings, 1995; Haddock et al., 2010). The bioluminescence mechanism involves 

two chemicals, namely luciferin, a substrate, and the enzyme luciferase (White et al., 1971; 

Wilson, 1995). The oxidation of luciferin is catalyzed by the enzyme luciferase, resulting in light 

and an intermediate called oxyluciferin. Occasionally, the luciferin catalyzing protein and 

oxygen (co factor) are bound together to form a single unit called photoprotein. This molecule is 

triggered to produce light when a particular type of ion is added to the system. The 

proportionality of the light emission makes a clear distinction between a photoprotein and a 

luciferase (White et al., 1971). Photoproteins are capable of emitting light in proportion to the 

amount of the catalyzing protein, but in luciferase-catalyzed reactions, the amount of light 

emitted is proportional to the concentration of the substrate luciferins (Hastings, 1995).   

 

Different creatures produce different colors of light, from violet through red (Wilson 

and Hastings, 1998; Haddock et al., 2010). The different colors of light produced are often 

dependent on the roles the light plays, the organism in which it is produced, and the varieties of 

chemicals produced.  

Bioluminescence serves a diversity of functions, but many of those functions are not known. The 

known functions include camouflage, finding food, attraction of prey, attraction of mates, 

repulsion by way of confusion, signaling other members of their species, confusing potential 

predators, communication between bioluminescent bacteria (quorum sensing), illumination of 

prey, burglar alarm, etc. (Lloyd, 1978; Hastings, 1995; Haddock et al., 2010). 
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The application of bioluminescence promises great possibilities for medical and commercial 

advances. Bioluminescent proteins serve as invaluable biochemical tools with applications in a 

variety of fields including gene expression analysis, drug discovery, the study of protein 

dynamics and mapping signal transduction pathways, bioluminescent imaging, toxicity 

determination, DNA sequencing studies, estimating metal ions such as calcium, etc. (Cormier et 

al., 1975; Chalfie et al., 1994; Gonzalez and Negulescu, 1998; Kain, 1999; Ward et al., 2000; 

Contag and Bachmann, 2002; DiPilato et al., 2004; Hayes et al., 2004).  

The detailed analysis of bioluminescence proteins helps to understand many of the functions 

which are still unknown and also helps to design new medical and commercial applications. Due 

to advances in sequencing technologies, huge amount of data is available in various databases 

(Schuster, 2008). Despite tremendous progress in the annotation of protein, there are no existing 

online tools available for the prediction of bioluminescent proteins using primary protein 

sequences.  

A support vector machine is a supervised learning algorithm, which has been found to be useful 

in the recognition and discrimination of hidden patterns in complex datasets (Zhang et al., 2006). 

SVM has been successfully applied in various fields of computational biology, e.g., protein 

sequence/structure analysis, micro-array and gene expression analysis (Zhang et al., 2006; Zhou, 

et al., 2007). 

So far, bioinformatics and statistical learning methods like support vector machine and random 

forest have not been explored for the prediction of bioluminescent proteins. In this work, we 

present a novel prediction method that uses a support vector machine and physicochemical 

properties to predict bioluminescent proteins. 

4.6 Materials and Methods 

4.6.1 Datasets 

We obtained 300 bioluminescent proteins from seed proteins of the Pfam database (Sonnhammer 

et al., 1997). To enrich the dataset, we performed PSI-BLAST search against non-redundant 

sequence database with stringent threshold (E value - 0.01) (Altschul et al., 1997). Redundant 

sequences that have >=40% sequence similarity were removed from the dataset using CD-HIT 



 

66 
 

(Li et al., 2001). After careful manual examination, a total of 441 bioluminescent proteins were 

selected for the positive dataset.  

 

Training dataset: 300 bioluminescent proteins were selected from 441 bioluminescent proteins 

for the positive dataset. 300 non-bioluminescent proteins for the negative set were randomly 

taken from seed proteins of Pfam protein families, which were unrelated to bioluminescent 

proteins.  

Test dataset: The remaining 141 bioluminescent proteins served as a positive dataset for testing. 

The negative dataset was created from the seed proteins of non-bioluminescent proteins, which 

are selected from seed proteins of non-bioluminescent Pfam protein families (Sonnhammer et al., 

1997).  The negative sequences present in the training dataset were removed. Furthermore, non-

bioluminescent protein domains with less than 40 amino acids were excluded from the negative 

set. Finally, the test dataset consisted of 141 bioluminescent proteins and 18202 non-

bioluminescent proteins. 

4.6.2 Features 

In this work, each sequence is encoded by 554 features (physicochemical properties). 

 

4.6.3 Steps of the algorithm 

1. Get the protein sequence data from the Pfam database. 

2. Assign class labels: bioluminescent proteins = +1 (positive class); non-

bioluminescent proteins = -1 (negative class). 

3. Convert all the sequences to numerical equivalents based on 

physicochemical properties. 

4. Get the top 100 features from ReliefF feature selection algorithm. 

5. Partition the data into training and test sets. 

6. Run the SVM classifier on the training set. 

7. Run the SVM based classifier on the test dataset to assess the performance 

of the classifier. 

8. Annotate the hypothetical proteins using BLProt. 
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4.7 Results and Discussion 

4.7.1 Performance of similarity based search using PSI-BLAST 

Similarity search methods play a vital role in the classification of proteins. PSI-BLAST is the 

most popular similarity based search method for searching sequence databases (Altschul et al., 

1997). PSI-BLAST search for each query sequence was performed against the database of 441 

bioluminescent proteins that were used for the training and testing. PSI-BLAST was carried out 

at an E value of 0.001 with three iterations. It was observed that 280 bioluminescent proteins 

showed similarity (BLAST hit) with other bioluminescent protein sequences (E value - 0.001). 

The performance of the sequence similarity method drops when there is no significant sequence 

similarity between two proteins. Hence, such an alignment-based method would rarely yield 

satisfactory predictions. Therefore, there is a need for alignment-free methods (machine learning 

models) for predicting bioluminescent proteins. 

 

4.7.2 Prediction of bioluminescent proteins by BLProt 

A SVM classifier was applied to predict bioluminescent proteins. Each sequence was encoded by 

554 features. The model was trained with a dataset containing 300 bioluminescent protein 

sequences and 300 non-bioluminescent protein sequences.  

 

Feature 

subset 

Sensitivity 

(%) 

Specificity 

(%) 

MCC Test Accuracy 

(%) 

Training 

Accuracy (%) 

75 features 69.50 77.13 0.4663 73.86 77.16 

100  features 74.47 84.21 0.5904 80.06 80.00 

200 features 68.09 81.58 0.5022 75.83 78.00 

300 features 67.38 82.11 0.5017 75.83 78.67 

400 features 64.54 86.32 0.5260 77.04 78.00 

500 features 65.96 85.79 0.5323 77.34 78.00 

All features 63.12 78.19 0.4182 71.73 75.16 

MCC – Matthew‟s correlation coefficient 

Table 4.6: Performance of the SVM using different feature subsets selected by ReliefF 

BLProt achieved 75.16% training accuracy (5 fold cross-validations) with all of the 544 

physicochemical properties (Table 4.6).  
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To identify the most prominent features, we carried out feature selection with three different 

filter approaches, ReliefF, Info Gain, and mRMR. We selected five different feature subsets by 

decreasing the number of features, and the performance of each feature subset was evaluated 

(Table 4.6, Table 4.7, and Table 4.8). The best performance of 80% training accuracy was 

achieved with ReliefF selecting 100 features. Hence, this is chosen as the final model for our 

work. 

Feature subset Sensitivity 

(%) 

Specificity 

(%) 

MCC Test Accuracy 

(%) 

Training 

Accuracy (%) 

100 features 69.50 74.21 0.4351 72.21 74.83 

200 features 76.60 75.79 0.5193 76.13 78.00 

300 features 70.92 77.37 0.4821 74.62 78.33 

400 features 68.09 77.89 0.4611 73.72 78.17 

500 features 68.09 84.21 0.5326 77.34 78.33 

All features 63.12 78.19 0.4182 71.73 75.16 

MCC – Matthew‟s correlation coefficient 

Table 4.7: Performance of the SVM using different feature subsets selected by Info Gain 

Feature subset Sensitivity 

(%) 

Specificity 

(%) 

MCC Test Accuracy 

(%) 

Training 

Accuracy (%) 

100 features 65.96 84.21 0.5134 76.44 78.33 

200 features 65.25 84.74 0.5132 76.44 78.5 

300 features 65.96 83.68 0.5072 76.13 78.5 

400 features 65.96 83.68 0.5072 76.13 78.33 

500 features 65.96 83.68 0.5072 76.13 78.5 

All features 63.12 78.19 0.4182 71.73 75.16 

MCC – Matthew‟s correlation coefficient 

Table 4.8: Performance of the SVM using different feature subsets selected by mRMR 

After training, we tested our algorithm on the test dataset consisting of 141 bioluminescent 

protein sequences and 18202 non-bioluminescent proteins sequences. The maximum accuracy of 

80.06% with 74.47 % sensitivity and 84.21% specificity was obtained using the top 100 features 

(ReliefF, Table 4.6). 
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Figure 4.2 presents a chart with the true positive rates and false positive rates on the test data at 

different thresholds for the classifiers using all the features and the top 100 features, respectively 

(ReliefF). The area under curve for all features was 0.79 and for the top 100 features was 0.87, 

respectively. 

 

Figure 4.2: ROC Plot for SVM models using all and the top 100 features (ReliefF) 

4.7.3 Comparison of BLProt with HMM and BLAST 

The performance of BLProt was compared with other sequence search methods, namely HMM 

and PSI-BLAST using 141 bioluminescent proteins (Altschul et al., 1997; Eddy, 1998). PSI-

BLAST search for each sequence was carried out against the SWISS-PROT database with an E 

value of 0.1. HMM search for each query sequence was performed against the HMM profile 

obtained from the Pfam database (Pfam release 23) (Sonnhammer et al., 1997). Out of 141 

proteins, 114 proteins were correctly predicted by BLProt. PSI-BLAST and HMM correctly 

predicted 99 and 76 proteins, respectively.  
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Our algorithm was further evaluated by 9 hypothetical proteins obtained from the INTERPRO, 

CDD and KEGG databases (Kanehisa and Goto, 2000; Hunter et al., 2009; Marchler-Bauer, et 

al., 2011) (Table 4.9). Our approach correctly predicted all proteins as bioluminescent proteins. 

The performance of our algorithm was compared with PSI-BLAST and HMM (Altschul et al., 

1997; Eddy, 1998). Out of these 9 proteins, the PSI-BLAST search retrieved bioluminescent 

protein hits from the SWISS-PROT database for only 4 proteins. No hits were found for the 

remaining 5 proteins. Similarly, HMM search against the Pfam database returned no hits for 3 

proteins.  This result indicates that BLProt is a useful approach for predicting bioluminescent 

proteins from sequence information in the absence of sequence similarity.  

GI BLProt PSI-BLAST HMM Source of annotation 

156529049 BLP Non-BLP BLP INTERPRO 

37528019 BLP BLP Non-BLP KEGG 

37528018 BLP BLP BLP CDD 

45440453 BLP Non-BLP BLP INTERPRO 

45440453 BLP Non-BLP BLP INTERPRO 

153796564 BLP Non-BLP Non-BLP INTERPRO 

49257059 BLP BLP BLP CDD 

159576911 BLP BLP Non-BLP CDD 

49257059 BLP Non-BLP BLP INTERPRO 

BLP - Bioluminescent protein; Non-BLP - Non-bioluminescent protein; CDD - Conserved Domain Database 

Table 4.9: Prediction result for 9 potential bioluminescent proteins 

4.7.4 Comparison with other machine learning methods 

The proposed SVM model was compared with several state-of-the-art classifiers such as J4.8, 

PART, Random forest, Adaboost and IBK (Aha and Kibler, 1991; Quinlan, 1993; Freund and 

Schapire, 1996; Frank and Witten, 1998; Breiman, 2001). We compared the performance of 

BLProt with the other approaches using the same feature subset (top 100 features from ReliefF). 

All models were tested on the test dataset containing 141 positive and 18202 negative sequences. 

The performance of different classifier on test dataset is shown in Table 4.10. The prediction 

accuracy of BLProt is about 7% and 12% higher than that of J4.8 and PART, respectively. 

Although the sensitivity of BLProt, random forest and IBK is comparable, BLProt is superior in 

specificity and concerning the MCC values. 



 

71 
 

 

Method Sensitivity 

(%) 

Specificity 

(%) 

MCC Test Accuracy 

(%) 

J4.8 69.50 75.79 0.4518 73.11 

PART 63.12 72.11 0.3519 68.28 

IBK 76.60 69.47  0.4556 72.51 

Random Forest 75.18 73.16 0.4787 74.02 

AdaBoost 68.79 72.63 0.4117 71.00 

BLProt 74.47 84.21 0.5904 80.06 

MCC – Matthew‟s correlation coefficient 

Table 4.10: Comparison of BLProt with other machine learning methods 

4.7.5 Summary 

Bioluminescence is a process in which light is emitted by a living organism. It is an important 

protein family which has wide medical and commercial values. In this study, we developed a 

method for predicting bioluminescent proteins from its primary sequence using ReliefF coupled 

with SVM. BLProt will help the experimental biologist to predict bioluminescence from a 

protein sequence and thus, help to avoid unnecessary experiments. 

 

4.8 Conclusion 

The classification of proteins into families is useful because it can suggest potential function of a 

unknown proteins. Support vector machine and random forest were used for classification of 

protein families with weak sequence similarities. We have developed machine learning method 

to annotate hypothetical proteins of antifreeze and bioluminescent families. Our tools, thus 

constitutes a fundamental bioinformatics resource for biologists who contemplate using 

bioinformatics as an integral approach to their genomic/proteomic research and scientific 

inquiries. 
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5 Experimental validations of predicted candidate proteins for post- 

translational translocation into the ER-Membranes 
 

 5.1 Introduction 

In eukaryotic cells, where several cellular compartments have evolved to carry out specialized 

functions, the correct localization of their resident proteins is essential for cell viability. After 

protein synthesis in cytoplasm, newly made polypeptides must be transported to their final 

destination in the cell. The process of protein transport to a particular cellular location is known 

as protein sorting (Rothman, 1996). For secreted proteins or those that have to be transported 

into compartments along the secretory pathway, the journey starts with the translocation of the 

protein into the endoplasmic reticulum (ER) membrane (Palade, 1975; Walter et al., 1984). 

Many experiments showed that translocation of protein are usually directed by "postal code" like 

targeting signals encoded within the amino acid sequences (Blobel and Sabatini, 1971).  

 

The entry to the general secretory pathway is controlled by the signal sequence, an N-terminal 

part of the polypeptide chain, which is cleaved off while the protein is translocated through the 

ER-membrane. Signal sequences are short peptide chains of a length of 14-60 amino acids. They 

share certain common structural features: a net positive charge in the N-terminus, a hydrophobic 

core and a polar cleavage site (von Heijne, 1985). 

 

5.1.1 Co-translational translocation of proteins into the ER 

The translocation of secretory proteins across the ER-membrane can occur co or post-

translationally. Co-translational translocation in eukaryotes is dependent on a cytoplasmic 

protein-RNA complex called SRP (Signal Recognition Particle). The mammalian SRP comprises 

six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68, and SRP72), and one RNA (7SL 

RNA/SRP RNA) (Walter and Blobel, 1980; Walter and Blobel, 1982).  

 

The translation of the secretory protein initiates on a free ribosome in the cytoplasm, but as soon 

as the signal peptide emerges from the ribosome, it binds to SRP, which prevents folding of the 

nascent polypeptide chain and arrests the elongation step of translation (Schatz and Dobberstein, 
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1996). This elongation arrest is mediated by the Alu domain of eukaryotic SRP and is necessary 

for correct coupling of protein translation and translocation (Mason et al., 2000). 

 

SRP directs the ribosome complex, including mRNA and nascent protein, to the ER membrane 

by interacting with its membrane receptor. At the membrane the translation resumes. Thus, the 

remaining translation takes place on membrane-bound ribosomes, while the protein is 

translocated across the membrane (Figure 5.1) (Rapoport, 1990; Mothes et al., 1997; Rapoport, 

2007). 

 

Figure 5.1: Model of co-translational translocation (Rapoport, 2007) 

 

The actual protein-conducting channel in the ER-membrane is formed by the Sec61 complex. 

This membrane protein complex consists of 3 subunits: Sec61α, Sec61β and Sec61γ. The large 

 α- subunit was discovered to be a homolog of Sec61p of Saccharomyces cerevisiae which was 

found earlier in genetic screens for mutants defective in translocation (Deshaies and Schekman, 

1987). The β-and γ-subunits of the mammalian Sec6l complex are small membrane proteins, 

which are anchored in the membrane by C-terminal hydrophobic tails. 
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5.1.2 Post-translational translocation of proteins into the ER 

Post-translational translocation pathway has been extensively studied in the yeast Saccharomyces 

cerevisiae, where most proteins are post-translationally translocated (Hann and Walter, 1991). In 

post-translational translocation, a protein does not interact with SRP during the protein synthesis. 

Although it has been shown that cytosolic chaperones (TRiC, HSP70) interact with the 

translocation substrate and keep it in a translocation competent conformation, little is known 

about the targeting phase in the post-translational translocation pathway. At the membrane the 

translocation substrate is inserted into the protein-conducting channel, which contains beside the 

trimeric Sec61 complex the proteins Sec62, Sec63, Sec71 and Sec72 (Panzner et al., 1994). 

 

Figure 5.2: Model of post-translational translocation (Rapoport, 2007) 

 

The actual translocation of the protein through the membrane occurs by a ratcheting mechanism 

and involves the luminal protein Bip, a member of the HSP70 family of ATPases (Figure 5.2) 

(Liebermeister  et al., 2000; Rapoport, 2007; Gouridis et al., 2009). ATP is hydrolyzed and the 

peptide-binding pocket of Bip closes around the translocation substrate. The polypeptide chain in 

the channel can slide in either direction by Brownian motion, but its binding to Bip inside the 

lumen of the endoplasmic reticulum prevents movement back into the cytosol, resulting in net 

forward direction. The next Bip molecule binds with polypeptide chain, after it moved 

adequately and then the complete process is repeated until the entire polypeptide chain is 
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translocated. Finally, the Bip molecule is released from the polypeptide, when peptide-binding 

pocket opens (nucleotide exchange of ADP for ATP) (Rapoport, 2007). 

 

5.1.3 Aim of the study  

Little information is available about post-translational protein translocation into the ER of 

mammals. So far, only non mammalian substrate proteins were analyzed. Moreover, Sec71 and 

Sec72, which are part of the post-translational translocation channel in yeast, do not exist in 

mammals. Currently, only few mammalian substrate proteins (less than 90 amino acid length) 

were identified experimentally for post-translational protein translocation. Therefore, there is a 

need of computational methods to address this issue. We are interested to develop a database to  

list the potential co and post-translocation mammalian substrate proteins. Further, we intend to 

develop machine learning method (feature selection and classification) to predict potential post-

translational substrate proteins. Finally, top ranked candidate proteins should be tested for their  

translocation behavior. Therefore, these proteins should be analyzed in in vitro 

translation/translocation assays suitable for co or post-translational protein translocation into ER-

membranes, respectively. 

 

5.2 Materials and Methods 

5.2.1 Training and test dataset 

A set of 6890 proteins (Drosophila melanogaster, Mus musculus, Homo sapiens, Xenopus laevis) 

were extracted from the UniProt database based on sequence annotations (signal peptide) 

(Bairoch and Apweiler, 2000). The secreted protein sequences with length less than 90 amino 

acids were taken as post-translational pathway proteins (positive dataset). Similarly, the secreted 

protein sequences with length more than 150 amino acids were taken as co-translational pathway 

proteins (negative dataset). We removed the signal peptides from the positive and negative 

dataset and kept mature part to make the dataset completely non-redundant. We applied the CD-

HIT software (Li et al., 2001) to remove sequences with greater than 40% sequence similarity to 

each other. We added the signal peptide to the corresponding mature part of positive and 

negative sequences. Finally, the training dataset consisted of 134 post-translational pathway 

proteins that form the positive dataset and 200 co-translational pathway proteins that form the 
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negative dataset. The test dataset consisted of the remaining 10 post-translational pathway 

proteins and 3843 co-translational pathway proteins. 

 

5.2.2 Features  

Each sequence was encoded by 50 features (pseudo amino acid composition) (Chou, 2001). 

 

5.2.3 cDNA clones 

3 cDNA clones were obtained from Imagenes GmbH, Berlin, Germany. The clone‟s details are 

shown in Table 5.1. 

 

Gene Clone Name Host Vector Resistence 

Bip IRAUp969A0481D GeneHogs DH10B pOTB7 Chloramphenicol 

Rspo2 IRAVp968B03107D DHl0B pSPORT1 Ampicillin 

Tmem9 IRAVp968E0732D DHl0B pCMV- pSPORT6 Ampicillin 

 

Table 5.1: Details of cDNA clones obtained from Imagenes GmbH, Berlin, Germany 

 

5.2.4 DNA isolation 

Plasmid DNA was extracted from E. coli overnight cultures using the Nucleospin plasmid 

kit according to the manufacturer‟s protocol. DNA was eluted in sterile water and stored at 4ºC. 

Quantification of extracted DNA was carried out by both UV spectrophotometry (λ=260 nm) and 

1 % agarose gel electrophoresis. 

 

5.2.5 Polymerase Chain Reaction  

Primers  

Primers were designed with the help of the software clone manager 7.0. The primer sequences 

and their Tm values are shown in Table 5.2. 
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cDNA Primer sequences Tm (ºC) 

Bip_3_Kpn1 GGTCGGTACCTCAGTGTCTACAACTCATC 68.1 

Bip_5_Xho1 CAGTCTCGAGTGGCAAGATGAAGCTCTCC 69.5 

Rspo2_3_Kpn1 CGTGGTACCTGCCCCAGCTATTTCTTG 68.0 

Rspo2_5_ Xho1 CAGTCTCGAGCGTCCAGATGCGTTTTTGC 69.5 

Tmem9_3_Kpn1 CAGTCTCGAGGATAAGCATGAAGCTGCTG 68.1 

Tmem9_5_ Xho1 GAATGGTACCGGCAACCATCTAACTGAGC 68.1 

 

Table 5.2: List of primer sequences 

 

The synthesized primers were dissolved in sterile double distilled water to get a concentration of 

100 pmol/µl. The primer stock solutions were stored at -20ºC. 

PCR  

 

In order to clone the open reading frame (ORF) of the cDNA of interest in a suitable vector, it 

was necessary to amplify the appropriate DNA sequences by PCR. PCR reactions were carried 

out in T3 thermocycler in a volume of 25 µl. The composition of a standard reaction is shown in 

Table 5.3.  

Ingredients Amount (µl) 

ddH2O 15.5 

10x buffer 2.5 

dNTP‟s (2mM) 0.5 

Primer 1 (FP) (1pmol/µl) 2.5 

Primer 2 (RP) (1pmol/µl) 2.5 

Taq DNA Polymerase (1U/µl) 0.5 

Template (500ng/µl) 1 

Total 25 

 

Table 5.3: Standard PCR reaction mix per 25 μl of total volume 

 

 

The PCR reaction include 95ºC with 3 min for denaturation of the double-stranded DNA 

molecule, 55ºC for hybridization of the primers (30 sec) to the single-stranded DNA template 

and 72ºC for enzymatic polymerization (extension) (1 min). This temperature sequence is then 
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cycled many times (~30) to provide an exponential amplification of the starting material. Finally, 

the PCR products were analyzed by 1 % agarose gel electrophoresis. 

5.2.6 Agarose gel electrophoresis  

1% agarose was prepared with TAE buffer (40 mM Tris-acetate, 1 mM EDTA), which contained 

ethidium bromide at a final concentration of 0.5 µg/ml. DNA samples were loaded onto the gel 

in loading buffer (50% [v/v] glycerol, 0.005% [w/v] bromophenol blue, 1x TAE). 

Electrophoresis was carried out at 100 to 120 V in TAE buffer and the DNA bands were 

subsequently visualized using an UV transilluminator and a CCD camera. 

 

5.2.7 Gel elution of PCR fragments  

After agarose gel electrophoresis, PCR products of interest were excised from low melting 

agarose gel with a sharp sterile scalpel blade under low UV intensity (70%). The agarose gel 

piece that contains the DNA was collected in a sterile pre-weighed micro-centrifuge tube. The 

DNA was eluted using Nucleospin extract II kit following the method described in the user‟s 

manual. 

 

5.2.8 Digestion of DNA with restriction enzymes 

Digestion with the used restriction enzymes generates overhangs that allow ligation of the DNA 

insert with the vector. Double digestion can be a single step process or a double step process 

depending on whether the respective restriction enzymes share the same digestion buffer or not.  

 

Reagents Volume (50 µl) 

ddH2O 39.5 

10X buffer 5.0 

BSA 0.5 

DNA 2.0 

Restriction enzyme 3.0 

 

Table 5.4: Linearization of DNA reaction mix per 50 μl of total volume 

The restriction enzymes were purchased from New England BioLabs Inc. XhoI and KpnI both 

used NEBuffer 1, therefore the vector and the PCR product could be digested in a single step 
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reaction. Double digest mixture was incubated at 37ºC for 1 hour (thermomixer). The reagents 

and their volumes are mentioned in Table 5.4. The samples were incubated in a thermomixer at 

37°C for a period of 3 hours.  

 

5.2.9 Ligation  

Ligation is a two-step process, first the sticky ends generated by the digestion of the DNA insert 

and the vector hybridize or anneal and second, new phosphodiester bonds close the nicks that are 

left behind after annealing. The reaction mixture consists of the DNA insert, the vector, ligation 

buffer and the DNA ligase enzyme. The reagents and their volumes are mentioned in Table. 5.5. 

 

Reagents Volume (10 µl) 

ddH2O 3.1 

10x ligase buffer 1.0 

Vector (after double digestion) 4.0 

PCR product (after double digestion) 1.4 

T4 DNA ligase 0.5 

 

Table 5.5: Standard Ligation reaction mix per 10 μl of total volume 

 

The vector, PCR product and double distilled water  were added and heated for 5 min at 45ºC to 

separate the DNA fragments and then the reaction mixture was cool down on ice for 5 min. T4 

DNA ligase
 
and 10x ligase buffers were added and gently mixed by pipetting. The reaction 

mixture was incubated at 16°C overnight. 

 

5.2.10 Transformation  

Transformation is the process by which bacteria take up foreign DNA. Competent DH5α cells 

were thawed on ice. 5 µl of the ligation product was added to the culture tube with the competent  

cells. The cells were mixed with the ligation mix by swirling and incubated on ice for 1 min. The 

cells were heat shocked at 42°C for 1 min and immediately placed on ice for 1 min. 

Subsequently, 900 µl of LB medium were added and the samples were mixed carefully by 

shaking the culture tubes with 800 rpm on thermomixer at 37°C for one hour. The transformed 

cells were plated on LB agar plates and incubated overnight at 37°C. 
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5.2.11 Colony PCR  

Bacteria originating from a single colony can be used directly as template for PCR because the 

initial denaturation heat disrupts the cell walls and make DNA accessible. Each colony chosen 

for colony PCR was transferred to a new ampicillin plate with a pipette tip and remains of the 

cells from the tip were mixed into the PCR reaction. The PCR reaction mix was set up as 

described in Table 5.3, except that the total volume was adjusted to 50 μl without an additional 

DNA template. The amplified products were separated from the template DNA with 1 % agarose 

gel electrophoresis containing TBE buffer and visualized by UV transilluminator and a CCD 

camera. 

 

5.2.12 DNA sequencing 

DNA sequencing was used to verify the exact sequence of the fragments cloned into the pGEM 

vector. The samples were sequenced by GATC, Germany and the results were analyzed with 

clone manager 7.0 software. 

 

5.2.13 Transcription 

Before the cloned ORF‟s were transcribed into mRNA, the corresponding vectors were 

linearized by restriction enzymes. For Bip, Rspo2 and Tmem9 the enzyme NheI was used.  

 
Reagents Volume (50 µl) 

ddH2O 11.5 

5x buffer 10.0 

DTT (10 mg/ml) 5.0 

RNAsin (40 U/µl) 2.5 

DNA (1 µg) 18 

BSA (10 mg/ml) 1.0 

rNTPs (25 mM) 1.0 

T7 Polymerase (19 U/µl)) 1.0 

 

Table 5.6: Transcription reaction mix per 50 μl of total volume 

The vectors coding for the control proteins pPL and ppαF were cleaved with pst2 and BamH1 

respectively. The linearized ORF sequences were transcribed into mRNA using standard 

protocols. The reagents and their volumes are mentioned in Table 5.6. The reaction mixture was 
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incubated for 2 hours at 37°C. Afterwards, 0.5 µl T7 Polymerase and 0.5 µl rNTPs were added 

and incubated for 2 hours at 37°C. Finally, the reaction was purified with phenol-chloroform 

extraction following the manufacturer‟s protocol.  

 

5.2.14 Translation 

The translation reaction was carried out with rabbit reticulocyte lysate, mRNA, amino acid 

(without methionine), 
35

S radio labeled methionine and H2O (Table 5.7). 

 
Reagents Volume (10 µl) 

Lysate 6.0 

Amino acid (without methionine) 0.2 

35
S radio labeled methionine 0.3 

mRNA 0.5/1.0/1.5 

ddH2O 3.0/2.5/2.0 

 

Table 5.7: Translation reaction mix per 10 μl of total volume 

 

The samples were incubated at 25ºC for 45 min. In order to reduce the globin concentration the 

samples were treated with 60% ammonium sulfate as indicated. 8 µ1 samples were mixed with 

100 µ1 of 60% ammonium sulfate for 10 min on ice and centrifuged at 13000 rpm for 45 min at 

4ºC. The supernatant was removed and around 55 µ1 of 60% ammonium sulfate was added. It 

was centrifuged at 13000 rpm for 45 min at 4ºC. The supernatant was taken and pellet was 

dissolved with 20 µ1 of sample buffer. All samples were resolved by SDS-PAGE (12.5% SDS 

gel) and analyzed with an image analyzer (FLA-3000, Raytest, Germany).  

 

5.2.15 Co-translational translocation assay 

In order to directly investigate the transport of our proteins into the endoplasmic reticulum (ER) 

membrane, we used an in vitro translation/translocation system. mRNA encoding our substrate 

proteins  were translated in a reticulocyte lysate system in the presence of dog rough microsomes 

(dRM) or yeast rough microsomes (yRM) and 
35

S radiolabeled methionine (Table 5.8). 
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Reagents Volume (10 µl) 

Lysate 6.0 

Amino acid (without methionine) 0.2 

35
S radio labeled methionine 0.3 

mRNA 0.5 

0.3 eq rough microsomes membrane (dog/yeast) 1.0 

ddH2O 2.0 

 

Table 5.8: Co-translational translocation reaction mix per 10 μl of total volume 

 

The translation translocation reaction was carried out at 25ºC for 45 min. Afterwards, one half of 

the samples were treated with proteinase K (0.5 mg/ml) and proteinase K buffer was added into 

another half of the sample. The samples were incubated on ice for 30 min. After adding 0.5 mM 

PMSF (5 min on ice) the samples were precipitated with 60% ammonium sulfate as described in 

5.2.14. The pellet was dissolved with 20 µ1 of sample buffer. All samples were resolved by 

SDS-PAGE (12.5% SDS gel) and analyzed with an image analyzer (FLA-3000, Raytest, 

Germany).  

 

5.2.16 Post-translational translocation assay 

Post-translation assay was carried out in a reticulocyte lysate system in the presence of 
35

S 

methionine and bovine pancreatic rough microsomes (bRM) or yeast rough microsomes (yRM), 

respectively (Table 5.9). 

 

Reagents Volume (10 µl) 

Lysate 6.0 

Amino acid (without methionine) 0.2 

35
S radio labeled methionine 0.3 

mRNA 0.5 

rough microsomes membrane (bovine (2.5 eq)/yeast (3.2 eq)) 1.0 

ddH2O 2.0 

 

Table 5.9: Post-translational translocation reaction mix per 10 μl of total volume 
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The samples were translated at 25°C for 45 min. After addition of 1 mM cycloheximide the 

samples were incubated on ice for 5 mins. Samples were centrifuged for 20 min at 70,000 rpm in 

a TLA100 rotor (Beckman Instruments) using micro test tubes. The supernatant was collected 

and 2.5 eq bRM or 3.2 eq yRM were added in 10 µl sample and incubated on ice for 20 min and 

subsequently at 25ºC for 20 min. The samples were treated proteinase K and precipitated with 

100 µ1 of 60% ammonium sulfate as described in 5.2.14. The pellet was dissolved with 20 µ1 of 

sample buffer. All samples were resolved by SDS-PAGE (12.5% SDS gel) and analyzed with an 

image analyzer (FLA-3000, Raytest, Germany).  

 

5.3 Results and Discussion 

5.3.1 Computational analysis of post-translocation pathway proteins 

Little information was available about post-translational protein translocation into the ER of 

mammals. So far, only non mammalian substrate proteins were analyzed. Identification of 

mammalian substrate proteins for post-translocation pathway was quite difficult. We developed 

an insilico database for mammalian co/post-translocation pathway proteins. Identification of 

post-translocation pathway proteins using curated database by sequence similarity methods or 

motif approach was difficult. Most of the mammalian proteins do not have conserved patterns for 

post-translocation pathway. Therefore, there is a need for machine learning methods for 

predicting post-translocation pathway proteins.  

 

We have developed a new SVM model to differentiate post- translocation pathway proteins from 

co-translocation pathway proteins. The model was trained on a training dataset containing 134 

proteins from the positive dataset and 200 proteins from the negative dataset. The performance 

of the model was evaluated using the five-fold cross-validation method. An overall prediction 

accuracy of 76.33% was obtained by five-fold cross validation. In order to examine the 

performance of the newly developed model, we tested our training model on the test dataset 

consisting of 10 proteins from the positive dataset and 3843 proteins from the negative dataset. 

An insilico model achieved 73.81% accuracy with 73.02% sensitivity and 74.60% specificity 

using all features. We ranked all the proteins pertaining to post-translocation pathway using Info 

Gain algorithm. We predicted 150 proteins pertaining to post-translocation pathway proteins by 

our algorithm. Out of 150 proteins, we have selected 3 mammalian proteins for our experiments.  
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5.3.2 Cloning of ORF’s of the potential post-translational pathway proteins into a vector 

for in vitro translation 

Three proteins were selected from the list that was created by the algorithm. Bip is a luminal ER 

protein, Tmem9 is a membrane protein and Rspo2 belongs to a protein family of secreted 

proteins. These proteins are schematically illustrated in Figure 5.3.  

 

Heat shock 70 KDa protein 5 (Bip), Length of the protein sequence - 654 AA 

 

                    18 AA 

R-spondin-2 (Rspo2), Length of the protein sequence - 243 AA 

 

23 AA 

Transmembrane protein 9 (Tmem9), Length of the protein sequence - 183 AA  

 

20 AA    21 AA 

 

         Signal Peptide 

         Membrane Anchor 

      N-Glycosylation 

Figure 5.3: List of potential post-translocation pathway proteins 

 

In order to clone the corresponding ORF for in vitro translation, plasmids containing the 

appropriate cDNA were used as templates for PCR. Under optimal PCR conditions, a single 

product was amplified. The amplified PCR products were separated on a 1 % agarose gel (Figure 

5.4 A). As a control, Annexin V (AnxV) ORF was amplified with primers that were used before. 

The size of PCR products for AnxV was 1000 bp, for Bip was 1962 bp, for Rspo2 was 720 bp 

and for Tmem9 was 549 bp.       
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Figure 5.4: The ORF‟s of Bip, Rspo2 and Tmem9 are cloned into the pGEM vector. 

(A) cDNA coding for Bip, Rspo2 and Tmem9 were used as a template for PCR. AnxV cDNA 

was used as a positive control. Amplification was carried out with primers that contain restriction 

sites for XhoI and KpnI and the samples were separated on a 1 % agarose gel. (B) The purified 

PCR products from (A) and the vector pGEM were digested with the restriction enzymes XhoI 

and KpnI. The samples were analyzed on a 1 % agarose gel. 

 

Next, the PCR products should be cloned into the pGEM vector. Since the PCR primer contained 

restriction sites for XhoI and KpnI, the PCR products and the pGEM vector were digested with 

these enzymes to create compatible ends (Figure 5.4 B). The amplified products were ligated 

with the cleaved pGEM Vector with the help of DNA ligase. It was transformed into 

chemocompetant E. coli DH5α cells. The transformation into E. coli cells gave good growth and 

10 colonies were picked from the plates and grown over night. The presence of the pGEM vector 

containing the insert of interest in the colonies growing on ampicillin plates was verified by PCR 

using the cells directly as a DNA template. To test for plasmid DNA with correct insert, those 

DNA samples were send for sequencing. The sequences were analyzed by software clone 

manager 7.0. It turned out that cloned sequences were 100% correct. 
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5.3.3 The cloned test proteins Bip, Rspo2 and Tmem9 can be translated in vitro 

In the next step, the test proteins should be translated in the reticulocyte lysate system. Therefore, 

the plasmids containing the appropriate ORF‟s were linearized and used for in vitro transcription 

with T7 polymerase. The corresponding mRNA‟s were isolated and translated in the reticulocyte 

lysate in the presence of 
35

S methionine at 25°C for 45 min. To get the optimal mRNA 

concentration, three different amounts of mRNA were used (Figure 5.5). The size of the 

expressed proteins for Bip was 62 kDa, for Rspo2 was 34 kDa and for Tmem9 was 28 kDa. 

 
 

 

Figure 5.5: Bip, Rspo2 and Tmem9 can be translated in the reticulocyte lysate system in vitro. 

Three different concentrations of mRNA were translated in the reticulocyte lysate in the presence 

of 
35

S methionine at 25°C for 45 min. The samples were analyzed by SDS-PAGE using 12.5% 

polyacrylamide gels and autoradiography. 

 

To reduce the background and to increase the intensity of the signals, the experiment shown in 

Figure 5.5 was repeated but the samples were precipitated with 60% ammonium sulfate prior to 

the SDS-PAGE. This treatment clearly improved the quality of the corresponding autoradiogram 

(Figure 5.6). 
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Figure 5.6: Ammonium sulfate precipitation increases the quality of the autoradiogram. 

Translation reaction was carried out as described in Figure 5.5. The samples were treated with 

60% ammonium sulfate and analyzed by SDS-PAGE and autoradiography. 

 

 

5.3.4 Only Bip is translocated into ER membranes under co-translational conditions in 

vitro  

The assay for protein translocation into the ER relies on the ability of a radiolabeled protein 

precursor to transit across the membrane and thus become inaccessible to exogenously added 

protease. In order to directly investigate the integration of Tmem9 or translocation (Bip and 

Rspo2) of the candidate proteins into the ER-membrane, we used an in vitro 

translation/translocation system. First the protein transport should be analyzed under co- 

translational conditions and dog pancreatic microsomes were used.  

 

To be sure that the used ER-membranes are active for protein translocation preprolactin (pPL) 

was employed as a control protein. mRNA coding for pPL was translated in a reticulocyte lysate 

system in the presence of  
35

S methionine and ER-membranes as indicated. To test for proper 

translocation half of the samples were treated with proteinase K and finally analyzed by SDS-

PAGE and autoradiography (Figure 5.7). 
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Figure 5.7: The control protein preprolactin (pPL) is specifically transported into dog rough 

microsomes (dRM). pPL was used as a positive control for co-translational translocation into dog 

pancreatic microsomes. pPL mRNA was translated in the reticulocyte lysate system  in the 

presence of dog or yeast microsomes as indicated. Thereafter, half of the samples were treated 

with proteinase K (PK). Finally, the radiolabelled samples were analyzed by SDS-PAGE using 

12.5% polyacrylamide gels and analyzed with an image analyzer (FLA-3000, Raytest, 

Germany). 

 

Without microsomes a single band was detected (lane 1, pPL), which was totally degraded by the 

proteinase K treatment (lane 2). In the presence of dog rough microsomes (dRM) pPL was 

translocated into the membranes and the signal peptidase complex cleaved off the signal peptide, 

generating a smaller protein band (lane 3, PL). This cleaved prolactin was completely protected 

against the proteinase K treatment demonstrating that it was really translocated into the lumen of 

the membrane vesicles (lane 4). Since it is well known that pPL is not transported into yeast 

rough microsomes (yRM) in vitro these membranes were used as a negative control. As expected 

neither signal peptide cleavage nor proteinase K protection were observed (lane 5 and 6), 

demonstrating the specificity of the used translocation assay. 
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In the next step, the luminal ER protein Bip should be analyzed for its translocation into dRM or 

yRM, respectively (Figure 5.8), using the same translocation assay as described for the control 

protein pPL.  

 

Figure 5.8: Translocation of Bip into the endoplasmic reticulum in vitro.  mRNA encoding pBip 

was translated in a reticulocyte lysate system in the presence of dog rough microsomes (dRM) or 

yeast rough microsomes (yRM) and 
35

S radiolabeled methionine. The samples were treated with 

proteinase K and analyzed by autoradiography. 

 

A single protein band was detected in the autoradiogram when the microsomes were omitted 

during the translation reaction (lane 1). Surprisingly, the treatment with proteinase K under 

standard conditions did not degrade the protein, but produced only a slightly smaller protein 

band compared to the untreated protein (lane 2). This indicates that the main part of pBip is 

resistant against proteinase K treatment at 0°C. Unfortunately, the protease resistant part of pBip 

has almost the same size as the mature Bip with cleaved off signal peptide that could be expected 

after translocation into the microsomes. Therefore, the proteinase K treatment was repeated at 

25°C or 40°C, respectively, to get a better degradation of Bip. At 40°C a larger part of Bip was 

degraded and the size of the remaining protein should not interfere with the size of the 

translocated Bip with cleaved off signal peptide. 
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In the presence of dog rough microsomes (dRM) Bip was translocated into the membranes and 

the signal peptidase complex cleaved off the signal peptide, generating a smaller protein band 

(lane 5, pBip). This cleaved Bip was completely protected against the proteinase K treatment 

(40°C) demonstrating that it was really translocated into the lumen of the membrane vesicles 

(lane 8, Bip). In the presence of yeast rough microsomes (yRM) Bip cannot translocate into the 

membranes and the signal peptide was not cleaved off (lane 12). 

 

 

Figure 5.9: Tmem9 and Rspo2 cannot translocate into dRM or yRM. In vitro 

translation/translocation reactions were performed using reticulocyte lysate in the presence of 

dRM/yRM and mRNA encoding either Tmem9 (A) or Rspo2 (B). Microsomal membranes 

(dRM/yRM) were added as indicated. The samples were treated with proteinase K. Finally, the 

radiolabelled samples were analyzed by SDS-PAGE using 12.5% polyacrylamide gels and 

analyzed with an image analyzer (FLA-3000, Raytest, Germany). 

 

Next, we asked whether the proteins Rspo2 and Tmem9 can be translocated in vitro. Translation 

in rabbit reticulocyte lysate was performed for 45 min at 37°C. The samples were analyzed by 

SDS-PAGE and autoradiography (Figure 5.9). Without microsomes a single band was detected 

(lane 1, 7) which was totally degraded by the proteinase K treatment (lane 2, 8). In the presence 

of dog or yeast rough microsomes (dRM or yRM), neither processing nor proteinase K 

protection were observed (lane 3-6, 9-12). Rspo2 and Tmem9 cannot translocate into the 

membranes and the signal peptide was not cleaved off as indicated. Further, we have optimized 
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the conditions (temperature, time, lysate and membrane concentration) to check the translocation 

of Rspo2 and Tmem9. It turned out again that Rspo2 and Tmem9 cannot translocate in vitro by 

the co-translational mechanism under the used conditions (data not shown). 

 

5.3.5 None of the candidate proteins are translocated post-translationally in vitro 

To analyze post-translational translocation or insertion of proteins into ER-membranes, a similar 

translocation assay was used as for co-translational translocation. The crucial difference is that 

now RMs were added into the reaction after termination of translation by cycloheximide and 

sedimentation of all ribosomes. This ensures that neither translation nor ribosomes are involved 

in the targeting or translocation process, respectively.  

 
Figure 5.10: The control protein His3 and ppαF are transported post-translationally into bRM 

and yRM. Histatin 3 (His3) and yeast protein prepro-alpha-factor (ppαF) were used as positive 

controls for post-translational translocation into bovine pancreatic microsomes or yeast 

microsomes. His3 (A) and ppαF (B) mRNA was translated in the reticulocyte lysate system. The 

reaction was stopped by cycloheximide and ribosomes were sedimented. Afterwards bovine 

membranes or yeast membranes were added to the supernatant as indicated. The samples were 

analyzed by SDS-PAGE using 12.5% polyacrylamide gels and autoradiography. 

 

Two control proteins were employed for the post-translational translocation assay. The small 

human secretory protein Histatin 3 (His3) is transported post-translationally into bovine rough 
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microsomes (bRM) (Vivica Stokes, personal communication and Figure 5.10 A). The signal 

sequence is cleaved off and the translocated mature part of the protein is protected against the 

externally added proteinase K (lane 3 and 4). The yeast protein prepro-alpha-factor (ppαF) can 

be translocated post-translationally into yRM. After translocation into the ER-membranes the 

signal sequence is cleaved off and the protein becomes glycosylated (Figure 5.10 B). This results 

in a larger protein band (gpαF), which is protected against proteinase K treatment (lane 9 and 

10). A translocation of ppαF into bRM could not be observed (lane 7 and 8). 

 

 

Figure 5.11: None of the substrate proteins (Bip, Rspo2 and Tmem9) are translocated post-

translationally in vitro. In vitro transcribed Bip (A), Rspo2 (B) and Tmem9 (C) mRNA was 

translated in reticulocyte lysate and labeled by 
35

S methionine. In vitro translation occurred either 

in the absence of microsomes or microsomes (bRM/yRM) were added after sedimentation of 

ribosomes. Thereafter, half of the samples were treated with proteinase K. The samples were 

analyzed by SDS-PAGE using 12.5% polyacrylamide gels and autoradiography. 

 

In the next step, the luminal ER protein Bip should be analyzed for its post-translationally 

translocation into bRM or yRM, respectively (Figure 5.11 A), using the same translocation assay 

as described for the control proteins His3 and ppαF. After translation a single protein band was 



 

93 
 

detected in the autoradiogram (lane 1). The treatment with proteinase K led to the degradation of 

the protein (lane 2). After addition of microsomes neither processing nor proteinase K protection 

were observed (lane 3-6). This indicates that Bip was not translocated post-translationally into 

the membranes.  

 

Unfortunately, also the other candidate proteins showed no post-translational translocation or 

integration into the microsomes under the used conditions (Figure 5.11 B and C). Rspo2 and 

Tmem9 were degraded by the proteinase K treatment regardless whether membranes were added 

after the translation reaction or not. 

 

Taken together, our results show that the mammalian proteins Bip, Rspo2 and Tmem9 cannot 

translocate post-translationally into ER- membranes in vitro. The failure of our substrate proteins 

depends on two major reasons: computational methods and translation/translocation assay 

system.   

 

The success of machine learning method depends on the quality of training dataset. In this study, 

we have not used experimentally determined protein sequences for co and post-translocation 

pathway proteins. We have hypothesized the positive and negative dataset (length of protein 

sequences and organism, etc.). Due to these reasons, our algorithm may fail to recognize post- 

translocation pathway proteins appropriately. We predicted 150 proteins pertaining to post-

translocation pathway proteins by our algorithm. Out of 150 proteins, we have selected only 3 

mammalian proteins for our experiments. Cross validation accuracy of our SVM model was only 

76.33%, our three mammalian proteins can be false positive proteins. 

 

We showed that our substrate proteins were not translocated post-translationally into bovine or 

yeast microsomes. It is possible that our candidate proteins may need unknown factors to 

translocate post-translationally. It could be that the lysate we used for translation/translocation 

does not contain these factors in the required concentration. 
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Our results also show that Rspo2 and Tmem9 cannot translocate co-translationally in vitro. 

However these proteins may translocate in another translation/translocation assay system (eg: 

HeLa cell lines) or if purified SRP is added into the assay.  

 

5.4 Conclusion 

Translocation of large pre-secretory proteins into the mammalian endoplasmic reticulum requires 

the ribonucleoparticles, signal recognition particle, and ribosomes and is tightly coupled to 

ongoing protein synthesis. In this study we developed a method, for the first time, for predicting 

post-translational translocation proteins from its primary sequence using pseudo amino acid 

composition coupled with support vector machine. We tested experimentally top ranked post- 

translocation pathway proteins in mammals (Bip, Rspo2 and Tmem9). Our analysis shows that 

Rspo2 and Tmem9 cannot translocate in vitro by the co and post-translational mechanism. We 

show that the luminal ER protein Bip protein translocate co-translationally (with the aid of signal 

recognition particle and ribosome) during its in vitro synthesis in the presence of dog pancreas 

microsomes. Our further interest is focused on Rspo2 and Tmem9 proteins translocate in vivo by 

the co and post-translational mechanism. 
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6 Conclusion  

Modeling and simulation is used routinely in academia as well as industry. Conventionally, 

modeling is carried out employing various conservation laws (aka phenomenological models). 

But as the complexity of the phenomenon increases, it becomes difficult to keep track of the 

modeling parameters. For many complicated processes, for e.g. biological processes, it becomes 

difficult to build even an elementary model. In light of these facts, alternative modeling 

techniques, mainly data driven, have become popular recently in various science streams and has 

shown promising results in many real life applications. The main objectives of the proposed 

thesis work were to develop new sequence analysis tools for protein function and family 

classification.  Chapters 3 to 5 summarize the efforts in achieving these objectives. 

 

In the second chapter, the support vector machines and random forest for classification, 

important machine learning algorithms with many desirable properties, were introduced to 

classify putative proteins and associate them with families of proteins with known functions. 

Feature selection algorithms like ReliefF, Info Gain, Maximum Relevance Minimum 

Redundancy (mRMR) and Genetic algorithms were used to solve important biological problems.  

 

A major difficulty in analysing the biological sequence data using machine learning methods is 

the nature of the data i.e. characters (amino acids of different length). In this thesis, various 

encoding methods were developed to represent biological sequences into arrays of numerical 

values. 

 

The identification of proteins in the drug discovery process is quite important because it is 

responsible for many functions required for maintenance of life. Chapter 3 described the 

prediction of protein function. We solved three different protein function classification problems 

1) prediction of classical and non-classical secretory proteins 2) prediction of extracellular matrix 

proteins 3) prediction of the subcellular locations of apoptosis proteins. The proposed approach 

can be quite effective in assigning putative functions to novel sequences. This can serve as a 

useful source of information for guiding focused biological experiments. 
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Due to the recent advances in high throughput data acquisition technologies in biological 

sciences, there is a need for the development of sophisticated computational tools for 

characterization and prediction of protein families. In chapter 4, we solved two important protein 

families (antifreeze and bioluminescent proteins) which have great possibilities for medical and 

commercial advances. Our machine learning approach helps to annotate hypothetical proteins of 

antifreeze and bioluminescent protein families. 

 

In chapter 5, we further discussed the bioinformatics and experimental approaches on protein 

translocation. We developed a novel prediction method that uses a support vector machine and 

pseudo amino acid composition to predict post-translocation pathway proteins. Further, we tested 

experimentally top ranked post-translocation pathway proteins (Bip, Rspo2 and Tmem9). Our 

analysis shows that Rspo2 and Tmem9 cannot translocate in vitro by the co and post- 

translational mechanism. We show that one large protein Bip translocate co-translationally (with 

the aid of signal recognition particle and ribosome) during its in vitro synthesis in the presence of 

dog microsomes. 

 

Assigning putative functions to protein sequences remains one of the most challenging problems 

in functional genomics. Our methods will improve the annotation of newly sequenced genomes. 

It will give some useful insights into protein structure function relationships by exploring 

sequence regularities that are good predictors of function. 

 

The results presented and discussed in chapters 3 to 5 reveal the fact that SVM and RF are 

promising data driven modeling techniques. The applications (theoretical as well as real life) 

uncovered the fact that the base algorithm can be easily modified to suit the necessities for the 

problem at hand. 
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