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Efficient and Provably Secure Steganography

Inauguraldissertation

zur

Erlangung der Doktorwürde
der Universität zu Lübeck
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2. Berichterstatter: Prof. Dr. Matthias Krause

Tag der mündlichen Prüfung: 05. Mai 2011
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Abstract

Steganography is the art of encoding secret messages into unsuspicious covertexts, such that an ad-
versary cannot distinguish the resulting stegotexts from original covertexts. A covertext consists of
a sequence of documents. Whereas a large amount of work has gone into practical implementations
of steganography, mostly for multimedia data as covertexts, only few theoretical analyses exist.
In their seminal paper, Hopper et al. (2002b) presented black-box stegosystems, i.e., stegosystems
that do not make any assumptions about the structure of covertexts, which can be proven secure.
However, as these stegosystems only embed single bits per document, they are quite inefficient in
terms of the transmission rate. An extension to multiple bits per document has been shown by
Dedić et al. (2009) to be computationally infeasible.

The aim of this thesis is to investigate how to achieve both security and efficiency (in the trans-
mission rate) at the same time. First it is shown that so-called fixed-entropy samplers, which output
low-min-entropy parts of documents, are hard to construct for even slightly structured channels.
Due to this and Dedić et al’s result the black-box model of steganography appears to be a dead-
end. Therefore, a new model, called grey-box steganography, is suggested, in which the knowledge
about the covertext channel is described by hypotheses, whose form depends on the structure of the
channel. It is shown that efficient and secure steganography can be achieved for various hypothesis
representations. Based on these results, future practical implementations of secure stegosystems
appear possible. However, because the hypotheses have to be constructed by the steganographic
encoder, e.g. by using algorithmic learning, there are limitations due to the hardness of learning
certain concept classes. Starting with the observation that the commonly used notion of insecurity
does not fit the situation in steganography, a new security notion, called detectability is proposed
and three variants given. These are used in the analysis of two stegosystems that are both insecure,
but achieve different results in terms of detectability. Detectability on average is determined to be
best suited for security analyses in steganography. Furthermore, one of the analysed stegosystems,
whose security depends on the difficulty of distinguishing between the output of two pseudorandom
functions, presents a good candidate for future practical implementations, as it achieves both a
good transmission rate and low detectability on average.
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Chapter 1

Introduction

Steganography is about hiding secret messages. It is an ancient technique that has already been
employed by the Egyptians and the Greek. The term “steganography”, derived from Greek steganos
“hidden” and graphein “writing”, for such techniques was first used by Johannes Trithemius. Un-
like the related field of cryptography – the key-dependent transformation of secret messages into
arbitrary-looking sequences of symbols – which grew in importance over the years, steganography
for a long time led a shadowy existence. It was only in the early 1990s that its popularity started
to increase, due to the development of digital steganography.

In his seminal paper on hidden communications, Simmons (1984) described the basic scenario of
steganography with the formulation of his now-famous “prisoners’ problem”:

Alice and Bob are in jail. They are allowed to communicate, but all communication is
monitored by Eve, the warden. In order to hatch an escape plan, they have to communi-
cate by means of messages that look normal and unsuspicious, but additionally contain
some hidden information that can only be read by Alice and Bob.

Digital steganography can be defined as the art of hiding secret messages in unsuspicious digital
covertexts in such a way that the mere existence of a hidden message is concealed. The basic sce-
nario assumes two communicating parties Alice (sender) and Bob (receiver) as well as an adversary
Eve who is often also called a “warden” due to Simmons’ motivation of the setting as secret com-
munication among prisoners. Eve wants to find out whether or not Alice and Bob are exchanging
hidden messages among their covertext communication. It should be noted that Alice and Bob
are not interested in the specific covertexts they exchange, in fact, most models of steganography
assume that the covertexts are chosen randomly.

A related area is digital watermarking (see e.g. Dittmann 2000; Cox et al. 2002), which also deals
with the hiding of messages, but under different constraints. At the outset of all watermarking
schemes stands a given piece of digital data, sometimes called a work, that has some intrinsic value.
Into this original work some message will be embedded, resulting in changes to the work that
generally should remain imperceptible, so as to not decrease the quality of the work. Security goals
in digital watermarking are different from steganography and depend on the application purpose of
watermarking. In some scenarios the watermark should not be removable by an adversary (owner
identification), in others the adversary should not be able to copy it (ownership proof), while
in still others any modification to the work should irreversibly destroy the watermark (content
authentication). Because of the big differences between steganography and watermarking in terms
of their models and security goals, this thesis will not deal with digital watermarking.

One of the factors that made digital steganography popular during the 1990s were discussions
about key escrow and restrictions on the use of cryptography that some countries were discussing at
that time, among them Germany (Franz et al. 1996). Steganography was promoted by researchers
as a tool that could render such restrictions useless, as steganographic messages could not be
detected and thus their use could not be controlled.

As a result of this stimulation a large number of programs for steganography have been developed.
Many of these are easy to detect (Westfeld and Pfitzmann 2000) and have not been maintained since
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their initial release. Some programs, such as the implementation of the F5 steganographic algorithm
by Westfeld (2001), are the results of open academic research and have been analysed in the scientific
community (Fridrich et al. 2003), while others have been developed for commercial purposes, the
most widespread of which is probably Steganos, whose algorithm is considered proprietary and has
not been published.

Most early steganographic algorithms used some kind of multimedia data as covertexts, such as
digital images, audio or video. This was due to the ubiquity of these data types (which is even
more true today), so they would not arouse suspicion when exchanged. Also, because of their
relatively large size, they could be used to hide large amounts of hidden data. At the same time
that simple algorithms such as LSB-steganography, which simply replaced the least significant bits
of an image’s pixels with those of the (encrypted) secret message, became popular, other algorithms
were being developed that could detect the presence of hidden data by means of simple statistical
tests (Moskowitz et al. 2001).

Practical steganography and steganalysis has not changed much since then, albeit the algorithms
have become more sophisticated on both sides. Nonetheless, the game between Alice, Bob and Eve
remains the same with no side achieving a final victory. From this situation arose the need for some
solid theoretical results that would answer the all-important question, “how secure can we make
steganography?”.

Before one can talk about the security of a stegosystem, one has to decide on an attack model.
A brief, but not very precise overview of such models is given by Johnson (2000). The most basic
distinction is between active and passive attacks. For information theoretic security, discussed
below, a passive adversary can mount stegotext only attacks, where he solely relies on passively
intercepting communications, whereas an active adversary has the goal of destroying the embedded
message, thus making this an issue of robustness (and not so much of security) which is more
relevant for digital watermarking. In computational security models, passive adversaries are able
to perform chosen hiddentext attacks, in which they may choose a message to be embedded by the
stegoencoder. Active adversaries on the other hand, have the ability to choose a stegotext and
have it decoded by the stegoencoder. In this thesis we will restrict our analyses to the scenario of
passive adversaries. Unless otherwise noted, all models discussed below refer to passive attacks.

The earliest theoretic model of steganographic security is due to Klimant and Piotraschke (1997)
and Zöllner et al. (1998), who used the information-theoretic concept of the mutual information
between two random variables to determine the security of a stegosystem. The mutual information
measures the amount of information that one gains about one random variable, if one knows the
other. In their model, Klimant and Piotraschke (1997) and Zöllner et al. (1998) determine the
mutual information between (1) the set of possible hidden messages M and (2) the sets of covertexts
C and stegotexts S. Thus, a stegosystem is claimed to be secure if the additional knowledge about
C and S does not decrease the entropy of secret messages M . As this presupposes that a hidden
message actually exists, such a model does not quite fit the scenario of steganography, where the
very presence of a hidden message is to be concealed. This fact has also been noted by Katzenbeisser
and Petitcolas (2002). Interestingly, Zöllner et al. (1998) state, “In our definition a steganographic
system is insecure already if the detection of steganography is possible”, whereas in fact, this is
not reflected in their definition. Furthermore, the lack of some probability distribution on the
set of covertexts and the application of information-theoretic tools on the covertexts themselves
(rather than their probability distribution), makes this model unsuitable, because – in contrast to
watermarking – in steganography the specific covertext is of no interest. It should be noted that a
similar model has been proposed by Mittelholzer (2000) for steganography and watermarking with
active attacks.

A more appropriate information-theoretic model of steganography with passive attacks has been
proposed by Cachin (1998, 2004), who uses a hypothesis-testing approach. He introduces the notion
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of covertext and stegotext channels as two probability distributions PC and PS . The security
definition given by Cachin uses the relative entropy (also known as Kullback-Leibler distance) for
measuring the distance between the two distributions. If this distance is zero, the stegosystem is
perfectly secure, otherwise, if the distance is ε, the stegosystem is ε-secure. Thus, a stegosystem is
perfectly secure if and only if the stegotext distribution PS and the covertext distribution PC are
identical1.

On the downside of information-theoretic security is the big problem of constructing practically
usable steganography. The commonly cited example of a one-time pad needs a key that has the
same size as the message in order to be perfectly secure. Such a requirement is clearly too strong for
all but the most sensitive applications. Another problem that all these definitions of information-
theoretic security share is that they are not constructive when it comes to defining an adversary
in case a stegosystem is insecure. This is due to the unlimited computational resources given to
the adversary, an assumption that naturally exceeds all practical constraints. To take an example
from cryptography, the RSA cryptosystem is not perfectly secure, but still considered secure in
the computational security setting, where the adversary has only limited computational resources.
Thus, computational security appears to be a natural model when it comes to analysing the security
of more practical constructions.

Computational security was first introduced into the field of steganography by Hopper et al.
(2002b). The analysis of steganographic security done by Hopper et al. (and other authors building
upon this work) considers chosen hiddentext attacks, therefore resulting in a stronger security
notion than the “perfect security” of previous information theoretic models. Explicit constructions
of stegosystems are given in the black-box model, named so because no knowledge whatsoever
is assumed about the covertexts and documents are accessible only through a sampling oracle,
which Alice can repeatedly query during embedding. However, as we will discuss in detail in
Chapter 3, although the proposed stegosystems offer security (against an adversary finding out
about the presence of hidden communication), and are reliable (i.e., with high probability, encoded
messages can be correctly decoded) and computationally efficient (i.e., the time, space and oracle
query complexities are polynomial in the length of the hidden message), they fail in terms of the
transmission rate. The transmission rate measures the ratio between the entropy of a covertext
document and the number of message bits that are embedded per covertext. The scheme proposed
by Hopper et al. (2002b) embeds at most one bit per document. If we consider covertext documents
as atomic entities that always contain a fixed (small) amount of entropy, such a scheme might be
considered efficient. However, because the stegosystems of Hopper et al. are universal, i.e., they
should work for any type of covertext documents, it has to be assumed that these documents can
potentially possess a large amount of entropy, thus making the stegosystem inefficient in terms of
the rate.

Due to a result by Dedić et al. (2009), which concludes that embedding more than one bit per
document results in a query complexity that is exponential in the number of bits embedded per
document, the hopes for efficient, practically usable steganography that can be proven secure have
mostly vanished. This is also reflected in the fact that since 2006 no new results have been published
on this topic2.

It is therefore the goal of this thesis to investigate whether it is possible to create rate efficient
stegosystems that are at the same time secure, reliable and computationally efficient. The following
questions will guide through this research.

• Can we achieve rate efficiency and security in the black-box model by constructing a different
type of sampling oracle?

1Note that this is the same reason why the Vernam one-time pad is a perfectly secure cryptosystem (Shannon 1949).
2The articles by Hopper et al. (2009) and Dedić et al. (2009) are journal versions of previously published research.



4

• Can we achieve rate efficiency and security in the black-box model if we adopt a new definition
of steganographic security?

• Can we achieve rate efficiency and security by exchanging the black-box model for a more
practice-inspired model?

The first question hints at the observation made above that if we had covertext documents with
only a fixed, small amount of entropy, then the stegosystems by Hopper et al. could become efficient
in their transmission rate. For the second question, note that the commonly used security definition
was derived by Hopper et al. (2002b) from existing definitions in cryptography. It should therefore
be investigated whether this definition is actually suitable for steganography or if a different security
notion fits the requirements of this field better. In fact, it may turn out that the concept of
steganographic security employed so far is the true cause of the problems in combining the properties
of efficiency and security. Finally, note for the third question that because of their black-box nature,
the stegosystems by Hopper et al. (2002b) do not resemble practical stegosystems in any way. In
almost all practical steganography only a single covertext is used to hide the message. The hiding
process itself consists of modifications of this covertext.

Thus, the current situation can be summed up as follows: On the one hand there exist construc-
tions of stegosystems that can be proven secure and work universally for all kinds of covertexts but
which cannot be implemented efficiently; on the other hand there exist (many) practically imple-
mented stegosystems that work for a very specific type of covertext and for which security cannot
be proven. For the latter stegosystems, being “secure” simply means that during their co-evolution
with new methods of practical steganography detection (= steganalysis) a point has been reached,
where a successful steganalysis is (yet) wanting (Dittmann et al. 2005). In order to bridge this gap
between theoretical and practical stegosystems, we will look from a theoretic point of view at the
embedding paradigm of modifying covertexts in our quest to overcome the efficiency limitations.

This thesis is organised as follows: after the introduction to the topic of steganography and the
formulation of the goals of this thesis in the current chapter, some preliminaries will be given in
Chapter 2. An overview of previous research relevant to the present study is given in Chapter 3,
where the “black-box” model of steganography is presented. This is followed by Chapter 4, in which
new results are presented that show how the use of so-called fixed-entropy samplers to improve the
efficiency of previous black-box constructions can lead to intractable problems. Together with a
result by Dedić et al. (2009), given in Chapter 3, this implies that efficient black-box steganography
is likely very hard to achieve, and if so, only in a very restricted setting (i.e., not universal, but with
specific covertext channels). For this reason, a new model of steganography will be introduced in
Chapter 5, which is called grey-box steganography. The idea of this approach is to equip Alice and
Eve with a “reasonable” amount of knowledge in the form of hypotheses about the structure of the
covertext channel. Such knowledge could, for example, be obtained through the use of algorithmic
learning. We give constructions of efficient and secure grey-box stegosystems for different hypothesis
representations. Due to difficulties with channels that are hard to learn, we turn to the question
of designing stegosystems whose security relies on the indistinguishability of two pseudorandom
functions. For this approach, which is described in Chapter 6, we propose a new security notion that
abandons the concept of insecurity and introduces detectability. We show how this new concept is
very well suited for steganography and how stegosystems that are insecure in the traditional sense
actually turn out to be undetectable. In fact, one of our constructions is a stegosystem that is
efficient and undetectable, a goal that could not be achieved with the concept of insecurity. Finally,
Chapter 7 summarises the main results and concludes the thesis with a brief outlook on possible
future research on the topic of steganography.



Chapter 2

Preliminaries: Definitions and Notation

Before we can start with our formal analyses of steganography, some definitions for commonly used
concepts in steganography have to be given and our notation conventions have to be stated. Also,
some concepts from cryptography are given, as they figure prominently in putting steganographic
security on a solid basis.

2.1 Channels and Sampling Oracles

Let Σ = {0, 1}σ be a finite set of bit-strings of lengths σ. Σ` denotes the set of sequences of length
` over Σ, and Σ∗ the set of sequences of finite length over Σ. We denote the length of a sequence u
by |u|s, i.e., the number of documents the sequence consists of. In the standard way, |u| will denote
the length of a string u, i.e., the number of bits u consists of. For the concatenation of two strings
u1 and u2 we write u1||u2 to make this explicit and use the short form u1u2 if it is clear from the
context that two strings are concatenated.

Strings u ∈ Σ will be called documents, which we sometimes view as non-divisible entities, as in
black-box stegosystems, where we obtain the documents, but never actually look at their structure,
and sometimes we look at them as changeable entities which we can cut or otherwise modify.

We call a finite concatenation of documents u1||u2|| . . . ||u` a communication sequence or covertext.
In our steganography context the document models a piece of cover data (e.g. a digital image
or a part of it, sentences in a natural language or parts of it, bit-strings of a certain structure,
among many others), whereas the communication sequence models the complete message sent to
the receiver in a single communication exchange.

If P is a probability distribution, then we will denote the probability that the random variable
X has value x by PrP [X = x] or for short PrP [x] and if it is clear from which distribution we draw,
then we also abbreviate this to Pr[x].

If P is a probability distribution with finite support A denoted by supp(P), we define the min-
entropy H∞(P) of P as the value H∞(P) = minx∈A− log Pr[x]. This notion provides a measure of
the minimal amount of randomness present in P. We define the following similarity measure for
probability distributions based on the Kullback-Leibler divergence.

Definition 2.1 (Similarity Measure). Let P and Q be probability distributions on the same probabil-
ity space. The relative entropy, also called Kullback-Leibler divergence, between P and Q is defined
by DKL(P||Q) =

∑
x PrP [x] log PrP [x]

PrQ[x] , where by convention 0 · log 0/q = 0 and p · log p/0 =∞. We
define D(P,Q) = DKL(P||Q) +DKL(Q||P) and say that P and Q are ε-close if D(P,Q) ≤ ε.

It seems natural to assume that not all covertext documents are equally likely, so we want to
associate the covertext documents with their probability of occurrence. This leads us to the concept
of a covertext channel. As we want to access individual documents through the channel, we also need
the concept of a history of previously drawn documents. This history determines which documents
we may get next and with which probability. Formally, we define a covertext channel as follows.

5



2.2 Steganography Concepts 6

Definition 2.2 (Channel). A channel C is a function that takes a history H ∈ Σ∗ as input and
produces a probability distribution DC,H on Σ. A history H = s1s2 . . . sm is legal if each subsequent
document is obtainable given the previous ones, i.e., PrDC,s1s2...si−1

[si] > 0 for all i ≤ m. The
min-entropy of C is the value minHH∞(DC,H) where the minimum is taken over all legal histories
H.

To allow for steganography in the channels considered in this study, we will assume the following
constraint on the min-entropy:

for every legal history H from C : H∞(DC,H) > 1 . (2.1)

This gives a very general definition of covertext distributions which allows dependencies between
individual documents that are present in typical real-world communications.

Example. Let us assume our channel C describes valid, meaningful sentences in the German
language. The set of documents consists of all possible German words. Now, let the history H
consist of the following beginning of a sentence: “Ich stehe auf der”. The distribution produced by
C will probably give words like “Wiese”, “Spitze” or “Leitung” a high probability, as these words
would likely be expected given H. Less likely, but still with positive probability (because they are
grammatically correct given H) would be words like “Nadel”, “Tür” or “Verwaltung”. However,
words like “Tisch”, “gehabt” or “warum” would be grammatically incorrect in the context of H
and therefore associated with a probability of 0.

Example. To see why we use the min-entropy instead of the more common entropy (given by
H(D) = −

∑
x∈supp(D) Pr[x] log Pr[x]) to measure the amount of randomness in a channel, let us

look at two different covertext channels. Both channels consist of 100 covertext documents. In
the first channel, for every history H, covertext c1 occurs with probability 0.901 and covertexts
c2, . . . , c100 each with probability 0.001. If we calculate the entropy for this distribution denoted
by D1, we get H(D1) ≈ 1.1221, whereas the min-entropy H∞(D1) ≈ 0.1504. If one only considered
the entropy, this could suggest the ability to embed 1.1221 bits on average. However, because we
almost always obtain c1 when sampling this channel, such an assumption would be wrong. Thus,
the low value for the min-entropy correctly reflects this situation. Now let us look at the second
channel, where all covertexts have the same probability 0.01, so we get H(D2) = H∞(D2) ≈ 6.6439.
This illustrates how the min-entropy measures “closeness” to the uniform distribution. If some
documents have disproportionately high probability, the min-entropy will be low.

To model an access to the covertext channel and get information about the covertext distribution
we use the concept of sampling oracles. EXC(H) denotes an oracle that generates covertexts accord-
ing to a channel C with history H. It receives as input a history H and outputs a covertext sample
c. Often, the sampling oracle is treated as a black box, however, we may also explicitly construct
Turing machines that sample a channel C. A detailed discussion will be given in Chapter 4.

2.2 Steganography Concepts

A steganographic information transmission is thought of as taking a covertext c1 . . . c` ∈ Σ` and
modifying it to a stegotext s1 . . . s` ∈ Σ` such that the sequence additionally encodes an independent
message M . This encoding is done by Alice who then sends the stegotext to the receiver Bob over
a public channel.

Let b denote the transmission rate per document, i.e., a single stegodocument sj encodes b bits
of M . For this purpose we will assume b < h where h is the min-entropy of the channel.

We are now ready to give a formal definition of a stegosystem.
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Definition 2.3 (Stegosystem). In the following, let n = ` · b denote the total length of the mes-
sages to be embedded into covertexts. A stegosystem S for the message space {0, 1}n is a triple of
probabilistic algorithms [SK,SE,SD ] with the following functionality:

• SK is the key generation procedure that on input 1n outputs a key K of length κ, where κ is
a security parameter that depends on n;

• SE is the encoding algorithm that takes as input a key K ∈ {0, 1}κ, a message M ∈ {0, 1}n
(called hiddentext), a channel history H, and accesses the sampling oracle EXC of a given
covertext channel C and returns a stegotext s ∈ Σn/b;

• SD is the decoding algorithm that takes K, s and H, and having access to the sampling oracle
EXC returns a message M ′.

S is called a black-box stegosystem if the algorithms SE and SD have no a priori knowledge about
the distribution of the covertext channel and can obtain information about it only by querying the
sampling oracle.

The result of SK, i.e., the key, is shared between Alice and Bob before their steganographic
communication and is kept secret from the adversary. All further actions of Alice are specified by
SE, those of Bob by SD.

The time complexities of the algorithms SK, SE, SD are measured with respect to n, κ, and σ,
where an oracle query is charged as one unit step. A stegosystem is computationally efficient if
its time complexities are polynomially bounded. By convention, the running time of an algorithm
includes the description size of that algorithm with respect to some standard encoding. This is
because before being executed, the whole description of the algorithm has to be read.

Ideally, one would expect that the decoder always succeeds in extracting the original message
M from the stegotext. Since this may not always be possible, we define the unreliability of a
stegosystem as follows.

Definition 2.4 (Unreliability). The unreliability of S = [SK,SE,SD ] with respect to the covertext
channel C is given by

UnRelC,S := max
M∈{0,1}n,H

PrK←SK(1n)[SD(K,SE(K,M,H),H) 6= M ] .

Next, let us measure the security of a stegosystem. How likely is it that an adversary, the warden
W , can discover that the channel is used for transmitting additional information? If we put no
algorithmic restrictions on W (i.e., information-theoretic security), then it is necessary that

1. the stegotext s lies in the support of the covertext channel, otherwise a test of s for membership
in supp(C) would be sufficient for W to discover steganography, and

2. the probability of producing a stegotext s equals the probability of drawing s according to C.

Cachin (2004) has proposed the following information-theoretic model of steganographic security.

Definition 2.5 (Information-Theoretic Security). Let C be a covertext channel with distribution
DC and let DSC be the output distribution of the steganographic embedding function SE having access
to the channel C. The stegosystem S = [SK,SE,SD ] is called perfectly secure for the channel C
(against passive adversaries) if the relative entropy satisfies

DKL(DC ||DSC ) = 0 .
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In such an information-theoretic security setting, the warden is assumed to be unbounded, i.e.,
there are no restrictions on its computational resources. The term “perfect security” for stegosys-
tems with equal covertext and stegotext distributions reflects the strength of the warden. However,
this term can be misleading, as the attack scenario is not very sharply defined – Cachin (2004)
does not tell us what capabilities the warden has other than being computationally unbounded,
thus we have to assume that the warden may only observe the covertext channel, resulting in a
“stegotext-only” attack. That “perfect security” is not the strongest security notion will become
apparent, when we look at other attack scenarios which give the adversary different capabilities.
One such model, will be described next.

For a security analysis in the complexity-theoretic sense, let us assume that W is no longer
unrestricted in its use of computational resources, but polynomially time-bounded. Furthermore,
the adversary may now do more than just observe the covertext channel, as described above for
information-theoretic security. He may now actively perform a chosen hiddentext attack (Hopper
et al. 2002b; Dedić et al. 2009). We will now describe this attack. Let SE(K,M,H) with access
to EXC(H) be denoted by SE C(K,M,H). We also define an oracle OC that for given message
M ∈ {0, 1}n and channel history H returns a truly random covertext c1c2 . . . c` of length ` =
|SE C(K,M,H)| from the covertext channel C with the history H, i.e., each ci is drawn according
to the probability distribution DC,H||c1c2...ci−1

.

Definition 2.6 (Chosen Hiddentext Attack (CHA)). A probabilistic algorithm W is a (t, q, λ)-
warden for the stegosystem S = [SK,SE,SD ] if

• W runs in time t;

• W accesses a reference oracle EXC that he can query for samples from the covertext channel
C with a history H;

• W can make an number of q queries of total length λ bits on a challenge oracle CH which is
either SE C(K,M,H) or OC (M,H), where the message M of length n and the history H can
be chosen by W ;

• the task of W is to determine the use of the stegosystem S with the help of the challenge
oracle: W C,CH = 1 means that W decides on “stegotext”, respectively W C,CH = 0 means that
W decides on “covertext”.

We define the advantage of W over random guessing for a given covertext channel C as

Advcha
C,S(W ) :=

∣∣∣PrK←SK(1n)[W
C,SE C(K,·,·) = 1]− Pr[W C,OC (·,·) = 1]

∣∣∣ . (2.2)

Note that in order to maximise the advantage, W may depend on the channel C. In the most
favourable case, W may possess a complete specification of C, so that he does not even need to
query the reference oracle. The amount of such information about C is part of the description size
of W . This knowledge may put the adversary in a much better situation than the encoder.

Definition 2.7 (Steganographic Security against CHA). The insecurity of a stegosystem S with
respect to a covertext channel C and complexity bounds t, q, λ is defined by

InSeccha
C,S(t, q, λ) := max

W
{Advcha

C,S(W )} ,

where the maximum is taken over all adversaries W working in time at most t and making at most
q queries of total length λ bits to the challenge oracle CH.
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Note that we do not explicitly mention the description size of the adversary, but assume this to
be included in the running time t (W has to read this information at least once).

It is important to stress that althoughW does not knowK, he can depend on Alice using the same
K for all his queries (this is denoted by SE C(K, ·, ·), where K is constant and only the parameters
“·” can change between calls). For this reason, stegosystems that are perfectly secure are not
necessarily secure against chosen hiddentext attacks, as the example of the one-time-pad clearly
shows: its key can be recovered if the message is known or if two or more (unknown) messages
are encrypted with the same key. To achieve security against chosen hiddentext attacks, Alice has
to transform the (chosen) hiddentext into a pseudorandom bit-string. This can be done with an
encryption scheme that uses additional randomness, such as probabilistic public key encryption
(Goldwasser and Micali 1984) or the CBC mode of operation in block ciphers (Bellare et al. 1997).

Note that the attack scenario described above for information-theoretic security does not give
the adversary such powerful capabilities as choosing a particular message M . Therefore, chosen
hiddentext attacks constitute a much stronger class of adversaries and thus for a stegosystem being
information-theoretically secure does not mean being CHA-secure. In fact, because the key K that
is used for the challenge oracle remains the same during all queries of the warden, a stegosystem
like the one-time-pad that simply outputs stegotexts s = M ⊕ K will be trivially detected by
repeated queries with the same chosen message M . This problem of repeated queries with the
same parameters has a long history in cryptographic research, where it led to the development
of probabilistic encryption by Goldwasser and Micali (1984). We will briefly touch upon such
cryptosystems in the next section.

We will define a channel family F as a set of covertext channels that share some common char-
acteristics, such as e.g. all pseudo-random sequences, sequences of digital images in uncompressed
form taken in an arbitrary environment, compressed audio signals from an arbitrary genre of music,
or all English literary texts.

Both counterparts, the encoder and the warden, are assumed to know which channel family F is
used. For the actual covertext channel used for communication, one channel C ∈ F is selected at
random and this selection is not known to the encoder. Depending on the strength of the warden
one wants to model, W may also lack knowledge about C or he may have additional information
about C. Here, we do not investigate this question further and allow the adversary to have full
knowledge.

Definition 2.8 (Insecurity and Unreliability for Channel Families). The insecurity against an
adversary working in time at most t and making at most q queries of total length λ to the challenge
oracle CH of a stegosystem S with respect to the channel family F is defined by

InSeccha
F ,S(t, q, λ) := max

C∈F
InSeccha

C,S(t, q, λ)

and the unreliability of a stegosystem S with respect to the channel family F is defined by

UnRelF ,S := max
C∈F

UnRelC,S .

2.3 Cryptography Concepts

Below we recall some notions from cryptography required for the specification of the encoding
function SE of the stegosystems we are going to present. We start by defining pseudorandom
functions (PRF). Let PRF : {0, 1}κ × {0, 1}l → {0, 1}L be a function. Here {0, 1}κ is considered
the key space, {0, 1}l is the domain and {0, 1}L is the range of PRF. For each key K ∈ {0, 1}κ we
define the sub-function PRFK : {0, 1}l → {0, 1}L by PRFK(x) = PRF (K,x). Thus, PRF defines
a function family.
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Definition 2.9 (Distinguisher for Pseudorandom Functions). A probabilistic algorithm D is a
(t, q)-distinguisher for PRF, if

• D runs in time t;

• D can make q queries from a challenge oracle CH which either outputs strings from PRFK(·)
or draws from a true random function U : {0, 1}l → {0, 1}L;

• the task of D is to correctly distinguish the output of CH, i.e., D outputs 1 if the output of
CH is from PRFK(·) and 0 if it from the truly random function U .

A true random function U is drawn with uniform probability from the set of all functions that
map {0, 1}l → {0, 1}L. We define the advantage of a probabilistic distinguisher D with access to
CH as

PRF-AdvPRF(D) =
∣∣∣PrK∈R{0,1}κ [DPRFK(·) = 1]− PrU [D U(·) = 1]

∣∣∣ ,
and the insecurity of a pseudorandom function family PRF by

PRF-InSecPRF(t, q) = max
D
{PRF-AdvPRF(D)} ,

where the maximum is taken over all probabilistic distinguishers that run in time at most t steps and
make at most q oracle queries. We call PRF a pseudorandom function family if PRF-InSecPRF(t, q)
is negligible in κ. Note that the key size κ (also called the length of the random seed) serves as
security parameter of PRF, so whenever we want to make this explicit, we will write PRF (κ), and
simply put PRF otherwise.

Now let PRP be a function family as defined above. If additionally it holds that l = L, i.e., the
domain and range of PRP are equal, and for each key K the sub-function PRFK is a permutation
on {0, 1}l, then PRP is called a family of permutations. In a similar way as above for pseudorandom
functions, we define for such a PRP the advantage of a probabilistic distinguisher D having access
to a challenge oracle as

PRP-AdvPRP(D) =
∣∣∣PrK∈R{0,1}κ [DPRPK(·) = 1]− PrP∈RPERM(l)[D

P (·) = 1]
∣∣∣ ,

where PERM(l) denotes the family of all permutations on {0, 1}l. The insecurity of PRP is given
by

PRP-InSecPRP(t, q) = max
D
{PRP-AdvPRP(D)} ,

where the maximum is taken over all probabilistic distinguishers running in at most t steps and
making at most q oracle queries. Let the length l grow polynomially with respect to κ. A sequence
{PRPκ}κ∈N of families PRPκ : {0, 1}κ × {0, 1}l → {0, 1}l is called pseudorandom if for all polyno-
mially bounded distinguishers D, PRP-AdvPRP(D) is negligible in κ (for a more formal definition of
pseudorandom functions and permutations see e.g. Bellare et al. (1997)). As above, the security of
PRP depends on the key size κ, so the explicit notation for this will be PRP(κ).

In our discussion of the difference between information-theoretic security and security against
chosen hiddentext attacks in the previous section, we already mentioned the concept of probabilistic
encryption. Originally, this concept was developed in the context of public key cryptography, but
due to Bellare et al. (1997), there also exist results for symmetric cryptography, namely for the
problem of distinguishing between the output of a cryptosystem and truly random bits. For this
we need two oracles: the encryption oracle EK(·) returns the encryption EK(M) of its input M , the
random oracle EK($) returns EK(r) on input M , where r ∈R {0, 1}|M |.
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Definition 2.10 (Real-or-Random Insecurity). The real-or-random insecurity ES-InSecror
ES(t, q, µ)

of a symmetric encryption scheme ES = (EK ,DK) is defined as the maximum advantage ES-Advror
ES(A)

over all probabilistic adversaries A running in at most t steps and making at most q oracle queries
of total length µ where the advantage is given by

ES-Advror
ES(A) =

∣∣∣PrK [AEK(·) = 1]− PrK [AEK($) = 1]
∣∣∣ .

At this point one might ask, why would we need any cryptography if we are doing steganography.
The reason why we need encryption is that we want to prevent chosen hiddentext attacks by turning
the chosen message into a random string prior to steganographic embedding. To achieve this, we
use a cryptosystem that has a low ES-Advror

ES(A) value for all adversaries A, so the random string
that we get is actually different between subsequent calls made by the adversary to the challenge
oracle with identical parameters. In this way, cryptography provides a crucial part of the security
of what we might call “probabilistic steganography”.



Chapter 3

Black-Box Steganography

In this chapter we will look at some previous constructions of computationally secure stegosystems.
The model in which these constructions are given is called black-box steganography. As the name
implies, the covertext channel is considered to be a black box, so that Alice and Bob make no as-
sumptions whatsoever about the channel distribution or any characteristics of the covertexts, which
they view as indivisible. While this may appear counter-intuitive at first – practical stegosystems
use certain covertext characteristics for steganographic embedding (see also Chapter 5) – it actually
has one big advantage: by not assuming anything about the covertext channel, the stegosystem
can operate independently of the particular choice of channel. Such universal stegosystems are
certainly desirable, as they enable Alice and Bob to use steganography with whatever channel they
may have available.

We start by introducing the rejection-sampling approach to black-box steganography as first
proposed by Hopper et al. (2002b) and will briefly cover some variations of it. In our discussions
we will find that efficiency is a major problem of all black-box stegosystems. Two modifications
will be proposed that can lead to greater efficiency: (1) multibit-embedding and (2) fixed-entropy
sampling. The results of Dedić et al. (2009), which will be presented in Section 3.2, state that the
sampling complexity of black-box stegosystems is exponential in the number of bits embedded per
covertext document. For this reason, the approach of multibit-embedding can be considered not
practical. Fixed-entropy sampling, on the other hand, is implicitly assumed by most authors of
black-box stegosystems, however, without noting some serious problems with the implementation
of such samplers. We will investigate the computational complexity of fixed entropy samplers in
Chapter 4.

3.1 The Rejection Sampling Approach

The concept of what is today known as “rejection sampling” in steganography goes back to an idea
of Anderson (1996), which he called “equivalence classes of messages”:

Suppose Alice uses a keyed cryptographic hash function to derive one bit from each
sentence of a letter. As she prepares her stegotext letter to Bob, she has a routine which
checks this bit and beeps if it is wrong. This will go off about every other sentence,
which she can then rewrite. (Anderson 1996: 44)

Anderson did not, however, construct an algorithm that uses this principle. This was first done
by Hopper et al. (2002b) who constructed a black-box stegosystem and proved that it is provably
secure in the computational security setting. This approach, as well as some variants of it, will be
discussed in this section.

3.1.1 The Hopper, Langford and von Ahn Stegosystem

Sampling is a powerful tool to generate appropriate covertexts for any covertext distribution. In
the model of Hopper et al. (2002b) the sampler is able to take an arbitrary history H of documents

12
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as input and return a document c distributed according to the covertext distribution C conditioned
on the history H. Such a sampling mechanism enables the construction of universal stegosystems
which can be made provably secure in the computational setting. The notion of computational
security was formalised independently by Katzenbeisser and Petitcolas (2002) and Hopper et al.
(2002b); the latter of these also presented a security proof for the following universal stegosystem
based on rejection sampling. The encoding algorithm uses the sampler in such a way that for
a given message bit x that we want to embed, covertext documents c are sampled until either
a suitable document c is found that already “contains” x or the number of samples exceeds the
security bound count. The key component of this stegosystem is the rejection sampler, which is
given in the following procedure.

Procedure RSPRF(x, count, H)
Input: target bit x; iteration number count ; history H;
i := 0
repeat

c := EXC(H); i := i+ 1;
until PRF (c) = x or i = count ;
Output: c

In this procedure, the embedding function PRF : {0, 1}σ → {0, 1} is a pseudorandom function
(recall that σ denotes the length of documents c ∈ Σ). Note that the sampling may fail, in which
case we have i = count and PRF (c) 6= x, so the selected sample c does not embed the requested
bit x. The crucial property of the procedure RS is that if the channel C is sufficiently random (so
we can embed something) and count = 2, the output distribution generated by RS is statistically
close to C.1

For the stegosystem [SK,SE,SD ] based on the rejection sampler RSPRF, we assume that Alice
and Bob initially share a secret key K, chosen randomly by SK, and an initial value N of a
synchronised d-bit counter used in order to exchange long messages. In the algorithms below, N
will be used to synchronise the selection of a pseudorandom function family PRFK(N, ·) indexed by
key K. To increase the reliability, the communicating parties use encoding and decoding algorithms
Enc(m) and Dec(m) for an error correcting code with a stretch function ζ(·). Below we show the
encoding and decoding algorithms (Construction 1 by Hopper et al. 2002b) for the stegosystem
SHLA.

Procedure SHLA-encode(K, M ′, H)
Input: key K; hiddentext M ′; history H;
let N be a shared d-bit counter value;
M := Enc(M ′);
parse M as bits m1|| . . . ||m`;
for i := 1, . . . , ` do

ci := RSPRFK(N,·)(mi, 2,H);
H := H||ci; N := N + 1;

endfor
Output: c1|| . . . ||c`

Procedure SHLA-decode(K, s)
Input: key K; stegotext s;
let N be a shared d-bit counter value;
parse s as s1|| . . . ||s`, where |si| = σ;
for i := 1, . . . , ` do

mi := PRFK(N, si);
N := N + 1;

endfor
M := m1|| . . . ||m`;
Output: Dec(M)

To guarantee that the output distribution generated by RSPRFK(N,·) is statistically close to C,
we call the procedure with an iteration bound of 2 for RS (Hopper et al. 2002a). The following
theorem, which is one of the main results of Hopper et al. (2002b) – their Theorem 1 – relates the

1The original version of the paper by Hopper et al. (2002b) contained a flawed construction that did not limit the
number of possible rejections. This was corrected by Hopper et al. (2002a)
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insecurity of the stegosystem SHLA to the insecurity of the pseudorandom function.

Theorem 3.1 (Hopper et al. 2002b). Let C be a channel with min-entropy h > 1. Then for every
warden running in time t and making q queries of total size λ ≤ 2d, where d is the size of the shared
counter N , to the challenge oracle, it holds that

InSeccha
SHLA,C(t, q, λ) ≤ PRF-InSecPRF (t+O (|K| · ζ(λ)) , |K| · ζ(λ)) .

From this theorem it follows directly that if PRFK(·, ·) is pseudorandom, then the stegosystem
SHLA has a low insecurity against chosen hiddentext attacks for every channel C with min-entropy
h > 1 (Hopper et al. call channels that satisfy this min-entropy constraint “always informative”).
Note that the synchronised counter N does not constitute an input, but rather a “magic” global
variable that is initialised once, before all communications, and keeps its value between subsequent
calls to the encoding/decoding functions. It prevents Alice from applying the same pseudorandom
function twice on the same input. Because N is shared between Alice and Bob (and updated),
this type of steganography is called stateful. In stateless constructions there is no need for any
shared information other than the key, which is shared beforehand. Hopper et al. (2002b) also give
a stateless variant of SHLA, which we are not going to present here.

However, the construction SHLA is inefficient if we consider its per-document transmission rate –
which measures the number of bits embedded per document. It is desirable to get a transmission
rate close to the min-entropy of the channel, i.e.,

#embedded bits per document
H∞(DC,H)

≈ 1 .

Because the system SHLA can only transmit 1 bit per document, it can only achieve this by assuming

H∞(DC,H) ≈ 1 .

This is a very strong requirement, because we are no longer free to sample documents of arbitrary
min-entropy, but instead have to make sure that they have a given fixed min-entropy. Since the
covertext channel may have a large min-entropy, this means that our documents are either very
large but with low min-entropy, or that we can somehow obtain arbitrarily small fixed min-entropy
prefixes of larger high min-entropy documents. Because we do not want to send large covertext
documents that only contain one hiddentext bit, we are left with two options:

1. increase the number of bits embedded per document

2. sample fixed entropy parts of high entropy documents

In Section 3.2 we will review a negative result on embedding multiple bits per document that has
been published by Dedić et al. (2009). In Chapter 4 we will then take a look at the possibility of
implementing a fixed-entropy sampler, where we get an essentially negative result when we consider
channels that exhibit a practically relevant structure. Let us now briefly review some variants of
the SHLA scheme that were created with the goal of improving the per-document transmission rate.

3.1.2 Other Provably Secure Black-Box Stegosystems

Le and Kurosawa (2007) have proposed a construction that uses a coding scheme similar to arith-
metic coding which they call P-codes. The idea is to sample in each coding step t covertext
documents and associate them with an ordered sequence of indices, in order to estimate the cover-
text distribution. Among these indices the algorithm chooses the one that encodes the message
bits for the current step of the P-coding and the corresponding covertext document is added to
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the output covertext. Due to the repeated sampling and rejection of covertext documents, this
construction superficially appears to be a variant of the rejection sampling approach as introduced
by Hopper et al. (2002b) (why this is not so will be explained below). We first present the encoding
and decoding procedures for the P-codes. Let G(κ) be a cryptographically secure pseudo-random
bit generator that on input κ outputs κ pseudo-random bits.

Procedure Gamma-encode(K, M , H)
Input: secret key K; message M = m1, . . . ,mn ∈ {0, 1}n; history H;
let t be the number of covertext documents to be sampled;
α := 0; β := 22n; h := ε;
initialise G with K as random seed;
z := G(n); let r be the integer representation of M ||z;
while dα/2ne < bβ/2nc do

for i := 0, . . . , t− 1 do ci := EXC(H||h,G);
order the ci in some fixed increasing order:

c0 = . . . = ci1−1 < ci1 = . . . = ci2−1 < . . . < cim−1 = . . . = ct−1,
where 0 = i0 < i1 < . . . < im = t− 1;

let 0 ≤ j ≤ m− 1 be the unique j, such that ij ≤ b(r − α)t/(β − α)c < ij+1;
α′ := α+ (β − α)ij/t; β := α+ (β − α)ij+1/t; α := α′;
h := h||cij ;

endwhile
Output: s := h

Procedure Gamma-decode(K, s, H)
Input: secret key K; coded string s = s1, . . . , sl; history H;
let t be the number of covertext documents to be sampled;
α := 0; β := 22n; h := ε;
initialise G with K as random seed;
z := G(n);
for step := 1, . . . , l do

for i := 0, . . . , t− 1 do ci := EXC(H||h,G);
order the ci in some fixed increasing order:

c0 = . . . = ci1−1 < ci1 = . . . = ci2−1 < . . . < cim−1 = . . . = ct−1,
where 0 = i0 < i1 < . . . < im = t− 1;

let 0 ≤ j ≤ m− 1 be the unique j, such that cij = sstep;
α′ := α+ (β − α)ij/t; β = α+ (β − α)ij+1/t; α := α′;
h := h||cij ;

endfor
if z ≥ (α mod 2n) then y := bα/2nc; else y := bβ/2nc;
Output: the binary representation of y

Note that t is a parameter that obviously depends on the min-entropy of the channel, however,
its value is not further specified by Le and Kurosawa (2007) or Le (2004). To make sure both
encoder and decoder obtain the same sequence of documents when sampling, the sampler depends
on the state of the pseudo-random bit-generator G; this is denoted by EXC(H, G). We now give
a straightforward construction for secret key steganography, which is taken from Le (2004: 61–62,
Construction S1).
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Procedure SLK-encode(κ, M , H)
Input: hiddentext M ; security parameter

κ; history H;
r||K := G(κ);
s := Gamma-encode(K, r ⊕M,H);
Output: s

Procedure SLK-decode(κ, s, H)
Input: stegotext s; security parameter

κ; history H
r||K := G(κ);
M := Gamma-decode(K, s,H)⊕ r;
Output: M

This scheme (and variants of it) has been claimed by Le (2004) and Le and Kurosawa (2007) to be
secure against chosen hiddentext attacks2 and to be what the authors call “essentially optimal” in
terms of the transmission rate. Actually, the proof given in (Le 2004: p. 62, Theorem 19) relies on a
different attack model in which the attacker cannot assume the pseudorandom generator to produce
the same output given the same key as input: “each time the embedding operation is performed,
the pseudorandom generator G changes its internal state, so its output r are independent of each
others in the attacker’s view” (Le 2004: p. 62). As this is not in line with the standard model of
chosen hiddentext attacks, employed e.g. by Hopper et al. (2002b) and also used in this thesis, the
claim of security against chosen hiddentext attacks has to be rejected.

In addition to this, there are further serious concerns with this scheme. As mentioned above, both
encoder and decoder of the Gamma-procedures depend on a shared state of the random number
generator G which also determines the output of the sampling oracle, denoted here by EXC(H, G).
This is a very strong assumption, as it implies that the covertext samples that the encoder and
decoder obtain by sampling are exactly the same and not just equivalent as e.g. in Anderson’s
equivalence classes or the rejection sampler by Hopper et al. (2002b), which draws documents
based only on the history H. For this reason, the SLK stegosystem cannot be classified as using
rejection sampling. In fact, one can argue that this sampler can also no longer be considered to
be “black box”, as we can easily choose some arbitrary seed in order to deterministically construct
an output sequence. For samplers with such a property we might better use the label “white box”
steganography, as we can repeatably construct samples (although in this case we might not know
exactly how the construction works) instead of randomly sampling them. This view is further
supported by a variation of the scheme, described by Le and Kurosawa (2007), that constructs
samples from a known cumulative distribution function for the covertext channel. In that case, full
knowledge about the covertext channel distribution is explicitly available to Alice and Bob. We
will look at similar stegosystems in Chapter 6, where we will show that randomly selecting some
channel seed (instead of magically being given the correct one, as Le and Kurosawa 2007 assume)
is actually not a bad idea.

Furthermore, while Hopper et al. (2002b) could easily modify their construction SHLA into a
stateless variant (They simply assume an encryption scheme which has low real-or-random insecu-
rity and replace the pseudorandom PRF with a public f), there is no obvious way to make such
a transformation with the SLK scheme, as the shared covertext sequence and therefore the shared
state are necessary for the P-coding scheme.

Another point of criticism for this scheme is the assumption that a large number of bits (the
authors talk about thousands of bits per cover) can be efficiently embedded per covertext. This
means that documents making up the covertext can be chosen to be arbitrarily small, so while the
rate per document is small, it can be made large for the whole covertext sequence. It is doubtful
whether practical covertext channels exhibit such a structure (think of e.g. digital images, audio,
text). Furthermore, in Section 3.2 we present a result by Dedić et al. (2005, 2009), which shows
that all black-box stegosystems that try to embed multiple bits per document will have a sampling

2The theorem in Le (2004) and Le and Kurosawa (2007) simply states “The steganographic scheme [SLK] is CHA-
secure.”, without bounding the insecurity of the stegosystem by the insecurity of their pseudo-random bit gener-
ator.



3.2 Exponential Sampling Complexity 17

(and therefore also time) complexity that is exponential in the number of bits per document, a
result that also holds for Le (2004) and Le and Kurosawa (2007).

Another variant of the stegosystem SHLA has been proposed by Kiayias et al. (2005). Here, the
modification lies in the use of a pseudorandom number generator (PRNG) instead of a pseudoran-
dom function (PRF) in order to reduce the number of calls to the PRNG (that also underlies the
PRF) per embedded bit from linear (in the key size) to a constant. However, in all other respects,
their construction retains the same properties that SHLA has, including those that we gave above.

3.2 Exponential Sampling Complexity

In the previous section we have seen that the main problem of the black-box rejection sampling
approach lies in its (in)efficiency. Therefore, we will now take a look at some previous work
that deals with embedding multiple bits per document in order to increase the transmission rate
per covertext. Below we present a construction by Dedić et al. (2005, 2009) that generalises the
stegosystem of Hopper et al. (2002b) to embed b bits of hiddentext per document (instead of only
one bit), together with their analysis of the sampling complexity of black-box stegosystems.

Let us first look at the original construction of Hopper et al. (2002b) presented in Section 3.1.
The query complexity per document of this stegosystem is clearly 2, whereas the transmission rate
per document is not as obvious. To guarantee the reliability of the system, the encoding algorithm
does not directly embed the bits of the message M , but uses an error correcting code that generates
the message M ′ and then embeds M ′ into the covertext. Therefore the transmission rate depends
on the error correcting code used and – as Reyzin and Russell (2003: 19–20) have noted – the
stegosystem has to send 22 covertext documents to reliably encode a single bit of the hiddentext.
In their paper, Dedić et al. (2005, 2009) systematically analyse the tradeoff between transmission
rate and query complexity. They provide strong evidence that black-box stegosystems with high
transmission rates are very inefficient with respect to their query complexity. More specifically, a
lower bound is demonstrated which states that a secure and reliable black-box stegosystem with
a transmission rate of b bits per document requires the encoder to query the sampling oracle at
least a · 2b times per b bits sent, for some constant a. The value of a depends on security and
reliability, and tends to 1/(2e) as insecurity and unreliability approach 0. This lower bound applies
to secret-key as well as public-key stegosystems. To prove the lower bound, Dedić et al. (2009)
introduce the concept of flat h-channels.

For a set of documents Σ, with |Σ| = S = 2σ, let h ∈ [1 . . . σ] be a fixed min-entropy and
let H = 2h. We first give the definition of a (truly random) flat h-channel. It is specified by a
probabilistic Turing machine R with a random tape containing an infinite random string $. For
an integer tuple (S,H, i, α, β) as input, where 0 < H ≤ S, i > 0 and 0 ≤ α ≤ β < S, the machine
R does the following:

(1) it divides $ into consecutive substrings of length S each;

(2) it identifies those substrings that have exactly H ones; let yi be the i-th such substring;

(3) it returns the number of ones in yi between and including positions α and β in yi (positions
are counted from 0 to S − 1).

Let Di be the subset of Σ of cardinality H that has characteristic vector yi and let
−→
D := D1 ×

D2×D3×· · · . Formally one should write D$
i , resp.

−→
D$, where $ is the content of the random tape,

but to simplify the notation we will omit the superscript $. Obviously, querying R with a tuple
(S,H, i, α, β) allows counting the number of elements s in Di, with α ≤ s ≤ β. Moreover, testing
membership in Di can be done easily by a single query to R, namely MembDi(s) = R(S,H, i, s, s).
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By
−→
D we also denote the channel over D1 ×D2 ×D3 × · · · of uniform probability distributions,

i.e., we assume that for any legal history H = s1s2 . . . si the probability distribution
−→
DH is the

uniform distribution over the set Di+1. Such a channel
−→
D is called a (truly random) flat h-channel.

Using techniques of Goldreich et al. (2003), Dedić et al. have established a truthful pseudo-
implementation of R. They obtain that, given a short random seed ω, it is possible to create a
pseudorandom flat h-channel that is indistinguishable from the random process described above.
Additionally, the construction allows efficient counting, membership testing and true random sam-
pling. Formally, this claim is stated in Lemma 3.2 below.

We use the following notation. For a given finite random seed ω, let Dω
i be the i-th pseudorandom

subset of Σ of size H and let −→
Dω := Dω

1 ×Dω
2 ×Dω

3 × · · ·

denote the support of the channel indexed by ω. The probability distribution of the channel is
uniform. This means that for any legal history H = s1s2 . . . si the probability distribution of the
channel for the history H is the uniform distribution over the set Dω

i+1. To simplify our notation
we will also denote such a channel by

−→
Dω. Finally, the family of pseudorandom flat h-channels

with random seeds of length η is given by

PRDη := {
−→
Dω : |ω| = η} .

Lemma 3.2 (Dedić et al. 2009). Given a family of pseudorandom functions PRF, for any H =
2h < 2σ = S one can construct a family of pseudorandom flat h-channels

−→
Dω over a document set

of size S, indexed by strings ω of length η such that

1. counting the number of elements s, with α ≤ s ≤ β in Dω
i , can be done in time polynomial in

η, σ and log i given the tuple (ω, S,H, i, α, β) as input;

2. sampling and membership testing for Dω
i can be done in time polynomial in η, σ and log i

given the tuple (ω, S,H, i), resp. (ω, S,H, i, s) as input;

3. there exists a polynomial p such that for every t time-bounded oracle machine QX,Memb(X)

trying to distinguish the truly random flat h-channel
−→
D from

−→
Dω using a sampling oracle X

and a membership testing oracle Memb(X) has only a small advantage, or more precisely:∣∣∣Pr−→
D

[Q
−→
D,Memb(

−→
D) = 1]− Prω[Q

−→
Dω ,Memb(

−→
Dω) = 1]

∣∣∣ ≤
PRF-InSecPRF(p(t, η), p(t, η)) +

t

2η
.

Typically, a distinguisher only has access to a sampling oracle. However, in this situation he
may even use membership tests. With the help of this lemma, one can obtain lower bounds on the
insecurity of stegosystems that have to work for pseudorandom flat h-channels, where the warden
is quite simple.

Theorem 3.3 (Dedić et al. 2009, Theorem 2). There exist polynomials p1, p2 and constants c1,
c2 with the following property. Let S(κ) be a black-box stegosystem with security parameter κ,
unreliability ρ, rate b, and running time t for the alphabet Σ with |Σ| = 2σ. Assume that there exists
a pseudorandom function family PRF with insecurity PRF-InSecPRF(T, q) and security parameter
η. Then there exists a channel C with min-entropy h such that the probability that the encoder
makes at most N queries to send a random message of length ` · b is upper bounded by(

Ne

`2b

)`

+ ρ+R ε+ (R+ 1)
(
PRF-InSecPRF(p1(t, η), p1(t, η)) + t 2−η

)
,
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and the expected number of queries per stegotext symbol is therefore at least

2b

e

(
1
2
− ρ−R ε− (R+ 1)

(
PRF-InSecPRF(p1(t, η), p1(t, η)) + t 2−η

))
,

where R = 2σ/(2σ − 2h) and ε is the insecurity of the stegosystem S on the channel C against
adversaries running in time p2(η, σ, `) of description size η + c2, making just one query of length
`b to SE or OC (i.e., ε = InSeccha

C,S(p2(η, σ, `), 1, `b)).

From this theorem we can obtain the following corollary.

Corollary 3.4. Let S be an arbitrary stegosystem for the family PRDη generated by the family PRF
of pseudorandom functions. Let S have unreliability ρ, rate b = n/`, where n is the length of the
message, and let both the number of channel queries and the running time be upper bounded by t.
Then there exist polynomials p1, p2 such that for R := 2σ/(2σ − 2h) it holds

InSeccha
PRDη ,S(p1(η, σ, `), 1, η) ≥

1
R

(
1−

(
t e

` 2b

)`

− ρ− (R+ 1) · PRF-InSecPRF(p2(t, η), p2(t, η))−
t

2η

)
.

The following (stateful) black-box secret key stegosystem SDIRR by Dedić et al. (2005, 2009)
that transmits b bits per document and needs 2b samples per document, has unreliability ρ ≤
2−h+b + PRF-InSecPRF(2b, 2b) per document, and negligible insecurity. It is therefore an actual
construction that achieves the lower bound given in Theorem 3.3. A very similar construction was
independently given by Hopper (2004: Construction 6.10).

Procedure SDIRR-encode(K, M , H)
Input: secret key K; hiddentext M ; history H;
let b be the embedding rate;
let N be a shared d-bit counter value;
parse hiddentext M as m1||m2|| . . . ||m`, where |mi| = b;
for i := 1, . . . , ` do

j := 0; f := 0; N := N + 1;
repeat

j := j + 1;
si,j := EXC(H);
if ∃j′ < j s.t. si,j′ = si,j then

c
R← {0, 1}b;

if c = mi then f := 1;
else if PRFK(N, si,j) = mi then f := 1;

until f = 1 ;
si := si,j ; H := H||si;

endfor
Output: s := s1||s2|| . . . ||s`
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Procedure SDIRR-decode(K, s)
Input: secret key K; stegotext s;
let N be a shared d-bit counter value;
let b be the embedding rate;
parse stegotext s as s1||s2|| . . . ||s`, where |si| = σ;
for i := 1, . . . , ` do

N := N + 1;
mi := PRFK(N, si);

endfor
Output: M := m1||m2|| . . . ||m`

3.3 Concluding Remarks for Chapter 3

In this chapter we gave a review of previous work on black-box stegosystems that are provably
secure against chosen-hiddentext attacks in the computational security setting. Although these
systems achieve a high level of security and work reliably, they nevertheless all fail in terms of
efficiency. The result by Dedić et al. (2009) showed that embedding multiple bits per document
leads to exponential sampling complexity, rendering this possible solution to the problem useless.

At this point we want to briefly mention a related result, due to Lysyanskaya and Meyerovich
(2006), that analyses the role of the sampling history. They assume that there are no real-world
examples of channels that can be sampled with history and give as example the sampling of digital
images of teddy bears, split into parts of size 8× 8 pixels. The resulting problem of completing the
image given the previously sampled parts equals our concept of fixed-entropy sampling, which we are
going to analyse in the following chapter. In particular, Lysyanskaya and Meyerovich investigate
how the security property of a stegosystem changes when the sampler does not consider the whole
history, but only the last α documents (they call this α-memoryless). Their results show that if
the channel distribution is also α-memoryless, then the stegosystem SHLA remains secure, and if
the distribution is not α-memoryless, then the insecurity of the stegosystem is not negligible.

Furthermore, it should be noted that the previous work presented in this chapter was selected
with a focus on improvements in terms of efficiency and practicality of implementation. Therefore,
we have restricted ourselves to the notion of security against chosen hiddentext attacks, although
other attacks, notably chosen stegotext attacks (CSA), have been considered in the literature,
see e.g. Backes and Cachin (2005); Ahn and Hopper (2004); Hopper (2004, 2005); Hopper et al.
(2009). While these results are certainly important achievements in the construction and analysis
of secure steganography, they are not in the focus of this dissertation. The same holds for public-
key steganography. For all constructions that will be presented in the following chapters it is
considered sufficient to construct private-key stegosystems and prove them CHA-secure. Other
properties, such as CSA-security and public-key constructions, can be achieved using appropriate
tools from cryptography. Our main interest lies in the very basic building blocks and scenarios for
steganography and to show how to find the right balance between the several desired properties,
above all efficiency and security.



Chapter 4

The Complexity of Fixed-Entropy Samplers

As we have seen in the previous chapter, the approach of embedding multiple bits into a single
document in order to overcome the embedding rate inefficiency leads in the black-box steganography
scenario to a sampling complexity that is exponential in the number of bits embedded per document.
We will now turn to the second approach to increase the efficiency of black-box stegosystems, namely
fixed-entropy samplers.

A crucial role is played by the ratio between the number of hiddentext bits that can be embedded
per covertext document and the entropy of the covertext documents, as it measures how well the
theoretic capacity is used by the stegosystem. As we noted above, one possibility to obtain an
efficient version of the stegosystem SHLA which embeds one bit per document is to fix the document
entropy. In this chapter we want to investigate whether the construction of samplers that output
documents, or rather parts of documents, with a given entropy is computationally feasible. We
thus adopt in this chapter the view of covertext documents as divisible bit-strings.

As we have seen in the previous chapter, a basic assumption of the black-box model is that for
any communication channel C there exists a sampling oracle EXC that upon input of a history H of
previously sampled documents samples according to the channel distribution. Note that this oracle
behaves in a way that is suitable for the channel, i.e., the documents it samples have a size and
entropy that is governed by the nature of the channel. Examples of such channels are images from
digital cameras or text written in natural languages. For the purpose of an efficient implementation
of SHLA, however, we need a different construction, namely a fixed-entropy sampler FEXC . Such a
sampler receives as input a history H and additionally a length parameter η. It then draws, based
on H and according to the channel distribution, parts of documents that have length η and form
together the prefix of a sequence of documents as it would be drawn by EXC . One can think of
this as Alice sampling e.g. small image parts to obtain an image piece-by-piece instead of getting a
complete image at once.

In Section 2.1 we have defined that documents have a fixed size. We will now, for the purposes
of this chapter, generalise this setting and assume that a document from the covertext channel can
be of arbitrary size, i.e., c ∈ {0, 1}∗.

Some of the results presented in this chapter have been published in the proceedings of ISAAC
2006 (Hundt et al. 2006).

4.1 Fixed Entropy Samplers and the Complexity of Sampling

Recall that in Section 2.1 we introduced the concept of a covertext channel C and a sampling
oracle EXC(H), which, given a history H of previously drawn samples, outputs covertext samples
according to the channel distribution:

Pr[EXC(H) = s] = PrDC,H
[s] .

To better differentiate between this form of sampling and fixed-entropy sampling, defined next, we
sometimes also call this native-entropy sampling.

21
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Definition 4.1 (Fixed-Entropy Sampling). Let DC,H be a channel distribution and let EXC be an
oracle which samples documents according to DC,H. We say that an oracle FEXC samples with fixed
entropy according to DC,H if for some positive integer η, for every history H drawn from C, and
for every legal prefix p ∈ {0, 1}∗ of a document according to H, FEXC starting with input (H||p, η)
generates a part s ∈ {0, 1}∗ of length η of a document with the probability

Pr[FEXC(H||p, η) = s] =
∑

c∈{0,1}∗
psvc

Pr[EXC(H) = c | p v c] ,

where a v b means “a is a prefix of b”. For clarity, we will also denote the probability distribution
of FEXC by Dη

C,H to distinguish it from the probability distribution of EXC.

In other words, the history consists of full documents and prefixes of documents, which “grow”
towards becoming full documents with repeated sampling. Note that it appears a little unrealistic
to assume a fixed entropy sampler that gives us samples, all with an exactly given (small) amount
of entropy. We therefore do not explicitly use the entropy as a parameter to the sampler, but
rather have the length of the output samples as a parameter that implicitly influences the entropy.
Note that the constructions of channels in this chapter have the property that the min-entropy of
document parts of length η (with η ≥ 4) will be at least 1.

Before we give definitions of efficient samplers, recall that a randomised Turing machine M
is a Turing machine that has an additional read-only tape (called random tape) which contains
independently identically distributed 0s and 1s.

Now we can give a definition for the efficient sampling of the channel distribution DC,H. We say
that a randomised Turing machine MC samples according to the channel C if for every history H,
MC starting with input H outputs a document s according to the distribution DC,H, i.e., if for every
s ∈ {0, 1}∗ it holds that

Pr[MC(H) = s] = Pr[EXC(H) = s] .

Definition 4.2 (Efficient Sampling). We say that C can be sampled in time T and space S if there
exists a randomised Turing machine MC sampling C simultaneously in time T and space S, with
respect to |H| and the length of the output, i.e., if for every output document of length µ every
computation path of MC on input H is no longer than T (|H|+µ) and uses no more than S(|H|+µ)
space. We denote the class of all such channels by TiSp(T, S) and, for short, let TiSp(pol, S) be the
sum of TiSp(p, S) over all polynomials p. We say that C can be sampled efficiently if C ∈ TiSp(p, p)
for some polynomial p.

We continue with the definition of efficient sampling with fixed entropy.

Definition 4.3 (Efficient Fixed-Entropy Sampling). We say that C can be efficiently sampled with
fixed entropy if there exists a randomised Turing machine NC, with access to a Turing machine MC
(which implements EXC), that on input H||p and 1η (we use the unary encoding of η) samples with
fixed entropy according to DC,H, i.e., for all document parts s it holds that

Pr[NC(H||p, 1η) = s] = Pr[FEXC(H||p, η) = s] ,

and furthermore NC runs in worst case polynomial time, i.e., if there exists a polynomial q such
that every computation path of NC on input H and 1η is no longer than q(|H| + |p| + η). In this
model we charge queries to MC with unit costs.

The possibility of implementing a fixed entropy sampler by a Turing machine NC that efficiently
samples with fixed entropy according to the channel distribution DC,H implies that there is also
an efficient Turing machine MC that implements EXC . Our following result says that the opposite
implication does not hold in general.
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Theorem 4.1. There exist channels C for which there exists an efficient implementation of EXC
by a Turing machine MC, but for which it is impossible to implement FEXC by a Turing machine
NC that efficiently samples with fixed entropy according to DC,H, unless P = NP.

Thus, any oracle-based stegosystem for such channels, and particularly the stegosystem SHLA,
cannot be implemented efficiently, unless P = NP. In the next section we prove the theorem using
a natural channel C.

4.2 The Intractability of Steganography with Fixed-Entropy Samplers

Imagine some natural communication channel C, e.g. an internet chat room which is monitored by
Eve. Alice and Bob want to chat using provably secure stegosystems to embed hidden messages
into an innocent looking conversation. It is a realistic assumption that the messages exchanged
during the cover conversation are structured in a certain way and belong to some specific language.
Let us assume that the chat room allows communication in a language L which is the intersection
of a small number of context free languages. Note that a real world conversation would have to be
more complex to convince Eve. To relate the notions of channel and formal language, we give the
following definition.

Definition 4.4 (L-Consistency). Let L ⊆ {0, 1}∗ be a language. We say that C is L-consistent if
the documents have the form 1|w|0w for all w ∈ {0, 1}∗ and for all legal histories H it holds that

1. if w ∈ L then PrDC,H
[s = 1|w|0w] > 0 and

2. if w 6∈ L then PrDC,H
[s = 1|w|0w] = 0 .

Thus, an L-consistent channel creates legal histories formed by a sequence of documents each of
which encodes a word w ∈ L, consisting of (1) the length of w in unary coding1, (2) a delimiter ’0’
and (3) the word w.

Let us further assume that Alice possesses an efficient sampler NC which samples with fixed
entropy according to the distribution of the channel C described by the chat room and L. To
secretly transmit a message M to Bob, Alice iteratively calls NC on input M as described in
Section 3.1 to obtain an unsuspicious cover message which Bob can easily decode to M .

We will show that even with slightly structured languages L the efficiency of NC is not guaranteed.
In fact we will give an example of L being the intersection of only three simple context free languages
such that NC can sample efficiently only if the widely believed assumption of P 6= NP does not
hold. Consider the following Intersected-CFL-Prefix problem (ICFLP, for short) for context free
grammars G1, . . . ,Gg with Gi = (Γ,Γi, γ

0
i ,Πi) over a finite terminal alphabet Γ, variables Γi, start

variable γ0
i , and productions Πi.

INTERSECTED-CFL-PREFIX for context free grammars G1, . . . ,Gg

INSTANCE: string x over Γ, 1ν with ν > |x|.
QUESTION: Is there a string y which contains x as a prefix such that |y| = ν and
y ∈ L = L(G1) ∩ . . . ∩ L(Gg)?

Lemma 4.2. There are context free grammars G1,G2,G3 such that ICFLP for G1,G2,G3 is NP-
complete.

1We use unary coding for simplicity of presentation. In fact, other uniquely decodable schemes should be used
instead for fulfilling the min-entropy property and for improved efficiency.



4.2 The Intractability of Steganography with Fixed-Entropy Samplers 24

Proof. It is easy to check that for any fixed grammars G1,G2,G3 the ICFLP problem is in NP. In
fact, to decide the problem for a given input x and 1ν it suffices to guess nondeterministically a
string completion z of x, with |z| = ν − |x|, and perform the polynomial time CYK algorithm
(Cocke and Schwartz 1970; Younger 1967; Kasami 1965) to check whether y = xz is in L(Gi) for
i = 1, 2, 3.

Next, we will construct G1, G2 and G3 such that ICFLP for G1,G2,G3 is NP-hard. Recall that
the following Bounded-Post-Correspondence-Problem (BPCP) is NP-complete (Garey and Johnson
1979: Problem SR11):

BOUNDED POST CORRESPONDENCE PROBLEM
INSTANCE: Sequence of pairs of binary strings ((u1, v1), . . . , (um, vm)) and a positive
integer k ≤ m.
QUESTION: Is there a sequence of i1, i2, . . . , ik′ of k′ ≤ k (not necessarily distinct)
positive integers, each between 1 and m, such that the two strings ui1ui2 . . . uik′ and
vi1vi2 . . . vik′ are identical?

To prove NP-hardness we reduce the BPCP problem to ICFLP for some fixed grammars G1,G2,G3.
We will first characterise the grammars giving a description of a language L = L1 ∩ L2 ∩ L3 such
that Li = L(Gi) for i = 1, 2, 3. Let Γ = {0, 1, #, <, >, |, [, ]} be the finite alphabet. The words
belonging to L have the following form

W1#W2#W3#W4 (4.1)

with W1 ∈ {0, 1, <, >, |, [, ]}∗, W2 ∈ {0, 1, <, >, |}∗, and W3,W4 ∈ {0, 1}∗, i.e., each word in L
contains four substrings separated by the mark symbol #. For some arbitrarily selected r ≥ 1, the
substring W1 encodes r sequences of pairs of binary strings (ui,1, vi,1), (ui,2, vi,2), . . . , (ui,ti , vi,ti) and
is structured as

W1 = [ <u1,1|v1,1> <u1,2|v1,2> . . . <u1,t1|v1,t1> ] . . . [ <ur,1|vr,1> <ur,2|vr,2> . . . <ur,tr|vr,tr> ] .

Let srev = sqsq−1 . . . s1 denote the reverse of the string s = s1s2 . . . sq. For some ` ≤ r and two
sequences of indices i1 > i2 > . . . > i` and j1, j2, . . . , j` with 1 ≤ jp ≤ tip for p = 1, . . . , `, the
substring W2 contains a sub-sequence of reverse substrings from W1 structured as

W2 = <vrev
i1,j1|u

rev
i1,j1> <v

rev
i2,j2|u

rev
i2,j2> . . . <v

rev
i`,j`

|urev
i`,j`

> .

The reversal of the substrings is necessary because we want to be able to derive these with context
free grammars, which cannot be used to copy strings, but to create palindromes. Note that from
each of the r sequences from W1 at most one pair is chosen for W2. The substring W3 is a binary
string fulfilling

W3 = ui`,j`
ui`−1,j`−1

. . . ui1,j1 = vi`,j`
vi`−1,j`−1

. . . vi1,j1

and W4 is an arbitrary binary string.
Having defined the structure of language L, let us now characterise the three individual context

free languages. Each of the languages L1, L2 and L3 realises one aspect of the constraints for strings
in L. Language L1 ensures that W1 encodes sequences of pairs of binary substrings, each sequence
enclosed by square brackets, and that in W2 there exists at most one reversed pair of each sequence
of W1. But L1 ignores whatever comes after the second occurrence of the symbol #. Language L2

consists of words of the form (4.1) such that W3 is a reversed string obtained from W2 by removing
the first element of each pair together with the markers <, > and |. Language L3 is analogous to L2

with respect to the first element of each pair, i.e., to L3 belong all words of the form (4.1) such that
W3 is a reversed string obtained from W2 by removing the second element of each pair together
with the marker symbols. To see that the languages L1, L2, and L3 are context free, we will now
construct grammars for each of them.
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G1:

γ0 → W1,2 # W3 # W4

W1,2 → [ A
W3 → S
W4 → S
A → < S | S > A A → < B >
B → 0 B 0 B → 1 B 1 B → | C |
C → 0 C 0 C → 1 C 1 C → > D <
D → < S | S > D D → ] W1,2 D → ] #
S → 0 S S → 1 S S → ε

G2:

γ0 → W1 # W2,3 # W4

W1 → [ A ] W1 W1 → ε
W2,3 → < S | B W2,3 → #
W4 → S
A → < S | S > A A → ε
B → 0 B 0 B → 1 B 1 B → > W2,3

S → 0 S S → 1 S S → ε

G3:

γ0 → W1 # W2,3 # W4

W1 → [ A ] W1 W1 → ε
W2,3 → < B W2,3 → #
W4 → S
A → < S | S > A A → ε
B → 0 B 0 B → 1 B 1 B → | S > W2,3

S → 0 S S → 1 S S → ε

The context free grammars G1, G2 and G3 generate the languages L1, L2 and L3, respectively.
We fix these grammars for the problem ICFLP.

Let (((u1, v1) , . . . , (um, vm)) , k) be an instance of BPCP over the alphabet Γ′ = {0, 1}. Hence,
all ui, vi with i ∈ {1, . . . ,m} are binary strings. For all i ∈ {1, . . . , k} let

W = [ <u1|v1> <u2|v2> . . . <um|vm> ] .

Then we reduce the input of BPCP to x := W k# (i.e., k repetitions of the string W terminating
with the symbol #) and

ν := k · |W |+ 3 · k · max
i∈{1,...,m}

{|ui|+ |vi|}+ 3 · (k + 1) .

Obviously, the reduction can be done in polynomial time.
We will show that the instance (((u1, v1), . . . , (um, vm)) , k) is in BPCP if and only if (x, 1ν) ∈

ICFLP. First assume that there exists a sequence j1, j2, . . . , jk′ such that k′ ≤ k and uj1uj2 . . . ujk′ =
vj1vj2 . . . vjk′ . Then consider the following string Y = W1#W2#W3 with

W1 = x

W2 = <vrev
jk′

|urev
jk′

> <vrev
jk′−1|u

rev
jk′−1> . . . <v

rev
j1 |urev

j1 >

W3 = uj1uj2 . . . ujk′ .

Obviously x is a prefix of Y and |Y | < ν. Furthermore, W1 = x consists of k sequences each of
which encodes the input sequence ((u1, v1), . . . , (um, vm)). The string W2 is the reversed sequence
of k′ pairs from W1 such that from each sequence enclosed by square brackets in W1 there is at
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most one reversed pair in W2. We define the string y = Y #W4 for an arbitrary W4 ∈ {0, 1}∗, with
|W4| = ν − |Y |. Notice that the string belongs to L = L1 ∩ L2 ∩ L3.

Now assume that there exists a sequence string y = xz such that y = |ν| and y ∈ L. By the
constraints enforced with the languages L1, L2 and L3, z has the form z = W2#W3#W4, for some
W2 ∈ {0, 1, |, <, >}∗ and W3,W4 ∈ {0, 1}∗ such that for some k′ ≤ k it holds that

W2 = <vrev
jk′

|urev
jk′

> <vrev
jk′−1|u

rev
jk′−1> . . . <v

rev
j1 |urev

j1 >

W3 = uj1uj2 . . . ujk′ = vj1vj2 . . . vjk′ .

Thus, for the sequence j1, j2, . . . , jk′ the strings uj1uj2 . . . ujk′ = vj1vj2 . . . vjk′ correspond. Since
k′ ≤ k the sequence is a valid solution for the BPCP instance.

Proof of Theorem 4.1. First we give a construction of a sampler MCL for a channel CL which is
consistent with the language L = L1 ∩ L2 ∩ L3, with Li = L(Gi) for Gi satisfying Lemma 4.2. By
this we show that CL can be efficiently sampled by a probabilistic Turing machine MCL . Note that
we generate the documents independently of previously drawn documents.

Procedure MCL(H)
Input: history H
randomly choose l, r, d with l ≤ r, l < d and t1, . . . , tr;1

choose S ∈R {0, 1}d;2

W1 := λ; W2 := λ; W3 := S;3

x0 := 1; y0 := 1;4

for i := 1, . . . , l − 1 do5

choose xi ∈R {xi−1, . . . , d} and yi ∈R {yi−1, . . . , d};6

Xi := Sxi−1 . . . Sxi−1; Yi := Syi−1 . . . Syi−1;7

endfor8

Xl := Sxl−1
. . . Sd; Yl := Syl−1

. . . Sd;9

for i := 1, . . . , l do W2 := W2 || < Rev(Yi) | Rev(Xi) >;10

I0 := r + 1;11

for i := 1, . . . , l do choose Ii ∈R {l − i+ 1, . . . , Ii−1 − 1} and Ji ∈R {1, . . . , tIi};12

for i := 1, . . . , r do13

W1 := W1 || [;14

for j := 1, . . . , ti do15

if (i, j) = (Ip, Jp) ∈ {(I1, J1), . . . , (Il, Jl)} then16

ui,j := Xp; vi,j := Yp;17

else18

choose ui,j ∈R {0, 1}∗ and vi,j ∈R {0, 1}∗;19

endif20

W1 := W1 || < ui,j | vi,j >;21

endfor22

W1 := W1 || ];23

endfor24

choose W4 ∈R {0, 1}∗;25

let ν := | W1 # W2 # W3 # W4 |;26

W ′ := 1ν 0 W1 # W2 # W3 # W4;27

Output: W ′

First we randomly select a solution string S (line 10), set W3 = S (line 10) and randomly divide
this into two sequences X1, . . . , Xl and Y1, . . . , Yl of substrings that make up the correspondence
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pairs of strings (lines 10–10). Next, the sampler creates the string W2 by using the function Rev,
which takes a bit-string as input and returns it with the bits in reverse order (line 10).

This is followed by the creation of the string W1. First, two sets of indices, {I1, . . . , Il} ⊆
{1, . . . , r} and Ji ∈ {1, . . . , tIi} for i = 1, . . . l, are chosen (lines 10–10) that will be used to randomly
distribute the substrings X1, . . . , Xl and Y1, . . . , Yl over the whole sequence of pairs that make up
the string W1. These indices also ensure that in each of the r sequences that make up W1 at most
one pair appears in W2. The outer for-loop concatenates the r sequences of pairs of binary strings
and adds the square brackets (lines 10–10 and 10–10). The inner for-loop (lines 10–10) decides
whether to use one of the substrings X1, . . . , Xl and Y1, . . . , Yl (lines 10–10) or to choose a random
string pair (lines 10–10) and properly concatenates string pairs, angle brackets and vertical bars
(line 10). Finally, the substrings W1, . . . ,W3 are combined and a randomly chosen string W4 is
added (line 10).

Thus, the sampler MCL as described above outputs all possible documents that correspond to
words in the language L = L1 ∩L2 ∩L3 with probability greater than 0. Moreover, if W /∈ L, then
the probability that MCL generates L is 0.

To complete the proof of Theorem 4.1, we assume to the contrary that there exists an efficient
sampler NCL that samples the channel CL, as defined above, with fixed entropy and works in
polynomial time. We show that using NCL we can construct a deterministic algorithm A that
solves the ICFLP problem for G1,G2,G3 in polynomial time q. Let x ∈ {0, 1}m and 1ν with ν > m
be a given input. Initially A generates an empty history H = λ and a prefix string p̂0 = 1ν0x.
Then simulating the sampler NCL , algorithm A iteratively computes p̂j = p̂j−1||NCL(H||p̂j−1, 1η)
for j = 1, 2, . . . , d(ν −m)/ηe such that every random choice r ∈R {0, 1} of NCL is replaced by an
assignment r := 0 and for every j at most q(|p̂j−1|+ η) steps of NCL are simulated. If NCL does not
stop after q(|p̂j−1| + η) steps for some j then A rejects x and halts the computation. Otherwise,
let p̂d(ν−m)/ηe = 1ν0xy with |xy| = ν. The input will be accepted if xy ∈ L and rejected otherwise.
This completes the proof of Theorem 4.1.

4.3 Channels with Hard Fixed-Entropy Sampling

In the present section we will analyse how the gap between the complexity of a sampler MC and a
fixed-entropy sampler NC is caused. Simply speaking, it results from the algorithmic structure of
the channel C. If L is a language, then in certain cases it may be much easier to construct a random
word from L than it is to complete a given one. This phenomenon is well known in formal language
theory (Hopcroft et al. 2000). As a consequence, sampling a channel C, which is consistent with L,
with fixed entropy may be harder than sampling it with its native entropy.

To show the following theorem we apply the theory of NP-completeness, in particular the NP-
complete problem 3SAT, to state the hardness of constructing fixed-entropy samplers NC for a large
number of tractable channels C.

Theorem 4.3. Let S : R+ → R be an increasing function such that log x ≤ S(x) ≤ x for every
x ≥ 1 and let S be space constructible in polynomial time. Moreover, let Ŝ be a time-constructible
inverse function S, i.e., Ŝ(S(x)) = x for all x ∈ R+. Then there exist channels C which can be
implemented in TiSp(pol, S), fulfilling the condition that for document parts of length η the min-
entropy is greater than 1, such that there exists no efficient fixed-entropy sampler NC whose output
distribution NC is δ-close to the distribution of FEXC for some constant δ ≥ 0, unless the 3SAT
problem can be solved by a deterministic algorithm in time T (m) = (Ŝ(m))O(1), where m is the
number of variables of the input 3CNF formula.

Corollary 4.4. From Theorem 4.3 it follows immediately, that
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1. there exists C ∈ TiSp(pol, log2) such that there exists no efficient fixed-entropy sampler NC
for which NC is δ-close to the distribution of FEXC for some δ ≥ 0, unless the 3SAT problem
can be solved by a deterministic algorithm in time T (m) = 2O(

√
m), where m is the number of

variables of input 3CNF formulas.

2. there exists C ∈ TiSp(pol, 2log1/2
) such that there exists no efficient fixed-entropy sampler

NC for which NC is δ-close to the distribution of FEXC for some δ ≥ 0, unless NP ⊆
DTime(nO(log n)).

3. for every polynomial p, there exists C ∈ TiSp(pol, p) such that there exists no efficient fixed-
entropy sampler NC for which NC is δ-close to the distribution of FEXC for some δ ≥ 0, unless
P = NP.

It is clear that the three implications are decreasingly likely and that even implication 1 is far
away from what is possible today. The best exact algorithms for 3SAT run in time O(1.321m)
(randomised) by Hertli et al. (2010) and, respectively, O(1.439m) (deterministic) by Kutzkov and
Scheder (2010).

Proof of Theorem 4.3. We construct a channel C over {0, 1}∗ which is consistent with a language
that encodes instances of the 3SAT problem. We use some fixed efficiently computable encodings
Fm over {0, 1}∗ for 3CNF formulas (i.e., formulas in conjunctive normal form (CNF) with at most
3 variables per clause) of m variables and Em over {0, 1}∗ for assignments (b1, b2, . . . , bm), such that
for C the document parts of length η have a min-entropy of at least 1. To fulfil this constraint we
assume that for every 3CNF formula ϕ over {x1, x1, . . . , xm, xm}, Fm(ϕ) is a set of code words over
{0, 1}∗ such that for every prefix u of Fm(ϕ), the cardinality of the set

{v : |v| = η and uv is the prefix of some code word in Fm(ϕ)}

is at least two (w.l.o.g. we can assume that η is at least four). Similarly, Em(b1, . . . , bm) is a set of
code words of equal length, say dEm , such that for every prefix u of some word in Em(b1, . . . , bm)
with |u| ≤ dEm − η, the cardinality of

{v : |v| = η and uv is a prefix of some code word in Em(b1, . . . , bm)}

is at least two. Additionally, let ξ be a string over {0, 1}∗ such that ξ does not occur as a substring
in any code word of Fm(ϕ) and Em(b1, . . . , bm) for all m. Thus, we get that for any u ∈ Fm(ϕ) and
v ∈ Em(b1, . . . , bm) one detects uniquely in the concatenation uξv the boundary between these two
code words. Using these encodings we will construct the channel C having the following properties:

(i) For every w ∈ {0, 1}∗, if PrDC,H
[w] > 0 then w = 1k0z, with |z| = k, for some k ≥ 0 and

for some m ≤ dS(k)e there exists a partition z = z1z2z3z4 such that z1 ∈ Fm(ϕ) for some
satisfiable 3CNF formula ϕ, z2 = ξ, z3 ∈ Em(b1, . . . , bm) and z4 ∈ {0, 1}∗ (z4 is used for
padding) for some satisfying assignment b1, . . . , bm for ϕ.

(ii) For every satisfiable 3CNF formula ϕ over m variables and for every satisfying assignment
b1, . . . , bm of ϕ, for all k withm ≤ dS(k)e, and for every z = z1z2z3z4 with |z| = k, z1 ∈ Fm(ϕ),
z2 = ξ, z3 ∈ Em(b1, . . . , bm) and z4 ∈ {0, 1}∗, we have that 1k0z is a legal document of the
channel C, i.e., for every legal history H it holds that PrDC,H

[1k0z] > 0.

We define the channel C by giving a description of the sampler MC which works as follows.
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Procedure MC(H)
Input: history H
randomly choose a positive integer k; output 1k;
c := λ;
randomly choose m ≤ dS(k)e;
for i := 1, . . . ,m do choose bi ∈R {0, 1};
v ∈R Em(b1, . . . , bm);
` := |v|+ |ξ|;
repeat

for i := 1, 2, 3 do
choose Li ∈R {x1, x1, x2, x2, . . . , xm, xm}

endfor
ψ := L1 ∨ L2 ∨ L3;
if ψ(b1, . . . , bm) = 0 then

choose as ψ a tautology (e.g. ψ := x1 ∨ x1 ∨ x1);
endif
choose u ∈R Fm(ψ);
if `+ |u| ≤ k then

` := `+ |u|; choose r ∈R {0, 1}; output u;
endif
else

r := 1;
endif

until r = 1 ;
if ` < k then output k − ` random bits;

If S is an efficiently space-constructible function, then MC works in space S(k) and in polynomial
time with respect to k. Hence for C sampled by MC we have C ∈ TiSp(pol, S).

Now assume that there exists a randomised Turing machine NC(H||p̂, 1η) sampling C with fixed
entropy such that its output distribution NC(H||p̂, 1η) is δ-close to the distribution of FEXC and
which works in polynomial time q. We show that using NC(H||p̂, 1η) we can construct a deterministic
algorithm A which for a given 3CNF formula ϕ over {x1, x1, . . . , xm, xm} decides in time T (m) =
(Ŝ(m))O(1) whether or not ϕ is satisfiable.

The algorithm A initially computes an integer k, with dS(k)e = c · m4, for some sufficiently
large constant c such that for all 3CNF formulas ϕ of m variables and all u ∈ Fm(ϕ) and v ∈ Em,
|uξv| ≤ c · m4. This can be done in polynomial time with respect to k, since Ŝ is efficiently
constructible. Then A encodes ϕ over {0, 1}∗, choosing an arbitrary code word u ∈ Fm(ϕ), creates
an empty history H = λ and generates the prefix string p̂0 = 1k0uξ. Recall that dEm denotes
the length of code words in Em. Simulating the fixed-entropy sampler NC on input H||p̂ and 1η,
algorithm A computes iteratively p̂j = p̂j−1||NC(H||p̂j−1, 1η) for j = 1, 2, . . . , ddEm/ηe in such a
way that every random choice r ∈R {0, 1} of NC is replaced by an assignment r := 0 and for every
j at most q(|p̂j−1| + η) steps of NC are performed. If NC does not stop after q(|p̂j−1| + η) steps
for some j, then A rejects ϕ and halts the computation. Otherwise, let p̂ddEm/ηe = 1k0z1z2z3 with
z1 = u, z2 = ξ, z3 a string of length dEm . The formula ϕ will be rejected if z3 does not encode
any assignment in Em. If z3 ∈ Em(b1, . . . , bm) for some assignment (b1, . . . , bm) then accept ϕ if
ϕ(b1, . . . , bm) = 1 and reject otherwise. The correctness of A follows directly from the properties
(i) and (ii) of the channel C. It is also easy to check that A works in time (Ŝ(m))O(1).

As we applied 3SAT in the above proof it is also possible to define encodings FA and EA for
any NP-complete problem A such that FA encodes instances of A and EA witnesses. Furthermore,
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one can easily assure that the document parts of length η in a channel which is consistent with the
set of strings encoded by FA and EA will have a min-entropy of at least 1. Consequently for any
NP-complete problem there are corresponding channels C with intractable oracles FEXC .

Corollary 4.5. Let A be an NP-complete problem. Then there are redundant encodings FA and EA

over {0, 1}∗ for the instances of A and the witnesses and a channel C over {0, 1}∗ which is consistent
with {z1z2z3 ∈ {0, 1}∗|z1 ∈ FA

m(x) for some m > 0 and x ∈ A and |x| = m, z2 = ξ, z3 ∈ EA
m(x) and

which fulfils the min-entropy constraint such that the distribution DC,H can be efficiently sampled
with its native entropy, but it cannot be efficiently sampled with fixed entropy unless P = NP.

The proof of Corollary 4.5 is analogous to Theorem 4.3. By the above results, the existence of a
channel C that can be efficiently sampled with fixed-entropy becomes unlikely whenever the channel
C has a certain structural complexity. It is remarkable that even channels with log2-space oracles
EXC may already have intractable oracles FEXC .

4.4 Feasible Fixed-Entropy Sampling

Having characterised channels C with feasible oracles EXC but hard FEXC , we will now establish
constraints on C to assure an efficient oracle FEXC . We follow two approaches, namely sampling in
logarithmic space and context free languages.

4.4.1 Sampling in Logarithmic Space

Whereas it is likely that it is not possible to sample C with fixed entropy in an efficient way in
case C ∈ TiSp(pol, ω(log)) by Theorem 4.3, it becomes possible if C ∈ TiSp(pol, log). In this case
there is a probabilistic Turing machine NeC sampling with fixed entropy according to DηeC,H, which

can be arbitrarily close to Dη
C,H. Thereby, the slight difference between DηeC,H and Dη

C,H does not
result from the computational complexity of C, as it is the case whenever C ∈ TiSp(pol, ω(log)), but
from the insufficient power of NeC to generate randomness. Equipped with a more powerful random
generator than coin flipping, NeC would meet Dη

C,H exactly. Notice that Theorem 4.3 can easily be
rewritten such that the existence of a probabilistic Turing machine NeC sampling with fixed entropy
according to a distribution DηeC,H (which is ε-close to Dη

C,H) remains unlikely for every 0 < ε < 1.

Theorem 4.6. For every channel C ∈ TiSp(pol, log) and for all 0 < ε < 1 there is a probabilistic
polynomial time Turing machine NeC which samples with fixed entropy according to the distribution
DηeC,H, which is ε-close to Dη

C,H.

Proof. Assume C ∈ TiSp(pol, log) and let MC be a probabilistic Turing machine sampling C in
space log and in time p, for some polynomial p. We describe a probabilistic Turing machine NeC
that samples with fixed entropy according to the channel distribution DηeC,H. Its inputs are the
desired sample size in unary notation 1η and a history of the form H||p̂, where H consists of full
documents and p̂ is a prefix of length π of a document. We assume that 0 < π, otherwise NeC simply
uses MC to get the next document and returns its prefix of length η. For simplicity of presentation
we assume that π and the length of the documents are multiples of η.

We enumerate all those configurations of MC that lead to output strings of size π + η by consec-
utive integers 1, 2, . . . , ζ assuming that the initial configuration has index 1. Because MC has only
logarithmic space, we have ζ ≤ q(|H|+ π + η) for some polynomial q.

Let T be the computation tree of MC on input H: the root of T is labelled by the initial
configuration 1, any node labelled by a deterministic configuration i has as descendant the node
labelled by i’s direct successor, and any node labelled by a configuration in which MC tosses a coin
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has two descendants corresponding to the result of the random choice. Obviously each path in T
from root to a leaf stands for one possible computation of MC .

W.l.o.g. we make the following assumptions on MC and T :

1. MC stores the length of the current output string on its work tape. Consequently, all compu-
tations leading MC to configuration j produce outputs of equal length.

2. MC works synchronously in the way that all computation paths in T that start at the root and
have the same length i produce output strings of equal length. Let us denote by t the length
of the paths in T corresponding to computations of MC producing output strings of length π
(remember that π = |p̂| and p̂ is the “incomplete” part of a document that NeC receives).

3. Each node v in T has an additional label indicating the output of MC during its computation
corresponding to the path from root to v.

Instead of computing T , machine NeC computes a (t + 1) × ζ integer matrix A collecting the
statistics for configurations reachable by MC . For every i, with 0 ≤ i ≤ t, and for every j, with
1 ≤ j ≤ ζ, the value A[i, j] is equal to the number of computation paths of MC with length i that
reach configuration j and output a prefix of p̂. For i = 0 we have A[0, 1] = 1 and for all 1 < j ≤ ζ
we get A[0, j] = 0. The remaining rows of A are computed iteratively for i = 1, 2, . . . , t as follows.
Initially, let A[i, j] = 0 for all j = 1, 2, . . . , ζ. Next, for j = 1, 2, . . . , ζ and for k = 1, 2, . . . , ζ, if j is
the direct successor of k, then

• if MC outputs nothing in the step from k to j, let A[i, j] := A[i, j] +A[i− 1, k];

• if MC outputs the `-th symbol s of the sample, then if s equals the `-th symbol of p̂, let
A[i, j] := A[i, j] +A[i− 1, k];

• otherwise A[i, j] is left unchanged.

Thus, we only count those paths that are consistent with p̂. Having computed A, let B =∑ζ
j=1A[t, j], i.e., the number of computation paths that lead to output strings of length π. To

sample a suffix ŝ of length η that fits to the prefix p̂ according to the distribution Dη
C,H, machine

NeC has to choose a state J ∈ {1, 2, . . . , ζ} with probability Pr[J ] = A[t, J ]/B and simulate the
computation of machine MC starting in state J for p(π + η)− t steps.

To randomly select one element J ∈ {1, 2, . . . , ζ}, NeC flips a coin r(π) times, where r is a
polynomial. Let al, 1 ≤ l ≤ r(π) denote the result of the lth toss. Then NeC computes

R = (a120 + a221 + . . .+ ar(π)2r(π)−1)B

and chooses J if

(
2r(π) − 1

) ∑J−1
j=1 A[t, j] ≤ R <

(
2r(π) − 1

)∑J
j=1A[t, j].

Therefore, the probability PrDηeC,H
[J ], 1 ≤ J ≤ ζ of NeC selecting J can be estimated as follows:⌊

(2r(π) − 1)A[t, J ]
B

⌋
− 1 ≤ PrDηeC,H

[J ](2r(π) − 1) ≤

⌊
(2r(π) − 1)A[t, J ]

B

⌋
+ 1 ,

and even stronger by
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PrDη
C,H

[J ]− 2
2r(π) − 1

≤ PrDηeC,H
[J ] ≤ PrDη

C,H
[J ] +

1
2r(π) − 1

.

Furthermore, if r(π) ≥ B then PrDη
C,H

[J ] = 0, 1 ≤ J ≤ ζ iff PrDηeC,H
[J ] = 0. Thus, let J be the

subset of integers J in {1, . . . , ζ} with PrDη
C,H

[J ] 6= 0. The difference between Dη
C,H and DηeC,H can

be estimated by the distance given in Definition 2.1:

D(Dη
C,H,D

ηeC,H) = DKL(Dη
C,H||D

ηeC,H) +DKL(DηeC,H||Dη
C,H)

=
∑

x

PrDη
C,H

[x] log
PrDη

C,H
[x]

PrDηeC,H
[x]

+
∑

x

PrDηeC,H
[x] log

PrDηeC,H
[x]

PrDη
C,H

[x]

≤
∑
j∈J

PrDη
C,H

[j] log

(
1 +

3
PrDη

C,H
[j](2r(π) − 1)− 2

)

+
2

2r(π) − 1
log

(
1 +

2PrDη
C,H

[j]

2r(π) − 1

)

≤
∑
j∈J

log
(

1 +
3r(π)

2r(π) − 2r(π)− 1

)
+ log

(
1 +

2
2r(π) − 1

)

≤ 2ζ log
(

1 +
6r(π)

2r(π) − 1

)
≤ 2ζ log

(
1 +

1

2
r(π)

4

)
≤ 2ζ

1

2
r(π)

4

Hence, for any given 0 < ε < 1, r(π) must fulfil

r(π) ≥ 4 log
2ζ
ε

= 4
(

log 2ζ + log
1
ε

)
to ensure that DηeC,H is ε-close to Dη

C,H. But since ζ is a polynomial in π, r(π) is surely polynomial.

Notice that by the proof of Theorem 4.6, NeC can only work efficiently because it may follow the
work of MC to resume at the point when H was generated. This seems to be a central matter in
sampling C with fixed entropy. We have considered a number of weaker approaches, e.g. Context
Free Languages, Markov Processes etc. and in each of them C can efficiently be sampled with fixed
entropy because it is feasible to consistently resume the sampling process after the history string
H was sampled.

4.4.2 Context Free Languages

In the previous section we assumed that channels C encode words of certain languages, like for
example 3SAT. We classified channels according to the complexity of the encoded languages and
observed that especially if C ∈ TiSp(pol, log) then fixed-entropy sampling becomes tractable. Now
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we restrict ourselves to channels which encode context free languages. This family of languages is
decidable in polynomial time by the CYK algorithm.

Let L be a CFL and G = (Γ,ΓN , γ0,Π) a context free grammar for L. We will define the channel
C consistent with L by giving an efficient sampler ML. W.l.o.g. we assume that G is in Greibach
Normal Form (GNF), i.e., it consists only of productions of the forms γ → a or γ → aγ′ or
γ → aγ′γ′′, with a ∈ Γ and γ, γ′, γ′′ ∈ ΓN , and every variable in ΓN is generating. For an arbitrary
history H the probabilistic machine ML chooses a word length ν. ML constructs a word of this
length in L in the following way. ML computes the ν×|ΓN | matrix A that contains the productions
from Π, sorted by the non-terminals and their interdependencies, such that

A[1, j] = {π ∈ Π : π = γj → a, a ∈ Γ}, for j = 0, . . . , |ΓN | − 1 ,

and for 2 ≤ i ≤ ν, A[i, j] contains

• productions γj → aγu ∈ Π : a ∈ Γ, γu ∈ ΓN , if A[i− 1, u] 6= ∅ and

• productions γj → aγuγv ∈ Π : a ∈ Γ, γu, γv ∈ ΓN , if there is 1 ≤ i′ ≤ i − 2 with A[i′, u] 6= ∅
and A[i− i′ − 1, v] 6= ∅.

Notice that A can be computed in polynomial time with respect to ν. Also note that in the second
case i′ is chosen such that although there are two non-terminals, the length of the output strings
generated from A[i, j] is always i. Thus, if A[ν, 0] = ∅, then L contains no string of length ν and
in that case ML writes 0 to its output tape. If L contains strings of length ν, ML generates such a
string randomly by the help of A. For that ML holds a stack containing in each cell a pair of integers
(i, j), 1 ≤ i ≤ ν, 0 ≤ j < |ΓN | where each stack element indicates that a substring of length i has to
be deduced from γj . ML initially sets the output string s = λ, pushes (ν, 0) on the stack and starts
working iteratively on the stack until it is empty. In each iteration ML takes the top element (i, j)
from the stack and generates a list B of all tuples (a, x, y, u, v), with a ∈ Γ, 1 ≤ x, y < i− 1, such
that there is a production π in A[i, j] of the form

1. γj → aγuγv, if 1 ≤ u, v < |ΓN |, or

2. γj → aγu, if 1 ≤ u < |ΓN | and v = −1, or

3. γj → a, if v = u = −1.

Furthermore, if v 6= −1, then A[u, x] 6= ∅, A[v, y] 6= ∅, and x + y = i − 1, if only u 6= −1 then
A[u, x] 6= ∅ and x = i − 1 and if u = v = −1 then i must be 1. Next, ML randomly chooses one
tuple (a, x, y, u, v) in B by tossing a polynomial number of coins, adds a to s, pushes (y, v) on top
of the stack if v 6= −1, and subsequently pushes (x, u) if u 6= −1. When the stack is empty, machine
ML returns the string s.

Machine ML works in polynomial time since A can be constructed efficiently, the iteration stops
after ν steps and each iteration step takes at most a polynomial number of coin tosses.

Having thus defined our channel C by giving the sampler ML, we now want to construct a sampler
NeC that samples with fixed entropy according to the distribution DηeC,H, which is close to Dη

C,H. The
basic idea is very similar to that presented in Section 4.4.1, but instead of remembering the state
where NeC left off in the previous step, this time the possible output symbols of MC are successively
compared with the symbols of the prefix p, in order to eliminate all productions that do not lead
to outputs with p as prefix.

Again, as with sampling in logarithmic space, the reason why NeC can only approximately sample
Dη
C,H with fixed entropy is that we cannot exactly make random choices with arbitrary probabilities

– our Turing machine cannot deal with real numbers. While this is no problem for ML, as all its
inaccuracies count as peculiarities of the channel defined by it, our construction NeC makes errors
when approximating the conditional probabilities of the output suffixes ŝ given the prefixes p̂.
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Theorem 4.7. For every context free language L and the channel C which is described by the
machine ML given above there is a probabilistic polynomial time Turing machine NeC which samples
with fixed entropy according to the distribution DηeC,H, which is ε-close to Dη

C,H for arbitrary ε > 0.

Proof. We give a probabilistic machine NeC which samples with fixed entropy according to DηeC,H
in polynomial time. On input H||p̂, where p̂ is a prefix of a document in L, and 1η, NeC works as
follows:

1. If |p̂| = 0, then NeC simply runs ML with input ν to obtain a random string ŝ ∈ L of length ν.
NeC outputs the η-symbol prefix of ŝ and exits.

2. Otherwise, NeC generates a ν × |ΓN | matrix A′ which is equal to A except the case that for
ν − |p̂| + 1 ≤ i ≤ ν and 0 ≤ j < |ΓN | the entries A′[i, j] contain only productions π of the
form γj → aγu or γj → aγuγv, with a ∈ Γ and γu, γv ∈ ΓN , if p̂ has symbol a at position
ν− i+1. Hence, by A′ only those strings in L can be deduced which have p̂ as prefix and are
of length ν.
If A′[ν, 0] = ∅ then there is no ν-length string in L with prefix p̂. In that case NeC enters an
infinite loop.

3. NeC simulates the work of ML on matrix A′ to randomly generate a string ŝ such that p̂ŝ ∈ L
and |p̂ŝ| = ν. Then NeC outputs the η-symbol prefix of ŝ and exits.

It is easy to see that NeC works in polynomial time as well. Since the additional constraint of A′

may cause lists B of different cardinality and no coin-tossing probabilistic machine can produce real
uniform distributions, there might be slight differences between Dη

C,H and DηeC,H. But this difference
can be made arbitrarily small by additional coin tosses. In fact, we can use the same construction
as in the proof of Theorem 4.6 and therefore the estimation also holds in this case.

4.5 Discussion of the Results of Chapter 4

In this chapter we looked at the question whether fixed-entropy samplers can be efficiently imple-
mented. This question arose from the implicit assumption of Hopper et al. (2002b) that the entropy
of each document used by the stegosystem can be chosen to be arbitrarily small, which Dedić et al.
(2005, 2009) and Lysyanskaya and Meyerovich (2006) believe to be unrealistic.

The illustrative example by Lysyanskaya and Meyerovich (2006) of sampling digital images of
teddy-bears by successively obtaining parts (e.g. 8 pixel blocks) of the images based on the historyH
of previously drawn image parts, inspired us to look at the hardness of word-completion problems.

Our main result states that there exist channels C for which it is possible to implement the oracle
EXC by a Turing machine MC that samples with native entropy, but for which no efficient imple-
mentation of FEXC by a Turing machine NC that samples with fixed entropy can be constructed,
unless some widely believed complexity theoretic assumptions, like P 6= NP, are false. For our
analyses we described a scenario in which Alice and Bob communicate using the intersection of a
set of three context free languages. We thus introduced a connection between formal languages
and channel distributions in order to apply results from complexity theory to covertext channels.
Furthermore, we have characterised those properties of a channel which either lead to the exis-
tence of an oracle FEXC that can sample efficiently or cause fixed-entropy sampling from C to be
intractable. This way we provide a novel approach for classifying a given channel according to the
practical applicability of the corresponding oracle-based stegosystem.

With all these essentially negative results on the efficiency of black-box stegosystems which we
have seen in the last two chapters, we set out to look for new approaches to steganography that
are efficient, while still maintaining security and reliability.



Chapter 5

Grey-Box Steganography

As we have seen in the two previous chapters, the black-box model of steganography does not allow
us to achieve all goals of a “useful” stegosystem, i.e., security, reliability, computational efficiency
and rate efficiency all at the same time.

We therefore introduce in this chapter a new alternative with which we want to overcome the
exponential sampling complexity of the black-box approach without having to assume too much
knowledge about the covertext channel. The model that we propose will be called grey-box stega-
nography, because the encoder has partial knowledge of the covertext channel, thus lying between
the black- and white-box scenarios. We will investigate whether efficient and secure grey-box ste-
ganography is possible and extract the different properties required for this purpose.

Equipped with partial knowledge, the encoder still has to gather more information about the
covertext channel in order to select as stegotexts only those documents that appear in the covertext
channel. We will model this situation as an algorithmic learning problem (for an introduction to
learning theory see Angluin 1992 and Kearns and Vazirani 1994). Here, we will only briefly introduce
a few basic concepts of learning theory. Central to learning theory are the notions of concept, which
corresponds in our model to the support of a channel and concept class, which equals the union
of all channel supports in a given channel family. In the basic model of distribution-free learning,
which we assume here, some covertext can thus either belong to such a concept or not – just as it
can belong to a channel support or not. Therefore, we are restricted to channels with a uniform
covertext distribution and concentrate on the problem of how the encoder can learn the support of
the channel and then generate stegotexts with uniform probability.

The goal of algorithmic learning is to build a hypothesis that describes the concept as well as
possible. In order to construct a hypothesis, samples are observed, which we want to assume to all
belong to the concept in question. Finally, in order to assess the quality of a learning algorithm, the
model of probably approximately correct learning, or PAC-learning for short, requires an algorithm
to satisfy with probability 1− δ to have an error less than or equal to ε. Additionally, the learning
algorithm should be computationally efficient. For a more formal definition of PAC-learning, we
refer the reader to Kearns and Vazirani (1994), but stress that an in-depth knowledge of learning
theory is not necessary to understand this chapter. Finally, an important role is played by the
representation of the hypothesis, i.e., the means by which the channel support is described, e.g. by
a monomial or a Boolean formula in disjunctive normal form (DNF). As will be discussed later, the
existence of efficient PAC-learning algorithms depends on this hypothesis representation.

A priori, Alice knows that the covertext channel belongs to some channel family, but she does
not know the specific covertext channel that is used for a specific communication. This is where
algorithmic learning comes into play: Alice obtains a set of covertext samples from the sampling
oracle, so she knows that these come from the unknown channel, and computes a hypothesis that
describes the support of the channel. Based on this hypothesis, she actively tries to construct
suitable stegotexts that encode her hidden message, instead of passively waiting for the sampling
oracle to give her a covertext with the desired properties (i.e., using rejection sampling). This
construction can be done by modifying a covertext or designing a completely new one. In both
cases, the distribution of stegotexts generated should look like “normal” samples from the oracle.

35
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We illustrate our concept with three examples of concept classes: channels that can be described
by monomials, by decision trees and by DNF-formulae, for which the learning complexity ranges
from easily learnable up to (probably) difficult to learn. For this purpose, we will concentrate
on learning the support of the channel and assume a uniform distribution on the support. Note
that for white-box steganography and rejection sampling learning the channel distribution is not
an issue. A generic construction is given which shows that besides the learning complexity, the
efficiency of grey-box steganography depends on the complexity of the membership test and suitable
modification procedures. For the concept classes monomials, decision trees and DNF-formulae we
present efficient algorithms for changing a covertext into a stegotext.

An additional feature of our construction is that it is stateless and that only the sender needs
access to the sampling oracle as in Hopper et al. (2002b) or Dedić et al. (2009) and unlike Le and
Kurosawa (2007). In our construction it is also only the sender that has to learn the concept class,
the receiver only decodes.

5.1 A Grey-Box Model for Steganography

Previous models of steganography have considered adversaries W that may be computationally
restricted, but possess full knowledge of the covertext channel. Dedić et al. (2009) consider this “a
meaningful strengthening of the adversary”. We think that such a strengthening is not appropriate
to model the basic knowledge of Alice and the warden about a covertext channel. In practice,
encoders and wardens obtain ideas about typical covertexts by observing samples. They do not
and likely will never possess any short advice that fully describes the channels they are looking at,
such as, e.g., multimedia data. Furthermore, there may be different families of channels (images,
texts, audio-signals) and Alice may preselect one specific family from which the actual channel is
then drawn without further influence of her or the warden. This more realistic setting strengthens
the encoder and may provide a chance to overcome the negative results in the black-box scenario.
In fact, practically used steganography is not based on rejection-sampling, but in almost all cases
generates stegotexts by slight modifications of the given covertexts.

In the grey-box model Alice has some partial knowledge about the covertext channel. Therefore,
we use the notion of concept classes from machine learning and equate it with our notion of channel
families. As before, the encoding procedure SE may access the sampling oracle EXC , but now we
clearly differentiate between accesses to the oracle for learning purposes with the aim of constructing
a hypothesis for the covertext channel, and accesses that serve to obtain a covertext which can be
modified into a stegotext by using the hypothesis.

Depending on the concept class, Alice may be able to derive a good hypothesis – an exact or
very close description of the channel – or not. Even if the concept class is not efficiently learnable,
it makes sense to consider the situation where a precise description of the channel is given to Alice
for free. Still, in this favourable case it is not clear how Alice can construct stegotexts. She must
be able to efficiently modify covertexts and test the modifications for membership in the support
of the channel. In addition, these stegotexts should have the same distribution as the covertexts.

5.2 Efficiently Learnable Covertext Channels

Let us start with a simple family of channels that can be described by monomials. Consider a
channel family over the document space Σ = {0, 1}σ that consists of channels of the type C =
C1 × C2 × C3 . . ., where each Ci is a uniformly distributed subset of Σ that can be defined by a
monomial. Such a channel family will be denoted by MONOM. Let Ci = supp(Ci), then formally it
holds that PrDCi,H

[c] = 1/|Ci|, where H is the channel history, if c ∈ Ci and 0 otherwise.
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A monomial over {0, 1}σ will be represented by a vector H = (h1, . . . ,hσ) ∈ {0, 1,×}σ and it
defines the subset of all 0-1-vectors of length σ for which the i-th component is 0 if hi = 0, and 1
if hi = 1. The other components of H are called free variables, denoted by ×. So, for example the
monomial represented as “10×0×1” describes the set of strings {100001, 100011, 101001, 101011}.
We will denote the subset defined by a monomial H by H.

Let, for short, σb := bσ/bc, where b denotes the embedding rate, and let for a permutation π of
{1, 2, . . . , σ}, the subset Iπ(j), with 1 ≤ j ≤ b, be defined as follows:

Iπ(j) := {π(σb · (j − 1) + 1), π(σb · (j − 1) + 2), . . . , π(σb · j)} .

These subsets partition a document c = a1 . . . aσ into b sub-sequences of length σb, where the j-th
set contains all elements ai with index i in Iπ(j).

Now we are ready to construct a modification procedure for covertexts from monomial channels.
For this purpose we use a secret key K that uniquely specifies such a random permutation π. Let
FVπ(j) denote those indices in Iπ(j) that belong to free variables. Each sub-sequence embeds one
bit of the message M as the parity of all its elements. If the parity does not match we want to
flip at least one these bits. If a free variable is chosen for this purpose it is guaranteed that the
modified string still belongs to H. Below we present the encoding algorithm in pseudo-code.

Procedure Monomial-modify(K, M , c, H)

Input: secret key K; hiddentext M = m1, . . . ,mb ∈ {0, 1}b; covertext document
c = a1a2 . . . aσ ∈ {0, 1}σ; hypothesis monomial H = h1h2 . . .hσ ∈ {0, 1,×}σ;

let π be the permutation specified by key K;
for j := 1, . . . , b do

if mj 6=
⊕

i∈Iπ(j) ai and FVπ(j) 6= ∅ then
aνj = 1− aνj , where νj := minFVπ(j)

endif
endfor
Output: s = a1a2 . . . aσ

The following procedure is used to decode a stegotext document.

Procedure Document-decode(K, s)
Input: secret key K; stegotext document s = a1a2 . . . aσ ∈ {0, 1}σ;
let π be the permutation specified by key K;
for j := 1, . . . , b do

mj :=
⊕

i∈Iπ(j) ai;
endfor
Output: m1m2 . . .mb

Let us quickly look at an example to see how Monomial-modify works.

Example. Let us assume the following input parameters:

M = 0 1
H = 1 × 0 ×× 0
c = 1 0 0 1 1 0

and let π = (4 6 3 1 5 2) be the permutation specified by the key K.
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In the first iteration we have r = min{i : i ∈ {3, 4, 6} ∧ hi = ×} = 4, and because m1 = 0 6= 1 =
a3 ⊕ a4 ⊕ a6, we have to change a4 to 0.

In the second iteration we have r = min{i : i ∈ {1, 2, 5} ∧ hi = ×} = 2, and because m2 = 1 =
1 = a1 ⊕ a2 ⊕ a5, we are finished and output as stegotext

s = 1 0 0 0 1 0 .

Lemma 5.1. Let H be a given monomial and let K be an arbitrary private key. Then for every
s ∈ H it holds

Pr[Monomial-modify(K,M, c,H) = s] = 1/|H | ,
where the probability is taken over random choices of c ∈ H and M ∈ {0, 1}b. Moreover, for every
M , every H with ϕ free variables, and c ∈ H, over all random choices of K it holds

Pr[Document-decode(K, Monomial-modify(K,M, c,H))6= M ] ≤ b · e−ϕ/b+1 .

The time complexity of both procedures is linear in σ.

Proof. Fix the private key K ∈ {0, 1}κ, the monomial H = h1h2 . . .hσ ∈ {0, 1,×}σ and s ∈ H. Let

Ω := {(M, c, s̃) | Monomial-modify(K,M, c,H) = s̃}

be the space of elementary events, where M = m1 . . .mb ∈ {0, 1}b and c = c1 . . . cσ ∈ H. Obviously,
the cardinality of Ω is 2b · |H |. This follows from the fact that Monomial-modify works strictly
deterministically for given inputs K,M, c and H. Similarly, define Ωs := {(M, c, s̃) ∈ Ω | s̃ = s}.

We claim that the cardinality of Ωs is 2b. To see this fact, consider Iπ(j), the subset of indices
{1, 2, . . . , σ} determined by the permutation π specified by K, and FVπ(j), the indices in Iπ(j)
that correspond to free variables of the monomial H.

Let s = s1 . . . sσ. In case FVπ(j) = ∅, Monomial-modify does not change any bit of the sub-
sequence of c determined by Iπ(j), regardless of the j-th bit of M being 0 or 1. Otherwise, one bit
of the sub-sequence, namely the one with the smallest index νj , may be changed depending on mj .
Hence Ωs contains all triples (M, c, s) fulfilling the following condition for every j = 1, . . . , b:

• if FVπ(j) = ∅ then mj ∈ {0, 1} and ci = si for every i ∈ Iπ(j), and

• if FVπ(j) 6= ∅ then mj =
⊕

i∈Iπ(j) si, cνj ∈ {0, 1}, and ci = si for every i ∈ Iπ(j) \ {νj}.

This implies |Ωs| = 2b. Thus, the probability that Monomial-modify with input (K,M, c,H)
returns s is

|Ωs|
|Ω|

=
2b

2b · |H |
=

1
|H |

.

The computational complexity of the for-loop obviously grows linear in σ. To efficiently imple-
ment the computation of a permutation π of {1, 2, . . . , σ} one can use e.g. Knuth’s shuffle algorithm
that runs in linear time. In fact, since the permutation depends only on the key, and the for-loop
runs b ≤ σ times, so the overall complexity of Monomial-modify is linear in σ.

To guarantee a correct encoding, for each of the b sub-sequences of c there should be at least one
free literal in FVπ(j) that we can modify to adjust the parity. Therefore, the sub-sequences Iπ(j)
are chosen randomly rather than deterministically.

Let the given monomial H have ϕ free variables. The probability that some set Iπ(j) does not
contain any index of a free variable can be computed as follows. Remember that σb := bσ/bc.

Pr[FVπ(j) = ∅ for some j] ≤ b ·
(
σ−ϕ
σb

)(
σ
σb

) = b ·
σb−1∏
i=0

σ − ϕ− i
σ − i

≤ b ·
(
σ − ϕ
σ

)σb

≤ b ·e−
ϕ σb

σ ≤ b ·e−
ϕ
b
+1 .

This completes the proof.



5.2 Efficiently Learnable Covertext Channels 39

Our first stegosystem S1 = [SK,SE,SD ] is based on the following encoding and decoding pro-
cedures. Below we use function families F : {0, 1}κ × {0, 1}n → {0, 1}n for encoding. To get a
stegosystem S1 that is perfectly secure in the information-theoretic setting we assume that κ = n
and use functions FK(x) = x ⊕ K. For security against chosen hiddentext attacks, families F of
pseudorandom permutations are applied.

Procedure Encode(K, M , H)
Input: secret key K = K0,K1, . . . ,K2`; hiddentext M = m1m2 . . .mn ∈ {0, 1}n; history H
choose T0 ∈R {0, 1}n and let T1 := FK0(T0 ⊕M);
parse T0T1 into t1t2 . . . t2`, where |ti| = b;
for i := 1, . . . , 2` do

ci := EXC(H);
access EXC(H) and learn a hypothesis Hi for C;
si := Monomial-modify(Ki, ti, ci, Hi) and let H := H||si;

endfor
Output: s1s2 . . . s2`

Procedure Decode(K, s)

Input: secret key K = K0,K1, . . . ,K2`; stegotext s = s1s2 . . . s2` ∈ Σ2`;
for i := 1, . . . , 2` do

ti := Document-decode(Ki, si);
endfor
M := F−1

K0
(t`+1 . . . t2`)⊕ t1 . . . t`;

Output: M = m1m2 . . .m`

Theorem 5.2. Let the min-entropy of every channel C in MONOM be at least h. Let b denote the
embedding rate and n the length of the hiddentext. Assume Alice has no a priori knowledge of C,
but both Alice and the warden have access to a sampling oracle EXC.

1. The stegosystem S1 with encoding function FK(x) = x ⊕ K achieves perfect security in the
information-theoretic setting, that is, DKL(DC ||D

S1
C ) = 0, where DC is the covertext channel

distribution of C and DS1C is the distribution output by S1.

2. For S1 with a family F of pseudorandom permutations as encoding functions, the insecurity
is bounded by

InSeccha
MONOM,S1(t, q, λ) ≤ 2 · PRP-InSecF (t, λ/n) + ξ(λ, n) ,

where ξ(λ, n) is a function that is polynomially bounded in the query complexity λ of the
adversary and decreases exponentially in n.

In both cases the unreliability is small, that is UnRelMONOM,S1 ≤ 2n · e−h/b+1 + 1/n, and the compu-
tational complexity of the system is polynomial in σ and n.

Proof. We first show how to implement the learning of monomial channels in the stegosystem
S1 efficiently. Alice queries the oracle and successively forms hypotheses H1,H2,H3 . . . about the
channel. To this aim she uses the “Wholist” algorithm for the PAC-learning of monomials (Haussler
1987) with reliability parameters δ, ε > 0. For every i, making q = σ

ε ln 3
δ queries to EXC , in time

O(σ · q) Alice can generate hypotheses Hi such that Hi ⊆ Ci and

Pr
[
|Ci \Hi|
|Ci|

≤ ε
]
≥ 1− δ ,
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where Ci denotes the support of the “real” monomial C that defines the covertext channel support.
We apply the algorithm for ε := 1/4 and δ := 2−2n, thus

Pr[Hi = Ci] ≥ 1− 2−2n (5.1)

and the query complexity is q = 4σ ln(3 · 22n) = O(σ · n). Thus, the overall time complexity for an
n-bit message with n = ` b is O(` σ n), which is polynomial in σ and n.

Note that the learning algorithm generates only hypotheses that lie in the support of the covertext
channel. But Alice has to ensure even more, namely that the resulting stegotext is not only
consistent with the support, but also follows a distribution that is either identical to the original
covertext distribution (for the information theoretic security setting) or cannot be distinguished by
the warden (for the computational security setting).

Assume that the system S1 uses for encryption the function FK(x) = x ⊕ K. To show that
S1 is perfectly secure in the information theoretic security setting notice first that the Wholist
algorithm used to learn the sequence of hypotheses H1,H2,H3 . . . has the following property: for
all output hypothesis Hi which do not coincide with the support of Ci, if xi1 ,xi2 , . . . ,xit denote all
free variables of the support, then the events that the free variables xij , xij′ do not occur in Hi are
equally probable and mutually independent. Using this property we prove the following:

Claim 5.3. In the for-loop of the Procedure Encode with parameters K,M,H and encryption
function FK(x) = x⊕K, for each i = 1, . . . , 2` an element si is generated such that for all s ∈ Ci

the values Pr[si = s] are identical.

Combining this fact with the property that Hi ⊆ Ci we get that the probability distributions
DC and DS1C are identical, which completes the proof that S1 is perfectly secure.

To see that all probabilities Pr[si = s], with s ∈ Ci, are equal let us define for any s the set of
monomials Mons = {H | s ∈ H } that are consistent with the sample s. It holds that

Pr[si = s] =
∑

H∈Mons

Pr[H] · Pr[si = s | H ] .

Next, we can observe that in the for-loop of the Procedure Encode, both the stegotext ci and the
b-bit message block ti are chosen randomly. The second property follows from the fact that we
encrypt the message with the one-time pad FK(x) = x ⊕ K. Thus, by applying Lemma 5.1 we
obtain that Pr[si = s | H] = 1/|H |. Using this, we get

Pr[si = s] =
∑

H∈Mons

Pr[H]
|H |

.

Now, let s and s′ be any elements in Ci. We show that there exists a bijection f : Mons → Mons′

such that for any H ∈ Mons and H′ = f(H) it holds that Pr[H] = Pr[H′] and |H | = |H′|. To
construct the mapping let J be the set of all indices, such that the bits sj 6= s′j if and only if j ∈ J .
The monomial H′ = h′1h

′
2 . . .h

′
σ is constructed from H = h1h2 . . .hσ as follows:

h′j =


hj if j ∈ {1, . . . , σ} \ J ,
× if j ∈ J and hj = × ,
0 if j ∈ J and hj = 1 ,
1 if j ∈ J and hj = 0 .

It is easy to see that |H | = |H′|. The equality of probabilities Pr[H] = Pr[H′] follows from the
fact that H and H′ have the same number of free variables and from the property that the events
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that the free variables do not occur in H, resp. H′, are equally probable and mutually independent.
Hence, we get for any s, s′ ∈ Ci:

Pr[si = s] =
∑

H∈Mons

Pr[H]
|H |

=
∑

H′∈Mons′

Pr[H′]
|H′|

= Pr[si = s′] .

This completes the proof of the claim.
Next, we look at the insecurity against chosen hiddentext attacks in the computational secu-

rity setting. Let PRP be a family of pseudorandom permutations. Let C be a channel and W
be a warden with maximal advantage, that means InSeccha

C,S1(t, q, λ) = Advcha
C,S1(W ). Denote by

CBC [PRP ] = (E ,D) the symmetric encryption scheme with encoding procedure E and decoding
procedure D defined as follows:

Procedure EK(M)
Input: secret key K;

plaintext M ∈ {0, 1}n;
T0 ∈R {0, 1}n;
T1 := PRPK(T0 ⊕M);
Output: T0||T1

Procedure DK(T )
Input: secret key K;

ciphertext T ∈ {0, 1}2n;
parse T as T0||T1;
M := PRP−1

K (T1)⊕ T0;
Output: M

Bellare et al. (1997) (see the full version of the paper) have shown the following bound on the
real-or-random insecurity (see Definition 2.10) of a system like CBC [PRP ]:

ES-InSecror
CBC [PRP ](t, q, ζ) ≤ 2 · PRP-InSecF (t, ζ/n) +

(
3ζ2

2n2
− ζ

n

)
· 2−n . (5.2)

Now let us construct an adversary A against CBC [F ] which works as follows: A initially chooses
K1, . . . ,K2` and then simulates the computations of the warden W . Whenever W queries the
challenge oracle about M and H, the algorithm A

1. queries its oracle about M and

2. having received the answer T̂0T̂1 it simulates the Procedure Encode with keys K1, . . . ,K2`,
history H and replaces the string T0T1 by T̂0T̂1.

Finally, A returns the same output as W .
Since the stegosystem S1 uses the encryption scheme CBC [F ], both probabilities

PrK0 [A
EK0

(·) = 1] and PrK [W C,SE C(K,·,·) = 1]

are equal. Next, observe that each query of AEK0
($) to the random oracle EK0($) gives samples with

exactly the same probability distribution as the Procedure Encode with the encryption function
FK′(x) = x⊕K ′, therefore in each call a new random key K ′ is used. By applying the claim above
we get that PrK0 [A

EK0
($) = 1] is equal to Pr[W C,OC (·,·) = 1] (remember that EK0($) denotes the

random oracle in the definition of real-or-random insecurity and thus A gives truly random encoded
messages T0T1 to Monomial-modify). Thus we get

ES-Advror
CBC [F ](A) =

∣∣∣PrK0 [A
EK0

(·) = 1]− PrK0 [A
EK0

($) = 1]
∣∣∣

=
∣∣∣PrK [W C,SE C(K,·,·) = 1]− Pr[W C,OC (·,·) = 1]

∣∣∣
= Advcha

C,S(W ) = InSeccha
MONOM,S1(t, q, λ)
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and by equation (5.2) we can conclude that

InSeccha
MONOM,S1(t, q, λ) ≤ 2 · PRP-InSecPRP(t, λ/n) +

(
3λ2

2n2
− λ

n

)
· 2−n .

Thus, we get an additional error term of the from

ξ(λ, n) =
(

3λ2

2n2
− λ

n

)
· 2−n .

Next, let us estimate the reliability of S1. For any i, with 1 ≤ i ≤ n/b, let ti denote the number
of free variables of the monomial for Ci and let t′i be the number of free variables of the hypothesis
monomial Hi. Then the probability that Alice embeds a message M incorrectly can be bounded
as follows:

PrK [SD(K,SE(K,M,H)) 6= M ] ≤
2n/b∑
i=1

(
b · e−ti/b+1Pr[t′i = ti] + b · e−(ti−1)/b+1Pr[t′i = ti − 1] + . . .

)

≤
2n/b∑
i=1

(
b · e−ti/b+1 + Pr[Hi 6= Ci]

)
≤ 2n · e−h/b+1 + 2−n2

2n/b ≤ 2n · e−h/b+1 + 2−n .

The next to last inequality follows from the inequality (5.1). This completes the proof.

Our analysis actually shows that the expected number of wrongly decoded blocks of length b bits
can be made quite small. In order to achieve high reliability, the entropy has to be larger by a
factor that grows logarithmically in the length n of the hiddentext. This can be reduced by using
error correction codes for the hiddentexts. Thus we achieve a reasonable transmission rate. The
stegosystem is also computationally efficient – in the second case we have to additionally require
that the pseudorandom permutations can be computed efficiently. The theorem implies that this
stegosystem is secure in the information-theoretic and the computational security setting, even if
the adversary has complete knowledge of the channel.

A parity-based approach to steganography has previously been suggested by Anderson and Pe-
titcolas (1998). They argue that the more bits are used for calculating the parity, the less likely can
the stegotext be distinguished from an unmodified covertext. In our case, Alice produces stegotexts
that are always consistent with her hypothesis and thus cannot be distinguished from covertexts
by construction (modulo the error Alice makes when learning).

Instead of using the parity function in Monomial-modify, Alice could also use a pseudo-random
function PRFK with key K to check if the covertext embeds the message. However, because in
this case she does not know how to change the free variables in order to obtain the desired message
bits, she would eventually have to try changing different free variables, thus increasing the time
complexity of her embedding algorithm.

Recall the properties that were needed to achieve efficient and secure steganography for the
concept class of monomials: monomials are efficiently learnable from positive examples, for each
monomial H with sufficient min-entropy there is an efficient embedding function for the hiddentext
on the support of H, and one can efficiently compute a uniformly selected stegotext (in this case
the procedure Monomial-modify). This generic construction can be applied to other concept
classes fulfilling these properties.

For the concept class of monomials one actually does not need the modification procedure
Monomial-modify to generate a stegotext from a given covertext. In this case, the hypothe-
sis space even allows a direct generation of stegotexts by selecting random values for all but one
free variable in each group.



5.3 Channels that are not Easily Learnable 43

5.3 Channels that are not Easily Learnable

We extend the previous results by considering two generalisations of monomials: decision trees and
DNF-formulae. Although it is not known whether there exists an efficient PAC-learning algorithm
for general decision trees, this hypothesis class is nevertheless practically relevant, because efficient
approximate learning algorithms exist, such as ID3 (Quinlan 1986) or C4.5 (Quinlan 1993). For
exact learning of trees on σ Boolean variables of size polynomial in σ the best time known is
σO(log σ) (Ehrenfeucht and Haussler 1989). For approximate learning of decision trees from positive
examples only, see Denis (1998) and Letouzey et al. (2000).

Furthermore, for the general class of DNF formulae neither an efficient algorithm for PAC-
learning, nor an approximation result is known. Therefore, this is an example of a concept class
which seems hard to learn. The best known learning algorithm for DNF on σ Boolean variables of
polynomial size needs time σ(O(log σ))2 (Ehrenfeucht and Haussler 1989).

As we will show in the rest of this chapter, despite the difficulties in learning such hypotheses, we
can nevertheless construct secure stegosystems that are efficient under the assumption that they
are “given” the hypothesis. The point that we make here is that learning and steganography are
two different problems and that steganography by itself can be made efficient and secure at the
same time.

5.3.1 Decision Trees as Concept Class

A decision tree is a form of hypothesis representation that is more powerful in terms of expressiveness
than monomials. Although for clearness of presentation we restrict the following discussion to binary
trees, the results can be generalised to arbitrary trees by means of coding.

Starting from the root, the nodes of the tree contain the (fixed) variables, with negated and
unnegated values connecting to the children of the nodes. To evaluate such a decision tree for
a given string c, the path is followed from the root to a leaf, with the leaf containing the output
decision value. One can think of each possible path from root to leaf as a separate monomial, whose
free variables are those that do not appear on this path. For example, the decision tree depicted in
Figure 5.1 describes the following monomials: x1x2, x1x3 and x1x3, so the string ‘101’ belongs to
the concept learned, whereas the string ‘010’ does not. An important property of such monomials
is that their supports are all disjoint, since for two different paths at least one (fixed) variable has
to differ.

X1

X3X2

0 1 11

1

1

010

0

Figure 5.1: Example of a (binary) decision tree with three variables

The concept class, denoted by DT, consists of channels C = C1 × C2 × C3 . . . where each Ci is
a uniformly distributed subset of Σ that can be represented by a polynomial size decision tree.
Similarly as in the case of monomials, Ci denotes the support of Ci. For the simplicity of our
analysis we assume that we can learn the decision tree exactly. A more appropriate assumption
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would be that we learn with a similar monotonicity property as the “Wholist” algorithm, i.e.,
Ti ⊆ Ci, where Ti is the support of the decision tree and the learning algorithm achieves the
precision Pr[Ti = Ci ] ≥ 1 − δ for some δ ≤ 2−2n. Under this assumption we would need to add
some additional components to the upper bounds on the unreliability and insecurity.

The stegosystem S2 = [SK,SE,SD ] consists of the following encoding procedure and the decoding
procedure Decode from the previous section. Similarly as in the proof of Theorem 5.2 (2.), F in
encoding and decoding is a family of pseudorandom permutations.

Procedure Encode-DT(K, M , H)
Input: secret key K = K0,K1, . . . ,K2`; hiddentext M = m1m2 . . .mn ∈ {0, 1}n; history H
choose T0 ∈R {0, 1}n and let T1 := FK0(T0 ⊕M);
parse T0T1 into t1t2 . . . t2`, where |ti| = b;
for i := 1, . . . , 2` do

ci := EXC(H);
access EXC(H) and learn a hypothesis Ti for the channel;
determine the monomial Hi for ci according to Ti;
si := Monomial-modify(Ki, ti, ci,Hi) and let H := H||si;

endfor
Output: s1s2 . . . s2`

Theorem 5.4. Let h be a lower bound for the min-entropy of any channel C in DT and β be an
upper bound of the number of leaves of these trees. Assume that Alice has a priori knowledge of C
given as a decision tree. Then the stegosystem S2 with a family F of pseudorandom permutations
is efficient and achieves reliability and security

UnRelDT,S2 ≤ n ·
(
β

2h

) log e
b

, InSeccha
DT,S2(t, q, λ) ≤ 2 · PRP-InSecF (t, λ/n) + ξ(λ, n) ,

where ξ(λ, n) is the same function as in Theorem 5.2.

Proof. Given a document ci by the oracle, Encode-DT finds the monomial H for ci by following
the path through the decision tree Ti. H together with b-bit block of the message M and the
covertext ci is then used as input to the previously defined procedure Monomial-modify. The
computational efficiency of Monomial-modify is linear in σ, therefore the embedding part of
Encode-DT is also linear in n σ. If the learning procedure is polynomial in σ, then the whole
procedure Encode-DT is also polynomial in σ and n.

The proof of security for the stegosystem S2 follows from the security proof for monomials given
in Theorem 5.2 for the stegosystem S1, because the monomials derived from the decision tree do
not overlap, so they are uniquely determined by the covertext sample and, as in the stegosystem
S1, we use Monomial-modify to embed the hiddentext.

For an estimation of the unreliability we have to compute the average min-entropy of the mono-
mials H derived from Ti. By assumption Ti has at most β leaves and the min-entropy of the j-th
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monomial of Ti is hi,j . Then we get that the unreliability

UnRelDT,S2 ≤ b ·
∑̀
i=1

β∑
j=1

2hi,j

2h
e−

1
b
·hi,j

= b ·
∑̀
i=1

β∑
j=1

2hi,j

2h
·
(
2−hi,j

) log e
b

≤ b ·
∑̀
i=1

 β∑
j=1

2hi,j

2h
· 2−hi,j


log e

b

= n ·
(
β

2h

) log e
b

where the last estimation follows from Jensen’s inequality and requires log e
b < 1.

5.3.2 DNF Channels

Finally we consider the concept class represented by Boolean formulae in disjunctive normal form
(DNF). This representation consists of conjunctions of variables (called ‘terms’, equivalent to mono-
mials) which are connected by disjunctions. Similar to the previous constructions, we use the
following generic encoding scheme.

Procedure Encode-DNF(K, M , H)
Input: secret key K = K0,K1, . . . ,K2`; hiddentext M = m1m2 . . .mn ∈ {0, 1}n; history H;
choose T0 ∈R {0, 1}n and let T1 := FK0(T0 ⊕M);
parse T0T1 into t1t2 . . . t2`, where |ti| = b;
for i := 1, . . . , 2` do

ci := EXC(H);
access EXC(H) and learn a DNF hypothesis Hi for documents;
si := DNF-modify(Ki, ti, Hi) and let H := H||si;

endfor
Output: s1s2 . . . s2`

In contrast to the disjunct monomials of decision trees, we may get in this case monomials with
overlapping supports, which makes the modification more difficult – a simple modification that does
not consider possible overlaps could destroy uniformity. Our solution picks one monomial h that is
satisfied by the current document ci and calls the procedure Monomial-modify with inputs Ki,
ti, ci and h as above. For DNFs the selection of the ‘correct’ monomial h is more involved due
to potential overlap with other monomials. In the next two sections we will present two solution
strategies to this problem.

Strategy 1: Random Sample Generation According to a Probabilistically Selected Term

Our first strategy deviates from the previously used scheme of sampling and modifying. Here, we
first randomly select a term h from the DNF H and then randomly generate a sample c that lies
in the support of h. We then call Monomial-modify with K, M (the hiddentext), c and h. To
make sure that the output distribution is uniform again, we have to reject the stegotext s with
a certain probability, because s could lie in the intersection of the supports of multiple terms, so
it may also be reached through an embedding process that selects a different term h′ in the first
step and therefore would have a higher probability than stegotexts that lie in the supports of fewer
terms.
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More formally, let H = h1 ∨ . . .∨ hl, with hi ∈ {0, 1,×}σ be a DNF-formula. We denote by |H |
the cardinality of the subset of {0, 1}σ represented by H, i.e., let |H | = |{x ∈ {0, 1}σ : H(x) = 1}|.
Analogously, let |hi| = |{x ∈ {0, 1}σ : hi(x) = 1}|, for all i ∈ {1, 2, . . . , l}. Next, define the
probability distribution µH on {1, 2, . . . , l} with probability distribution function

PrµH [X = i] =
|hi|∑l

d=1 |hd|

for every i ∈ {1, 2, . . . , l}. Let for any s ∈ H

τ(s) = |{i : s ∈ hi}|

be the number of overlapping term supports for s. We now give our construction of the procedure
DNF-modify1 in pseudo-code.

Procedure DNF-modify1(K, M , H)

Input: secret key K; hiddentext M = m1 . . .mb ∈ {0, 1}b; hypothesis DNF-formula
H = h1 ∨ . . . ∨ hl, with hi ∈ {0, 1,×}σ;

repeat
choose randomly, with p.d. µH , index j in {1, 2, . . . , l};
choose randomly, with uniform probability, c in hj ;
s := Monomial-modify(K, M , c, hj);
let p := 1/τ(s);
choose randomly, with p.d. {1− p, p}, value accept in {0, 1};

until accept = 1 ;
Output: s

To prove that the stegotexts output by this procedure are indeed uniformly distributed, we first
analyse a single iteration of the repeat-loop and state the following lemma.

Lemma 5.5. Let s be the random variable over H = h1 ∨ . . .∨ hl determined by a single iteration
of the repeat-loop of the procedure DNF-modify1. Then for every s̃ ∈ H it holds that

Pr[s = s̃ and accept = 1] =
1∑l

d=1 |hd|
.

Proof. Let s̃ be an arbitrary element of H and let j be the random variable over {1, 2, . . . , l}
determined by a single iteration of the repeat-loop of the procedure DNF-modify1. Then

Pr[s = s̃ and accept = 1] =
l∑

k=1

Pr[s = s̃ and accept = 1 | j = k] · Pr[j = k] .

Assume, i1, i2, . . . , iτ(s̃) denote indices of all monomials such that s̃ ∈ hik . Then, the probability
Pr[s = s̃ and accept = 1 | j = i] is 0 for any i 6∈ {i1, . . . , iτ(s̃)}. Moreover, the event of choosing the
value accept is independent of the selection process of s. Thus we get:

Pr[s = s̃ and accept = 1] =
τ(s̃)∑
k=1

Pr[s = s̃ | j = ik] · Pr[accept = 1 | j = ik] · Pr[j = ik] .

Obviously, for every k = 1, . . . , τ(s̃) we have Pr[j = ik] =
|hik
|Pl

d=1 |hd|
.

Next, by Lemma 5.1, it holds for the monomial hik that if c in hik is chosen uniformly at
random, and then Monomial-modify is used, the probability that we get s̃ equals 1

|hik
| . Hence
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Pr[s = s̃ | j = ik] = 1
|hik
| . Finally, one chooses accept = 1 with probability 1/τ(s̃). Thus we can

conclude:

Pr[s = s̃ and accept = 1] =
τ(s̃)∑
k=1

1
|hik |

· 1
τ(s̃)

· |hik |∑l
d=1 |hd|

=
1∑l

d=1 |hd|
.

Having thus seen that a single iteration of the repeat-loop of DNF-modify1 upon termination
outputs a stegotext that is uniformly chosen from the support of our hypothesis H, we now turn
to the full procedure and give the following lemma.

Lemma 5.6. Let H = h1∨ . . .∨ hl be a DNF formula. Then, using the procedure DNF-modify1,
we generate elements of H with uniform probability distribution. Moreover, the expected number of
iterations is

µ =
∑l

d=1 |hd|
|H |

.

Proof. The property that the procedure DNF-modify1 samples elements from H with uniform
distribution follows immediately from Lemma 5.5: for every iteration of the repeat-loop it holds
that the probability distribution of sampling after this iteration step is uniform.

The probability that the procedure terminates when a single iteration is done is

q = Pr[accept = 1] =
|H |∑l
j=1 |hj |

.

Thus, the expected value of the number of iterations for the procedure DNF-modify1 is

µ =
1− q
q

+ 1 =

∑l
j=1 |hj |
|H |

.

Before looking at the security and reliability of Procedure Encode-DNF, we introduce and
analyse a second embedding strategy for DNFs.

Strategy 2: Probabilistic Selection of a Covertext

Our second strategy follows the paradigm of sampling and modifying as used in the construction of
the stegosystems S1 and S2. For each sampled covertext c the terms of the DNF that are satisfied
by c are determined and among them one is chosen for use in the actual embedding step. We then
call Monomial-modify with K, M (the hiddentext), c and h. As in the first strategy, we again
may have to reject the stegotext to account for its (possible) lying in the support of more than one
term.

More formally, let H = h1 ∨ . . . ∨ hl, with hi ∈ {0, 1,×}σ be a DNF-formula. We use the
same notation |H |, |hi|, τ(s), αi, etc. as above. Additionally, we define the maximum number of
overlapping term supports by

τmax = max{τ(s) : s ∈ H } .

Note that τmax ≤ l. We now give our construction of the procedure DNF-modify2:
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Procedure DNF-modify2(K, M , H)

Input: secret key K; hiddentext M = m1 . . .mb ∈ {0, 1}b; hypothesis DNF-formula
H = h1 ∨ . . . ∨ hl, with hi ∈ {0, 1,×}σ;

repeat
repeat

c := EXC(H);
choose randomly, with uniform probability, index j in {i : c ∈ hi};
let q := τ(c)/τmax;
if q = 1 then reject sample := 1;
else choose randomly, with p.d. {q, 1− q}, value reject sample in {0, 1}

until reject sample = 0 ;
s := Monomial-modify(K, M , c, hj);
let p := 1/τ(s);
choose randomly, with p.d. {1− p, p}, value accept in {0, 1};

until accept = 1 ;
Output: s

Again, we will start by analysing a single iteration of the repeat-loop and state the following
lemma.

Lemma 5.7. Let s be the random variable over H = h1 ∨ . . .∨ hl determined by a single iteration
of the outer repeat-loop of the procedure DNF-modify2. Then for every s̃ ∈ H

Pr[s = s̃ and accept = 1] =
1∑l

d=1 |hd|
.

Proof. The proof is similar to the proof of Lemma 5.5. Let s̃ be an arbitrary element of H.
Moreover, let j be the random variable over {1, 2, . . . , l} and let s be the random variable over H
determined by a single iteration of the outer repeat-loop of the procedure DNF-modify2. Assume,
i1, i2, . . . , iτ(s̃) denote indices of all monomials such that s̃ ∈ hik . Then

Pr[s = s̃ and accept = 1] =
τ(s̃)∑
k=1

Pr[s = s̃ | j = ik] · Pr[accept = 1 | j = ik] · Pr[j = ik] .

Obviously, Pr[accept = 1|j = ik] = 1
τ(s̃) . To see that

Pr[j = ik] =
|hik |∑l
d=1 |hd|

and Pr[s = s̃ | j = ik] =
1
|hik |

we analyse the inner repeat-loop for choosing c and j values. We claim that when performing this
repeat-loop we choose pairs (c̃, ik), such that c̃ ∈ hik , with the uniform probability distribution. Let
c′ and j′ denote random variables on H, respectively {1, 2, . . . , l}, determined by a single iteration
of the inner repeat-loop. Assume c̃ ∈ H and let ik ∈ {1, 2, . . . , l} be arbitrary values such that
c̃ ∈ hik . Then, during a single iteration of the inner repeat-loop we get

Pr[c′ = c̃ ∧ j′ = ik ∧ reject sample = 0] =
1
|H |
· 1
τ(c̃)

· τ(c̃)
τmax

=
1

τmax · |H |
.

Hence, when the inner repeat-loop for choosing c and j is done, then for all c̃ and ik, such that
c̃ ∈ hik :

Pr[c = c̃ ∧ j = ik] =
1∑l

d=1 |hd|
.
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Thus, we can conclude that

Pr[j = ik] =
∑

c̃∈hik

Pr[c = c̃ ∧ j = ik] =
|hik |∑l
d=1 |hd|

and
Pr[c = c̃ | j = ik] =

Pr[c = c̃ ∧ j = ik]
Pr[j = ik]

=
1
|hik |

.

Finally, by Lemma 5.1, we get

Pr[s = s̃ | j = ik] =
1
|hik |

.

Now that we know that a single iteration of the outer repeat-loop of DNF-modify2 outputs a
stegotext that is uniformly chosen from the support of our hypothesis H, we can analyse the full
procedure as follows.

Lemma 5.8. Let H = h1 ∨ . . . ∨ hl be a DNF formula and let τmax = max{τ(s) : s ∈ H}. Then
using the procedure DNF-modify2 we generate elements of H with uniform probability distribution.

Moreover, the expected number of iterations of the outer repeat-loop of the procedure is µ =
Pl

d=1 |hd|
|H |

and the expected value of the total number of samplings of EXC is µ′ = τmax.

Proof. The property that the procedure DNF-modify2 samples elements from H with uniform dis-
tribution follows immediately from Lemma 5.7: for every iteration of the repeat-loop the probability
distribution of sampling after this iteration step is uniform. The probability that the procedure
terminates when a single iteration is done is

q = Pr[accept = 1] =
|H |∑l

d=1 |hd|
.

Thus, the expected value of the number of iterations for the procedure DNF-modify2 is

µ =
1− q
q

+ 1 =
∑l

d=1 |hd|
|H |

.

It now remains to show that µ′ = τmax. The probability that the inner repeat-loop terminates is

Pr[reject sample = 1] =
∑l

d=1 |hd|
τmax · |H |

.

Moreover, the probability that a single iteration of the outer repeat-loop terminates is

q = Pr[reject sample = 0 ∧ accept = 1]
= Pr[accept = 1 | reject sample = 0] · Pr[reject sample = 0] .

Since Pr[accept = 1 | reject sample = 0] = |H |Pl
d=1 |hd|

we get q = 1/τmax. Thus, the expected value

of the number of samplings of EXC is

µ′ =
1− q
q

+ 1 = τmax .
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Let us now define the stegosystem S3 with the encoding procedure Encode-DNF (from Sec-
tion 5.3.2) together with either DNF-modify1 or DNF-modify2. The decoding procedure is
Decode from Section 5.2. Having shown that the procedures DNF-modify1 and DNF-modify2
preserve the uniform distribution when embedding a single block of hiddentext, we will now prove
the following theorem for the full stegosystem S3.

Theorem 5.9. Let DNF be a channel family consisting of channels of the type C = C1 × C2 × C3 . . .
where each Ci is a subset that can be represented as a DNF formula and is uniformly distributed with
min-entropy at least h. Assume that Alice has a priori knowledge of C given as a sequence of DNF
formulae with at most β monomials each that describe C1, C2, . . .. Let Alice and the adversary have
access to a black-box sampling oracle EXC. The stegosystem S3, with a family F of pseudorandom
permutations is computationally efficient (with respect to σ, n and β) and achieves reliability and
security

UnRelDNF,S3 ≤ n ·
(
β

2h

) log e
b

, InSeccha
DNF,S3(t, q, λ) ≤ 2 · PRP-InSecF (t, λ/n) + ξ(λ, n) ,

where ξ(λ, n) is the same function as in Theorem 5.2.

Proof. For the proof of security note that the procedure Encode-DNF is essentially the same
as Encode, except that it calls DNF-modify1 (resp. DNF-modify2) instead of Monomial-
modify. Lemma 5.6 states that DNF-modify1 outputs the uniform probability distribution.
The same is shown for DNF-modify2 in Lemma 5.8. Hence the proof of both security estimations
is similar to the proof of Theorem 5.2.

From Lemma 5.6 follows that the expected running time for DNF-modify1 is

O

(∑l
d=1 |hd|
|H|

· σ

)
= O(β · σ) ,

resp. from Lemma 5.8 follows that the expected running time for DNF-modify2 is

O

(∑l
d=1 |hd|
|H|

· σ + l

)
= O(β · σ) .

Now, similarly as in the proof of Theorem 5.4, we can conclude that the expected running time for
S3 is polynomial in σ, n and β if the learning can be performed efficiently.

The unreliability follows from the proof of Theorem 5.4, with the difference that the probability
of selecting a specific term for DNFs is 2hi,j/2

Pβ
d=1 hi,d , so we get

UnRelDNF,S3 ≤ b ·
∑̀
i=1

β∑
j=1

2hi,j

2
Pβ

d=1 hi,d

e−
1
b
·hi,j ≤ b ·

∑̀
i=1

(
β

2
Pβ

d=1 hi,d

) log e
b

≤ n ·
(
β

2h

) log e
b

.

5.4 Discussion of the Results of Chapter 5

In this chapter we introduced a new approach to modelling and analysing steganography. It differs
from previous models, such as Hopper et al. (2002b), Dedić et al. (2009) or Le and Kurosawa (2007),
that treat the covertext channel as a completely unknown black-box – which leads to a sampling
complexity exponential in the number of bits per covertext document – or assume a priori full
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knowledge about the covertext distribution, as in one construction by Le and Kurosawa (2007) –
which seems unrealistic. We overcome this situation by allowing the encoder to modify covertexts,
as it is done in almost all practical stegosystems. Our grey-box model is more realistic in the sense
that the encoder is assumed to have some partial knowledge about the channel.

Our results show that two properties of the covertext channel families used for steganography
are essential for constructing efficient grey-box stegosystems. Such channels should be

1. efficiently learnable and

2. efficiently modifiable.

Both properties must hold in order to successfully create grey-box steganography. We have
presented constructions for channels that satisfy both, such as monomials, for which an efficient
PAC-learning algorithm exists (the Wholist algorithm), or decision trees, for which heuristic learn-
ing algorithms are known. On the other hand, if there exists no known efficient learning algorithm,
in our example for DNF formulae, we might still be able to efficiently modify covertexts to stegano-
graphically embed message. However, in such a case, we would have to assume that by some other
means the encoder can get hypotheses about the channel. Finally, if a channel family is efficiently
learnable, but there exists no efficient means to modify covertexts for embedding, then we cannot
hope to construct a stegosystem at all. Such might be the case for the concept class of k-CNF-
formulae. For fixed k, this class is easily seen to be efficiently learnable from positive examples.
However, now the modification problem seems to be difficult. We leave this as an open problem.

Steganographic techniques like LSB-flipping for digital images can easily be expressed by this
approach.

It can be viewed as a variant of Monomial-modify, with all but the last bits of each pixel
being fixed and the least significant bit being a free variable. The support of the covertext channel
for a given image I thus consists of all images that only differ in their least significant bits. How-
ever, digital images taken by modern cameras do not tend to generate truly random values there.
Thus, representing the hypothesis as a monomial may be inappropriate for camera channels, so the
monomial stegosystem becomes insecure.

In the grey-box setting there may still be a huge advantage for the adversary if he has complete
knowledge of the covertext channel. For the black-box setting, such an inequality in knowledge
between the encoder and the adversary was introduced by Dedić et al. (2009), where the warden
possesses some short advice (a “seed” for the pseudo-random channel) that Alice does not have.
This enables the warden to efficiently test whether a given covertext is in the support of the channel
C, whereas Alice cannot do this. However, such an assumption seems to give the adversary too
great an advantage, a fact that has already been noted by Dedić et al. (2009: 383). Thus, in the
next chapter we will analyse different levels of knowledge of both parties and shown that this leads
to different notions of steganographic security.



Chapter 6

New Security Notions in Steganography

In the previous chapter we have seen how to use learning algorithms to construct secure stegosys-
tems. One of the prerequisites was the learnability of the covertext channel: if Alice could effi-
ciently learn a hypothesis about the covertext channel, she could construct a secure and efficient
stegosystem – provided that an efficient modification procedure also existed for the hypothesis
representation. One of the problems that we encountered were concept classes for which efficient
modification procedures existed, but for which no efficient learning algorithms are known, such as
DNF formulae. Thus, if a channel is hard to learn, we cannot follow the approach of steganography
with learning algorithms. In this chapter we will investigate if it is possible to exploit the hardness
of learning a channel for the construction of secure and efficient steganography.

To answer this question, we will pose an even more fundamental question, namely if the currently
used notion of security, as given in Definition 2.7, which has been derived from cryptography, is
appropriate in the context of steganography. When looking at cryptography, we find that the
notion of security is well understood. A secure cryptosystem is defined by the property that an
adversary with bounded resources cannot decipher the secret message. If a cryptosystem is not
secure then it follows that there exists such an adversary with a significant advantage over random
guessing. Considering a cryptosystem as a game between the encoder Alice and an adversary Eve,
this dichotomy looks natural: either Eve has an advantage in deciphering the secret message or she
has not.

Security becomes a much more challenging property if one considers steganography, where secu-
rity crucially depends on properties of the covertext distribution – a stegosystem might be much
more secure for one channel than another, even if both belong to the same channel family. There-
fore, it is important to analyse precisely the setting of the game between the stegoencoder and
the adversary, and in particular to determine the level of influence that the stegoencoder has in
choosing the covertext channel. In cryptography, to the contrary, the channel distribution is simply
determined by the cryptosystem and the chosen key. By Kerckhoffs’ principle (Kerckhoffs 1883) it
is assumed that the total distribution is known to all parties.

We will first show that a stegosystem which is insecure according to Definition 2.7, might still
not be detectable by an adversary. So far, a stegosystem is defined as insecure if the strongest
possible adversary can detect the use of steganography. It suffices if this holds for a single channel
chosen from a large family of possible channels. Thus, a secure stegosystem would be universally
suitable for any such channel. However, there might be channels for which the adversary does not
have a good chance for detection. It seems unrealistic that a stegoencoder would only make use
of covertext channels that are easy to detect. This observation leads us to the question of how an
appropriate notion of security should look like for steganography and when to rightfully consider a
stegosystem insecure.

This question will be approached by assuming the perspective of the adversary in order to inves-
tigate how successful he can be in detecting steganography. To this end, we introduce the concept
of detectability and give three possible definitions for channel universal detectability, channel spe-
cific detectability and detectability on average that will be used in analysing the interplay between
insecurity and detectability of stegosystems. We show how these properties relate to each other and
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come to the conclusion that one of these alternatives – detectability on average – clearly outperforms
the others.

Looking at insecure stegosystems seems counterintuitive at first, as our goal is to achieve both
security and efficiency. However, our new concept of detectability allows us to consider new types of
stegosystems that have been excluded from previous studies due to their insecurity. One particular
feature of these new stegosystems is that they provide a way to circumvent the exponential sampling
complexity that lies at the core of all efficiency problems in black-box steganography. In fact, in
the stegosystems that we will construct in this chapter, we can completely eliminate the use of a
sampling oracle and obtain efficient steganography with a low detectability on average.

6.1 Security Levels of Stegosystems

In this section we will define different levels of security in steganography and investigate what they
say about the strength of both opponents in the game. As we have done in the previous chapters, we
will consider (arbitrary) families F of covertext channels instead of the set of all channels. For the
sake of completeness, recall the commonly used definition for a (in)security measure (e.g. Hopper
et al. 2002b; Dedić et al. 2009) from the preliminaries:

Definition 6.1 (Insecurity for Channel Families). The insecurity of a stegosystem S with respect
to a channel family F is defined by

InSeccha
F ,S(t, q, λ) := max

W
max
C∈F
{Advcha

C,S(W )} ,

where the maximum is taken over all adversaries W working in time at most t and making at most
q queries of total length λ bits to the challenge oracle CH.

The security of a system S with respect to F is defined as 1 − InSeccha
F ,S . Thus, if a system S

gives a small value for InSeccha
F ,S then it has the highest security level: for every channel from the

family no warden can detect the stegosystem with a significant advantage. However, currently no
secure and efficient stegosystems are known for any non-trivial channel family. Even more, it has
been proven that for a specific simple family of channels such systems do not exist (Dedić et al.
2009). But does this result mean that the warden can sleep well keeping such channel families
under control? The problem is that if a stegosystem S is insecure, i.e., the value of InSeccha

F ,S is
large, it says that there exists a single channel C0 in F such that the warden using some specific
strategy W0 can detect steganography over C0, or more formally

InSeccha
F ,S(t, q, λ) ≥ 1− δ ⇐⇒ ∃ C0 ∈ F ∃ (t, q, λ)-warden W0 Advcha

C0,S(W0) ≥ 1− δ .

However, this does not imply that the warden can detect the usage of the stegosystem S for any
other channel in F . Therefore the above measure of insecurity does not fit well from the point of
view of a steganalyst: an insecure stegosystem S can remain undetectable for almost all channels
in F . One could modify the above definition in a natural way such that it reflects the necessities
of steganalysis.

Definition 6.2 (Channel-Universal Detectability). The channel-universal detectability of a stegosys-
tem S with respect to the channel family F is defined by

UnivDetectcha
F ,S(t, q, λ) := max

W
min
C∈F
{Advcha

C,S(W )} ,

where the maximum is taken over all (t, q, λ)-wardens W .
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1

InSeccha
F ,S

AvgDetectcha
F ,S SpecDetectcha

F ,S

UnivDetectcha
F ,S

0

Knowledge about C
Alice Eve

InSeccha
F ,S — ×

AvgDetectcha
F ,S — —

SpecDetectcha
F ,S × ×

UnivDetectcha
F ,S × —

Figure 6.1: Relationship among different security levels for a stegosystem S and the state of knowl-
edge about the covertext channel C taken from F .

Therefore, if a stegosystem S is channel-universally detectable with respect to the family F , i.e.,
the value UnivDetectcha

F ,S is big, then the warden using some specific strategy W can detect the
usage of the stegosystem S for any channel C in F . This guarantees the highest detectability level.
But such a level of detectability seems to be difficult to achieve for a warden if one considers clever
stegosystems. Moreover, if for some stegosystem S the value UnivDetectcha

F ,S is small, one cannot
guarantee that the system S is secure for every channel in F . One may construct a stegosystem S
that works well for only one channel C0 ∈ F – yielding a small value Advcha

C0,S(W ). Such a stegosystem
is not channel-universally detectable since for C0 no strategy of the warden is able to detect S with
a significant advantage. But the system can still be easily detectable for most other channels in F .

Thus, for a security analysis it is extremely important who selects the covertext channel - the
encoder or the warden. For most applications it seems unrealistic to assume that the warden can
dictate to the encoder which covertext channel to use. In case that neither opponent has a free
choice, one should take into account how much knowledge about the covertext distribution each
one is given a priori (see Figure 6.1). This may be helpful despite the sampling oracle.

We can conclude this part of the discussion with the following observations. For any channel
family F and for every stegosystem S and all t, q, λ it holds:

0 ≤ UnivDetectcha
F ,S(t, q, λ) ≤ InSeccha

F ,S(t, q, λ) ≤ 1 . (6.1)

Moreover, for most non-trivial families F and reasonable stegosystems S one typically observes
that UnivDetectcha

F ,S is small and InSeccha
F ,S is large. But in such a case we are not able to provide

any reasonable degree of insecurity/detectability of the system. Our goal will be to give and to
analyse more appropriate measures for insecurity/detectability of stegosystems.

From the definition of channel-universal detectability it is natural to derive channel-specific
detectability, which we define as follows.

Definition 6.3 (Channel-Specific Detectability). The channel-specific detectability of a stegosys-
tem S with respect to the channel family F is defined by

SpecDetectcha
F ,S(t, q, λ) := min

C∈F
max

W
{Advcha

C,S(W )} ,

where the maximum is taken over all (t, q, λ)-wardens W .
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Obviously, for every channel family F and stegosystem S and parameters t, q, λ:

UnivDetectcha
F ,S(t, q, λ) ≤ SpecDetectcha

F ,S(t, q, λ) ≤ InSeccha
F ,S(t, q, λ) . (6.2)

Now, if the value of SpecDetectcha
F ,S is large, then for every channel C in F there exists some

warden which can detect the use of steganography for this particular channel C by exploiting his
specific strategyW . This definition relaxes the strong assumption of universality with respect to the
covertext channel in use. Note, however, that while each W might work well for his particular C, W
may perform poorly on all other channels of F . Thus, in contrast to a high value for UnivDetectcha

F ,S ,
which gives the warden good confidence in his power, a high value of SpecDetectcha

F ,S does not really
say much about the power of a warden, since he has to know Alice’s choice of a channel. On the
other hand, for a small value of SpecDetectcha

F ,S the stegosystem S may work very well for most
channels in F .

It should be apparent that we need a different security definition which takes into account that
neither the warden nor the steganographer may be universal for all channels in F , but perhaps still
be able to perform well on average. Therefore, assuming a probability distribution of channels C
in the family F , we will generalise the notion of advantage given in (2.2) from a fixed channel to a
channel family as follows

Advcha
F ,S(W ) :=

∣∣∣PrC∈RF ,K←SK(1n)[W
C,SE C(K,·,·) = 1]− PrC∈RF [W C,OC (·,·) = 1]

∣∣∣ . (6.3)

Furthermore, we define the detectability on average as follows.

Definition 6.4 (Detectability on Average). The detectability on average of a stegosystem S with
respect to the channel family F is defined by

AvgDetectcha
F ,S(t, q, λ) := max

W
{Advcha

F ,S(W )} ,

where the maximum is taken over all (t, q, λ)-wardens W .

This definition has clear advantages over the previous ones. If for a stegosystem S the value of
AvgDetectcha

F ,S is low, then Alice can be assured that W in most cases will not be able to detect
steganography, whereas a high value indicates that W is likely to catch her. Thus, AvgDetectcha

F ,S
provides a measure that can be used by both Alice and W to assess their expected performance in
the game.

In the rest of this chapter, we will discuss and analyse scenarios which show that AvgDetectcha
F ,S

is indeed much better suited than all other security notions. The detectability on average is related
to the previously defined security measures as follows (cf. Figure 6.1):

Lemma 6.1. For every channel family F , every stegosystem S and all t, q, λ it holds:

UnivDetectcha
F ,S(t, q, λ) ≤ AvgDetectcha

F ,S(t, q, λ) ≤ InSeccha
F ,S(t, q, λ) .

From our analysis given below it follows that SpecDetectcha
F ,S and AvgDetectcha

F ,S are incomparable.
We will construct a family F , stegosystems S4 and S5 and parameters t, q, λ such that

SpecDetectcha
F ,S4(t, q, λ)� AvgDetectcha

F ,S4(t, q, λ)

and
AvgDetectcha

F ,S5(t, q, λ)� SpecDetectcha
F ,S5(t, q, λ) .
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6.2 Undetectable Stegosystems

In steganography there exist two extreme types of channel families, namely (1) families for which
the encoder can obtain full knowledge about the covertext distribution by using the sampling oracle
and (2) families for which the encoder has big difficulties in deducing something about the covertext
distribution. For families of the first type secure stegosystems (with low InSec) can be built. This
is not possible for the second type of families, since the encoder cannot even perform some simple
tests for the constructed stegotext, whereas, according to the definition of InSec, the warden can
have full knowledge about the used covertext distribution. In this section we show that the situation
changes drastically if we assume a symmetry in knowledge about channels. Particularly, we prove
that it is possible to construct undetectable stegosystems if it is difficult to deduce something about
the covertext distribution.

We construct a stegosystem SF that works for a given channel family F , i.e., we assume Alice
and Bob know that a fixed communication channel C is chosen from F but they have no additional
knowledge about C. Thus, although the system is not universal for all channels, it is universal for
all channels in the family F . The system works for families F of channels with finite descriptions
and efficiently computable distribution functions defined as follows.

Definition 6.5. Let F be a family of channels Cω indexed by strings ω ∈ {0, 1}η. These channels
share a document space Σ that has an arbitrary linear ordering “≤”, for example lexicographically.
Recall that DCω ,H denotes the probability distribution of the channel Cω with respect to history H,
that means PrDCω,H

[x] is the probability that document x is generated by Cω with history H.
The (cumulative) distribution functions of F defined by Fω

H(c) :=
∑

x≤c PrDCω,H
[x] are called

efficiently computable if there exists a polynomially time-bounded algorithm that on input ω, H and
c outputs Fω

H(c).

Assume that we want to steganographically encode b bits. We number the bit-strings from 0 to
2b− 1 and consider the j-th bit-string. To encode j we can use all documents c with a value Fω

H(c)
in the interval Ij := (j · 2−b, (j + 1) · 2−b]. Next we choose a random number zj in this interval
and select among all documents with positive probability PrDCω,H

[c] the minimum c such that
zj ≤ Fω

H(c). Let us denote this mapping by IntervalEncode(ω,H, j). If we first select a value j
uniformly at random and then apply IntervalEncode(ω,H, j), it is guaranteed that each document
c ∈ Σ is chosen with probability exactly PrDCω,H

[c], thus we generate the same distribution as Cω.
Below we give a construction for the procedure IntervalEncode in pseudo-code, which uses binary
search to choose the random number zj from Ij with uniform probability.

Procedure IntervalEncode(ω, H, j)

Input: channel description ω; history H; index of element to find j, with 0 ≤ j ≤ 2b − 1;
let Fω

H denote the cumulative distribution function of a channel Cω with description ω;
let left := j

2b and let right := j+1
2b ;

let α := argminx∈Σ{left < Fω
H(x)} and let β := argminx∈Σ{right ≤ Fω

H(x)};
while α < β do

choose r ∈R {0, 1};
if r = 1 then right := (left + right)/2; β := argminx∈Σ{right ≤ Fω

H(x)};
else left := (left + right)/2; α := argminx∈Σ{left < Fω

H(x)};
endwhile
Output: s := α

The decoding works as follows. When Bob receives the covertext document c, he computes the
value j′ such that Fω

H(c) ∈ Ij′ . If j′ > 0 and there exists no covertext c′ < c with Fω
H[c′] ≥ j′ · 2−b,
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then there are two possible intervals to which c may decode, so we make a decoding error. Such
a situation is illustrated in Figure 6.2 for the covertexts c2 and c6. To decode in this situation,
we have to randomly select j′ among these intervals. Because we want to make this selection
proportionately to the probability with which we get either covertext during encoding, we have to
approximate these probabilities by coin flipping and binary search. Below we give the pseudo-code
of our procedure IntervalDecode.

Procedure IntervalDecode(ω, H, c)
Input: channel description ω; history H; covertext c;
let Fω

H denote the cumulative distribution function of a channel Cω with description ω;
let right := Fω

H(c) and let β := argmaxj∈{0,2b−1}{
j
2b < right};

if β = 0 then α := 0 else
let ĉ := maxc′∈Σ{c′ < c};
let left := Fω

H(ĉ) and let α := argmaxj∈{0,2b−1}{
j
2b ≤ left};

while α < β do
choose r ∈R {0, 1};
if r = 1 then right := (left + right)/2; β := argmaxj∈{0,2b−1}{

j
2b < right};

else left := (left + right)/2; α := argmaxj∈{0,2b−1}{
j
2b ≤ left};

endwhile
endif
Output: j := α

To illustrate how we randomly select a value in the interval Ij according to the procedure In-
tervalEncode given above, let us look at the following example from Figure 6.2.

Example (IntervalEncode). Assume b = 2 and we want to encode the value j = 0, thus we
select the interval I0 = (0, 0.25] that contains the possible covertexts c0 with Fω

H(c0) = 0.0625, c1
with Fω

H(c1) = 0.1875 and c2 with Fω
H(c2) = 0.32. Next, we set left = 0, right = 0.25, α = c0,

β = c2. As α < β, we randomly select r, e.g., let r = 1 and update right = 0.125 and β = c1; still
α < β, so we choose r, e.g., let r = 0 and set left = 0.0625 and α = c1. We terminate and output
α = c1.

Example (IntervalDecode). Again assume that b = 2 and also assume that we receive c2 (we
do this to show the handling of a potential decoding error, which does not occur in the case of c1).
We let right = 0.32 and β = 1. Because β 6= 0, we let ĉ = c1, left = 0.1875 and α = 0. As α < β,
we randomly select r, e.g., let r = 1 and update right = 0.25375 and β = 1; still α < β, so we
choose r, e.g., let r = 1 and set right = 0.220625 and β = 0. We terminate and output α = 0.

Let us now look at the probability of making a decoding error, for which we formulate the
following lemma.

Lemma 6.2. Let F be a channel family with finite description ω and efficiently computable dis-
tribution functions Fω

H, and let the min-entropy of the channels in F be h. Using the algorithms
IntervalEncode and IntervalDecode for encoding and decoding, the probability of incorrectly
decoding a single bit is bounded by 2−(h+1)+b.

Proof. Let c0, c1, . . . , cs−1 be an ordered enumeration of documents in Σ with respect to the lexico-
graphical order. First note that we can only make an error if we are to decode a covertext ci (i ≥ 1)
for which it holds Fω

H(ci) ≥ j · 2−b and Fω
H(ci−1) < j · 2−b, for j ∈ {0, . . . , 2b − 1}. We will call such

covertexts critical. Let us denote by Pr[ci] := Fω
H(ci) − Fω

H(ci−1) the probability of obtaining ci
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c0 c1 c2 c3 c4 c5 c6 c7 c8

I0

I1

I2

I3

Figure 6.2: An example that illustrates how IntervalEncode works

when encoding and furthermore let Pr[ci|j] := Fω
H(ci)− j ·2−b and Pr[ci|j−1] := j ·2−b−Fω

H(ci1−1)
denote the probabilities of obtaining ci when trying to encode j or j − 1. When decoding ci, we
can make two types of errors:

E1: we decode ci to j, although we originally encoded j − 1,

E2: we decode ci to j − 1, although we originally encoded j.

The probabilities for these errors are

Pr[E1] =
1
2b
· Pr[ci|j − 1]

2−b
· Pr[ci|j]
Pr[ci|j − 1] + Pr[ci|j]

=
Pr[ci|j − 1] · Pr[ci|j]

Pr[ci]

and
Pr[E2] =

1
2b
· Pr[ci|j]

2−b
· Pr[ci|j − 1]
Pr[ci|j − 1] + Pr[ci|j]

=
Pr[ci|j] · Pr[ci|j − 1]

Pr[ci]
,

and thus combine to

Pr[error when decoding ci] =
2 · Pr[ci|j − 1] · Pr[ci|j]

Pr[ci]
≤ 1

2
· Pr[ci] ≤ 2−(h+1) ,

where the first estimation uses the fact that the error probability becomes maximal for Pr[ci|j−1] =
Pr[ci|j] = 1

2 · Pr[ci] and the second estimation holds because Pr[ci] ≤ 2−h. Furthermore, because
we have at most 2b − 1 critical covertexts we get

Pr[error when decoding] ≤ 2−(h+1) · (2b − 1) .
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The examples of covertext pairs c3 and c4, as well as c6 and c7 in Figure 6.2 illustrate a question
concerning the efficiency of IntervalEncode, namely, the maximum time needed for choosing a
certain covertext with binary search. The following lemma gives a polynomial bound on this time.

Lemma 6.3. Let F be a channel family with finite description ω and efficiently computable distribu-
tion function Fω

H. Then the running time of the algorithms IntervalEncode and IntervalDecode
is polynomially bounded.

Proof. Let n = σ+ |ω|+ |H| be the input size of Fω
H and let the running time of the algorithm that

calculates Fω
H be bounded by the polynomial p(n).

We will now show that

∀c, c′ ∈ Σ either Fω
H(c) = Fω

H(c′) or |Fω
H(c)− Fω

H(c′)| ≥ 2−p(n) , (6.4)

and

∀c ∈ Σ, ∀j ∈ {0, . . . , 2b − 1} either Fω
H(c) =

j

2b
or |Fω

H(c)− j

2b
| ≥ 2−p(n) . (6.5)

Because the algorithm that computes Fω
H runs in time p(n), the size of the binary representation

of its output is also at most p(n) and size of the binary representation of j
2b is at most b bits. Note

that b < σ, so b < p(n). We thus have to estimate the minimum difference of two real numbers
0 ≤ A,B < 1 with at most p(n) bits.

We can write the difference between A and B as

|A−B| =

∣∣∣∣∣∣
p(n)∑
i=1

Ai · 2−i −
p(n)∑
i=1

Bi · 2−i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
p(n)∑
i=1

(Ai −Bi) · 2−i

∣∣∣∣∣∣ ,
where Ai and Bi denote the bits of the binary representations of A and B. Let us assume w.l.o.g
that A > B and let k be smallest index, such that Ak > Bk and A1 = B1, . . . , Ak−1 = Bk−1. We
thus get

|A−B| =

∣∣∣∣∣∣ 2−k +
p(n)∑

i=k+1

(Ai −Bi) · 2−i

∣∣∣∣∣∣
≥

∣∣∣∣∣∣ 2−k −
p(n)∑

i=k+1

2−i

∣∣∣∣∣∣ = 2−k − 2−k + 2−p(n) = 2−p(n) .

From this (6.4) and (6.5) follow.
The binary search for a value Fω

H in IntervalEncode terminates, if there is no c with Fω
H(c) ∈

(left, right] and, by (6.4) and (6.5), we get that |right − left| ≥ 2−(p(n)+1). Therefore, the binary
search runs in time at most p(n) and thus the algorithm IntervalEncode is polynomially time-
bounded. A similar argument holds for the algorithm IntervalDecode.

The stegosystem SF = [SK,SE,SD ] is based on the following encoding and decoding procedures.
Recall that ` = n/b is an integer specifying the number of blocks into which a message M is
split. To encrypt a message M , we use families of pseudorandom permutations PRP : {0, 1}κ ×
{0, 1}n → {0, 1}n to spread M uniformly. The secret key K = K0||K1 ∈ {0, 1}n+κ for encoder and
decoder is chosen uniformly at random. K1 is used to specify which pseudorandom permutation
PRP(K1, ·) = PRPK1(·) is selected. K0 serves as a seed to generate a random string ω that is used
to select a random element (i.e., channel) Cω of F .
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Procedure SF -Encode(K, M , H)
Input: secret key K = K0||K1; history H; hiddentext M ∈ {0, 1}n
let K0 specify a random seed ω ∈ {0, 1}η;
choose T0 ∈R {0, 1}n and let T1 := PRPK1(T0 ⊕M);
parse T0T1 into u1u2 . . . u2`, where |ui| = b;
for i := 1, . . . , 2` do

let j be the integer with binary repr. ui;
si := IntervalEncode(ω,H, j);
H := H||si;

endfor
Output: s1s2 . . . s2`

Procedure SF -Decode(K, s, H)
Input: secret key K = K0||K1; history H; stegotext s = s1, . . . , s2`;
let K0 specify a random seed ω ∈ {0, 1}η;
for i := 1, . . . , 2` do

j := IntervalDecode(ω,H, si);
let ui be the b-bit binary repr. of j;

endfor
let T0 := u1 . . . u` and T1 := u`+1 . . . u2`;
M := PRP−1

K1
(T1)⊕ T0;

Output: M

The crucial property of SF is that the choice of ω for the channel Cω, which is made in the
encoding by Alice, is independent of the real channel C used for communication. She just randomly
selects a channel for her to work with, knowing that with high probability it is a wrong one. For
this reason, the stegosystem SF may output samples that are not in the support of C, so the system
is insecure for many typical channel families F . However, it can be argued that this system is not
channel-universally detectable since by chance Alice may have picked the correct channel.

Le and Kurosawa (2007) have used a similar encoding procedure (see Section 3.1.2), the main
difference being that they assume a scenario where the real channel is known and the corresponding
distribution function is given. We do not assume such a restriction here.

Below we will describe a framework for stegosystems. Its security is based on the hardness for
distinguishing channels from F which we formalise as follows.

Definition 6.6 (Distinguisher for F). A probabilistic algorithm Q is a (t, q, λ)-distinguisher for
the channel family F if

• Q runs in time t and accesses a reference oracle EXC, for some covertext channel C ∈ F ,
which it can query for samples from C with a history H that can be chosen by Q;

• Q can make q queries of total length λ bits to a challenge oracle CH which is either EXC
or EXC′ for some other covertext channel C′ ∈ F .
Q can query CH for samples with histories H̃ arbitrarily;

• the task of Q is to determine if the challenge oracle CH is the same as the reference oracle
EXC.

We write QC,CH = 1 meaning that Q decides the two oracles being the same, whereas QC,CH = 0
means that they differ. The indistinguishability for a channel family F is given as

InDistF (t, q, λ) = max
Q

∣∣∣PrC,C′∈RF [QC,C
′
= 1]− PrC∈RF [QC,C = 1]

∣∣∣ ,
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where the maximum is taken over all (t, q, λ)-distinguishers Q and C, C′ ∈R F are chosen indepen-
dently.

If it is infeasable to distinguish two random elements from F , then Alice certainly has a problem
to find out the real channel. She may either guess a document in Σ and hope that it is in the support
of the real channel, or she may query (on average) an exponential (in b) number of covertexts until
she receives one that encodes the hiddentext M . But the adversary faces the same problem to
determine the correct channel – unless he is given this information a priori, which seems unrealistic
in practice. The following theorem establishes a tight relationship between the distinguishability
of a channel family F and detectability on average for the above stegosystem applied to F .

Theorem 6.4. Assume that F is a family of channels Cω over the document set Σ of size 2σ

with efficiently computable distribution functions and min-entropy at least h with h > b, indexed
by strings ω ∈ {0, 1}η of length η. Let the elements of F be selected uniformly at random as
covertext channels. Then SF is a stegosystem for Σ with rate b and unreliability UnRelF ,S bounded
by n

b · 2
−(h−b)+1 which runs in time polynomial in η, σ and the message length n. Moreover, there

exists a polynomial p such that

InDistF (t, q, λ)− ϕ(t, λ, n) ≤ AvgDetectcha
F ,SF (t, q, λ) ≤ InDistF (p(t), q, λ) + ϕ(t, λ, n) ,

with
ϕ(t, λ, n) = 2 · PRP-InSecPRP(p(t), λ/n) + ξ(λ, n) ,

where PRP-InSecPRP denotes the insecurity of the family PRP of pseudorandom permutations used
in SF and ξ(λ, n) is a function that is polynomially bounded in λ and decreases exponentially in n.

Proof. The bounds on unreliability and time complexity follow directly from Lemma 6.2, resp. Lemma 6.3.
To show the bounds for average detectability, we first prove the inequality

AvgDetectcha
F ,SF (t, q, λ) ≤ InDistF (p(t), q, λ) + 2 · PRP-InSecPRP(p(t), λ/n) + ξ(λ, n) .

Let W be a (t, q, λ)-warden of maximum average advantage, i.e., let

AvgDetectcha
F ,SF (t, q, λ) =

∣∣∣PrC,K [W C,SE C(K,·,·) = 1]− PrC [W C,C = 1]
∣∣∣ ,

where SE C denotes the encoding procedure SF -Encode working with covertext channel C. By the
triangle inequality it holds that

AvgDetectcha
F ,SF (t, q, λ) ≤

∣∣∣PrC,K [W C,SE C(K,·,·) = 1]− PrC,ω[W C,Cω = 1]
∣∣∣

+
∣∣PrC,ω[W C,Cω = 1]− PrC [W C,C = 1]

∣∣ ,
where W C,Cω denotes the warden W C,OC (·,·) with the oracle OC = Cω, i.e., for a given message
M ∈ {0, 1}n and history H the oracle returns a truly random sequence c1c2 . . . c2` of length 2` =
|SE C(K,M,H)| from the channel Cω with history H. Assuming that the probability distribution
of ω over descriptions of channels in F is equal to the probability distribution C ∈R F , we get that
for some polynomial p the second component can be bounded as follows:∣∣PrC,ω[W C,Cω = 1]− PrC [W C,C = 1]

∣∣ ≤ InDistF (p(t), q, λ) ,

since a (p(t), q, λ)-distinguisher QC,CH for the channel family F can just simulate the wardenW C,CH.
To obtain that∣∣∣PrC,K [W C,SE C(K,·,·) = 1]− PrC,ω[W C,Cω = 1]

∣∣∣ ≤ 2 · PRP-InSecPRP(p(t), λ/n) + ξ(λ, n) , (6.6)
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one can construct an adversary A against the same symmetric encryption scheme CBC [PRP ] as
in the proof of Theorem 5.2 from Section 5.1, with the following function ξ for the error term

ξ(λ, n) =
(

3λ2

2n2
− λ

n

)
· 2−n .

It now remains to show the first inequality of Theorem 6.4. Let Q be a (t, q, λ)-distinguisher such
that

InDistF (t, q, λ) =
∣∣PrC,ω[QC,Cω = 1]− PrC [QC,C = 1]

∣∣ .
By the triangle inequality it holds

InDistF (t, q, λ) ≤
∣∣∣PrC,K [QC,SE C(K,·,·) = 1]− PrC,ω[QC,Cω = 1]

∣∣∣
+
∣∣∣PrC,K [QC,SE C(K,·,·) = 1]− PrC [QC,C = 1]

∣∣∣ .
Now using Q one can easily show the bound∣∣∣PrC,K [QC,SE C(K,·,·) = 1]− PrC [QC,C = 1]

∣∣∣ ≤ AvgDetectcha
F ,SF (t, q, λ) .

Combining this with the inequality (6.6) we get

InDistF (t, q, λ) ≤ AvgDetectcha
F ,SF (t, q, λ) + 2 · PRP-InSecPRP(p(t), λ/n) + ξ(λ, n) .

This completes the proof.

6.3 Insecurity versus Detectability

As we have seen in Section 3.2, Dedić et al. (2009) have proven the following result for a simple
family F of covertext channels, which they call pseudorandom flat h-channels: for every stegosystem
S of small unreliability UnRelF ,S and small insecurity InSeccha

F ,S(t, q, λ), for polynomially bounded
t, q, λ, there exists a channel C in F such that the (expected) query complexity of S has to be large.

This implies that a secure, reliable and efficient stegosystem does not exist for this channel family
– for every efficient stegosystem S the value InSeccha

F ,S is large if Alice has to fight against arbitrary
polynomially bounded wardens (see Theorem 3.3 below). Obviously, one can conclude that for
every channel family that includes pseudorandom flat h-channels, every efficient stegosystem is
insecure.

However, this does not imply that for a given stegosystem S there exists a warden W that
can detect the use of S for every channel in the family F of pseudorandom flat h-channels. In
Subsection 6.3.1 we will describe two efficient stegosystems S4 and S5 for such channel family F ,
based on the generic stegosystem presented in the previous section, to illustrate the properties of
the measures for insecurity and detectability introduced above. Both systems are insecure, i.e.,
there exists a small function δ > 0 such that for i = 5, 6

InSeccha
F ,Si

(t, q, λ) ≥ 1− δ ,

where the complexity bounds for the adversary can be chosen as follows: a polynomial time bound
t, constant query complexity q of linear length λ. On the other hand, we will show that the systems
are not channel-universally detectable, i.e., there exists a small function ε > 0 such that for i = 5, 6

UnivDetectcha
F ,Si

(t, q, λ) ≤ ε
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for all polynomially bounded t, q, λ. Thus, both systems are simultaneously insecure and not de-
tectable according to these measures. However, if one compares S4 and S5 more thoroughly, one
likely concludes that the achievable degree of insecurity/detectability should not be equal for the
two systems: S4 looks far more easy to break than S5.

Furthermore, when looking at channel-specific detectability, we even obtain the result that

SpecDetectcha
F ,S4(t, q, λ) = 0 and SpecDetectcha

F ,S5(t, q, λ) ≥ 1− δ ,

for a small function δ. This runs counter to our intuition regarding the strength of S4 and S5.
We therefore conclude that not only InSeccha

F ,S and UnivDetectcha
F ,S , but also SpecDetectcha

F ,S faces
serious problems in providing a reasonable measure of steganographic security.

Average detectability, on the other hand, seems to agree with our intuition. It will be proven
that there are small functions δ and ε such that

AvgDetectcha
F ,S4(t, q, λ) ≥ 1− δ and AvgDetectcha

F ,S5(t, q, λ) ≤ ε .

6.3.1 Upper and Lower Bounds for Average Detectability

In the following we will define two similar looking stegosystems S4 and S5 for pseudorandom flat
h-channels (Dedić et al. 2009), which we have introduced in Section 3.2. The stegosystem S5 is
just the generic stegosystem SF used for the family F = PRDη. Note that by Theorem 6.4 we get
an efficient stegosystem, i.e., a system running in polynomial time with respect to the description
size η, the length of the message n, and the size of documents σ. This follows from the following
properties:

(1) PRDη is a family of channels such that each channel in PRDη has description size η,

(2) the distribution functions of channels in PRDη are efficiently computable (by Lemma 3.2, Item
1), and

(3) the probability distribution Cω ∈R PRDη is determined by a uniform distribution of description
strings ω.

Moreover, since for every channel Cω in PRDη and for every history H the probability distribution
−→
Dω
H is uniform and since the cardinality of the support of

−→
Dω
H is a power of two, the unreliability

of S5 can be shown to be zero. By Theorem 6.4, with ϕ(t, λ, n) as defined there, we get

Corollary 6.5. There exists a polynomial p such that

InDistPRDη(t, q, λ)− ϕ(t, λ, n) ≤ AvgDetectcha
PRDη ,S5(t, q, λ) ≤ InDistPRDη(p(t), q, λ) + ϕ(t, λ, n) .

The second stegosystem, denoted by S4, works in exactly the same manner as SF for the family
F = PRDη, except for the channel description ω used in the procedure SF -Encode when applying
IntervalEncode. Instead of using K0 as a random seed for ω now a fixed ω is used. Thus, the
only difference between S4 and S5 is that in the system S5 both encoder and decoder use a secret
key K0 to select ω at random while in the system S4 encoder and decoder use a predetermined
value ω. Note again that the choice of ω by S5 as well as use of the system specific seed ω by S4 is
independent of the “real” description ωC for the communication channel C. In the case of S5 Alice
and Bob just randomly select ω, in the case of S4 they cannot even choose ω since it is built into
the stegosystem. For this reason, the stegosystems S4 and S5 may output samples that are not in
the support of the communication channel C.

Using Corollary 3.4, one can deduce that the insecurities InSeccha
PRDη ,S4 and InSeccha

PRDη ,S5 are large
since for both systems the encoding complexity and unreliability are small – and there are even
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quite efficient wardens that achieve a large advantage. On the other hand, it is not hard to show
that for all polynomial wardens the detectabilites UnivDetectcha

PRDη ,S4 and UnivDetectcha
PRDη ,S5 are

small.
Moreover, by a nontrivial analysis relating the distinguishability of pseudorandom functions from

random functions to the advantage of a distinguisher between random and pseudorandom flat h-
channels, we can bound the indistinguishability of PRDη.

Theorem 6.6. There exists a polynomial p such that using a family of pseudorandom functions
PRF with insecurity PRF-InSecPRF(t, q) one obtains

InDistPRDη(t, q, λ) ≤ 3 · PRF-InSecPRF(p(t), O(t)) + max
{

0, 1−
(
1− q

2h

)q}
+
p(t)
2η

.

Proof. Let S denote 2σ and H denote 2h. Let Q be a (t, q, λ)-distinguisher achieving maximum
advantage, i.e., let

InDistPRDη(t, q, λ) =
∣∣∣Prω,ω′ [Q

−→
Dω ,
−→
Dω′

= 1]− Prω[Q
−→
Dω ,
−→
Dω

= 1]
∣∣∣ .

Let us denote by
γ(q) = max

{
0, 1−

(
1− q

H

)q}
.

Our aim is to construct a distinguisher R based on Q, which detects a difference between pseudo-
random and truly random flat h-channels with small advantage. Speaking more precisely, we will
require that the advantage of the distinguisher is bounded from below as follows:

1
3
·
∣∣∣Prω,ω′ [Q

−→
Dω ,
−→
Dω′

= 1]− Prω[Q
−→
Dω ,
−→
Dω

= 1]
∣∣∣− γ(q) .

The distinguisher R works in time polynomial in t. Thus, using the bound above we will get the
theorem:

PRF-InSecPRF(p(t), O(t)) ≥
∣∣∣Pr−→

D
[R
−→
D,Memb(

−→
D) = 1]− Prω[R

−→
Dω ,Memb(

−→
Dω) = 1]

∣∣∣
≥ 1

3
·
∣∣∣Prω,ω′ [Q

−→
Dω ,
−→
Dω′

= 1]− Prω[Q
−→
Dω ,
−→
Dω

= 1]
∣∣∣− γ(q)− p(t)

2η

=
1
3
· InDistPRDη(t, q, λ)− γ(q)− p(t)

2η
.

Let us denote, for short,

α0 = Prω[Q
−→
Dω ,
−→
Dω

= 1] and α1 = Prω,ω′ [Q
−→
Dω ,
−→
Dω′

= 1] ,

and let
∆ = |α1 − α0| .

Next, we consider the behaviour of the algorithm Q in cases when instead of sample sequences
from oracles (

−→
Dω,
−→
Dω) or (

−→
Dω,
−→
Dω′) Q is provided with sample sequences from some other sets,

namely either from truly random flat h-sets
−→
D = D1 × D2 × · · · or random sequences from

−→
Σ = Σ × Σ × . . .. Note that in such cases Q can behave quite arbitrarily. Let in general Q

−→
Y ,
−→
Z ,

with
−→
Y = Y1 × Y2 × . . . and

−→
Z = Z1 × Z2 × . . . such that Yi, Zi ⊆ Σ for all integers i ≥ 1,

denote the algorithm Q with access to two oracles: the first oracle provides sequences of exam-
ples (s1,1, s2,1, . . . , s`1,1), (s1,2, s2,2, . . . , s`2,2), . . . with si,j ∈R Yj , and the second oracle provides
sequences of examples (s′1,1, s

′
2,1, . . . , s

′
`′1,1), (s

′
1,2, s

′
2,2, . . . , s

′
`′2,2), . . . with s′i,j ∈R Zj . All sequence
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elements are chosen uniformly and independently at random. We consider the following probabili-
ties:

α2 = Pr−→
D,ω′

[Q
−→
D,
−→
Dω′

= 1] ,

α3 = Prω[Q
−→
Σ ,
−→
Dω

= 1] ,

α4 = Pr−→
D

[Q
−→
D,
−→
D = 1] ,

α5 = Pr−→
D

[Q
−→
Σ ,
−→
D = 1] .

We will assume that for all the oracles above the algorithm Q has still the same time and query
complexities as in the case of pseudorandom flat h-sets. If this is not the case, then we can easily
modify the algorithms, slightly increasing the time complexity. Before we give our construction for
the distinguisher R we prove the following relationships between the above probabilities. First we
show that Q does not distinguish between the case in which it gets as challenge oracles the pair
(
−→
D,
−→
Dω′) and the situation when the challenge oracles provided to Q is a pair (

−→
Σ ,
−→
Dω).

Fact 6.1. Let α2 = Pr−→
D,ω′

[Q
−→
D,
−→
Dω′

= 1] and α3 = Prω[Q
−→
Σ ,
−→
Dω

= 1] and let q be the query complexity

of the algorithm Q. Then it holds that |α2 − α3| ≤ γ(q) = max
{
0, 1−

(
1− q

H

)q}.
Proof. We show first that the probability distribution over sequences provided by the oracle

−→
D

is very close to the distribution over sequences provided by the oracle
−→
Σ if the sequences are of

polynomial lengths.
We start with the case where Q requires samples from one particular Di. We say that a sequence

s1, s2, . . . , sq is injective if it does not contain duplicates. Let E2 be an event such that we randomly
choose D ⊆ Σ of cardinality H and then choose uniformly and independently at random a sequence
of elements xj ∈R D, with j = 1, . . . , q. Next let E3 be an event such that we choose uniformly and
independently at random elements xj ∈R Σ, with j = 1, . . . , q. Then for every injective sequence
s1, s2, . . . , sq ∈ Σ we have that the conditional probabilities

P2(s1, . . . , sq) = PrE2 [(x1, . . . , xq) = (s1, . . . , sq) | (x1, . . . , xq) is injective] and

P3(s1, . . . , sq) = PrE3 [(x1, . . . , xq) = (s1, . . . , sq) | (x1, . . . , xq) is injective]

are equal to each other, so that Q in this case cannot distinguish between sequences from D
or Σ. In fact, for any injective sequence s1, s2, . . . , sq the probability P3(s1, . . . , sq) is equal to
1
S ·

1
S−1 ·

1
S−2 . . .

1
S−q+1 . Moreover, the first probability can be evaluated as

P2(s1, . . . , sq) =

(
S−q
H−q

)(
S
H

) · 1
H
· 1
H − 1

· . . . 1
H − q + 1

=
1
S
· 1
S − 1

· 1
S − 2

. . .
1

S − q + 1
.

On the other hand, for the case that (s1, s2, . . . , sq) is not injective, so that Q might detect some
difference, we get by application of the birthday paradox that for both E2 and E3 it holds that

Pr[(x1, x2, . . . , xq) is not injective] ≤ 1−
(
1− q

H

)q
.

Next, it is easy to see that the same holds in the general case, i.e., when the elements come from
different sets: Di1 , Di2 , . . . , Di` . Thus, |α2 − α3| ≤ 1−

(
1− q

H

)q.
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Next we show that the algorithm Q also does not distinguish significantly between the two
situations in which it gets as challenge oracles either (

−→
D,
−→
D) or (

−→
Σ ,
−→
D).

Fact 6.2. Let α4 = Pr−→
D

[Q
−→
D,
−→
D = 1] and α5 = Pr−→

D
[Q
−→
Σ ,
−→
D = 1] and let q be the query complexity

of the algorithm Q. Then it holds that |α4 − α5| ≤ γ(q) = max
{
0, 1− (1− q

H )q
}
.

The proof of this fact is essentially the same as the proof of Fact 6.1: using a similar method,
one can show that the probability distributions over sequences from (

−→
D,
−→
D) and (

−→
Σ ,
−→
D) are very

close to each other if the sequences are of polynomial lengths.
Now we are ready to present the distinguisher R. Our aim is to provide an algorithm R such

that ∣∣∣Pr−→
D

[R
−→
D,Memb(

−→
D) = 1]− Prω[R

−→
Dω ,Memb(

−→
Dω) = 1]

∣∣∣ ≥ ∆/3− γ(q) ,

where, recall, R
−→
X,Memb(

−→
X ) denotes the machine with access to two oracles: the first oracle provides

a sequence of examples from
−→
X (chosen uniformly and independently at random) and the second

Memb(
−→
X ) denotes the membership testing oracle for

−→
X . The algorithm presented below will

require even less: it does not need to perform any membership test at all. Thus, we will construct
a distinguisher R such that∣∣∣Pr−→

D
[R
−→
D = 1]− Prω[R

−→
Dω

= 1]
∣∣∣ ≥ ∆/3− γ(q) , (6.7)

where R
−→
X , with

−→
X = X1 ×X2 × . . . denotes the machine with access to the oracle that provides a

sequence of examples from sets X1, X2 . . . chosen uniformly and independently at random.

1. If |α0 − α4| ≥ ∆/3− γ(q), then R
−→
X simulates the algorithm Q

−→
X,
−→
X .

The simulation works as follows: whenever Q requires an example of length ` from either
oracle, R obtains from

−→
X an example sequence (s1, s2, . . . , s`), with si ∈ Xi for 1 ≤ i ≤ `,

and provides this sequence to Q. Finally, R outputs the value that Q returns. It holds that

Prω[R
−→
Dω

= 1] = Prω[Q
−→
Dω ,
−→
Dω

= 1] and Pr−→
D

[R
−→
D = 1] = Pr−→

D
[Q
−→
D,
−→
D = 1] .

Thus, we get ∣∣∣Pr−→
D

[R
−→
D = 1]− Prω[R

−→
Dω

= 1]
∣∣∣ = |α0 − α4| ≥ ∆/3− γ(q) .

2. If |α1 − α2| ≥ ∆/3− γ(q), then R
−→
X randomly chooses an ω′ and simulates Q

−→
X,
−→
Dω′

.
The simulation works as follows: whenever Q requires an example of length ` from the first
oracle, R, similarly as in the previous case, obtains an example sequence (s1, s2, . . . , s`) from
X1×X2× . . .×X` and provides it to Q; if Q requires an example of length ` from the second
oracle, then R uses ω′ to simulate

−→
Dω′ and provides (s1, s2, . . . , s`) to Q. As before, R outputs

the same value as Q. It holds that

Prω[R
−→
Dω

= 1] = Prω,ω′ [Q
−→
Dω ,
−→
Dω′

= 1] and Pr−→
D

[R
−→
D = 1] = Pr−→

D,ω′
[Q
−→
D,
−→
Dω′

= 1]

and we get
∣∣∣Pr−→

D
[R
−→
D = 1]− Prω[R

−→
Dω

= 1]
∣∣∣ = |α1 − α2| ≥ ∆/3− γ(q).

3. If |α3 − α5| ≥ ∆/3− γ(q), then R
−→
X simulates Q

−→
Σ ,
−→
X .

During the simulation, whenever Q requires an example of length ` from the first oracle,
R chooses uniformly and independently at random for i = 1, . . . , ` elements si ∈R Σ and
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provides (s1, s2, . . . , s`) to Q; if Q requires an example sequence of length ` from the second
oracle, then R passes a sequence (s1, s2, . . . , s`) from X1 ×X2 × . . . ×X` to Q and outputs
Q’s return value. It holds that

Prω[R
−→
Dω

= 1] = Prω[Q
−→
Σ ,
−→
Dω

= 1] and Pr−→
D

[R
−→
D = 1] = Pr−→

D
[Q
−→
Σ ,
−→
D = 1] .

We obtain
∣∣∣Pr−→

D
[R
−→
D = 1]− Prω[R

−→
Dω

= 1]
∣∣∣ = |α3 − α5| ≥ ∆/3− γ(q).

Thus, in each case we are able to provide a distinguisher that fulfils the advantage proposed in
(6.7). Now, the crucial point is that for Q at least one of the three conditions above has to be true.
Formally, it holds that

max{|α0 − α4|, |α1 − α2|, |α3 − α5|} ≥ ∆/3− γ(q) .

In fact, if not, then from the inequalities |α1 − α2| < ∆/3− γ(q), |α3 − α5| < ∆/3− γ(q), and by
Fact 6.1 that says α2 and α3 are very close, we get

|α1 − α5| ≤ |α1 − α2|+ |α2 − α3|+ |α3 − α5|

< 2∆/3− 2γ(q) + γ(q) = 2∆/3− γ(q) .

On the other hand, from |α0 − α4| < ∆/3 − γ(q) and by Fact 6.2, that says α4 and α5 are very
close, we can get |α0−α5| ≤ |α0−α4|+ |α4−α5| < ∆/3. Recall that ∆ = |α1−α0|. Therefore we
obtain

∆ = |α1 − α0| ≤ |α1 − α5|+ |α0 − α5|

< ∆− γ(q) ,

which is a contradiction.

Combining this theorem with Corollary 6.5 we get

Theorem 6.7. Using a family of pseudorandom functions PRF with PRF-InSecPRF(t, q), the
stegosystem S5 achieves

AvgDetectcha
PRDη ,S5(t, q, λ) ≤ 3 · PRF-InSecPRF(p(t), O(t)) + δ ,

where δ = (1−(1−q/2h)q)+p(t)·2−η+ϕ(t, λ, n) and ϕ(t, λ, n) is the function defined in Theorem 6.4.

Since UnivDetectcha
PRDη ,S5 ≤ AvgDetectcha

PRDη ,S5 , we get that the channel universal detectability of
S5 is small, too. On the other hand, the specific detectability measure gives a high value for S5.

Theorem 6.8. There exist polynomials p1 and p2 such that for the stegosystem S5 using a family
of pseudorandom functions PRF with insecurity PRF-InSecPRF(t, q). it holds

SpecDetectcha
PRDη ,S5(p1(η), q, p1(η)) ≥ 1− δ′ ,

with δ′ = PRF-InSecPRF(p2(n, η), p2(n, η)) + p2(n, η) 2−η + (2h/2σ)q` + max
{
0, 1− (1− q/2h)q

}
.

Proof. Let C ∈ PRDη be a fixed communication channel and let ωC be the seed of C. From the
construction of PRDη we can assume W to have access to an efficient membership test for the
channel support. We now construct such a warden W for the channel C with support

−→
DωC . W

makes q queries, where q is an arbitrary function, to the challenge oracle CH, which is either S5-
EncodeCω(K,M,H) or OC (M,H), where M of length n and H can be chosen by W . W uses an
empty history H and does the following steps for i = 1, . . . , q:
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1. W chooses a random message M ∈ {0, 1}n and queries the challenge oracle CH with M and
H; let si,1, . . . , si,2` be the output of CH;

2. W uses the membership test for ωC on the first ` elements si = si,1, . . . , si,` of the output of
CH;

3. if there exists some si,j /∈
−→
Dj

ωC , then W terminates and outputs 1 (for “stego”);

4. W updates H by adding si

Finally W outputs 0 (for “no stego”) if it has not terminated before.
The warden works in time polynomial in η, σ, n and q and makes q queries of total length λ = q`.

Moreover, by the construction of the stegosystem S5 we know that the probability distribution of
the strings si,1, . . . , si,` is exactly the same as

−→
DωC . Thus, we get for the advantage of W

Advcha−→
DωC ,S5

(W ) =
∣∣∣Pr[W

−→
DωC ,

−→
DωC = 1]− Prω[W

−→
DωC ,

−→
Dω

= 1]
∣∣∣

=
∣∣∣Pr[W

−→
DωC ,

−→
DωC = 0]− Prω[W

−→
DωC ,

−→
Dω

= 0]
∣∣∣

= 1− Pr[W
−→
DωC ,

−→
Dω

= 0] ,

because W will always correctly output “no stego” if it sees original samples from C. Below we
estimate the value of

Pr[W
−→
DωC ,

−→
Dω

= 0] = Pr
ω; s1,...,sq∈R

−→
Dω [s1, . . . , sq ∈

−→
DωC ] .

Based on W let us construct a distinguisher Q to distinguish the truly random flat h-channel
−→
D

from
−→
Dω. Q works as follows. It makes q queries to the oracle X. Let s1, . . . , sq be the output.

Then Q simulates q iterations of the warden W simulating the answers of the challenge oracle CH
of W by s1, . . . , sq. If the warden outputs 0 for “no stego”, the distinguisher Q outputs 1 for “

−→
Dω”

and 0 otherwise. From the construction it follows:

Pr[Q
−→
D = 1] = Pr[W

−→
DωC ,

−→
D = 0] and Prω[Q

−→
Dω

= 1] = Prω[W
−→
DωC ,

−→
Dω

= 0] .

To approximate an advantage of Q we will use the property that W does not distinguish with
reasonable probability between the case in which it gets as challenge oracles the pair (

−→
DωC ,

−→
D) and

the situation when the challenge oracles provided to W is a pair (
−→
DωC ,Σ).

Let us denote by γ(q) = max
{
0, 1−

(
1− q

H

)q}.
Fact 6.3. Let q be the query complexity of the algorithm W and let ωC be a fixed seed. Then it
holds that ∣∣∣Pr[W

−→
DωC ,

−→
Σ = 1]− Pr−→

D
[W
−→
DωC ,

−→
D = 1]

∣∣∣ ≤ γ(q) .

The proof of this fact is essentially the same as the proof of Fact 6.1 in the proof of Theorem 6.6,
so we skip it here.

By the triangle inequality, by Fact 6.3, and by the observation that Prs1,...,sq∈RΣ[s1, . . . , sq ∈
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−→
DωC ] = (H/S)q, we get that∣∣∣Pr−→

D
[Q
−→
D = 1]− Prω[Q

−→
Dω

= 1]
∣∣∣ = ∣∣∣Pr−→

D
[W
−→
DωC ,

−→
D = 0]− Prω[W

−→
DωC ,

−→
Dω

= 0]
∣∣∣

≥
∣∣∣Pr[W

−→
DωC ,

−→
Σ = 0]− Prω[W

−→
DωC ,

−→
Dω

= 0]
∣∣∣−∣∣∣Pr[W

−→
DωC ,

−→
Σ = 1]− Pr−→

D
[W
−→
DωC ,

−→
D = 1]

∣∣∣
≥
∣∣∣Pr[W

−→
DωC ,

−→
Σ = 0]− Prω[W

−→
DωC ,

−→
Dω

= 0]
∣∣∣− γ(q)

=
∣∣∣Prs1,...,sq∈RΣ[s1, . . . , sq ∈

−→
DωC ]− Prω[W

−→
DωC ,

−→
Dω

= 0]
∣∣∣− γ(q)

=
∣∣∣(H/S)q − Prω[W

−→
DωC ,

−→
Dω

= 0]
∣∣∣− γ(q) .

However, since it holds that

PRF-InSecPRF(p2(n, η), p2(n, η)) + p2(n, η)2−η ≥
∣∣∣Pr−→

D
[Q
−→
D = 1]− Prω[Q

−→
Dω

= 1]
∣∣∣ ,

we get that

PRF-InSecPRF(p2(n, η), p2(n, η)) + p2(n, η)2−η + (H/S)q + γ(q) ≥ Prω[W
−→
DωC ,

−→
Dω

= 0] .

This completes the proof.

For the stegosystem S4, the average and special detectability measures yield just an opposite
classification compared to S5.

Theorem 6.9. There is a small function δ such that AvgDetectcha
PRDη ,S4(t, q, λ) ≥ 1− δ.

Moreover, for all t, q, λ it holds SpecDetectcha
PRDη ,S4(t, q, λ) = 0.

Proof. The result for specific detectability follows directly from the definition. The channel with
minimal advantage is defined by ω0, as Alice will always output correct covertexts, so the advantage
for any adversary is clearly 0.

Now let us look at the detectability on average. Because ω0 is fixed for S4 and the adversary
knows S4, he will also know ω0. We will now construct a warden W for S4. W makes q queries,
where q is an arbitrary function, to the challenge oracle CH, which is either S4-Encode(K,M,H)
or OC (M,H), where M of length n and H can be chosen by W . W starts with an empty history
H and does the following steps for i = 1, . . . , q:

1. W chooses a random message M ∈ {0, 1}n and queries the challenge oracle CH with M and
H; let si,1, . . . , si,2` be the output of CH;

2. W uses the membership test for ω0 on the first ` elements si = si,1, . . . , si,l of the output of
CH;

3. if there exists some si,j /∈
−→
Dj

ω0 , then W terminates and outputs 0 (for “no stego”)

4. W updates H by adding si

and finally outputs 1 (for “stego”) if it has not terminated before. Note that this algorithm is
exactly the same as the one we constructed previously in the proof of Theorem 6.8, except for its
output, which is inverted. This is because of a symmetry in the two cases: in Theorem 6.8 the
warden knew the seed ωC for the channel C, in this theorem the warden knows the seed ω0 that
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Alice uses. As before, the warden works in time polynomial in η, σ, n and q and makes q queries
of total length λ = q`. For the advantage we now get

Advcha−→
Dω ,S4

(W ) =
∣∣∣Pr[W

−→
Dω0 ,

−→
Dω0 = 1]− Prω[W

−→
Dω0 ,

−→
Dω

= 1]
∣∣∣

= 1− Prω[W
−→
Dω0 ,

−→
Dω

= 1] ,

because W will always correctly output “stego” if it sees the output of S4 and the only case that
it can make an error is when s1, . . . , sq ∈

−→
Dω. The estimate Pr[W

−→
Dω0 ,

−→
Dω

= 1] ≤ 1 − δ has been
shown in the proof of Theorem 6.8 (simply substitute

−→
DωC by

−→
Dω0).

The system S4 actually in almost all cases is easy to break, whereas S5 seems to be strong against
attacks. These properties are reflected only by the detectability on average measure.

6.4 Discussion of the Results of Chapter 6

Searching for a useful security measure for steganography that accounts for the universality of
stegosystems with respect to covertext channels and also the universality of the adversary, we
propose to replace the notion of insecurity by detectability. Comparing the three variants specific
detectability, universal detectability and detectability on average that model different preconditions
of the game between the stegoencoder and the adversary we have argued that only the last one
gives meaningful results. It turns out that the state of knowledge of both parties concerning the
covertext channel is very important. In reality, it is most likely that both have about the same
partial knowledge. We have shown that the detectability of a stegosystem can be based on the
difficulty to learn the covertext distribution, and, for the first time, obtained a tight analytical
relationship between these tasks.

Based on the construction of a secure (but inefficient) stegosystem for random flat h-channels by
Dedić et al. (2009), we have designed two stegosystems S4 and S5 that have the following properties:
(1) both are insecure, (2) S5 is not universally detectable, but specifically detectable and (3) S4 is
neither universally detectable nor specifically detectable. However, as low universal detectability is
easy to achieve (S4 only needs to be secure for a single channel) and low specific detectability can
be a misleading result (intuitively, S4 is much weaker than S5, but specific detectability tells us
otherwise), we settle on detectability on average as a “reasonable” measure for security.

We have shown that S4 is detectable on average, whereas S5 is not, making S5 an interesting
candidate for a stegosystem with desirable properties: it is reliable, efficient – in contrast to systems
based on rejection sampling (Hopper et al. 2002b; Dedić et al. 2009), its sampling complexity is
linear, not exponential – and still provides a good amount of security, as on average it cannot be
detected by an adversary running in polynomial time.

We propose to investigate other stegosystems using these different notions of security. Can one
get similar results if the pseudorandom functions used in the constructions here are replaced by
cryptographic functions?
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Conclusions and Future Research Directions

In this thesis we have looked at stegosystems that combine the properties of security and efficiency.
Since the first stegosystems have been proven computationally secure by Hopper et al. (2002b),
there has always been the question of how to improve the efficiency of secure stegosystems. The
problem of the constructions by Hopper et al. lies in the fact that the covertext documents and their
min-entropy could be quite large, so embedding just one bit per document potentially results in a
“waste of min-entropy”. One approach to better use all the min-entropy provided by a document
is to embed more than one bit per document. Ideally, if the min-entropy of such a channel is h, one
could embed up to h bits per document. However, as Dedić et al. (2009) have shown, embedding b
bits per covertext document results in exponential (in b) sampling complexity – for any black-box
stegosystem. With this negative result, research on computationally secure stegosystems seemed to
be in a cul-de-sac – not because of lack in security, but because of an apparently inherent problem
with efficiency.

This was the starting point of the investigation presented in this thesis. First, we looked at
another possibility to achieve efficiency in black-box steganography, namely the use of oracles that
sample covertext documents with a fixed entropy. The idea was that if we cannot efficiently find
by sampling a covertext that embeds all b bits, we scale down the problem and only embed a fixed
(low) number of bits at one time into a prefix of a document and then iteratively repeat this process
until we end up with a complete covertext document with our message embedded. Our result is
essentially negative, in that we found the problem of constructing such fixed-entropy samplers for
even slightly structured covertext channels to be NP-complete. We therefore believe that for all
practically used covertext channels, such as natural language texts, digital audio or digital images,
for which we cannot even give any concise descriptions, this problem is also NP-complete. This
result therefore destroys all hopes of a straight-forward derivation of an efficient stegosystem from
previously proposed black-box constructions.

We thus introduced a new model which we called grey-box steganography that bridges the gap
in knowledge about the covertext channel that exists between black-box (no knowledge) and white
box (full knowledge) models. The idea of letting Alice and Eve use algorithmic learning to obtain
an amount of knowledge that seems appropriate for the channel in use is inspired by practical
stegosystems. The assumptions about covertext channels (such as multimedia data) that are used
in the design of practical steganography often derive from heuristic observations about covertexts
that are generalised to form hypotheses. These practical approaches, however, do not necessarily
create hypotheses that are adequate to the channel, mainly since so far no one has succeeded (and
likely no one ever will) in giving a model that fully describes covertext channels such as digital
images. Some examples of hypotheses implicitly used in practical steganography are reviewed by
Fridrich et al. (2007) together with statistical methods for the detection of stegosystems based on
them.

In the context of our work, we assume that the hypothesis representation is indeed appropriate
for the type of covertext channel that will be used. Thus, we know beforehand that we are dealing
with a channel family whose individual channels can be represented by Monomials, but we do not
know which particular channel – and thus Monomial – will be used for communication. This seems
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to be a reasonable assumption, as in practical applications Alice will certainly know whether she
uses digital images, audio files or texts, but not much else.

Although modification algorithms could be constructed for some very broad classes (in terms of
their expressiveness) of hypothesis representations that could be successfully used in stegosystems,
the practicality of the grey-box approach is limited by the infeasibility of learning DNF formulae
and the approximative nature of learning algorithms for decision trees. These shortcomings formed
the point of departure for our investigation of stegosystems that base their security on the difficulty
to learn certain classes of covertext channels.

With our fundamental criticism of the notion of insecurity as first introduced into steganography
by Hopper et al. (2002b) and widely used since, we take a view that much better fits the actual
situation in an exchange of steganographic messages. Thanks to the concept of a channel family
that was first introduced in this thesis 1, we could formulate the new concept of detectability and
give three variants of it. The choice of detectability on average as the notion best suited for security
analyses of stegosystems was corroborated by analyses of two specifically constructed stegosystems
that are both insecure but achieve different results with respect to the detectability measures.
Intuitively, the superiority of detectability on average can be seen in the fact that only this security
measure is not influenced by the presence of one single channel for which a given stegosystem is
secure, as is the case with channel universal detectability and channel specific detectability.

The idea of a randomly chosen covertext channel, which is used throughout this thesis and in
particular in the definition of detectability on average, is actually essential to steganography. Recall
that Simmons used the scenario of communication among prisoners to describe his model of covert
channels. One aspect of such communication is that the prisoners have to make do with whatever
is available to them for hiding their message into, thus the specific covertext channel cannot be
chosen by them and can thus be thought of as randomly chosen among all channels of a family.

The stegosystem S5, which might appear weak at first glance, uses the fact that Eve cannot
distinguish between documents drawn by Alice from some randomly chosen channel and documents
from the real covertext channel. Thus, even if we allow Eve to depend on the channel seed ωC ,
she cannot detect whether Alice uses steganography. Therefore the stegosystem S5 in the new
security model complements the previously created grey-box stegosystems in case we are dealing
with channels that are hard to distinguish.

Having seen all these new results that put back a little bit of optimism in the theoretic debate over
secure and efficient steganography, the natural question arises how to transfer them into practice.
If we look at the stegosystem S1 for monomials, as presented in Section 5.2, we find that all the
procedures given can be easily implemented on a computer. However, what is lacking, or at least
not clearly defined, is a suitable covertext channel together with its sampling oracle. By suitable we
mean that the covertext channel should be fully describable by monomials and have some practical
relevance. For example, it is questionable if digital images can be described simply by a monomial
and it is also questionable if some set of bit-strings which can be described by a monomial do not
arouse the suspicion of a warden.

We therefore suggest a different approach for the practical use of our Grey-Box Steganography.
Let us assume some covertext has certain properties that we can adjust. These could, for example,
be some style tags in an HTML document which can be present (“1”) or absent (“0”). Some of these
will always be present or absent (they define a certain style for a series of websites), while others
appear only occasionally (e.g. special highlighting of some passages by frame boxes or coloured
backgrounds). These can be encoded in a binary string and, provided they are set independently,
be learned by a monomial. Another example could be computer-generated images that show a

1Dedić et al. (2009) implicitly use a similar concept for their flat h-channels, which can be seen as a channel family
parameterised by the random seed. However, their definition of insecurity, which they give only for a specific
channel C, does not reflect this concept.
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scene in which certain objects are present (“1”) or absent (“0”). Some objects are always present
or always absent, e.g. if we have a nice Caribbean beach scene, we certainly need sand, a blue sky
and water, but not snow, ice or penguins (assuming we want a realistic scene). Objects that may
or may not be present would include palm trees, people or birds. In this way we end up with a
stegosystem that learns and changes semantic properties, i.e., properties that influence the major
contents of our covertexts instead of just a few unnoticeable bits.

It will thus be an interesting task for future research to not only look at the construction of
stegosystems but also to look for covertext channels that are well-suited for steganography.
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