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Abstract

This thesis presents Probabilistic Doxastic Temporal (PDT) Logic, a formalism to
represent and reason about probabilistic beliefs and their temporal evolution in multi-
agent systems. This formalism enables the quantification of agents’ beliefs through
probability intervals and incorporates an explicit notion of time.

Quantifying probabilistic knowledge through probability intervals instead of single
probability values significantly eases the task of formally representing existing knowl-
edge of a human domain expert. In most cases, a domain expert can give reasonable
probability estimates of her knowledge, but will inevitably fail at giving correct precise
numerical values on these probabilities. Thus, the use of probability intervals pro-
vides means to express probabilistic knowledge as precise as possible without enforcing
unrealistic precision. The width of a probability interval can then give additional infor-
mation about the certainty of a probability quantification. Naturally, a narrow interval
is associated with a high certainty of the respective probability and vice versa, a wide
interval is associated with low certainty.

In contrast to related work, PDT Logic employs an explicit notion of time and
thereby facilitates the expression of richer temporal relations. Existing approaches of
dynamic epistemic logics usually employ an implicit notion of time. This makes it
impossible to reason about temporal relations that span over multiple time points.

Through the introduction of an appropriate syntax and semantics we discuss how
beliefs in multi-agent systems can be formally represented and how their temporal
evolutions can be analyzed. We analyze the complexity of decision problems in PDT
Logic and develop sound and complete satisfiability checking algorithms. Possible
applications of PDT Logic are indicated through the discussion of suitable examples.



Zusammenfassung

In der vorliegenden Arbeit wird Probabilistic Doxastic Temporal (PDT) Logic vor-
gestellt. PDT Logic ist ein Formalismus, um probabilistischen Glauben und dessen
temporale Entwicklung in Multi-Agenten-Systemen darzustellen und daraus Schlüsse
zu ziehen. Dieser Formalismus ermöglicht die Quantifizierung von Glaubenszuständen
von Agenten durch Wahrscheinlichkeitsintervalle und verwendet eine explizite Darstel-
lung der Zeit.

Die Quantifizierung von probabilistischem Wissen durch Wahrscheinlichkeitsinter-
valle statt einzelner Wahrscheinlichkeitswerte erleichtert menschlichen Experten die
formale Darstellung existierenden Wissens signifikant. In den meisten Fällen kann ein
Experte sinnvolle Wahrscheinlichkeitsabschätzungen seines Wissens liefern, während
die Angabe von präzisen Werten zu unvermeidbaren Fehlern führt. Folglich ermöglicht
die Verwendung von Wahrscheinlichkeitsintervallen die Darstellung von probabilistis-
chem Wissen so genau wie möglich, ohne eine unrealistische Präzision zu erzwin-
gen. Kleine Wahrscheinlichkeitsintervalle stellen naturgemäß einen hohen Grad an
Sicherheit bezüglich des Wahrscheinlichkeitswertes dar und umgekehrt stellen große
Wahrscheinlichkeitsintervalle eine geringe Sicherheit dar.

Im Gegensatz zu verwandten Arbeiten verwendet PDT Logic eine explizite Darstel-
lung der Zeit und ermöglicht dadurch die Darstellung von komplexeren zeitlichen
Zusammenhängen, während existierende Ansätze für dynamische epistemische Logiken
in der Regel eine implizite Darstellung der Zeit verwenden. Hierdurch wird es
unmöglich, Schlussfolgerungen aus temporalen Zusammenhängen zu ziehen, die sich
über mehrere Zeitpunkte erstrecken.

Durch die Einführung geeigneter Syntax und Semantik wird diskutiert, wie Glauben
in Multi-Agenten-Systemen formal dargestellt und dessen zeitliche Entwicklung ana-
lysiert werden kann. Die Komplexität von Entscheidungsproblemen für PDT Logic
wird analysiert und vollständige und korrekte Entscheidungsalgorithmen werden entwi-
ckelt. Mögliche Anwendungen von PDT Logic werden durch die Diskussion geeigneter
Beispiele aufgezeigt.
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Chapter 1

Introduction

Logical analysis of knowledge and belief has been an active topic of research in diverse
fields such as philosophy [Hin62], economics [Aum76], game theory [Har67, Har68a,
Har68b], and computer science [FHMV95]. Numerous extensions to modal epistemic
logic have been made to reason about knowledge in multi-agent settings [FHMV95,
BM04], to add probabilistic knowledge [FH94, CEMS08], and to analyze the dynamic
evolution of knowledge [vDvdHK07].

In most realistic scenarios, an agent has only incomplete and inaccurate information
about the actual state of the world, and thus considers several different worlds as
actually being possible. As it receives new information (e.g., it observes some facts
that currently hold), it has to update its beliefs about possible worlds such that they
are consistent with this new information. These updates can for example result in
regarding some (previously considered possible) worlds as impossible or judging some
worlds to be more likely than before. Thus, in addition to analyzing the set of worlds
an agent believes to be possible, it is also useful to quantify these beliefs in terms
of probabilities. This provides means to specify fine-grained distinctions between the
range of worlds that an agent considers possible but highly unlikely, and worlds that
seem to be almost certainly the actual world.

When multiple agents are involved in such a setting, an agent may not only have
varying beliefs regarding the facts of the actual world, but also regarding the beliefs
of other agents. In many scenarios, the actions of one agent will not only depend on
its belief in ontic facts (i.e., facts of the actual world), but also on its beliefs in some
other agent’s beliefs.

To illustrate how reasoning about other agents’ beliefs can yield significant advan-
tages in practical scenarios, we start with the following informal description of an
application from the cyber security domain: Suppose that an adversary is trying to
break into a computer system. This is usually done with an attack graph to detect
and exploit potential vulnerabilities of the system. An attack graph specifies a set of
paths (i.e., sequences of actions) to carry out an attack. Several paths of the attack
graph might be used in parallel, potentially by different agents (for instance, a number
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2 1. Introduction

of infected computers controlled by a botnet). Usually, attack patterns specified by
one attack graph are used multiple times, which has two important ramifications: the
adversary will learn from experience which of the paths yield a high probability of
successfully breaking into a system. Defenders in turn will be able to gain knowledge
of the attack graph through the repeated observation of certain patterns. Thus, when
a system is under attack, the defender will have beliefs about both the chosen attack
paths and the adversary’s belief regarding the success of the respective path. Thus,
the defender can choose countermeasures effectively by reacting only on paths where
these nested beliefs are high and which indeed pose a threat according the system’s
mission impact model.

This thesis introduces Probabilistic Doxastic Temporal (PDT) Logic to formalize
reasoning about such beliefs in multi-agent settings. PDT Logic builds upon recent
work on Annotated Probabilistic Temporal (APT) Logic [SPSS11, SSS12] and provides
a formalism which enables representing and reasoning about dynamically changing
quantified temporal multi-agent beliefs through probability intervals and incorporates
a subset of epistemic actions [BM04]. Using concepts from APT Logic as a semantic
foundation, PDT Logic merges work on epistemic logic with recent work on tempo-
ral logic [SPSS11, SSS12]. Apart from reasoning about imprecise probabilities, this
introduces the temporal concept of frequency functions into epistemic temporal logic.

Quantifying probabilistic knowledge through probability intervals instead of single
probability values yields two main advantages. On the one hand, using probability
intervals significantly eases the task of formally representing existing knowledge of a
human domain expert. In most cases, a domain expert can give reasonable probability
estimates of her knowledge, but will inevitably fail at giving correct precise numerical
values on these probabilities. Consider for instance a weather forecast: most people find
it easy to give coarse probabilistic quantifications such as “the chance of rain is high”,
while virtually nobody could quantify this through an exact numerical value. Employ-
ing exact numerical values in a formal representation would then inevitably introduce
errors in the probability model. Thus, the use of probability intervals provides means
to express probabilistic knowledge as precisely as possible without enforcing unrealistic
precision. On the other hand, there are many scenarios where probabilities (and even
rough estimates of them) are simply unavailable, while bounds on these values may be
known. To illustrate this, consider the scenario described in [Ell61]:

Example 1.1 (The Ellsberg paradox [Ell61]). Imagine an urn known to contain
30 red balls and 60 black and yellow balls, the latter in unknown proportion. One
ball is to be drawn at random from the urn; the following actions are considered:
Action I is “a bet on red”, II is “a bet on black”.

Now, it is easy to see that any rational agent would believe that action I will be
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successful with a probability of 1/3. For action II, no such quantification is possible
because the respective probability is unknown. Yet omitting any probabilistic infor-
mation about action II altogether would ignore some available information about the
unknown probability value, namely that it is somewhere between 0 and 2/3. This ex-
ample exhibits two different types of uncertainty: the former action is subject to risk,
i.e., the outcome is unknown, but occurs with known probability, while the later action
is subject to ambiguity (also known as Knightian uncertainty), where the probability is
unknown [Bra15]. Through probability intervals, PDT Logic is able to work with such
imprecise probabilities. The width of a probability interval can then give additional
information about the certainty of a probability quantification. Naturally, a narrow
interval is associated with a high certainty of the respective probability and vice versa,
a wide interval is associated with low certainty.

PDT Logic employs an explicit notion of time and thereby facilitates the expression
of richer temporal relations. This allows for the analysis of temporal doxastic problems
beyond the scope of previous work. The resulting framework provides means to reason
about the temporal evolution of beliefs in multi-agent systems. Two different appli-
cations of this framework are possible: First, any agent of the respective multi-agent
system can employ this framework online during a run of the system to reason about
its own beliefs. By analyzing nested beliefs as introduced above, this gives an agent
also means to reason about probable evolutions of other agents’ belief states. Second,
this framework can be used offline by an external observer to analyze whether desired
evolutions of a given system are possible.

1.1. Research Objectives and Scientific Contributions

The main goal of the research presented in this thesis is the development of a formalism
to represent beliefs and their temporal evolutions in multi-agent systems. In detail,
the objective of this work is to provide a formalism with the following features:

• Agents’ beliefs can be be quantified with probability intervals. The use of prob-
abilities enables a formal representation of varying strengths of beliefs, while the
use of probability intervals facilitates imprecise probabilities and therefore gives
a more natural way of specifying existing knowledge.

• Beliefs can be expressed about specific facts of the world, about temporal evolu-
tions of the world, and about beliefs of other agents.

• Various temporal concepts can be expressed using an explicit notion of time.

• Upon receiving new information, agents should update their beliefs such that this
information is correctly incorporated.
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Using APT Logic as a semantic foundation, the development of Probabilistic Doxastic
Temporal (PDT) Logic in this work provides a bridge between recent work on temporal
logic and established areas of epistemic logic. As a result, we obtain a novel formalism
to represent beliefs in multi-agent systems that meets the above criteria.

The major contributions of this thesis are as follows:

• Inspired by recent contributions from temporal logics—namely APT Logic—we
introduce the novel formalism PDT Logic to represent and reason about evolving
beliefs with imprecise probabilities in multi-agent systems. For this formalism we
define a comprehensive syntax and give a suitable well-defined formal semantics.
While we define our formalism with respect to finite time frames, we also show
how this can be applied to infinite time domains under certain conditions.

• We provide an observation model to represent agents’ perception of new infor-
mation over time. Based on these observations we derive an update rule such
that agents’ beliefs evolve in accordance with any new information that they may
receive over time.

• We discuss alternative approaches of specifying problems in PDT Logic, each with
specific merits and drawbacks. For these approaches, we show that the respective
satisfiability problem is decidable and provide suitable decision procedures.

• We show how abductive reasoning can be be formalized in PDT Logic to formally
reason about possible actions that can induce a desired belief state for some agents
of our multi-agent system.

1.2. Dissemination Activities

Various parts of this thesis have been published previously to disseminate research
results at different stages. The following list provides an overview of dissemination
activities in chronological order.

• Karsten Martiny and Ralf Möller:
PDT Logic for Stream Reasoning in Multi-agent Systems
in
6th International Symposium on Symbolic Computation in Software Science
(SCSS), Tunis, Tunisia, 2014



1.3. Outline of the Dissertation 5

• Karsten Martiny and Ralf Möller:
A Probabilistic Doxastic Temporal Logic for Reasoning about Beliefs
in Multi-agent Systems
in
7th International Conference on Agents and Artificial Intelligence (ICAART),
Lisbon, Portugal, 2015

• Karsten Martiny, Alexander Motzek, and Ralf Möller:
Formalizing Agents’ Beliefs for Cyber-Security Defense Strategy
Planning
in
8th International Conference on Computational Intelligence in Security for In-
formation Systems, Burgos, Spain, 2015

• Karsten Martiny and Ralf Möller:
Abduction in PDT Logic
in
28th Australasian Conference on Artificial Intelligence (AI), Canberra, Australia,
2015
• Karsten Martiny and Ralf Möller:
PDT Logic: A Probabilistic Doxastic Temporal Logic for Reasoning
about Beliefs in Multi-agent Systems,
in
Journal of Artificial Intelligence Research (JAIR), Volume 57, pages 39-112,
September 2016

• Karsten Martiny and Ralf Möller:
Reasoning about Imprecise Beliefs in Multi-Agent Systems,
accepted for publication in
KI Zeitschrift - Special Issue on Challenges for Reasoning under Uncertainty,
Inconsistency, Vagueness, and Preferences

1.3. Outline of the Dissertation

Research on formal representations of knowledge and belief has led to an ample variety
of scientific contributions over the last decades. These contributions can be broadly
classified into four different—but overlapping—subfields of epistemic logic: multi-agent
epistemic logic, probabilistic epistemic logic, epistemic temporal logic, and dynamic
epistemic logic. To put this thesis in its proper perspective, Chapter 2 gives a review
of major contributions in each of these four areas, as well as a summary of APT Logic.

Chapter 3 introduces the formal foundations of PDT Logic. We introduce the syntax
of our formalism, discuss our finite model of time, and provide the formal semantics for
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our approach. Moreover, we define an update rule that enables agents to update their
beliefs upon receiving new information, such that this new information is correctly
integrated into their belief state.

In Chapter 4 we discuss alternative approaches of modeling problems in PDT Logic,
show for these approaches that the corresponding satisfiability problems are decidable,
and provide suitable decision procedures. In selected problem domains, it is possible to
specify problems through an explicit enumeration of all possible evolutions over time
and give according prior probabilities for each possible evolution. We show that if such
a specification is given, the time complexity of the satisfiability problem is polynomial
in the number of specified belief operators. By transforming the PDT Logic satisfiabil-
ity problem to a linear program, we show that satisfiability can be decided even if no
precise prior probabilities are given. However, this approach still relies on an explicit
specification of all possible evolutions in a problem domain. Since creating such a spec-
ification is a very tedious task and unreasonable in most cases, we discuss an alternative
problem specification, where it suffices for a domain expert to specify her knowledge
through sets of facts and rules. While this significantly simplifies the modeling task,
we show that this comes at the cost of a significantly higher computational complexity.
Although the formal semantics defined in Chapter 3 is based on precise probability
values, treatment of the latter problem specification shows that satisfiability in PDT
Logic can be decided even if only imprecise probabilities are given.

A possible application of PDT Logic to cyber security scenarios is discussed in Chap-
ter 5. We show how the established concept of using attack graphs to analyze security
threats can be adapted to PDT Logic. This extends current analysis capabilities to
consider attackers’ belief states when planning a suitable defense strategy.

Chapter 5 already shows informally that in many scenarios it is useful to reason about
possible actions to induce a desired belief state for some agent. Chapter 6 addresses
this problem formally by introducing abduction to PDT Logic. We define a formal
account of the abduction problem, show how potential actions to achieve the goal can
be obtained automatically, and derive an abduction procedure.

In its basic form, PDT Logic is only suitable for problems that can be represented
through finite time frames. In Chapter 7 we show how this restriction can be removed
by replacing finite time frames with infinite Markovian streams. Within these streams,
finite-length time windows can be placed arbitrarily to reason about the current state
and near future of the represented problem. We show how these time windows together
with an adapted notion of prior probabilities provide a bridge from our previously
introduced concepts to domains with infinite streams.

Chapter 8 concludes this work with a summary of the main achievements. Moreover,
we present promising directions for future work.



Chapter 2

Related Work

Approaches to formalize reasoning about knowledge and belief date back to Hintikka’s
work on epistemic logic [Hin62]. Hintikka proposed to represent knowledge through
sets of states or worlds, together with a binary relation for every agent, to determine
which worlds are indistinguishable for an agent. This approach has sparked multiple
branches of research on epistemic logic, which are still active topics of research today.
These branches of research can be broadly classified into four (not mutually exclusive)
areas that are relevant for our work: multi-agent epistemic logic, probabilistic epistemic
logic, epistemic temporal logic, and dynamic epistemic logic.1 In the following, we give
an overview of the key contributions in each area and discuss existing approaches that
merge these fields of research.

Early research on epistemic logic culminated in the influential work Reasoning about
Knowledge [FHMV95], which provides a unified presentation of various preceding con-
tributions on epistemic logic. This work uses a so-called interpreted systems approach
to represent knowledge in multi-agent systems, where time is represented through runs.
A run is a sequence of a system’s global states and it thus identifies the state of a sys-
tem for every time point. Among other contributions, this work provides notions for
multi-agent epistemic modalities such as nested knowledge, distributed knowledge, and
common knowledge.

Several works have extended epistemic logic to represent dynamic evolutions of
knowledge. This direction of research is known as Dynamic Epistemic Logic (DEL).
The first work to formally analyze the dynamics of knowledge is [Pla89] (reprinted in
[Pla07]). In this contribution, Plaza introduces public communication events (now com-
monly known as public announcements) to analyze the dynamic evolution of knowledge

1To simplify the following discussion, we do not explicitly distinguish between epistemic and dox-
astic logics in this section, but use “epistemic” as a general term. Strictly speaking, epistemic
formalisms deal with knowledge, while doxastic formalisms deal with beliefs. The usual axiomatic
definition of knowledge in the literature uses the Truth Axiom, which stipulates that an agent can
only know true facts. Omitting this axiom then leads to the notion of belief. Even though not
unanimously accepted (cf. e.g., [HSS09]), this axiom is usually considered as the key distinction
between knowledge and belief.

7



8 2. Related Work

in groups upon truthful public announcements of facts to a group of agents. Indepen-
dently from [Pla89] a related approach for a public announcement logic was proposed in
[GG97]. In [BMS98] and [BM04] the dynamic approach to epistemic logic is generalized
to incorporate a variety of complex epistemic actions. Here, epistemic updates them-
selves are represented through Kripke models. This extends dynamic epistemic logic
to represent a variety of additional epistemic actions such as private group announce-
ments (i.e., announcements where agents outside of the receiving group are unaware of
this announcement), lies (i.e., untruthful announcements), and combinations thereof.
In PDT Logic, we use public and private group announcements, but we assume that
all announcements are truthful. A thorough treatment of dynamic epistemic logic can
be found in [vDvdHK07]. A recent overview of this field can be found in [vE14].

An alternative approach of modeling the evolution of knowledge is to combine epis-
temic logic with some temporal system. One example for this are the aforementioned
interpreted systems from [FHMV95]. Another approach of modeling temporal aspects
in epistemic logic was proposed by [PR03]. This approach is known as Epistemic Tem-
poral Logic (ETL). Here, possible situations are represented through sets of histories,
with local histories for every agent, which represent the respective agent’s previous
observations. Based on these histories, knowledge based semantics of messages are
defined, and it is shown that messages can vary in meaning, depending on the respec-
tive context of the message’s receiver. The temporal model we employ in PDT Logic
is closely related to epistemic temporal logic. Instead of specifying local histories for
every agent, we define the semantics of PDT Logic with respect to a global history.
However, the local contexts in the sense of ETL can easily be extracted from the global
history by filtering this history for the respective agents’ observations.

The traditional work on epistemic logic discussed so far does not allow to quantify
an agent’s degree of belief in certain facts; it can only be specified whether an agent
does or does not know (resp. believe) some fact. To remove this limitation, several
approaches have been proposed to combine logics of knowledge and belief with proba-
bilistic quantifications. Fagin and Halpern laid the foundation for this combination in
their seminal paper [FH94]. They define a belief operator to quantify lower bounds on
the probabilities that an agent assigns to a formula. This is modeled by associating a
probability space with each state and each agent. In their framework, it is generally
not guaranteed that formulae define measurable sets, but they present some properties
that can guarantee the measurability of such sets. In contrast, the semantics defined
for PDT Logic always produces events with measurable probabilities. A special case
of the framework introduced in [FH94] is presented in [MK00]. Just as in PDT Logic,
in this formalism it is assumed (i) that there exists a common prior probability distri-
bution over the set of worlds and (ii) that each agent’s local probability distribution at
some world is derived from the global distribution conditioned on the respective set of
worlds the agent considers possible. The additional feature in [MK00] is that models
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are represented as Bayesian networks to find the probabilities of defined formulae. In
[vdH97], the logic PFD is introduced, and later extended in [dCFFvdH08]. Like [FH94],
this framework introduces an operator to quantify the lower bounds of probabilistic
beliefs. Probabilistic values in this work are semantically restricted to a finite base
set of probability values, yielding a logically compact framework that enables efficient
implementations.

A variety of approaches have been proposed to extend probabilistic epistemic logics
to dynamic frameworks: [Koo03] restricts the probabilistic epistemic logic from [FH94]
to finite settings and combines it with the dynamic epistemic logic from [GG97] to
create Probabilistic Dynamic Epistemic Logic (PDEL). This work analyzes the effects
on probabilistic beliefs upon public announcements. As this framework is based on
dynamic epistemic logic, it does not have capabilities to represent temporal relation-
ships; features regarding the past cannot be expressed at all, and features regarding
the future can only be expressed to a limited extent as the result of certain actions. In
[vB03] this framework is extended to analyze the results of various epistemic actions as
described in [BMS98]. Another extension to this framework is proposed in [vBGK09],
where different sources of probabilities are distinguished. A simplification of this ap-
proach is presented in [vES14]. This paper distinguishes itself from the above work on
probabilistic epistemic logic in that certainty is equated with knowledge. Other works
make an explicit distinction between belief with probability 1 and knowledge. The
difference between these two concepts is often illustrated with repeatedly throwing a
fair coin: the event that the coin shows head at least once is 1 for an infinite number of
repetitions. Yet no agent can know in this example that the coin will eventually show
head. As PDT Logic works only with countable models in finite time frames, we can
adopt the view from [vES14] and consider certainty and knowledge as equivalent in
our models. Deviating from these approaches to extend epistemic logic with probabili-
ties, PDT Logic provides a belief operator with probability interval quantifications, so
that both lower and upper bounds on the probability values can be specified explicitly.
This provides a natural means to represent imprecise probabilities as discussed in the
introduction.

In dynamic epistemic logic, it is only possible to reason about step-wise changes in
the future. In order to reason about temporal relations, [Sac08] extends the update
mechanism of dynamic epistemic logic with temporal operators, namely previous-time
and next-time operators. In [Sac09], this approach is extended to probabilistic frame-
works by augmenting the work on probabilistic dynamic epistemic logic [Koo03] with a
previous-time operator and the ability to reason about continuous probabilities. These
approaches enrich dynamic epistemic logic with the ability to reason about events in
the past. In [vBGHP09], a systematic and precise comparison between ETL (called
TEL in [vBGHP09]) and DEL is given and it is shown how these approaches can be
merged into a single framework.
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[SPSS11] and [SSS12] introduce APT Logic, a framework to represent probabilistic
temporal evolutions of worlds in threads. APT Logic assigns prior probabilities to
every thread and uses these probabilities to determine probabilities of events occurring
in specific threads. To represent temporal relationships between events, APT Logic in-
troduces the concept of frequency functions. We utilize the approach of APT Logic to
create a doxastic multi-agent framework that supports explicit reasoning about tempo-
ral relationships through the adoption of frequency functions. While the explicit notion
of time in our formalism increases the complexity of decision problems, it significantly
enhances the expressibility of temporal relations. For instance, in contrast to all ap-
proaches with implicit representations of time, in PDT Logic we are able to specify that
events occur within a certain time interval (cf. the introduction of frequency functions
below).



Chapter 3

PDT Logic: Syntax and Semantics

In this chapter, we discuss how beliefs in multi-agent systems can be formalized. We
start with defining the syntax of PDT Logic, discuss the employed model of time,
and provide a formal semantics. The proposed formalism enables the expression of
different types of beliefs and can quantify these beliefs using imprecise probabilities.
By introducing a suitable update rule we show how agents’ beliefs evolve over time and
how agents can update their beliefs such that new information is correctly integrated
into their belief state.

3.1. Syntax

We assume the existence of a function-free and quantifier-free fragment of first order
logic1 language L with finite sets of constant symbols Lcons and predicate symbols
Lpred, and an infinite set of variable symbols Lvar. Every predicate symbol p ∈ Lpred
has an arity. A term is any member of the set Lcons ∪ Lvar. A term is called a ground
term if it is a member of Lcons. If t1, .., tn are (ground) terms, and p is a predicate
symbol in Lpred with arity n, then p(t1, ..., tn) is a (ground) atom. If a is a (ground)
atom, then a and ¬a are (ground) literals. The former is called a positive literal, the
latter is called a negative literal. The set of all ground literals is denoted by Llit. As
usual, B denotes the Herbrand Base of L, i.e., the set of all ground atoms that can be
formed through from Lpred and Lcons.

Time is modeled in discrete steps and we assume that all agents reason about an
arbitrarily large, but fixed-size window of time. The set of time points is given by
τ = {1, ..., tmax}. The set of agents is denoted by A. Again, we assume that this set
may be arbitrarily large, but of finite size. To describe what agents observe, we define
observation atoms as follows.

1We use a first order structure for our language definition to have a syntactically convenient way of
representing observations. Apart from this, propositional logic could be used as a base language.

11
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Definition 3.1 (Observation atoms). For any non-empty group of agents G ⊆ A and
ground literal l ∈ Llit, ObsG(l) is an observation atom. The set of all observation atoms
is denoted by Lobs.

Intuitively, the meaning of a statement of the form ObsG(l) is that all agents in
the group G observe that the fact l holds. Note that l may be a negative literal and
therefore we can explicitly specify observations of certain facts being false (such as
“it is not raining”). We assume that the agents in G not only observe that l holds,
but that each agent in G is also aware that all other agents in G make the same
observation. In the line of [BM04], observations can be viewed as the effects of private
group announcements of a fact l to a group G (i.e., l becomes common knowledge
within G, while all agents outside of G remain entirely oblivious of the observation):
it represents an epistemic action, i.e., it alters the belief states of all agents in G (as
formally defined below), but does not influence the ontic facts of the respective world.

Definition 3.2 (Formulae). Both atoms and observation atoms are formulae. If F
and G are formulae, then F ∧G, F ∨G, and ¬F are formulae. A formula is ground if
all atoms of the formula are ground.

Example 3.1 (Coin toss). Consider two agents 1, 2 and a coin that is tossed.
The event that the coin lands heads is denoted by the primitive proposition Head,
and accordingly, the coin lands tails is denoted by ¬Head. Let us assume that
the coin actually lands heads. Then, all sets of possible observations in this
scenario are {Obs{1}(Head)}, {Obs{2}(Head)}, {Obs{1}(Head), Obs{2}(Head)},
{Obs{1,2}(Head)}.

Note that there is a difference between the third and the fourth set: in the former
scenario, both agents observe the outcome of the coin throw but both are unaware that
the other agent actually made the same observation. In the latter scenario, both agents
observe the outcome and are aware that the other agent observes the same. Since we do
not allow for nesting of observations (i.e., expressions such as ObsG1(ObsG2(l))) in PDT
Logic, only a subset of the epistemic actions discussed in [BM04] can be represented in
our formalism. While this limits the expressivity of epistemic actions to some extent,
we can ensure that the resulting set of possible observations Lobs is always finite and
therefore we can show that PDT Logic is decidable (as shown in Chapter 4). Further,
note that the formal concept of observations is not limited to express passive acts
of observing facts, but can instead be used to model a wide range of actions: for
instance, in the above example one could also use Obs{1,2}(Head) to model the act of
one agent telling the other about the outcome of the coin throw—the ramifications of
the communication act are exactly the same as they would be in a shared observation
(assuming that agents do not lie).
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To express temporal relationships, we define temporal rules following the approach
of APT rules from [SPSS11]. The definition of temporal rules already relies on the
concept of frequency functions, even though these are defined in the next section. We
still introduce temporal rules now to enable a clearly separated presentation of syntax
and semantics of PDT Logic.

Definition 3.3 (Temporal rules). Let F,G be two ground formulae, ∆t a time interval,
and fr a name for a frequency function (as defined below in Section 3.2.5). Then
rfr∆t(F,G) is called a temporal rule.

Frequency functions provide information about temporal connections between events.
The meaning of an expression rfr∆t(F,G) is to be understood as “F is followed by G in ∆t
time units w.r.t. frequency function fr”. Frequency functions enable the specification
of various types of temporal relations. For example, they can be used to determine
how often F is followed by G within ∆t time units or how often F is followed by G
exactly after ∆t time units. The usage of fr in the syntax of temporal rules is used to
specify a set of possible names for the employed types of frequency function.

Now, we can define the belief operator B`,u
i,t′ to express agents’ beliefs. Intuitively,

B`,u
i,t′(ϕ) means that at time t′, agent i believes that some fact ϕ is true with a probability

p ∈ [`, u]. Particularly, the intuitive meaning of belief in a temporal rule is that agent
i believes that G will hold according to rfr∆t(F,G), given that F holds at some time
point. We call the probability interval [`, u] the quantification of agent i’s belief. We
use Ft to denote that formula F holds at time t and, accordingly, ObsG(l)t to denote
that an observation ObsG(l) occurs at time t. We call these expressions time-stamped
formulae and time-stamped observation atoms, respectively.

Definition 3.4 (Belief formulae). Let i be an agent, t′ a time point, and [`, u] ⊆ [0, 1].
Then, belief formulae are inductively defined as follows:

1. If F is a ground formula and t is a time point, then B`,u
i,t′(Ft) is a belief formula.

2. If rfr∆t(F,G) is a temporal rule, then B`,u
i,t′(r

fr
∆t(F,G)) is a belief formula.

3. If F and G are belief formulae, then so are B`,u
i,t′(F ), F ∧ G , F ∨ G , and ¬F .

For a belief B`,u
i,t′(ϕ) about something, we call ϕ the belief object. Belief operators

are the atomic elements in PDT Logic, i.e., any expression B`,u
i,t′(ϕ) (including possibly

nested belief formulae) is called an atom. We use script fonts (e.g., F ) to distinguish
belief formulae from standard formulae. Note that we can have both ontic facts and
observation atoms as standard formulae (cf. Definition 3.2) and therefore agents can
also have beliefs about possible observations.

The use of probability intervals [`, u] provides an option to represent imprecise prob-
abilities [Bra15]: When using imprecise probabilities, it is usually assumed that the
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degree of belief in some proposition is not represented using a single probability func-
tion p(·), but instead through a set P of such functions. Then, the belief state P (ϕ)
in a proposition ϕ is represented through the set

P (ϕ) = {p(ϕ) : p ∈ P}.

For this set of probabilities P (ϕ), so-called lower and upper envelopes are defined as
P (ϕ) = inf P (ϕ) and P (ϕ) = supP (ϕ), respectively. The belief quantifications in our
belief operator represent such imprecise probabilities and the ` and u values of the
probabilistic belief can be considered as the lower and upper envelopes P and P of the
respective imprecise probability.

Remark 3.1. We decided to index both the belief operators B`,u
i,t′(ϕ) and facts Ft appear-

ing as belief objects ϕ with time stamps to allow for a concise representation of temporal
relations. Alternatively, one could use the more traditional approach (cf. [Sac09] for
example) and introduce previous-time and next-time operators into the language to
express temporal relationships between t and t′ in B`,u

i,t′(Ft). Then, we could also omit
the temporal index t′ of the belief operator and instead evaluate whether the belief
holds at time t′ of the model. However, these are merely syntactic considerations that
do not impact the underlying formalism. Thus we decided to encode time explicitly
into the belief operators to avoid the introduction of additional temporal operators.
Moreover, belief operators can also be used to express general temporal relationships
of the modeled domain. We will illustrate this point in detail in Chapter 4.

3.2. Semantics

In this section, we will provide a formal semantics for PDT Logic that captures the
intuitions explained above. To ease understanding of the presentation, we start with
the introduction of an example, to which we will return repeatedly when introducing
the various concepts of the semantics. For an illustration of our formalism’s features,
we use a simplified exemplary domain. While the practical use of this example is
somewhat limited, it serves to illustrate how PDT Logic can be applied, and especially
how the analysis of multi-agent beliefs can yield valuable information when deciding
on meaningful actions. The resulting insights can then be easily applied to more
sophisticated domains, as shown in subsequent chapters.

Example 3.2 (Trains). Let Alice and Bob be two agents living in two different
cities CA and CB, respectively. Suppose that Alice wants to take a train to visit
Bob. Unfortunately, there is no direct connection between cities CA and CB, so
Alice has to change trains at a third city CC . We assume that train T1 connects
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CA and CC , and train T2 connects CC and CB. Both trains usually require 2 time
units for their trip, but they might be running late and arrive one time unit later
than scheduled. Alice requires one time unit to change trains at city CC . If T1

runs on time, she has a direct connection to T2, otherwise she has to wait for two
time units until the next train T2 leaves at city CC . If a train is running late, she
can call Bob to let him know. These calls can be modeled as shared observations
between Alice and Bob. For instance, if Alice wants to tell Bob that train T1 is
running late (i.e., T1 does not arrive at CC at the expected time), this can be
modeled as Obs{AB}(¬at(T1, CC)) at the expected arrival time.

3.2.1. Possible Worlds

Ontic facts and corresponding observations (e.g., as described in the above example)
form worlds (or states in the terminology of [FHMV95]). A world ω consists of a set
of ground atoms and a set of observation atoms, i.e., ω ∈ 2B∪Lobs .2 We use a ∈ ω and
ObsG(l) ∈ ω to denote that an atom a, resp. observation atom ObsG(l), holds in world
ω. Since agents can only observe facts that actually hold in the respective world, we
can define admissibility conditions of worlds w.r.t. the set of observations:

Definition 3.5 (Admissible worlds). A world ω is admissible, iff for every observation
atom ObsG(l) ∈ ω

1. the observed fact holds, i.e., x ∈ ω if l is a positive literal x, and x 6∈ ω if l is a
negative literal ¬x, and

2. for every subgroup G ′ ⊂ G, ObsG′(l) ∈ ω.

We use adm(ω) to denote that a world ω is admissible.

The set of all possible worlds is denoted by Ω and the set of admissible worlds by
Ω̂. For the following discussion in this chapter we assume that some specification of
Ω̂ is given. While it is possible to employ the usual definition of Ω as the set of all
combinations of ground atoms and observation atoms (Ω = 2B∪Lobs), and Ω̂ as the max-
imum subset of Ω complying with Definition 3.5, this usually contains a vast number
of worlds which are blatantly impossible according to the respective problem modeled.

2Most formalisms in epistemic logic do not encode facts directly into the worlds, but instead use a
set of named states s1, s2, ... and some valuation function π(si) to determine which facts hold in
world si (cf. [FHMV95]). This is mainly done to obtain the option of having multiple worlds si, sj
where the same facts hold (i.e., π(si) = π(sj)), but the knowledge states of the agents differ. As
described below, in PDT Logic worlds appear within threads, and thus it is possible that worlds
with the same valuation appear at some time point in multiple threads. Thus, in our formalism we
can encode facts directly into the possible worlds and save the valuation function without limiting
the epistemic expressivity.
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Therefore, we assume that a succinct specification of a set of admissible worlds de-
pending on the respective domain is given. The main reason for this assumption is
to simplify the following presentation—we will describe a method to obtain such a set
algorithmically in Chapter 4.

Remark 3.2. As already discussed in Section 3.1, for group observations ObsG(l) every
agent i ∈ G is aware that all other agents in G have observed this fact. Together with
Definition 3.5, the semantics of observations is then equivalent to the usual semantics
of common knowledge. In [FHMV95], a definition of common knowledge is given
through the fixed-point axiom: A fact l is common knowledge among a group G if
and only if all members of G know that l is true and is common knowledge. Thus, we
could also equivalently use the established common knowledge operator CG(l) instead
of the previously defined observation atoms ObsG(l). However, the concept of common
knowledge is usually used to describe emergent states of agents’ knowledge. On the
other hand, in the context of our approach, observations are an extrinsic feature that
will result in the emergence of other belief states. To keep a clear distinction of the
intended use of the operator, we will therefore continue to use ObsG(l) instead of CG(l).

Example 3.3 (Trains continued). For Example 3.2, we have ground terms A,
B, CA, CB, CC , T1, and T2, representing Alice, Bob, three cities, and two
trains. Furthermore, we have atoms on(y, x) indicating that person y is on
train x, and at(x, z) indicating that train x is at city z. Finally, we have
observation atoms of the kind ObsG(at(x, z)), indicating that the agents in G
observe that train x is at station z. A possible world can for example be
ω1 = {at(T1, CA), on(A, T1), Obs{A}(at(T1, CA))}, indicating that train T1 is at
city CA and A has boarded that train.

We define satisfaction of a ground formula F by a world ω in the usual way [Llo87]:

Definition 3.6 (Satisfaction of ground formulae). Let F, F ′, F ′′ be ground formu-
lae and ω a world. Then, F is satisfied by ω (denoted ω |= F ) if and only if:

case F = a for some ground atom a: a ∈ ω.

case F = ¬F ′ for some ground formula F ′: ω 6|= F ′.

case F = F ′ ∧ F ′′ for formulae F ′ and F ′′: ω |= F ′ and ω |= F ′′.

case F = F ′ ∨ F ′′ for formulae F ′ and F ′′: ω |= F ′ or ω |= F ′′.

We say that a formula F is a tautology if ω |= F for all admissible worlds ω ∈ Ω̂. We
say that a formula F is a contradiction if there is no world ω ∈ Ω̂ such that ω |= F . We
use the usual symbols > and ⊥ to denote tautologies and contradictions, respectively.
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3.2.2. Threads

To model temporal evolutions of the problem domain we use the definition of threads
from [SPSS11]:

Definition 3.7 (Thread). A thread Th is a mapping from the set of time points τ to
the set of admissible worlds: Th : τ → Ω̂

Thus, a thread is a sequence of worlds and Th(t) identifies the actual world at time
t according to thread Th. The set of all possible threads (i.e., all possible sequences
constructible from τ and Ω̂) is denoted by T . Again, we refrain from directly working
with T , and instead assume that any meaningful problem specification gives informa-
tion about possible temporal evolutions of the system. We use T̂ to represent this set
of relevant possible threads. For notational convenience, we assume that there is an
additional prior world Th(0) for every thread.

Following Definition 3.6, we use Th |= Ft to denote that thread Th satisfies formulae
F at time t (i.e., Th |= Ft ≡ Th(t) |= F ). Accordingly, we use T |= Ft to denote that
every thread Th ∈ T satisfies formula F at time t.

We assume that the system is synchronous, i.e., the agents have a global clock.
Thus, even if an agent does not observe anything in world Th(t), it is still aware of
time passing and can therefore distinguish between worlds Th(t) and Th(t− 1).

Example 3.4 (Trains continued). The description from Example 3.2 yields the
set of possible threads T̂ depicted in Figure 3.1. Note that this is a manually
specified set of threads containing only threads that comply with the description
in Example 3.2. The set of all possible threads T would contain a vast number of
additional threads that are irrelevant to the described scenario.

3.2.3. Kripke Structures

With the definition of threads, we can use a slightly modified version of Kripke struc-
tures [Kri63]. As usual, we define a Kripke structure as a tuple 〈Ω̂,K1, ...,Kn〉, with the
set of admissible worlds Ω̂ and binary relations Ki on Ω̂ for every agent i ∈ A. Thus,
the Kripke relation (also called possibility relation) for agent i at world ω is defined as

Ki(ω) = {ω′ : (ω, ω′) ∈ Ki} (3.1)

Intuitively, (ω, ω′) ∈ Ki specifies that in world ω, agent i considers ω′ also as a possi-
ble world. In other words, with its current information agent i is unable to distinguish
worlds ω and ω′.
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Figure 3.1.: Visualization of the possible threads Thi from Example 3.2. For an easier
distinction, shared observations between A and B are marked in blue,
single observations of A are marked in red, and all situations where Alice
is on train 1 or train 2 are marked in green and orange, respectively. Note
that if a train is running late (the respective threads are marked with
according circles), there are always two possible threads: one where only
A observes this and one where both share the observation.
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We initialize the Kripke structure such that all threads are considered possible at
time t = 0:

∀Th ∈ T̂ : Ki(Th(0)) =
⋃

Th′∈T̂

{Th′(0)}, i ∈ A (3.2)

With the evolution of time, each agent can eliminate the worlds that do not comply
with its respective observations. Through the elimination of worlds, an agent will also
reduce the set of threads it considers possible (if—due to some observation—a world
ω is considered impossible at a time point t, then all threads Th with Th(t) = ω are
considered impossible). We assume that agents have perfect recall and therefore will
not consider some thread possible again if it was considered impossible at one point.
Thus, Ki is updated w.r.t. the agent’s respective observations, such that it considers all
threads possible that both comply with its current observations and were considered
possible at the previous time point:

Ki(Th(t)) =
{
Th′(t) :

(
Th′(t− 1) ∈ Ki(Th(t− 1))∧

{ObsG(l) ∈ Th(t) : i ∈ G} = {ObsG(l) ∈ Th′(t) : i ∈ G}
)}

(3.3)

The following two corollaries describe key properties of Ki that follow immediately
from the definitions in (3.2) and (3.3):

Corollary 3.1 (Equivalence relation). Ki defines an equivalence relation over the pos-
sible worlds Ki(Th(t)) for time points t ∈ τ .

Corollary 3.2 (Reduction of considered threads). The set of threads Th′ considered
possible w.r.t. Ki is narrowing to a smaller and smaller subset over time, i.e., {Th′ :
Th′(t) ∈ Ki(Th(t))} ⊆ {Th′ : Th′(t− 1) ∈ Ki(Th(t− 1))} for all Th ∈ T̂ and t ∈ τ .

Note that updates of Ki are defined such that new information is incorporated in-
stantaneously, i.e., if at time t an agent observes some fact, it updates its possibility
relations already at time t such that it considers every world impossible that does not
comply with the observation of time t.

Example 3.5 (Trains continued). From Figure 3.1, we obtain that at time 1, the
only possible world is {at(T1, CA), on(A, T1)}, which is contained in all possible
threads. Thus, Ki(Thj(1)) contains exactly this world for all agents i and threads
j. Consequently, both agents consider all threads as possible at time 1.

Now, assume that time evolves for two steps and the actual thread is Th4 (i.e.,
train T1 is running late, but A does not inform B about this). Both agents will
update their possibility relations accordingly, yielding

KA(Th4(3)) = {{Obs{A}(¬at(T1, CC)), on(A, T1)}}
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and

KB(Th4(3)) = {{at(T1, CC), on(A, T1)}, {Obs{A}(¬at(T1, CC)), on(A, T1)}},

i.e., A knows that T1 is not on time, while B is unaware of T1 being late, since he
still considers a situation possible where train T1 is at city CC at time t = 3.

3.2.4. Subjective Posterior Temporal Probabilistic Interpretations

Each agent has probabilistic beliefs about the expected evolution over time. This is
expressed through subjective temporal probabilistic interpretations:

Definition 3.8 (Subjective posterior probabilistic temporal interpretation). Given a
set of possible threads T̂ , some thread T̊ h ∈ T̂ , a time point t′ > 0 and an agent i,
the function I T̊ hi,t′ : T̂ → [0, 1] specifies the subjective posterior probabilistic temporal

interpretation from agent i’s point of view at time t′ in thread T̊ h, i.e., a probability
distribution over all possible threads:

∑
Th∈T̂ I T̊ hi,t′ (Th) = 1. Since the probabilistic

interpretations over possible threads depend on the respective perspective of agent i,
T̊ h marks the point of view for a subjective interpretation. Thus, we call T̊ h the point
of view (pov) thread of interpretation I T̊ hi,t′ .

The concept of point of view threads can be seen as conditional probabilities: A
subjective posterior probabilistic interpretation I T̊ hi,t′ specifies agent i’s probabilistic

interpretation at time t′ given that T̊ h is the actual thread. Different threads yield
different evolutions of the world and—since every possible thread can be taken as a
pov thread— may induce different probabilistic interpretations of an agent. Thus,
the notion of pov threads allows to reason about hypothetical beliefs of an agent, for
instance if possible future beliefs are analyzed or nested beliefs are evaluated.

To simplify notation, we see I T̊ hi,t′ as a vector and occasionally represent a probabilistic

interpretation I T̊ hi,t′ over a vector of possible threads T̂ as a vector as well, so that the

jth element of I T̊ hi,t′ refers to the probability assigned to thread Thj.

The prior probabilities of each agent for all threads are then given by I T̊ hi,0 (Th). Since
all threads are indistinguishable a priori, there is only a single prior distribution needed

for each agent (i.e., ∀Th, T̊h, T̊ h′ ∈ T̂ : I T̊ hi,0 (Th) = I T̊ h
′

i,0 (Th)). Furthermore, in order
to be able to reason about nested beliefs (as discussed below), we assume that the prior
probability assessments of all agents are commonly known (i.e., all agents know how all
other agents assess the prior probabilities of each thread). This in turn requires that
all agents have exactly the same prior probability assessment over all possible threads:
if two agents have different, but commonly known prior probability assessments, we
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essentially have an instance of Aumann’s well-known problem of “agreeing to disagree”
[Aum76]. Intuitively, if differing priors are commonly known, it is common knowledge
that (at least) one of the agents is at fault and should revise its probability assessments.
As a result, we have only one prior probability distribution which is the same from all
viewpoints, denoted by I. Note that I directly corresponds to the concept of temporal
probabilistic interpretations in [SPSS11].

Remark 3.3. We could use the prior probability distribution I as an alternative method
to distinguish between the set of all possible threads T and the set of threads T̂ relevant
to a specific problem domain. To do so, we simply assign all unwanted threads Th 6∈ T̂
a probability of zero.

Example 3.6 (Trains continued). A meaningful prior interpretation is

I(T̂ ) =
(
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03

)
,

which assigns the highest probability to Th1 (no train running late), lower proba-
bilities to the threads where one train is running late and A informs B (Th3 and
Th5), even lower probabilities to the events that either both trains are running
late and A informs B (Th7, Th8, and Th9) or that one train is running late and
A does not inform B (Th2 and Th4), and lowest probability to the thread where
both trains are running late and A does not inform B (Th6). Note that I repre-
sents the prior interpretation for the train example and thus is the same for every
agent i ∈ A and every possible pov thread T̊ h.

Even though we only have a single prior probability distribution over the set of
possible threads, it is still necessary to distinguish the viewpoints of different agents in
different threads, as the following definition of interpretation updates shows.

Whenever an agent updates its Kripke relations according to (3.3), it is necessary
to update the probabilistic interpretations of that agent to match the new knowledge.
An intuitive way to update the probabilities is conditioning on the remaining worlds
in the agent’s Kripke structure. We want to point out that conditioning is a suitable
choice in PDT Logic, although it is known to produce undesired or incorrect results in
many cases, most notably in the Monty Hall problem [vS90]. In [GH03] it is discussed
that naive conditioning tends to produce errors because updates are carried out in
a simplified space where several events are collapsed since they are seemingly one
event. If one uses so-called sophisticated conditioning instead (i.e., conditioning in the
sophisticated space, which means that all possible events are represented), probabilities
are updated correctly. As the semantics of PDT Logic is based on an exhaustive
specification of all relevant threads, conditioning in a proper specification of all relevant
threads is inherently sophisticated in the sense of [GH03] and will therefore produce
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correct results. One can easily verify that with the following update rule, well-known
probability puzzles such as the Monty Hall Problem [vS90] can be correctly represented
in PDT Logic. Thus, we use the following conditioning-based update rule:

Definition 3.9 (Interpretation update). Let i be an agent, t′ a time point, and T̊ h a
pov thread. Then, if the system is actually in thread T̊ h at time t′, agent i’s proba-
bilistic interpretation over the set of possible threads is given by the update rule:

I T̊ hi,t′ (Th) =


1

αT̊h
i,t′
· I T̊ hi,t′−1(Th) if Th(t′) ∈ Ki(T̊ h(t′))

0 if Th(t′) 6∈ Ki(T̊ h(t′))
(3.4)

with 1

αT̊h
i,t′

being a normalization factor to ensure that
∑

Th∈T̂ I T̊ hi,t′ (Th) = 1:

αT̊ hi,t′ =
∑
Th∈T̂ ,

Th(t′)∈Ki(T̊ h(t′))

I T̊ hi,t′−1(Th) (3.5)

The invocation of Ki in the update rule yields obvious ramifications about the evo-
lution of interpretations, as stated in the following corollary:

Corollary 3.3 (Nonzero probabilities). The subjective temporal probabilistic interpre-

tation I T̊ hi,t′ of an agent i assigns nonzero probabilities exactly to the set of threads that

i still considers possible at time t′, i.e., I T̊ hi,t′ (Th) > 0 iff (Th(t), T̊ h(t)) ∈ Ki

Essentially, the update rule assigns all impossible threads a probability of zero and
scales the probabilities of the remaining threads such that they are proportional to the
probabilities of the previous time point. With a given prior probability distribution I
over the set of possible threads, the subjective posterior probabilities I T̊ hi,t′ in a specific

pov thread T̊ h for all agents i and all time points t′ are induced by the respective
observations contained in T̊ h. We use I T̊ h to denote the set of all subjective posterior
interpretations I T̊ hi,t′ induced in pov thread T̊ h.

Example 3.7 (Trains continued). Applying the update rule from (3.4) to the
situation described in Example 3.5, with I as given in Example 3.6, yields the
updated interpretation for A:

I T̊ h4
A,3 =

(
0 0 0 0.4 0 0.2 0 0.4 0

)
(3.6)

i.e., A considers exactly those threads possible, where the train is running late
and she does not inform B (threads Th4, Th6, and Th8). Due to the lack of any
new information, B can only eliminate the situations where A does indeed inform
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Th(1) Th(2) Th(3) Th(4) Th(5) Th(6) Th(7) Th(8)

F G F G G F G F

Figure 3.2.: Example thread Th with τ = {1, ..., 8}, adopted from [SPSS11]. This
figure shows each world that satisfies formula F or formula G.

him about being late at time point 3, and thus B’s interpretation is updated to:

I T̊ h4
B,3 ≈

(
0.82 0.02 0.10 0.02 0 0.02 0 0.02 0

)
. (3.7)

3.2.5. Frequency Functions

To represent temporal relationships within threads, we adapt the concept of frequency
functions as introduced in [SPSS11]. Frequency functions provide a flexible way of
representing temporal relations between the occurrences of specific events. To illustrate
the motivation behind using frequency functions, consider the exemplary thread Th
depicted in Figure 3.2. In this thread, one of the events F or G occurs at every time
point from t = 1 to t = 8. As discussed in [SPSS11], there are multiple ways of
characterizing temporal relationships between the events F and G: For instance, one
might specify how often event F is followed by event G in, say, exactly 2 time points.
According to Figure 3.2, this happens in one out of four occurrences of F in Th. It
might prove meaningful to exclude the final occurrence of F in Th when determining
this frequency, because naturally an occurrence of F at tmax cannot be followed by
a subsequent occurrence of G. Excluding the final occurrence of F would yield one
out of three for the desired frequency. Alternatively, one could also specify how often
F is followed by G within the next two time points. For the exemplary thread from
Figure 3.2, this would produce frequencies of 1 and 0.75 respectively, again depending
on whether the final occurrence of F is included.

This example illustrates already four different possible definitions of temporal rela-
tions between events. To maintain flexibility in expressing temporal relations, we do
not commit to specific definitions in PDT Logic, but instead we adapt an axiomatic
definition of frequency functions:

Definition 3.10 (Frequency functions, adapted from [SPSS11]). Let Th be a thread,
F and G be ground formulae, and ∆t ≥ 0 be an integer. A frequency function fr maps
quadruples of the form (Th, F,G,∆t) to [0, 1] such that the following axioms hold:

(FF1) If G is a tautology, then fr(Th, F,G,∆t) = 1.

(FF2) If F is a tautology and G is a contradiction, then fr(Th, F,G,∆t) = 0.
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(FF3) If F is a contradiction, fr(Th, F,G,∆t) = 1.

(FF4) If G is not a tautology, and either F or ¬G is not a tautology, and F is not a con-
tradiction, then there exist threads Th1, Th2 ∈ T such that fr(Th1, F,G,∆t) 6=
fr(Th2, F,G,∆t).

Axioms (FF1) to (FF3) ensure that in special cases—i.e., (G ≡ >), (F ≡ ⊥), or
(F ≡ >, G ≡ ⊥)—frequency functions behave as temporal implications with premise
F and conclusion G. Axiom (FF4) enforces non-trivial frequency functions by requiring
that in all cases not covered by the first three axioms, there must be at least two threads
with differing frequency values.

Remark 3.4. This definition mostly corresponds to the definition of frequency functions
in [SPSS11], except that we do not require ∆t > 0. In [SPSS11], frequency functions
are only intended to express temporal relationships and therefore ∆t is limited to
nonzero values. By additionally allowing ∆t = 0, we obtain a concise framework that
can express both temporal relationships and static constraints within one time point.
This will be exploited in the next chapter, where decision procedures for PDT Logic
are discussed.

To illustrate the concept of frequency functions, we now present formal definitions
for point and existential frequency functions adapted from [SPSS11] that represent the
informal descriptions of frequencies from above:

The point frequency function pfr expresses how frequently some event F is followed
by another event G in exactly ∆t time units:

pfr(Th, F,G,∆t) =
|{t : Th(t) |= F ∧ Th(t+ ∆t) |= G}|
|{t : (t ≤ tmax −∆t) ∧ Th(t) |= F}| (3.8)

If the denominator is zero, we define pfr to be 1. The denominator counts the total
number of occurrences of F in a given thread Th and the numerator counts the number
of occurrences of F followed by G after exactly ∆t time units. Thus, the ratio pfr
expresses how frequently F is followed by G in exactly ∆t time units. Note that the
denominator only considers occurrences of F up to time tmax − ∆t. This is done to
reflect the previously discussed intuition that occurrences of F in the last ∆t time
points should be excluded from the frequency, because there is no possibility that they
can be followed by a subsequent G after ∆t time units.

The existential frequency function efr expresses how frequently some event F is
followed by another event G within the next ∆t time units:

efr(Th, F,G,∆t) =

efn(Th, F,G,∆t, 0, tmax)

|{t : (t ≤ tmax −∆t) ∧ Th(t) |= F}|+ efn(Th, F,G,∆t, tmax −∆t, tmax)
, (3.9)
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with

efn(Th, F,G,∆t, t1, t2) =|{t : (t1 < t ≤ t2) ∧ Th(t) |= F

∧ ∃t′ ∈ [t,min(t2, t+ ∆t)] (Th(t′) |= G)}|

The function efn counts the number of occurrences of F followed by a subsequent
occurrence of G within the next ∆t time units. The first summand of the denominator
again counts the total number of occurrences of F up to the time point tmax −∆t. In
the second summand of the denominator, additional occurrences of F followed by G
within ∆t time units. The intuition of this definition is again to exclude occurrences of
F in the final ∆t time units if they are not followed by G. Since G may occur within
the range ∆t, but this range cannot be fully considered for the final ∆t time points,
only occurrences of F with an according subsequent occurrence of G are considered for
these final time points. Consequently, the ratio efr expresses how frequently some event
F is followed by G within the next ∆t time units without letting single occurrences of
F in the final ∆t time points decrease the ratio.

Returning to the exemplary thread Th from Figure 3.2, we can evaluate the frequency
functions for the given thread: Suppose that we want to determine how often F is
followed by G exactly after two time steps. This can be expressed through a point
frequency function:

pfr(Th, F,G, 2) =
1

3
.

If instead we want to know how often F is followed by G within the next two time
steps, we can use an existential frequency function:

efr(Th, F,G, 2) =
3

3
= 1

It should be noted that frequency functions can be used to model temporal relation-
ships usually expressed through temporal operators. For instance, pfr with ∆t = 1
reflects the next operator and efr with ∆t = tmax reflects the future operator. The
meaning of additional temporal operators such as until can be captured through the
definition of additional frequency functions, if required.

3.2.6. Semantics of the Belief Operator

Now, with the definitions of subjective posterior probabilistic temporal interpretations
and the introduction of frequency functions, we can provide a formal semantics for
the belief operators defined in Section 3.1. This semantics extends definitions from
[SPSS11] for the satisfiability of static interpretations to obtain a formal definition of
probabilistic multi-agent beliefs.
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Definition 3.11 (Belief Semantics). Let i be an agent and I T̊ hi,t′ be agent i’s interpre-

tation at time t′ in pov thread T̊ h. Then, it follows from this interpretation that agent
i believes at time t′ with a probability in the range [`, u] that

1. (Belief in ground formulae)

a formula F holds at time t (denoted by I T̊ hi,t′ |= B`,u
i,t′(Ft)) iff

` ≤
∑

Th∈T̂ ,Th(t)|=F

I T̊ hi,t′ (Th) ≤ u. (3.10)

2. (Belief in rules)

a temporal rule rfr∆t(F,G) holds (denoted by I T̊ hi,t′ |= B`,u
i,t′(r

fr
∆t(F,G))) iff

` ≤
∑
Th∈T̂

I T̊ hi,t′ (Th) · fr(Th, F,G,∆t) ≤ u. (3.11)

3. (Nested beliefs)

a belief B
`j ,uj
j,t (ϕ) of some other agent j holds at time t′ (denoted by

I T̊ hi,t′ |= B`,u
i,t′(B

`j ,uj
j,t (ϕ))) iff

` ≤
∑
Th∈T̂

ITh
j,t |=B

`j ,uj
j,t (ϕ)

I T̊ hi,t′ (Th) ≤ u. (3.12)

The intuition behind this semantics is as follows. For beliefs in ground formulae Ft,
the subjective posterior probabilities I T̊ hi,t′ (Th) of an agent i at time t′ in pov thread

T̊ h are added for all threads Th that satisfy F at time t. Thus, the sum in (3.10)

represents the exact probability that I T̊ hi,t′ assigns to Ft. If this sum is within the

specified boundaries [`, u], the respective belief B`,u
i,t′(Ft) holds for agent i at time t′ in

pov thread T̊ h.

For beliefs in rules, the subjective posterior probabilities I T̊ hi,t′ (Th) for every thread

are weighted with the corresponding frequency fr(Th, F,G,∆t) from rule rfr∆t(F,G).

Thus, the weighted sum of I T̊ hi,t′ (Th) in (3.11) represents the exact probability that I T̊ hi,t′
assigns to the temporal relation between F and G according to frequency function fr.
For beliefs in rules, the belief object rfr∆t(F,G) only contains information about the type
of frequency function fr, while constraints on the respective frequency values are given
through the belief quantification [`, u], i.e., an agent does not have probabilistic beliefs
in specific frequency values.
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Remark 3.5. It should be noted that the semantics of beliefs in rules in (3.11) to-
gether with the axiomatic definition of frequency functions in Definition 3.10 yields
certain constraints on satisfiable beliefs in rules rfr∆t(F,G). If G is a tautology or F
is a contradiction (i.e., in Definition 3.10 FF1 or FF3 are satisfied), it holds for the
respective frequency function that fr(Th, F,G,∆t) = 1 for every possible thread Th,
and thus, any belief B`,u

i,t′(r
fr
∆t(F,G)) is satisfiable if and only if the belief is quantified

with u = 1, regardless of the set of threads T̂ or the corresponding interpretation I T̊ hi,t′ .
Analogously, if F is a tautology and G is a contradiction (i.e., FF2 is satisfied), any
belief B`,u

i,t′(r
fr
∆t(F,G)) is only satisfiable for ` = 0.

For nested beliefs B`,u
i,t′(B

`j ,uj
j,t (ϕ)), the expression is unnested by first determining

all possible pov threads Th for agent j such that B
`j ,uj
j,t (ϕ) is satisfied. If B

`j ,uj
j,t (ϕ)

corresponds to a belief in a fact or in a rule, (3.10) respectively (3.11) can be used

to identify threads Th such that IThj,t |= B
`j ,uj
j,t (ϕ). Otherwise, if ϕ represents another

belief formula, the belief has to be unnested recursively until the innermost belief of
the expression is obtained. Then, for all threads Th with IThj,t |= B

`j ,uj
j,t (ϕ), agent

i’s subjective posterior probabilities I T̊ hi,t′ (Th) are added again to determine whether
the outer belief holds. Note that agent i does not know the actual beliefs of agent j.
However, due to the assumption of common and equal priors discussed in Section 3.2.4,
agent i is able to reason about agent j’s hypothetical interpretation updates given that
the system is in a specific thread. Thus, agent i is able to compute (3.12) without
knowing j’s exact beliefs.

Example 3.8 (Trains continued). We can use a point frequency function to ex-
press beliefs about the punctuality of trains. Assume that both A and B judge
the probability of a train running late (i.e., arriving after 3 instead of 2 time units,
expressed through the temporal rule rpfr3 (at(T1, CA), at(T1, CC))) as being at most
0.4. This yields the following belief formulae

B0,0.4
i,0 (rpfr3 (at(T1, CA), at(T1, CC)))

B0,0.4
i,0 (rpfr3 (at(T2, CC), at(T2, CB)))

, i ∈ {A,B}. (3.13)

For the temporal rules expressed in these belief formulae, we obtain the following
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frequencies from Figure 3.1:

pfr(Th, at(T1, CA), at(T1, CC), 3) = 0 for Th ∈ {Th1, ..., Th3}
pfr(Th, at(T1, CA), at(T1, CC), 3) = 1 for Th ∈ {Th4, ..., Th9}
pfr(Th, at(T2, CC), at(T1, CB) , 3) = 0 for Th ∈ {Th1, Th4, Th5}
pfr(Th, at(T2, CC), at(T1, CB), 3) = 1 for Th ∈ {Th2, Th3, Th6, ..., Th9}

Combining these frequency values with the prior interpretation

I(T̂ ) =
(
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03

)
,

given in Example 3.6 yields the sum∑
Th∈T̂

I(Th) · pfr(Th, F, G, 3) = 0.19

for both F = at(T1, CA), G = at(T1, CC) and F = at(T2, CC), G = at(T2, CB). As
this sum is within the belief quantification [`, u] = [0, 0.4], the belief formulae in
(3.13) are valid. Note that the prior probabilities from Example 3.6 have been
specified such that both trains are late with the same probability, and thus the
respective sums for the above frequencies are the same.

From the above definitions, we can use the belief about some fact F to quantify the
belief about the negation of this fact ¬F :

Corollary 3.4 (Belief in negated facts). Let B`,u
i,t′(Ft) be an agent’s quantified temporal

belief about some fact F according to Definition 3.11. Then, the agent’s belief in the
negation of this fact ¬F is given as B`′,u′

i,t′ (¬F ) with `′ = 1− u and u′ = 1− `.

3.3. Evolution over Time

In order to completely specify a problem in PDT Logic, we introduce the concept of
doxastic systems.

Definition 3.12 (Doxastic system). Let A be a set of agents, T̂ be a set of threads,

A
|A|×|T̂ |
0 be a matrix of prior probability distributions across T̂ for every agent in A, and

F be a set of frequency functions. Then, we call the quadruple D = 〈A, T̂ ,F , A|A|×|T̂ |0 〉
a doxastic system.
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Note that several of the parameters discussed before are not explicitly specified in
a doxastic system: neither the set of possible worlds Ω, the set of ground atoms B,
the set of observation atoms Lobs, nor the set of time points τ are explicitly specified.
However, all relevant information regarding these parameters is already contained in
the specification of T̂ .

Remark 3.6. Since all agents share a common prior, all rows of A0 are the same.
Thus, one could obtain a more parsimonious problem specification by only providing
the single unique row vector of prior probabilities. The choice of using the matrix
A0 nonetheless is for notational purposes only: it will simplify the presentation of
interpretation update operations later on.

Definition 3.13 (Admissibility of doxastic systems). Let D = 〈A, T̂ ,F , A|A|×|T̂ |0 〉 be
a doxastic system. D is called admissible iff every world (implicitly) defined in T̂ is

admissible (according to Definition 3.5) and all rows of A
|A|×|T̂ |
0 sum to one.

To identify specific situations in a doxastic system after some time has passed and
some observations occurred, we furthermore define pointed doxastic systems :

Definition 3.14 (Pointed doxastic system, pds). Let D = 〈A, T̂ ,F , A|A|×|T̂ |0 〉 be a
doxastic system and H be a set of time-stamped observation atoms such that all ob-
servation atoms from H occur in at least one of the worlds (implicitly) defined in T̂ .
Then we call the pair 〈D,H〉 a pointed doxastic system.

Definition 3.15 (Admissibility of pointed doxastic systems). Let 〈D,H〉 be a pointed
doxastic system, and T̂ the set of threads fromD. 〈D,H〉 is called admissible iffD is ad-
missible and there exists a thread Th ∈ T̂ such that ∀ObsG(l)t ∈ H : ObsG(l) ∈ Th(t)
(i.e., T̂ must contain at least one thread that complies with all timed observations from
H).

Intuitively, the set of timed observations specified in a pds points to a certain sit-
uation in a doxastic system. One could view t̂(H) = max{t : ∃ObsG(l)t ∈ H} as the
present time in a pds: the most recent observation occurred at t̂(H), all observations
that actually occurred in the past (t < t̂(H)) are specified in H (and are thus determin-
istic in retrospective), and no further information about future observations t > t̂(H)
is given. In this sense, H specifies a certain history up to t̂(H) in a doxastic system
and points to the last event of this history.

Example 3.9 (Trains continued). A doxastic system for the train example can
be specified as

D = 〈{A,B}, {Th1, ..., Th9}, {pfr, efr}, A0〉,
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with

A0 =

(
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03

)
.

To identify the situation described in Example 3.5 (T1 is running late), we can
specify the following pointed doxastic system:

〈D, {Obs{A}(¬at(T1, CC)3)}〉

3.3.1. Evolution of Probabilistic Interpretations

In accordance with the prior probability matrix A0 from Definition 3.12, we define an
interpretation matrix AT̊ ht to store the interpretations of all agents A (with n denoting
the number of agents |A|) across all threads Th1, ..., Thm given that the doxastic system
is in pov thread T̊ h at time t:

AT̊ ht =

I
T̊ h
1,t (Th1) . . . I T̊ h1,t (Thm)

...
. . .

...

I T̊ hn,t (Th1) . . . I T̊ hn,t (Thm)

 (3.14)

With the definition of Ki from (3.3), the update rule from (3.4), and using the prior

probability matrix A0 from Definition 3.12, we can provide an update matrix U T̊ h
t to

calculate the interpretation matrix for any pov thread T̊ h at any time point t (◦ denotes
the element-wise multiplication of matrices):

AT̊ ht = AT̊ ht−1 ◦ U T̊ h
t (3.15)

with

(uT̊ ht )ij =

0 if Thj(t) 6∈ Ki(T̊ h(t))
1

αT̊h
i,t′

if Thj(t) ∈ Ki(T̊ h(t))
(3.16)

and αT̊ hi,t′ a normalization factor as defined in (3.5).

The time-stamped observations specified in the history H of a pds 〈D,H〉 induce an
updated set of reachability relations Ki(Th(t)) for every thread Th that complies with
the given observations (for threads Th⊥ that do not comply with the given observations
Ki(Th⊥(t)) = ∅). These updated reachability relations in turn yield the updated

interpretations in AT̊ ht . The complete state of interpretations at any time point for
every possible pov thread T̊ h1, ..., T̊ hm can then be specified as a block matrix, which
we call the belief state (bs) of a pds at time t:

bs(〈D,H〉, t) =
(
AT̊ h1
t , ..., AT̊ hmt

)
(3.17)
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We use bs(〈D,H〉) to denote the sequence of all belief states bs(〈D,H〉, t) from t = 1
to t = tmax.

This definition of belief states can be seen as a specification of conditional probabil-
ities: the kth entry of bs(〈D,H〉, t) specifies the interpretations of all agents across all
threads at time t given that the system is in pov thread T̊ hk. Thus—as every thread
is considered as a potential pov thread—a full specification of an agent’s belief state
for m threads requires m ·m conditional probabilities for every time point t. This is a
very general representation of belief states to allow for an easy evaluation of subjective
posterior interpretations at arbitrary time points and pov threads and for an intuitive
definition of belief state updates. However, this general definition contains some redun-
dant information. By leveraging certain properties of the semantics of PDT Logic, we
identify means to obtain compressed representations of the belief state in the following.

Corollary 3.5 (Null vectors in AT̊ hkt ). Due to the definition of (3.16), the ith row

of AT̊ hkt is ~0 iff agent i’s actual observations (as specified in H) do not match the
observations specified in thread Thk.

Proposition 3.6 (Belief state compression). Let 〈D,H〉 be a pointed doxastic system
and let t be a time point such that t ≤ t̂(H). Then, without any loss of information,
the belief state bs(〈D,H〉, t) at time t can be represented through

bs(〈D,H〉, t)′ =
(
~v1,t, ..., ~vn,t

)T
(3.18)

with one probability distribution vector ~vi,t per agent i.

Proof. It follows directly from Corollaries 3.3 and 3.5 that the matrices AT̊ hkt from
bs(〈D,H〉, t) with nonzero rows i are exactly those that correspond to threads consid-
ered possible by agent i at time t.

From the properties of Ki given in Corollary 3.1 it follows that all worlds Th′(t) ∈ Ki
for t ≤ t̂(H) are indistinguishable to agent i and therefore are associated with the
same interpretation. Thus, all nonzero ith rows of the matrices in bs are identical.
Defining ~vi,t as these unique nonzero rows i of bs, we obtain the representation of
(3.18). Information about impossible pov threads (as described in Corollary 3.5) is
still maintained as they are assigned a probability of 0 in ~vi,t.

It is important to note that this compressed representation is only applicable to
time points t ≤ t̂(H), because in retrospective an agent is able to classify threads
into two categories: those that comply with the observations so far (i.e., those that are
considered possible), and those that do not. For time points t > t̂(H) this classification
is not possible because Ki(Th(t)) then depends on future observations and can therefore
lead to a branching of several distinct interpretations depending on the respective
observations.
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3.3.2. Evolution of Beliefs

In order to analyze the temporal evolution of beliefs, we use the update rule from (3.15)
to update belief states. Since different possible observations yield different branches in
the evolution of beliefs, we have to update every thread in the belief state individually,
using the respective update matrices U T̊ h

t as defined in (3.16):

bs(〈D,H〉, t) = bs(〈D,H〉, t− 1) ◦ (U T̊ h1
t , ..., U T̊ hm

t ) (3.19)

Furthermore, to analyze satisfiability and validity of arbitrary finite belief expressions
B`,u
i,t′(ϕ) w.r.t. a given pds 〈D,H〉, we define an auxiliary belief vector ~b(ϕ) for different

beliefs B`,u
i,t′(ϕ). This vector ~b(ϕ) contains one entry (~b(ϕ))j for every possible thread

Thj ∈ T̂ and is defined as follows:

a) B`,u
i,t′(Ft) : (~b(Ft))j =

{
1 if Thj(t) |= F

0 if Thj(t) 6|= F

b) B`,u
i,t′(r

fr
∆t(F,G)) : (~b(rfr∆t(F,G)))j = fr(Thj, F,G,∆t)

c) B`,u
i,t′(B

`k,uk
k,t (ϕ)) : (~b(B`k,uk

k,t (ϕ)))j =

{
1 if IThjk,t |= B`k,uk

k,t (ϕ)

0 if IThjk,t 6|= B`k,uk
k,t (ϕ)

(3.20)

Note that in the case of nested beliefs, the respective entries (~b(ϕ))j are set to one if
the inner belief holds in thread Thj, i.e., it is assumed that Thj is the point of view

thread for agent k and then it is checked whether k’s belief B`k,uk
k,t (ϕ) is satisfied in this

thread.

Using (3.19) and (3.20), we can determine a matrix Pt′(ϕ) with the probabilities

pT̊ hki,t′ (ϕ) that each agent i assigns at time t′ to some event ϕ, for all possible pov

threads T̊ h1, ..., T̊ hm:3

Pt′(ϕ) = bs(〈D,H〉, t′) ·
(
~b(ϕ), ...,~b(ϕ)

)T
=

p
T̊ h1

1,t′ . . . pT̊ hm1,t′

...
. . .

...

pT̊ h1

n,t′ . . . pT̊ hmn,t′

 (ϕ) (3.21)

For n agents and m threads, this results in a n×m matrix. The rows of this matrix
can be seen as conditional probabilities: agent i believes at time t′ that a fact ϕ is true

with probability pT̊ hki,t′ (ϕ) given that the system is in pov thread T̊ hk.

3Since we have to consider every possible pov thread T̊ hk, we have to multiply every matrix AT̊ h
t ∈

bs(〈D,H〉, t) with ~b(ϕ), thus we need to use the vector
(
~b(ϕ), ...,~b(ϕ)

)T
with m rows.
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Remark 3.7. Computation of Pt′(ϕ) is straightforward for cases 3.20.a) and 3.20.b).
To compute the probabilities for nested beliefs in 3.20.c), we start with computing the
innermost belief (which is an instance of case 3.20.a) or case 3.20.b) since we assume
finite expressions), and then compute the nested beliefs iteratively.

Using Definition 3.11 and Equation (3.21), we can provide a definition for the satis-
fiability and validity of beliefs:

Definition 3.16 (Validity and satisfiability of beliefs). Let B be a belief formula as
defined in Definition 3.4, 〈D,H〉 a pointed doxastic system, and Pt′(ϕ) the correspond-
ing matrix of probabilities at time t′ as defined in (3.21). B is satisfiable (valid) w.r.t.
〈D,H〉 iff

1. For B = B`,u
i,t′(ϕ):

For at least one (all) thread(s) T̊ hk ∈ T̂ , the entries in row i of Pt′(ϕ) satisfy

` ≤ pT̊ hki,t′ (ϕ) and u ≥ pT̊ hki,t′ (ϕ).

2. For B = ¬B`,u
i,t′(ϕ):

For at least one (all) thread(s) T̊ hk ∈ T̂ , the entries in row i of Pt′(ϕ) satisfy

` > pT̊ hki,t′ (ϕ) or u < pT̊ hki,t′ (ϕ).

3. For B = B1 ∧B2:
For at least one (all) thread(s) T̊ hk ∈ T̂ , the entries in the corresponding rows
of Pt′(ϕ) satisfy both B1 and B2.

4. For B = B1 ∨B2:
B1 is satisfiable (valid) or B2 is satisfiable (valid).

Remark 3.8. The distinction between valid and satisfiable belief formulae is only of
interest for beliefs at time t > t̂(H). For time points t ≤ t̂(H) an agent’s belief is
uniquely determined through the given observations (cf. Proposition 3.6), resulting in
a single probability associated to any belief. Therefore, all invalid belief formulae for
t ≤ t̂(H) are unsatisfiable.

From Definition 3.4 it follows that the belief object of an atomic belief formula B
as in Definition 3.16-1 can again be any arbitrary belief formula. If the inner belief
formula B′ is one of the cases defined in Definition 3.16, validity and satisfiability of
the entire expression B = B`,u

i,t′(B
′) follows inductively from the above definition: If

for at least one (all) thread(s) T̊ hk ∈ T̂ , both the inner belief formula B′ is satisfied
and the limits for the outer belief of the respective thread are satisfied, the entire belief
formula is B = B`,u

i,t′(B
′) satisfiable (valid).

Definition 3.16 gives rise to an important property of the belief operator, as the
following lemma shows:
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Lemma 3.7 (Distributivity of the belief operator). Let B = B`,u
i,t′(ϕ1 ⊗ ϕ2) be a belief

formula with a belief object (ϕ1 ⊗ ϕ2) and a connective ⊗ ∈ {∧,∨}. Then, we can
express B equivalently as B′ = B`,u

i,t′(ϕ1)⊗B`,u
i,t′(ϕ2).

Proof. This result follows immediately from the validity and satisfiability of beliefs in
Definition 3.16:

The formula B = B`,u
i,t′(ϕ1∨ϕ2) is satisfiable (valid) iff for at least one (all) thread(s)

T̊ hk ∈ T̂ it holds that T̊ hk |= ϕ1 or T̊ hk |= ϕ2 and the respective entries in Pt′(ϕ) satisfy
Definition 3.16-1. For the former case, B`,u

i,t′(ϕ1) is satisfiable (valid) as well, while for

the latter case B`,u
i,t′(ϕ2) is satisfiable (valid), which reflects exactly the definition of

disjunctive belief formulae from Definition 3.16-4. Thus, B′ = B`,u
i,t′(ϕ1) ∨ B`,u

i,t′(ϕ2) is

satisfiable (valid) iff B = B`,u
i,t′(ϕ1 ∨ ϕ2) is satisfiable (valid).

Similarly, the formula B = B`,u
i,t′(ϕ1 ∧ ϕ2) is satisfiable (valid) iff for at least one

(all) thread(s) T̊ hk ∈ T̂ it holds that both T̊ hk |= ϕ1 and T̊ hk |= ϕ2 hold and the
respective entries in Pt′(ϕ) satisfy Definition 3.16-1. Then, both B`,u

i,t′(ϕ1) and B`,u
i,t′(ϕ2)

are satisfiable (valid) and thus, the formula B′ = B`,u
i,t′(ϕ1) ∧ B`,u

i,t′(ϕ2) is satisfiable

(valid) according to definition Definition 3.16-3. Thus, B′ = B`,u
i,t′(ϕ1) ∧ B`,u

i,t′(ϕ2) is

satisfiable (valid) iff B = B`,u
i,t′(ϕ1 ∧ ϕ2) is satisfiable (valid).

To illustrate the evolution of beliefs, we finish the train example with an analysis of
expected arrival times.

Example 3.10 (Trains continued). From D, as specified in Example 3.9, we can
infer that Bob (and of course Alice, too) can safely assume at time 1 that Alice will
arrive at time 8 at the latest with a probability in the range [0.9, 1], as expressed
in the belief formula

BB,t = B0.9,1
B,t (refr7 (on(A, T1), (at(T2, CB) ∧ on(A, T2)))) (3.22)

with t = 1. For this rule, we obtain the frequencies

efr(Th, at(T1, CA), (at(T2, CB) ∧ on(A, T2)), 7) = 1 for Th ∈ {Th1, ..., Th5},
efr(Th, at(T1, CA), (at(T2, CB) ∧ on(A, T2)), 7) = 0 for Th ∈ {Th6, ..., Th9},

i.e., in threads Th1, ..., Th5 from Figure 3.1, the event (at(T2, CB) ∧ on(A, T2))
occurs within 7 time points following the event on(A, T1) from time t = 1 (and
thus at time t = 8 at latest), while in threads Th6, ..., Th9, the event (at(T2, CB)∧
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on(A, T2)) occurs only at time t = 9, which is outside of the scope of refr7 and thus
yields a frequency of zero.

At time point 1, Bob still considers all threads as possible, and thus Bob’s
subjective posterior probabilistic interpretation

I T̊ hB,1(T̂ ) =
(
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03

)
is equal to the prior interpretation given in Example 3.6 for all possible pov threads
T̊ h. Combining this interpretation with the frequencies given above yields the sum∑

Th∈T̂

I T̊ hB,1(Th) · efr(Th, at(T1, CA), (at(T2, CB) ∧ on(A, T2)), 7) = 0.92

and thus formula BB,1 is valid.

Now, consider the previously described situation, where T1 is running late and
A does not inform B about it. This leads to the updated interpretations given in
(3.6) and (3.7), i.e.,

I T̊ h4
A,3 = ( 0 0 0 0.4 0 0.2 0 0.4 0 ), and

I T̊ h4
B,3 ≈ ( 0.82 0.02 0.10 0.02 0 0.02 0 0.02 0 ).

These updates lead to a significant divergence in the belief of the expected arrival
time: The corresponding sum with respect to Alice’s updated interpretation is∑

Th∈T̂

ITh4
A,3 (Th) · efr(Th, at(T1, CA), (at(T2, CB) ∧ on(A, T2)), 7) = 0.4, (3.23)

(3.24)

obtained by Alice’s subjective posterior probability assignment of thread Th4,
which is the only nonzero summand in the above sum; all other threads Th
are either impossible from Alice’s point of view (i.e., ITh4

A,3 (Th) = 0 for threads
Th ∈ {Th1, Th2, Th3, Th5, Th7, Th9}), or the corresponding frequency is zero (for
threads Th6 and Th8). Thus, Alice’s belief in arriving at time point 8 at the latest
is drastically reduced, as the lower bound ` of Alice’s belief may not exceed 0.4.
For instance,

B0.4,1
A,3

(
refr8 (on(A, T1), (at(T2, CB) ∧ on(A, T2)))

)
, (3.25)
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is now a valid belief formula. The corresponding sum for Bob’s belief at time
point 3 is∑

Th∈T̂

ITh4
B,3 (Th) · efr(Th, at(T1, CA), (at(T2, CB) ∧ on(A, T2)), 7) = 0.96, (3.26)

obtained by summing over Bob’s subjective posterior interpretations for threads
Th1, ..., Th4; the remaining threads again only contribute zero summands because
either Bob’s probability assignment or the corresponding frequency is zero for
those threads. Thus, Bob’s previous belief (expressed in (3.22)) remains valid at
time point t = 3, denoted by BB,3.

Even though Alice’s beliefs have changed significantly, she is aware that Bob
maintains beliefs conflicting with her own, as is shown by the following valid
expression of nested beliefs:

B1,1
A,3(BB,3)

To verify that this nested belief holds, we need to consider all threads that Alice
considers possible (Th4, Th6, Th8) and determine what Bobs hypothetical beliefs
would be in these threads. For Th4, this has already been analyzed in (3.26).
Since threads Th4, Th6, and Th8 are indistinguishable to Bob at time point 3,
the same analysis results hold for all three threads. Consequently, BB3 holds in
every thread that Alice considers possible and therefore the sum for this nested
belief is ∑

Th∈T̂
ITh
B,3|=BB,3

I T̊ hi,t′ (Th) = 1,

i.e., Alice knows that Bob’s belief is outdated.

Finally, consider the pointed doxastic system 〈D, Obs{AB}(¬at(T1, CC))3〉, i.e.,
the same situation as before with the only difference that Alice now shares her ob-
servation of the delayed train with Bob. It immediately follows that Bob updates
his beliefs in the same way as Alice, which in turn yields an update in Alice’s
beliefs about Bob’s beliefs so that now the following expression is valid (because
1 is not a valid lower bound any longer):

¬B1,1
A,3(BB,3)

This example shows how Alice can reason about the influence of her own actions on
Bob’s belief state and therefore she can decide on actions that improve Bob’s utility
(as he does not have to wait in vain). How to find such actions that cause a belief
formulae to be valid is another problem that we will treat formally in Chapter 6.
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3.4. Concluding Remarks

By extending APT Logic to temporal scenarios with multiple agents, we have developed
a general framework to represent and reason about the belief change in multi-agent sys-
tems. Next to lifting the single-agent case of APT Logic to multiple agents, we have
also provided a suitable semantics to the temporal evolution of beliefs. The resulting
framework extends previous work on dynamic multi-agent epistemic logics by enabling
the quantification of agents’ beliefs through probability intervals and thereby facilitat-
ing the use of imprecise probabilities. An explicit notion of temporal relationships is
provided through temporal rules building on the concept of frequency functions.

In this chapter we have specified the formal syntax and semantics of PDT Logic and
we have shown through examples how this formalism can be used to model agents’
beliefs and analyze their respective updates after receiving new information. The for-
malism introduced in this chapter provides the formal foundation for the following
chapters.





Chapter 4

Satisfiability Checking for PDT Logic

In this chapter we will describe procedures to check whether there exists a model for
some given set of belief formulae B. We start with formally defining the satisfiability
checking problem in PDT Logic. Using the semantics from the previous chapter, we
derive a model checking algorithm based on fully specified doxastic systems. After-
wards, we show how a set of belief formulae can be used to specify a problem in PDT
Logic and—together with a given set of threads—how this can be transformed into a
mixed integer linear program in order to employ existing solvers to decide satisfiability
of PDT Logic formulae. Finally, we show how suitable threads can be derived from a
given set of belief formulae automatically.

If a fully specified doxastic system 〈D,H〉 is given, we can define the problem of
checking whether a set of belief formulae B is satisfiable with respect to this doxastic
system as follows. Recall from Section 3.2.4 that we use I T̊ h to denote the set of all
subjective posterior interpretations I T̊ hi,t′ induced by a prior interpretation I in a pov

thread T̊ h.

Definition 4.1 (Satisfiability Checking for PDT Logic). Let 〈D,H〉 be a pointed
doxastic system with the set of threads T̂ and according prior interpretation I specified
in 〈D,H〉, and B be a set of belief formulae. We say that B is satisfiable w.r.t. 〈D,H〉
if there exists a thread T̊ h in T̂ such that the corresponding interpretations satisfy all
belief formulae B from B:

sat(B, 〈D,H〉) ≡ ∃T̊ h ∈ T̂ :
(
∀B ∈ B : I T̊ h |= B

)
(4.1)

If such a specification is given, checking satisfiability of B with respect to 〈D,H〉
corresponds to checking whether 〈D,H〉 is a model for B. We continue with introducing
a model checking procedure for this fully specified input. Afterwards, we discuss how
satisfiability of a set of belief formulae B can be decided if no prior probabilities, or
neither threads nor prior probabilities are given.

39
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Algorithm 1 Model Checking

procedure ModelChecking(〈D,H〉,B)

bs(〈D,H〉, 0)← (ATh1
0 , ..., AThm

0 )
for t← 1, tmax do . compute all belief states

bs(〈D,H〉, t)← bs(〈D,H〉, t− 1) ◦ (UTh1
t , ..., UThm

t )

for B ∈ B do
for T̊ hk ∈ T̂ do

if not Check(bs(〈D,H〉), T̊ hk,B)) then . check if B is satisfied in T̊ hk
T̂ ← T̂ \ {T̊ hk} . otherwise remove T̊ hk from threads to check

if T̂ = ∅ then
return false . exit if no T̊ h can satisfy B

return true . success if T̂ is nonempty after checking all B ∈ B

function Check(bs(〈D,H〉), T̊ hk,B)
switch (B) . check formulae according to Def. 3.16

case B`,u
i,t′ (ϕ):

if ϕ = B′ then . check nested belief formulae recursively (B′ is a belief formula)

if not Check(bs(〈D,H〉), T̊ hk,B′)) then
return false

Pt′ ← bs(〈D,H〉, t′) ·~b(ϕ) . use ~b(ϕ) from (3.20) to compute Pt′ with elements p
T̊hk
i,t′

return (` ≤ pT̊hk
i,t′ and u ≥ pT̊hk

i,t′ ) . true if p
T̊hk
i,t′ ∈ [`, u]

case ¬B`,u
i,t′ (ϕ):

Pt′ ← bs(〈D,H〉, t′) ·~b(ϕ)

return (` ≥ pT̊hk
i,t′ or u ≤ pT̊hk

i,t′ ) . true if p
T̊hk
i,t′ 6∈ [`, u]

case B′ ∧B′′:
return (Check(bs(〈D,H〉), T̊ hk,B′) and

Check(bs(〈D,H〉), T̊ hk,B′′))

case B′ ∨B′′:
return (Check(bs(〈D,H〉), T̊ hk,B′) or

Check(bs(〈D,H〉), T̊ hk,B′′))

4.1. A Model Checking Algorithm

A first approach of developing an algorithm to check whether a given set of belief
formulae B is satisfied by a given pointed doxastic system 〈D,H〉 (i.e., checking whether
〈D,H〉 is a model for B) can be obtained through a direct application of the semantics
of the belief operator given in Definition 3.11. Algorithm 1 shows the resulting model
checking procedure. It starts with computing the belief states for all possible evolutions
of the world from t = 1 to tmax. Afterwards, it iterates through all belief formulae
B ∈ B and potential pov threads T̊ hk to determine whether the interpretation in the
respective pov thread is able to satisfy the current belief formula. If a thread is unable
to satisfy some belief formula, it is excluded from the set of potential pov threads
for subsequent checks. If at least one potential pov thread remains after all belief
formulae have been checked (i.e., there is at least one thread T̊ hk so that all belief
formulae B ∈ B are satisfied), 〈D,H〉 is a model for B.
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Theorem 4.1 (Soundness and completeness of Algorithm 1). The decision procedure
Algorithm 1 is sound and complete and therefore a model checking procedure for PDT
Logic.

Proof. Since the presented algorithm is essentially an inductive application of Defini-
tion 3.16, it is easy to see that it yields a sound and complete decision procedure for
PDT Logic. Basic belief formulae (B`,u

i,t′(Ft) and B`,u
i,t′(r

fr
∆t(F,G))) return satisfiability

results by directly using the respective semantic definitions from (3.10) and (3.11) as
calculation rules. For every possible compound belief formula of PDT Logic (¬B`,u

i,t′(ϕ),

B`,u
i,t′(B), B′ ∧B′′, and B′ ∨B′′), the procedure provides an appropriate rule accord-

ing to Definition 3.16 to break down these formulae iteratively until base formulae are
obtained, which can be decided as above.

The asymptotic complexity of Algorithm 1 depends on the number of belief operators
B`,u
i,t′(ϕ) contained in B:

Theorem 4.2 (Time complexity of Algorithm 1). Let B be a set of belief formulae and
let k be the number of belief operators contained within B. Then, using Algorithm 1 to
check whether a given pointed doxastic system 〈D,H〉 with m threads is a model for B
has time complexity O(k ·m).

Proof. For a given pds with m threads and k belief formulae in B, the main procedure
calls the check function at most m · k times. If B is a base formula with only a
single belief operator B`,u

i,t′(ϕ), a single call of the check function will return a result.

Otherwise, if a belief formula B contains more than one belief operator B`,u
i,t′(ϕ), the

check function will be called recursively, until base formulae are obtained. Thus, for
k belief operators in B, the satisfaction checks are performed at most k · m times,
yielding a time complexity of O(k ·m).

From Theorem 4.2 we immediately obtain a complexity result for the model checking
problem in PDT Logic:

Corollary 4.3 (Complexity of model checking for PDT Logic). The model checking
problem for PDT Logic is in PTIME.

This result shows that model checking of a set of belief formulae w.r.t. a given
pointed doxastic system can be done in polynomial time. If a fully specified pds (and
thereby an exhaustive specification of the set of possible threads T̂ ) is given, this result
shows that Algorithm 1 presents a tractable procedure to perform the model checking
task. However, this approach has a significant drawback as it assumes an exhaustive
specification of T̂ together with precise prior probability assignments I(T̂ ). Although
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there are some problem domains that actually come with such a specification (e.g., cf.
the cyber security scenario described in the introduction, which we will formally treat in
Chapter 5), this assumption renders Algorithm 1 infeasible for most problem domains.
To overcome this problem, we will proceed with discussing a different approach, which
enables satisfiability checking without requiring a specification of exact probabilities.
Moreover, we show how representative threads with respect to a set of belief formulae B
can be constructed automatically, so that positive satisfiability results can potentially
be obtained without requiring a full materialization of all possible threads T̂ .

4.2. A Compact Problem Specification

Up until now we used a (pointed) doxastic system to specify a problem domain for
model checking a set of belief formulae B in PDT Logic. In the following sections,
we show how we can reformulate the problem such that an extended set of belief for-
mulae together with a value for tmax is used. The main idea of this approach is that
background knowledge regarding the target domain is not given through an explicit
specification of possible threads and according probabilities, but instead through sets of
rules in B that describe how the target domain may evolve over time. This approach
has several advantages: In most scenarios, compared to requiring an exhaustive set
of possible threads, specifying a set of rules (which can be expressed as prior beliefs)
gives a more natural means of specifying background knowledge of the problem domain
(e.g., cf. Example 3.2, which actually starts with a verbal description of rules and only
later introduces the corresponding set of possible threads). Furthermore, using a set of
rules to describe a problem domain is a fairly established approach and therefore this
approach will provide options to simplify transformation of existing problem specifi-
cations into PDT Logic. Finally, since the set of possible threads grows exponentially
with every additional time point in the set of time points τ and every additional ground
atom of the language L, an exhaustive problem specification through the set of pos-
sible threads quickly becomes infeasible, while the same situation could be described
succinctly through a small set of rules. Even though such a succinct specification shifts
the exponential nature of this problem from the required input specification to com-
putational efforts, we show that the exponential effect can be curtailed with heuristics
when constructing possible threads automatically.
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4.2.1. Identification of Key Parameters from a Set of Belief
Formulae

To simplify the following discussion, we will restrict temporal rules to only use the
point frequency function pfr. Recall that point frequency functions are used to specify
that some event F is followed by another event G after exactly ∆t time points, while
existential frequency functions efr are used to specify that some event F is followed
by another event G within a time interval ∆t. If existential frequency functions are
required to specify a problem domain, we can rewrite them as disjunctions of point
frequency functions, as the following proposition shows. If further frequency functions
are defined, the presented techniques can be easily adapted.

Proposition 4.4 (efr rewriting). An existential frequency function efr can be equiva-
lently represented as a disjunction of point frequency functions pfr:

refr∆t(F,G) ≡
∨

∆̃t: 0≤∆̃t≤∆t

rpfr
∆̃t

(F,G)

Recall that, according to Definitions 3.12 and 3.14, the specification of a pds consists
of a set of agents A, a set of threads T̂ , a set of frequency functions F , a matrix of

prior probability distributions A
|A|×|T̂ |
0 , and a set of time-stamped observations H.

Since we will only use point frequency functions in the following, the set of frequency
functions F is always fixed to {pfr}, and thus there is no need to specify this set
separately.

Instead of explicitly specifying the set of agents A, we can just determine it from
the belief expressions B`,u

i,t′(ϕ) contained in the set of belief formulae B. With a slight

abuse of notation, we use B`,u
i,t′(ϕ) ∈ B to denote that belief operator B`,u

i,t′(ϕ) appears
somewhere in a set of belief formulae B. Then, we can define the set of agents AB

specified through a set of belief formulae B as

AB = {i : B`,u
i,t′(ϕ) ∈ B} (4.2)

Generally, it is possible that the explicit specification of the set of agents A is larger
than the set AB. However, it is obvious that if no beliefs are expressed for some agent
i (i.e., i ∈ A and i 6∈ AB), this agent will not influence satisfiability checking results
whatsoever. Thus, this agent can simply be disregarded and, consequently, it suffices
to use the set AB.

Similarly, instead of specifying the set of ground atoms of the language L through
the sets of predicates Lpred and constants Lcons, we can define a set of event formulae
FB representing all belief objects occurring in a set of belief formulae B as

FB =
{
F :

(
B`,u
i,t′(Ft) ∈ B ∨ B`,u

i,t′(r
fr
∆t(F,G)) ∈ B ∨ B`,u

i,t′(r
fr
∆t(G,F )) ∈ B

)}
. (4.3)
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This definition gives rise to a potential definition of the set of possible worlds Ω as
the Herbrand base BFB of FB (resp. the set of admissible worlds Ω̂ ⊆ Ω complying with
Definition 3.5). However, as we will show later, there are more options to constrain
the sets of possible worlds to allow for a more concise problem representation.

Note that according to Definition 3.2, formulae may include both atoms and observa-
tion atoms. Consequently, FB does not only specify ontic facts of possible worlds, but
also possible observations of these ontic facts. With this approach, occurrences of ob-
servations are limited to the ones specified in FB. This can be seen as the specification
of a sensor model for groups of agents G ⊆ AB.

Remark 4.1. A strict application of (4.3) would prohibit simple specifications of group
observations ObsG(l) with |G| > 1 in B. To ensure that the set of admissible worlds
actually contains worlds with ObsG(l), a full specification of such an observation as∧
G′⊆G ObsG′(l) in B would be required (otherwise there might be no world ω ∈ BFB

with ω |= ObsG(l) that satisfies the second property in the definition of possible worlds
(cf. Definition 3.5)). However, the required full specification of an observation for
admissible worlds can be determined solely through the simple observation specification
ObsG(l). In order to keep the specification of B as compact as possible, we allow for
simple specifications ObsG(l) and assume that they are expanded with

∧
G′⊂G ObsG′(l)

while creating FB.

An alternative approach would be to construct FB only through ontic facts appear-
ing in B and create a set of admissible worlds by combining all ontic facts with all
possible admissible observations w.r.t. Definition 3.5. These approaches differ in the
requirements of observation specifications: the former requires to specify every possible
observation explicitly, while the latter requires to exclude every impossible observation
explicitly. Since in most scenarios the set of observations actually being possible (w.r.t.
the problem domain) is significantly smaller than the set of all admissible observations,
the presented approach will usually yield a more compact problem specification. If de-
sired, one could employ the latter approach instead without impacting the functionality
of the following methods.

Background knowledge regarding the target domain—that was given through an
explicit representation of possible threads before—can now also be specified as prior
beliefs (i.e., beliefs B`,u

i,0 (ϕ)) in B. Recall from Section 3.2.4 that we assume a com-

monly known prior distribution I T̊ hi,t which is equal for all agents i ∈ AB. As the

belief semantics is defined with respect to the probabilistic interpretations I T̊ hi,t′ (cf.

Definition 3.11), it follows that every prior belief B`,u
i,0 (ϕ) is common knowledge as well.

Consequently, we can express background knowledge as prior beliefs of any arbitrary
agent i ∈ AB.

As pointed out in Chapter 3, satisfiability of beliefs in temporal rules B`,u
i,t′(r

fr
∆t(F,G))
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with certain properties are independent of the respective set of threads T̂ or the as-
sociated interpretation I(T̂ ) (cf. Remark 3.5): if the respective frequency function
corresponds to FF1, FF2, or FF3 of Definition 3.10 (i.e., F is a contradiction, G is
a tautology, or F is a tautology and G is a contradiction), beliefs are either trivially
satisfied for quantifications with u = 1 (resp. ` = 0) or generally unsatisfiable. In the
former case, trivially satisfiable beliefs can be disregarded without influencing satisfia-
bility results, while for the latter case satisfiability checking can terminate immediately
with a negative result. Thus, in the following we assume that B contains only beliefs
in rules that do not correspond to frequency function axioms FF1-FF3.

Example 4.1 (Trains revisited). An informal verbal description of the train prob-
lem was given in Example 3.2 with a corresponding formal specification through
a set of possible threads T̂ in Example 3.4 and probability assignments in Exam-
ple 3.6. Using the above considerations on the expression of background knowl-
edge as beliefs in rules, we can reformulate the verbal rules given in Example 3.2
together with the probabilistic information from Example 3.6 as a set of formal
beliefs B with according explanations below:

B=



B1 = B1,1
A,0

(
at(T1, CA)1

)
∧B1,1

A,0

(
on(A, T1)1

)
,

B2 =
B.81,.81
A,0

(
rpfr0 (at(T1, CA), punct(T1))

)
(B′2)

∧ B.81,.81
A,0

(
rpfr0 (at(T2, CC), punct(T2))

)
, (B′′2)

B3 =
B1,1
A,0

(
rpfr3 ( punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
(B′3)

∧ B1,1
A,0(rpfr5 (¬punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
, (B′′3)

B4 =
B1,1
A,0

(
rpfr2 ( punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)
(B′4)

∧ B1,1
A,0

(
rpfr3 (¬punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)
, (B′′4)

B5 = B1,1
A,0

(
rpfr0 (¬punct(train) ∧ at(train, city), Obs{A}(¬punct(train)))

)
,

B6 = B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
,

train ∈ {T1, T2},
city ∈ {CA, CB}
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Note that all beliefs are expressed for time t = 0, i.e., these are prior beliefs that
are by definition commonly known among all agents. All beliefs expressed in this
example are assigned to A, but they could equivalently be assigned to B or to
both.

B1 states that train T1 is at city CA at time t = 1 and that Alice is on that
train. B2 states that both agents believe that trains are punctual (denoted by
punct(train)) with a probability of 0.81. The probability values in this example
are obtained by summing over the probabilities given in Example 3.6 for all threads
given in Example 3.4 where the respective belief object is satisfied. To have
an equivalent representation of the previous example, we use exact probability
values (i.e., ` = u) instead of intervals. Note that punct(train) is an additional
predicate with a variable train that helps to formulate the background knowledge
in a concise way. Formula B2 does not yet specify what the consequences of a
non-punctual train are, only that a train is expected to be punctual with a certain
probability. B3 states that Alice is able to board train T2 after three time steps
if train T1 is punctual and that Alice has to wait for two additional time points
otherwise. B4 states that train T2 will arrive at city CB two time points after
being in city CC . Otherwise she will arrive one time point later. B5 states that
Alice will always notice when her train leaves a city not punctually. This is an
example for a sensor model specification as discussed above. Finally, B6 states
that Alice will call Bob with a probability of 0.93 if her train is not punctual.

Example 4.2 (Trains continued). With the definition of the set of belief formulae
B from the above example, we can now also specify the set of event formulae FB

required to model the possible scenarios described through B:

FB =


at(T1, CA), at(T1, CB), at(T2, CB), at(T2, CC),

on(A, T1), on(A, T2), punct(T1), punct(T2),

Obs{A}(¬punct(T1)), Obs{AB}(¬punct(T1)),

Obs{A}(¬punct(T2)), Obs{AB}(¬punct(T2))


To simplify the following discussion, we assume that conjunctive formulae B =

B′ ∧ B′′ ∈ B are replaced with individual formulae of the respective conjuncts:
B = B \ {B} ∪ {B′,B′′}. This does not impact the satisfiability checking properties
of B because all formulae in B have to be satisfied simultaneously in order to return
a positive result and thus, both B′ and B′′ have to be satisfied, regardless of their
representation as two individual formulae or as one conjunction.

Now, what remains to be determined is the set of threads T̂ , a corresponding prior
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probability distribution I(T̂ ) (resp. a matrix of prior probability distributions A
|A|×|T̂ |
0 ,

where every row is formed by I(T̂ )), and possibly a set of time-stamped observation
atoms H. The tasks of determining T̂ and H can be treated jointly: since the set of
relevant threads needs to be determined anyway, we simply create T̂ such that T̂ |= H.

In the next section we will show how we can transform a set of PDT Logic belief
formulae B together with a given set of threads T̂ into a linear program in order
to determine satisfiability of B with respect to T̂ . Afterwards, we will discuss how a
suitable set of threads T̂ to represent the information contained in B can be constructed
automatically. Using these results, it is possible to model a problem domain in PDT
Logic solely through a set of belief formulae B together with the specification of a
maximum time point tmax. All other key parameters of the domain—such as the set
of agents and the set of ground atoms—can be extracted from B automatically.

4.3. Representing the Satisfiability Problem as a Linear
Program

The considerations from the previous section show that most parameters for a problem
specification can be extracted from a given set of belief formulae B. In this section,
we assume that only a set of belief formulae B together with a set of possible threads
T̂ is given. B is then satisfiable with respect to T̂ (denoted by sat(B, T̂ )) if a prior
interpretation I(T̂ ) can be found such that all belief formulae in B are satisfied. By
extracting linear constraints on I(T̂ ) from B, we show how the satisfiability problem
can be transformed into a linear program. Checking satisfiability of B with respect
to T̂ is then equivalent to checking whether the corresponding linear program has a
feasible solution.

For a given set of threads with an unknown prior interpretation I(T̂ ), the satisfiabil-
ity checking task significantly increases in complexity compared to the model checking
task. Formulation of the satisfiability checking problem in Definition 4.1 might be
somewhat delusive: As the existence of a single thread in the context of some interpre-
tation suffices to verify satisfiability of a set of belief formulae B, it appears intuitive
to develop a method to construct such a thread—if possible—and neglect the other
threads, or, vice versa, start with the entire set of threads T̂ and iteratively prune all
threads that fail to satisfy any formula from B. In fact, such a pruning approach was
used in Algorithm 1 to check whether a given set of threads is a model for a set of
belief formulae. Unfortunately, these approaches are inapplicable if the prior interpre-
tation is unknown. As the semantics of belief operators (cf. Definition 3.11) relies on
subjective posterior probabilistic interpretations (i.e., on probability assignments for
multiple threads), it is generally not possible to find a single thread T̊ h satisfying the
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satisfiability checking problem from Definition 4.1 without determining probabilities
for all threads. Vice versa, it is generally not possible to discard any thread, because
determining whether it satisfies any belief formula can only be done if its respective
probability assignment is known. Instead, we will show that belief formulae can equiv-
alently be expressed as sets of linear constraints on the unknown prior interpretation
I(T̂ ). Then, checking satisfiability of B is equivalent to checking whether there is a
possible assignment to I(T̂ ) so that all constraints are satisfied.

We will use xk to denote the unknown prior probability of thread Thk, i.e., if T̂
contains m threads, then its unknown prior probability assignment is represented as

I(T̂ ) =
(
x1, · · · , xm

)T
. (4.4)

The goal of the following methods is to provide constraints on the xk so that all belief
formulae B ∈ B are satisfied. Since these variables represent a probability distribution
over the set of threads, there are two obvious constraints to begin with:

0 ≤ xk ≤ 1, ∀k ∈ {1, ...,m} (4.5)

and
m∑
k=1

xk = 1 (4.6)

4.3.1. Representation of Subjective Posterior Probabilities

Since the semantics of beliefs is defined in terms of the respective agents’ subjective
probability assignments in the respective pov thread, we need means to express the
subjective posterior probabilistic interpretations I T̊ hi,t′ of an agent i in terms of the prior
probability values xk. These interpretations change at a time point t whenever an
observation Obs{i}(l)t is possible for agent i. If an observation is possible for an agent,
we can partition the set of threads into two sets: one partition containing the set
of threads where agent i does observe the respective fact l and one partition where
agent i does not observe the respective fact. The subjective probability assignments
need to be updated within each partition to reflect this information about observation
occurrences: Taking every thread within a partition as a possible pov thread, the
probability assignments for all other threads within this partition need to be scaled
according to the update rule in Definition 3.9 and the pov thread specific probability
assignments for all threads outside of the respective partition need to be set to zero.

Generally, this leads to one vector of subjective probabilities over all threads for
every possible pov thread (cf. the Definition of belief states in (3.17)). However, we can
leverage the semantic properties of PDT Logic to obtain a parsimonious representation
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of the updated subjective probabilities without representing every pov thread explicitly.
Note that all threads within one partition as described above are indistinguishable to
agent i at the respective time point (i.e., all threads within one partition exhibit exactly
the same set of observations for agent i up to time point t) and therefore receive the
same probability assignment for every possible pov thread within this partition (cf.
Proposition 3.6). Consequently, the updated probability assignments for every thread
in T̂ can receive only one of two different types of value assignments: a scaled version
of the thread’s previous probability assignment according to Definition 3.9, or zero,
depending on whether the agent actually observes the fact l or not. The following
proposition shows that we do not need to consider the cases with zero probabilities in
order to perform satisfiability checking tasks.

Proposition 4.5 (Irrelevance of zero-interpretations). Let I T̊ hi,t′ be the subjective pos-

terior probability interpretation at time t′ for some agent i in pov thread T̊ h (i.e., this
interpretation is determined through the prior interpretation and interpretation updates
corresponding to pov thread T̊ h). If this interpretation assigns a probability of zero to

some thread Th (i.e., I T̊ hi,t′ (Th) = 0), then satisfiability of any subsequent nontrivial

belief Bi,t′′(ϕ) with t′′ > t′ is independent of I T̊ hi,t′ (Th).

Proof. Every belief B`,u
i,t′(ϕ) with ` > 0 in a fact or in another belief (i.e., ϕ = Ft or

ϕ = B
`j ,uj
j,t (·)) requires that there needs to be at least one thread Th with a nonzero

probability such that Th |= ϕ. Therefore, a thread Th with I T̊ hi,t′ (Th) = 0 can clearly

not prove satisfiability of a belief B`,u
i,t′′(ϕ) with t′′ ≥ t′. A negative satisfiability result

(i.e., B is unsatisfiable w.r.t. T̂ ) cannot be obtained from such a zero assignment
either, because any consistent interpretation (i.e., the probability assignments of all
threads sum to one) needs to assign a nonzero probability to at least one thread, which
could then possibly satisfy the belief. The same considerations hold for beliefs B`,u

i,t′(ϕ)

with ` = 0 and u < 1: Although a thread with I T̊ hi,t′ (Th) = 0 satisfies the lower bound
` = 0, the upper bound u < 1 requires the existence of another thread Th′ with a
nonzero probability I T̊ hi,t′ (Th′) > 0 such that Th′ |= ¬ϕ. Consequently, I T̊ hi,t′ (Th) = 0

can only prove satisfiability of beliefs B`,u
i,t′(ϕ) with ` = 0 and u = 1. These are trivial

beliefs that are satisfied by every thread and every possible probability assignment and
thus, their satisfiability can be proven without I T̊ hi,t′ (Th) = 0, too.

Analogous considerations hold for beliefs in rules: A belief B`,u
i,t′(r

fr
∆t(F,G)) with

` > 0 requires the existence of a thread with a nonzero probability such that
fr(Th, F,G,∆t) > 0, and thus a thread Th with I T̊ hi,t′ (Th) = 0 cannot prove satisfi-

ability of this belief. Satisfiability of a belief B`,u
i,t′(r

fr
∆t(F,G)) with ` = 0 and u < 1

depends on the respective frequencies fr(Th′, F,G,∆t) in additional threads Th′ with
nonzero probabilities.
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As a result of this proposition, we can merge the nonzero entries from both cases
(agent i observes the fact l and agent i does not observe the fact l) into a single
probability distribution vector for each agent i and time point t. This yields a modified
version of the update rule from Definition 3.9. We will use this modified update rule
to determine linear constraints on the unknown prior probabilities xk.

Definition 4.2 (Modified update rule). Let i be an agent, t′ be a time point where some
observation Obs{i}(l) can occur and Th be a thread. Then, a compressed subjective
posterior probability assignment Ǐi,t′(Th) for agent i at time t′ for thread Th is given
through

Ǐi,t′(Th) =
1

αThi,t′
· Ǐi,t′−1(Th) (4.7)

with αThi,t′ again being a normalization factor to ensure that the probabilities of all
threads that agent i considers possible sum to one:

αThi,t′ =
∑

Th′(t′)∈Ki(Th(t′))

Ǐi,t′(Th′)

Example 4.3 (Modified update rule). To illustrate the modified update rule, we
return to the situation described in Example 3.7. In this example we assumed
that train T1 is running late and A does not inform B about it. This resulted in
the following updated interpretation for A:

I T̊ h4
A,3 = I T̊ h6

A,3 = I T̊ h8
A,3 =

(
0 0 0 0.4 0 0.2 0 0.4 0

)
In the given example, two additional hypothetical partitions of the set of threads
T̂ are possible for Alice at time point t = 3 . If train T1 is running late and A
does inform B about it, threads Th5, Th7, and Th9 are indistinguishable to A,
yielding the updated subjective interpretation

I T̊ h5
A,3 = I T̊ h7

A,3 = I T̊ h9
A,3 =

(
0 0 0 0 0.14 0 0.65 0 0.21

)
If T1 is on time, Alice considers threads Th1, Th2, and Th3 as possible. The
corresponding subjective interpretation is then

I T̊ h1
A,3 = I T̊ h2

A,3 = I T̊ h3
A,3 =

(
0.86 0.03 0.11 0 0 0 0 0 0

)
These three different subjective interpretations have nonzero entries exactly for
the threads that are in the partitions of the respective pov thread. Since the
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partitions are not overlapping, we can merge the nonzero entries into a single
probability vector

ǏA,3 =
(
0.86 0.03 0.11 0.4 0.14 0.2 0.65 0.4 0.21

)
.

Note that in this modified update rule, the update for each pov thread does not
specify interpretations over all threads anymore, but instead only the reflexive inter-
pretations for each thread Th, given that Th is the pov thread, are used. As discussed
above, for the satisfiability problem this is still a sufficient representation of posterior
probabilities, because all other potential pov threads T̊ h in the respective partition
are indistinguishable to agent i and therefore yield exactly the same interpretations.
It should be noted however that Ǐi,t′(Th) is not a probabilistic vector anymore, i.e.,
its elements do not sum to one. Compared to the representation of belief states from
Section 3.3.1, information about distinguishable worlds is lost. Thus, reconstruction
of an agent’s belief state from this representation is only possible with an additional
specification of the respective relations Ki.

Returning to the problem representation from (4.4), we can use the modified update
rule to obtain an inductive definition of subjective posterior probabilities based on the

respective (unknown) prior probabilities xk. If I(T̂ ) =
(
x1, · · · , xm

)T
is the prior

interpretation over the set of threads, agent i’s compressed subjective posterior inter-
pretations Ǐi,t′ at the time point t′ of the first possible observation can be represented
as

Ǐi,t′(T̂ ) =
(

1
α1
i,t′
· x1, · · · , 1

αm
i,t′
· xm

)T
, (4.8)

with the update factors αki,t′ determined through

(
α1
i,t′ · · · αmi,t′

)T
=
(
x1, · · · , ·xm

)
·

κi,t
′

1,1 · · · κi,t
′

1,m
...

. . .
...

κi,t
′

m,1 · · · κi,t
′

m,m

 ,

κi,t
′

j,k =

{
1 if Thk(t

′) ∈ Ki(Thj(t′))
0 if Thk(t

′) 6∈ Ki(Thj(t′))

with a (symmetric) matrix of indicators κi,t
′

j,k denoting whether agent i considers thread
Thk possible in thread Thj at time t′. Using (4.8) as the base case, we can then define
interpretation updates for the next possible observation at time t′′ inductively as

Ǐi,t′′(T̂ ) =
(

1
α1
i,t′′
· 1
α1
i,t′
· x1, · · · , 1

αm
i,t′′
· 1
αm
i,t′
· xm

)T
(4.9)

To simplify notation, in the following we use a single factor aki,t′ to represent the

aggregated sequence of scaling factors (αki,t1 · αki,t2 · ...) for all observations that can
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occur at time points t1, t2, ... between t = 1 and t = t′ for agent i, i.e., agent i’s
subjective posterior interpretations Ǐi,t′(T̂ ) at time t′ are given as

Ǐi,t′(T̂ ) =
(
a1
i,t′ · x1, · · · , ami,t′ · xm

)T
. (4.10)

Note that potential interpretation updates for an agent i can occur at some time
point t if and only if some observation Obs{i}(l) is possible at that time point. Hence,
for any time interval between two possible observations, the subjective interpretations
are constant:

Proposition 4.6 (Piecewise constant interpretations). Let t1 and t2 with t1 < t2 be
two time points such that observations for an agent i are possible at t1 and t2, but at
no time point t in between t1 and t2. Then, the compressed subjective interpretation
Ǐi,t′(T̂ ) is constant for all time points t1 ≤ t < t2:

∀t ∈ [t1, t2 − 1] : Ǐi,t(T̂ ) = Ǐi,t1(T̂ )

This proposition states that all constraints identified in the following section do not
only restrict the subjective interpretations at single time points, but instead restrict the
interpretations for the respective time interval between any two possible observations.

4.3.2. Extracting Linear Constraints from Belief Formulae

Now that we have established representation (4.10) of subjective posterior interpreta-
tions in terms of the unknown prior probabilities xk, we can use this representation to
extract linear constraints on the xk from the set of belief formulae B.

We assume that the distributive property of the belief operator from Lemma 3.7 is
applied whenever possible, i.e., belief formulae B`,u

i,t′(B1 ⊗ B2) with ⊗ ∈ {∧,∨} are

separated into B`,u
i,t′(B1) ⊗ B`,u

i,t′(B2). Furthermore, without loss of generality, we can
assume that conjunctive formulae B = B1 ∧ B2 are replaced through B \ {B} ∪
{B1,B2} and that trivial beliefs (with ` = 0 and u = 1) are removed from B.

Moreover, we assume that all belief formulae B ∈ B are represented in negation
normal form (NNF), i.e., the negation operator is only applied to atoms. Since any
arbitrary logic formula can equivalently be expressed as a formula in NNF (cf. e.g.,
[BEL+01]), this assumption does not restrict B either.

With these assumptions, the following types of belief formulae B can occur in B:

• atomic belief formulae B = B`,u
i,t′(ϕ)

• negated atomic belief formulae B = ¬B`,u
i,t′(ϕ)
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• disjunctive belief formulae B = B1 ∨B2

For each of these types, we will now show how the respective formula can be expressed
as a set of linear constraints on the prior probabilities xk.

Atomic Belief Formulae Using the parsimonious representation of subjective poste-
rior interpretations Ǐi,t′(Th) given through the modified update rule in Definition 4.2
requires an adaption when deciding satisfiability of belief formulae. Before, satisfaction
of a belief formula in a given pov thread could be determined by summing over the
respective subjective interpretations of all threads in which the belief object is satisfied.
Threads that an agent does not consider possible anymore w.r.t. the given pov thread
are automatically “excluded” as they have a probability assignment of zero. In the
compressed representation, the respective probability assignments for threads consid-
ered impossible are overloaded with different probability assignments given that the
agent is in another pov thread, as illustrated in Example 4.3. We obtain an adapted
version of satisfiability testing by explicitly ensuring that only those interpretations of
threads are summed that are still considered possible w.r.t. the respective pov thread.
As this additional constraint only excludes summands with zero-values, the original
semantics is still maintained. Thus, we use equivalence classes Ci,t′ = {C1

i,t′ , C2
i,t′ , ...}

to represent the set of distinguishable situations for agent i at time t′. Naturally,
two threads Th1, Th2 are indistinguishable and therefore in the same equivalence class
for agent i at time t′, if they exhibit exactly the same observations for agent i for
all time points t ∈ {1, .., t′}. All threads outside of a particular equivalence class re-
ceive a probability of zero for every pov thread T̊ h within the respective equivalence
class and—as discussed in the previous section—therefore do not contribute to the
satisfiability properties. Then, in the belief semantics from Definition 3.11, instead of
summing over all threads Th ∈ T̂ with certain properties, we can restrict the range
to Th ∈ Cki,t : (T̊ h ∈ Cki,t) while maintaining the original semantics. Naturally, a belief
formula is then satisfiable if there exists at least one equivalence class that satisfies the
respective beliefs. For instance, a belief in a fact B`,u

i,t′(Ft) is satisfiable with respect to

an agent i’s compressed subjective posterior interpretation Ǐi,t′ at time t′ iff

∃Cki,t′ ∈ Ci,t′ : ` ≤
∑

n: (Thn∈Cki,t′∧Thn(t)|=F )

ani,t′ · xn ≤ u (4.11)

Such a constraint can equivalently be expressed as a set of linear inequalities with
conjunctive and disjunctive connectives, leading to an alternative representation of the
satisfiability problem.

Corollary 4.7 (Alternative satisfiability representation for atomic beliefs). Let Ǐi,t′(T̂ ) =(
a1
i,t′ · x1, · · · , ami,t′ · xm

)T
and Ǐj,t(T̂ ) =

(
a1
j,t · x1, · · · , amj,t · xm

)T
be the com-
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pressed representation of agent i and j’s respective subjective posterior probabilities
at time t′ and t, respectively, as given in (4.10), and let Ci,t′ and Cj,t be the sets of
worlds that agent i and agent j can distinguish at the respective time point. Then, an
atomic belief expression B is satisfiable w.r.t. Ǐi,t′(T̂ ) for

1. belief in a fact B = B`,u
i,t′(Ft) iff

∨
Ck
i,t′∈Ci,t′

(( ∑
n: (Thn∈Cki,t′
∧Thn(t)|=F )

−ani,t′ · xn ≤ −`
)
∧
( ∑
n: (Thn∈Cki,t′
∧Thn(t)|=F )

ani,t′ · xn ≤ u
))

(4.12)

2. belief in a rule B = B`,u
i,t′(r

pfr
∆t(F,G)) iff

∨
Ck
i,t′∈Ci,t′

( ( ∑
n: (Thn∈Cki,t′ )

−ani,t′ · xn · pfr(Thn, F,G,∆t) ≤ −`
)

∧
( ∑
n: (Thn∈Cki,t′ )

ani,t′ · xn · pfr(Thn, F,G,∆t) ≤ u
))

(4.13)

3. nested belief B = B`,u
i,t′(B

`j ,uj
j,t (ϕ)) iff

∨
Ck
i,t′∈Ci,t′

( ( ∑
n: (Thn∈Ckj,t)∧

Thn|=ϕ ∧ ({Ckj,t∩Cki,t′}6=∅)

−anj,t · xn ≤ −`j
)

∧
( ∑

n: (Thn∈Ckj,t)∧
Thn|=ϕ ∧ ({Ckj,t∩Cki,t′}6=∅)

anj,t · xn ≤ uj

)

∧
( ∑

n: Thn∈{Ckj,t∩Cki,t′}
∧ Thn|=ϕ

−ani,t′ · xn ≤ −`
)

∧
( ∑

n: Thn∈{Ckj,t′∩C
k
i,t′}

∧ Thn|=ϕ

ani,t′ · xn ≤ u
))

(4.14)

As discussed above, the representations for satisfiability of beliefs in facts (4.12) and
beliefs in rules (4.13) are obtained directly by replacing the range of threads T in
the sum with the respective set of threads Ckj,t′ considered possible by agent i at time
t′. The inequalities for nested beliefs (4.14) are obtained by ensuring in the first two
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lines that in every situation that agent i conceives as a possible situation for agent j
(expressed through the constraint n : (Thn ∈ Ckj,t) ∧ Ckj,t ∩ Cki,t′ 6= ∅), agent j’s belief
in the respective fact ϕ (expressed through the constraint Thn |= ϕ) is within [`j, uj].
The latter two lines ensure that for these respective situations, the outer belief of agent
i is satisfied, as well. Note that the belief object ϕ in (4.14) might contain additional
belief operators, i.e., beliefs with multiple levels of nesting are expressed. In this case,
evaluation of Th |= ϕ in the first two lines of (4.14) yields additional constraints of
type (4.12)–(4.14), such that the formula is evaluated recursively.

Negated Atomic Belief Formulae To satisfy a negated atomic belief formula B =
¬B`,u

i,t′(ϕ), the accumulated probabilities of all threads that satisfy the belief object

ϕ in an equivalence class Cki,t′ must be either lower than ` or higher than u, i.e., the
individual disjuncts in (4.12)–(4.14) have to be negated. By pushing the negations

inward and using
∑
···

(· · · ) as a representative for the respective sums defined in (4.12)

and (4.13) to express satisfiability of atomic beliefs, we can represent negations of the
according beliefs expressed in (4.12) and (4.13) as∨

Ck
i,t′∈Ci,t′

((
−
∑
···

(· · · ) < `
)
∨
(
−
∑
···

(· · · ) < −u
))

. (4.15)

If nested beliefs as defined in (4.14) contain negated belief operators, this can be
expressed accordingly by replacing the conjunctive constraints on ` and u (resp. `j
and uj) with the corresponding disjunctive constraints (4.15) for negated atomic belief
formulae.

Disjunctive Belief Formulae With the above inequalities, the required constraints for
a disjunctive formula B = B1∨B2 can easily be expressed as an additional disjunction
of inequalities. Let C1 and C2 be the sets of inequalities to express satisfiability of B1

and B2 according to (4.12)–(4.15), respectively. Then, the constraints for B can be
expressed as

C1 ∨ C2 (4.16)

Example 4.4 (Trains continued). In Example 4.1, a set of belief formulae B
has been given for the train example. To illustrate the extraction of linear con-
straints from this set, we continue to use the set of threads depicted in Figure 3.1
with a minor modification: to reflect the model specified in B of Example 4.1,
we assume that the predicate punct(train) is explicitly encoded in the respec-
tive threads. Moreover, for the sake of the example we assume that the prior
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probabilistic interpretations are yet unknown. We use x1, ..., x9 to denote these
unknown probabilities. Note that for our example, we are only dealing with prior
beliefs, i.e., we only have one equivalence class C = T̂ and all scaling factors
ani,t′ are equal to one. This significantly eases the presentation of this example.
Of course, in general we have to deal with both multiple equivalence classes and
multiple varying scaling factors. As this highly increases complexity of the presen-
tation, we refrain from giving explicit examples for these cases. The constraints
from B are extracted as follows:

• For belief B′2 = B.81,.81
A,0

(
rpfr0 (at(T1, CA), punct(T1))

)
:

pfr(Th, at(T1, CA), punct(T1), 0) = 1 for Th ∈ {Th1, ..., Th3}
pfr(Th, at(T1, CA), punct(T1), 0) = 0 for Th ∈ {Th4, ..., Th9}

and thus application of rule (4.13) yields the constraints

−x1 − x2 − x3 ≤ −0.81

x1 + x2 + x3 ≤ 0.81

In this special case where ` = u, we can simplify this constraint to

x1 + x2 + x3 = 0.81

Since all of the rules exhibit this property, we slightly deviate from (4.13)
and only give the equivalent equality constraints for subsequent rules in
order to simplify the presentation.

Accordingly, for belief B′′2 = B.81,.81
A,0

(
rpfr0 (at(T2, CC), punct(T2))

)
we obtain:

pfr(Th, at(T2, CC), punct(T2), 0) = 1 for Th ∈ {Th1, Th4, Th5}
pfr(Th, at(T2, CC), punct(T2), 0) = 0 for Th ∈ {Th2, Th3, Th6..., Th9}

with the corresponding constraints

x1 + x4 + x5 = 0.81
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• For belief B6 = B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
:

for Th ∈ {Th1, Th3, Th5, Th9} :

pfr(Th,¬punct(train), Obs{AB}(¬punct(train)), 2) = 1,

for Th ∈ {Th2, Th4, Th6} :

pfr(Th,¬punct(train), Obs{AB}(¬punct(train)), 2) = 0,

for Th ∈ {Th7, Th8} :

pfr(Th,¬punct(train), Obs{AB}(¬punct(train)), 2) = 0.5

and thus application of rule (4.13) yields the constraint

x1 + x3 + x5 + 0.5 · x7 + 0.5 · x8 + x9 = 0.93

• For the remaining beliefs, the respective belief objects are satisfied in every
thread and thus we only obtain the redundant constraints

9∑
k=1

xk = 1.

One can easily verify that prior probabilistic interpretation given in Exam-
ple 3.6, i.e.,

x =
(
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03

)
indeed is a solution with respect to the above constraints. Of course, for
the given example, this solution was expected, as B was defined such that
it exactly reflects the situation described in the examples from the previous
chapter.

4.3.3. Transformation into a Disjunctive Program

For every belief formula B ∈ B, the above extractions of linear constraints yield a set
of inequalities of the form

ai,1x1 + ai,2x2 + ... + ai,mxm ≤ bi, (4.17)

with xj representing the unknown prior probabilities of threads Th1, ..., Thm, the coef-
ficients ai,j set to the respective values of ani,t′ if they contribute to this constraint and
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set to zero otherwise, and the value b1 set to the respective limit obtained through `
or u.

As Corollary 4.7 shows, every belief formula B ∈ B yields a disjunctive set of
inequality constraints, i.e., every belief formula B introduces branches in the set of
linear constraints. By collecting all inequalities of the form (4.17) that constrain a
single branch, we can express the constraints in matrix form:

Ax ≤ b, (4.18)

with

A =

a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m

 , x =

x1

· · ·
xm

 , and b =

 b1

· · ·
bm


This form of representation has a close connection to linear programming (LP).

Linear programming (e.g., [Mur83]) is a solution method to optimization problems
where some linear function of a set of continuous variables xk is to be optimized with
respect to a given set of linear constraints. While the task of satisfiability checking
does not require any optimization and thus actually solving a linear program is not
required for this work, we will exploit similarities between our sets of linear constraints
and LP in order to show how the satisfiability problem can be solved.

The standard form of an LP problem [Mur83] gives a set of constraints exactly in the
form of (4.18). Every solution x that satisfies these constraints is called feasible and the
entire solution space for (4.18) is called feasible region. Thus, checking whether a set
of belief formulae B is satisfiable is equivalent to checking whether a corresponding LP
problem has a non-empty feasible region. For standard LP problems with constraints
of the form (4.18), the feasible region is a convex polytope, which allows performing
this check with little computational effort [GJ79].

Unfortunately, extracting linear constraints from a set of belief formulae B as de-
scribed in Section 4.3.2 does not yield a single set of constraints in the form of (4.18),
but instead a disjunction of different sets of constraints. This gives rise to the repre-
sentation of the satisfiability checking problem as a disjunctive program (DP) [Bal98]:

Corollary 4.8 (Satisfiability Checking as a Disjunctive Program). Let B be a set of
belief formulae, let T̂ be a set of threads and let D be the set of all disjunctive branches d
of linear constraints extracted from B and T̂ according to the extraction rules (4.12)-
(4.16). Then, the satisfiability checking problem can be formulated as a disjunctive
program [Bal98]: ∨

d∈D

Adx ≤ bd (4.19)

B is satisfiable with respect to T̂ , denoted by sat(B, T̂ ), if (4.19) has a solution.
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A disjunctive program is called bounded, if the range of every variable xk is re-
stricted through lower and upper bounds. Since we will rely on the bounded property
subsequently, we state the following result:

Lemma 4.9 (Satisfiability Checking as a Bounded DP). Let B be a set of belief for-
mulae and T̂ be a set of threads. Checking satisfiability of B with respect to T̂ can be
represented as a bounded disjunctive program.

Proof. This is a straightforward result: Corollary 4.8 shows that satisfiability checking
for PDT Logic can be represented as a disjunctive program in the form of (4.19). Since
every variable xk in (4.19) represents a probability value, all xk are naturally bounded
by 0 ≤ xk ≤ 1.

In a disjunctive program, the feasible region cannot be guaranteed to be convex
anymore, nor can it be guaranteed that the solution space even represents a connected
region. This significantly increases the complexity of determining whether a nonempty
solution space exists. To analyze this problem in more detail and to show connections
to established solution approaches, we will discuss in the next section how a disjunctive
program in the form (4.19) can be further transformed.

4.3.4. Transformation into a 0-1 Mixed Integer Linear Program

The concept of linear programs with continuous variables xk subject to linear con-
straints of the form (4.17) can be extended to so-called mixed integer linear programs
(MILPs) [Sch86]. Opposed to standard linear programming, for MILPs it is not re-
quired that all variables xk have a continuous domain. Instead, MILPs can use a mix of
both continuous and integer variables. There are several equivalent ways of represent-
ing a MILP, we adopt the representation from [FGL05], which specifies the constraints
of a MILP as

Ax ≤ b

xj integer ∀j ∈ I
with an index set I indicating which of the variables xj are integer variables. A special
case of MILPs are 0-1 mixed integer linear programs [Wil09], where the integer variables
xj are restricted to binary values:

Ax ≤ b (4.20)

xj ∈ {0, 1} ∀j ∈ I

By augmenting the set of variables x with binary switching variables xj for every
possible disjunction, it is possible to represent disjunctive programs in the form of
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(4.19) as 0-1 MILPs in the form of (4.20) [Bal85]. This leads to a central result for
satisfiability checking in PDT Logic:

Theorem 4.10 (Satisfiability Checking as 0-1 MILP). Let B be a set of belief formulae
and T̂ be a set of threads. The problem of checking satisfiability of B with respect to
T̂ can be transformed into a corresponding 0-1 mixed integer linear program M so that
B is satisfiable with respect to T̂ iff M has a feasible solution.

Proof. Lemma 4.9 shows that satisfiability checking for PDT Logic can be represented
as a bounded disjunctive program, such that a set of belief formulae B is satisfi-
able iff the corresponding bounded disjunctive program has a feasible solution. The
proof of Theorem 4.4 in [Bal85] shows that every bounded disjunctive program can
be equivalently represented as a 0-1 mixed integer program M . Consequently, satis-
fiability checking for PDT Logic is equivalent to checking whether M has a feasible
solution.

We can leverage Theorem 4.10 to obtain complexity results for the satisfiability
problem in PDT Logic:

Theorem 4.11 (Complexity of PDT SAT w.r.t. a given set of threads). Checking
satisfiability of a set of PDT Logic belief formulae B with respect to a given set of
threads T̂ is NP-complete.

Proof. It is generally known that checking whether a bounded 0-1 mixed integer linear
program has a feasible solution is NP-complete (cf. [Bie96]). As Theorem 4.10 shows
that satisfiability checking in PDT Logic with respect to a given set of threads T̂ can
be reformulated as a 0-1 MILP with bounded variables xk (cf. Lemma 4.9), it follows
that satisfiability checking for a set of belief formulae B with respect to a given set of
threads T̂ is in NP.

Arbitrary propositional formulae F (cf. Definition 3.2) can be expressed in PDT
Logic by using them as a belief object for a strict prior belief B1,1

i,0 (F ). Since it is
well known that the boolean satisfiability problem (SAT) is NP-complete [Coo71], it
follows that any problem in NP can be transformed to a satisfiability checking problem
in PDT Logic. Hence, the satisfiability checking problem in PDT Logic is NP-hard
and consequently NP-complete.

The NP-completeness result shows that the problem is in NP and therefore we imme-
diately obtain another important property of the satisfiability problem in PDT Logic:

Corollary 4.12 (Decidability of PDT SAT). Checking satisfiability of a set of PDT
Logic belief formulae B is decidable.
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MILPs have been subject to extensive research for decades, and thus an ample variety
of solving methods has been proposed (e.g., [BCC93], [BCC96], [BP02], to name some
of the most notable work on MILP solving, and especially [FGL05] and [BFL07] to
find feasible solutions of MILPs). This research gave rise to various efficient implemen-
tations of MILP solvers, both commercial (e.g., [ILO], [Gur]) and non-profit products
(e.g., [Gnu], [Com]). For a given set of threads, PDT Logic satisfiability checking can
be reformulated as a 0-1 MILP problem, and thus any of these state-of-the-art MILP
solvers can be exploited for relatively fast satisfiability checks for most instances of
PDT Logic belief formulae B with respect to a given set of threads T̂ .

The results from this section show how satisfiability of a set of PDT Logic belief
formulae B can be decided with respect to a given set of threads, even if no specific
prior probability assignment is specified. As the overall goal of this chapter is the
design of a decision procedure that requires only a set of belief formulae B as an input,
we continue the discussion of satisfiability testing with the development of a method
to automatically construct a set of threads representing the background knowledge
specified in B.

4.4. Prior Constraints on Possible Threads

To determine whether the set of belief formulae B is satisfiable, we need to obtain
a set of possible threads that reflects the background knowledge specified in B. In
this section, we describe how we can identify certain constraints on the set of possible
threads T̂ prior to actually starting to generate threads that represent the information
specified in B. To identify such prior constraints, we discuss different properties of
the belief formulae contained in B. Using these properties, we can create a taxonomy
of belief formulae depending on the respective impact on the set of possible threads
T̂ . Beliefs with certain properties can then be used to constrain the search space for
sets of possible threads prior to actually search for these sets. After discussing prior
constraints in this section, we use these results in Section 4.5 to develop a decision
procedure for PDT Logic that requires neither a specification of probabilities nor a
specification of possible threads.

4.4.1. A Taxonomy of Belief Formulae

The set of belief formulae B may contain beliefs with various features that will have
different impacts on the sets of admissible worlds at specific time points t. We will
discuss these features below and show how they yield a taxonomy of belief formulae.
This taxonomy allows for the classification of beliefs into three different types with
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respect to their impact on the sets of admissible worlds. In particular, we can identify
beliefs that are independent of any specific probability assignment and of any Kripke
relations Ki. This classification is for technical purposes: beliefs that depend neither on
specific probability assignments nor on specific Kripke relations can be used to derive
initial constraints on the sets of possible worlds at some or all time points t ∈ tmax.
We use Ω̂B to denote the set of all worlds admissible with respect to a set of belief
formulae B, and we use Ω̂B(t) to denote the set of admissible worlds with respect to a
set of belief formulae B at time t.

Recall that there are three different kinds of beliefs: beliefs in facts, beliefs in rules,
and beliefs in beliefs. As before, we differentiate between prior beliefs that hold at
time point t = 0 (and are therefore commonly known among all agents) and posterior
beliefs that hold at time points t > 0.

We can further distinguish beliefs in rules B`,u
i,t′(r

pfr
∆t(F,G)) with respect to ∆t: we

call rpfr∆t(F,G) a static rule if ∆t = 0 and we call rpfr∆t(F,G) a dynamic rule if ∆t > 0.
Accordingly, we can separate beliefs in rules into beliefs in static rules and beliefs in
dynamic rules, respectively. These beliefs differ with respect to their temporal impact:
a static rule will constrain the possible worlds instantaneously, i.e., rpfr0 (F,G) states
that there can be no world ω such that both ω |= F and ω 6|= G hold. A dynamic rule
on the other hand requires that whenever a world ω with ω |= F occurs, there must
be another world ω′ with ω′ |= G after ∆t time steps.

Finally, we can classify beliefs with respect to their probabilistic quantifications:
we call a belief B`,u

i,t′(ϕ) strict, if both ` = u = 0 or ` = u = 1. For the sake of
simplicity, in the following we assume without loss of generality that strict beliefs are
always represented with ` = u = 1. Any strict belief B0,0

i,t (ϕ) can easily be rewritten

as B1,1
i,t (¬ϕ).1 We call a belief trivial if ` = 0 and u = 1. Obviously, these beliefs are

trivially satisfied by any arbitrary interpretation, thus they do not impact satisfiability
checking results at all and therefore can be removed from B.

Remark 4.2. From the definition of the belief semantics (Definition 3.11) it follows for
the special case of strict beliefs B1,1

i,t (ϕ) that (i) agent i considers the occurrence of
the belief object’s complement ¬ϕ as impossible and (ii) that this occurrence is indeed
impossible. Thus, strict beliefs comply with the common definitions of knowledge as
justified true belief and belief that is stable with respect to the truth (cf. e.g., [SLB09,
page 433]). Consequently, we could also refer to a strict belief as knowledge and
equivalently use the established knowledge operator Ki(ϕ) instead of B1,1

i (ϕ).

Remark 4.3. Note that the concept of strict beliefs only applies to positive beliefs

1If the belief object ϕ is a temporal rule rfr∆t(F,G), we represent ¬ϕ as rfr∆t(F,¬G). This is possible
because we do not need to consider frequency functions that correspond to axioms FF1-FF3 from
Definition 3.10 and only use point frequency functions pfr. If other frequency functions are used,
their negations need to be defined accordingly.
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B1,1
i,t (ϕ). For the negation of such a belief, ¬B1,1

i,t (ϕ), it follows from Definition 3.16
that there is at least one thread that does not satisfy the belief object ϕ, which in turn
implies ` < 1. Consequently, these beliefs ¬B1,1

i,t (ϕ) are considered as non-strict in the
following discussion.

Using these features, we can create a taxonomy of beliefs as depicted in Figure 4.1
to identify prior constraints on the set of possible threads. This taxonomy is obtained
by successively distinguishing between strict and non-strict, prior and posterior beliefs,
between beliefs in facts, rules and nested beliefs, and finally between beliefs in static and
dynamic rules. Nested beliefs are only considered as strict (prior) beliefs, if all involved
beliefs are strict (prior), otherwise they are considered as non-strict (posterior). If a
nested belief is actually strict and prior, we can unnest this belief and consider only
the innermost belief expression: since prior beliefs are commonly known and therefore
identical for all agents i ∈ AB, it is evident that for any strict belief of any agent
i, all other agents know that agent i has this strict belief. Consequently, strict prior
beliefs can be nested to an arbitrary depth without introducing any further constraints:
they are satisfied exactly if the innermost belief is satisfied. Thus, we do not need to
consider nested strict prior beliefs explicitly.

This taxonomy gives rise to three different types of belief formulae with respect to
their impact on the sets of admissible worlds:

Definition 4.3 (Belief formula typification). A set of belief formulae B can be cate-
gorized into three different types of beliefs:

• Type 0: These are beliefs that restrict the set of admissible worlds Ω̂B(t) at
every time point t ∈ τ . Thus, type 0 beliefs have the highest impact because
they can be exploited to prune the set of admissible worlds Ω̂B globally. An
evaluation of these beliefs relies neither on a specific probability assignment nor
on any given Kripke structures Ki.
• Type 1: These are beliefs that restrict sequences of possible worlds. Moreover,

they can potentially restrict the sets of admissible worlds Ω̂B(t) at specific time
points. Thus, type 1 beliefs have less impact than type 0 beliefs because they can
only be exploited to prune the sets of admissible worlds Ω̂B(t) locally. Again, an
evaluation of these beliefs relies neither on a specific probability assignment nor
on any given Kripke structures Ki.
• Type 2: This type encompasses all remaining beliefs in B that are neither type

0 nor type 1 beliefs. These beliefs are situation-specific and cannot be used to
prune the sets of admissible worlds a priori. Satisfiability of these beliefs depends
on a suitable probability assignment or on the evaluation of Kripke structures in
the respective threads.

We use Tk(B) to denote the set of type k beliefs from B.
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T0(B)

T1(B)

TF
1 (B)

T2(B)

Type 0: These beliefs
have the highest impact,
because they restrict ev-
ery world at every time
point.

Type 1: These beliefs restrict threads
independently of any probabiliy assign-
ment. Moreover, they can potentially
restrict possible worlds at individual
time points.

Type 2: All remain-
ing beliefs; they can
be treated the same
way.

all beliefs

strict beliefs
` = 1

prior beliefs

t′ = 0

belief in rules
B1,1
i,0 (rfr∆t(F,G))

belief in static rules
∆t = 0

belief in dynamic rules
∆t > 0

belief in facts
B1,1
i,0 (Ft)

disjunctive belief
formulae

B1,1
i,0 (ϕ1) ∨B1,1

i,0 (ϕ2) ∨ · · ·

belief in beliefs
B1,1
i,0 (B`′,u′

j,t (·))

If all ` = 1,
only the inner-
most belief is of
interest

posterior beliefs

t′ > 0

belief in rules
B1,1
i,t′ (r

fr
∆t(F,G))

belief in static rules
∆t = 0

belief in dynamic rules
∆t > 0

belief in facts
B1,1
i,t′ (Ft)

disjunctive belief
formulae

B1,1
i,0 (ϕ1) ∨B1,1

i,0 (ϕ2) ∨ · · ·

belief in beliefs
B`,u

1,1′(B
1,1
j,t (·))

non-strict beliefs
` < 1

Figure 4.1.: Taxonomy of belief formulae
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The main goal of this belief formula taxonomy is to identify constraints on possible
worlds ω and possible threads Th that can be evaluated prior to searching for a suitable
probability assignment, namely by using the belief formulae in T0(B) and T1(B) to
prune the search space of possible sets of threads T̂ that may show satisfiability of
B. It should be noted that the existence of a thread Th ∈ T̂ violating a belief from
T0(B) or T1(B) technically does not preclude satisfiability of B with respect to T̂ , as
there is a special case of a suitable probability assignment: If there is a thread Th ∈ T̂
such that some belief B ∈ T0(B) or B ∈ T1(B) is not satisfied, there could still be
suitable probability assignments I(T̂ ) such that sat(B, T̂ ) holds iff I(Th) = 0. The
effect of excluding such a thread Th from T̂ or assigning a prior probability I(Th) of
zero is the same (cf. Remark 3.3), i.e., the respective thread is marked as impossible.
Since we aim at reducing both the search space of possible threads and the input to
the satisfiability check sat(B, T̂ ), we exploit belief formulae in T0(B) and T1(B) to
exclude impossible threads prior to searching for suitable probability assignments.

Type 0 belief formulae As depicted in Figure 4.1, the set of type 0 belief formulae
is formed by formulae with strict prior beliefs in static rules B1,1

i,0 (rpfr0 (F,G)) from B.
Since prior beliefs represent the background knowledge and since it follows from the
definition of strict beliefs that they cannot be violated in any world, it is clear that the
rule rpfr0 (F,G) has to be always satisfied. As this is a static rule, it has to be satisfied
in every world ω ∈ Ω̂B. We define the set of type 0 beliefs as

T0(B) = {B ∈ B : B = B1,1
i,0 (rpfr0 (F,G))} (4.21)

with arbitrary formulae F and G.

Type 1 belief formulae The set of type 1 beliefs contains all strict prior beliefs that
are not in the set T0(B). The contributions of this set T1(B) are twofold: As T1(B)
only comprises strict prior beliefs, every thread in a potential set of threads T̂ has to
satisfy all beliefs B ∈ T1(B). Moreover, constraints from T1(B) may constrain the
sets of worlds Ω̂B(t) at individual time points t ∈ τ regardless of any specific thread.
According to Figure 4.1, we define the set of type 1 beliefs as

T1(B) =
{
B ∈ B :

(
B = B1,1

i,0 (Ft)

∨B = (B1,1
i,0 (rpfr∆t(F,G)) ∧∆t > 0)

∨B = (B1,1
i,0 (ϕ1) ∨B1,1

i,0 (ϕ2) ∨ · · · )
)}

(4.22)

For a potential set of possible threads T̂ , the beliefs specified in this set T1(B) have
to be satisfied by every thread Th ∈ T̂ . Note that satisfiability of beliefs in dynamic
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rules and disjunctive belief formulae generally depends on worlds ω at multiple time
points and thus satisfiability of T1(B) cannot be ensured by only constraining sets of
worlds at single time points. However, by analyzing strict prior beliefs in facts and
their potential interplay with dynamic rules we can derive constraints for the sets of
worlds Ω̂B(t) at specific time points t ∈ τ as follows.

Strict prior beliefs in facts B = B1,1
i,0 (Ft) restrict the set of admissible worlds Ω̂B(t)

at time t by enforcing that F holds at every world ω ∈ Ω̂B(t). In the following, we use
TF

1 (B) to denote such strict prior beliefs in facts F at certain time points t. Moreover,
we use B |= Ft as a shorthand for B1,1

i,0 (Ft) ∈ B to denote that B enforces F at time t.

Through interplay with existing constraints on sets possible worlds Ω̂B(t) at indi-
vidual time points t, strict beliefs in dynamic rules can yield additional constraints:
For a belief formula B = B1,1

i,0 (rpfr∆t(F,G)),∆t > 0, additional constraints might
be derived, depending on the type of belief in the respective rule’s premise F : if
(T0(B) ∪ TF

1 (B)) |= Ft is given, we can extract a strict prior belief in a fact
B′ = B1,1

i,0 (Gt+∆t), which then again restricts the set of possible worlds at time point
t+ ∆t and is therefore added to TF

1 (B).

Since dynamic rules can be considered as temporal implications (cf. Definition 3.10
from Chapter 3), these rules can also be applied backwards to obtain additional con-
straints: If a belief formula B = B1,1

i,0 (rpfr∆t(F,G)),∆t > 0 is given and the rule’s negated
conclusion ¬G is already enforced at some time point t (i.e., (T0(B)∪TF

1 (B)) |= ¬Gt),
the rule’s premise F cannot be satisfied at time t − ∆t. Thus, we can add the belief
B′ = B1,1

i,0 (¬Ft−∆t) as an additional constraint to TF
1 (B).

Extending the set of type 1 beliefs through dynamic rules may lead to a chained
extension: if we have a belief in a dynamic rule B1,1

i,0 (rpfr∆t(F,G)) and a corresponding

belief B1,1
i,0 (Ft) ∈ TF

1 (B), this will lead to the additional belief B1,1
i,0 (Gt+∆t) ∈ TF

1 (B),

which in turn might trigger another dynamic rule B1,1
i,0 (rpfr∆t(G,G

′)). Analogously, any
additional belief in TF

1 (B) could also trigger further backward rule applications.

To capture all constraints that emerge from forward and backward chaining of strict
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dynamic rules, we define the set TF
1 (B) as the following fix-point set:2

TF
1 (B) = {B1,1

i,0 (Ft) ∈ B}

∪ {B1,1
i,0 (Gt+∆t) :

(
∆t > 0 ∧ B1,1

i,0 (rpfr∆t(F,G)) ∈ B

∧
(
(T0(B) ∪T1(B)) |= Ft

))
}

∪ {B1,1
i,0 (¬Ft−∆t) :

(
∆t > 0 ∧ B1,1

i,0 (rpfr∆t(F,G)) ∈ B

∧
(
(T0(B) ∪T1(B)) |= ¬Gt

))
} (4.23)

After having determined all constraints on individual time points, we can reduce
this set TF

1 (B) such that it contains at most one belief B1,1
i,0 (Ft) for every time point

t. If TF
1 (B) contains multiple beliefs B1,1

i,0 (Ft), B
1,1
i,0 (Gt) regarding the same time point

t, we can replace them by a joint belief B1,1
i,0 (F ′t) with F ′ = F ∧ G. Note that this

substitution uses Lemma 3.7 to merge different belief expressions into one expression
with a conjunctive belief object. We still assume that belief formulae with conjunctions
of belief operators are separated into atomic belief formulae.

Type 2 belief formulae The set of type 2 belief formulae consists of all beliefs in B
that are neither type 0 nor type 1 beliefs. Thus we define this set as

T2(B) = (B \T0(B)) \T1(B) (4.24)

Example 4.5 (Trains continued). Continuing with the set of belief formulae B
from Example 4.1 and assuming that conjunctive formulae B = B′ ∧ B′′ are
treated as individual formulae B′ and B′′, we obtain the following sets of typed

2For this representation, we have only considered the influence of temporal rules for the set TF
1 (B).

In principle, information from disjunctive formulae B = B1,1
i,0 (ϕ1)∨ · · · ∨B1,1

i,0 (ϕn) in T1(B) could

yield additional constraints on the sets Ω̂B(t): If TF
1 (B) enforces n − 1 disjuncts in B to be

false, the remaining disjunct must be satisfied. As the belief objects of the respective disjuncts
might be dynamic rules again, a formal representation of this consideration would result in a
rather intricate specification. Since we have to ensure that any potential thread satisfies all beliefs
in T1(B) anyways, omitting disjunctive formulae in the construction of TF

1 (B) does not impact
satisfiability results. Yet an actual implementation of the described procedures could exploit this
consideration to obtain additional pruning conditions in special cases.
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belief formulae:

T0(B) =
{
B1,1
A,0

(
rpfr0 (¬punct(train) ∧ at(train, city), Obs{A}(¬punct(train)))

)}
(B5)

T1(B) =
{
B1,1
A,0

(
at(T1, CA)1

)
, (B′1)

B1,1
A,0

(
on(A, T1)1

)
, (B′′1)

B1,1
A,0

(
rpfr3 ( punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
, (B′3)

B1,1
A,0(rpfr5 (¬punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
, (B′′3)

B1,1
A,0

(
rpfr2 ( punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)
(B′4)

B1,1
A,0

(
rpfr3 (¬punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)}
, (B′′4)

TF
1 (B) =

{
B1,1
A,0

(
at(T1, CA)1

)
, (B′1)

B1,1
A,0

(
on(A, T1)1

)}
, (B′′1)

T2(B) = B \T0(B) \T1(B)

= {B.81,.81
A,0

(
rpfr0 (at(T1, CA), punct(T1))

)
, (B′2)

B.81,.81
A,0

(
rpfr0 (at(T2, CC), punct(T2))

)
, (B′′2)

B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
} (B6)

The taxonomy of belief formulae provides means to construct sets of admissible
worlds Ω̂B(t) for every time point t ∈ τ . Type 0 beliefs (i.e., beliefs with the highest
impact) constrain the global set of possible worlds Ω̂B. Certain beliefs of type 1—
materialized in the set TF

1 (B)—can then give additional constraints for specific time
points t, such that only subsets Ω̂B(t) ⊆ Ω̂B need to be considered as possible worlds
for time t. The sets T0(B) and T1(B) together provide satisfiability conditions that
are independent of any specific probability assignments. Then, only beliefs of type 2
need to be considered as probabilistic constraints to check whether B can be satisfied
with respect to T̂ , i.e., the satisfiability problem sat(B, T̂ ) from the previous section
can be reduced to sat(T2(B), T̂ ), if unsatisfiability of B has not yet been shown
through constraints in T0(B) and T1(B). Since the prior constraints define necessary
conditions for any potential thread, they give rise to a definition of thread soundness
with respect to a given set of belief formulae B:

Definition 4.4 (Thread soundness). Let B be a set of belief formulae, and let T0(B)
and T1(B) be the set of type 0 and type 1 belief formulae in this set, respectively.
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Then, a thread Th is sound with respect to B (denoted snd(Th,B)) if it satisfies all
belief formulae from T0(B) and T1(B):

snd(Th,B) ≡ ∀B ∈ (T0(B) ∪T1(B)) : Th |= B (4.25)

Accordingly, we use snd(T̂ ,B) to denote that all threads Th ∈ T̂ are sound.

Note that this definition only relies on strict prior beliefs and the soundness property
can therefore be verified for every thread individually, without having to consider other
threads or probability assignments. Thus, a simplified version of the model checking
procedure from Section 4.1 can be used to verify soundness. The intuition behind this
property is that we can verify it easily prior to checking sat(B, T̂ ) and can therefore
obtain a reduced version of the satisfiability problem:

Theorem 4.13 (Reduced satisfiability checking). Let B be a set of belief formulae, let
T2(B) be the set of type 2 beliefs in B according to (4.24), and let T̂ be a set of sound
threads. Then, B is satisfiable with respect to T̂ iff T2(B) is satisfiable with respect
to T̂ :

sat(B, T̂ ) ∧ snd(T̂ ,B) ≡ sat(T2(B), T̂ ) (4.26)

Proof. This follows directly from Definition 4.4: snd(T̂ ,B) is defined so that it satisfies
all belief formulae in the sets T0(B) and T1(B). Consequently, these sets resemble
tautologies with respect to T̂ and therefore do not have any impact on the satisfiability
checking properties. Thus, instead of checking B for satisfiability, it suffices to check
the set (B \T0(B)) \T1(B), which is exactly the definition of T2(B).

4.4.2. Constraining Possible Worlds at Individual Time Points

Using the classification of beliefs in B into the three different types, we can now
continue with constructing sets of possible worlds Ω̂B(t) for every time point t ∈ τ .
The main goal of this section is an identification of obvious pruning conditions for
possible worlds at specific time points. Since we are in the process of searching for a
set of possible threads that satisfies a set of belief formulae B, any constraints on the
sets Ω̂B(t) have the potential to significantly reduce the later used search space. Thus,
the results of this section highlight possible optimizations for an implementation of a
PDT Logic sat solver. Even if the following constraints are not—or only partially—
applied, the search for possible threads as described in subsequent Section 4.5 can be
carried out, yet with a potentially larger search space.

Since the set of type 0 beliefs has to be satisfied in every admissible world, we can
define the global set of admissible worlds Ω̂B as follows:
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Definition 4.5 (Global set of admissible worlds). Let B be a set of belief formulae,
with the corresponding sets of belief objects FB and type 0 beliefs T0(B). Then, the
set of admissible worlds Ω̂B w.r.t. B is given as

Ω̂B =
{
ω ∈ BFB :

(
adm(ω) ∧ ∀B1,1

i,0 (rpfr0 (F,G)) ∈ T0(B) : ω |= (¬F ∨G)
)}

. (4.27)

Remark 4.4. This definition uses adm(ω) to ensure that all worlds ω ∈ Ω̂B are admis-
sible as defined in the external Definition 3.5. Alternatively, we could use the existing
formalism to encode these admissibility conditions directly as strict prior beliefs in B:
B1,1
i,0 (rpfr0 (ObsG(l), l)) and ∀G ′ ⊂ G : B1,1

i,0 (rpfr0 (ObsG(l), ObsG′(l))) represent conditions 1
and 2 of Definition 3.5, respectively. However, since these conditions are independent of
the respective problem being modeled, we do not include them in the problem-specific
belief set B, but use them as external constraints.

Example 4.6 (Trains continued). The global set of worlds Ω̂B admissible with
respect to B from Example 4.1 can be automatically constructed from all combi-
nations of events from FB shown in Example 4.2, given that these combinations
are admissible with respect to Definition 3.5 and satisfy the type 0 beliefs in
T0(B) from Example 4.4. We refrain from enumerating all of these worlds explic-
itly and instead describe which worlds are excluded from the Herbrand base BFB

of FB: From FB it follows that the only possible shared observation between A
and B is the fact that a train is not punctual (Obs{AB}(¬punct(train))). In every
possible world where this observation occurs, admissibility conditions require that
both agents A and B observe that the respective train is not punctual and that
the train is indeed not punctual. Furthermore, the beliefs in T0(B) require that
there is a corresponding observation for A at every possible world where a train
is not punctual (which incidentally also enforces admissibility conditions for these
observations).

Next, we can build upon the set of globally admissible worlds Ω̂B and use the set of
type 1 beliefs to further prune the set of admissible worlds Ω̂B(t) at individual time
points t:

Definition 4.6 (Local sets of admissible worlds). Let B be a set of belief formulae
with the corresponding sets of admissible worlds Ω̂B, TF

1 (B) be the set of materialized
strict prior beliefs induced by T0(B) and T1(B), and τ be a set of time points. Then,
the set of admissible worlds Ω̂B(t) w.r.t. B at time t ∈ τ is given as

Ω̂B(t) =
{
ω ∈ Ω̂B :

(
∀B1,1

i,0 (Ft) ∈ TF
1 (B) : ω |= F

)}
. (4.28)
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Example 4.7 (Trains continued). To obtain the scenario from the original Ex-
ample 3.2, we assume tmax = 9. From the set TF

1 (B) identified in Example 4.5,
we can restrict the set of worlds at time 1 to

Ω̂B(1) =
{
ω ∈ Ω̂B : ω |= (at(T1, CA) ∧ on(A, T1))

}
For all other time points, there are no options for further restrictions, thus the
respective local sets Ω̂B(t) of possible worlds for all time points t 6= 1 remain at
Ω̂B.

Using Definition 4.6, we can now formulate constraints for the set of sound threads
T̂ :

∀Th ∈ T̂ , ∀t ∈ τ : Th(t) ∈ Ω̂B(t). (4.29)

Note that this constraint provides a necessary but not sufficient condition for thread
soundness. To illustrate this, consider Example 4.5 again: the set TF

1 (B) requires
that {at(T1, CA), on(A, T1)} holds at every possible world at time t = 1 and thus
we can constrain Ω̂B(1) as shown in Example 4.7, because any thread violating this
constraint is inherently unsound. On the other hand, a thread according to (4.29) may
contain the fact, say punct(T1) ∈ Th(1), which—according to B′3—only yields a sound
thread if {at(T2, CC), on(A, T2)} ⊆ Th(4) holds as well. Thus, (4.29) provides general
constraints on the set of threads with respect to beliefs from T0(B) and TF

1 (B), while
additional beliefs from T1(B) can discard individual threads by catching any potential
unsatisfiable interplay of possible worlds at different time points.

Of course, in general it is possible that the methods discussed so far result in special
cases: for one thing, it is possible that B induces a set T0(B)∪TF

1 (B) of inconsistent
beliefs, i.e., it will contain beliefs that contradict each other. Then, Ω̂B or Ω̂B(t) for
some t will be empty. This precludes the creation of any set of threads T̂ such that
I(T̂ ) |= B. In this case, satisfiability checking can terminate immediately with a neg-
ative result. For another, it is possible that the above simplification process will result
in an empty set T2(B). In this case, there are no probabilistic constraints that could
impact satisfiability of B and thus it is unnecessary to search for a suitable probability
assignment. In this case, it needs to be checked whether any of the threads in compli-
ance with (4.29) is sound according to Definition 4.4. If such a thread can be found,
satisfiability checking can terminate immediately with a positive result, otherwise B
is unsatisfiable. Verifying soundness of a single thread can be done with a simplified
version of the model checking procedure from Section 4.1 and is therefore in PTIME
(cf. Corollary 4.3). However, as the number threads satisfying condition (4.29) can
grow exponentially with the number of ground atoms and the number of time points,
the problem of finding a sound thread is more complex:
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Theorem 4.14 (Complexity of finding a sound thread). Let B be a set of belief for-
mulae such that all included formulae are grounded. Deciding whether there exists a
sound thread with respect to B, as defined in Definition 4.4, is NP-complete.

Proof. According to Definition 4.4, a set is sound if it satisfies all formulae from the set
T0(B)∪T1(B). By treating the belief objects’ atoms F at all time points t as individual
variables Ft, we can transform beliefs in facts and belief in rules from T0(B) ∪T1(B)
into a boolean sat problem as follows:3

B1,1
i,0 (Ft) ⇒ Ft

B1,1
i,0 (rpfr∆t(F,G)) ⇒

tmax−∆t∧
t=0

(¬Ft ∨Gt+∆t)

Accordingly, disjunctive belief formulae can then be expressed through transforming
every disjunct individually. This transformation requires at most tmax conjuncts for
every belief operator and can therefore be performed in linear time. Since the boolean
sat problem is known to be NP-complete [Coo71], it follows that searching for a sound
thread with respect to B is in NP.

NP-hardness of this problem has already been shown in the proof of Theorem 4.11
and consequently it follows that searching for a sound thread with respect to B is
NP-complete.

It should be noted that this result analyzes the worst-case complexity of the problem,
but in practice finding a sound thread is usually not dominated by this worst case.
In most cases, a sound thread can be found easily by employing the principle of least
effort: For belief in temporal rulesB1,1

i,0 (rpfr∆t(F,G)), choosing worlds ω such that ω |= ¬F
ensures that consequences of this rule do not have to be evaluated at other time points.
Accordingly, for disjunctive rules a disjunct should be selected such that no temporal
rule is triggered by this fact. Of course, this is only a heuristic that may not give a
sound thread immediately for every input B, but it represents a feasible approach for
most problems. We will illustrate this approach with an example subsequently.

In this work, we only consider ground formulae for PDT Logic. In general, the
formalism as introduced in Chapter 3 allows the treatment of non-ground formulae as
well. However, for non-ground formulae the complexity result from Theorem 4.14 does
not hold, because transformation into a boolean sat problem is then exponential in
the number of possible groundings. Finding a sound thread then requires the use of
sophisticated grounding procedures, (e.g., [DPDPR09] and [FLP12]), which is beyond
the scope of this work.

3This transformation is only defined for temporal rules with point frequency functions pfr. If other
frequency functions are used, the transformation has to be adapted accordingly.
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Now that sets of possible worlds are identified for every time point t ∈ τ , we can
proceed with creating sets of representative threads with respect to these constraints.
The aim of the following discussion is the successive generation of a set of representative
threads T̂ such that sat(B, T̂ ) can be decided.

4.5. Representative Threads

Using Definition 4.4 and constraint (4.29) gives rise to a potential definition of the
set of possible threads T̂ by constructing all possible combinations of sound world
sequences from Ω̂B(t) for all t ∈ τ . However, this would still result in an unnecessarily
large set of possible threads. Instead of constructing all of these threads explicitly,
we will heuristically create representative threads that represent excerpts from the
situations modeled by T2(B). This approach uses heuristics to successively expand
the set of representative threads. As soon as a suitable set of threads (i.e., a model for
B) is found, the decision procedure can terminate with a positive result. If a set of
representative threads does not show satisfiability of B, additional threads are created
until either a positive satisfiability result is obtained or all possible threads have been
created. Consequently, the heuristic search for models constitutes a complete decision
procedure for PDT Logic.

For the following discussion, we assume that the set T2(B) is nonempty, i.e., there
are additional constraints that need to be satisfied by the generated set of threads.
Otherwise, if the set T2(B) was empty, satisfiability could already be determined by
checking whether a sound thread with respect to B exists, as discussed in the previous
section and there would be no need to generate any specific set of threads.

For all beliefs in facts B`,u
i,t′(Ft) from B, the dual belief in the negated fact B`′,u′

i,t′ (¬Ft)
with `′ = 1 − u and u′ = 1 − ` (cf. Corollary 3.4) has to be satisfied as well. For
beliefs in rules B`,u

i,t′(r
fr
∆t(F,G)), satisfiability depends on the accumulated subjective

posterior interpretations of all threads weighted with their respective frequencies. The
goal of the following procedure is to successively create threads for every belief in a
fact B`,u

i,t′(Ft) in T2(B), such that we obtain representatives for the set of threads that
(i) satisfy the respective fact Ft and for the set of threads that satisfy ¬Ft, and (ii)
exhibit varying frequencies for all beliefs in temporal rules B`,u

i,t′(r
fr
∆t(F,G)) ∈ T2(B).

Consequently, belief formulae can be considered as splitting rules and their application
to generate representative threads results in a procedure similar to tableau-based meth-
ods. However, beliefs in temporal rules can induce splits both forward and backward in
time and thus—unlike conventional tableau-based methods—the following procedure
does not create a tree structure, but instead a set of sequences that represent possible
threads. A key difference between the generation of representative threads and other
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logical sat solvers is that in PDT Logic it is virtually impossible to discard any gener-
ated potential thread: the probabilistic nature of the semantics requires that not only
threads are considered where a given formula holds, but also threads where it does not.
Thus, even threads violating the objects of given belief formulae are usually required to
show satisfiability of a corresponding set of belief formulae B. The following discussion
provides a general outline for a decision procedure in PDT Logic if only a set of belief
formulae B is given. An actual implementation of these methods is possible, but to
obtain feasible run times for practical problems, various optimization techniques from
research on logic reasoning implementations would need to be implemented, which is
beyond the scope of this work.

4.5.1. Generating Representative Threads

Since the existence of any non-strict belief in a fact B`,u
i,t′(Ft) requires the existence

of at least two threads—one, where the respective belief object is satisfied and one,
where it is not4—we start with creating two threads from 〈Ω̂B(1), ..., Ω̂B(tmax)〉 such
that we obtain a set T̂ = 〈Th1, Th2〉 with Th1 |= ϕ and Th2 |= ¬ϕ for all belief objects
ϕ = Ft contained in the set T2(B) to obtain a minimal set of set threads T̂ such
that all belief formulae B ∈ T2(B) can potentially be satisfied. This set will then
subsequently be expanded with additional threads until either a suitable set of threads
to show satisfiability of T2(B) is found, or until no more additional threads can be
created.

To allow for a concise notation, in the following we adapt the frequency notation for
all belief objects and use (1 · ϕ) to denote that ϕ is true, (0 · ϕ) to denote that ϕ is
false, and generally (x · ϕ) to denote that ϕ holds with frequency x. Of course, values
0 < x < 1 can only occur for belief objects that represent temporal rules. With this
notation, we try to create initial sound threads such that

Th1 |=
∧
j

(1 · ϕj), and (4.30)

Th2 |=
∧
j

(0 · ϕj) (4.31)

holds for the respective belief objects ϕj of all belief formulae Bj ∈ T2(B).5

4Technically, a non-strict belief B`,u
i,t′(ϕ) could be satisfied with a single thread Th such that Th |= ϕ if

the belief’s quantification has an upper bound u = 1. This might give rise to further optimizations
for an actual implementation, but for the sake of simplicity, we do not consider this case explicitly.

5This notation is slightly simplified: for disjunctive belief formulae Bj = B`,u
i,t′(ϕ

′
j) ∨ B`,u

i,t′(ϕ
′′
j ), we

use ϕj as an abbreviation for ϕ′
j ∨ ϕ′′

j .
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This initial set T̂ = {Th1, Th2} is meant to represent the two extreme choices for
possible threads with respect to T2(B) to provide a suitable starting point for the
subsequently employed search heuristic. In general, it is not necessarily possible to
create such extreme threads in compliance with (4.30) and (4.31) for every possible
set of belief formulae T2(B). For instance, T2(B) might contain conflicting beliefs
in facts B`,u

i,t′(Ft) and B`,u
i,t′(¬Ft). Obviously, no single thread can satisfy both belief

objects simultaneously, but it might still be possible to create a set of threads such
that—together with a suitable probability assignment—both beliefs can be satisfied.
Thus, (4.30) and (4.31) characterize the intended goal when creating the initial threads
Th1, Th2, but do not represent hard constraints on these threads.

To find suitable threads that match these constraints, we employ the principle of
least effort by adding as few facts as possible to each thread: For every belief in a fact
B`,u
i,t′(Ft), we add the explicit constraints F ∈ Th1(t) and F 6∈ Th2(t), such that Th1

represents the thread where all belief objects are true and Th2 represents the set where
all belief objects are false. For beliefs in rules B`,u

i,t′(r
fr
∆t(F,G)) we add G ∈ Th1(t+ ∆t)

(resp. ¬F ∈ Th1(t − ∆t)) whenever another constraint enforces F ∈ Th1(t) (resp.
¬G ∈ Th2(t)). If no occurrence of F respectively ¬G is enforced in Th1, a rule
rfr∆t(F,G) is trivially satisfied with frequency 1 (i.e., there are no occurrences where
F is not followed by G in ∆t steps) and no further constraints need to be added.
Analogously, for Th2 we need to ensure that F holds at least once and that whenever
F ∈ Th2(t) holds, ¬G ∈ Th2(t + ∆t) holds, as well. For disjunctive belief formulae
B`,u
i,t′(ϕ1)∨B`,u

i,t′(ϕ2), we need to ensure that belief object ϕ1 or ϕ2 holds in thread Th1,
as described above, and that ¬ϕ1∧¬ϕ2 holds in thread Th2. If possible, the respective
belief object ϕ1 or ϕ2 for thread Th1 should be chosen such that no additional beliefs
are triggered (we say that a belief is triggered by a fact F , if the existence of F enforces
another constraint through a belief in a temporal rule or a disjunctive belief formula).
Nested belief formulae are treated as above with respect to their innermost belief
object. If some constraint cannot be applied because it is in conflict with previously
added constraints from T2(B), it is simply skipped in this stage. As the creation of
Th1 and Th2 is only the initialization step for a heuristic search of possible set threads,
skipped constraints will still be considered later in subsequent expansions.

Whenever a constraint regarding a fact F is added to Th1 or Th2, it is necessary
to check whether this triggers additional rules from set of type 1 beliefs T1(B). If
necessary, resulting facts are added to the respective threads. This application works
analogously to the construction of the set TF

1 (B) as described in Section 4.4.1. Finally,
if all belief formulae have been processed, we search for a sound thread with respect
to the created constraints. Usually, a sound thread can be found easily by choosing
all facts that are yet unconstrained in Th1 and Th2 such that they do not trigger any
additional beliefs. Especially, for possible worlds Th(t) that are unconstrained, we
can choose Th(t) = ∅ if B does not contain any belief in rules with purely negative



76 4. Satisfiability Checking for PDT Logic

preconditions or disjunctive belief formulae that are not satisfiable by ∅. More generally,
the principle of least effort should be employed such that worlds ω are selected so that
no further belief formulae need to be considered. Such a selection is impossible if and
only if the addition of both F and ¬F to some world triggers additional beliefs. Then,
the consequences of adding the respective fact need to be evaluated, as well. The
resulting set T̂ = {Th1, Th2} then provides a minimal set of representative threads
that that can be used to check sat(T2(B), T̂ ).

In the following, we show how the principle of least effort can be used to obtain
representative threads as efficiently as possible. The constraints used in the following
example provide the minimal number of constraints that need to be enforced to obtain
representative threads for the desired threads Th1 and Th2. For all worlds ω without
any specific constraints, we simply use ω = ∅. One can easily verify that this indeed
yields threads in compliance with (4.30) and (4.31).

Example 4.8 (Trains continued). We continue the train example with the sets of
typed belief formulae specified in Example 4.5. In Example 4.7, it was shown that
the set of worlds at time 1 Ω̂B(1) is restricted such that {at(T1, CA), on(A, T1)} ⊆
ω for every world ω ∈ Ω̂B(1). The set T2(B) contains three non-strict belief

formulae, namely

T2(B) = {B.81,.81
A,0

(
rpfr0 (at(T1, CA), punct(T1))

)
, (B′2)

B.81,.81
A,0

(
rpfr0 (at(T2, CC), punct(T2))

)
, (B′′2)

B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
} (B6)

By evaluating these belief formulae, we obtain constraints on the possible worlds
in threads Th1 and Th2. A visualization of the following steps is given in Fig-
ure 4.2.

Analysis of belief formula B′2 results in the constraints punct(T1) ∈ Th1(1) and
punct(T1) 6∈ Th2(1). These facts in turn trigger rules B′3 and B′′3 , respectively:

B1,1
A,0

(
rpfr3 ( punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
and (B′3)

B1,1
A,0(rpfr5 (¬punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
, (B′′3)

resulting in the additional constraints {at(T2, CC), on(A, T2)} ⊆ Th1(4) and
{at(T2, CC), on(A, T2)} ⊆ Th2(6).
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Application of belief formula B′′2 then yields the additional facts punct(T2) ∈
Th1(4) and punct(T2) 6∈ Th2(6). Again, this triggers rules from T1(B):

B1,1
A,0

(
rpfr2 ( punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)
and (B′4)

B1,1
A,0(rpfr3 (¬punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)
, (B′′4)

resulting in the additional constraints Th1(6) = at(T2, CB), on(A, T2) and Th2(9) =
at(T2, CB), on(A, T2).

Note that belief formula

B1,1
A,0

(
rpfr0 (¬punct(train) ∧ at(train, city), Obs{A}(¬punct(train)))

)
(B5)

from T0(B) provides a global constraint on the set of possible worlds Ω̂B such
that Obs{A}(¬punct(train)) holds in every world where ¬punct(train) holds, and
thus we obtain for thread Th2 the additional facts Obs{A}(¬punct(T1)) ∈ Th2(1)
and Obs{A}(¬punct(T1)) ∈ Th2(6).

Finally, rule

B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
(B6)

does not change the created threads Th1, Th2: in Th1 the rule’s precondition
is never enforced to be satisfied and thus the resulting frequency is one, while
the lack of any observation in Th2—even though there are nonpunctual trains—
ensures that the resulting frequency is zero.

When trying to solve the resulting problem sat(T2(B), {Th1, Th2}), the non-
strict belief formulae yield the following constraints on Th1:

B′2 : 0.81 ≤ I(Th1) ≤ 0.81

B′′2 : 0.81 ≤ I(Th1) ≤ 0.81

B6 : 0.93 ≤ I(Th1) ≤ 0.93

Clearly, these constraints cannot be satisfied simultaneously and therefore the set
T̂ = {Th1, Th2} is insufficient to show satisfiability of T2(B) (and therefore B).

If the created set of threads fails to show satisfiability of T2(B), additional threads
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1 · · · 4 · · · 6 · · · 9 t
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at(T1, CA), on(A, T1)

¬punct(T1)
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Figure 4.2.: Visualization of the representative thread set generation for the train ex-
ample. Both threads start with the given facts at(T1, CA), on(A, T1). Ap-
plications of formulae from T2(B)—such that Th1 contains positive belief
objects and Th2 contains negative belief objects—are marked in blue, ad-
ditional constraints from T0(B) and T1(B) are marked in red.

can be created to continue searching for an expanded set T̂ such that T2(B) can be
satisfied with respect to T̂ . Based on an existing thread Th, an additional thread Th′

can be created by ensuring that one conjunct for Th1 or Th2 in (4.30) and (4.31) is
not satisfied anymore, i.e., from a given thread Th with existing constraints (xk · ϕk),
a new thread Th′ can be obtained through the substitution

Th |=
∧
j

(xj · ϕj) ⇒ Th′ |=
∧
j 6=k

(xj · ϕj) ∧ x′k · ϕk, x′k 6= xk. (4.32)

Every such substitution of one conjunct with a new constraint provides a choice point
to direct the continuation of the search for a suitable set of threads. The constraint
notation in 4.32 is used to provide a formal characterization of choice points. In
practice, a new thread Th′ satisfying the above constraint can usually be created easily
through the addition of new or the modification of existing facts in Th as follows.
To simplify the following discussion, we assume that the expansion keeps a history of
expansion steps and resulting consequences, such that all effects of adding an additional
F can be undone if the respective fact F is changed for a newly created thread.

Definition 4.7 (Principle of least effort (ple) expansion). Let T̂ be a set of threads
and let T2(B) be a set of type 2 belief formulae. A principle of least effort expansion
creates an expanded set T̂ ′ = T̂ ∪ {Th′} according to a single application of one of the
following rules.

• For a (possibly negated) belief in an a fact B`,u
i,t′(Ft) ∈ T2(B): If there exists a

thread Th ∈ T̂ such that F ∈ Th(t) (resp. F 6∈ Th(t)) is not yet enforced, Th′

is created as a duplication of Th with the additional constraint F ∈ Th(t) (resp.
F 6∈ Th(t)).

• For a belief in a temporal rule B`,u
i,t′(r

fr
∆t(F,G)) ∈ T2(B): If there exists a thread

Th ∈ T̂ such that F ∈ Th(t) but G ∈ Th(t+ ∆t) (resp. G 6∈ Th(t+ ∆t)) is not
yet enforced, Th′ is created as a duplication of Th with the additional constraint
G ∈ Th(t+ ∆t) (resp. G 6∈ Th(t+ ∆t)).
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• For a disjunctive belief formula B = (B`,u
i,t′(ϕ1) ∨ B`,u

i,t′(ϕ2) ∨ · · · ) ∈ T2(B): If

possible, expansion is carried out with respect to one belief B`,u
i,t′(ϕ) as described

in the two previous steps.

• Nested beliefs are again treated with respect to their innermost belief object.

• If the new thread Th′ is created from Th through the addition of F ∈ Th′ for
some fact F and time point t and F 6∈ Th was enforced in the original thread
Th, the consequences of adding F 6∈ Th are undone in the new thread Th′.

Then, for the created thread Th′, additional belief formulae from T1(B) that are
triggered by this modification need to be evaluated to obtain a sound thread, as
described above for the creation of initial threads Th1, Th2.

The intuition behind this ple-expansion is to create additional threads that satisfy
an alternative set of belief objects ϕ contained in the set T2(B) with as little effort
as possible. In general, it is possible to add constraints on arbitrary facts at arbitrary
time points and then continue with a successive expansion based on this thread. How-
ever, this would result in a rather aimless exploration of the exponential search space.
Following the ple-expansion instead helps to direct the search for a suitable model
guided by the rules specified in T2(B). To illustrate this, consider Figure 4.2 from the
previous example: Possible ple-expansions could for example result in an additional
thread by altering the punctuality of train T2. Clearly, the resulting situations are
intended in this model, as they were already considered in the original thread specifi-
cation (cf. Figure 3.1). On the other hand, by deviating from the ple-expansion, one
could add additional facts—say at(T1, CA), on(A, T1) at arbitrary time points t > 1.
This could then give rise to multiple subsequent expansions of the resulting thread and
may actually serve to generate a model for B, while such a situation was not intended
by the specification of B. The example about train punctuality also illustrates the
requirement of an undo operation: The fact punct(T2) ∈ Th1(4) produced the addi-
tional constraint {at(T2, CB), on(A, T2)} at time t = 6. Clearly, this constraint should
not be enforced any longer if—based on Th1—a new thread Th′ is created such that
punct(T2) 6∈ Th′(4).

With information about violated constrains from the linear program corresponding
to sat(T2(B), {Th1, Th2}), we can perform a dependency-directed selection of choice
points: If the lower bound of a belief B`,u

i,t′(ϕk) cannot be satisfied with the current set
of threads, an additional thread Th′ can be created with the existing constraints on
Th1 or Th2 and substituting the respective constraint on ϕk, as shown in (4.32).

The dependency of choice points on violated lower bounds can best be illustrated
through the results from the previous example: Clearly, the upper bounds induced by
B′2 and B′′2 and the lower bound induced by B6 hinder satisfiability of T2(B) with
respect to the created threads. Using the belief object of formula B′2 (or B′′2) to create
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an additional thread Th3 yields the updated constraint

B′2 : 0.81 ≤ I(Th1) + x · I(Th3) ≤ 0.81

with a factor x depending on the frequency of the respective belief object in Th3, while
the constraint induced by B6 remains unchanged. As a result, the new constraint only
allows for lower values of I(Th1), and thus the lower bound induced by B6 remains
unsatisfiable. Using the belief object of formula B6 to create an additional thread
instead yields the constraint

B6 : 0.93 ≤ I(Th1) + x · I(Th3) ≤ 0.93,

which—through nonzero values for x and I(Th3)—potentially allows for lower values
on I(Th1). Note that this example only uses atomic belief formulae. For disjunctive
belief formulae B = (B`,u

i,t′(ϕ1) ∨ B`,u
i,t′(ϕ2) ∨ · · · ), any of the respective belief objects

with a violated lower bound can be used to direct the selection of subsequent choice
points (given that no other disjunct of B is satisfiable, of course).

Combining information about violated lower bounds with the principle of least effort
provides a multi-stage heuristic to proceed with a dependency-directed selection of
choice points:

Definition 4.8 (Dependency-directed search heuristic). Let T2(B) be a set of type
2 belief formulae and let T̂ be a set of threads such that ¬sat(T2(B), T̂ ) holds.
Then, to enable a dependency-directed search for an expanded set T̂ ′ ⊃ T̂ such that
sat(T2(B), T̂ ′) holds, T̂ is expanded with an additional thread Th′ 6∈ T̂ according to
the following rules.

1. If the existing set of threads T̂ fails to satisfy lower bounds of constraints induced
by a belief formula B with belief object ϕ and an additional thread Th′ can
be obtained through one ple-expansion with respect to ϕ, T̂ is expanded to
T̂ ′ = T̂ ∪ {Th′}.

2. Otherwise, if no dependency-directed ple-expansion is possible, another ple-
expansion is applied to T̂ , if possible.

3. Finally, if no ple-expansion is possible in T̂ , an additional thread Th′ can be
created by adding the constraint F ∈ Th(t) (resp. F 6∈ Th(t)) for arbitrary facts
F that are not yet constrained in Th(t).

The intuition behind this heuristic is that information about violated probabilistic
constraints should be used to select a suitable next expansion step, if possible. Other-
wise, other possible ple-expansion steps should be performed to use rules from T2(B)
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to guide the search. Only if no further ple-expansions are possible, additional con-
straints should be employed to continue the search. Restricting possible expansions
with respect to criterion 1 to one step follows the principle of least effort, again: To
illustrate this, consider Example 4.8: It was shown that the created set of threads
{Th1, Th2} fails to satisfy the lower bound of belief formula B6. In thread Th1, there
is no world Th1(t) |= Obs{A}(¬punct(train)) such that the precondition of the rule in
B6 is satisfied. Consequently, there is no single step ple-expansion of Th1 that could
change the constraints induced by B6. On the other hand, Th2 provides two such
choice points and should therefore be preferred for expansion. Note that the sound-
ness requirement will determine choices for all unconstrained facts. Thus, in general
the proposed expansion may produce threads that are already contained in T̂ by con-
straining facts that have been determined before. We will not consider this scenario
explicitly but instead assume that in such cases, further expansion steps are performed
until an additional thread is created.

4.5.2. A Thread Generation Example

To illustrate the expansion of a set of threads T̂ with respect to the dependency-directed
search heuristic from Definition 4.8, in the following we resume the train example.

Example 4.9 (Trains continued). In the previous example, a set of threads
T̂ = {Th1, Th2} has been created that fails to show satisfiability of T2(B). Con-
sequently, the heuristic from Definition 4.8 should be used to iteratively expand
this set until an expanded set of threads T̂ ′ is created such that a model for B is
obtained or no further expansions of T̂ ′ are possible. Belief formula

B6 = B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
has already been identified as a belief formula which yields constrains with an un-
satisfiable lower bound and this should therefore be used to guide the subsequent
expansion. As already discussed before, no single-step ple-expansion of Th1 is
possible to influence the constraints induced by B6. Therefore we continue with
an expansion based on thread Th2. A visualization of the following steps is given
in Figure 4.3.

There are two worlds in Th2 where Obs{A}(¬punct(train)) is satisfied, namely
Obs{A}(¬punct(T1)) ∈ Th2(1) and Obs{A}(¬punct(T2)) ∈ Th2(6). Both of
these occurrences allow for an ple-expansion. We choose Th2(1) to perform
the expansion. This yields a new thread Th3 with the additional constraint
Obs{A,B}(¬punct(T1)) ∈ Th3(3), while all constraints from Th2 remain intact,
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since there are no constraints that need to be undone by adding Obs{A,B} ∈
Th3(3).

The expanded set T̂ ′ = T̂ ∪ {Th3} can then be used to check sat(T2(B), T̂ ′).
In thread Th3, the rule contained in B6 is satisfied in one of two occurrences
of Obs{A}(¬punct(train)) and therefore yields a frequency of 0.5. Consequently,
through transformation into a linear program we obtain the constraints

B′2 : 0.81 ≤ I(Th1) ≤ 0.81

B′′2 : 0.81 ≤ I(Th1) ≤ 0.81

B6 : 0.93 ≤ I(Th1) + 0.5 · I(Th3) ≤ 0.93

Apparently, B6 allows for lower values of I(Th1) for the this set T̂ ′. From the
constraints induced by B′2 (resp. B′′2) we still obtain I(Th1) = 0.81. Then, the
constraint induced by B6 requires I(Th3) = 0.24 (since 0.81 + 0.5 · 0.24 = 0.93).
This is still no suitable probability assignment since the sum over all priors exceeds
one. Consequently, the thread set expansion continues. The above constraints
show that—according to condition 1 of the search heuristic—thread Th3 is now a
suitable candidate for further expansion with respect to the belief object of B6.

Thus, based on Th3, we create an additional thread Th4 through ple-expansion.
In this case, the only possible expansion step is Obs{A,B} ∈ Th4(8), which results

in a frequency of one for the rule contained in B6. Thus, testing sat(Tk(B), T̂ ′)
with the further expanded set T̂ ′ yields the following constraints:

B′2 : 0.81 ≤ I(Th1) ≤ 0.81

B′′2 : 0.81 ≤ I(Th1) ≤ 0.81

B6 : 0.93 ≤ I(Th1) + 0.5 · I(Th3) + 1 · I(Th4) ≤ 0.93

These constraints are now satisfiable, for instance with

I(T̂ ′) =
(
0.81, 0.07, 0, 0.12

)
.

Thus, sat(T2(B), T̂ ′) returns a positive result and satisfiability checking of B can
terminate with this result.

This result concludes satisfiability testing of the set of belief formulae B originally
specified in Example 4.1. Nevertheless, for illustration purposes we show the result of
further applications of ple-expansion steps in Figure 4.4. Changes in the additionally
created threads are obtained through a further respectively different application of a
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Figure 4.3.: Visualization of ple-expansions for the train example. Applications of for-
mulae from T2(B) are marked in blue, additional constraints from T0(B)
and T1(B) are marked in red. Expansion steps are marked in green.

belief formula from T2(B), marked in blue in the respective threads. Worlds Th(t)
that remain unconstrained after a saturated application of ple-expansions are marked
with “/”. All of these worlds then give rise to further expansions according to step 3
of the search heuristic.

Some comments on the resulting set of threads from this example are necessary.
Comparing the final threads depicted in Figure 4.4 with the original set of threads
introduced in Figure 3.1 shows that the expansion result largely corresponds to the
original specification (except differing thread labels). There are some notable differ-
ences however.

• First of all, there is the additional predicate punct(train), which was introduced
in Example 4.1 to allow for a concise specification of the background knowledge.
As the concept of nonpunctual trains (and especially the respective ramifications)
are implicitly encoded in Figure 3.1 as well, this does not change the properties
of the modeled example.

• With the explicit representation of train punctuality, observations of nonpunctual
trains can be expressed explicitly in this example, while the previous example uses
the ramifications of nonpunctual trains to model observations. Since rules B3

and B4 assert that ramifications of punctual respectively nonpunctual trains are
common knowledge among Alice and Bob, both modeling alternatives preserve
the intended meaning of the example.

• Another difference is the timing of Alice’s observations. In the original example
we assumed that such an observation occurs at the time point when a train was
supposed to arrive at the destination city. In the current example we assume that
Alice already observes that a train is not punctual when leaving the departure
city. The reason for this change is solely for illustration purposes: specifying in
rule B5 that Alice immediately observes a nonpunctual train yields a type 0 belief
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Figure 4.4.: Visualization of continued ple-expansions for the train example. Applica-
tions of formulae from T2(B) are marked in blue, additional constraints
from T0(B) and T1(B) are marked in red. Expansion steps originating
from Th1 and Th2 are marked in green and orange, respectively. Uncon-
strained worlds are marked with “/”.
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and thus serves to illustrate how additional facts can be obtained through global
constraints. Since rule B6 ensures that potential calls to Bob (i.e., shared ob-
servations) occur two time points after Alice’s original observation, the intended
model of the original example is still maintained.

• The above points are only concerned with specific details of the modeled domain.
Comparing the set threads from Figure 3.1 with the threads from Figure 4.4
also shows a more general modeling problem: for instance, analyzing the worlds
at time point 2 in Figure 4.4 shows that Alice is not (necessarily) on train T1,
while she is on this train both at the previous time point and later time points.
Naturally, one should expect that Alice is on the train at all intermediate time
points between boarding and exiting the train. This is an instance of the frame
problem (e.g., [Rei01]) that occurs when specifying dynamic systems through
logic formulae. Generally, the frame problem is concerned with finding a suitable
set of axioms to describe adequate evolutions of the world. From a modeling
perspective, evolutions where Alice vanishes and reappears while on a train ride
are obviously no adequate evolutions of the world. An application of the final step
of the search heuristic could then yield a tremendous blow-up of the considered
set of threads. For the modeled problem, this would clearly result in unintended
models, but the resulting models could still serve to show satisfiability of the
respective set of belief formulae B, even though this result might not be desired.
This problem could be fixed by adding successor state axioms in the style of
[Rei01], e.g., specifying that if Alice is on a train, she remains there for the next
time point unless she explicitly exits the train.

4.5.3. Properties of the Representative Thread Generation

In this section, we provide results to connect the set of representative threads to the
satisfiability problem of PDT Logic and discuss the complexity of generating represen-
tative threads.

Theorem 4.15 (PDT Logic Decision Procedure). Let B be a set of PDT Logic be-
lief formulae, and let T̂ = {Th1, Th2} be the initial set of threads with length tmax
obtained from B according to Equations (4.30) and (4.31). Iteratively expanding this
set according to the search heuristic from Definition 4.8 and testing sat(T2(B), T̂ ′) for
the expanded sets T̂ ′ until (i) sat(T2(B), T̂ ′) returns a positive result, or (ii) T̂ ′ is
fully expanded with respect to the search heuristic yields a sound and complete decision
procedure for sat(B, tmax).

Proof. Both the initial set of threads T̂ = {Th1, Th2} and the expanded sets T̂ ′ ob-
tained through ple-expansion steps are defined such that only sound threads accord-
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ing to Definition 4.4 are considered. Theorem 4.13 states that the decision problem
sat(T2(B), T̂ ) is equivalent to sat(B, T̂ ) if the set T̂ contains only threads that are
sound with respect to B. A positive result for sat(B, T̂ ) for threads with length tmax
shows that T̂ is a model for B and thus sat(B, tmax) follows. Consequently, a positive
result for sat(T2(B), T̂ ′) always proofs that B is satisfiable for tmax time points.

On the other hand, if no model for B has been found and it is not possible to create
additional threads according to the search heuristic from Definition 4.8, the search
space is fully explored. From this it follows that no model for B with tmax time points
exists and therefore B is unsatisfiable for tmax time points. Consequently, it follows
that the PDT Logic decision procedure is sound.

With these properties, the completeness result is straightforward: For any arbitrary
input B and tmax, either a model can be found or non-existence of such a model can
be proven through a full exploration of the search space, and thus completeness of the
procedure follows.

In the following, we analyze the complexity of generating representative threads for
a set of belief formulae B.

Theorem 4.16 (Complexity of representative thread generation). Let B be a set of
belief formulae. Creating a set of expanded representative threads T̂ ′ for B is in EXP-
SPACE.

Proof. The maximum number of possible threads for a given set of belief formulae B
is determined through the size |FB| and the maximum time point tmax. Recall from
Equation (4.3) that we use FB to identify all event formulae from B and use this as the
set of ground atoms to construct possible worlds. Since every belief operator contains at
most two event formulae, we obtain the constraint |FB| ≤ 2·k·B for k belief operators in
B. The largest set of possible threads is then obtained as the sequences of combinations
of all possible worlds over all time points, yielding 22·k·tmax·B possible threads. In
the worst case, all 22·k·tmax·B representative threads are created before obtaining a
satisfiability result. Consequently, creating all possible representative threads is in the
complexity class DSPACE(2p(n)), which is the class EXPSPACE.

From this theorem, we immediately obtain complexity results for the satisfiability
problem sat(B, tmax).

Corollary 4.17 (Complexity of PDT SAT without a given set of threads). Checking
satisfiability of a set of PDT Logic belief formulae B without a specification of possible
threads is in EXPSPACE.
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Proof. The generation of representative threads is in EXPSPACE, as shown in Theo-
rem 4.16. For a given set of threads Theorem 4.11 shows that satisfiability checking
in PDT Logic is in NP. Thus, this does not further increase complexity of the PDT
sat problem without a given set of threads and it follows that this problem is in EXP-
SPACE.

Some comments on these results are necessary. Since the decision procedure outlined
in Theorem 4.15 yields an exponential expansion of possible threads T̂ ′—which all need
to be fed into the decision problem sat(T2(B), T̂ ′)—the exponential space requirement
is evident. However, as we have illustrated with the example, positive satisfiability
results can possibly be already obtained through small sets of possible threads T̂ ′ with
a diminutive size compared to the entire search space. Moreover, the discussion of the
train example has shown that a major part of the search space stems from insufficient
rule specifications. This is not a specific problem of our formalism nor the presented
decision procedure, but a general problem of rule-based modeling approaches, namely
the aforementioned frame problem. An incomplete model specification then leads to
the generation of unintended models, which serve to show satisfiability of the modeled
problem, but have not been intended by the respective modeler. This could lead to
the worst case—both from a complexity and from a model perspective—that after an
exponential execution of the decision procedure, the result only shows that the input
specification does not specify the intended model. The problem can be addressed on
the modeling side by providing additional axioms to ensure that no unintended model
is generated. However, this leads to a significant increase in the specification size and
it is difficult to ensure through rule specifications that indeed every unintended model
is prevented.

The ple-expansion steps could be used as a heuristic to discriminate between intended
and unintended models: As shown in the train example, only applying ple-expansion
steps results in a relatively small set of threads, which indeed corresponds to the in-
tention of the model, while any further expansions inherently leads to an exponential
growth of the set of threads and introduces only additional unintended models. Thus,
omitting the final step of the search heuristic would give a significantly faster termi-
nation of the decision procedure, even though the resulting procedure cannot prove
unsatisfiable sets of formulae any longer. However, one could use the expansion pro-
cedure to create the set of intended threads first and—possibly after an inspection by
the modeler—continue to use this set to perform satisfiability checks with respect to
the intended model.

The runtime of the expansion procedure and resulting satisfiability checks is clearly
tilted towards the positive side: If a set of belief formulae is satisfiable, there is a
good chance that satisfiability can be shown in a small number of steps. Negative
results on the other hand can only be obtained after an exhaustive exploration of
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the search space. However, for many applications negative satisfiability results are
required. For instance, checking entailment B |= B can be checked through the
reformulation ¬sat(B ∪ ¬B). For applications relying on such a reformulation, the
presented procedure is unfavorable because positive entailment results can never be
obtained efficiently. One could overcome this problem as sketched above by generating
a set of intended threads first and then use this set to perform subsequent satisfiability
tests—once a set of threads is given, the decision problem’s complexity significantly
decreases, as shown in Section 4.3.

4.6. Concluding Remarks

This chapter discusses alternative ways of specifying problems in PDT Logic, either
through explicit enumerations of possible threads with specific probabilities or through
a set of appropriate rules. Both approaches exhibit their specific advantages and draw-
backs: For many problem domains, relying on an exhaustive enumeration of all possible
threads poses a severe obstacle for modeling the respective scenarios, as the specifi-
cation is practically unmanageable. On the other hand, there are problem domains
(e.g., attack graphs in cyber security scenarios, as discussed in the following chapter)
that come with such an explicit specification anyways. If probability assignments are
given as well, we have shown that it is possible to check given models very efficiently
for these types of problems.

To overcome modeling disadvantages of the thread-based approach, we have also
shown how a problem domain can be solely specified through a set of PDT Logic
belief formulae. For most problem domains, this is a more natural way of specifying
the problem. Also, this provides means to easily adapt many existing problems—that
are specified in other formal languages as sets of rules—to PDT Logic. On the other
hand, waiving the requirement of an exhaustive thread specification and according
probabilities extremely increases the problem complexity of checking satisfiability of a
set of PDT Logic formulae. Nevertheless, even when only imprecise probabilities are
given, the resulting problem remains decidable and the increased complexity might be
curtailed through search heuristics.

Combinations of both approaches are possible as well: If an exhaustive specification
of possible threads is given, but probability intervals are only specified through beliefs
with imprecise probabilities, the satisfiability problem can be transformed into a 0-
1 mixed integer linear program. As there are a variety of efficient solvers available
for this class of problems, this transformation provides a means to exploit existing
optimizations to check satisfiability of PDT Logic formulae.



Chapter 5

Analyzing Attackers’ Beliefs: An Application
Example in Cyber Security Domains

To further illustrate how PDT Logic can be put to practical use, we return to the cyber
security example that we introduced informally in the introduction. In this chapter, we
briefly summarize required preliminaries from the cyber security domain and then show
how PDT Logic can be applied to the analysis of threat scenarios. For the discussion
of this example, we follow conventions from the security literature and use the terms
attacker and intruder interchangeably. We refer to the attacker as she and to the
defender as he.

5.1. Threat Analysis with Attack Graphs

Information infrastructures have been exposed to an increasing number of cyber attacks
in recent years. Since such information infrastructures are used in a variety of critical
application areas, there is an increasing need to defend them against any potential cyber
attacks. It is important to note that, due to external constraints, established security
measures—such as patching known vulnerabilities—are only applicable to a limited
extent. Legal requirements might allow only the use of certified software versions, or
new patches cannot be applied at a certain point in time because compatibility tests are
still pending. A common effect is that external constraints leave critical information
infrastructures exposed to known vulnerabilities, at least for some time.

An established approach to analyze threats from identified vulnerabilities is the use
of attack graphs.1 An attack graph is a formal representation of all possible attack
sequences in an IT infrastructure system. Analyzing such attack graphs provides means

1We will use attack graph as a general term for formal sequence-based approaches of attack analyses.
Depending on the specific properties of the respective formalization, these approaches are known
under a variety of names such as attack graphs, attack defense trees, attack countermeasure trees,
or attack response trees.

89
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to identify vulnerabilities of the system and to decide on suitable countermeasures.
Several approaches of automatically creating attack graphs have been proposed, e.g.,
[PS98], [OGA05], and [ILP06]. Methods of analyzing threats in cyber security scenarios
and identifying suitable countermeasures based on attack graphs have been discussed
for instance in [NJ08], [RKT10], [RKT12], and [LIS+06].

Standard reactions to such an analysis include the proactive removal of identified
vulnerabilities. However, several scenarios exist where an application of these mea-
sures is not feasible without impairing the mission of the organization responsible for
the critical infrastructure. Therefore, it is important to carefully analyze potential
consequences of applicable countermeasures or sequences of countermeasures (as part
of defense strategies). Maintaining a model of an intruder’s belief state provides the
defender with improved means to assess the merits of potential defense strategies.

Existing research on attack graph analysis relies on exhaustive specifications of possi-
ble attack sequences and several approaches to obtain such attack graphs automatically
have been proposed. Thus, attack graphs provide a natural way to use PDT Logic for
threat analysis. Extending existing attack graphs with a formal model of both the
intruder’s and defender’s belief states allows for analyzing pending threats on an ad-
ditional level. Since these approaches originate from exhaustive specifications of all
possible attack sequences (i.e., threads in PDT Logic), we can apply the computa-
tionally cheap model checking algorithm (Algorithm 1 from Chapter 4) to analyze the
evolution of belief states in this domain. To simplify the discussion of our example, we
assume that the intruder has already breached the network and is carrying out attacks
on specific systems. Thus, we only analyze the final stages of a known attack graph.
Of course, in general we can apply PDT Logic to all stages of an attack graph, but
this would significantly blow up the set of threads that we need to consider. Since a
short sequence of actions suffices to illustrate the application of PDT Logic in cyber
security scenarios, we keep the example as simple as possible and concentrate on the
final stages of an attack, where immediate consequences are pending.

5.2. Formalizing Agents’ Beliefs

In the following, we discuss properties of our intended target domain, provide a formal
model of this domain and show how the beliefs of both intruders and defenders evolve.

5.2.1. Considerations on the Target Domain

As discussed previously, we are concerned with situations where pre-emptive security
measures are not always an option. Thus, the network might be exposed to known
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vulnerabilities and the defender is left with choosing the best reactive countermeasure
in case of an attack. We start our analysis at the final stages of an attack graph
and assume that any attacker breaching this point has already obtained extensive
information about the network. To simplify the presentation of the example, we assume
that at any time point only a single intruder is attacking the system.

For our example, we assume that we have a single attacker model and that any attack
(e.g., a remote code execution) to the network consists of (at least) two actions: First,
the attacker has to gain access to a target system with sufficient privileges. Then,
custom code can be executed on this system to reach the attacker’s actual goal. We
do not model the details of these steps, but abstractly represent the first step as an
attack on a system resulting in access to a shell (e.g., through exploitation of known
vulnerabilities), and the second step as some code execution on the target system.
After having successfully obtained a shell on the target system, the attacker basically
has two options: either she can proceed with the second stage of her attack (i.e., code
execution) or she can try to gain access to further systems. Both options come with
advantages and drawbacks for the intruder: continuing to attack further systems might
result in additional compromised systems, but at the same time decreases the chance
of performing an attack undetected. The choice of action depends on the attacker’s
actual goal; she might even attack another system without actually executing code
there, but only to create distractions from her actual goal.

A network based intrusion detection system (IDS) can be used to detect attack
actions on specific systems. However, in practice no IDS is perfect, i.e., missed attacks
have to be considered when employing an IDS. For the sake of simplicity, potential false
alerts of the IDS are not considered in our example. Considering attacks that are not
detected by an IDS is an important point when planning defense strategies: if every
detected attack is countered with a corresponding defense action, the lack of such a
defense lets the attacker know that her attack went undetected and she might proceed
with executing malicious code without having to fear any actions from the defender.
Furthermore, deliberately letting the attacker execute code on a non-critical target host
can provide valuable insights: an analysis of the executed code will reveal the actual
goal of the attack and might further reveal the identity of the attacker. Another reason
for refraining from a defense operation is that this action (e.g., unplugging a control
server) might impact the mission success just as much as an attack. Consequently,
deliberately letting an observed attack pass undefended might provide higher expected
utility for the defender. By analyzing the potential evolution of the attacker’s belief
states, the choice of not defending can even be used to drive the attacker to false
conclusions regarding her success.

Continuing these considerations, it might prove useful for the defender to maintain
some kind of “honey pot” within the network. In its classical form, a honey pot is a



92 5. Analyzing Attackers’ Beliefs: An Application Example in Cyber Security Domains

system that has no productive meaning but is used instead to attract attackers and
thereby provides means to analyze their goals and identities. We adopt the concept
of honey pots to our model by maintaining backup devices of critical systems. These
backup devices are disconnected from the physical world but are otherwise indistin-
guishable from the actual productive system. This way, an intruder does not know
which one the critical system is, but if she executes malicious code on the honey pot,
she is not able to impact the mission success, but instead unknowingly provides the
defender with the possibility to analyze the code and identify the attacker.

5.2.2. An Exemplary Domain Model

In the following, we introduce a small example to show how we can formally model
potential attacks in a computer network and apply PDT Logic to analyze the evolution
of the agents’ belief states.

Our scenario contains two agents, the defender D and the intruder I. Following the
considerations from the previous section, we assume that two systems are present in this
network: some honey pot A and the corresponding critical system B. Possible actions
on a system X are denoted by attack(X) and defend(X) with the obvious meanings.
Furthermore, execution of malicious code on a system X is denoted by exec(X). Finally,
we have observation atoms such as Obs{D}(attack(A)), indicating that the defender
observed an attack on system A.

Building on these events, we can construct a set of threads representing all possible
event sequences in this example. The resulting set is depicted in Figure 5.1.

Remark 5.1. In Figure 5.1, we have used a tree notation instead of a set of parallel
threads. This is only for an easier depiction of the situation, and a transformation into
the usual set of threads is straightforward: whenever two threads share a common prefix
sequence, we have depicted this sequence as a single path in the tree. By explicitly
representing the paths from the root node to every leaf node as a single thread, we
obtain the usual thread notation.

This model represents our considerations from the previous section: analysis starts at
some time when no attack has occurred yet (t = 0). Possible subsequent events are then
attacks on system A or system B (represented through nodes 53 and 78 in the graph) or
no attacks (node 1). If an attack has occurred on, say, system A, the IDS can detect this
attack (i.e., an Obs{D}(attack(A)) occurs, represented through the solid outgoing edges
from node 53), or the attack is not detected (represented through the dashed line). For
an undetected attack, the defender obviously has no options to defend against this.
For an observed attack, the defender can choose between defending against this attack
(node 55) or deliberately refrain from a defense (node 56). A defense (with potential
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Figure 5.1.: Possible threads for the example domain. a(X), d(X), and e(X) denote
attack, defend and code execution actions on node X, respectively. Ob-
servations of the defender are marked through solid blue edges, lack of
an observation with a dashed blue edge. Unobserved code executions are
marked in red, otherwise they are marked in black. Terminal nodes of
threads are marked in gray.
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downsides to the defender’s mission) forces the intruder to abort his attack. Formally,
this means that a defense action on system X always induces a shared observation
Obs{A,B}(defend(X)). These observations are not explicitly specified in Figure 5.1,
but to express that a defense action always corresponds to a shared observation, we
can simply specify the following rule as a type 0 belief (cf. the belief formula taxonomy
from Section 4.4.1):

B1,1
A,0(rpfr0 (defend(X), Obs{A,B}(defend(X)))) (5.1)

Lack of a defense action gives the intruder two options again: she can execute her
malicious code on the attacked system (nodes 66 and 77), or she can proceed to attack
the other system (nodes 57 and 68). After a second attack, possible subsequent events
match the ones discussed for the first attack. Finally, if the first attack has not been
defended, there are various options for the intruder to execute malicious code: if the
second attack is defended, the attacker can execute the code only on the previously
attacked system (nodes 63 and and 74), otherwise she can choose between executing
code only on the previously attack system (e.g., node 61) or on both systems (e.g.,
node 62). If an attack has been detected by the IDS, the defender is able to observe
these code executions (denoted in black), for undetected attacks, subsequent code
executions will remain undetected as well (marked in bold red in the graph). If no
attacks occur at all, the system continues in its normal state as indicated through node
104—allowing for equivalent branchings of the graph if attacks occur at later points in
time.

Note that in most states of this model, none of the agents has complete knowledge
of the world. For instance, if the defender does not observe an attack at time t = 2, he
cannot distinguish between undetected attacks on either system or the actual absence
of an attack (i.e., he considers nodes 54, 2, and 79 as actually being possible). If the
intruder actually attacked a system and does not observe a defense action, she does
not know whether her attack was actually undetected or whether it was observed and
intentionally not defend (i.e., she is unable to distinguish between nodes 54 and 56, or
79 and 81, respectively).

To assign probabilities to every thread in this scenario, we start with assigning
probabilities to single events. Then, we can determine the probability of a thread as
joint probabilities of the respective events contained in this thread. Reasonable values
of single events—which could for example be obtained through an analysis of existing
log data—are given in Table 5.1. The resulting probabilities of individual nodes are
depicted in Figure 5.1.
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Table 5.1.: Single event probabilities for the cyber security example

Event Probability

Attack on a specific system at a specific time point 0.05
Attack detected by the IDS 0.80
Defend action after an observed attack 0.70
Second attack after a successful first attack 0.40
Code execution on both nodes after two attacks 0.65

5.2.3. An Analysis of Belief Evolutions

To illustrate how we can use this example to analyze the evolution of both agents’
beliefs, let us assume that the intruder has attacked system A at time t = 3 (i.e., the
actual world at t = 3 is represented through node 3). If the defender has observed
this attack, he has to decide whether to defend the system against this attack or not.
However, even if the defender observed this attack, he is not able to identify the actual
node in the attack graph, because he is unable to distinguish between the situation
where attack(A) is the first action (node 3) and the situation where this was preceded
by an undetected attack on B (node 82). To analyze the defender’s expectations
for the worst case (an unobserved code execution on the productive system B, i.e.,
exec(B) ∧ ¬Obs{D}(exec(B))), one can analyze the threads containing nodes 5 or 84,
and 6 or 85 in Figure 5.1, respectively. By summing over the normalized probabilities of
these respective threads, where the terminal node contains exec(B)∧¬Obs{D}(exec(B)),
one can verify that the following holds:

¬defend(A) at t = 4 |= B0, 0.05
D,4 (exec(B) ∧ ¬Obs{D}(exec(B))), and

defend(A) at t = 4 6|= B0, 0.05
D,4 (exec(B) ∧ ¬Obs{D}(exec(B))),

i.e., the defender has lower expectations in the worst case actually happening if he
choses to not defend this attack. Consequently, we assume that the defender decides
against a defend action, and we consider node 6 as the actual node for the following
discussions. Next to protecting the system against the worst case, the defender is also
interested in getting opportunities to analyze the intruder’s malicious code. We can ex-
press his beliefs in observing a code execution (i.e., Obs{D}(exec(A))∨Obs{D}(exec(B)))
as

¬defend(A) at t = 4 |= B0.9, 1
D,4 (Obs{D}(exec(A)) ∨Obs{D}(exec(B))).

If the defender chooses not to take any defensive action, the intruder in turn is unable to
distinguish between the situations where the defender deliberately took no action and
where the defender simply missed the attack, i.e., the defender considers all threads
possible that contain node 6 or node 4. Thus, the intruder has the following belief
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in actually being able to execute malicious code on a target system without being
detected:

¬Obs{i}(defend(A)) at t = 4 |= B0, 0.2
I,4 (φ),

with φ = ¬Obs{D}(exec(A)) ∧ ¬Obs{D}(exec(B)) ∧ (exec(A) ∨ exec(B))

Since both the intruder and defender know the possible attack sequences, it is also
possible to analyze belief states of the respective opponent: In the considered situation,
the defender knows that the attacker has not observed any defense action and can
therefore not distinguish between nodes 4 and 6. However, since the defender was not
able to rule out a previous attack on B, from his point of view the intruder could still
also consider nodes as 83, 85, 94, and 96 as possible (these are the nodes where B was
attacked before and no defend action was taken). Still, the defender has a rather high
belief in the intruder’s actual belief state, as expressed in the following nested belief:

B0.8, 1
D,4 (B0.0, 0.2

I,4 (φ))

This analysis shows that reasoning about nested beliefs provides the defender with
quite an accurate estimation the attacker’s actual belief state. This representation of
nested beliefs can then aid the attacker in choosing the best countermeasures.

5.3. Concluding Remarks

This example from the cyber security domain illustrates how PDT Logic can be ap-
plied in practice to formalize multi-agent beliefs in a security context. This formal
representation enables the analysis of the adversary’s belief evolution depending on
specific actions. Through a small example we have demonstrated how a formal belief
state analysis can be carried out. Next to formal representations of both the intruder’s
and defender’s beliefs, this is especially useful to gain an opportunity to reason about
nested beliefs. This provides novel means of assessing the expected utility of any action
when planning a defense strategy: Along with analyzing the direct effect of any action
on the network, we can also analyze how any action will influence the belief state of the
opponent. With the use of more sophisticated attack models, this enables the defender
to drive the intruder into desired safe states (from the defender’s point of view), where
the intruder expects to achieve her goal, but is actually unable to cause real harm.

This chapter shows how PDT Logic can be used in practical scenarios by analyzing
the effects of certain actions on the belief states of agents. So far, we have explicitly
analyzed the outcomes of any potential action. To automatize the process of finding
the best set of actions to achieve a desired goal automatically, we formalize abduction
in PDT Logic in the following chapter.



Chapter 6

Abduction in PDT Logic

Abduction, or inference to the best explanation, is a form of reasoning where some
data is given and a hypothesis is inferred that explains this data [Jos96]. Usually, the
abduction problem is phrased as given some background knowledge B and an obser-
vation G , abductive reasoning is the process of deriving a set of explanations S of G
according to B. Formally, this can be expressed as

sat(B ∪S), (6.1)

B ∪S |= G , (6.2)

where (6.1) states that the explanation S has to be consistent with respect to the
background knowledge, and (6.2) models that the hypothesis entails the observed data
G . S is called a solution to the abduction problem if both (6.1) and (6.2) are satisfied.

Abduction has been a subject of extensive research (e.g., [EG95] and [JJ96]), with
extensions to temporal logic (e.g., [Bar00]) and uncertainty (e.g., [Poo97]). However,
there is little work that studies abduction in the context of both time and uncertainty.
A recent study of abduction in APT Logic involving both time and uncertainty has been
introduced in [MSS14]. This approach considers abduction for the single–agent case
and uses time-invariant probabilities. By extending this work such that probabilistic
multi-agent beliefs and their dynamic evolution can be represented, we develop a novel
abductive formalism that is able to determine necessary actions to induce desired beliefs
in a multi-agent scenario.

In the context of PDT Logic, we can reformulate the abduction problem as given
some background knowledge B and a goal G , what can we do to achieve G ? This re-
formulation yields an alternative application to abductive reasoning: instead of finding
a hypothesis to explain some observed data, we are interested in finding a hypothesis
to bring about a certain goal state. Yet the formal problem expressed in (6.1) and
(6.2) remains the same and thus these two formulations represent alternative views on
the application of the abduction procedure, while the underlying formalism stays the
same.

A formal representation of this problem in PDT Logic enables us to determine a

97
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required minimal set of actions that one has to take in order to bring about a desired
goal belief state. The analysis of the cyber security example in Chapter 5 already
showed how this type of reasoning can be useful in practice without having a formal
account of the abduction problem yet. Next to cyber security settings, this approach
may be useful in various other domains. To name only a few examples, in financial
markets it might be critical for a company to determine what kind of information has
to be released to the public such that the shareholders’ belief in a positive outlook
is sufficiently high. In cooperative multi–agent scenarios, it is useful to determine
minimal required communication acts among agents, such that all agents obtain all
relevant information. Generally speaking, abduction in PDT Logic enables a formal
treatment of many information management problems.

Since PDT Logic is a framework to reason about probabilistic beliefs in multi-agent
systems, a natural goal for abduction in PDT Logic is to bring about a specific belief
state of some agent. As the semantics of the belief operator is defined with respect to the
subjective posterior interpretations of the respective agent, it is clear that beliefs change
according to the interpretation updates as given in Definition 3.9. The interpretations
in turn are updated with the occurrence of observations and thus it is clear that the
beliefs of an agent can be influenced by ensuring that the respective agent makes
certain observations. We will use this below to identify possible actions to induce the
abduction goal.

Before formalizing the abduction problem in PDT Logic, we need a few preliminary
definitions. Since the following abduction procedure performs multiple satisfiability
checks with respect to varying sets of formulae that all use the same set of possible
threads, we assume that background knowledge is specified through a set of belief
formulae B together with a set of possible threads T̂ . Such a set of threads might
for example be created by generating an intended model heuristically, as discussed in
Chapter 4. We use K = 〈B, T̂ 〉 to denote this background knowledge. With a slight
abuse of notation, we use K ∪B′ as an abbreviation for 〈B ∪B′, T̂ 〉 to denote that
a set of belief formulae B′ is added to the set B specified as background knowledge.
Furthermore, we use sat(K) as an abbreviation for sat(B, T̂ ), i.e., for satisfiability
of the set of belief formulae B with respect to the set of threads T̂ , as discussed in
Section 4.3.

With this notion, we can formulate the entailment relation between K and a belief
formula B as a satisfiability problem in the usual way [Etc99], provided that K∪{B}
is consistent:

Definition 6.1 (Entailment of belief formulae). Let K = 〈B, T̂ 〉 be the abduction
background knowledge, and let B be a belief formula. Then, K entails B (denoted by
K |= B) iff

K |= B ≡ ¬sat(K ∪ {¬B}).
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With these preliminary definitions we are now able to provide a formal account of
the abduction problem in PDT Logic.

6.1. Formalizing the Abduction Problem in PDT Logic

We have shown in the previous chapter that we can use a set of PDT Logic belief
formulae B to describe a specific scenario. Given such a scenario, it is often useful to
know what actions one could take to induce a certain belief B`,u

i,t′(ϕ) of some agent at
a specific time t′. From the semantics introduced in Chapter 3 it follows that beliefs
of an agent can only change due to observations of the respective agent and hence it is
natural to define possible actions as a set of observations that can be induced.

Definition 6.2 (PDT Logic Abduction). Let K be some background knowledge, H be
a set of PDT Logic formulae representing observations ObsG(l)t and let G = B`,u

i,tg
(ϕ)

be an atomic belief formula. Then, the triple 〈K, H,G 〉 is an instance of the PDT
Abduction Problem. S ⊆ H is a solution to the abduction problem iff K ∪ S is
satisfiable and K ∪ S |= G . A solution S is a minimal solution to the abduction
problem if there exists no solution S′ with |S′| < |S| so that B ∪S′ |= G .

Intuitively, K constitutes the background knowledge that models a specific environ-
ment, G describes the goal we want to achieve, and the hypothesis space H represents
information that we can share with the agents in order to induce the belief described
by G . Viewing the hypothesis space H as a set of possible observations for an agent
simplifies the following considerations. However, in many scenarios an agent does not
control observations directly, but instead choses to carry out specific actions which in
turn induce certain observations. For instance, consider the cyber security example
from Chapter 5 again: whenever the defender choses to defend an observed attack, a
common observation Obs{A,B}(defend(X)) of this action occurs. Thus, the defender
does not chose to induce the respective observation explicitly, but instead this obser-
vation is a necessary consequence of his action (cf. rule (5.1), which states that every
defend action inevitably yields a corresponding observation). Such connections be-
tween chosen actions and corresponding observations are domain-specific and cannot
be treated in a general way. Still, the respective observations are the responsible ele-
ments that influence the goal belief state G . Thus, rules such as (5.1) can be used to
map domain-specific actions to the corresponding required observations of the abduc-
tion procedure.

Remark 6.1. Definitions 6.1 and 6.2 assume that a problem specification in PDT Logic
is given through a set of threads T̂ and a set of belief formulae B yielding constraints
on the prior probabilities. As discussed in Chapter 4, instead of specifying B, we can
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alternatively specify a specific prior distribution. Since suitable decision procedures
for both approaches are provided in Chapter 4 (cf. Theorems 4.1 and 4.10), these ap-
proaches both serve as a suitable problem specification for PDT Logic. To enable a
concise presentation, we only discuss results with respect to a given set of belief formu-
lae B as input. We use a running example based on specific probability assignments to
illustrate that this approach works as well, but we do not discuss the obvious adaptions
for this input formally.

To illustrate a potential application of abduction in PDT Logic, consider the fol-
lowing example from stock markets, which is inspired by a related example given in
[SPSS11] (without any treatment of beliefs however).

Example 6.1 (stock markets). Assume a company C which is listed on the stock
exchange. The set of all market participants is treated as a single agent P . In
stock-related news feeds there is a rumor rumor at, say, time point 1 that due to
some allegations, a government investigation into C’s business conduct is pending.
It is likely that—without any response from the company—such a rumor will let
market participants consider this company as not trustworthy anymore, which
will probably lead to a significant decrease decr of the company’s stock price in
the near future of, say, 5 time units, as modeled by the following rule (recall from
Section 4.4.1 that prior beliefs are commonly known and can therefore be bound
to an arbitrary agent):

B0.6,1
P,0 (rpfr0 (rumor, decr)) (6.3)

Naturally, company C has the desire to prevent this decrease if possible and
has various options to react upon this rumor. The most basic reaction is to stay
passive and simply see what will happen. In this case, only the above rule governs
the expectation in a significant decrease of the company’s stock price.

A second option would be to contact the government (modeled by contactG)
directly to try to resolve the issues without involving the public. Of course, this
results in an observation Obs{C}(contactG), but as this process does not happen in
public, market participants are unaware of this. Consequently, they do not observe
anything and the above rule is still the only one to govern the expectations of the
company’s stock price. The corresponding observation model is described through

B1,1
P,0(rpfr0 (contactG, Obs{C}(contactG))) (6.4)

To influence public opinion, the company essentially has two options: it can
issue a press release (pr) explaining the situation, or the company’s CEO can
take the blame for the allegations and resign (ceoRes). Of course, these options
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can be combined to achieve different results. The following rules describe expected
outcomes of these actions. If needed, we present the following rules in pairs: the
first rule describes observation model of the respective action, and the second rule
describes the consequences of the corresponding observation, respectively. To keep
the example simple, we assume that any responsive action is taken directly after
the rumor occurs (i.e., at time point 2) and that it corresponds to the same time
point for the decrease as above (i.e., now 4 time units later).

First, the company can issue a press release pr explaining its own view on the
allegations without taking any further actions. Any explanation has the potential
to prevent the stock price decrease. However, without any additional measures,
the impact of a press release is limited in comparison to the initial situation
modeled in (6.3), as expressed by the following rule:

B1,1
P,0(rpfr0 (pr, Obs{C,P}(pr))) (6.5)

B0.5,0.8
P,0 (rpfr4 (Obs{C,P}(pr), decr)) (6.6)

Instead of issuing a press release, the CEO can decide to simply resign without
any comment. This would be considered by market participants as a clear admis-
sion of guilt, which in turn makes it impossible that a stock price decrease can be
prevented:

B1,1
P,0(rpfr0 (ceoRes, Obs{C,P}(ceoRes))) (6.7)

B1,1
P,0(rpfr4 (Obs{C,P}(ceoRes) ∧ ¬Obs{C,P}(pr), decr)) (6.8)

Next, the CEO can decide to resign but issue an according press release explain-
ing current events. In this case, market participants might consider the resignation
as an act of taking responsibility and thus as a first step in restoring trust in the
company. Thus, we might obtain—for example by analyzing historic data from
related situations—that the probability of a stock price decrease can be reduced
a little further compared to the situation expressed in (6.6):

B0.3,0.6
P,0 (rpfr4 (Obs{C,P}(ceoRes) ∧Obs{C,P}(pr), decr)) (6.9)

Corresponding observation models for these actions are already specified in (6.5)
and (6.7).

If the company decides to contact the government to resolve the allegations, it
might be useful to issue a corresponding press release in order to let market par-
ticipants know that they are actively working on solutions to the current problem.
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This will significantly reduce the probability of a pending stock price decrease. Of
course, if the company issues a corresponding press release, there will be a shared
observation between market participants P and company C. This results in the
following rule with corresponding observation model:

B1,1
P,0(rpfr0 (pr ∧ contactG, Obs{C,P}(pr) ∧Obs{C,P}(contactG))) (6.10)

B0,0.4
P,0 (rpfr4 (Obs{C,P}(pr) ∧Obs{C,P}(contactG), decr)) (6.11)

This concludes our specification of the stock market domain. Note that we have
not specified probabilities for every possible combination of shared observations—
the remaining combinations are not of interest for our example. The respective
probabilities can be chosen arbitrarily as long as they do not violate some of the
rules given above. To give a clear overview of the assumptions presented in this
example, we summarize the relations between shared observations of specific facts
and the resulting probability intervals for an expected price decrease in Table 6.1.

A possible set of threads T̂ for this example together with possible resulting
Kripke structures for market participants P is depicted in Figure 6.1. To verify
that this set of threads indeed satisfies all of the above rules, Table 6.2 provides
all precise beliefs that can occur for market participants in this set of threads,
depending on the respective Kripke structure. At time t = 1, P considers every
thread possible (i.e., there is one Kripke structure KP,1 containing the entire set

T̂ ) and thus, the according probability is obtained by simply summing over the
probabilities of all threads Thi where Thi(5) |= decr holds. For the resulting
Kripke structures at time t = 2, the update rule (cf. Definition 3.9) has to be
applied in order to obtain the respective beliefs. We will return to these beliefs
later when discussing the abduction procedure in detail.

Now, a natural goal for company C is to convince market participants P that
there is nothing to worry about, i.e., C aims at making P believe with a rather
high degree of certainty that the stock price will not significantly decrease in the
near future. A suitable goal can be modeled as

G = B0.7,1
P,2 ((¬decr)5) (6.12)

6.2. The Hypothesis Space

As the background knowledge K contains a set of possible threads T̂ , we do not need
to specify the hypothesis space H explicitly, but instead we can determine a set of
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Figure 6.1.: A possible set of threads for Example 6.1: at time 1 the rumor about
company C occurs, and at time point 2 the company has several options
to react. The company’s possible actions and the resulting observations
are depicted. Moreover, the resulting Kripke structures KjP,t for market
participants P at time points t are depicted in blue. For every thread Thi,
the respective prior probability I(Thi) is given and the outcome at time 5
is marked.
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Table 6.1.: Single event probabilities for the example

Shared Observations Obs{C,P}(·) Probability Interval

∅ [0.7, 1]
pr [0.5, 0.8]
ceoRes [1, 1]
pr, ceoRes, [0.3, 0.6]
contactG, pr [0, 0.4]

Table 6.2.: Probabilistic beliefs of market participants in a price decrease. The objects
of shared observations that induce each of the Kripke structures are given
in parentheses.

Kripke structure P ’s belief in decr

t = 1 : KP,1 (rumor) 0.68

t = 2 : K1
P,2 (∅) 0.8
K2
P,2 (pr) 0.6
K3
P,2 (ceoRes) 1.0
K4
P,2 (pr, ceoRes) 0.5
K5
P,2 (contactG, pr) 0.2
K6
P,2 (contactG, pr, ceoRes) 0.3

hypothesis candidates H ′ from T̂ as the set of all observations that can possibly occur:

H ′ = {ObsG(l)t : (∃Th ∈ T̂ : ObsG(l) ∈ Th(t))} (6.13)

Example 6.2 (stock markets continued). Proceeding with the example described
above, we can identify the set of hypothesis candidates from Figure 6.1 as

H ′ =


Obs{C}(contactG),
Obs{C,P}(contactG),
Obs{C,P}(pr),
Obs{C,P}(ceoRes)

 . (6.14)

Before actually trying to solve an instance of the abduction problem specified in
Definition 6.2, we can identify necessary preconditions that an observation ObsG(l)t ∈
H ′ has to satisfy in order to be able to contribute to a solution of the abduction

problem: The set H ′ collects all observations that can possibly occur in the situation
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described by K. However, not all of these observations have the means to alter the
quantification of the goal belief G . With a slight abuse of notation, we use i ∈ G to
denote that agent i is involved in the goal belief G , i.e., G contains a belief operator
B`,u
i,t′ (possibly as part of a nested belief). Then, we can define a dependency property

dep(G , ObsG(l)t) between the goal and an observation as follows:

Definition 6.3 (Goal dependency). Let G be the abduction goal and let ObsG(l)t be
an observation. G is dependent on ObsG(l)t, denoted by dep(G , ObsG(l)t), iff

i ∈ G ∧ i ∈ G (6.15)

Naturally, any observation ObsG(l)t ∈ H ′ that does not satisfy this dependency
property is unable to contribute to achieving the goal and can therefore be neglected
when searching for a solution to the abduction problem. Thus, we can define the set
of relevant atomic hypotheses as

H = {ObsG(l)t ∈ H ′ : dep(G , ObsG(l)t)} (6.16)

Example 6.3 (stock markets continued). The example’s goal as specified in (6.12)
is to induce a specific belief for market participants P . Analyzing the observations
in H ′ from Example 6.2 shows that observation Obs{C}(contactG) is unable to
influence this goal, as P is not involved in this observation. Consequently, the
abduction goal is only dependent on the set of observations

H =


Obs{C,P}(contactG),
Obs{C,P}(pr),
Obs{C,P}(ceoRes)

 . (6.17)

Whenever an observation occurs for some agent i, the set of threads it considers
possible is reduced such that only those threads remain where the respective obser-
vation holds. We use KS

i (tg) to denote the set of all possibility relations that can
occur in different threads for agent i at the time tg of the goal belief1 induced by a
potential solution S ⊆ H. We can then leverage the semantics of the belief operator
(cf. Definition 3.11) to obtain another necessary precondition: for G = B`,u

i,tg
(ϕ) with

0 < ` and u < 1, in every distinguishable situation (tg) that i considers possible at
time tg, there need to be two threads Th1, Th2 so that the respective belief object ϕ
is satisfied in one thread and unsatisfied in another. For a belief with u = 1, there

1To simplify the presentation, we assume that (even for nested beliefs) the goal formula G involves
only a single time point tg. The proposed methods are also applicable to goal formulae involving
multiple time points, but this will significantly increase the complexity of presentation.
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needs to be at least one thread such that the respective belief object ϕ is satisfied. If
the belief is quantified with ` = u = 1, all threads in all distinguishable situations (tg)
have to satisfy the belief object ϕ.2 Otherwise, if these conditions are not met, it is
clear that the goal belief is not entailed, independently of any specific probability as-
signment. These conditions can be checked prior to evaluating the semantic entailment
K∪S |= G . Using poss(S) to denote the syntactic possibility of a solution S, we can
formally express these considerations as

poss(S) =



for 0 < `, u < 1 and ∀(tg) ∈ KS
i (tg) :

true if ∃Th1, Th2 ∈ (tg) : Th1(tg) |= ϕ ∧ Th2(tg) |= ¬ϕ
false otherwise

for u = 1 and ∀(tg) ∈ KS
i (tg) :

true if (∃Th ∈ (tg) : Th(tg) |= ϕ)

false otherwise

for ` = u = 1 and ∀(tg) ∈ KS
i (tg) :

true if (∀Th ∈ (tg) : Th(tg) |= ϕ)

false otherwise

(6.18)

With these considerations we can define the entire search space H for possible solu-
tions to the abduction problem as

H = {S ∈ 2H : poss(S)} (6.19)

Example 6.4 (stock markets continued). In Figure 6.1, the subset of threads
K3
P induced by solution candidate Obs{C,P}(ceoRes) is unable to satisfy the goal

belief G , because neither thread Th8 nor Th9 contains the fact ¬decr at time
t = 5. Therefore we can disregard Obs{C,P}(ceoRes) as a solution candidate
without evaluating the respective probabilities. Moreover, the solution candidate
Obs{C,P}(contactG) does not induce any set of threads and can therefore be dis-
regarded as well.

This results in the following hypothesis space for the stock market example:

2Again, we consider only the upper border u. Equivalent considerations hold for ` = 0 and ` =
u = 0. Since such beliefs can be equivalently expressed as beliefs in the negated object ¬ϕ (cf.
the considerations on strict beliefs in Section 4.1), we do not consider these cases explicitly, but
instead assume that the goal is rewritten accordingly.
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H =


∅,
{Obs{C,P}(pr)},
{Obs{C,P}(pr), Obs{C,P}(ceoRes)},
{Obs{C,P}(pr), Obs{C,P}(contactG)},
{Obs{C,P}(pr), Obs{C,P}(contactG), Obs{C,P}(ceoRes)}

 (6.20)

6.3. The Abduction Process

Using Definition 6.1 for the entailment of PDT Logic formulae, we can determine
whether a candidate solution S ∈ H is actually a solution to the abduction problem—
i.e., S together with the background knowledge K entails the goal G —through corre-
sponding satisfiability checks.

Checking satisfiability of a set of PDT Logic belief formulae B with respect to a
given set of threads T̂ is NP-complete (cf. Theorem 4.11 from Chapter 4). Building on
this result, we obtain the following complexity result for deciding whether a solution
exists for an instance of the PDT Logic abduction problem:

Theorem 6.1 (Complexity of PDT Abduction). Let 〈K, H,G 〉 be an instance of the
PDT Logic abduction problem. Deciding whether a solution exists is ΣP

2 -complete.

Proof. The proof works analogously to the proof of Theorem 4.2 in [MSS14]. Thus,
here we only give a proof sketch adapted to belief formulae of PDT Logic. The complete
proof from [MSS14] can be found in Appendix A.

Showing membership is straightforward: We can guess a potential solution S ⊆ H.
Using Definition 6.1 and Theorem 4.11, it is easy to see that this solution can be verified
in polynomial time by querying an NP oracle.

A known ΣP
2 –complete problem [SM73] is validity checking of a quantified Boolean

formula Φ of the form ∃X∀Y ψ(X, Y ) with mutually distinct Boolean variables X =
〈x1, ..., xn〉 and Y = 〈y1, ..., ym〉, respectively and ψ(X, Y ) a Boolean formula over
the variables xi and yj. Intuitively, this problem has a close connection to the PDT
Logic abduction problem, as we need to find some assignment to X (i.e., an abductive
solution) such that the goal Y is always satisfied. Thus, we use the respective xi
as potential observation objects of the abduction problem, and set ψ(X, Y ) as the
abduction goal; i.e., we do not restrict the set of possible threads, leave the set of belief
formulae B empty, pick an arbitrary agent a and define hypotheses and goal belief for
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this agent as follows:

B = ∅, H =
n⋃
i=1

{Obs{a}(xi)1, Obs{a}(¬xi)1}, S = B1,1
a,t (ψ(X, Y ))

Using this formulation, we can transform validity checks of any Boolean formula Φ of
the above form to an instance of the PDT Logic abduction problem and thus show
that the problem is ΣP

2 -hard.

In [MSS14], a geometric characterization for abduction in APT Logic is given. In
a nutshell, for APT Logic the sets of probabilistic constraints B, potential solutions
S ⊆ H and goal G form convex polytopes. This allows for a geometric characterization
of solutions to the abduction problem: S is a solution if and only if the intersection of
the polytopes induced by S and B is nonempty and is contained within the polytope
induced by the goal G . Unfortunately, this characterization is not applicable to PDT
Logic. As already discussed in Section 4.3.3, due to the possibility of using disjunction
and negation for belief formulae (cf. Definition 3.4 from Chapter 3), it can neither be
guaranteed that a corresponding geometric representation results in a single polytope,
nor that the resulting polytope(s) are convex. However, we can use the results on satis-
fiability checking in PDT Logic from Chapter 4 and adapt the approach from [MSS14]
by substituting geometric polytope operations with according satisfiability checks. This
leads to the identification of two distinct cases that will guide the abduction procedure:

Proposition 6.2. Let 〈K, H,G 〉 be an instance of the PDT Logic abduction problem
and let S ⊆ H be a potential solution to this problem. Then, the following observations
hold for the abduction problem:

1. ¬sat(K ∪ {G }), background knowledge and goal are inconsistent. Then, there is
no solution to the abduction problem and no hypothesis S has to be tested.

2. ¬sat(K ∪S), the potential solution is inconsistent w.r.t. the background knowl-
edge. Then, every potential solution S′ with S ⊆ S′ ⊆ H is also inconsistent,
and therefore cannot be a solution to the abduction problem. Then, we can re-
move S′ from H to prune the hypothesis space when searching for solutions to
the abduction problem.

The first check determines whether it is at all required to search for a solution to the
abduction problem. The second case provides a pruning condition for the hypothesis
search space H: if a solution candidate is not satisfiable together with the background
knowledge, it is futile to test any superset of this solution. Using these properties, we
obtain the abduction procedure depicted in Algorithm 2: after checking whether it is
required to search for a solution at all (lines 2–3), the procedure iterates through all
potential solutions from H, ordered by their respective size (lines 6–13), and prunes the
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Algorithm 2 Abduction Algorithm for PDT Logic

1: procedure abduce(K,H,G )
2: if ¬sat(K ∪ G ) then . case 1: K ∪ G is inconsistent
3: return false

4: H← {S ∈ 2H : sp(S)} . init search space as set of syntactically possible solutions
5: i← 0
6: while (H 6= ∅ and i ≤ |H|) do . test solutions in order of simplicity
7: for S ∈ H with |S| = i do
8: if ¬sat(K ∪S ∪ ¬G ) then . S is a solution
9: return S

10: else
11: if ¬sat(K ∪S) then . case 3: K ∪S is inconsistent, prune supersets
12: H← H \ {S′ : S′ ∈ H ∧S′ ⊇ S}
13: i← i+ 1

14: return false

search space whenever some potential solution S is inconsistent w.r.t. the background
knowledge (line 12). The procedure terminates if a solution is found or the search space
is empty.

Remark 6.2. [MSS14] provides two additional optimizations for abductive reasoning in
APT Logic: First, it is checked whether ¬sat(K∪¬G ) holds. In this case, every possible
evolution induced by B entails the goal G and thus the empty set ∅ is a solution to the
abduction problem. These considerations cannot be transferred to PDT Logic directly:
In general it might be possible that every thread induced by K indeed entails the goal G .
Also, it might be possible that the empty set ∅ is a solution to the abduction problem.
However, for every nonempty hypothesis space H, these are two distinct cases: The
former case considers all threads induced by K, the latter only the subset of threads
where no other hypothesis is chosen. This is best illustrated with the set of threads
depicted in Figure 6.1: at time t = 1, P considers all threads possible, but even if no
action (i.e., S = ∅) is taken, the set of threads that P considers possible is inevitably
reduced to K1

P,2. Thus, opposed to the situation in APT Logic, the solution candidate ∅
is no special case and consequently we treat it just as any other hypothesis. The effect
however remains the same in both formalisms: if ∅ solves the abduction problem, it is
found first and returned as a solution. Second, another pruning condition is provided
by arguing that for K∪S 6|= G (with sat(K∪S)), any subset S′ ⊆ S cannot solve the
abduction problem, either. This is not applicable in PDT Logic, because beliefs change
with additional observations, and thus it is possible that S′ is indeed a solution to the
abduction problem, while S with additional observations is not. The ramifications of
this condition are twofold: on the one hand, this additional condition enables pruning
operations on the search space from both sides. While this can speed up the abduction
procedure, this will not necessarily return minimal solutions.
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Example 6.5 (stock markets continued). We finish this example with an applica-
tion of the abduction procedure given in Algorithm 2 to the example’s hypothesis
space as specified in Example 6.4. Recall that we aim at inducing the following
goal (cf. (6.12)):

G = B0.7,1
P,2 ((¬decr)5) ≡ B0,0.3

P,2 ((decr)5)

To retrace the results of satisfiability checks, we can use the overview on P ’s
potential beliefs given in Table 6.2. This leads to the following execution trace of
Algorithm 2 applied to our example:

• First, it is checked whether ¬sat(K∪G ) holds (line 2). The last two entries
in Table 6.2 show that the goal belief is induced in some threads. Thus,
the goal is satisfiable with respect to the background knowledge and this
condition evaluates to false.

• Then, the loop is entered and all solutions from H are checked in order of
increasing size. This leads exactly to the processing order of hypotheses
and corresponding Kripke structures KjP,2 as given in Table 6.2. Analyz-
ing P ’s corresponding beliefs in the fact decr5 shows that {Obs{C,P}(pr),
Obs{C,P}(contactG)} is the smallest solution to the abduction problem and
accordingly, this is returned by the algorithm. Note that the superset
{Obs{C,P}(pr), Obs{C,P}(contactG), Obs{C,P}(ceoRes)} also solves the prob-
lem, but as a smaller solution is identified before, this set is not checked.

Iterating through the search space in increasing order with respect to the solution
size has to important consequences: First, it is ensured that any pruning operations
due to inconsistent combinations of background knowledge and solution candidates are
carried out as early as possible. The smaller the respective solution, the larger is the
respective pruned superset and thus, pruning operations are applied most effectively.
Second, any solution S returned by Algorithm 2 is a minimal solution to the abduction
problem.

Theorem 6.3. Let A = 〈K, H,G 〉 be an instance of the PDT Logic abduction problem.
If A has a solution, then Algorithm 2 returns a minimal solution S so that K∪S |= G .
Otherwise, the algorithm returns false.

Proof. We start with showing that any set discarded in the pruning step (line 12)
cannot be a solution to the abduction problem. If K ∪ S is unsatisfiable, this set is
already overly constrained so that no thread remains that could possibly satisfy all
formulae in this set. Then, as observed in Proposition 6.2, adding further constraints
will clearly still result in an empty set of possible threads. Thus, it is unnecessary to
test any set S′ ⊇ S for possible solutions to the abduction problem.
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If the abduction problem has a solution, it is clear that the loop in lines 6–13 will
eventually find and return a solution, as all solution candidates are tested iteratively
unless they are discarded as above. Since the algorithm iterates over the set of possible
solutions by increasing size of the solution, any returned solution S will necessarily be
minimal. If there had been a smaller solution S′ with |S′| < |S, the algorithm would
have terminated earlier by returning this solution S′.

6.4. Concluding Remarks

In this chapter, we have shown how abduction can be formalized in the context of
Probabilistic Doxastic Temporal (PDT) Logic. This provides means to formally reason
about possible actions to induce a desired belief state for some agent. As shown with
the example in this chapter, such kind of reasoning can be applied for example to
identify suitable public relation strategies for market-listed companies. Deciding on
suitable countermeasures in cyber security scenarios—as discussed in Chapter 5—is
another example that can benefit from formalizing the abduction problem in PDT
Logic.

Compared to abductive reasoning in other formalisms, the key feature of abduction
in PDT Logic is the automatic identification and reduction of the hypothesis search
space H. If background knowledge in the form of a set of threads T̂ together with
a set of belief formulae B or directly with priors I(T̂ ) is given, all possible solutions
to the abduction problem are represented through possible observations induced by
this background knowledge. Based on the automatically constructed hypothesis space,
we have developed a sound and complete algorithm to give a minimal solution to the
abduction problem.

To the best of our knowledge, this is the first work that studies abduction in the
context of dynamically evolving beliefs for multi-agent systems, and thus, the methods
introduced in this chapter provide means for novel reasoning capabilities.





Chapter 7

Extending Time Frames to Markovian Streams

In its basic form, the definition of PDT Logic in Chapter 3 only allows for reasoning
over finite time frames. In this chapter, we show how the temporal notion of finite
time frames can be replaced with Markovian streams, i.e., under certain conditions we
can represent domains with infinite streams of possible worlds. This provides means
to integrate established stream reasoning systems (e.g., the well-known linear road
benchmark [ACG+04]) and probabilistic multi-agent belief operators into a coherent
framework. This has two major advantages over finite time frames: First, during the
modeling phase it is no longer necessary to fix a (rather arbitrary) maximum time point.
If the selected time frame is too small, desired analysis results of the respective problem
might become inaccessible, while an over-sized time frame will increase computational
requirements unnecessarily. Second, a time frame with fixed start and end time points
will require continuous re-initializations of the formalism. To illustrate this, consider
the cyber security example from the previous chapter: The example always starts with
a no-defense action at time point 0 and—if no attack is detected—continues with a
further no-defense action at time point 3. As sequences of no observed attacks should
be the prevailing state of the system, the formalism needs to be re-initialized frequently
to correctly represent the current situation of the attack graph shown in Figure 5.1.
Using a stream-based approach, the system could be continuously monitored and—
if an attack is observed—the corresponding analysis can be carried out seamlessly
without requiring a re-initialization of the formalism before. As long as no attack is
observed, the analysis simply remains in the infinite sequence of alternating no-attack
and no-defense nodes as already hinted in the center thread of Figure 5.1.

In the following, we show how threads in PDT Logic can be represented through
infinite Markovian streams of possible worlds. Then, we show how finite-length time
windows can be defined within those streams and provide adapted concepts of threads
and prior probabilities to represent beliefs in stream-based models.

113
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7.1. Substituting Threads with Infinite Streams of
Possible Worlds

In Chapter 3, we originally defined threads as a mapping from a finite set of time points
τ to a set of admissible worlds (cf. Definition 3.7). By replacing the finite set of time
points τ with the set of natural numbers, we obtain the following definition of streams:

Definition 7.1 (Stream). Let T be the set of natural numbers and let Ω̂ be the set of
admissible worlds. Then, a stream St is a mapping

St : T → Ω̂. (7.1)

Since T ranges over the set of natural numbers, a stream is an infinite sequence of
possible worlds and St(t) identifies the actual world at time t according to stream St.

In order to provide a bridge between our previously introduced PDT semantics for
finite-time models and the notion of infinite streams, we partition streams into fixed-
length segments.

Definition 7.2 (Segment). A segment S with fixed length s is a finite sequence of
possible worlds:

S : τ → Ω̂, τ = {1, ..., s} (7.2)

To identify the temporal position of specific segments, we enumerate segments with a
parameter k, such that Sk represents the segment from time points (k·s)+1, ..., (k·s)+s,
i.e., segment S0 identifies the sequence of possible worlds from time t = 1 to t = s,
segment S1 identifies the sequence from t = s + 1 to t = 2s, and so on. This notion
gives rises to an alternative representation of streams:

Corollary 7.1 (Stream segmentation). Every stream of possible worlds can be equiv-
alently represented as a sequence of segments (Sk)

∞
0 .

To distinguish the notions of time points in segments and streams, we call t an
absolute time point if t ∈ T identifies the actual time point in some stream St. We call
t a relative time point if t ∈ τ identifies a time point within a specific segment without
specifying the segment’s position in the stream.

We assume that all possible streams of the application domain can be modeled with
an arbitrarily large, but finite set of possible segments S = {S1, ..., Sn}. In most
scenarios this requirement can be met through an appropriate modeling choice of the
segment length s. In order to model the transitions from one segment to the next, we
assume that the sequence of segments can be represented through an ergodic Markov
chain [Nor98] according to the following definitions.
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Definition 7.3 (Markov chain, adapted from [Nor98]). Let S = {S1, ..., Sn} be a set of
possible segments and let

(
Sjk
)∞

0
be a sequence of segments, such that all Sjk are from

S. We say that
(
Sjk
)∞

0
is a Markov chain with initial distribution λ and transition

matrix M |S|×|S| if

1. S0 has distribution λ;

2. for k ≥ 0, conditional on Sk = Sik, Sk+1 has distribution (mij : j ∈ [1, ..., n]) and
is independent of S0, ...Sk−1.

Property 1. of the above definition refers to the initial distribution of the segments,
which we will determine below. Property 2. is the so-called Markov property and states
that a stochastic process is memoryless, i.e., the transition probabilities to segment k+1
only depend on the current segment k. As M is a transition matrix, its columns each
sum to one.

Definition 7.4 (Ergodicity). A Markov chain with a set of segments S according to
Definition 4.1 is ergodic if every segment Sj ∈ S is

1. aperiodic, i.e., returns to this segment can occur at irregular times, and

2. positive recurrent, i.e., every segment has a finite mean recurrence time.

In the following, we consider only streams of possible worlds that can be represented
through an ergodic Markov chain according to Definitions 7.3 and 7.4. An important
characteristic of an ergodic Markov chain is its steady state vector:

Lemma 7.2 (Stationary distribution, [Ser09]). Any ergodic Markov chain with a set
of segments S and a transition matrix M |S|×|S| has a unique stationary distribution π
(also called steady state vector), with the following properties:

1. 0 < πj < 1,

2.

|S|∑
j

πj = 1,

3. πj =

|S|∑
i=1

πimij

The first two properties simply state that π is a probability distribution over the
set of segments S. The last property expresses that the chain converges to the steady
state vector in the long run (regardless of the starting state). Thus, πj specifies the
long-term visiting rate of segment Sj.
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7.2. Time Windows

In order to be able to reason about temporal changes in the near future, we use a time
window Wt,lw starting at absolute time t and having a length of lw time points, i.e.,
some finite clipping of the infinite stream of possible worlds. We do not restrict the
size of possible time windows in any way, and thus they may well span across multiple
segments. In a sense, a time window is a myopic representation of the stream. This
artificial limitation of time is meaningful to capture the influence of current observations
over the probabilities of contemporary events: While the probabilities of all events in
the remote future will converge to the long-term visiting rates of the respective segments
in the Markov chain (cf. property 3. of Lemma 7.2), the probabilities of specific events
within a certain time window may heavily depend on current observations and therefore
significantly deviate from the long-term visiting rates.

Within a specific time window, we have fixed start and end time points, and thus, we
can represent the different possible temporal evolutions within the time window (i.e.,
sequences of possible worlds for time t, ..., t + lw) through threads as usual. Conse-
quently, we use Th1, ..., Thm to identify the threads within a certain time window. As
usual, we use Th(1), ..., Th(lw) to identify the worlds of thread Th at the relative time
points 1, ...lw. The possible threads within a time window are determined through the
set of possible segments S and the transition matrix M of the Markov chain. Conse-
quently, a thread in the time window Wt,lw can be mapped onto a sequence of segments
(each with length s) as

Th→ Sj1k , S
j2
k+1, ..., S

jx
k+x (7.3)

with k = b(t/s)c,
and x = b(t+ lw − 1)/sc,

with bxc being the floor operator, i.e., bxc gives the largest integer previous to x, and
Sj1 , ..., Sjx (not necessarily distinct) segments from S. Note that time windows may
be positioned arbitrarily, i.e., the start of a time window does not necessarily have to
coincide with the start of a new segment, nor does the window length lw have to be
an integer multiple of the segment length s. That is, the sequence Sj1k , S

j2
k+1, ..., S

jx
k+x

from (7.3) may be longer than the actual time window thread Th. Specifically, the
sequence may include additional time points t − k, ..., t and t + lw − 1, ..., k + x + 1.
These additional time points are irrelevant to our analysis—this is only mentioned to
stress the point that the position and size of time windows may be defined arbitrarily
and entirely independent on the choice of segment length.

A visualization of the different temporal concepts is shown in Figure 7.1.
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Figure 7.1.: Schematic depiction of the relations between different temporal concepts.

We resume the notation introduced in Chapter 3 and use T̂t,lw to denote the set of all
possible threads within a time window Wt,lw . If the actual position and length of the
time window are not important for our discussion, in the following we simplify notation
and simply use T̂ to denote the set of threads to be analyzed. The set of possible threads
within a time window can be determined as follows: Since the longterm visiting rates
of all segments are nonzero (cf. Lemma 7.2), every possible segment S ∈ S can occur
as the first segment Sj1k in a thread Th ∈ T̂t,lw . Then, for every possible first segment
Sj1k in the time window, it is checked which of the entries mj1j2 in the corresponding
row j1 of the transition matrix are nonzero (a nonzero entry mj1j2 denotes a possible
transition from segment Sj1 to segment Sj2). All resulting combinations Sj1k , S

j2
k+1 are

then added as thread stubs to T̂t,lw . Continuing this for segments Sk+1 to Sk+x yields

the set of all possible threads T̂t,lw in time window Wt,lw .

7.3. Prior Probabilities for Threads within Time
Windows

Now, with the concept of finite time windows Wt,lw and a set of threads T̂t,lw therein,
we are close to the setting originally described in Section 3.2, where the semantics of
PDT Logic based on finite threads was introduced. The only thing missing to complete
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the definition of PDT Logic for stream reasoning is a notion of prior probabilities for
threads Th within time windows.

Since time windows can be placed at arbitrary positions within the stream, we can
use the long-term visiting rates π together with the segment transition probabilities
from M to determine the prior probability of a finite thread within the infinite stream
of possible worlds:

Lemma 7.3. Let S be a set of segments, Th be a thread mapped onto a sequence
Sj1k , S

j2
k+1, ..., S

jx
k+x of x of these segments, M be the transition matrix of the Markov

process, and π be the corresponding steady state vector. Given that k is sufficiently
large, the prior probability I(Th) of thread Th can be computed as

I(Th) = πj1

x−1∏
i=1

mjiji+1
(7.4)

Proof. For sufficiently large k, we can use the long-term visiting rates to determine
probabilities. Then, the probability of starting the thread in segment Sj1 is given
through element πj1 of the steady state vector (cf. Lemma 7.2, property 3: the longterm
visiting rate of Sj1 converges to πj1). From there, the probability of segment Sj2

occurring next is given through the entry mj1j2 in the transition matrix M of the
Markov chain, and so on. Thus, the prior probability of thread Th can be expressed
through the joint probability of respective segment sequence Sj1k , S

j2
k+1, ..., S

jx
k+x.

Remark 7.1. Note that for a set of all possible threads within a time window (as
discussed in the previous section), the corresponding priors as given in Lemma 7.3 sum
to one. This follows immediately from the fact that both all elements in π and all rows
in M sum to one, respectively. Thus, we can treat these priors exactly the same as in
Chapter 3, without any need for normalization.

Up until now, we have still not specified an initial distribution λ for our Markov chain
defined in Definition 7.3. Following the above considerations on the prior probabilities,
it is useful to specify the initial distribution exactly as the stationary distribution of
the Markov chain, i.e.,

λ = π. (7.5)

Using this specification, time windows can be placed entirely arbitrarily, even at time
points close to zero, i.e., Lemma 7.3 holds for all k, and the restriction on sufficiently
large k can be dropped.

With these techniques, we have provided a bridge between the previously introduced
semantics on finite time frames and infinite Markovian streams of possible worlds. After
specifying a time window and determining the resulting set of possible threads with
the respective priors, all methods introduced in the previous chapters can be applied
to this time window without any modifications.
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7.4. A Stream Example

To illustrate the application of PDT Logic for streams, we introduce a small example.
This example is kept very simple to focus on the properties of Markovian streams of
possible worlds and time windows therein.

Assume that a taxi driver A is positioned at the central station and is occupied
with driving two different routes from there, either to the airport (requiring one time
step) or to the stadium (requiring two time steps). These routes of the taxi driver are
depicted in Figure 7.2(a). Furthermore, we assume that the driver can take a break
at the stadium every once in a while and inform her boss B about it. This means
that both A and B know that A is at the stadium (and they are both aware that the
other agent knows this), so we can model the effect of this as a shared observation
Obs{A,B}(stadium). A possible segmentation of the infinite stream of possible worlds
into segments could use segments of length three. This yields the set S of possible
3-step-sequences shown in Figure 7.2(b).1 If we assume that driving to the airport has
a probability of, say, 0.7, and the probability of taking a break while at the stadium
is 0.3, we obtain the Markov chain depicted in Figure 7.2(c) with the corresponding
transition matrix M shown in Figure 7.2(d).

One can easily verify that this yields the longterm visiting rates πj of Segments Sj:

π ≈
(
.172 .074 .245 .150 .105 .105 .032 .074 .045

)
(7.6)

To show the evolution of the agents’ beliefs, consider a time window of length lw = 6,
i.e., a sequence of two segments, such that first time point of the time window coincides
with the beginning of a new segment. Assume that we are interested in the beliefs of,
say, A being at the stadium (i.e., F = stadium) at relative time t = 4, denoted by
Th(4) |= F . Analysis of the set of segments S (Figure 7.2(b)) shows that Th(4) |= F
if and only if the second segment of the considered time window is S5 or S9. Thus, the
probability of being at the stadium at relative time point 4 is equivalent to the property
of segment S5 or S9 occurring as the second segment within the time window. From the
transition model (Figure 7.2(c)) we get that this is possible if the first segment is S2,
S7 (these enable transitions to S5), or S4 (the only segment with a transition to S9).
Hence, from the steady state vector (7.6) and the transition matrix from Figure 7.2(d)
we obtain (through π2 ·m25 + π7 ·m75 + π4 ·m49 = 0.154) that a correct prior belief of

1For the sake of simplicity, we assume that a break always lasts exactly three time points. We could
easily adapt the model to allow for breaks of arbitrary lengths by introducing additional segments
with break prefixes for one or two time points. The general procedure remains the same, but as
this blows up the segment space and thereby yields a more complex representation of the Markov
chain, we refrain from doing so.
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station

stadium

airport

station

stadium

airport

∆t=
2

∆t=1

(a) possible routes

S1: airport station airport

S2: airport station enroute

S3: station airport station

S4: station enroute stadium

S5: stadium enroute station

S6: enroute stadium enroute

S7: enroute station enroute

S8: enroute station airport

S9:
stadium stadium stadium

(Obs{A,B}(stadium))

t 1 2 3

(b) the set S of possible 3-step sequences

S1 S2

S3

S4

S5

S6

S7

S8

S9

.7

.3

1

.49

.2
1

.3

.2
1

.49

.3

.4
9

.21

.3

.7

.3

1
.7

.3
1

(c) segment transitions

M =



0 0 .7 .3 0 0 0 0 0
0 0 0 0 1 0 0 0 0
.49 .21 0 0 0 .3 0 0 0
0 0 0 0 0 0 .21 .49 .3
.49 .21 0 0 0 .3 0 0 0
0 0 .7 .3 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 .7 .3 0 0 0 0 0
0 0 0 1 0 0 0 0 0


(d) transition matrix

Figure 7.2.: Taxi driver example: (a) depicts the possible routes, (b) all possible 3-
step sequences, (c) the resulting possible segment transitions, and (d) the
corresponding transition matrix.
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both agents in this event can be specified as

B0.15,0.16
i,0 (F4), i ∈ {A,B}. (7.7)

Now suppose that time evolves for 3 steps and that the actual events are the ones
depicted in S4 (i.e., A is actually at the stadium at time t = 3). Then, driver A can
update her belief in the event F4 to

B0.3 0.3
A,3 (F4),

because if she is already to the stadium at t = 3, she will still be there at t = 4 if and
only if she takes a break (this corresponds to the transition from segment S4 to S9).
while B (lacking any new information) maintains the same belief expressed at time 0.
Since A is aware that B did not receive new information,

B1,1
A,3(B0.15 0.16

B,3 (F4))

also holds.

Finally, consider the situation at t = 4: if A decides to take a break, she informs
B (represented through the shared observation Obs{A,B}(stadium) in S9), and conse-
quently,

B1,1
i,4 (F4), i ∈ A,B

holds. Else, if A does not take a break, her beliefs are updated to

B0,0
A,4(F4),

while the following expression holds for B’s updated beliefs (through elimination of
possibility S9)

B0.10,0.11
B,4 (F4).

This small example shows how we can model a problem in PDT Logic with infinite
streams of possible worlds. Within such a stream, we can place finite length time
windows and then—as discussed in previous chapters—carry out an analysis of evolving
multi-agent beliefs. Again, this example shows how the individual beliefs of agents can
diverge over time depending on their respective information.

7.5. Concluding Remarks

By extending PDT Logic to Markovian streams of possible worlds, we can represent
infinite time domains. This results in a general framework to reason about belief
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change in multi-agent stream scenarios. Although the actual reasoning about temporal
beliefs is carried out for finite windows of time, arbitrary placements of these windows
within infinite streams of possible worlds enable unlimited temporal reasoning in stream
domains. For example, one could employ a sliding window mechanism to provide for
continuous reasoning about the evolution of beliefs. As described in the introductory
example, using an infinite stream of possible worlds as an input to the formalism can
be beneficial because it allows for a continuing analysis of changing situations without
requiring frequent re-initializations. While the employed model of infinite streams of
possible worlds based on a Markov chain restricts the application domains to scenarios
that can be modeled through recurring segments, this still allows for a wide range of
applications because the properties of most domains can be captured with a suitable
selection of length and number of segments.



Chapter 8

Conclusion

In this work, by extending APT Logic to dynamic scenarios with multiple agents,
we have developed a general framework to represent and reason about belief change
in multi-agent systems. Apart from lifting the single-agent case of APT Logic to
multiple agents, we have also provided a suitable semantics to the temporal evolution
of beliefs. The resulting framework extends previous work on dynamic multi-agent
epistemic logics by enabling the quantification of agents’ beliefs through imprecise
probabilities. An explicit notion of temporal relationships is provided through temporal
rules building on the concept of frequency functions.

Probabilistic information about a problem domain can be specified through the
knowledge of domain experts or can be gathered through suitable data analysis meth-
ods. The quantification of beliefs with imprecise probabilities instead of precise values
has the advantage that when modeling the problem, it is not only possible to provide
probabilistic background knowledge about the problem domain, but the certainty of
the respective specifications can be specified, as well. Narrow interval quantifications
reflect a high certainty and vice versa. This can be a significant advantage compared
to other probabilistic approaches, because in most approaches, sharp probability val-
ues are required, which a human can usually not express with precise values and thus
humans basically have to rely on guesses for these values. Enforcing precise values—in
particular if these values are determined by guesses—can yield misleading results. PDT
Logic is not exposed to this problem, because specifying sharp values is not required
to model a problem.

We have shown that there are alternative ways of specifying problems in PDT Logic,
either through explicit enumerations of possible threads—optionally with according
prior probabilities—or through a set of appropriate rules. Each approach exhibits its
specific advantages and drawbacks: For many problem domains, requiring an exhaus-
tive enumeration of all possible threads and according prior probabilities poses a severe
obstacle for modeling the respective scenarios, as such a specification is practically un-
manageable. On the other hand, there are problem domains (e.g., attack graphs in
cyber security scenarios) that come with such an explicit specification anyways. For

123
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these types of problems, we have shown that it is possible to check satisfiability of these
models very efficiently.

To overcome the modeling disadvantages of the exhaustive thread representation,
we have also shown how a problem domain can be solely specified through a set of
PDT Logic belief formulae. For most problem domains, this is a more natural way
of specifying the problem. Also, this provides means to easily adapt many existing
problems—that are specified in other formal languages as sets of rules—to PDT Logic.
On the other hand, waiving the requirement of manually specified possible threads sig-
nificantly hardens the problem of checking satisfiability of a set of PDT Logic formulae.
This is because it is not possible to simply construct a single thread that satisfies all for-
mulae, but instead the interplay of all potential threads and their respective probability
assignments has to be considered.

To illustrate potential applications of PDT Logic, we have discussed two application
scenarios in detail, namely the application to cyber security threat analysis and the in-
teraction strategies between companies and market participants. Naturally, a theoretic
discussion of these examples inevitably requires the use of strongly simplified problem
domains in order to keep the examples’ sizes manageable. Nevertheless, these examples
indicate practical application scenarios where formal models based PDT Logic yield
additional benefits over existing methodologies.

The core of this thesis consists of the development of suitable syntax and semantics
of PDT Logic, together with alternative formal problem specification approaches and
associated decision procedures. In additional chapters we have already provided some
extensions to the core formalism. First, we have shown how abductive reasoning can
be performed in PDT Logic. This enables the formal specification of desired goal belief
states for some agents. Then, potential measures to induce this desired goal state can
be identified automatically and—if the problem is solvable—a minimal solution to the
abduction problem will be returned. Second, we have shown how finite time frames of
the core formalism can be replaced with infinite Markovian streams of possible worlds.
By placing time windows within these streams and adapting the prior probability
definitions, we have shown that PDT Logic can be applied to problem domains with
infinite models of time as well.

Based on search heuristics, in this thesis we have outlined a general procedure to
decide satisfiability of a given set of PDT Logic belief formulae. A first step for future
work could be the adoption of existing optimization techniques from research on logic
reasoners to implement an actual reasoner to employ PDT Logic for practical domains.

Furthermore, the formalism developed in this thesis can be used as a foundation
to develop frameworks that reason about actions and strategies. Various works (e.g.,
[JÅ07], [BG11], [vdHW03]) exist that combine epistemic and doxastic logics with a
formal representation of actions and utilities, such that they enable reasoning about
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optimal strategies to maximize expected utilities of an agent. Using PDT Logic as
a formal foundation can enhance these approaches by enabling strategies based on
imprecise beliefs, i.e., based on their current belief state, agents can then reason about
potential strategies such that they induce states which maximize their respective utility
functions. The utility function of an agent in turn can both be based on actual states
of the world as well as on the belief state of the respective agent or other agents.





Appendix A

Complexity Proof for Abduction in APT Logic

In this appendix we replicate the complexity result from [SPSS11] for abduction in
APT Logic. Analogously to this proof, we can derive complexity results for abduction
in PDT Logic (cf. Theorem 6.1).

Before quoting the actual results, we briefly introduce some preliminaries from
[SPSS11] that are used in the following proof:

• An abduction problem in APT Logic is specified as P = 〈Π, H, g〉 with an APT
Logic program Π, which induces a set of linear constraints, a hypothesis space H
and a desired goal g.

• I is a temporal probabilistic interpretation (also referred to as tp interpretation).
This concept is equivalent to prior interpretations in PDT Logic.

• The concept of threads Th is equivalent to the thread-concept used in PDT Logic.
(the concept of actual worlds within threads at specific time points differs between
PDT Logic and APT Logic, but this is irrelevant for the following proof.)

• Theorem 4.1 in [SPSS11] states that consistency checking for an APT Logic
program Π is NP-complete.

The remainder of this appendix is a verbatim reproduction from [SPSS11].

Theorem 4.2 (Solution existence). Let P = 〈Π, H, g〉 be an instance of the APT
abduction problem. Deciding whether a solution exists for P is ΣP

2 -complete. ΣP
2 -

hardness holds even if Π is empty.

Proof. (Membership) We guess S ⊆ H and verify that S is a solution by checking
whether Π ∪ S is consistent and Π ∪ S |= g (it follows from Theorem 4.1 in [SPSS11]
that S can be verified in polynomial time by querying an NP oracle).

(Hardness) We reduce the problem of checking whether a quantified Boolean formula
Φ of the form ∃X∀Y ψ(X, Y ) is valid to our problem—here X = 〈x1, ..., xn〉 and Y =
〈y1, ..., ym〉 are tuples of mutually distinct propositional variables and ψ(X, Y ) is a
propositional formula over the xi’s and the yj’s. The aforementioned problem is ΣP

2 -
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complete [SM73]. We construct an instance P = 〈Π, H, g〉 of the APT abduction
problem as follows:

Π = ∅

H =
n⋃
i=1

{xi : [1, 1, 1],¬xi : [1, 1, 1]}

g = ψ(X, Y ) : [1, 1, 1].

Clearly, the reduction can be accomplished in polynomial time. In the following, with
a slight abuse of notation, we treat X and Y as sets. We now show that Φ is valid if
and only if there exists a solution for P .

(⇒) Suppose Φ is valid. Since Φ is valid, then there exists a truth assignment φ :
X → {true, false} such that ∀Y ψ′(Y ) is valid, where ψ′(Y ) is the propositional formula
obtained from ψ(X, Y ) by replacing each occurrence of xi with φ(xi), for all xi ∈ X.
Let S = {xi : [1, 1, 1]|xi ∈ X ∧ φ(xi) = true} ∪ {¬xi : [1, 1, 1]|xi ∈ X ∧ φ(xi) = false}.
We show that S is a solution of P . Obviously, S ⊆ H. Moreover, Π ∪ S is consistent.
To see this, consider a thread Th s.t. Th(1) = {xi|xi ∈ X ∧ φ(xi) = true}, and let I
be a tp interpretation s.t. I(Th) = 1. It is easy to see that I |= Π ∪ S. It remains to
show that Π∪S |= g; that is, every tp interpretation satisfying Π∪S satisfies g as well.
Assume I is a tp interpretation s.t. I |= Π ∪ S. Let f be the propositional formula∧
xi∈X,φ(xi)=true

xi ∧
∧
xi∈X,φ(xi)=false

¬xi. Since I |= S, then
∑

Th∈T ,Th(1)|=f I(Th) = 1.
To prove the latter statement, suppose by contradiction that it does not hold; that is,
there exists a thread Th′ ∈ T s.t. Th′(1) 6|= f and I(Th′) > 0. it is easy to check that
I 6|= S, which is a contradiction. Note that, for any thread Th, if Th(1) |= f , then
Th(1) |= ψ(X, Y ). Hence,

∑
Th∈T ,Th(1)|=ψ(X,Y ) I(Th) = 1, that is I |= g.

(⇐) Suppose there exists a solution S for P . Let X ′ ⊆ X be the set of variables
xi in X s.t. either xi : [1, 1, 1] ∈ S or ¬xi : [1, 1, 1] ∈ S (note that both cannot hold
in order for S to be consistent). We first show that S ′ = S ∪ ⋃xi∈X−X′{xi : [1, 1, 1]}
is a solution as well. It is obvious that S ′ ⊆ H. Moreover, Π ∪ S ′ is consistent. To
see this, consider a thread Th s.t. Th(1) = {xi|xi : [1, 1, 1] ∈ S ′}, and let I be a tp
interpretation s.t. I(Th) = 1. It is easy to see that I |= Π ∪ S ′. We now show that
Π ∪ S ′ |= g. Since S ⊆ S ′, then the set of tp interpretations that satisfy Π ∪ S ′ is
a subset of the tp interpretations satisfying Π ∪ S. As the latter ones satisfy g, then
Π ∪ S ′ |= g. Hence, S ′ is a solution.

We now show that Φ is valid. Let φ : X → {true, false} be a truth assignment
such that φ(xi) = true if and only if xi : [1, 1, 1] ∈ S ′ and φ(xi) = false if and only if
¬xi : [1, 1, 1] ∈ S ′, for all xi ∈ X. We show that ∀Y ψ′(Y ) is valid, where ψ′(Y ) is the
propositional formula obtained from ψ(X, Y ) by replacing each occurrence of xi with
φ(xi), for all xi ∈ X. Suppose by contradiction that ∀Y ψ′(Y ) is not valid. Then, there
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exists a truth assignment φ′ : Y → {true, false} that does not satisfy ψ′(Y ). Consider
a thread Th s.t. Th(1) = {xi|xi ∈ X ∧ φ(xi) = true} ∪ {yi|yi ∈ Y ∧ φ′(yi) = true},
and let I be a tp interpretation s.t. I(Th) = 1. It is easy to check that I |= Π∪S ′ and
I 6|= g, which is a contradiction.

Not that the previous reduction uses an empty program Π.
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