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Abstract

When we learn new skills, our brain stores these procedural memories in a region called
the basal ganglia, in order to autonomously perform movements and habits without re-
quiring our focused attention. Many neurological illnesses such as Parkinson’s Disorder
(PD), Huntington’s Disease (HD), and Tourette Syndrome or Obsessive Compulsive Dis-
order (OCD) result from a malfunction of the basal ganglia, and we are still far from
understanding how this highly dynamic system can be repaired.

Current teaching models still frequently reduce the basal ganglia down to two com-
peting pathways that either encourage (direct pathway) or discourage (indirect pathway)
the selection of actions to be executed during the recall of procedural memories. The fast
initiation of movements also depends on the presence of the modulatory neurotransmitter
Dopamine (DA) within this area of the brain, but while fast changes of dopamine level
are widely acknowledged within the neuroscience community, current medical treatments
of hypokinetic disorders such as PD usually involve the broad application of dopamine-
increasing drugs that ignore dopamine dynamics. For more invasive treatments such as
Deep Brain Stimulation (DBS), an explanation of why they seem to temporally remove
debilitating motor symptoms is even further away, and anecdotal evidence on the side
effects of both dopamine-altering medication and DBS is slowly growing.

But dopamine does not only vary during the recall of procedural memories. The key
to understanding the function of dopamine and basal ganglia disorders may be to closely
examine the role of dopamine during the acquisition phase of procedural memories. The
basal ganglia’s striatum receives inputs from most parts of the brain and uses synaptic
plasticity to form new procedural memories. It has to both learn and recall these memories
in a highly time-critical manner in order to reduce reaction times of the animal or person
responding to the physical world.

One of the two main parts of this work is therefore devoted to the thorough explo-
ration of time-critical neural codes that allow fast and robust pickup and recall of memories
within the striatum or any other brain area that has similar requirements. In particular,
temporal coding is used in conjunction with spike timing dependent plasticity (STDP)
to uncover the full power of anti-symmetric plasticity rules in time-critical contexts, both
with and without the involvement of a dynamically changing neuromodulator that repre-
sents dopamine. Computer simulations are carried out to evaluate the best fit between a
spatiotemporal neural spike code and timing-dependent synaptic plasticity, and result in
a paradigm that produces highly selective receptive fields of single neurons without the
explicit need for decorrelation-inducing mutual inhibition. I thereby expose important yet
previously largely ignored features of STDP on synaptic drift, weight dependence, synap-
tic and homeostatic stability, and the interaction of multiple families of neural code with
multiple plasticity mechanisms. I show that precisely-timed spatiotemporal spike codes
with STDP not only reproduce the power of rate-based codes with Hebbian plasticity,
but outperform them categorically. I also show how spatiotemporal codes may be passed
on between groups or layers of neurons in a feed-forward manner without the need for
exact synchronicity as is commonly assumed in e.g. synfire chains. I also show that the
detection of and tuning to spatiotemporal spike patterns does not require the existence of
an oscillatory local field potential for synchronisation, and that information transmission
via spatiotemporal spike patterns can be fully independent from any rate-based fluctua-
tions of population activity. I also develop new distance measures for three subclasses of
spatiotemporal spike patterns and find a simple way to allow multiple neurons that receive



the same input spike data to form divergent, highly selective receptive fields that cover
the broad range of inputs even in the absence of recurrent connections. The findings of
this work may lead to the development of new experimental methods for analysing and
dynamically responding to recorded biological spike data.

The second main part of this work concerns the application of dopamine into a spiking
neural network (SNN) that uses STDP. While most other computational neuroscience work
models the function of dopamine as affecting only direct changes to synaptic connection
strengths, this work is the first to unify neuromodulated plasticity with experimentally ob-
served instantaneous effects of dopamine on synaptic transmission. The solution we choose
is biologically more plausible than previous approaches, and shows promising results for
understanding dopaminergic feedback and self-regulation. Specifically, the neuromodula-
tor here acts to dynamically change the contrast of incoming spatiotemporal spike patterns
and thereby affects their ability to evoke robust postsynaptic responses. A pattern that is
repeatedly combined with low levels of simulated dopamine will thereby have a low prob-
ability of being tuned to by a postsynaptic neuron, while a pattern that regularly occurs
together with high concentrations of dopamine has a higher chance of being picked up
by the receptive field of the postsynaptic neuron. This new method of neuromodulation
is then also used to implement dopaminergic self-regulation in the basal ganglia’s direct
pathway in the event of over-presentation of a single input pattern, and proves promising
for future biologically more realistic models of the full basal ganglia.

As we gain a greater knowledge on how the healthy basal ganglia acquire and recall
new memories and how dopamine and other neuromodulators influence this function, we
will be able to improve current and new treatments and maybe even heal the underlying
causes of many neurodynamical diseases of the brain.



Zusammenfassung

Wenn wir neue Fähigkeiten erlernen, speichert unser Gehirn diese prozeduralen Erinnerun-
gen in einer Hirnregion namens Basalganglien um in Zukunft autonom (ohne fokussierte
Aufmerksamkeit) Bewegungen und angewöhnte Tätigkeiten durchzuführen. Eine Fehlfunk-
tion der Basalganglien kann zu neurologischen Erkrankungen wie der Parkinsonkrankheit
(PD), Chorea Huntington (HD), oder dem Tourettesyndrom und anderen Zwangsstörun-
gen (OCD) führen. Leider ist unser Wissen über dieses sehr dynamische System noch zu
begrenzt um eine anhaltende und nebenwirkungsfreie Heilbehandlung oder gar Reparatur
der betroffenen Hirnareale durchzuführen.

Aktuelle Lehrmodelle reduzieren die Funktion der Basalganglien noch oft auf zwei
konkurrierende Pfade die entweder erregend (Direkter Pfad) oder hemmend (Indirekter
Pfad) auf die Selektion von Aktionen wirken. Eine schnelle Initiierung von Bewegungen
erfordert auch das Vorhandensein des modulatorischen Neurotransmitters Dopamin (DA)
in diesem Hirnbereich. Doch während dynamische Veränderungen von Dopaminkonzen-
trationen in den Basalganglien bekannt sind, basiert die klinische Behandlung neurode-
generativer Bewegungsmangelerkrankungen wie PD meist auf einer allgemeinen Erhöhung
von Dopaminkonzentrationen ohne Beachtung dynamischer Effekte. Invasive Eingriffe zur
Symptomunterdrückung wie die inzwischen weitläufig durchgeführte Tiefenhirnstimula-
tion (DBS) entziehen sich bisher jeder abschließenden Erklärung über deren Wirkweise,
und anekdotische Anhaltspunkte über teils schwerwiegende Nebenwirkungen von sowohl
dopaminverändernden Medikamenten als auch der tiefen Hirnstimulation nehmen zu.

Allerdings verändert sich die Konzentration von Dopamin und anderen Neuromodu-
latoren nicht nur während des Abrufens von prozeduralen Erinnerungen. Ein wichtiger
Ansatz zur Entschlüsselung des Zusammenhangs zwischen Dopamin und Funktionsstörun-
gen der Basalganglien mag die Betrachtung der Rolle von Dopamin während der Bildung
von neuen prozeduralen Erinnerungen sein. Der größte Bereich der Basalganglien, das
Striatum, erhält Eingaben aus einer Vielzahl von Hirnbereichen und verwendet synaptische
Plastizität um neue prozedurale Erinnerungen zu erzeugen und zu vertiefen. Das Stria-
tum muss diese Engramme unter starkem Zeitdruck sowohl lernen als auch wiedergeben
können, um Reaktionszeiten eines Tieres oder Menschen als Antwort auf Geschehnisse in
der physikalischen Welt zu minimieren.

Der erste der zwei Hauptteile dieser Arbeit ist daher der gründlichen Erkundung
zeitkritischer neuronaler Codes gewidmet, die eine schnelle und robuste Aufnahme und
Wiedergabe von Speicherinhalten im Striatum und ähnlichen Hirnbereichen erlauben.
Im Besonderen wird die Kombination von Zeitcodierung mit zeitabhängiger Plastizität
(STDP) verwendet um in Computersimulationen die Entstehung von stark selektiven
rezeptiven Feldern durch zeitlich in präziser Abfolge ankommende Aktionspotentiale zu
untersuchen. Hierzu zeige ich wichtige, jedoch bisher wenig beachtete, Eigenschaften von
STDP und synaptischem Drift, Abhängigkeiten von Verbindungsstärke, synaptischer und
homeostatischer Stabilität, und der Interaktion von verschiedenen Klassen zeitlicher neu-
ronaler Codes mit verschiedenen Plastizitätsmechanismen. Ich demonstriere, dass präzise
zeitliche Codes in Verbindung mit STDP die Eigenschaften von Hebb’scher Plastizität
nicht nur reproduzieren, sondern diesen kategorisch überlegen sind. Ebenfalls zeige ich die
prinzipielle Möglichkeit der Rekonstruktion zeitlicher Abfolgen von Aktionspotentialen in
nachgelagerten Gruppen bzw. Schichten von Neuronen in einer Feedforward-Anordnung,
ohne eine exakte Synchronizität zu benötigen wie sie etwa im Bereich der Synchronen
Ketten oft angenommen wird. Das Erlernen der Detektion von präzisen zeitlichen Codes



erfolgt auch unabhängig von etwaigen Oszillationen der Populationsfeuerrate einer Gruppe
von Nervenzellen, welche somit als Taktgeber nicht benötigt wird. Tatsächlich lassen sich
zeitliche Codes unabhängig von jeglichen Fluktuationen der Populationsfeuerrate in der
Abfolge von Aktionspotentialen mehrerer Eingabeneurone kodieren. Ich entwickle außer-
dem ein neues Entfernungsmaß um zwischen zeitabhängigen neuronalen Mustern zu un-
terscheiden, bei denen früh eintreffende Aktionspotentiale einen höheren Einfluss auf die
Detektion eines Musters haben als spät eintreffende. Des weiteren verwende ich einen er-
staunlich simplen Lösungsansatz um eine Gruppe von Neuronen mit identischen Eingängen
aber ohne rekurrente Verbindungen die Detektion von unterschiedlichen zeitlich präzisen
Mustern von Aktionspotentialen erlernen zu lassen. Die Beiträge dieser Arbeit zum Ver-
ständnis von präzisen neuronalen Codes mögen zur Entwicklung neuer experimenteller
Methoden zur (Echtzeit-)Analyse von biologischen Aufzeichnungen und der dynamischen
Steuerung und Rückkopplung neuraler Systeme beitragen.

Der zweite Hauptteil dieses Textes beschäftigt sich mit dem Einfluss von Neuromo-
dulatoren wie Dopamin auf spikende neuronale Netze (SNN) die STDP verwenden. Der
überwiegende Teil existierender Arbeiten der Theoretischen Neurologie reduziert die Rolle
von Dopamin in Verstärktem Lernen auf dessen direkte Wirkung für neurale Plastizität.
Demgegenüber vereinigt diese Arbeit als Erste die modulatorische Wirkung von Dopamin
auf synaptische Plastizität mit den experimentell ebenfalls beobachteten instantanen Ef-
fekten welche Dopamin auf synaptische Übertragung hat. Durch die Verbindung zweier
experimentell beobachtbarer Prozesse ist dieser Ansatz womöglich näher an der biologisch-
en Realität, und erlaubt hochinteressante Einblicke in die Wirkweise von dopaminergem
Feedback und der Selbstregulation neuromodulatorischer Vorgänge. Im Speziellen agiert
der Neuromodulator in unserem Modell als dynamischer Kontrastverstärker während der
Übertragung von Mustern zeitlich präzise ankommender Aktionspotentiale unterschied-
licher räumlicher Herkunft, und beeinflusst so deren Detektion durch postsynaptische
Neurone. Ein Muster welches wiederholt bei hoher simulierter Dopaminkonzentration
eintrifft wird daher mit höherer Wahrscheinlichkeit von diesem postsynaptischen Neuron
erlernt, während ein Muster das öfters bei niedriger Dopaminkonzentration auftritt mit
nur geringer Wahrscheinlichkeit vom rezeptiven Feld des postsynaptischen Neurons er-
fasst wird. Wir verwenden diese Methode der Neuromodulation daraufhin zur Konstruk-
tion einer selbstregulierenden Schleife der Dopaminausschüttung, die unter anderem eine
Überanpassung einer Gruppe simulierter striataler Neurone an ein häufig wiederkehrendes
Muster verhindert.

Indem wir unser Wissen darüber vergrößern, wie die gesunden Basalganglien sich neue
prozedurale Erinnerungen in einem zeitkritischen Kontext aneignen und abrufen, wer-
den wir in der Lage sein existierende medizinische Behandlungsverfahren zu verbessern
sowie neue Lösungsansätze zur Heilung neurodynamischer Erkrankungen des Gehirns zu
entwickeln.
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Chapter 1

Introduction

A few thousand years ago, a chap named Alcmaeon of Croton had a hunch that the big
lumps of grey mushy stuff we have inside our heads might actually be useful for doing stuff
like thinking (Oeser, 2010), which was quickly denied by many important people saying
that the brain is obviously just part of the body’s cooling system (Barnes, 2000). This
continued until less than 200 years ago, when someone else (Flourens, 1842) discovered
that this first hunch may in fact have been true after all. Since then, more and more
people have come to the conclusion that our brain might even be important for survival,
both to help us actively look for food and to avoid becoming food for others. It is still a
great mystery, though, how exactly it does that.

Until comparably recently, brain science (or neuroscience, as some like to call it) con-
sisted largely of experimental methods on how to pinch and prod certain areas of the
brain into doing or not doing certain things. This trial-and-error approach quickly yielded
a map of general brain areas (see Figure 1.1) where prodding certain positions always led
to similar responses or sensory impressions in most humans and animals. Examining each
brain area separately actually worked extremely well for some time, and people learned a
lot about how to make someone’s arm or leg twitch, or how the early parts of our visual
system work (Hubel and Wiesel, 1959). By then, people had already noticed that the brain
actually uses electricity to send quick spikes of information around between brain cells (or
neurons), and two fellows from the seaside town of Plymouth in south England had been
pinching and prodding single neurons of the squid to try and describe the fluctuations of
electrical currents through mathematical equations (Hodgkin and Huxley, 1952). From
today’s viewpoint, one can say that they nailed it.

Speaking of sending around information, a completely unrelated development hap-
pened at roughly the same time. It was based on the invention of telegraph and telephone
networks. More specifically, the need arose to measure the amount of information that
was being passed between carriers over a noisy communication channel within a finite
time. Claude Shannon (1948) came up with a couple of good ideas on how a message of
information may be passed on, be compressed, reconstructed and generally even defined.
Information Theory, as we call it today, has proven to be indispensable in the develop-
ment of modern technology over the last decades, including especially computer science
and machine learning.

Neuroscience, meanwhile, seems to have reached a bit of a barrier. As neuroscientists
have become interested in the deeper areas of the brain, they have had to notice that the
previously well-established pinching and prodding approach that worked so well on outer
parts of the brain is starting to become unfeasible as a single pinch or prod in deeper
areas can lead to highly chaotic outcomes that also depend on everything else the brain
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is currently doing (Aihara, 2008). But not all is bad. At least the brain does appear
to have some internal organizational structure that can be used here. And although it
may be hard to track the exact inputs and outputs of every neuron in a network within
a living brain, the above-mentioned assumption that the brain may actually be trying to
do something may help us here.

somatomotor cortex somatosensory cortex
parietal lobe

occipital lobe

cerebellum

spinal cord
medulla oblongata

temporal lobe

frontal lobe

Figure 1.1: Overview of the human brain with the dura removed (left) and general categorisation of
brain regions (right). (Left image: Vesalii Bruxellensis, 1543; Right image: Creative Commons, http:
//commons.wikimedia.org/wiki/File:Cerebrum_lobes.svg)

This is where Computational Neuroscience has the potential to shine. Using mathe-
matical rules that have previously been discovered through experimental work on single
building blocks of the brain (e.g. neurons, synapses, ion channels, neurotransmitters), com-
puter simulations and theoretical modelling have the freedom to recombine these building
blocks in unforeseen ways and test whether any meaningful tasks can be neatly solved in
this way. This will help uncover new previously unnoticed functions that the brain may be
performing and also provide answers on why the building blocks we know today look the
way they do. Why does the brain use weird-looking plasticity rules to change the strength
of synaptic connections between neurons? Why does the brain tolerate the seemingly noisy
transmission of information that is happening via spikes nearly everywhere? Why even
spikes? Aren’t continuous variables in the form of rates much better, or at least equally
powerful? Or could the brain actually be less binary (spike or no spike) than common
simplifications/assumptions suggest?

The new questions in neuroscience are becoming more about why and how something
is happening or self-organises in a certain way out of multiple options, and not so much
about what is going on within the single building blocks anymore.

1.1 Motivation
1.1.1 Why the Basal Ganglia?
A large part of the deeper areas of the brain that have proven resilient to exposing their
functional secrets through traditional pinch-and-prod methods within neuroscience are
the basal ganglia. This collection of midbrain cell clusters (nuclei) has been connected to
claims of nearly every type of task in the traditional division of brain functions in the past
decades, ranging from sensory or motor relay via motivational, mood-related, and addictive
properties to some involvement in broadly-defined action selection and procedural learning
of motor skills and habits (reviewed in Redgrave, 2007). As the basal ganglia receive a
large number of inputs from nearly all parts of the cortex and thalamus and also form
many outgoing connections with the cerebellum and thalamus, it is extremely difficult to
control all parameters for a thorough pinch-and-prod analysis without artificially slicing
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off these connections and their chemical dynamics, thus changing the expected results (see
also Figure 3.3, p. 24).

However, it would be very useful to know more about how the basal ganglia actually
work as they are directly involved in a number of neurological illnesses. The best-known
may be Parkinson’s Disorder (PD), which leaves patients with motor symptoms such
as tremor, rigidity, and bradykinesia, but also induces many mental problems that are
difficult to quantify and so are described less often (Frank et al., 2007, 2004). But other
diseases like Huntington’s Disease, Obsessive Compulsive Disorder (OCD), proneness to
addiction and more are also closely related to malfunctions in the basal ganglia.

It would therefore be great to know what exactly the basal ganglia are supposed to be
doing in a healthy person, and how the slow loss of healthy dopamine-producing brain cells
in one of its nuclei, the substantia nigra pars compacta (SNc), actually causes Parkinson’s
Disorder, for example. For some time now, people have known that dopamine seems to
play an important role in the brain (Bertler and Rosengren, 1959; Carlsson, 1959), and
that the loss of dopamine-producing neurons correlated with some kind of imbalance of
dopamine concentrations throughout the brain (Drui et al., 2014; Janezic et al., 2013). So a
seemingly easy solution was to artificially boost dopamine levels everywhere in the brain by
giving PD patients dopamine-boosting drugs (Godwin-Austen et al., 1969; Hornykiewicz,
1974; Lloyd et al., 1975). This usually worked fine for a few years, depending on the
individual patient, but then began to lead to a whole new set of problems, with people
starting to require increasing dosages of these drugs and experiencing problems in motor
control and other strong side effects (Fabbrini et al., 1987; Merims and Giladi, 2008). A
big question here is: Why do the side effects of dopamine lifting drugs only start after a
few years? Could the brain be slowly adapting to the drug, causing the new symptoms?
If it is adapting, something is definitely going wrong in the process!

1.1.2 Dopamine: Teaching Signal or Contrast Enhancer?
In 1997, Wolfram Schultz and colleagues (Schultz et al., 1997; Suri and Schultz, 1998)
noticed that the activity of dopamine-releasing (dopaminergic) neurons in SNc not only
changes with behavioral conditions, but that the spiking activity of many of those cells
is actually very similar to the so-called reward prediction error that is known from the
behaviorally inspired field of reinforcement learning (Sutton and Barto, 1998). In rein-
forcement learning, a reward prediction error is often used as a teaching signal for the
rest of the system/organism/agent to decide whether a certain choice of action in a given
situation is likely to lead to more reward and should therefore be chosen again with higher
chance. The finding that the activity of many dopamine neurons is so similar to a reward
prediction error and that the basal ganglia are known to have some involvement in pro-
cedural learning let us wonder whether a loss of dopaminergic neurons may be somehow
messing with learning processes there. Could many of the neurological illnesses originating
in the basal ganglia actually be due to some plasticity process that is going wrong? And
if a broad increase of dopamine levels through drugs doesn’t help, could this be because
the dynamic changes of dopamine concentrations are important?

Apart from having some yet to be understood involvement with plasticity in the basal
ganglia, increased dopamine levels also seem to have instant effects on the spiking activity
of neurons throughout the brain (Hernández-López et al., 1997; Kroener et al., 2009; Lee
et al., 2004a; Nicola et al., 2000; Nicola and Malenka, 1997; Rotaru et al., 2007; Thurley
et al., 2008; Waters and Helmchen, 2006). It has been hypothesized that dopamine may
somehow be changing the contrast of other incoming stimuli as they arrive at a neuron
(Nicola et al., 2004), causing a more precise response for higher levels of dopamine while
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lower levels of dopamine might be worsening the gain and signal-to-noise ratio of those
stimuli and the postsynaptic response. It is unknown, though, how exactly this works on
a single spiking neuron level. Also, it is a completely open question why this effect of
dopamine makes any sense under the assumption that the brain is indeed trying to get
anything done: If a higher signal-to-noise ratio helps in processing, why isn’t the dopamine
level always fixed at a high degree? Why does dopamine vary as much as it does, and
why could it be good to sometimes weaken the signal-to-noise ratio of dopamine-receiving
neurons? A major goal that motivates this work is to understand why dopamine acts as
it does, what the computational benefits of its multiple facets may be, and how the brain
may implement dopamine-dependent plasticity processes on a spike-based level.

1.1.3 Why all the Spiking?
In order to understand learning in the basal ganglia, we need to be able to closely recon-
struct plasticity processes in its largest and main input area, the striatum, and explain
how dopamine could logically be influencing the formation of new receptive fields there
while also enabling changes in the instant response to incoming stimuli.

Most theories and models about the basal ganglia nowadays live out their lives on
the level of firing rates and oscillations thereof (Chapter 3). This might be fine if just
the mean number of spikes per second were enough for getting stuff done in the basal
ganglia. Unfortunately, it probably isn’t. As the basal ganglia are by now known to
be involved in fast action selection and skill execution (Redgrave, 2007; Redgrave and
Gurney, 2006; Redgrave et al., 2008; Schultz, 2000, 2007), they have a strong influence
on how quickly you can respond to things happening around you. If the brain always
had to count the number of spikes over a given time, time-critical skills like running away
from some predator or jumping from tree to tree would be impossible. In a rate-coded
network, decreasing the time it waits for inputs (integration time) also vastly decreases the
bandwidth of information that can be transmitted (Chapter 4), making us wonder why
the brain would use spikes in the first place if just the number of them per second were
all that mattered. The amount of transmitted information that is passed on per second
can theoretically be rescued by using large pools of neurons that all represent the same
message of information. However, this would require large groups of completely redundant
neurons in the brain, costing lots of energy to keep alive and taking up space.

So how could the basal ganglia (and many other brain areas) be fast and use little
energy? Can a single neuron be used to encode a continuous variable? And can it do so
by firing only a minimum number of spikes to save energy? The idea of temporal coding
proposes that the relative latency of spikes arriving from different inputs encodes valuable
information (Ahissar and Arieli, 2001; Amarasingham et al., 2006; Bair and Koch, 1996;
DeCharms and Merzenich, 1996; Fries et al., 2001; Gawne et al., 1996; Gerstner et al.,
1997; Heil et al., 1997; Hopfield, 1995; Mainen and Sejnowski, 1995; Mehta et al., 2002;
O’Keefe and Recce, 1993; Stein et al., 2005). While the idea of precise spike timing
theoretically allows continuous variables to be encoded in the timespan between two spike
events of a single neuron, it has seen much opposition due to the fact that spike times of
single neurons are often little reliable within in vivo experiments (de Boer and Kuyper,
1968; Sakai et al., 1987). This has led experimenters to mostly use average responses
to precisely timed inputs as the basic unit of measurement for cartographing our brains.
Unfortunately, the unreliable nature of spike timings has given rise to the widespread
simplification that the arrival times of spikes contain no meaningful information at all
(Aertsen and Gerstein, 1985; Dorrscheidt, 1981; Foffani and Moxon, 2004; Gerstein and
Kiang, 1960; Herrmann and Gerstner, 2001; Ushiba et al., 2002).
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Another large goal of this work is therefore to highlight possible ways in which our
brain may be using imprecisely timed spikes to reliably transmit and process information.

1.2 Scope & Structure
This work begins with a collection of four background chapters that introduce the reader
to important concepts of computational neuroscience that will be needed in the subsequent
chapters. After having provided an introduction to the topic and motivated my approach
in the current chapter, I explain basic neural anatomy and widely used phenomenological
neuron models in Chapter 2. I especially provide some early knowledge on synaptic plas-
ticity as well as the effect of membrane leak on spike timing here. In Chapter 3, I then
take a more systems-level approach to explaining brain function, and introduce the reader
to the known anatomy and functional models of the region in question, the basal ganglia.
I then close the background part of this work with a brief overview of important concepts
in information theory in Chapter 4.

The second part of this text consists of three chapters that closely examine possible
practical approaches to using imprecise temporal spike codes and spike timing dependent
plasticity (STDP) for fast and energy efficient processing in the brain, without explicit
involvement of dopamine or other neuromodulators yet. Chapter 5 therefore answers a
recurring question about whether spike timing dependent updates to synaptic strength
should depend on the current strength of a synapse (often called multiplicative STDP)
or not (additive STDP). I will show that the dividing line between different forms of
STDP has been drawn at an unfortunate position and suggest a new naming conven-
tion for STDP rules while introducing a simpler form of weight-dependent STDP that is
closer to biological data than most multiplicative rules while remaining as computationally
powerful as additive rules and is easy to use. In Chapter 6, I first discuss the benefits
of (imprecisely timed) spatiotemporal codes over synchronous and unorderly correlated
spikes from a signal detection theory standpoint. I then examine the possible advantages
of using a spatiotemporal spike code together with anti-symmetric plasticity rules like
STDP, and contrast them to traditional, unjustly named, Hebbian learning rules where
only correlation and not spike order is used for updating the synaptic strength. Due to
the many benefits of combining imprecise spatiotemporal spike codes with anti-symmetric
STDP, I suggest a new set of functions that the brain may easily perform, which were
considered costly or impossible before. Chapter 7 finally ends part two of this text with
answers to practical questions arising for computer simulations of spatiotemporal codes
and anti-symmetrical plasticity rules. I explain the generation of spatiotemporal input
patterns within a stream of noisy background spikes and discuss the implications of net-
work size and pattern duration. I then look at the unbiased formation of a map of receptive
fields for many independent neurons and the effect of noise. I also show examples of how
spatiotemporally structured spike patterns may be hidden within seemingly random back-
ground activity while still allowing detection and training by an appropriately equipped
postsynaptic neuron.

Part three of this work then combines plastic spiking networks with simulated dopamine
as the prototypical neuromodulator. Chapter 8 proposes a new method of dopaminergic
reinforcement in spiking networks that influences plasticity through modulating synaptic
transmission instead of simply scaling some assumed STDP rule. My approach is the first
to cover both the instantaneous contrast enhancing effects of dopamine that have been
experimentally observed, as well as dopamine’s influence on spike timing dependent plas-
ticity. This mechanism is then evaluated in the following two chapters, where Chapter 9
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explores the possibility of reinforcing specific (groups of) spatiotemporally structured spike
patterns over others, through fast changes of dopamine level during spike arrival. Chapter
10 then continues the exploration of this new paradigm to form a self-regulatory feed-
back loop for dopamine, which reduces the dopaminergic response to repeated patterns as
these become more familiar to a group of simulated striatal neurons. I show that while this
method of neuromodulatory action affects synaptic plasticity only very indirectly, it never-
theless is able to guide the formation of receptive fields in a controlled manner, nominating
it as a valid candidate for the biological mechanism of neuromodulatory reinforcement.

I summarise and conclude my work in Chapter 11, and give ideas for future related
research projects for the future of this field. The appendices provide all simulation param-
eters used in this work, provide some supplementary figures, and detail the construction
of both the simulation software code and a tracking framework that I implemented.
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Chapter 2

Biological Neurons and Membrane
Dynamics

In this chapter, I will give a short introduction to the most important building blocks
of biological brains, namely neurons, synapses, and ion channels and models that try to
describe their dynamics. As the connections between neurons are thought to be the main
method of how the brain stores information, I will also introduce some ideas that people
have had on how these connections might change over time, which is generally considered
a necessary mechanism for high-level learning.

2.1 Neuron, Membrane and Synapse Anatomy
I now present an overview of biological neurons, synapses, and the ion channels that
enable the dynamic behaviour of neurons, before moving on to models of neural membrane
dynamics in Section 2.2.

2.1.1 Neuron Anatomy
Nerve cells, or neurons, come in a wide range of morphological shapes and sizes (Figure
2.1 A-C). What they do have in common is the existence of a main cell body containing
the cell nucleus (the soma), a highly branching tree of receiving branches (the dendrites),
and a single axon that transmits information to other cells and may or may not branch out
widely at its end. Neuronal axons can also be multiple centimetres long and are generally
considered the main method of transmitting fast information over long distances in the
brain. The white matter within the brain largely consists of axons.

Neurons use fast spikes of electricity to transmit information from incoming connec-
tions of the dendrites via the soma to the axon, where output connections pass on the
information to the next neuron. The neuron’s cell membrane thereby acts as an electric in-
sulator between the outside and the inside of the cell, and small highly specialised proteins
within this membrane (called ion channels) can dynamically influence both the electrical
potential across and chemical concentrations of ions on each side of the membrane (Section
2.1.2). In specific conditions, the dynamic interaction between ion channels can cause a
sudden increase of electrical potential within any part of the neuron, causing an action
potential, or simply spike.

Transmission of information along a neuron is usually described as being unidirec-
tional, travelling from input connections of the dendritic tree via the soma to the output
connections of the axon. In reality, however, the direction of information flow within a
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Figure 2.1: A selection of neuron types (A-C) and example diagram of a synapse (D). (A) Pyramidal neuron
of the cortex. (B) Purkinje neuron from the cerebellum. (C) Stellate cells are inhibitory interneurons in
the cerebral cortex. (Drawings A-C by Ramón y Cajal, 1911; D from Kandel et al., 1991; Images from
Dayan and Abbott, 2001)

single neuron can be more flexible, and especially somatic spikes can produce strong feed-
back effects that travel back to the dendritic input connections. Still, a back-propagation
of spikes across neural connections has not been observed in biology (Buzsáki and Kandel,
1998).

The connection between neurons is called a synapse, as shown in Figure 2.1D. Electrical
impulses arriving at the end of the axon of one neuron usually evoke the release of stored
molecules called neurotransmitters into the space between the first and a second neuron,
which then in turn activate specialised ion channels (neurotransmitter receptors) that can
cause a new electrical potential in the second neuron (chemical synapses). Each chemical
synapse can hence be described as consisting of a presynaptic side that is part of the first
neuron and a postsynaptic side that is part of the second neuron in this unidirectional
connection. In extension, the first and second (or transmitting and receiving) neuron are
also often called the pre- and postsynaptic neurons, respectively. The whole process is
called synaptic transmission.

The type of neurotransmitter(s) that is released by the presynaptic neuron at a given
synapse is thought to be predefined by the type of this neuron. This is known as Dale’s
Law or Dale’s Principle (Dale, 1935). The family of receptors that is activated by a given
neurotransmitter can either increase (excitatory connection) or decrease (inhibitory con-
nection) the membrane potential, or otherwise influence chemical concentrations within
the postsynaptic cell. The most common neurotransmitters within the cortex, glutamate
(glutamic acid) and GABA (γ-Aminobutyric acid), have receptors that produce specific
changes to the membrane potential of the postsynaptic neuron. Glutamate receptors gen-
erally increase postsynaptic membrane potential while GABA receptors generally decrease
it. For the two most common neurotransmitters in the brain, Dale’s Law therefore implies
that all neurons that release one of these two neurotransmitters are either fully excitatory
or fully inhibitory on all postsynaptic neurons they are connected to. This has strong im-
plications for computational modelling. However, any (postsynaptic) neuron can receive
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Figure 2.2: Ion channels enable the dynamic changes of membrane potentials through cascades of fast
biochemical processes. (A) Principle overview of two unspecified ion channels as they bridge the neuron’s
cell membrane (lipid bilayer). (B) Closeup layout plan of an ion channel. (C) Dynamic functions of a
voltage-gated ion channel. Notice also the changes of membrane potential on either side of the lipid bilayer.
The opening of an activation gate allows ions to flow across the cell membrane. A second inactivation gate
may then block ion flow on different conditions than the activation gate would need in order to close. This
allows a single ion channel type to show highly complex gating dynamics. (Drawings A,B from Hille, 1991;
C from Kandel et al., 1991; Images taken from Dayan and Abbott, 2001)

inputs from both excitatory and inhibitory neurons. Other neurotransmitters such as
dopamine or acetylcholine have receptor families with various effects on the postsynaptic
neuron, depending on which exact receptor is being expressed at a given synapse by the
postsynaptic neuron. As such neurotransmitters can have both excitatory and inhibitory
effects under different contexts, they are usually referred to as neuromodulators.

In addition to chemical synapses, the brain also uses synapses with a more direct
electrical coupling (gap junctions). These are found in brain areas that require extremely
fast processing of information, but seem to be less pronounced as a fraction of all synapses.

2.1.2 Ion Channels
Ion channels are the main mechanism for producing dynamic behaviours within neurons.
As such, we now take a closer look at some of their anatomy and basic functions. The
previous section has already mentioned ion channels in the context of (chemical) synaptic
transmission, but they also play an important role throughout the whole neuron as a facili-
tator for maintaining action potentials as they travel along the neuron, as well as regulating
homeostatic parameters to keep the neuron in some optimal regime of excitability.

A basic overview of how to imagine an ion channel is shown in Figure 2.2A. Ion chan-
nels are complex proteins that act as a tunnel through the otherwise impermeable cell
membrane of neurons, and allow charged ions of specific chemical elements to pass. The
cell membrane itself consists of a double layer of lipids that form a strong two-dimensional
surface around the interior of each cell. The lipids and ion channel proteins move fairly
freely within this surface. However, different types of ion channels have different proba-
bilities of being found on different segments of a neuron.

When ions of different chemical elements are allowed to move freely between the two
sides of a cell membrane, the chemical concentration of each element distributes in a gradi-
ent that is counteracted by the electrical field that many electrically charged ions generate.
The Nernst Potential is the equilibrium potential at which differences in electrical charges
of the ions on both sides of the membrane balance the chemical tendency for physical
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flow of these ions. By either passively gating some chemical elements between the interior
and exterior of the neuron or actively pumping them through investment of energy, the
cell can produce robust and predictable dynamic changes to its membrane potential and
chemical concentrations. These in turn can affect further chemical cascades as well as gene
expression within the cell.

Figure 2.2B shows a more complex visualisation of a typical ion channel, complete
with anchor proteins and a gate that opens and closes the channel in relation to a voltage
sensor. Figure 2.2C shows an ion channel with two separate gating mechanisms, here
called the activation gate and the inactivation gate. The time constants for opening and
closing of gates are often different, and two or more gate types per channel can produce
highly complex gating dynamics. The Hodgkin-Huxley model described in the next section
aims to reproduce the dynamics of an ion channel type that has both voltage-dependent
activation gates and voltage-dependent inactivation gates. In the three phases of channel
activation seen in Figure 2.2C, the ion channel starts out closed, as the membrane is (in
relation) negatively charged on the inside and positively charged on the outside. When
the potential across the membrane changes, the activation gate opens, enabling charged
ions to cross the channel. But as the potential increases further, the inactivation gate
closes the channel again. After some time has passed in which the voltage has dropped
back to normal, both gates relax back to their initial state.

2.2 Neural Membrane Dynamics
As we have now established the basic anatomy and function of neurons and their synapses,
this section gives an introduction to the most important dynamical properties of the
electric field across a neuron’s membrane.

2.2.1 Neuron Models
The dynamical properties of neurons can be modelled on different levels of complexity,
and I will present a short overview ranging from highly detailed to more abstract models
of neurons.

Hodgkin-Huxley Model

The original model for a small compartment of the giant axon of a squid (Hodgkin and
Huxley, 1952) uses two voltage-dependent ion channels as current sources IK and INa
together with a leak current IL to describe the rise and fall of action potentials within a
neuron. The potassium ion channel (IK) uses four voltage-dependent activation gates n
(n4) for the biologically fitted equation 2.1, while the sodium ion channel (INa) uses three
voltage-dependent activation gates m (m3) and a single voltage-dependent inactivation
gate h. The fit to biological data in (Hodgkin and Huxley, 1952) was done through the
voltage-dependent parameters α{n,m,h} and β{n,m,h} and a shift of the membrane’s resting
potential from approximately −65mV to 0mV (Izhikevich, 2007a). The complete equation
is

CV̇ = I −

IK︷ ︸︸ ︷
ḡKn

4(V − EK)−

INa︷ ︸︸ ︷
ḡNam

3h(V − ENa)−
IL︷ ︸︸ ︷

ḡl(V − EL)
ṅ = αn(V )(1− n)− βn(V )n
ṁ = αm(V )(1−m)− βm(V )m
ḣ = αh(V )(1− h)− βh(V )h

(2.1)
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Figure 2.3: Reducing complexity of biological neurons for use in computer simulations. The continuous
flow of current through a neuron’s dendritic tree and across its axon can be compartmentalised in a trade-
off between biological realism and computational complexity. When this results in a single compartment,
we speak of a point neuron. Models for the dynamics governing the flow of current in each compartment
are described in Section 2.2.1 (Image from Dayan and Abbott, 2001).

where I is the external input, ḡK = 36mS/cm2, ḡNa = 120mS/cm2 and ḡL =
0.3mS/cm2 are the maximum conductances of each channel, and EK = −12mV , ENa =
120mV and EL = 10.6mV are their Nernst equilibrium potentials. A dot (e.g. V̇ ) over a
variable indicates its derivative (e.g. dVdt ). The parameters α{n,m,h} and β{n,m,h} are

αn(V ) = 0.01 10− V
exp(10−V

10 )− 1
,

βn(V ) = 0.125 exp
(−V

80

)
,

αm(V ) = 0.1 25− V
exp(25−V

10 )− 1
,

βm(V ) = 4 exp
(−V

18

)
,

αh(V ) = 0.07 exp
(−V

20

)
,

βh(V ) = 1
exp(30−V

10 ) + 1
.

(2.2)

As it needs to track the state of the membrane potential V , the K+ activation gate m,
the Na+ activation gate n, and the Na+ inactivation gate h, the Hodgkin-Huxley model
is called a four-dimensional equation.

Izhikevich Models

While the Hodgkin-Huxley model for the generation of neural action potentials has re-
peatedly been shown to be very accurate in describing a wide range of biological neurons
through biologically meaningful parameters (Bower and Beeman, 1995), its many state
variables mean that it is computationally very complex to simulate. Izhikevich (2003)
therefore successfully used bifurcation analysis to represent the sub-threshold fluctuations
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of biological neurons in a range of two-dimensional models. The standard equations of the
Izhikevich neuron are

Cv̇ = k(v − vr)(v − vt)− u+ I (2.3)
u̇ = a(bv − u) (2.4)

with an after-spike reset condition

if v ≥ vpeak, then
{
v ← c

u← u+ d
(2.5)

where v is a quickly changing variable for the membrane voltage, and u is a slowly
changing variable that represents the neuron’s after-spike recovery. The parameters a and
b define the neuron’s sub-threshold fluctuations before a spike, and c and d model the
after-spike reset conditions (Izhikevich, 2007a). I is the external input current, k scales
the influence of v versus u and I, vr is the resting potential and vt the instantaneous
threshold potential.

Izhikevich (2003, 2007a) says that the parameters can be tuned to represent all known
biological neurons. Typical values used in (Izhikevich, 2003) are a = 0.02, b = 0.2,
c = −65mV and d = 2.

Equation 2.3 implements the quadratic upstroke of spikes (v2) and the inclusion of
inputs, while equation 2.4 allows the model to show resonating and bursting behaviour,
depending on parameter values (Izhikevich, 2007a). In normalized form, the Izhikevich
neuron model (Equations 2.3, 2.4) can also be written as

v̇ = I + v2 − u
u̇ = a(bv − u)

(2.6)

which better visualizes the non-linear nature (v2) of the model.

Integrate-and-Fire Models

If resonating or bursting behaviour is not required in a model neuron’s membrane, the
Izhikevich neuron model can be further reduced to the one-dimensional non-linearQuadratic
integrate-and-fire model:

v̇ = b+ v2

if v ≥ vthresh, then v ← vreset
(2.7)

This is the simplest neuron model that still shows true spiking, as linear models cannot
express the upstroke (see Figure 2.4). However, linear integrate-and-fire neurons are often
used in analytical treatments of networks of neurons, and are therefore shown below:

v̇ = b− v
if v ≥ vthresh, then v ← vreset

(2.8)

A direct result of the linear integrate-and-fire neuron missing a non-linear upstroke is
that as its membrane potential approaches the firing threshold, it becomes very reactive to
tiny fluctuations among its inputs, which then have a very strong influence on the actual
time the membrane potential crosses the predefined threshold. This can be seen in Figure
2.4 (left), where the membrane potential spends a long time just below the threshold
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Figure 2.4: Linear integrate-and-fire neurons (Left) cannot actually generate spikes themselves. Instead,
spikes are drawn by hand whenever the model’s membrane potential reaches a predefined threshold. In
contrast, non-linear models (Right) such as the Quadric integrate-and-fire model, the Izhikevich model, and
the Hodgkin-Huxley model implement a self-amplifying spike upstroke that requires no explicit threshold
value for spike declaration. (Image taken from Izhikevich, 2007a, p. 276)

before actually reaching it. As I need a phenomenological model with precise spike timing
in spite of noisy inputs and low computational complexity in the following chapters, I
use a default Izhikevich neuron that is reduced to a quadratic integrate-and-fire model by
fixing u to its initial value.

Non-spiking Models

There also exist even more abstract models for neurons that only capture the amount of
activation of a neuron that depends on some weighted function (e.g. the sum) of its inputs.

y =
∑
i

wixi (2.9)

where y is the amount of activation of the postsynaptic neuron, xi is the activation
(or even just binary output) of one of many presynaptic neurons with index i, and wi
is the synaptic weight (=connection strength) between neurons. Time is here often only
represented in the form of progressing steps during processing, instead of being continuous
and showing dynamical properties as in the models above.

Such highly reduced models are hardly used for neuroscientific modelling today, due
to their failure to capture the dynamics of neural membranes and the resulting low com-
parability with biological data. However, applications in machine learning successfully
continue to widely use highly abstracted model neurons as feature extraction and classifi-
cation algorithms, but have little in common with biological neurons apart from naming.

2.2.2 Membrane Leak, Integrators, and Coincidence Detectors
One common feature of all spiking neuron models described above is the tendency of their
membrane potential to approach some equilibrium state in the absence of external input
due to leak currents. But why do neural membranes even leak at all? A perfect integrator
would simply wait as long as it takes to charge the membrane enough to evoke a spike, then
return to some reset or resting potential, and begin the whole integration process again
(compare Figure 2.5 right). The addition of a leak current causes the neuron to require a
certain amount of input within limited time for evoking a spike (Figure 2.5 center), while
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a very strong leak requires very strong input within a short time or the neuron will not fire
at all (Figure 2.5 left). The leak current therefore can be seen as an indicator for how long
the membrane will retain some form of memory about the occurrence of previous inputs.

Let us say that the maximum effect of any incoming excitatory postsynaptic current
(EPSC) is smaller than the input current required to evoke a spike. In this common case, a
postsynaptic neuron will need to receive multiple incoming EPSCs in order to reach a high
enough membrane potential to fire a spike. Without leak, the time in which these inputs
arrive can be arbitrary long (Figure 2.6 right). But if there is some form of leak current in
the neuron, any EPSCs need to arrive within some maximum timespan for them to cause
a spike (Figure 2.6 center). If the leak is very strong, the membrane does not remember
previous inputs for very long at all, and only inputs that arrive near-simultaneously can
evoke a postsynaptic response. This can be used to make a neuron specifically respond to
only coincident arrivals of inputs, as shown in Figure 2.6 left.

Phenomenological neuron models are sometimes classified as being either integrators,
i.e. expressing little leak and a long time constant for returning back to resting potential,
or being coincidence detectors with a strong leak and thereby a fast time constant (König
et al., 1996). Perfect integrators may be abstracted to rate-based neurons with just a
(sigmoid) activation function as their output, while perfect coincidence detectors may be
abstracted to binary artificial neurons in non-continuous applications.

When a neuron has an intermediate amount of leak (intermediate here strongly depends
on the exact circumstances), it may show a combination of both behaviours. This allows
the neuron to respond to inputs in a much more variable manner than if it were forced to
be either only integrator or only coincidence detector. In the first section of chapter 6 I
will show how an intermediate leak (or membrane time constant) allows precisely-timed
detection of correlated inputs while increasing robustness to synaptic noise.
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Figure 2.5: Effect of Leak on direct current injection. For some given range of piecewise constant input
currents, the injected neuron may remain quiet (strong leak), begin to spike only for strong injected currents
(medium leak), or respond to all inputs within the example range (weak leak). The firing frequency per
current level (f-I curve) is usually nonlinear in biological neurons. Top row: example injected current
ramps. Bottom row: Membrane potential of a target model neuron (see Appendix A.3.1 for parameters).
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Figure 2.6: Effect of Leak on paired pulse inputs from two presynaptic spiking input units. Given example
connection strengths that require two inputs for a postsynaptic response, the postsynaptic neuron responds
either only for exactly coincident inputs (strong leak), inputs that occur within some maximal timespan
(medium leak), or responds to most or all inputs by integrating over a long time (weak leak). Top row:
example spike times of two presynaptic input units firing regularly with different frequencies. Bottom row:
Membrane potential of a postsynaptic model neuron (see Appendix A.3.1 for parameters).
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2.3 Types of activity-dependent long-term Synaptic Plasticity
The dynamics of electrical potentials across a neuron’s membrane are not the only im-
portant factors for neural computation, however. A neuron usually receives inputs from
many other neurons, which themselves receive more inputs from more neurons, up to the
first sensory neurons in e.g. your eyes or ears that transform physical impressions of the
outside world (stimuli) into neural spikes. The type of stimulus a neuron responds to
strongly depends on which other neurons it is connected to. This allows neurons that are
otherwise identical in genetic makeup to fulfill very different tasks, just by receiving inputs
from different connections. It would also not nearly be possible to connect all neurons in
the brain, as the number of required fibers (dendrites and axons) would take up much
more space and require too much energy to sustain (Attwell and Laughlin, 2001). The
brain, therefore, needs to choose carefully which neurons should be connected and which
need not or must not be. So how does the brain decide which neurons to connect and
which not to connect?

Gladly, this does not need to be decided all at once. Synaptic connections between
neurons change gradually over the neurons’ lifetime (mostly at the beginning) and depend
on their spiking activity (Hebb, 1949) as well as on homeostatic factors that regulate the
brain’s (computational) stability (Turrigiano et al., 1998; Turrigiano and Nelson, 2004).
As the synapses change over time (they can be “reshaped” or “formed”), they are called
plastic.

2.3.1 Correlations: Traditional Hebbian Plasticity
Donald Hebb (1949, p. 62) suggested that the connection strength (or synaptic weight)
between two neurons may be increased when a first neuron causes a second neuron to fire.

“When an axon of cell A is near enough to excite B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing
B, is increased”

Unfortunately, this was soon paraphrased by many into stating that any two neurons
simply need only to fire at roughly the same time, no matter in which order:

“Neurons that fire together, wire together”

This paraphrasing of Hebb’s original statement has in the last decades become known as
Hebbian Plasticity or Hebbian Learning. Although the ordering was no more taken into
account, traditional Hebbian plasticity has been used very successfully to model learning
processes to solve many technical tasks in the field of machine learning (Bishop, 1995). A
typical update rule for the change of synaptic connections ẇi in Hebbian plasticity is

ẇi = η xi y (2.10)

where xi is the firing rate of the ith presynaptic neuron, y is the firing rate (or degree of acti-
vation) of the postsynaptic neuron (see also Equation 2.9), and η is a factor controlling the
speed of learning. When the pre- and postsynaptic firing rates tend to increase/decrease
together (correlated activity), this leads to a strengthening of the synaptic connection.
But when pre- and postsynaptic firing rates are not correlated, the synaptic connection
strength does not increase, because the product of the two terms will usually be small.
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Hebbian plasticity does not include a mechanism to also decrease weights, and so
the synaptic connection strengths would increase to infinity without further care. For
practical uses, therefore, a way of decreasing synaptic weights must also be included.
Possible implementations include synaptic scaling where the sum of all synaptic strengths
is made equal to some constant after each update step. Experimental work on neuronal
homeostasis (Turrigiano et al., 1998; Turrigiano and Nelson, 2004) is often presented as a
justification for doing this in computer simulations. However, while there is little doubt
of the biological existence of activity-dependent rescaling of synaptic strengths or neural
excitability, short- to mid-term homeostatic mechanisms are usually observed on different
time scales than long-term synaptic plasticity. Also, the idea that all synapses of a neuron
constantly change as one synaptic connection is altered seems illogical from an information
transmission point of view. Still, when relaxing the requirement of biological plausibility,
extensions to Hebbian learning such as Oja’s Rule (Oja, 1982) have allowed artificial neural
networks to become a powerful tool in machine learning.

Biological synaptic plasticity likely depends on a number of biochemical processes
which are still not fully uncovered. Computational Neuroscience has continued to integrate
biological experimental data into phenomenological models in order to explain how the
real brain may be solving its computational tasks.

However, the idea that correlation between inputs is the main factor governing synaptic
plasticity has prevailed throughout both computational neuroscience and the artificial
neural network community over the last decades.

2.3.2 Frequencies: BCM rule
A highly cited work on self-regulating rate-based plasticity is that of Bienenstock et al.
(1982). The rule presented by Bienenstock, Cooper, and Munro (BCM rule) uses the
difference between the postsynaptic firing rate y and some target rate θM to induce either
potentiation (strengthening) or depression (weakening) of synapses (see Figure 2.7).

ẇi = y(y − θM )xi − εwi (2.11)

The rate threshold θM itself may depend on the running average distance to some
target firing rate y0, leading to a self-regulating firing rate of the postsynaptic neuron:

θM = E[(y/y0)] (2.12)

Figure 2.7: The BCM rule uses a sliding threshold on a target output rate to guide plasticity (Image from
Blais and Cooper, 2008).
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Figure 1 Critical window for synapticmodifications. Long-term potentiation (LTP)/long-
term depression (LTD)were induced by correlated pre- and postsynaptic spiking at synapses
between hippocampal glutamatergic neurons in culture. The percentage change in the ex-
citatory postsynaptic current (EPSC) amplitude at 20–30 min after repetitive correlated
spiking (pulses at 1 Hz) was plotted against spike timing, which is defined as the time
interval (1t) between the onset of the EPSP and the peak of the postsynaptic action po-
tential during each pair of correlated spiking, as illustrated by the traces above. LTP and
LTD windows are each fitted with an exponential function: 1W = A ⇥ e(�1t/⌧ ). For
LTP and LTD, respectively, A = 0.777 and �0.273; ⌧ = 16.8 and �33.7 ms. Note that
1W represents the total amount of change in synaptic strength after 60 pairs of correlated
spiking. Assuming effective unitary change 1w (due to a single pair) has similar time
constants as those of1W, i.e. 1w = a ⇥ e(1t/⌧ ), thus (1 + A) = (1 + a)60, yielding a =
0.0096 and �0.0053 and the total areas under the unitary LTP and LTD curves a ⇥ ⌧ =
0.16 and 0.18 for LTP and LTD, respectively. Scales: 50 mV, 10 ms. [Data from Bi & Poo
(1998).]

milliseconds. The direction and magnitude of synaptic modifi-
cations induced by spike patterns recorded in vivo in response to
natural visual stimuli were well predicted by incorporating the
suppressive inter-spike interaction within each neuron. Thus,
activity-induced synaptic modification depends not only on the
relative spike timing between the neurons, but also on the spiking
pattern within each neuron. For natural spike trains, the timing
of the first spike in each burst is dominant in synaptic
modification.
Whole-cell recordings were made from pyramidal neurons in

layer 2/3 (L2/3) of rat visual cortical slices to monitor excitatory
postsynaptic potentials (EPSPs) evoked by extracellular stimulation
applied in the same layer. To understand how complex spike trains
induce synaptic modification, we first characterized the dependence
of synaptic modification on the interval between the pre- and
postsynaptic spikes, using a standard pairing protocol6,8–10. Each
pairing consisted of a single-pulse presynaptic stimulation and a
brief postsynaptic depolarizing current injection that induced an
action potential. After 60–80 pairings (0.2Hz) at positive intervals

(pre ! post) of 2 to 15ms, we observed long-term potentiation
(LTP) (Fig. 1a, b). The same number of pairings at negative intervals
(post ! pre, 22 to 215ms), however, induced long-term
depression (LTD) (Fig. 1c, d). Figure 1e summarizes the observed
synaptic modification as a function of the pre/post inter-spike
interval. Synaptic potentiation was observed at intervals between
0 and 20ms, whereas depression was observed between 0 and
240ms, comparable to the temporal window for STDP found at
several other glutamatergic excitatory synapses5,6,8 –9. Similar LTP
and LTD windows were also observed in experiments performed in
high divalent external solution containing 4mMMg2þ, 4mMCa2þ

(to reduce polysynaptic transmission), and 3 mM bicuculline
(antagonist of the GABAA receptor) (Fig. 1e, triangles). Thus the
observed STDP is independent of polysynaptic transmission and
cortical inhibition. To obtain a quantitative description of the
temporal window, we fitted the data on each side with an expo-
nential function Dw ¼ Ae#jDtjt, where Dw is the percentage change
in synaptic strength, A and t are the scaling factor and time constant
of the exponential function, respectively, and Dt is the pre/post
inter-spike interval. A and t were found to be 101% and 14.8ms
respectively for potentiation, and252% and 33.8ms for depression.

To predict the effect of a pair of complex spike trains in synaptic
modification, a straightforward approach is to combine the contri-
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Figure 1 Synaptic modification of L2/3 visual cortical connections induced by pre-/
postsynaptic spike pairs. a, Example of LTP (117%) induced by repetitive pre- and
postsynaptic spiking at a positive interval (9.1 ms). Arrow, induction. Bottom, input

resistance (Ri). b, Summary of effects of pre ! post spiking (increase of 62.5^ 12%,

n ¼ 13, P , 0:001, t-test; intervals: 2–15ms). c, As in a, except LTD (248%) was

induced by a post ! pre spike pair (interval,22ms). d, Summary of effects of post !
pre spiking (241.5^ 4%, n ¼ 11, P , 0:0001, intervals:22 to215ms).

e, Dependence of synaptic modification on pre/post inter-spike interval. Each point
represents one experiment. Circles, normal ACSF (Aþ ¼ 103^ 10%, s.d., non-

parametric bootstrap, tþ ¼ 13:3^ 1:7ms, n ¼ 17; A2 ¼ 251^ 1%,

t2 ¼ 34:5^ 1:6ms, n ¼ 15). Triangles, high divalent ACSF with bicuculline

(Aþ ¼ 102^ 11%, tþ ¼ 15:5^ 3:2ms, n ¼ 15; A2 ¼ 252^ 6%,

t2 ¼ 33:2^ 5:3ms, n ¼ 9). No significant difference between parameters for the two

solutions (P . 0:5). Curves, single-exponential, least-square fits of the combined data.
Mean error of the fit, 18.2^ 2.1%. Correlation coefficient between the data and the fit,

0.88. R2 = 12 Se2i /Sy
2
i (where ei is the error, yi is the measured effect of the i th

experiment) = 0.72.
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Figure 2 Synaptic modification induced by spike triplets. a, Example of LTD induced by a
‘1/2’ triplet. Pre/post spike pair interval defined as tpost2 tpre. Right arrows, positive; left

arrows, negative. b, Summary of ‘1/2’ experiments satisfying: (1) t 1 , 0, (2) t 2 . 0, (3)

jt 1 2 t 2j # 30ms, and (4) prediction of the independent model was potentiation or no

change. The measured effect was depression (233^ 11%, n ¼ 6, P , 0:05). c, Mean
prediction errors based on t1, t2, and t1 and t2 combined (using the independent model) for

all the ‘1/2’ triplets such that both jt1j and jt 2j , 15ms (n ¼ 11). Error bars,^s.e.m. d,
As in a, except LTP was induced by a ‘2/1’ triplet. e, Summary of ‘2/1’ triplet experiments
satisfying: (1) t 1 . 0, (2) t 2 , 0, (3) jt 1 2 t 2j # 30ms, and (4) prediction of the

independent model was depression or no change. The measured effect was potentiation

(65.0^ 17%, n ¼ 8, P , 0:01). f, Mean prediction errors based on t1, t2, and t1 and t2
combined (using the independent model) for all ‘2/1’ triplets such that both jt1j, jt 2j ,
15ms (n ¼ 14). Prediction error based on t1 was smaller than that based on t2
(P , 0:001) and t1 and t2 combined (P , 0:005).
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Figure 2.8: STDP experimental data. (a) Experimental data from (Bi and Poo, 1998), fitted by a curve
in (Bi and Poo, 2001). (b) Data and fitted STDP curve from (Froemke and Dan, 2002). Positive spike
timing differences (pre before post) lead to potentiation, while negative timings lead to depression. Note
that the maximum potentiation has a larger scale than absolute maximum depression. Also, note that the
exponential decay constant of potentiation is shorter than that of depression.

While rate stabilization of neurons likely is more complex than this in reality, spike fre-
quency dependence of synaptic plasticity is seen throughout the brain (Froemke et al.,
2010, 2006; Sjöström et al., 2001; Toyoizumi and Pfister, 2005).

2.3.3 Temporal Order: Spike timing dependent plasticity
Since the discovery that neurons change their spiking behaviour with behavioural con-
text (Adrian and Zotterman, 1926), an ongoing question has been whether the single
spikes that neurons fire could have importance beyond the resulting firing rate. Could
the timing of spikes within a group of neurons carry additional information? An argu-
ment against this perception has long been the variability of measured spike responses
to precisely timed external stimuli in experimental work (Dorrscheidt, 1981; Gerstein and
Kiang, 1960). Widespread proof for temporal coding within the brain has continued to
be hard to gather, possibly due to the expectation that single neurons needed to show
identifiable correlation in their responses for a temporally precise response to be declared.
Neural plasticity was therefore also assumed to not depend on the temporal structure of
spikes, until first experimental results (Bi and Poo, 1998; Markram et al., 1997) confirmed
theoretical predictions (Gerstner et al., 1996) of how spike timing may be used for learning.

Bi and Poo (1998) showed a strong dependence of neural plasticity on the timing of
pairs of single spikes, with a hard switch of update direction as the order of spike arrivals
on the pre- and the postsynaptic side of a synapse was reversed. Figure 2.8 shows these
experimental data points together with an exponentially fitted curve (Bi and Poo, 2001;
Froemke and Dan, 2002). It should be noted, though, that the observed data was collected
in an experimental paradigm that involved repeated pairings over the course of multiple
minutes, and that no such data could be observed for one-time pairings.

The curves that fit the experimental data in Figure 2.8 can be described as two ex-
ponential decay functions, scaled to fit each side of the time difference distribution. The
general equation for timing-induced weight changes ∆w as used throughout this work is

∆w =

 A+ · λ · e
∆t
τ+ · g+(w) for tpre < tpost (LTP)

−A− · λ · e
−∆t
τ− · g−(w) for tpre > tpost (LTD)

(2.13)
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where A+ and A− are positive scaling factors, τ+ and τ− are the exponential decay time
constants, ∆t is the difference between presynaptic (tpre) and postsynaptic (tpost) spike
arrival times at a synapse (∆t = tpost−tpre), λ is a constant that controls the learning rate,
and g(w) is a dynamic weight-dependent scaling parameter that will be further explained
in Chapter 5.

Further theoretical work by Song et al. (2000) then coined the term spike timing
dependent plasticity (STDP) and used randomly timed correlated inputs to show that
STDP leads to a binary distribution of synaptic weights when update steps do not depend
on previous synaptic strength (additive STDP, see Chapter 5) and the number of input
units is very small. Song et al. (2000) also used a slightly more abstracted STDP rule
from that fitted to the data of Bi and Poo (1998), in that both long-term potentiation
(LTP) and long-term depression (LTD) had equal time constants of exponential decay in
their model. As a reason for this abstraction, Song et al. (2000) state that the exact shape
of an STDP rule has little effect when correlated input data is used. Much theoretical
work has henceforth used STDP rules with equal decay time constants (τ+ = τ−) for both
LTP and LTD and only controlled synaptic drift through the scaling of A+ and A− (e.g.
Rubin et al., 2001). An overview table of typical STDP rule parameters can be found in
Appendix A (Table A.1, p. 177).

I will further demonstrate the effects of synaptic drift in chapters 5 and 6 (e.g. Sketch
5.2, p. 41), where STDP without drift (A+ = A− , τ+ = τ−) is compared to STDP with
depressing drift (hinted at by |A+| < |A−| or |τ+| < |τ−|). A further review of STDP
specifics is given in (Morrison et al., 2008).

2.3.4 Combined accounts of long-term plasticity
Froemke and Dan (2002) noted a dependence of timing-dependent updates to a synapse’s
connection strength on previous activity of the involved pre- and postsynaptic neurons.
Their spike suppression rule (Froemke and Dan, 2002) stated a decreasing effect of later
spikes within a burst on changing synaptic strength.

Pfister and Gerstner (2006) explained this and similar experimental results through
a rule that used triplets of spikes instead of spike pairs to modify synaptic connection
strength.

Clopath et al. (2010) then extended this into a voltage-based model of STDP, where
previous activation of a postsynaptic neuron needed to be reflected in a low-pass filtered
copy of the membrane voltage in order to allow timing-dependent weight changes to take
effect. This effectively constrained STDP to a medium regime of postsynaptic firing rate,
as seems to be the case in real biological neurons (Bi and Poo, 1998; Clopath et al., 2010;
Froemke and Dan, 2002). For very low postsynaptic firing rates, no changes occur in the
Clopath et al. (2010) model, while for very high postsynaptic firing rates, the model looses
its dependence on spike timing and becomes more similar to a rate-based Hebbian model
Clopath et al. (2010); Toyoizumi and Pfister (2005).

As the current work aims to uncover possible uses for fast information transmission
within the basal ganglia, and as most existing work has previously focused on rate-based
Hebbian modifications to synaptic strengths, I concentrate specifically on the temporal
aspects of spike timings in this work by keeping pre- and postsynaptic activity within
normal regimes for the observation of STDP. In the following, I will therefore be using
standard STDP models as in (Bi and Poo, 1998; Billings and van Rossum, 2009; Gerstner
et al., 1996; Gilson et al., 2010; Gütig et al., 2003; Guyonneau et al., 2005; Izhikevich,
2006, 2007b; Izhikevich et al., 2004; Kistler and van Hemmen, 2000; Masquelier et al.,
2008; Morrison et al., 2007, 2008; Rubin et al., 2001; Song et al., 2000; van Rossum
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et al., 2000; Vogt and Hofmann, 2012), without adjustments for special cases such as spike
suppression, spike triplets, or voltage dependence.

2.4 Other forms of Neural Plasticity
Other forms of neural plasticity include short term plasticity, where a synapse may tem-
porarily change its throughput according to recent neural events or slow chemical messen-
gers, including neuromodulators. Dendritic growth during (initial) neuronal cell develop-
ment is often referred to as structural plasticity. Random changes to synaptic connections
are also likely possible, due to the statistical nature of biological systems.
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Chapter 3

The Basal Ganglia

3.1 Scales of Neural Modelling
We need to establish an idea of the different scales of abstraction at which neuroscientists
tend to speak about the brain.

As the complexity of the human brain has eluded scientists’ understanding on so many
levels from behaviour down to single cells and biochemistry, people usually need to form
an abstract description in order to be able to talk about the brain at all.

Brain

Systems

Input

Output

Hidden

Networks

Neurons

Chemistry

Figure 3.1: Scales of neural description. Each recording technique can only record data from a subset of
these scales, and explanatory models also tend to abstract from more detailed levels in order to explain
observed features. This work is largely concerned with the network level of descriptions, while bridging
the gap from system-level to neuron-level explanations. (Source images: Creative Commons)

Whole Brain

Models of the whole brain are usually very abstract descriptions about general features of
large assemblies of neurons. They tend to reproduce only statistical observations of EEG
or fMRI recordings (Izhikevich and Edelman, 2008) without being able to solve actual
tasks on any level similar to real brains. Diffusion tensor imaging (Jones and Leemans,
2011) has allowed scientists to track the propagation of high activity as it moves through
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the brain, yielding a functional map of layered processing stages that fits with anatomical
data.

Systems

On the systems level, research has progressed very differently for different parts of the
brain. Many systems are still commonly described only through rate-based interactions
between the nuclei or layers they consist of, and many models reduce the complexity of
whole constitutive cell clusters to a single “activity” variable. A typical example for this
are the basal ganglia, which are still described in a box-and-arrow style in most anatomy
textbooks (see Section 3.2).

A contrary example for multi-scale descriptions of a functional unit is the visual system,
which has been described in high detail also on functional network (Olshausen and Field,
1997) and neuron (Shlens et al., 2006) levels. However, even in the visual system there is
still much left to be understood.

Networks

Network level explanations of the brain include all cases where the interaction between
separate neurons is used as the main defining feature. This is also the scale of activity
that is the hardest to measure experimentally, as all inputs and outputs of a large number
of neurons would need to be recorded simultaneously and isolating parts of a large neural
network may change its behaviour in unforeseen ways. Network-level simulations often
use simple point neurons without modeling the full tree of anatomical branches while
also using reduced membrane dynamics that capture only the most necessary features of
biological neurons.

A variety of neuron models can be used as basic elements for network-level models
of the brain, and the choice of neuron model is usually based on a compromise between
simulation speed and essential biological realism (see Chapter 2).

Neurons & Other cells

Understanding the brain on the level of single neurons and supporting cells is a necessary
requirement for reconstructing functional networks of interacting neurons. However, the
dynamics within a single neuron are also highly complex and it is still not fully understood
which features of neuronal dynamics are highly important for higher-level functions and
which may simply be side effects that can be ignored or replaced by other features for
neuronal processing. The answer likely always depends on the type of task that is to be
solved.

Apart from many different types of neurons, the brain also consists of a large variety
of other cells that may also have some involvement in neural information processing. As-
trocytes, for example, have been shown to propagate non-electrical spikes in their internal
calcium concentration to neighbouring astrocytes and neurons (Volterra and Meldolesi,
2005).

Biochemistry

Biological neurons use a large zoo of ion channels to regulate their membrane potential
(Chapter 2). These ion channels and internal (metabolical) processes also depend on a
large variety of neurotransmitters and other chemicals to enable and modulate their out-
come, and a lot of biochemical research is currently underway to decipher statistical and
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Figure 3.2: Anatomical structure of the Basal Ganglia. Left: Location of the basal ganglia, thalamus,
and amygdala within the human brain. Right: Coronal (frontal) slice view of basal ganglia nuclei at two
different depths. (Images: mikeclaffey.com & Creative Commons)

dynamical effects of the large group of chemical compounds that the brain uses regu-
larly. While the sheer number of biochemical interactions within a single neuron can be
discomforting, people have shown that the complexity of biological neurons can be re-
duced without sacrificing their most important features for higher-level neural behaviours
(Izhikevich, 2007a).

3.2 Anatomy of the Basal Ganglia
The basal ganglia are a collection of midbrain nuclei that are involved in selecting the
next action to perform without requiring explicit cortical attention. This is important for
the autonomous execution of skills such as riding a bike or playing a musical instrument.
The main anatomical parts of the basal ganglia are described below, followed by a short
overview of system-level models that aim to describe their function. The actual interac-
tions between basal ganglia nuclei remains a topic of active research, while scientists try
to figure out the functional implications of the high number of inter-nuclei connections
(see Figure 3.3).

As with most brain areas, each half (hemisphere) of the brain has its own set of basal
ganglia, with each set showing a dominance in controlling one side of the body. In the
following, when talking about any part of the basal ganglia, its counterpart on the opposite
side of the brain is also implicitly meant unless stated otherwise.

Striatum

The largest functional area of the basal ganglia is the striatum, which itself consists of
the caudate nucleus, the putamen, and the nucleus accumbens (shown in blueish purple in
Figure 3.2). The nucleus accumbens is sometimes further subdivided into its central area
and the shell due to functional division (Voorn et al., 2004).

The dominant type of neurons in the striatum are GABA-releasing (=inhibitory)
medium spiny neurons (MSNs), which represent more than 90% of neurons there. MSNs,
also known as spiny projection neurons, receive glutamatergic (=excitatory) inputs from
nearly all areas of the cortex and thalamus, but also receive inputs from other basal ganglia
nuclei as well as a number of striatal interneurons, including acetylcholine-releasing ton-
ically active cholinergic interneurons (TANs) and GABA-releasing fast-spiking interneu-
rons (FSIs). Medium spiny projection neurons have a large number of receptors for
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Figure 3.3: Wiring diagrams of the basal ganglia. (a) Since the direct/indirect pathway model was proposed
(Albin et al., 1989), a large number of additional connections has been discovered. (b) Basal ganglia
connections discovered since the Albin model (Bevan et al., 1998; Nambu et al., 2002; Parent et al., 2000;
Smith et al., 1998; Smith and Kieval, 2000; Wilson, 1998), redrawn from Redgrave (2007) with additional
GPe-to-SNc connection as in (Mastro et al., 2014; Paladini et al., 1999).

dopamine, which reaches the brain’s highest concentration in the striatum (Redgrave,
2007). There are currently five well-known types of dopamine receptor, but these can
be grouped by similarity of the effects they have on the cell that expresses them. The
first group consists of receptors that are generally thought to increase excitability of (the
part of) the membrane they are in when receiving high concentrations of dopamine (D1R
and D5R, commonly called D1-type receptors). The second group of dopamine receptors
seem to decrease excitability for high dopamine concentrations but therefore increase ex-
citability for low concentrations (D2R, D3R, D4R, commonly called D2-type receptors).
However, the exact mechanisms of how dopamine receptors affect the cells that express
them is still not fully understood. The striatum contains mostly D1R and D2R dopamine
receptors, and MSNs that project to the GPi and SNr (see below) tend to express more
D1-type dopamine receptors, while MSNs projecting to the GPe tend to express more
D2-type receptors. However, this division is not exclusive, and many striatal neurons have
been found to express both types of receptors (Aizman et al., 2000; Fauchey et al., 2000;
Hasbi et al., 2009; Lee et al., 2006, 2004b; Perreault et al., 2012, 2010; Rashid et al., 2007;
So et al., 2005; Thompson et al., 2010).

Globus Pallidus (GPe & GPi)

The globus pallidus is the second-largest part of the basal ganglia, and is located between
the putamen and thalamus, or medial to the putamen and ventro-lateral to the thala-
mus, to be more precise. It is anatomically divided into two functionally very separated
subregions, the external globus pallidus (GPe) and internal globus pallidus (GPi), which
sits slightly more ventral and medial than the GPe. Both GPe and GPi receive strong
inhibitory connections from the striatum, but while GPi is considered an output nucleus
of the basal ganglia, GPe projects to many other parts within the basal ganglia including
the subthalamic nucleus, the striatum, and both parts of the substantia nigra (see below).
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The GPe itself also appears to be further subdivided (Mallet et al., 2012), but the exact
function of this is yet to be understood.

Subthalamic Nucleus (STN)

The subthalamic nucleus (STN) is located beneath the thalamus, and receives inhibitory
connections from the GPe as well as excitatory connections directly from the cortex. It is
the only basal ganglia nucleus that forms excitatory outgoing connections. Its outputs end
in the GPi and GPe, thereby forming a feedback loop with the GPe. During deep brain
stimulation treatments for Parkinson’s Disorder, the STN has become the most targeted
region of the basal ganglia due to trial-and-error testing.

Substantia Nigra (SNc & SNr)

The substantia nigra is a smaller region of the basal ganglia that is also strictly divided into
two subregions. In this case, the substantia nigra pars compacta (SNc) contains mostly
neurons that form long branches into the striatum, where they release dopamine that
influences activity and plasticity there. The substantia nigra pars reticulata (SNr) is in-
stead considered another output area of the basal ganglia and forms inhibitory GABAergic
connections to the thalamus.

3.3 Function of the Basal Ganglia
While the basal ganglia’s known anatomy has been discovered largely through pinch-and-
prod approaches that include histological mapping and in vitro analysis of biochemistry,
the exact function that this complex anatomy provides is far less clear. As seen in Section
3.2, the high number of anatomical connections and different cell types in the basal gan-
glia make it impossible to directly infer the exact function of each subregion from mere
anatomical or in vitro electrophysiological observations. We need to find out which con-
nections might be more important than others in which behavioural situations, and how
the neural dynamics of all subregions interact to produce the ascribed functions that the
basal ganglia are thought to fulfil. To complicate things, it appears impossible to research

Figure 3.4: Existing models of basal ganglia function. (left) Alexander and Crutcher (1990) model of
direct/indirect pathways. (right) Dynamic threshold model of Gurney et al. (2001).
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the basal ganglia outside of the body, as they are so highly interconnected with nearly all
other areas of the brain.

Existing models that fit the basal ganglia can be broadly categorised into two groups.
The first is a collection of more abstract models that use at most rate-based neurons to
try and explain how the basal ganglia might work (Section 3.3.1). The second category is
a collection of models that try to implement reinforcement learning in a neural network,
some of which use spiking neurons to do so (Section 3.3.2). However, neither has yet
come close to solving the mystery of how the basal ganglia actually work on the level of
observable spiking networks, and there is still much work to be done on the way to solving
this task. This is why we can only define a temporary working hypothesis (Section 3.3.3)
of the basal ganglia’s functions that is based on the knowledge gathered so far, instead of
relying on precise blueprints, which do not exist.

As the basal ganglia are considered to perform fast action selection, I will demonstrate
in Part II of this work how the dynamics of spiking models that use temporal coding are
likely very different from models that only rely on rate-based coding of information. A
model that describes experimental observations on a rate-based scale often does not scale
to a more detailed, spike-based implementation, and instead often produces completely
different behaviour in such a changed context. At best, a formally rate-coded model
may be converted into a spike-based implementation without taking any advantage of the
benefits that can arise when proper temporal codes are used (see e.g. Savin et al., 2010)
for the fast decision system that is the basal ganglia.

A second problem with many models presented below is that they often only decide
between a predefined set of “selection channels” without showing how these channels may
be formed through procedural learning. My approach here is to directly address the
spike-based level of basal ganglia modelling through use of temporal coding, and include
a plasticity process that automatically forms a map of receptive fields to replace the
predefined selection channels that are commonly referenced in other publications (Frank,
2006; Gurney et al., 2001; Potjans et al., 2009).

3.3.1 Abstract and Rate-based Models
The standard teaching model of basal ganglia function for medical students is since the
late 1980s still that of two feed forward pathways running through the basal ganglia to
control motor activity (Albin et al., 1989; Alexander and Crutcher, 1990). The postulatedFrank 5

Empirical Tests of the Model
Recently, we have tested various aspects of the hy-

pothesized roles of the basal ganglia / dopamine sys-
tem across both multiple cognitive processes. First, we
demonstrated support for a central prediction of the Frank
(2005a) model regarding BG dopamine involvement in
“Go” and “NoGo” cognitive reinforcement learning. We
tested Parkinson patients on and off medication, along
with healthy senior control participants (Frank et al.,
2004). We predicted that decreased levels of dopamine in
Parkinson’s disease would lead to spared NoGo learning,
but impaired Go learning (which depends on DA bursts).
We further predicted that dopaminergicmedication should
alleviate the Go learning deficit, but would block the ef-
fects of dopamine dips needed to support NoGo learning.
Results were consistent with these predictions. In a prob-
abilistic learning task, all patients and aged-matched con-
trols learned to make choices that were more likely to re-
sult in positive rather than negative reinforcement. The
difference was in their learning biases: patients taking
their regular dose of dopaminergic medication implicitly
learned more about the positive outcomes of their deci-
sions (i.e., they were better at Go learning), whereas those
who had abstained from taking medication implicitly
learned to avoid negative outcomes (better NoGo learn-
ing). Age-matched controls did not differ in their ten-
dency to learn more from the positive/negative outcomes
of their decisions. We have also found the same pattern
in young healthy participants administered dopamine D2
receptors agonists and antagonists, which at low doses
modulate striatal dopamine release (Frank & O’Reilly, in
press). Again, dopamine increases improved Go learn-
ing and impaired NoGo learning, while decreases had the
opposite effect. The same BG modeling framework ac-
curately predicted the pattern of event-related potentials
recorded from healthy participants who were biased to
learn more from either positive or negative reinforcement
(Frank et al., 2005), as well as a counter-intuitive im-
provement in BG/DA-dependent choices when hippocam-
pal explicit memory systems were taken offline by the
drug midazolam (Frank, OReilly, & Curran, in press). Fi-
nally, in the D2 drug study mentioned above, the same
BG/DA effects extended to higher level working memory
tasks that required paying attention to task-relevant (i.e.,
positively valenced) information while ignoring distract-
ing (negative) information (Frank & O’Reilly, in press),
consistent with predictions from extended BG models
that include interactions with prefrontal cortex in work-
ing memory and attention (Frank et al., 2001; O’Reilly &
Frank, 2006; Frank & Claus, in press).
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Figure 2: The subthalamic nucleus is incorporated into a
scaled-up model that includes four competing responses (R1-
R4). The STN receives excitatory projections from pre/motor
cortex in the “hyperdirect pathway” and excites both GPi and
GPe; GPe provides inhibitory feedback on STN activity.

Integrating Contributions of the Subthalamic
Nucleus in the Model

Despite its success in capturing dopamine-driven in-
dividual differences in learning and attentional processes,
the above model falls short in its ability to provide insight
into BG dynamics that depend on the subthalamic nucleus
(STN). The model was designed to simulate how the BG
can learn to selectively facilitate (Go) one response while
selectively suppressing (NoGo) another. Because the pro-
jections from the STN to BG nuclei (GPe and GPi) are
diffuse (Mink, 1996; Parent & Hazrati, 1995), it may not
be well suited to provide selective (focused) modulation
of specific responses, and was therefore omitted from the
model. Instead the model simulated the focused projec-
tions from striatum to GPi and GPe, as well as the focused
projections from GPe to GPi, to demonstrate how direct
and indirect pathways may compete with one another at
the level of each response, but may act in parallel to facil-
itate and suppress alternative responses (see Frank, 2005
for details and discussion).
Nevertheless, there is substantial evidence that the

STN is critically involved in both motor control and cog-
nitive processes (Bergman, Wichmann, Karmon, & De-
Long, 1994; Boraud et al., 2002; Baunez, Humby, Eagle,
Ryan, Dunnett, & Robbins, 2001; Karachi et al., 2004;
Witt et al., 2004). Further, other computational models of
action selection also implicate a key role of the STN (Gur-
ney et al., 2001; Rubchinsky, Kopell, & Sigvardt, 2003;
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Figure 3.5: Existing models of basal ganglia function. (left) “Hold your horses” model of Frank (2006)
(right) Hypothesised function of basal ganglia as a main control centre within the brain (Cisek, 2007).
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direct pathway thereby runs from the striatum directly to the basal ganglia’s output nuclei
SNr and GPi (see Figure 3.4 left). The indirect pathway, in contrast, runs from a second
population of neurons in the striatum to the GPe, then STN, and then also to the output
nuclei SNr and GPi. A third pathway of the basal ganglia (later named the hyperdirect
pathway) can also be seen to connect cortical inputs to the basal ganglia’s STN, thereby
bypassing the striatum (Nambu et al., 2002). In this model, the direct pathway is said to
enable movements, while the indirect pathway acts to block the selection of movements,
which is often understood as a race between the two pathways. The function of the third,
hyperdirect, pathway is in this context not fully explained, but has been described as a
means of direct control by cortex of thalamus over the basal ganglia’s output. However,
the feedforward direct/indirect pathway model in (Alexander and Crutcher, 1990) ignores
many more anatomical connections that exist in the basal ganglia (see Figure 3.3) and may
be too simple to explain many of the functions, disorders, and side effects of treatment
that can be observed in the basal ganglia.

Gurney et al. (2001) came up with an explanation for the anatomical connections from
STN to GPe and from GPe to GPi/SNr (Figure 3.4 right). In their model, the GPe
is a control hub that interacts with the STN to set a dynamic threshold that potential
signals passing through the direct pathway must pass in order to become selected. This
is further extended by Holgado et al. (2010), who explore the conditions under which
beta oscillations as observed in Parkinson’s Disorder arise through frequent interactions
between GPe and STN in an analytical study. Other authors have rather looked at possible
interactions between the dopamine signal and the hyperdirect pathway, suggesting that
the interaction between STN and GPe may act to postpone action selection in order to
gather more data for making a sufficiently informed decision (Frank, 2006). See Figure
3.5 (left) for the main model diagram of Frank (2006). Again others question the role
of the dopamine signal as purely signalling reward error, and propose that the release of
dopamine may (also) be a way of signalling novelty within the basal ganglia and many
other parts of the brain (Redgrave and Gurney, 2006).

Finally, the affordance competition hypothesis of Cisek (2007) sets the basal ganglia’s
function into a broader context as a control center for the rest of the brain, where the
classical division of labour into perception, cognition and action between brain regions is
broken into the two main functions action specification and action selection, under which
all other brain functions are subsumed (Figure 3.5 right).

3.3.2 Spike-based Models
A number of publications have also tried to combine spiking neurons with reinforcement
learning (Sutton and Barto, 1998) to approach the assumed function of the dopamine
signal (Ljungberg et al., 1992; Schultz, 2000, 2007; Schultz et al., 1997; Suri and Schultz,
2001, 1998, 1999; Waelti et al., 2001) on a computational level.

Florian (2005, 2007) modulates the prospective weight changes that result from STDP
with a scalar reinforcement value on each update step. The author assumes that the agent
(in this case a worm) lives in an environment with a prearranged terrain that contains a
chemical gradient signalling how far the worm’s mouth is located from some food reward.
As the favourable environment conveniently signals approaches towards the reward as a
change of chemical concentration, no internal value function needs to be maintained and
the task is highly simplified. The simple multiplication of a spike timing dependent weight
change with some scalar value also evokes questions on the biological implementation of
this assumed mechanism. However, this seems to be one of the earliest works that combine
spiking neurons and STDP with reinforcing feedback.
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Izhikevich (2007b) then goes a step further and claims to solve the distal reward
problem of reinforcement learning in spiking networks by not directly affecting immediate
weight changes through external reward, but using an intermediate variable. STDP here
does not directly change the synaptic weight, but instead excites a so-called eligibility
trace variable (known from the field of reinforcement learning) that stores the memory of
previous spike pairings for a while as it slowly relaxes back to zero. If a (dopaminergic)
reinforcement feedback arrives while the eligibility trace in non-zero, it is in a second step
only then applied to changing the actual synaptic connection strength. Unfortunately,
the problem of distal rewards is not solved in this paper in spite of contrary claims, as
any biological mechanism (e.g. biochemical process) acting in a similar way could at most
retain such a memory over a timespan of seconds, and not hours, days or years as is seen
in humans and many animals. Other mechanisms will therefore (also) be necessary to
explain biological implementations of reinforced learning.

Farries and Fairhall (2007) also directly multiply the prospective weight change arising
from STDP with a scalar reinforcement signal. While the paper is well-written, addresses
many useful side questions that arise when using STDP, and even correctly mentions
the predictive learning feature (Abbott and Blum, 1996; Blum and Abbott, 1996) of anti-
symmetric STDP which always finds the start of repeating patterns (see also Section 6.2.1),
it tries to fight this through the learning task it sets itself. As the task that the paper tries
to solve through reward-modulated STDP is to perfectly reproduce a predefined target
spike train, it needs to fight STDP’s predictive learning behaviour throughout instead of
embracing it. A similar task is also tried in (Frémaux et al., 2010), which also leads to the
result that STDP’s inherent functionality must be counteracted in order to learn a specific
set of inputs. In Chapters 8, 9 and 10 of this work I introduce a way of modulating STDP
that has less need to compete with the inherent features of STDP.

Potjans et al. (2009) start with an abstract reinforcement learning model and aim to
implement it using spiking neurons. However, they represent each discrete state through
a group of 40 randomly spiking neurons where only the average firing rate of the group
represents the state’s value. Temporal coding is therefore not to be expected here. Also,
the number of possible states is predefined and non-continuous. But the model does
tackle the problem of when and how to perform automatic state value updates within
its own context, leading to an interesting plasticity rule that alternates synapses between
three regimes of nonplastic low and high activity, and activated plasticity. The biological
evidence for the derived plasticity rule here is, at best, sparse. Still, it is one of the more
bold models that try to bridge from classical reinforcement learning to spiking networks,
which deserves credit.

Vasilaki et al. (2009) create a continuous time, continuous state and continuous action
model that uses population coding to choose the direction an agent should move across
a space of states to reach the location of a hidden reward. While the model still uses
rate coding to convey state information, we consider the population code used for action
selection an improvement over the discrete states used previously. The model also includes
lateral interactions between output (action) units in order to improve the uniqueness of
population responses. Dopamine is still included through a three-factor plasticity rule here,
which results in a scalar multiplication of the reinforcement variable with presynaptic and
postsynaptic activity.

Urbanczik and Senn (2009) note that the reinforced learning speed of a population of
neurons drops as the size of the population increases. As the reinforcement feedback de-
pends only on the population response and not on the individual contributions of any given
neuron, neurons that happen to respond differently from the final population response on
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Figure 3.6: Working hypothesis of the basal ganglia as used for this work. Preliminary functions have
been assigned to nuclei and a reduced set of connections based on publications noted in Section 3.3 for
allowing us to work with the basal ganglia in a model. The majority of this text is concerned with plasticity
processes in the Striatum that use dopaminergic reinforcement to learn to select cortical inputs correctly.

any given selection trial may be punished or rewarded wrongly, slowing down the overall
speed of learning. As a solution, the paper suggests the existence of some variable that
specifies how close each specific neuron’s response was to the overall population response,
so that the resulting reinforcement feedback can be weighted and even change sign if the
neuron in question responded very differently from the whole population. The introduc-
tion of this additional feedback variable is shown to speed up learning, but requires that
each neuron tracks its own history of activity, has access to the global population response,
and also responds to neuromodulators present in the surrounding tissue. While the model
again uses scalar multiplication to signal reinforcement in a stochastic model without any
temporal coding, the presented mechanism may be useful in some cases.

3.3.3 Working Hypothesis
The current work was inspired by the wish to increase our understanding of the basal
ganglia’s neural spike code in order to one day improve neural implants for the treatment
of neurological diseases and an overall better understanding of how the brain works. On
the way to decipher the neural code of this integral part of the brain, we need to form a
working hypothesis that makes preliminary assumptions about the internal functionality
of all subregions of the basal ganglia. I therefore chose to assign preliminary labels to each
subregion, based on the published knowledge available. From the literature review carried
out during the conception stages of this work, selected publications were represented in
Sections 3.3.1 and 3.3.2. The refined essence of my working hypothesis for the functions
of each sub-nucleus is shown in Figure 3.6 and described below.
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Action Planners and External World Evaluation

We assume that the cortex, hippocampus, and thalamus have two main roles as inputs to
the basal ganglia. The first is that cortical areas plan prospective movements and more
high-level actions in concert with feedback from muscle tension and other internal status
signals arriving through the thalamus. The second role is the evaluation and interpretation
of external world stimuli by the cortex together with the hippocampus, and the rapid
comparison with new stimuli passing through the thalamus. This provides a mixture of
external world state and internal action feedback to the input areas of the basal ganglia,
namely the striatum and the STN.

Procedural Learner for Conflict Resolution

The inputs are then thought to be recognised and selected within the striatum, that is
also constantly attempting to learn new combinations of input patterns in order to faster
select them or avoid selecting them in the future. As during evolution most decisions will
have required a fast response, we assume that the striatum is optimised for fast decision
making. However, given enough time, the basal ganglia should also have the power to
delay decisions in order to improve selection, and both speeds of decision making should
be governed by the same general process to allow for a continuum of speed versus accuracy
trade-off.

Dynamic threshold computation

While the STN receives direct inputs from the cortex and GPe, the GPe itself receives
inputs from the STN and striatal D2R-neurons. Following Frank (2006), we assume that
the GPe-STN feedback loop computes a dynamic selection threshold that it provides to
the output nuclei of the basal ganglia. We hypothesise that this feedback loop has the
power to allow or delay decisions in accordance with the amount of planning uncertainty
in the cortex or the amount of selection uncertainty in the striatum.

Output nuclei

The output nuclei of the basal ganglia are widely believed to consist of the GPi and the
SNr. They receive inhibitory projections from the D1R-type neurons of the striatum and
both excitatory and inhibitory projections from the STN-GPe feedback loop, which they
use to disinhibit motor areas of the thalamus and in extension the cerebellum. Due to
the chain-like arrangement of “indirect pathway” nuclei, it seems likely that strong direct
pathway (striatal D1R-neurons) input happens together with a higher activity in the GPe
and thereby lower activity of STN, while weak activity in the direct pathway co-occurs
with a lower activity in GPe and higher activity in STN. However, the exact dynamics are
still far from being understood, so we cannot relay on these assumptions at the current
time.

Reinforcement Relay Hub

The SNc and ventral tegmental area (VTA) are commonly named as containing dopamine-
releasing neurons that form axonal projections into the striatum and other areas in the
rest of the brain. But the small relative size of both SNc and VTA limits the complexity
of computations that can be performed there. It is therefore likely that these areas do
not take part in reward evaluation, but simply compute some difference between expected
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reward and actual perceived reward that arrives from many different areas of the brain.
The SNc receives collateral projections from D1R-type striatal neurons on their way to
the SNr, and also receives some projections from parts of the GPe. It also receives inputs
from the superior colliculus (SC) and the habenula, which may or may not indicate some
information about the novelty and expectation of a stimulus, respectively.
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Chapter 4

Information Theory for Synaptic
Transmission

At the beginning of this text, I said that our brains may actually be trying to do some-
thing. More precisely, our brains seem to be important for processing the vast amount of
information available in the world around us, extracting from it some form of meaningful
knowledge about that world, deciding how to react to it, and telling our muscles how and
when to respond. We should therefore not just look at the anatomical and electrobio-
chemical structure of the brain, but also ask ourselves how it might be interpreted as a
biological information processing machine. Information Theory gives us the tools to look
at the brain from this angle.

4.1 Shannon’s Channel Coding Paradigm
Before we talk about the processing of information, we should first define what it is and
how we can transmit information from one place in space (or time) to another.

As information theory started as a tool to better understand and build telephone
networks, the standard example for an information transmission system is that of an old,
unreliable telephone line. However, the system being described can be anything ranging
from satellite communication or computer memory over biological cell reproduction and
protein biosynthesis to the communication between (groups of) single neurons within our
brain. Even the engraving of ancient texts in long-forgotten languages and their modern-
day deciphering by archaeologists can be viewed as a signal transmission problem.

Transmitter Receiver DestinationChannelInformation

Source

Noise

Source

NoiseMessage

Signal
Noisy

Signal

Message

Figure 4.1: General communication system. Some information source produces a message that is to be
transmitted to a destination. For this to happen, a transmitter needs to encode the message into a signal
that can travel across some noisy medium (the channel) and be decoded by a receiver on the other side.
(Image based on Shannon, 1948)
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Claude Shannon (1948) presented a framework for describing any transmission of a
message of information over a noisy channel (see Figure 4.1). Within the standard example
of telephone lines, the source and destination could be two people talking over an old
landline phone, the transmitter would be the microphone that converts (encodes) air
pressure audio waves into electrical currents, and the receiver would be the loud speaker
on the other side that converts back (decodes) the message for the destination. As any
physical system is noisy, the connecting electrical phone line adds many disturbances to
the transmitted signal. A standard question of information theory is how to encode a
message of information into a signal such that it can be successfully decoded back into
the original message on the other side of a given noisy channel. Good codes tend to
use only little resources for transporting maximal information (efficient coding) and may
sometimes be made purposely hard to decode without prior knowledge on the receiving
side (cryptography, not further discussed here). A code that was commonly used to encode
written human language well into the 1960s is the Morse code (Figure 4.2). Within the
brain, it seems likely that evolutionary pressure has caused neurons to use some efficient
form of communication to reach maximally possible speed and robustness to disturbances
(Lewicki, 2002; Olshausen and Field, 1996a, 1997, 1996b).

4.2 Measuring Information
Not all messages that are transmitted through a communication system need to occur
equally often. Examples are the alphabet of the english language, where some characters
(e.g. “e”) are more common than others (e.g. “q”), or sensory systems where some stimuli
tend to occur more often than others in natural surroundings. The less expected a message
is in relation to others, the more new information it provides at the receiving side when
is does occur. Common messages are less informative as they resolve less uncertainty. If
a transmitter were to always send the same message forever, the result on the receiving
side would be perfectly predictable, and each new message would add no new information
to the destination at all.

Information Content In order to describe this mathematically, lets say that we want to
send and receive a message ai out of some set (called alphabet) AX = {a1, a2, ..., an}.
Not all messages tend to be needed/encountered equally often, so we need to define a
probability pi for each. The transmission outcome x can be any of the messages ai from
our alphabet, with probability P (x == ai) = pi. As always when dealing with multiple
options in probability theory, the sum of all probabilities is 1. The information content of
a given transmission outcome is then measured as a function of the message’s probability
to occur, with less common messages providing more information when they do happen:

h(x) = log2
1

P (x) = −log2P (x) (4.1)

where P (x) is the probability of the transmission outcome x being some message ai,
log2 is the binary logarithm as suggested by Shannon (1948) for mathematical convenience,
and h(x) is the resulting information content of this new outcome in bits1, or binary digits.

Entropy Now that we have a way of measuring and talking about the information content
of new stimuli (or sensor readings, or neuronal inputs, or outcomes of a random variable),

1Yes, this is actually where the word bit comes from, which is used by nearly everyone these days!
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International Morse Code (ITU)

Figure 4.2: Example of a code. While the Morse Code is not an entropy code, it has some similarities in
that the common letter “E” is represented by a short codeword while less common characters of the english
alphabet such as “J” or “Q” are represented by longer codewords. In a different language, the frequency of
characters may vary, so the efficiency (e.g. speed of manual entry) of the Morse code to transmit a given
message varies with language (Image Source: Creative Commons).

we can use this to describe the average amount of information we can expect from the on-
going transmission of messages. This average amount of information or expected surprise
is called the Entropy of a set of transmission outcomes:

H =
∑
x∈AX

P (x)h(x) = −
∑
x∈AX

P (x) log2P (x) (4.2)

To complete the mathematical notation, we could also group together all probabil-
ities into the set PX = {p1, p2, ..., pn} and bundle everything into an ensemble X =
{x,AX ,PX}, as used in (MacKay, 2003). The entropy H then is actually the entropy of
the ensemble, and can also be called H(X).

4.3 Efficient Coding
The definition of entropy above told us that an ensemble with maximum entropy can
convey a maximum average amount of information per transmitted message. So if we
want to efficiently transmit information, we should use a high-entropy encoding scheme
to do so.

Entropy Coding uses a varying message length to encode some other alphabet into mes-
sages where the length of each message is closely related to its information content. A
typical example for an entropy code is Huffman coding, where exactly this happens. An ad
hoc approximation of a code like this may be seen in the Morse code (Figure 4.2), where
the length of common letters (e.g. “e”) is encoded by a very short codeword (one short
beep) and the length of less common letters uses longer codewords. An improvement over
Huffman coding is arithmetic coding, which uses nth-guesses of message occurrences and is
used in many lossless compression algorithms in computers today (MacKay, 2003). Unfor-
tunately, pure entropy codes assume a perfect connection or storage medium to function
correctly, so are implausible in a biological implementation without further modification.
However, the idea of encoding some messages with shorter length than others (and thus
allowing different response times for different messages) may provide a useful analogy in
chapter 6.

Dense Coding in neuroscience represents the idea that in a large group of receiver neurons,
each neuron represents part of some collection of inputs, where the activity of all neurons
needs to be known when some knowledge about the source is to be perfectly reconstructed.
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While this holographic style of information storage allows for a high amount of information
to be stored, decoding is rather hard (Foldiak and Endres, 2008).

Local Coding follows the opposite thought of dense codes, where within a group of neu-
rons, each neuron only represents a single piece/message of information. The read-out of
this information is very easy because of this, but the number of possible messages is re-
stricted to the number of neurons in the network. And if one neuron dies, the information
that it represents can no more be recovered (Foldiak and Endres, 2008).

Sparse Coding represents a good compromise between dense and local neural codes, as a
small fraction of multiple neurons become active to signal a given message of information.
This adds some redundancy against failure and has higher capacity than local codes,
while also allowing much easier decoding than dense codes (Foldiak and Endres, 2008).
Sparse codes may be formed when aiming to increase the entropy of neural outputs while
minimizing their mutual information (Bell and Sejnowski, 1995; Olshausen and Field, 1997,
1996b)

4.4 Signal Detection Theory
When a message is sent over a noisy channel, the receiver might have some difficulty
deciding which message was actually received. It often needs to make a best guess about
which of a set of messages is being received at any given time. For example, two possible
messages being transmitted over a noisy channel may be whether a dangerous predator
within some radius around an animal is present (message 1) or not (message 2). During
most of the time, message 2 may be transmitted by the environment. But when message
1 is transmitted, the animal needs to respond or it may be eaten. The task of detecting a
signal is very common among all living things, as errors may have huge implications for
the animal in question.

When deciding about the presence or non-presence of something within some noisy
environment, we speak of detecting or not detecting something that is in reality either
present or not present (Green and Swets, 1966; Heeger, 1997; Macmillan, 2002). The
scientific field of signal detection theory was originally formed during the second world
war, when humans were listening to sound or radio wave transmissions in order to de-
cide whether enemy forces were approaching or not. Due to their independent inception,
Signal Detection Theory and Information Theory have a slight notational incompatibility,

"detected"

"not detected"

present not present

Hit

Miss

False
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Figure 4.3: (a) The definition of hits and misses, but also of false alarms and correct rejections. (b) Typical
view of multiple ROC curves that allow an intuitive comparison between multiple two-class classifiers
(=detectors).
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as a “signal” in signal detection theory can have different states, which is more similar
to a “message” in Shannon’s classical information theory. As the decision between two
alternatives can also be seen as a two-class classification problem (between message 1 and
message 2), we stick to the information theoretic definition of signals and messages when-
ever possible. For the explanation of signal detection theory, I substitute the misleading
word “signal” by “stimulus”.

Generally, there are four possible cases when trying to detect the presence of some
stimulus among noise (see Figure 4.3a). If the stimulus was present and was also detected,
we call this a hit (= true positive). If the stimulus was not present and none was detected,
this is a correct rejection (= true negative). But if there was a stimulus present that
the receiver failed to detect, this constitutes a miss (= false negative). And if the re-
ceiver overreacted and detected the stimulus although it was not present within the noisy
environment, this is called a false alarm (= false positive).

The cost of possible errors may influence the detection bias of the detector. If the
cost of false negatives is higher than the cost of false positives, the detector may choose
to rather accept a higher fraction of false alarms than missing an event. This inherent
tendency of classification can be visualised by plotting the receiver operating characteristic
(Figure 4.3b), which shows the rate of hits over the rate of false alarms in a curve for every
possible detection bias of each detector (or classifier). The visual inspection of a ROC
plot allows a quick and intuitive comparison between multiple classifiers on a given test set
of detection tasks. A large area-under-curve indicates a good classifier, while a diagonal
line (half area) indicates a random and thereby worst classifier. Besides finding the best
balance between hits and false alarms for a given application, ROC analysis is thereby
also useful to compare the performance of different classifiers on a two-class problem.
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Part II

Synaptic Transmission and Plasticity in
spiking networks
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Chapter 5

Spike Timing, Weight Bounds, and
Distributions

In the previous chapters (Part I of this work), we touched on some background information
on the basal ganglia, neural anatomy, synaptic plasticity, and visited a quick introduction
to some important concepts of information theory. Chapters 5, 6 and 7 (Part II) are
devoted to thoroughly understanding the mechanisms of (im)precisely timed spikes and
their effect on spike timing dependent plasticity (STDP) before we include dopamine-like
neuromodulation in Part III.

While chapter 6 examines the benefits that temporal coding may have on signal de-
tection and plasticity, chapter 7 deals with practical issues of modelling temporal codes
and STDP within a computer simulation. Before we can proceed to answering these ques-
tions, however, we should first spend some time on comparing established (pair-based)
STDP models and choose the best suited model based on currently known biology and
computational power. In this process I suggest a new weight dependent update rule that
forms a unimodal distribution of synaptic weights for unstructured inputs while forming
a bimodal distribution for spatiotemporally structured inputs.

5.1 Synaptic Drift and spike timings
Within the last 15 years (Markram et al., 2012) the first choice for modelling a dependence
on the specific timing of spikes within Hebbian synaptic plasticity rules has become spike
timing dependent plasticity (STDP) (Bi and Poo, 1998; Gerstner et al., 1996; Markram
et al., 1997), which has by now been found to exist throughout the animal kingdom within
most areas of the brain that were observed with in vivo methods (Froemke and Dan, 2002;
Froemke et al., 2005, 2010, 2006) and in vitro slices (Froemke and Dan, 2002; Markram
et al., 1997) and in specifically prepared cultures of neurons (Bi and Poo, 2001, 1998;
Shouval et al., 2010; Sjöström et al., 2001; Wang et al., 2005; Wittenberg and Wang,
2006).

While the underlying biochemical mechanisms are still being debated (Sjöström and
Gerstner, 2010) and there are occasionally voiced challenges of single aspects of STDP
(Lisman and Spruston, 2005, 2010), there is by now general consensus that the strength
of connection between two neurons can be influenced by the precise timing of action
potentials arriving at that synaptic connection. Specifically, the arrival time of action
potentials in STDP has a profound influence on the direction of change to the synapse’s
connection strength. This is in opposition to traditional Hebbian learning (as the term is
used today), where the exact arrival time of pre- and postsynaptic action potentials does
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not matter as long as they happen within a window of a few milliseconds from one another.
Correlated activity always leads to potentiation within Hebbian models, whereas in STDP
the order of firing determines whether the synapse will be potentiated or depressed. Figure
5.1 visualises two typical STDP rules with a jump from depression to potentiation as the
time difference between postsynaptic and presynaptic action potential arrivals at a synapse
becomes positive at ∆t = tpost − tpre = 0 ms.

Figure generated using function chapter201WeightBounds_ComparisonChart (chapter201WeightBounds_ComparisonChart.m) from git revision a423a7eb57f0c20159274d66769a8c51f38e5178 (branch publications) 
and supporting files from revision ec3bc96a32b94bdc5873f6d29767822fc9cfc20e (branch publications) in repository "git@git.assembla.com:simonscnstuff.git" 
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Figure 5.1: Left: A simplified unbiased STDP rule with A+ = A− = 1 and τ+ = τ− = 20 ms. This rule
is used in e.g. Rubin et al. (2001); Song et al. (2000). Right: A slightly more realistic biased STDP rule
with A+ = 1, A− = 0.85 , τ+ = 16.8 ms , and τ− = 33.7 ms. This rule is similar to the one used in
Guyonneau et al. (2005) and based on Bi and Poo (1998). Showing update step sizes for time differences
∆t ∈ [−50, 50] ms.

Equation 5.1 shows the mathematical definition of STDP as mentioned before (Section
2.3.3), with A+, A− as a constant scale of potentiation and depression, respectively, τ+ and
τ− as time constants, ∆t = tpost− tpre the timing difference between pre- and postsynaptic
spike arrivals at a synapse, λ is a constant that controls the learning rate, ∆w the change
of synaptic weight, and functions g+(w), g−(w) (see Section 5.2) that may or may not
scale this change as a function of the previous synaptic weight:

∆w =

 A+ · λ · e
∆t
τ+ · g+(w) for tpre < tpost (LTP)

−A− · λ · e
−∆t
τ− · g−(w) for tpre > tpost (LTD)

(5.1)

5.1.1 Bias or no bias?
STDP rules with A+ = A− and τ+ = τ− are useful for demonstrating the principal effects
of spike timing on synaptic strength as was done in (Rubin et al., 2001). As both the
positive and negative sides of the rule are completely identical in size, this type of STDP
shows no bias towards neither potentiation nor depression. In the following, I therefore
refer to this group of STDP rules as unbiased STDP. If a given synapse receives many
pairs of pre- and postsynaptic spikes with equally probable (=uniformly distributed) time
differences, the synaptic strength will fluctuate but prefer no direction of change. It will
be performing an unbiased random walk. While this behaviour is nice for demonstration
purposes and some less realistic supervised learning tasks (Frémaux et al., 2010), the
random walk of synaptic weights for uncorrelated pre/post neurons (see Section 5.2) leads
to a problem when trying to perform unsupervised learning as usually found in the brain:
The main task of unsupervised learning methods, both in neurologically plausible as well
as in abstract machine learning algorithms, is usually described as aiming to learn to
recognise structured, reliable information among a haystack of meaningless data (Bishop,
1995; Hinton and Sejnowski, 1999). If a synaptic update rule fails to filter out meaningless
inputs that are at all times completely unrelated to postsynaptic activity, the synapse is
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effectively just introducing noise into the system and counteracting the goal of making
sense of the world around it.

By biased STDP, I refer to the group of STDP rules where the time constants for
potentiation τ+ and depression τ− or the maximum (normalised) weight update sizes A+
and A− are not equal (τ+ 6= τ− or A+ 6= A−). A rule with a negative drift can be
formed by either making the negative time constant larger than the positive time constant
or by increasing the negative maximum update size vs. positive, as both increase the
size of the negative area of the STDP rule, hence decreasing the STDP rule’s integral
below zero. Biased STDP rules with positive drift are seldomly used, because a broad
increase of synaptic weights without basis in correlated activity can rightfully be considered
implausible.

5.1.2 Distributions of pairing probability
As the synaptic drift caused by an STDP implementation has important consequences
for the overall success of learning, I close this subsection by taking a closer look at how
synaptic drift depends on pairing probabilities for non-uniform distributions of spike tim-
ing differences. In this broader case, the distribution of spike timing differences becomes
an important hint in finding the overall direction of synaptic updates, and the integral of
the STDP rule alone is no more sufficient to describe the direction of synaptic drift. Sketch
5.2 shows an overview of how various spike timing difference distributions influence the
overall direction of synaptic update steps. While the location of the peak of spike timing
differences has an obvious influence on the direction of synaptic updates (Sketch 5.2 b,c),
the width of a peak can also affect the direction of synaptic drift if the STDP rule is biased
as in Figure 5.1 (see Sketch 5.2 d).

When independent neurons are given random spikes to elicit, i.e. the occurring spike
timing differences are uniformly distributed (see Sketch 5.2 a), a directed drift of synaptic
strengths occurs for STDP rules that are biased towards either depression or potentiation.
In this case, the direction of this drift only depends on the full integral of the (all-to-all)
STDP rule. Keep in mind that this integral can be negative even if either |A+| > |A−| or
|τ+| > |τ−|, but not both. This is the case for the negatively biased STDP rule in Figure
5.1, where the rule’s integral is negative despite A+ being larger than A− (see also Table
A.4, p. 181). This rule is also used as the third STDP rule shown in Sketch 5.2 (rule B2).

Throughout this text, we assume that each spike is allowed to interact with every other
existing spike (all-to-all spike pairing). If, however, some combinations of spikes are given
a stronger influence in changing the synaptic strength (e.g. nearest neighbour pairing (van
Rossum et al., 2000), spike suppression (Froemke and Dan, 2002; Wang et al., 2005), or
triplet rules (Pfister et al., 2006)), the effective time window and windowed integral of
the STDP rule may in addition also change with the firing rates of the neurons that the
synapse connects. As an example, see row d of Sketch 5.2, where all spike timing differences
happen within close proximity (e.g. ∆t ∈ [−5, 5] ms). The distribution of spike timing
differences is no more uniform. Within this short interval, the windowed STDP integral
of the biased rule B2 is now positive. So when spike pairs often arrive within very short
intervals, the synaptic drift can become positive for this rule. This can easily happen when
nearest-neighbour spike selection is used together with high firing rates. But it can also
happen for all-to-all STDP when pre- and postsynaptic neurons always fire within very
short intervals of each other. A typical case in which this happens is when a postsynaptic
neuron is repeatedly presented with a highly correlated, but still slightly jittered, pattern
of inputs from multiple presynaptic neurons. The effect of presenting near-synchronous
inputs to a freely responding postsynaptic neuron will be explored in Chapter 6.
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Sketch 5.2: Influence of spike timing difference distributions and selected STDP rules on over-
all drift direction of the synaptic weight. Windowing the STDP rule by the probability distribution
of spike timing differences hints at whether a synapse will be overall strengthened or weakened or whether
it performs a random walk with no tendency towards either direction. Here, the effect of four types of
timing difference distributions (rows a - d) is tested on an unbiased (U) and two biased (B1, B2) STDP
rules, as described in Appendix A.3.2, Table A.6 (p. 181). (a) For uniform pairing probability distributions
(uncorrelated poisson spikes), the sign of the STDP rule’s integral directly gives the mean direction of
synaptic updates, or synaptic drift. The windowed STDP rules have the same shape as the original rules.
(b) Positive-leaning timing difference distributions (correlated poisson spike pairs with mostly right-shifted,
positive lag) tend to have spikes of the postsynaptic neuron shortly after those of the presynaptic neuron,
thereby pronouncing the effect of the right side of the STDP rule. This may indicate a causal relationship
between the two neurons (standard causality warnings apply). For the typical STDP rules examined here
(sketched in row a), such a “causal” relationship between neurons produces an overall potentiating synap-
tic drift, even when the integral of the STDP rule is negative (rules B1, B2). A sketch of the combined
influence of each STDP rule windowed by the pairing distribution is shown in the three central columns.
(c) Negative-leaning timing difference distributions (correlated poisson spike pairs with mostly left-shifted,
negative lag) tend to instead promote the left side of the selected STDP rule. This produces an overall
depressing synaptic drift for all STDP rules shown here, including the otherwise unbiased STDP rule. This
type of correlation between two neurons may respectively indicate an anti-causal relationship between the
two neurons. (d) For strongly correlated neurons with very narrow zero-lag correlation, differences around
the centre of an STDP rule have a stronger effect on the direction of change than the overall integral has.
While the unbiased rule here again shows no specific drift direction tendency, the two negatively biased
rules behave very differently (column “drift direction”): Although rule B1 maintains its depressing drift
even when most pairings only happen in a very small window around the rule’s centre point (0 ms), rule B2
now produces potentiating synaptic drift even though its full integral is negative. Isolated consideration
of an STDP rule’s integral is therefore a bad predictor for the overall direction of synaptic change if the
distribution of pairings is not uniform, as in any real-world scenario. The (typically varying) shape of
correlation between STDP-equipped neurons must also be accounted for when assessing whether a specific
STDP rule will lead to depression or potentiation within a spiking network. As we will see in Chapter
6, it is also not sufficient to reduce this complexity to steady-state correlations while working with more
realistic, precisely timed spike patterns.

41



5.2 Weight Dependence of synaptic updates
The direction of synaptic drift need not be fixed to a constant value. Many models of
STDP include a dynamic term (g±) that scales potentiating and/or depressing updates
with the current strength of a synaptic connection. This term behaves similar to A+ and
A− in that it multiplies all changes by some (now dynamic) factor. It never affects the
time constants τ+ and τ− in any of the standard STDP models reviewed below.

One recurring aim of weight-dependent STDP rules is to keep simulated connection
strengths within some predefined biophysical boundary. While the lowest possible strength
of a synaptic connection is logically zero, it is still unclear what the maximum strength
of any given synapse is. It seems likely that different types of neurons in different brain
areas and with different morphology have different maximal strengths, so the only reliable
statement that can be made today is that no infinitely strong synaptic strength can likely
exist (i.e. there exists some upper bound per synapse).

I will therefore first give a review of existing weight-dependent STDP rules, and then
suggest my own additions to this set. I also suggest a new classification of STDP rules
that avoids the terms additive and multiplicative as described below.

5.2.1 Additive vs. multiplicative STDP weight dependence
The first ad hoc idea for applying a series of synaptic updates to changes of the connection
strength between two neurons – i.e. the synaptic weight – would be to simply sum up all of
these updates and add them to the previous weight of the synapse. This works well at first,
but soon the synaptic connection strength may accidentally drift below zero or above some
biophysically plausible maximum value. To avoid this, the ad hoc solution is to keep the
synaptic weights within a defined range through clipping: After each change to a synapse’s
strength, its value is checked for whether it has left the defined range and, if needed,
artificially cut to remain within that range. This rule for updating synaptic strengths and
keeping them within a defined range is called additive STDP because synaptic updates are
summed up linearly. Additive rules look as if their updates don’t depend on the current

Sketch 5.3: Typical “additive” STDP rule (Eq. 5.2) vs. two types of so-called “multiplicative” STDP rules
(Eqs. 5.4 and 5.5). Red: g+(w) , Blue: g−(w) , Purple: g+(w) = g−(w). The second row shows sketches
of how the effective STDP rule changes due to weight-dependent scaling of its timing-dependent update
steps. More information in Figures 5.6 and 5.7

42



weight of a synapse (see Sketch 5.3, left):

g+(w) = const,

g−(w) = const
(5.2)

This is not entirely true, as the clipping effectively introduces this dependence as a
rectangular window over the rule’s defined range, with strong steps to zero at the hard
boundaries. The horizontal line in Figure 5.3 (left) can therefore also be seen as the visible
part of a rectangular window function with hard jump from 1 to 0 at the edges of the
defined range. Equation 5.3 describes this a little better1, with rect(w) = 1 for w ∈ [0, 1]
and rect(w) = 0 otherwise.

g+(w) ∝ rect(w),
g−(w) ∝ rect(w)

(5.3)

Obviously, such a hard bound on synaptic strengths can be called into question as
being biologically not very plausible. In a biological synapse, one would expect a more
gradual approach towards the edges of some range of synaptic weights. And indeed, early
work on STDP by Bi and Poo (1998) in hippocampal neuron cultures has found that the
change to synaptic strength correlates with the electric current that a synapse initially
evoked in the postsynaptic cell. This initial excitatory postsynaptic current (EPSC) was
measured before execution of 60 forced pairings of pre- and postsynaptic spikes in a patch
clamp setup of neurons grown in a petri dish (in vitro) and compared to the EPSC after
pairing. The authors plot the changes of EPSC amplitude in a potentially misleading
style, though, as is also pointed out by (Billings and van Rossum, 2009). By displaying
only the percentages of EPSC change relative to initial EPSC (see Figure 5.4), they make
the data look at first sight as though depressing update steps did not depend on initial
synaptic strength, while in reality they strongly depend on this initial strength in a linear
relationship. The presentation style also makes it look as if the relationship between
potentiating updates and initial synaptic current were inversely linear, while in reality only
the relative change as a percentage of initial synaptic strength decreases. The absolute
step size of potentiating synaptic updates still keeps increasing with initial EPSC, as will
be further explained in section 5.2.4.

A first, maybe naive, weight-dependent bounding rule may therefore have an inverse
linear relationship of potentiation to the initial weight, while the amount of depression
may not depend on the present synaptic strength (see also Sketch 5.3, centre):

g+(w) = 1− w,
g−(w) = const

(5.4)

The potentiation bound g+(w) of this rule is the same as used in the work of (Kistler
and van Hemmen, 2000) and (Rubin et al., 2001). The depression bound g−(w) of Equation
5.4 is independent of synaptic weight as a contrast to Equations 5.5 and 5.6 (see below).
Section 5.2.3 will examine the effects of this bounding rule on synaptic drift, resulting
weight distributions, and implications for performance in learning of structured data for
both unbiased and biased STDP, and show simulation results for each in Figures 5.6 and
5.7 (column B).

1Keep in mind that an implementation within a digital computer may require an additional implemen-
tation detail for handling synaptic update steps that happen very close to the edges of the defined range.
This is only required due to the discrete nature of synaptic updates in computer simulations.
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An alternative multiplicative rule was used by van Rossum et al. (2000) and Billings
and van Rossum (2009). While noticing the misleading presentation of data in (Bi and Poo,
1998), the authors here simply switch the single-sided weight dependence from potentiating
to depressing updates, thereby forming the following bounding rule (see also Sketch 5.3,
right):

g+(w) = const,

g−(w) = w
(5.5)

While the linear dependence of depressing weight updates is indeed captured by this
rule, it fails to correctly represent potentiating updates according to the data of (Bi and
Poo, 1998), as will be discussed in section 5.2.4. Van Rossum et al. (2000) argue that this
rule is valid because it can reproduce unimodal weight distributions measured in neurons
grown in vitro, when it is given Poisson-distributed random presynaptic inputs to learn.
The learning performance is, however, called into question by the same group in (Billings
and van Rossum, 2009), and reasserted through careful parameter tuning in (van Rossum
et al., 2012). I will present a few thoughts on plausible learning performance in section
5.2.3. It is also questionable whether their definition of what constitutes a useful pattern
for STDP learning is indeed a valid assumption, as I will show in the next chapter (Chapter
6).

Of course the exact shape and time dependence of any experimentally found STDP rule
depends on the experimental conditions under which the measurements of spike timing
dependent plasticity take place. Any general rule of STDP will always be an abstraction
from reality. It does seem physically plausible, though, that the size of synaptic modifi-
cation steps indeed depends in some way on present synaptic strength as an indicator of
past activity of the synapse. In addition to synaptic strength, updates to a synapse likely
also depend on a combination of many other variables such as concentrations of chemical
messengers in the surrounding tissue. While the effect of one neuromodulatory chemical
messenger on STDP outcome and network behaviour (i.e. dopamine) will be investigated
in Part III of this text, I continue to concentrate here on the local effect that recent history
of synaptic activity may have on local timing-dependent plasticity.

In spite of the claimed biologically plausible weight distributions for unstructured input
data and perhaps because of the bad learning performance of “multiplicative” weight

(with initial EPSC amplitude !500 pA) clearly indicated the
absence of any synaptic change (Fig. 6C). The average percentage
change in the EPSC amplitude 20–30 min after the repetitive
stimulation was "0.3 # 3.4% (SEM; n $ 5), which was signifi-
cantly different ( p ! 0.001; t test) from that found for cases using
glutamatergic postsynaptic neurons (Fig. 2C) (48.4 # 9.9%, SEM;
n $ 14). In another case (Fig. 6B), negatively correlated postsyn-
aptic spiking was initiated (via current injection) in the postsyn-
aptic GABAergic neuron 16 msec before the onset of each EPSP
during repetitive stimulation (60 pulses at 1 Hz) of a “subthresh-
old” synaptic input. Again no change in synaptic efficacy was
observed. The summary of all data on similar negatively corre-
lated spiking of postsynaptic GABAergic neurons indicates a
complete absence of synaptic depression (Fig. 6D). The average
percentage change in EPSC amplitude 20–30 min after repetitive
stimulation was "1.7 # 2.0% (SEM; n $ 4), which was signifi-
cantly different ( p ! 0.001; t test) from that found for the

corresponding cases with glutamatergic postsynaptic neurons
(Fig. 4C) ("18.0 # 3.2%, SEM; n $ 12).

The critical window for synaptic modifications
To determine the precise timing required for repetitive corre-
lated presynaptic and postsynaptic spiking to induce synaptic
modifications, we further varied the time interval between the
presynaptic stimulation and postsynaptic spiking, using the same
protocol of repetitive stimulation. In these experiments we used
only subthreshold connections on glutamatergic neurons with
initial EPSC amplitude !500 pA. As shown in Figure 7, synaptic
changes showed a strong but highly asymmetric dependence on
spike timing. Potentiation was consistently induced when the
postsynaptic spikes peaked within a time window of 20 msec after
the onset EPSPs, whereas depression was induced when the
spikes peaked within a window of 20 msec before the onset of
EPSPs. The ability for correlated spiking to induce potentiation
or depression decreases rapidly as the absolute value of spike
timing increases, so that outside the 40 msec window, synaptic
modification was essentially absent. A narrow transition range of
%5 msec (%&t $ 0) exists between maximal depression and the
maximal potentiation at which the effect of correlated spiking
showed large fluctuation.

Dependence on Ca2! channels
An immediate action of postsynaptic spiking is the opening of
voltage-gated Ca2' channels. We have thus tested the potential
role of dendritic L-type Ca2' channels (Bolshakov and
Siegelbaum, 1994; B. R. Christie et al., 1995, 1997; R. C. Christie
et al., 1996; Magee and Johnston, 1995, 1997; Johnston et al.,
1996; Deisseroth et al., 1998) in the induction of synaptic modi-

Figure 4. Effect of repetitive stimulation with negatively correlated
postsynaptic spiking on suprathreshold connections. A, Results from an
experiment similar to that described in Figure 3A, except that the synaptic
activation was capable of initiating spiking of the postsynaptic neuron.
The spike initiated by current pulse injection peaked at %10 msec before
the onset of each EPSP during repetitive stimulation. Calibration: 100
pA, 10 msec for EPSCs; 40 mV, 10 msec for the EPSP. B, Summary of all
experiments similar to that described in A. Data points represent mean #
SEM (n $ 3). The mean percentage change in synaptic strength after
induction was 31.9 # 9.3% (#SEM). Significant potentiation was ob-
served ( p ! 0.05, t test).

Figure 5. Dependence of synaptic modifications on the initial synaptic
strength. The percentage change in the EPSC amplitude after the repet-
itive stimulation (1 Hz for 60 sec) was plotted against the initial mean
amplitude of EPSCs. Open circles represent data from synapses exposed
to repetitive presynaptic stimulation with positively correlated postsyn-
aptic spiking (data set includes those shown in Fig. 2C). Filled circles
represent data from synapses exposed to repetitive presynaptic stimula-
tion with negatively correlated postsynaptic spiking (data set includes
those shown in Fig. 3C). Percentage changes were calculated from the
average EPSC amplitude 20–30 min after the repetitive stimulation. Lines
represent best fits with linear regression between the percentage change
and the logarithm of initial EPSC amplitudes for positively correlated (r $
"0.72, p $ 0.00017) and negatively correlated (r $ 0.037, p $ 0.89)
spiking, respectively.

10468 J. Neurosci., December 15, 1998, 18(24):10464–10472 Bi and Poo • Spike Timing for LTP and LTD in Culture

Figure 5.4: Relative change of excitatory postsynaptic current (EPSC) over initial EPSC size. Taken from
Bi and Poo (1998, Fig. 5). Plotting relative change instead of absolute change in EPSC amplitude has
caused some confusion according to (Billings and van Rossum, 2009; Morrison et al., 2007; van Rossum
et al., 2000). Also, the horizontal axis is logarithmic while the vertical axis is not. Compare also Figures
5.8, 5.10, and 5.11.
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bounding rules (Billings and van Rossum, 2009) in comparison to “additive” rules, much
of the STDP modelling literature keeps using weight-independent synaptic update rules,
and uses hard clipping to keep synaptic strengths within the borders of their weight ranges.
This has led Gütig et al. (2003) to approach the problem by interpolating between additive
and multiplicative rules through a power law controlling switch.

5.2.2 Interpolating between traditional bounding rules
As a consolidating action for combining the ascribed biological validity of multiplica-
tive rules with the superior learning performance of additive STDP, Gütig et al. (2003)
had the idea of interpolating between these two general types of weight update rules
through an exponential parameter that controls the update rule’s dependence on synaptic
weight. By aiming at the update rules of Kistler and van Hemmen (2000) and Rubin et al.
(2001), Gütig et al. (2003) could smoothly transition from “additive” to “multiplicative”
behaviours by using an exponent µ ∈ [0, 1] (see also Sketch 5.5):

g+(w) ∝ (1− w)µ,
g−(w) ∝ wµ

(5.6)

In their publication, (Gütig et al., 2003) also used a parameter α to scale the maximal
amount of possible synaptic depression in relation to potentiation, effectively causing the
unbiased STDP rule they used to become biased through constant scaling and cause a
(negatively) directed synaptic drift. As multiplicative rules form a peak in the distribution
of synaptic weights around some central value (as also seen for Equations 5.4 and 5.5 in
Figure 5.6), the α parameter effectively controls the location of this peak. This behaviour
is captured within the ratio between A+ and A− in the STDP rules used here, and therefore
we do not require a parameter α to exist separately.

The Gütig et al. (2003) rule shows many interesting behaviours for random Poisson
inputs, but the main statement is that with careful tuning of µ, one can let a group of
synaptic weights form a bimodal distribution without the need for hard bounds at the
edges of the range of possible synaptic weights. Gilson et al. (2010) successfully used this
rule with µ = 0.03 to obtain an “additive-like” rule that allows synaptic differentiation

Sketch 5.5: Transition from so-called “multiplicative” STDP rules to “additive” rules by tuning a single
parameter µ. Red: g+(w) , Blue: g−(w). The second row shows sketches of how the effective STDP
rule changes due to weight-dependent scaling of its timing-dependent update steps. More information in
Figures 5.6 and 5.7
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across most of the allowed weight range, which never reaches the hard edges as long as
some form of noise is also present in the inputs. As the authors use correlated inputs
(but without any spatiotemporal structure), the inputs inherently contain noise which is
reflected in the distribution of response times by any postsynaptic neuron responding to
these correlated inputs (see Section 6.1, p. 71).

A motivation for avoiding pure additive STDP is given in the form of correlation-
dependent learning success (see also Rubin et al., 2001). This states that additive rules
are bad because they tend to form binary distributions even for minimal amounts of
correlation, where the identities of strong synaptic weights are randomly selected. And
that multiplicative rules are better because they represent the level of input correlation
as a shift in the peak of the resulting weight distribution as compared to the peak for
uncorrelated inputs. In multiplicative rules, the amount of correlation within a set of
input units can indeed be tracked by measuring how far the resulting connection strengths
can escape the counteracting synaptic drift towards some stable attractor (Morrison et al.,
2008). I will demonstrate in chapters 6 and 7 (and Figures 5.6, 5.7) that this may not
be the best performance metric for a synaptic learning rule, and learning may actually
be more successful if a plasticity rule tries to detect even the smallest correlations or
recurring structure among input data that it can still find among very noisy surroundings.
In sections 5.2.7 (p. 62) and 5.3 (p. 65) I will look at how experimentally observed weight
distributions may alternatively be formed.

Another interesting note by (Gütig et al., 2003) is made on how two groups of inputs
that show some amount of inner-group correlation compete for control over a postsynaptic
neuron. As correlation increases, one group of inputs may win over the other. This is
expressed by the input units of one group forming stronger synaptic connections to the
postsynaptic cell than the input units of the other group. But as correlation within each
group is further increased, competition seems to be reduced again as both groups then
form strong connections to the postsynaptic neuron. The neuron learns to react to both
groups. The correlation values at which these splits occur are influenced by the chosen
value for µ, among a few other parameters.

I will now take a look at some features of additive and multiplicative STDP, and their
performance for a set of input patterns that will itself be further explored in chapter 6.

5.2.3 Performance and Features (Set 1)
Let us examine the effects of the previously introduced bounding rules on unbiased and
biased STDP and how they work in keeping the synaptic weight within some predefined
range of minimum and maximum values. The minimum value of connection strength
between two neurons can easily be suggested to be zero, or not connected. The maximum
connection strength, however, may be a bit harder to define, as the factors that determine a
synapse’s maximum strength are not yet fully known. They most likely depend on chemical
signalling, homeostasis, energy availability, spinal proximity due to random structural
growth, and only partially on the synapse’s electrical activity. Each synapse of a given
neuron may therefore have an individual maximum strength, which becomes important to
keep in mind when measuring existing distributions of synaptic connection strengths. Such
distributions were measured through visual inspection of the size of spines by Turrigiano
et al. (1998) or O’Brien et al. (1998), but neither publication claims that the measured
unimodal weight distributions were due to timing-dependent synaptic plasticity. However,
van Rossum et al. (2000) uses this as proof that spike timing dependent plasticity should
result in unimodal distributions of synaptic weights. I will give an explanation for why I
object to this view in section 5.3.
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For the following comparison, synaptic weights are normalised to a common minimum
of 0 and maximum of 1, as in the sketches above (Sketches 5.3 and 5.5), yielding a common
range for possible synaptic strengths w ∈ [0, 1].

Visualisation of Effects

In order to provide a comparative overview of the functional differences between the re-
viewed STDP rules, I plot a number of their features in Figures 5.6 and 5.7.

1. I first show the normalised scaling g±(w) of weight-dependent updates for long-term
potentiation (LTP, red) and long-term depression (LTD, blue) in the first row of
those figures. This presentation style is the same as used in sketches 5.3 and 5.5,
with purple colour indicating rules in which the weight-dependent scaling of LTP
and LTD is equal (g+ = g−). Some plots in the first row may also include narrow
dashed lines in addition to continuous lines. This is done to visualise the effects
of different parameter settings on the shape of g+ and g−, and only the parameter
settings that produce the continuous lines are used for the following rows.

2. As the actual shape of most STDP rules changes with the strength of the synapse in
question, I show five snapshot sketches as examples of scaled rules for five different
values of the synaptic weight w, respectively (w ∈ {1, 2, 3, 4, 5}/6). This is done for
each of the four main columns (second row in the figures).

3. Although the visualisation in the second row gives us some idea on how the weight-
dependent scaling factors g+(w) and g−(w) change the effective shape of an STDP
rule, we can also re-plot the rules to obtain some intuition on how they change
continuously with the synaptic strength. The third row plots the timespan [−50, 50]
ms from the second row as single columns (vertical axis), over a continuous gradient
from w = 0 to w = 1 (horizontal axis).

4. The fourth row contains randomly selected synaptic updates for each STDP rule,
taken from a uniform distribution of timing differences, and repeated 100 times
(vertical axis). As the shape of most STDP rules changes with w, these random
pairings may have a tendency for potentiation or depression, depending on the initial
synaptic strength w (horizontal axis). This row demonstrates how, while the actual
step size and direction is grainy and stochastic (potentiating updates shown in red,
depressing updates in blue), synaptic drift can be seen by blurring (locally averaging)
the view. This may help the reader to intuitively grasp the nature of synaptic drift.

5. The fifth row gives a closer view of overall drift tendency, or averaged weight updates
from the fourth row (black curve), together with standard deviation (yellow curve,
scaled by 0.2). Potentiating drift (positive sign of mean step size) is shown as red
area and depressing drift (negative sign of mean step size) is shown as blue area.
Mean values were computed for each of 200 weight bins from 20000 repetitions per
bin.

6. While the first five rows show didactic examples of the reviewed STDP rules for
supporting the reader’s understanding, the sixth row tracks the development of the
distribution of synaptic weights of a single postsynaptic neuron in a computer sim-
ulation. Simulation details are given in Appendix A.3.3 (p. 178). Postsynaptic
membrane potential here does not yet depend on presynaptic inputs (as it will in
later chapters), but is set such that the postsynaptic neuron fires at a fixed rate of
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1 Hz. This row makes the synaptic drift of the connections of 2000 uncorrelated
poisson-distributed presynaptic input units visible (grey). The postsynaptic neu-
ron is also connected to a further 1200 presynaptic input units, of which 600 units
present a spatiotemporally structured pattern just before each postsynaptic spike
(selected synapse trajectories shown in red), and the other 600 input units present a
spatiotemporal pattern just after each postsynaptic spike (shown in blue), in addi-
tion to random spikes as in the first 2000 units. A discussion of why any STDP rule
should also be tested with spatiotemporally structured patterns is the main topic of
Chapter 6. The exact structure of spatiotemporal inputs used here can be seen in
Figure A.7 (p. 181).

7. The last row plots the resulting weight distribution of all synapses after 20min of
simulation. The distribution of only the 2000 uncorrelated input units is shown in
grey, while the distributions of the two groups presenting spatiotemporal patterns
are shown in red and blue. Depending on the STDP rule and weight-dependent
scaling used, these three distributions can be very different in shape and location.

Unbiased STDP as used in Figure 5.6 has no inherent directed drift, as A+ = A− = 1 and
τ+ = τ− = 20ms. Any drift is therefore only due to g+(w) and g−(w), which are defined
by one of Eqs. 5.3, 5.4, 5.5, 5.6. Biased STDP as used in Figure 5.7 has an asymmetry
both in A± and in τ± (A+ = 1 > A− = 0.85 and τ+ = 16.8ms < τ− = 33.7ms). The
asymmetry in the time constants τ± has a stronger effect here (compare Sketch 5.2, top
row), so the overall drift direction of this STDP rule is negative, leading to a depression of
all connections to uncorrelated inputs. The effects of g+(w) and g−(w) on biased STDP
will also be discussed below.

Comparison of scaling rules for unbiased STDP

The first row of Figure 5.6 shows that for additive STDP (column A) and additive-like
STDP (column D) the weight-dependent scaling factors g+(w) and g−(w) are identical or
at least very similar throughout most of the range of weights, respectively. This is in strong
contrast to typical multiplicative STDP rules (columns B,C), where the weight-dependent
scaling factors are very different for LTP (scaled by g+) and LTD (scaled by g−) for any
given synaptic strength w, except for a single crossover point (here at w = 0.5). Below this
point within the range of synaptic weights (w < 0.5, left side within each plot), the scale
for potentiating updates is larger than the scale for depressing updates. Above this point
(w > 0.5, right side within each plot), this relation is inverted, and depression dominates.
When the distribution of times at which input units fire a spike in relation to the time
of postsynaptic response is sufficiently uniform, this difference in weight-dependent step
sizes can be shown to form a stable fixed point attractor (Morrison et al., 2008) that keeps
the strength of synaptic connections w close to this crossover point. The existence of
a strong stable fixed point is a defining feature of multiplicative STDP rules, while the
absence of a strong stable fixed point is said to indicate additive STDP rules (Morrison
et al., 2008). In additive-like STDP (column D), there still exists a very weak fixed point
as there still is a crossover between g+ and g−, but it is so weak that it has little effect. In
theory, it would also be possible to create an unstable fixed point that pushes all synaptic
strengths towards the edges of the weight range by inverting the ratio between g+ and g−.
But as the resulting distribution of synaptic weights would not represent any meaningful
information relative to a neuron’s inputs, this approach rightfully has not been explored
in the literature.
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Figure 5.6: Comparison of effects of weight-dependent scaling rules on unbiased STDP. Column A: Additive
STDP (Eq. 5.3). Column B: Weight-Dependent LTP (Eq. 5.4). Column C : Weight-Dependent LTD (Eq.
5.5). Column D: Interpolated power law (Eq. 5.6). – continued on next page. . .
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Figure 5.6 (previous page): Description of rows (see also Visualisation of Effects, p. 47): Row 1: Visuali-
sation of weight-dependent scaling rules. Red lines: scale factor g+(w) on potentiating steps (LTP). Blue
lines: scale factor g−(w) on depressing steps (LTD). Magenta lines: identical (balanced) dependence on
synaptic weights for both LTP and LTD (g+ == g−). Row 2: Example effects of weight-dependence on the
shape of STDP rules for weights 1

6 ,
2
6 ,

3
6 ,

4
6 ,

5
6 . Note how the actual shape of the STDP rule changes with

the synaptic weight. Row 3: Full overview of STDP weight changes across the continuous range of possible
synaptic weights, within a timing window of [-50,50] ms. Row 4: Random pairings of spikes arriving at a
given synapse reflect the relation of large to small weight update steps. The weight-dependent tendency
for potentiating vs. depressing weight update steps also becomes graspable here. Row 5: Mean weight
update from row 4 (black line) together with scaled ( 1

5 ) standard deviation of step size (yellow line) for
defined range of weights. Potentiating drift (positive sign of mean step size) shown as red area. Depressing
drift (negative sign of mean step size) shown as blue area. Row 6: Example simulation with the given
STDP rule and given weight bounding rule. Weight distribution estimates for each second of simulation
shown as rows of pixels in grey (background). Example random walks and biased drift of causally (red)
and anti-causally (blue) firing input units overlaid for clarity. See Figure A.7 for simulation details. Row 7:
Resulting distribution histograms after 20 minutes of simulation. Synaptic weights to uncorrelated inputs
(relative to postsynaptic firing) are shown in grey, weights to positively shifted correlated inputs (“usually
before”) shown in red, and weights to inputs with negatively shifted correlations to postsynaptic firing
(“usually after”) shown in blue. Histograms stacked in upward order: grey → red → blue.

In the second row, one can see how multiplicative rules (columns B,C) cause the overall
shape of the full STDP rule (especially the ratio between potentiation and depression) to
change remarkably with synaptic weight, while this shape does not change or hardly
changes for additive and additive-like rules, respectively (columns A,D).

This is further visualised in row three, where the full scaled STDP rules are re-plotted
to show not just the effect of the weight-dependent scaling factors g+ and g−, but also
the influence of spike timing differences on the resulting change to a synaptic weight. In
many publications on STDP (Gütig et al., 2003; Rubin et al., 2001; van Rossum et al.,
2000), the effect of timing difference is averaged out by using (uncorrelated) poisson-
distributed inputs without spatiotemporal structure. Even when unstructured correlation
between input units is used (Gütig et al., 2003; Morrison et al., 2007; Rubin et al., 2001;
van Rossum et al., 2000), some of the temporal discriminative power of STDP remains
unused, as I will show in Chapter 6. There, I will also address the ongoing debate on
whether spatiotemporal structure within biological neuronal networks should be ignored
due to the unreliable predictability of single spikes or be included due to the possible
computational power and simple existence of time-discrete spikes. But for now, the third
row should simply give the reader an intuitive idea of how synaptic weight changes in
classical (pair-based) STDP rules always also depend on spike timing differences, whether
there is weight-dependent scaling (columns B,C) or not (columns A,D).

The fourth row demonstrates the stochastic nature of spike timing dependent updates
to synaptic weight. While the ratio between potentiating and depressing updates seems
largely uniform for additive and additive-like STDP (columns A,D), one can already see
a slight dominance of potentiating updates for weak weights (column B) and a slight
dominance of depressing updates for strong weights (column C) for multiplicative STDP.

This tendency is further visible by taking the mean of a large number of updates in
row five, where multiplicative STDP (columns B,C) shows a strong positive drift for weak
weights and a strong negative drift for strong weights. As the synaptic connection strength
becomes closer to the crossover point described above, the drift intensity weakens, and
only reaches zero at one weight position. This is an indication of the stable fixed point
attractor mentioned above. The interested reader is referred to Morrison et al. (2008) for
an analytical approach to computing the fixed point for inputs that do not contain any

50



spatiotemporal structure. It should also be noted that the standard deviation of update
step sizes changes, depending on which multiplicative STDP scaling rule is used (compare
columns B,C, row 5, yellow lines). This is a direct result of the shape of g+ and g− as
plotted in the first row.

Rows six and seven show the results of example simulations with the weight-dependent
scaling used in columns A-D. As mentioned above, the exact simulation parameters can be
found in Appendix A.3.3 (p. 178). The main point here is that all simulation conditions
are exactly equal, except for the different weight-dependent scaling rules used in each
column. Both of rows six and seven show a very different behaviour between the additive
and additive-like rules (columns A,D) on one hand and the multiplicative rules (columns
B,C) on the other.

The distribution of synaptic connection strengths that connect the postsynaptic neu-
ron to uncorrelated, poisson-type input units (grey area) is uniform for additive STDP
(column A), while connections to the same units form a definite unimodal distribution
for multiplicative STDP (columns B,C). The uniform distribution of synaptic weights for
uncorrelated inputs (column A) is achieved when the postsynaptic neuron is not allowed
to become correlated with presynaptic units, i.e. when the time at which the postsynap-
tic neuron fires does not depend on presynaptic activity. If this were different, and the
postsynaptic neuron were allowed to respond directly to presynaptic inputs, the postsy-
naptic neuron would begin to tune to a randomly chosen, minimal subset of inputs, the
size of which depends on maximum projection strength and size of the input population
(Gütig et al., 2003; Rubin et al., 2001). As stated in Gütig et al. (2003), the choice of a
subset of inputs only works reliably for very small populations of input units, where each
unit of the input population has a comparably high influence on causing a postsynaptic
depolarisation. As this effect vanishes for input populations larger than a few hundred
units, I consider it an artefact of too small network sizes and at best only one part of the
full story. In an alternative view, the formation of strongly bipolar weight distributions
in these publications can be interpreted as a desperate attempt of STDP to identify small
groups of recurring spatiotemporal patterns within its inputs (see Chapter 6).

Additive-like STDP (column D) here shows a behaviour that is similar to additive
STDP (column A), but differences in the distribution of connection strengths to uncorre-
lated inputs (grey area) can be seen. As additive-like STDP still has a very weak stable
fixed point, the final distribution (grey area, row 7, column D) is not perfectly uniform,
but shows a slight peak near this attractor. However, this peak is much less pronounced
than the grey peaks in columns B and C. Additive-like STDP also allows bimodal peaks
near the edges of the defined range (red and blue areas, row 7, columns A,D), making it
indeed more similar to additive STDP than to multiplicative STDP.

We should now discuss what produces the red and blue areas in the histograms of row
7 (and the red and blue dotted curves in row 6). As noted in Visualisation of Effects
(p. 47), red dotted lines (row 6) and areas (row 7) denote the development (row 6) and
final distribution (row 7) of connections to a group of 600 input units that always fire
before a postsynaptic spike, in addition to random activity. Similarly, blue dotted lines
(row 6) and areas (row 7) denote connections to input units that always fire at least after
the postsynaptic spike. A visualisation of all inputs is shown in Figure A.7 (p. 181). We
first look at additive (column A) and additive-like (column D) STDP. While inputs that
are uncorrelated with postsynaptic activity form a uniform or near-uniform distribution of
synaptic weights (grey areas), the connections to input units that have a higher probability
of firing before each postsynaptic spike become strong and gather near the maximal edge
(w = 1) of the defined weight range. Similarly, connections to input units that tend to fire
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after a postsynaptic spike become weak and gather near the minimal edge (w = 0). This
is expected behaviour for additive STDP, and can be understood by looking at Sketch 5.2,
rows b and c. For multiplicative STDP (columns B,C), the story is quite different. The
synaptic weights of the before and after groups do not gather at the edges of the defined
weight range, but also don’t take part in forming the unimodal distribution as seen by
uncorrelated inputs. Instead, the weights of these two groups (red and blue areas) seem
to disperse more smoothly on both sides of the grey area. Also, in column B, no synaptic
connection of the before group (red area) comes near to the maximum weight (w = 1) and,
in column C, no synaptic connection of the after group (blue area) reaches the minimum
weight (w = 0). So why is this happening?

It of course has something to do with the firing times of each input unit in the two
groups, in relation to the timing of postsynaptic spikes. As can be seen in Figure A.7 (p.
181), some input units in each group reliably fire in close proximity to each postsynaptic
spike, while others fire at an absolute time difference of up to 55ms from the postsynaptic
spike time. This means that due to the two exponential terms in standard STDP rules
(one for potentiation, one for depression) the size of reliably occurring directed weight
changes is larger for input units that tend to fire in close timing proximity to postsynaptic
spikes, while the size of reliable weight changes is smaller for input units that only produce
reliable spikes more distant in time. However, input units don’t only fire precise, reliable
spikes. As also shown in Figure A.7 (p. 181), they are also noisy. The random spikes
of these units induce the same drift as those of fully uncorrelated input units (rows 1-5),
which in the case of multiplicative STDP (columns B,C) causes an attraction towards
the central fixed point. Reliably timed spikes of a single input unit hence compete with
randomly timed spikes over control of the synaptic strength.

Synaptic weights of input units that fire reliably either before or after a postsynaptic
spike do not gather at the edges of the defined weight range because the counteracting
weight-dependent drift (see row 5) becomes increasingly intense as the weight moves away
from the stable fixed point. The increasing pull towards the stable attractor begins to
outweigh any directed weight changes coming from precise, recurring timing differences. If
the average effect of precisely-timed spikes is weaker than the maximal counteracting drift
intensity on the way to the edges, the weight of this connection remains at an intermediate
level between the stable attractor and the edge of the defined range with some amount of
fluctuation. Depending on the standard deviation of random update steps (row 5, yellow
line) at this intermediate level, the synaptic weight may fluctuate more or less.

Due to the pull of multiplicative STDP rules, small update steps induced by precise
timing are made undone by the intermittent random pairings of uncorrelated noise. A
number of publications that advocate multiplicative STDP (Gilson et al., 2010; Gütig
et al., 2003; Morrison et al., 2007; van Rossum et al., 2000) say that this competition is
good because the distribution of weights represents the level of correlation in the input data
(see also Section 5.3, p. 65). The question here is, though, whether a smooth representation
of input correlations is really the main or only goal of biological neurons or whether they
may rather aim to tune themselves to the smallest amount of structured information
they can possibly identify. From the perspective of unsupervised (machine) learning, it
would appear to make more sense for a synapse to be able to form maximally strong
connections to repeatedly firing inputs that contain some recurring structured pattern
in order to improve detection quality and detection time instead of trading this in for
incomplete representations of input correlation. In a noisy environment, it will always
be difficult enough to filter out “meaningless” noise among the input data, and even for
an STDP rule without stable attractor such as additive STDP (column A), the resulting
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distribution in a real-world application will be less binary as the signal-to-noise ratio is
less than optimal in difficult real world pattern detection problems.

There is another issue with the weights never reaching their possible maximum value
(column B, row 7) or never reaching zero (column C, row 7) in multiplicative STDP. While
the avoidance of maximum values may not be such a problem and is even referred to as
one of the main features of multiplicative STDP rules by van Rossum et al. (2000), the
inability to reach zero synaptic strength if a synaptic connection has repeatedly shown to
be detrimental for high quality or fast detection of inputs appears far more critical. As has
been pointed out repeatedly by Olshausen and Field (1996b) and others, the brain seems
to use the idea of sparseness ubiquitously, and many new technical advancements have
only been possible by copying the brain’s ascribed search for sparseness. When synaptic
weights are never allowed to become (close to) zero, a large number of random inputs may
still evoke random postsynaptic responses while the neuron will never be able to learn
to ignore unrelated noise among its inputs. It will therefore never be able to learn to
reject false positives while learning to detect a specific set of inputs. A neuron without
the ability to form sparse connections will never be able to achieve long pattern retention
times as it keeps responding more randomly than necessary. A neuron with a sparse
distribution of incoming weights will instead be able to remain quiet throughout most of
its (post-training) lifetime and only fire a spike when the inputs it receives are sufficiently
similar to those it was trained on. Sparseness in a neuron’s weight distribution therefore
also allows sparseness in its responses. The bad pattern retention times of multiplicative
STDP was also noticed in (Billings and van Rossum, 2009), and the benefits of sparse
weight distributions will be further explored in chapters 6 and 7.

This drawback in unsupervised learning performance of multiplicative STDP is likely
the reason for why Gilson et al. (2010) only chose to use the multiplicative STDP rule
of Gütig et al. (2003) with a very small exponent µ = 0.03. The interesting behaviour
of automatically keeping synaptic weights within a predefined range while allowing good
detection performance through bimodal weight distributions comes into effect only for
very small values of µ, where the rule becomes very close, but not completely equal to,
additive STDP rules.

As multiplicative STDP rules have a built-in synaptic drift towards the stable attrac-
tor, the connections of purely randomly spiking input units (noisy inputs) gather around
this attractor while reliable input units that always fire shortly before a postsynaptic spike
(e.g. the proximal units of the before group from above) form connections that are overall
stronger. While I explained above why an ever-increasing drift may be counterproduc-
tive when trying to form a reliable memory and pattern detector, some level of (constant)
depressing synaptic drift may indeed be very helpful for separating repetitive spatiotempo-
ral (or polychronous2) incoming spike patterns from random noise. However, this negative
drift need not be implemented by weight-dependent scaling of synaptic updates as in mul-
tiplicative STDP, but can simply be made an inherent feature of any STDP rule by using
biased STDP.

Comparison of scaling rules for biased STDP

Figure 5.7 shows the same weight bounding rules as just discussed, but with a biased STDP
rule that was successfully used to learn temporally structured spike patterns among noisy
data. Biased STDP rules have a constant (typically negative) synaptic drift as shown in
Figure 5.1 (right) and are more similar to what has been observed experimentally (Figure

2as coined by Izhikevich (2006); Izhikevich et al. (2004), see also Chapter 6.
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Figure 5.7: Comparison of effects of weight-dependent scaling rules on biased STDP. Column A: Additive
STDP (Eq. 5.3). Column B: Weight-Dependent LTP (Eq. 5.4). Column C : Weight-Dependent LTD (Eq.
5.5). Column D: Interpolated power law (Eq. 5.6). – see Figure 5.6 for description of rows. . .
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2.8, p. 18). While row 1 (columns A-D) is identical to Figure 5.6, rows 2 and 3 already
show differences of the biased STDP rule in weight-dependent step sizes. The negative
drift of biased STDP is fully visible in row 5, where both the additive (column A) and
additive-like (column D) rules now have a constant negative drift added for all weights,
causing depression for uncorrelated inputs. The built-in negative drift of the biased STDP
rule I use here also causes the stable fixed point attractor of multiplicative rules to shift
a little further into depression, although some potentiating drift is preserved for weak
synapses (columns B and C, row 5). While the depressing drift for additive-like STDP
(column D) is a bit less for weak weights, the drift remains overall negative throughout
nearly the full weight range here.

The figure becomes even more interesting when observing the simulation results of
rows 6 and 7. For both additive and additive-like STDP bounding (columns A and D), the
previously broadly distributed weights of uncorrelated inputs drift towards zero connection
strength, while only some connections to the before group (shown in red) remain strong.
Not all inputs within this group maintain strong inputs, though, as the inputs that tend
to fire very early before postsynaptic activity are lost to the negative drift. Only inputs
that repeatedly fire just before a postsynaptic spike have the ability to remain strong,
because their potentiating steps are large enough to successfully compete with the many
random steps with negative drift that happen in between two potentiating pairings. The
size of the negative drift bias can therefore also be seen as a cut-off value below which
all inputs to a postsynaptic neuron are interpreted as noise. Closely examining this bias
in real neurons might therefore give a hint on the levels of noise that a measured neuron
expects.

For multiplicative bounding rules (columns B,C and rows 6,7) the weights of input
units within the before group (red) are spread out over a larger range. It is also even
less common for units of this group to form very strong connections near the maximum
weight (column C). Indeed, for these settings, increased negative drift has caused the red
peak at the maximum weight that was observed in the previous figure (row 7, column C
of Figure 5.6) to disappear here. As all units in the before group have by definition the
same correlation with the postsynaptic cell, albeit with different amount of shift in time,
it becomes clear that the claimed mapping of correlation strength to resulting connection
strength (Rubin et al., 2001; van Rossum et al., 2000) is not fully correct. The mean time
between presynaptic firing and postsynaptic response also has a very strong effect on the
resulting weight distribution (compare Sketch 5.2, p. 41).

The after group shows even more interesting behaviour. While the distribution of
synaptic weights of this group (blue area) looked simply like an extension of the unimodal
distribution of uncorrelated weights for unbiased STDP (rows 6 and 7, column C in Figure
5.6), this group of input weights now forms an own peak. And still, the van Rossum
et al. (2000) rule (column C, row 7) does not allow any weights to become zero, with all
the implications on learning and sparseness as described above. Chapter 7 will describe
learning performance as a measure of hits and misses, as well as false alarms and correct
rejections of a set of training patterns.

But what about the seemingly superior biological validity of multiplicative rules? The
neat idea of keeping weights within a given range without the need for a hard boundary,
just by using a central attractor for synaptic connection weights? We will now see that
multiplicative rules with inverse proportion of potentiation step size to synaptic weight
are in fact a very bad fit to experimental data.
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5.2.4 Revisiting existing data
Morrison et al. (2007) re-examined the biological data gathered by Bi and Poo (1998) and
re-fitted an exponential weight-dependent update rule to this existing data. While the
general idea of making the weight dependence non-linear by use of a real-valued exponent
is similar to (and inspired by) Gütig et al. (2003), Morrison et al. (2007) noticed that the
update step size of potentiation in the data actually increased with increasing weight as
it does for depression. The flipped sign of weight dependence for potentiation can not
be described within the rule of Gütig et al. (2003). Also, to fit an exponential each to
potentiating and to depressing steps, different exponents had to be used for potentiation
and depression.

The data in Figure 5.8 was extracted from Figure 1A in Morrison et al. (2007) and
originally recorded by Bi and Poo (1998). It shows the change in postsynaptic current
(PSC) over the initial PSC measured before commencement of an STDP pairing protocol.
As in Morrison et al. (2007), the figure here shows absolute changes in pA, in contrast to
the relative percentage changes displayed in Figure 5.4 (p. 44) (from Bi and Poo, 1998,
Fig. 5). In addition to the logarithmic plot in Morrison et al. (2007), Figure 5.8 here also
shows the same data on linear axes on the right. This helps to better visualise a bounding
rule’s match with strong initial weights and/or large absolute step sizes and allows an
easier visual comparison of all figures in this chapter.

The distinct-exponential fit by Morrison et al. (2007) resulted in an exponent µ1 = 0.4
on the synaptic weight for potentiation and an exponent µ2 = 1 for depression (Equation
5.7):

g+(w) ∝ (c1w)µ1 ,

g−(w) ∝ (c2w)µ2
(5.7)

where c1 and c2 are some constants.
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Figure 5.8: Reproduced from Morrison et al. (2007). An exponential fit of potentiating updates to a
continuously increasing function g+(w) (Eq. 5.7) represents experimentally measured data far better than
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(1998), extracted from Morrison et al. (2007).
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The shape of g+(w) makes the scale of potentiating weight updates increase steeper than
g−(w) at first (for weak weights), but is soon overtaken by g−(w) (scale of depressing weight
updates) for higher initial weights because µ1 < µ2. This leads to a slight dominance of
LTP for weak weights and a dominance of LTD for stronger weights (see also Sketch 5.9).

Although both potentiating and depressing weight updates increase with initial synap-
tic weight, this rule still forms a stable fixed point that attracts the weights at the inter-
section between g+(w) and g−(w). It therefore behaves similar to the rule used by van
Rossum et al. (2000), as can be seen in Figures 5.6 and 5.14 (columns C and E) as well
as Figures 5.7 and 5.15 (columns C and E).

Morrison et al. (2007) also exemplarily fit weight-dependent update scaling rules with
additive (g+(w) ∝ 1) and multiplicative (g+(w) ∝ 1 − w) potentiation to the same data.
Figure 5.10 shows that an additive fit for potentiation as in van Rossum et al. (2000)
(Equation 5.5) does not describe the data well. In extension, purely additive weight
dependence as in Song et al. (2000) (Equation 5.2) also describes the data for depressing
update steps badly (no figure shown, but imagine Figure 5.10 with a horizontal blue line
instead of diagonal).

Multiplicative rules with inverse dependence of potentiation on weight g+(w), as used
by Kistler and van Hemmen (2000) and Rubin et al. (2001) and by extension also Gütig
et al. (2003) (Equations 5.4 and 5.6) can now be seen to fit the existing potentiation data
even worse. Figure 5.11 shows an attempted fit (based on Morrison et al., 2007), which
cannot describe the potentiation data points satisfactorily.

Among the previously described weight-dependent update scaling rules, the rule by
Morrison et al. (2007) shows the best fit to existing data, while still exhibiting a stable
fixed point as previous multiplicative rules do. Figures 5.6 and 5.15 (columns C vs. E)
show that its behaviour is closely related to that of van Rossum et al. (2000) and very
different from additive rules (column A). Sections 5.2.5 and 5.2.7 and chapters 6 and 7
will discuss benefits and shortcomings of this rule for efficient pattern learning.

There remains, however, the small question of how the weights would act in the ab-
sence of noise (also noted by Morrison et al., 2007). If all synaptic updates were purely
potentiating, the connection weights would theoretically grow to infinity. I am currently
aware of no data which settles this, and so will discuss a simple solution in the next section.

Sketch 5.9: Exponential absolute weight dependence of synaptic updates as in Morrison et al. (2007)
(Eq. 5.7) for g+(w) ∝ w0.4 (red) and g−(w) ∝ w (blue). The second row shows sketches of how the
effective STDP rule changes due to weight-dependent scaling of its timing-dependent update steps. More
information in Figures 5.14 and 5.15
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Figure 5.10: A multiplicative rule as in van Rossum et al. (2000) (Eq. 5.5) does not fit the experimental
data as well as Eq. 5.7. Red plus sign markers: Potentiating update steps. Blue filled circle markers:
Depressing update steps. Left: Logarithmic plot as in Morrison et al. (2007). Right: Linear plot for easier
visual comparison to other figures. Data from Bi and Poo (1998), extracted from Morrison et al. (2007).
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Figure 5.11: A two-sided multiplicative interpolated rule as in Gütig et al. (2003) (Eq. 5.6) fits the
experimental potentiation data (in red) much worse than even in Figure 5.10. Red plus sign markers:
Potentiating update steps. Blue filled circle markers: Depressing update steps. Left: Logarithmic plot as
in Morrison et al. (2007). Right: Linear plot for easier visual comparison to other figures. Data from Bi
and Poo (1998), extracted from Morrison et al. (2007).
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5.2.5 A new approach to balanced, weight-dependent scaling of STDP
While fitting their weight-dependent STDP scaling rule to biological data, Morrison et al.
(2007) found that the data does not fit previous conceptions of how potentiating weight
update steps should depend on initial synaptic strength. Instead, they found that both
potentiating and depressing steps increase in amplitude with initial PSC. Although the
exponents µ1,µ2 used in Equation 5.7 are not equal, the weight-dependent scaling of
synaptic update steps is a lot more similar than previously assumed.

As discussed in the previous section (and p. 48), a stable fixed point attractor for the
(one-dimensional) synaptic drift only exists inside the defined weight range for µ1 < µ2. If
this relationship were inverted (µ1 > µ2), the fixed point within the weight drift dynamics
would become unstable, and repel any weight updates towards the extremes of the defined
weight range. Such an artificially forced creation of a bipolar weight distribution is not
desirable because it is not based on structured information in the inputs (see Chapter 6),
but solely on the initial strength of a synapse when it originally became plastic. Structured
inputs could only make their synaptic weight cross the repelling fixed point if the fixed
point was very weak, that is, if the rule were nearly additive.

But also for a stable fixed point that strongly attracts synaptic drift (µ1 < µ2), the
representation of structured information within the distribution of synaptic weights be-
comes less informative, as all synaptic strengths cluster around this fixed point. So-called
multiplicative rules that expose a strong fixed point attractor within the weight range
have within the last 15 years not satisfyingly managed to show sufficient performance in
learning structured data (Billings and van Rossum, 2009; Gilson et al., 2010). The main
repeated argument that is given in favour of multiplicative rules with strong fixed-point
attraction has been that their weight distribution looks unimodal (Gilson et al., 2011;
Morrison et al., 2007; Rubin et al., 2001; van Rossum et al., 2000), but this can also be
achieved by other means (see Section 5.3).

I therefore pose the question whether the stable fixed point inside the borders of
a synaptic weight range as caused by multiplicative STDP should indeed be given the
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amount of attention it has seen in the past, or if it should rather be noted as just a
marginal influence on synaptic drift that is not a main enabling factor for stable synaptic
plasticity. While its existence can not be questioned from the data at this point, its
origin in divergent weight-dependent scaling of LTP and LTD can. Its effect on robust
learning of structured information is more detrimental than helpful when modelled as an
interaction between two different weight-dependent scaling factors g+ and g−, and needs
to be overcome by any successful STDP learning rule.

If we set µ1 == µ2 in Equation 5.7, the fixed point disappears while the size of both
LTP and LTD remains dependent on synaptic weight. Figure 5.12 shows that while such
a weight-dependent STDP scaling rule may not fit the data as well as using µ1 = 0.4
and µ2 = 1 as in Morrison et al. (2007), it would still be a much better fit than either of
Equations 5.2 through 5.6.

In fact, when viewing the dashed red and blue curves in the linear plot (right side)
of Figure 5.12, one can see that the crossover point where potentiating drift turns into
depressing drift is fairly close to the lower border of the defined range of synaptic weights
(around initial PSC ≈ 200 pA in Morrison et al., 2007). A positive synaptic drift (where
potentiating steps tend to be larger than depressing steps) only exists for very small
synaptic connection strengths, and most of the synaptic weight range encountered in
experiment has a strong dominance of depression, causing a negative drift there. The
weight-dependent update scaling rule found by Morrison et al. (2007) therefore displays a
strong negative drift over most of its range, while increasing update step sizes indefinitely
(compare Figure 5.12 with Figures 5.14 and 5.15 column E). The fit to data by Morrison
et al. (2007) puts the stable fixed point attractor very close to zero, leading to negative
synaptic drift throughout most of the defined range of synaptic weights, and a positive
drift only for the weakest weights. The existence of a stable fixed point when fitting the
recorded data to different weight-dependent scaling functions for LTP and LTD need not
be the only conclusion to draw from the data. Instead, the resulting fixed point may also
be created by a number of other biological factors, including possibly a combination of
(homeostatic) synaptic growth in combination with a biased STDP rule that has constant
negative drift.

As the data leaves open how a maximum synaptic weight is approached, I assume
that at some point within the weight range, the step size of weight updates begins to
gradually decrease again before reaching an upper bound of weights. Equation 5.8 shows a
weight-dependent update scaling rule where g+(w) = g−(w), that also includes a mirrored
progression to that seen in Figure 5.12 as the synaptic weight approaches a yet unknown
upper border (see also Figure 5.13 left):

g±(w) ∝
{

wµ for w < 0.5
(1− w)µ for w ≥ 0.5

(5.8)

This weight bounding rule succeeds in keeping synaptic weights within a defined range
w ∈ [0, 1], without the need for hard clipping at the borders of that range. Although
spike-timing dependent synaptic updates are multiplied with a weight-dependent function
g±(w), the rule in Equation 5.8 does not cause a drift in either direction because g+(w)
and g−(w) do not intersect but are instead identical. It introduces no additional synaptic
drift that changes with synaptic strength. While it is different from additive rules in its
dependence on synaptic weight, it does not have any stable fixed point attractors inside
the defined range of weights as the previously described multiplicative rules do.

This shows that the previous classification of weight-dependent update scaling rules
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into “additive” rules and “multiplicative” rules is unfortunately named, because it is not
the multiplication of weight updates with some weight-dependent function g±(w) in Equa-
tions 5.4, 5.5, 5.6 and 5.7 that causes their resulting weight distributions to become uni-
modal, but the existence of a stable fixed point attractor in their synaptic drift dynamics.
A better term for identifying classes of STDP rules may therefore be found by identifying
the stable attractor as the distinguishing feature. From now on I will therefore use the
term attractor-based STDP to describe STDP rules that form a stable attractor some-
where within the defined range of possible weights, and attractor-less STDP to describe
rules where the direction of an STDP rule’s synaptic drift does not depend on synaptic
weight, even though the absolute step size for both LTP and LTD may.

After introducing two more attractor-less STDP rules in the following section, I will
compare these to all previously described STDP scaling rules in Section 5.2.7.

5.2.6 Practical weight-dependent, attractor-less weight bounding rules
The weight-dependent update scaling rule that was introduced in the last section is just
one of many possible attractor-less bounding rules imaginable. I will now show two more
instances of weight-dependent bounding rules that are continuous while keeping synaptic
weights within a desired range.

A first possibility could be to use a simple shifted cosine window function as the
weight bound on a normalised range (w ∈ [0, 1]), as is used in many standard signal
processing algorithms today. The benefit is that this continuous, parabola-like function
also approaches the edges of the defined weight range with decreasing steps while allowing
a broader area in mid-range where step sizes remain large. Equation 5.9 describes this
window function, which is also shown in Sketch 5.13 (center):

g+(w) ∝ cos(π w − π

2 ) = sin(π w),

g−(w) ∝ cos(π w − π

2 ) = sin(π w)
(5.9)

The use of a shifted cosine window for weight bounding is partly inspired by Guyonneau
et al. (2005), where an unclipped additive rule was projected to a sinusoidal range before

Sketch 5.13: Attractor-less weight-dependent update scaling rules (Eqs. 5.8, 5.9, 5.10). The step size of
STDP updates varies equally for LTP and LTD. Purple lines: g+(w) = g−(w). Step size is largest for
central weights, while diminishing as weights become closer to the extremes. Left: The exact shape of
the weight-dependent scaling rule of Eq. 5.8 depends on the chosen setting for the exponential µ. Other
settings for µ < 1 are shown in thin lines in the background.
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computation of each synapse’s effect on the postsynaptic membrane. However, the weight-
dependent scaling rule presented here in Equation 5.9 is different in that weight updates
are directly applied to the actual synaptic weight, and no intermediate mathematical
transformation step is needed before synaptic transmission can take place.

While this function scales weight update steps by the present synaptic weight of a
synapse and is continuous, its curve is still similar to that of Equation 5.8. It will therefore
be mainly used in the subsequent chapters. A second possible soft weight bounding rule is
to use a Hann(ing) window function for weight-dependent update scaling, as in Equation
5.10 (see Figure 5.13 right):

g+(w) ∝ Hann(w),
g−(w) ∝ Hann(w)

(5.10)

Hann(w) = 1− cos(2π w)
2

(5.11)

This window function decreases the step size of synaptic updates long before they reach
the edge of the defined range, so that uncorrelated spike pairings cause synaptic weights to
gather further away from the boundaries of the defined weight range. This will be further
explored in the following section.

5.2.7 Performance and Features (Set 2)
I now compare all previous STDP scaling rules (Sections 5.2.1-5.2.3) with the attractor-
based power-law rule with equal sign of slopes of g+ and g− as reviewed in Section 5.2.4,
and with the three new attractor-less weight-dependent STDP scaling rules I proposed in
Sections 5.2.5 and 5.2.6. The previous rules were evaluated in columns A-D of Figures 5.6
(p. 49) and 5.7 (p. 54), while the four additional rules are described in columns E-H of
Figures 5.14 (p. 63) and 5.15 (p. 66).

Comparison of scaling rules for unbiased STDP

As noted in Visualisation of Effects (p. 47), the first row of Figure 5.14 plots only the
weight-dependent scaling factors g+(w) and g−(w). Column E here shows Equation 5.7
for exponents µ1 = 0.4 and µ2 = 1 as in Morrison et al. (2007). Constants c1 and c2
were chosen to be c1 = c2 = 0.5 for improved visual clarity, as the original constants of
Morrison et al. (2007) move the crossover point very close to w = 0, making it hard to
see the effects of the stable fixed point attractor in this comparison. While at first sight
the Morrison et al. (2007) rule of column E looks quite different than the multiplicative
rule of van Rossum et al. (2000) in column C (Figure 5.6), a closer inspection reveals that,
just as in multiplicative STDP, the scale of potentiating updates (LTP) dominates for
weak weights while the scale of depressing updates (LTD) dominates for strong weights.
The crossover point again indicates the existence of a stable fixed point attractor at this
location. As noted before, if µ1 were larger than µ2, this fixed point would stop being an
attractor and instead repel any synaptic drift.

Column F (row 1) shows the power law rule with µ1 = µ2 for w ∈ [0, 0.5), and a
mirrored progression for w ∈ [0.5, 1] (Equation 5.8). Different possible values for µ1, µ2
are visualised by the dashed lines, but we choose µ1 = µ2 = 0.7 for this comparison
(continuous line) as it is the mean of 0.4 and 1 (compare Figure 5.12). Columns G and H
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show the (shifted) cosine window of Equation 5.9 and the Hann(ing) window of Equation
5.10.

The second and third row again visualise the effect of weight-dependent scaling on the
full STDP rule as in Figure 5.6. In column E the total amount of potentiation outweighs
the amount of depression for weak weights, but is overtaken by increased depression for
stronger weights as expected for multiplicative rules. In columns F-H, however, the ratio
between potentiation and depression remains constant throughout the full range of possible
weights. Due to the weight dependent scaling, the step size of updates also varies here, but
equally for both LTP and LTD. The unbiased STDP rules in rows two and three retain
their symmetry.

This directly affects rows four and five, where columns F-H show no bias in synaptic
drift. Synaptic weights truly perform a random walk. This is in spite of the fact that
update step sizes are weight dependent, as shown by the green areas on either side of the
weight range in row four, and the course of standard deviation in update step size across
the weight range in row five (yellow curve, scaled by 0.2 for display again).

Rows six and seven of column E show the typical development of synaptic weights in a
computer simulation (see Appendix A.3.3) as would be expected for multiplicative STDP.
The synaptic weights of uncorrelated inputs (grey area) gather around the stable fixed
point attractor, as this type of weight-dependent scaling keeps random weight updates
near the crossover point. As in column C (Figure 5.6), synaptic connections from input
units in the after group (blue dotted lines and blue area) can never reach w = 0 when the
presynaptic input units are also noisy. Synaptic connections to units in the before group
(red dotted lines and red area) form a stronger peak near w = 1 than in column C, as the
scale of potentiating updates kept increasing and is higher here for w ≈ 1 than in column
C.

Columns F and G of rows 6 and 7 show a very similar behaviour in that all synaptic
weights gather near the edges of the defined range. Not just the strongly correlated inputs
of the before and after groups do this (as in additive STDP, column A, Figure 5.6), but
also the connection weights of uncorrelated inputs. However, one must not conclude from
this that there must be an unstable fixed point somewhere in the weight range. As there
is no crossover between g+(w) and g−(w), no fixed point exists. Instead, what we see is
simply an effect of the larger (symmetric) step size for central weight values compared to
the step size of weight updates around the edges of the weight range. For a more intuitive
understanding, the reader may compare this to viewing a crowd through a fish-eye lens or
a convex mirror: While single movements are truly random, the step size appears faster
near the center of the lens/mirror. Uncorrelated inputs still cause their connection weights
to perform a true random walk, except that the time they spend at intermediate values
(w ≈ 0.5) is short.

In column H (row 7), the strength of synaptic connections to randomly firing input
units (grey area) forms clusters near the edges of the defined weight range without seem-
ingly reaching these edges. This is simply a transient effect that will result in a similar
distribution as in columns F and G (row 7). But as the approach towards the extreme
edges of the range is so much slower for uncorrelated inputs than when structured inputs
(red and blue areas) are used, future learning tasks may still benefit from using an STDP
scaling rule as in this column (column H, row 1). Again, the division of the weight dis-
tribution for uncorrelated inputs is not due to any (unstable) fixed point. Instead, each
synapse of randomly spiking inputs here may at any point spontaneously switch sides as
per the random walk described above.
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Comparison of scaling rules for biased STDP

The biased nature of the STDP rule used in Figure 5.15 can be seen in row three, where
the amount of LTP and LTD is no more symmetric in columns F-H. As the discrepancy
between potentiation and depression is not caused by the weight-dependent scaling factors
g+ and g− but by the inherent differences in the main STDP rule (A+ 6= A− and τ+ 6= τ−),
the graphs in the first row show no differences in weight-dependent scaling here (purple
curves, columns F-H, row 1).

The constant negative synaptic drift of the biased STDP rule also strongly affects the
average drift intensity in row five, where the red area (=potentiating drift) in column E
(row 5) is decreased while the blue area (=depressing drift) is increased. This change also
indicates a slight shift of the stable fixed point towards weaker weights in comparison to
Figure 5.14. Columns F-H (row 5) now show a depressing drift throughout the complete
weight range, which is strongest around central weights and becomes weaker near the edges
of the defined weight range. However, in opposition to column E, the sign of synaptic drift
still does not change as there is still no crossover between g+ and g−.

The simulation data (rows 6 and 7) of Figure 5.15 shows the influence of negative
synaptic drift in extension of Figure 5.7 (p. 54). Attractor-based STDP scaling rules
(columns B-E) see the peak of weights for uncorrelated inputs (grey areas) shift further
into depression. This indicates that the stable fixed point attractor has also moved in this
direction. However, synaptic connection weights of the after group (blue dotted curves
and blue area, rows 6 and 7) again never reach zero when using the Morrison et al. (2007)
STDP scaling rule (column E) as in the van Rossum et al. (2000) rule (column C, Figure
5.7), because the scaling function of LTD (g−) becomes zero as the weight moves towards
zero. If it didn’t, an attractor-based STDP scaling rule could theoretically reach zero
synaptic strength (see column B), but any successful synapse would still need to overcome
the competing drift of the stable fixed point attractor.

For attractor-less STDP scaling rules (columns A,F-H), a negatively biased STDP rule
lets all weights of uncorrelated inputs move towards the lower bound (w → 0) instead
of evenly distributing those weights as under unbiased STDP (Figures 5.6 and 5.14). As
in Figure 5.7, this reduction of synaptic weights to randomly firing inputs lets only some
connections of the before group (red dotted curves and red areas, row 6 and 7) remain
strong. Again, not all synapses in this group manage to escape the negative synaptic drift,
and those input units in the before group that fire a long time before each postsynaptic
spike loose this competition and are also depressed. This can be seen as some red dotted
curves in row 6 also move towards zero, together with all blue dotted curves and the
synapses of uncorrelated background inputs (grey area). See also Figure A.7 (p. 181) for
an overview which input units fired at which timing differences from each postsynaptic
spike.

5.3 Synaptic weight distributions & Homeostasis
The reader should now be convinced that the classification of STDP rules into multiplica-
tive (“weight-dependent”) and additive (“not weight-dependent”) STDP is badly chosen,
and that the terms attractor-based and attractor-less may rather be used. This is moti-
vated by the construction of a weight-dependent, attractor-less STDP rule in the previous
section. Attractor-less STDP seems a good choice for maximising representational dif-
ference between causally correlated (often before) input units and those that are either
anti-causally correlated with (often after) postsynaptic spikes or which are not correlated.
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Figure 5.15: Comparison of effects of weight-dependent scaling rules on biased STDP. Column E : Power
law scaling of STDP with weight dependent increase of LTD and LTP scale (Eq. 5.7). Columns F-G:
Balanced, weight-dependent soft bound. Column F : Power law scaling with equal exponents and mirrored
right half (Eq. 5.8). Column G: Shifted cosine window (Eq. 5.9). Column H : Hann(ing) window (Eq.
5.10). – see Figure 5.6 for description of rows. . .
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I have also discussed how attractor-less STDP can lead to sparsification of synaptic weight
distributions, while attractor-based STDP typically keeps most synaptic connections non-
zero.

In the simulations shown in Figures 5.6, 5.7, 5.14, and 5.15 (pp. 49, 54, 63, and 66),
postsynaptic spike timing was manually fixed to exactly 1 Hz regular firing (see Appendix
A.3.3) to visualise STDP effects in a clear manner. However, in practice, the timing of
postsynaptic spikes is thought to instead depend on some weighted combination of its
inputs (see also Chapter 6). When the spike timing of a postsynaptic neuron is allowed
to depend solely on its presynaptic inputs, long periods of uncorrelated input spikes lead
either to a randomly selected small subgroup of inputs becoming strong while all other
weights move close to zero (attractor-less unbiased STDP), or to a common decrease of all
synaptic weights until the postsynaptic neuron becomes quiet forever before it can form a
precise representation of any group of inputs (attractor-less biased STDP, and attractor-
based STDP where the attractor is very close to zero), assuming sufficiently large network
size (see also Gütig et al., 2003; Rubin et al., 2001).

Proponents of attractor-based (“multiplicative”) STDP argue that keeping most synap-
tic connections far away from zero helps in keeping the postsynaptic neuron active and
thereby plastic. This is indeed important during the initial training phase of a (new)
neuron, when it has not yet formed a sufficient number of strong connections to allow
it to respond with high selectivity to a small group of concurrently active inputs. If a
neuron that has not yet formed a reliable receptive field is allowed to become quiet too
soon, it may never properly form a selective receptive field. This is because, by definition,
STDP needs postsynaptic spikes for synaptic changes to occur, just as traditional Hebbian
plasticity needs a non-zero postsynaptic activation term (Equation 2.10, p. 16).

It is, though, highly doubtful that most adult neurons recordable in in vivo electrophys-
iological recordings still show high spiking activity throughout their lifetime. Histological
cell counting methods have revealed a far higher number of neurons in recording range
around implanted electrodes than are usually recorded (Kerr et al., 2005; Shoham et al.,
2006; Vann et al., 2000; Wan et al., 2001). It may be more likely that well-trained neurons
remain quiet for most inputs and only become active if they detect a trained pattern that
fits their receptive field. As a neuron becomes more selective to a distinct group of in-
puts (sparse weight distribution), its responses to incoming (random) activity also become
more sparse (sparse spike timing). The period in which a neuron responds to all inputs
in general without being specifically tuned to a subset of inputs and without being quiet
has been called the critical period (Crair and Malenka, 1995; Hensch, 2005).

A good model for spike timing dependent plasticity should capture these two different
phases of neural development, and keep most synaptic weights non-zero only for as long as
necessary before that neuron can form a highly selective receptive field. In Section 7.3 (p.
116) I will further investigate how a group of highly selective neurons can be combined to
form a sparse code, but for now I concentrate only on the receptive fields of single neurons.

5.3.1 Initial Synaptic Growth
All STDP rules presented in Section 5.2 initially require a minimum number of strong
synaptic connections to allow a newly formed neuron to become active. When initial
synaptic weights are too weak to induce spiking in the postsynaptic cell, no spike timing
dependent changes to synaptic connections can happen (Section 2.3), and no spike timing
dependent formation of receptive fields can begin.

Luckily, activity-dependent plasticity is not the only form of changes to synaptic con-
nections that can occur. During the initial phases of neuronal formation, newly formed
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neurons guide nearby axons towards their own dendrites through a variation of neu-
rotrophic factors and other chemical gradients (Lindsay et al., 1994). The identity of
attracted input axons is, if at all, only very loosely guided by neuron identity, and seems
to create rather random synaptic connections. The newly formed postsynaptic neuron
uses this to form some minimum number of strong synaptic inputs, after which axonal
guidance subsides. The point at which the postsynaptic neuron stops attracting further in-
coming axons likely also depends on the energy consumption of sustaining strong synapses
(Fonseca et al., 2004).

In a computer simulation of synaptic plasticity in point neurons, it may therefore
make sense to include some initial synaptic growth factor that simply increases synaptic
weights, and subsides as the neuron forms sufficiently many strong connections that keep
it responsive to a select group of inputs. While it is yet unknown whether axonal guidance
can be reenabled when a postsynaptic neuron looses all its strong synapses, or if a neuron
that has lost all inputs is always simply replaced by a new neuron with a new randomly
formed dendritic tree, both cases make little difference from a computational implemen-
tation perspective. In order to push initially silent neurons into a critical regime in which
they respond to their synaptic inputs, I assume the existence of some (random) synaptic
growth factor that is present only for neurons with an insufficient number of strong inputs.

The size of this growth factor only depends on the number of strong synaptic input
connections and can be used to control activity-independent synaptic growth in the absence
of postsynaptic firing. Activity-independent synaptic growth then counteracts the negative
synaptic drift by biased STDP rules and keeps an untrained neuron responsive to inputs.
While it keeps the neuron within a critical regime of activity, it does not interfere with spike
timing dependent changes to synaptic strength, because changes are applied either equally
to all synapses or randomly to all synapses with equal probability. When the number
of strong input connections reaches some target given by the total maintenance cost of
existing strong synapses, this unfocused synaptic growth factor subsides (see Appendix
A.4.1 for implementation details).

Synaptic growth must not be confused with attractor-based STDP, as it is more pow-
erful (attractor-based STDP can not initialise postsynaptic responses for newly formed
neurons as it requires existing postsynaptic activity to take effect) and less interfering
with spike timing dependent changes. Also, synaptic growth is not needed when the con-
nections of a postsynaptic neuron are initially strong, as this usually gives the receptive
field enough time to form in spite of negatively biased STDP. In fact, it is only required
when new simulated neurons are formed that initially possess no strong connections as is
the case in Chapters 9 and 10. Otherwise, attractor-less STDP is alone capable of forming
highly selective receptive fields, as will be demonstrated in Chapters 6, 7 and 8.

5.3.2 Homeostatic Effects and STDP
In fact, STDP itself is likely the product of many different mechanisms interacting and
should probably not be sought after in a single biochemical mechanism (Shouval et al.,
2010). As noted in Chapter 2, the functional description of STDP has been constantly ex-
panded throughout the past years, adding dependences on postsynaptic membrane states
and chemical messengers into the equation. The observations that in vitro cell cultures
of neurons grown outside the body produce certain types of weight distributions (Turri-
giano et al., 1998) should therefore not be taken as indication that an STDP rule must
always include the formation of a given distribution (e.g. unimodal) of synaptic weights in
vivo (van Rossum et al., 2000). A simple counter-example is the idea that a combination
of STDP and homeostatic mechanisms may produce a unimodal distribution of synap-
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tic weights only in the absence of meaningful (e.g. random, unstructured) input data
and produce a bimodal distribution of synaptic weights when meaningful input data (e.g.
polychronous patterns, see Chapter 6) is given (Toyoizumi et al., 2007). When combining
activity-independent synaptic growth as discussed in Section 5.3.1 with a negatively biased
STDP rule, this is exactly what happens.

5.3.3 Inconclusive Experimental Data
Contrary to what is argued by van Rossum et al. (2000) and others, experimental evi-
dence is not yet conclusive on the conditions under which certain distributions of synaptic
strengths occur for any given postsynaptic neuron. While Turrigiano et al. (1998) find a
unimodal distribution of synaptic weights for neurons grown in a petri dish, O’Brien et al.
(1998) find a more multimodal distribution of synaptic strengths, albeit with a different
approach to measuring synaptic strength as well as using a different preparation method
and tissue from different brain areas.

A combination of homeostatic mechanisms that shows different types of synaptic weight
distributions for different periods in a neurons developmental cycle therefore appears no
less likely than a strict fixation upon any specific distribution measured in a subset of
experiments.

5.4 Summary
In this chapter I examined a fundamental building block that will be used throughout the
remainder of this text. After having introduced basic spike timing dependent plasticity
(STDP) in Chapter 2, I explored the more subtle dependence of synaptic drift on the
statistics of pre- and postsynaptic spike arrival pairings and defined and explored the
effects of biased and unbiased STDP. I reviewed widespread models for weight-dependent
scaling of STDP updates and demonstrated how they affect synaptic drift. I showed
how attractor-based STDP interferes with spike timing dependent changes of synaptic
connection strength and introduced a new family of weight-dependent STDP rules that
are attractor-less and easy to implement in a computational model (Vogt and Hofmann,
2015a). Finally, I suggest that observed unimodal distributions of synaptic weight may
have other origins than requiring an attractor-based STDP rule, and present an alternative
approach that uses activity-independent synaptic growth to produce both unimodal and
multimodal weight distributions as a function of the existence of spatiotemporal structure
within presynaptic input spike trains. The embedding of spatiotemporal structure within
presynaptic spike trains and the effect that this may have on pattern detection as well as
plasticity will be the topic of the following two chapters.
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Chapter 6

Spatiotemporal Coding, Correlations, and
Noise

How does the brain encode important information? How is this information transported
and processed by the electrical pulses of spiking neurons that we can observe in all animals
that have a brain? We will not be able to observe the ground truth of every neuron in the
complete brain for the foreseeable future. Even within a small area, the dynamics of each
single neuron remain very hard to observe, due to the complexity of interactions between
brain cells and the distorting effect of inserting electrode probes or certain chemicals into
our brain. Today it is still not clear which (electrical, chemical, or physical) parameters
in an area of brain tissue we can safely ignore and which may prove incredibly important
for accomplishing some function that is yet to be discovered.

But we are getting a bit closer. It is by now accepted that the brain indeed uses little
pulses of electrical currents to transmit ostensibly urgent information between neurons.
For less urgent information and homeostatic/supporting processes, the brain likely uses
chemical messengers such as calcium pulses of astrocite glia cells or hormones of the en-
docrine system. As I am mainly interested in fast information processing between neurons
in this work, I will now take a closer look at how the brain may use fast electrical pulses
between neurons to allow it to quickly respond to anything happening in the environment,
be it as prey or as predator.

While biological experiments fail to provide us with all the answers on how spiking
neurons may interact to produce behaviour, the field of information theory (Chapter 4)
may give us some answers here. If a single neuron in the brain can be seen as a basic
classification unit that has learnt to filter out specific features of its inputs and respond
to others, it effectively works as a pattern detector by firing an action potential for known
inputs when they are discernible from the huge number of unrelated background spikes,
and remaining quiet when no known inputs are discernible. This discernibility may also
be good to pass on as a measure of certainty that the detecting neuron has in its response,
thereby extending a simple detector into a feature extractor that can give real-valued
feedback about the world of inputs it receives. A likely candidate for this real-valued
feedback about how certain or uncertain a neuron is in detecting a pattern of spikes in its
inputs may be the time its membrane potential takes to reach the neuron’s firing threshold
for a given set of inputs. If spikes arrive through previously strengthened connections
within a short time span, the neuron may respond faster than if those spikes only arrive
occasionally, or through less strong connections, or if not all of those connections are
equally strong. If not enough spikes arrive through sufficiently many sufficiently strong
connections within a short time, the receiving neuron’s response spike may be postponed
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indefinitely.
In this chapter, I first take a look at the response characteristics of a spiking model

neuron to three categories of input patterns without the inclusion of synaptic plasticity
(Section 6.1). I then examine the effect of these three pattern categories on synaptic plas-
ticity, especially STDP (Section 6.2). The results obtained here then lead to the question
whether we should reconsider current assumptions and experimental practices when han-
dling electrophysiological recordings because synchronous bursts of activity, variations in
firing rates, and statistics on correlations and inter-spike intervals of single spike trains
may be distracting us from searching for information encoded in a spatiotemporal neural
code (Section 6.4).

6.1 Detection Uncertainty and Detection Speed
Before we look at the requirements that fast and reliable information processing poses on
plasticity and learning, we first consider the task of actually detecting an environmental
feature or situation within a noisy spiking neural network and how response time and
certainty may be encoded.

Traditionally, recordings of the electrical activity of brain cells have only been able to
observe a mixture of the action potentials of many co-located neurons in a given area.
These local field potentials (LFPs) already showed some relation to external stimuli or
motor effects, but soon single neurons were found to use electrical spikes of their membrane
potential as a basic element of fast information transfer. These travelling action potentials
were observed to change in rate when controlling muscles or signalling sensory input in the
peripheral nervous system, and until this day the description of neural activity by its rate of
firing is seen as a valid abstraction from the underlying dynamical complexity of biological
neurons. In particular, even when spiking networks are observed in an experiment or used
in a model, the exact timing of spikes is still often seen as unimportant while only the
correlated activity among many neurons in a population or among many repetitions of
some evoked response is taken into account. The exception to this rule are modelling
studies where an exact neuronal spike train is tried to be perfectly reproduced through
supervised learning (Frémaux et al., 2010; Gütig and Sompolinsky, 2006), leading to the
opposite extreme of saying that the exact timing of every single spike were important.

In this section, I acknowledge the existence of randomness in timing or even occur-
rence of spikes in a biological neural network while examining how a few precisely-timed
spikes may introduce structure into neural activity that may be used to encode meaningful
information.

6.1.1 Detection Performance for Synchronous Inputs
Largely independent from the neuron model being used, a biologically realistic neuron
tends to respond to its inputs by producing an action potential after receiving enough input
to make its membrane potential cross some threshold (Chapter 2). Synchronously arriving
input spikes evoke a quick response from a postsynaptic neuron if the synapses connecting
the input units to the neuron are strong enough. If they are not, the postsynaptic neuron
does not fire at all, as visualised in Figures 6.1 and 6.2.

As the strength of all incoming connections to a given postsynaptic neuron is increased,
the neuron begins to respond to the presentation of a group of synchronous spikes. How-
ever, the response shows no information about the strength of connections (Figure 6.1)
or how many strong connections have been formed (Figure 6.2) with a given group of
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Figure 6.1: Synchronous input spike patterns allow only binary classification when all synaptic con-
nections have a common real-valued strength. The postsynaptic output only relays minimal information
about the receptive field and decision confidence. See Appendix A.3.4 for simulation details and Figure
6.2 for the description of rows. Column (a): A large number of weak connections is unable to elicit a
postsynaptic spike. Column (b): A large number of medium-strength connections produces an immediate
(2ms) postsynaptic response, without notable timing variability. The timing delay is equal to column (c)
and to Figure 6.2 (column b). Column (c): A large number of strong connections produces an immediate
(2ms) postsynaptic response as would be expected.

synchronously firing input units. If the neuron has a soft threshold for spiking (Chapter
2), it may show some slight difference between strong and medium inputs in the time
the neuron takes to respond. However, this delay is negligible in a noisy system, as was
discussed in Section 2.2.

Synchronous inputs hence lead to a purely binary response of a postsynaptic neuron,
and no (or hardly any) information can be extracted from the neuron’s response about
how certain it is about its classification decision (to fire or not to fire). For later processing
stages, this binary classification hampers further valuation of this neuron’s response as it
transports no information about possible uncertainty in the classification result. If one
were to repeat this detection phase for a large number of postsynaptic neurons that all had
slightly different sets of strong input connections (receptive fields), a third-stage observer
that received all detector neurons’ outputs would not be able to put more value on those
detector responses that were made with certainty over those that are rather uncertain.

A large number of synchronously arriving inputs may therefore not be the best way of
transporting meaningful data within a multi-layered spiking neural network, and indeed
it has proven hard to find such perfectly synchronous spikes within the brain (Abeles and
Gerstein, 1988; Gerstein et al., 2012). What has been seen, however, are groups of neurons
that seem to become active together but are less than perfectly synchronous. Groups of
correlated inputs with a correlation coefficient less than one (perfectly synchronous) but
above zero (uncorrelated) are discussed next.
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Figure 6.2: Synchronous input spike patterns allow only binary classification when a fraction of
binary synaptic connections is strong. The postsynaptic output only relays minimal information about
the receptive field and decision confidence. Column (a): A small number of binary strong connections is
unable to elicit a postsynaptic spike. Column (b): A medium number of binary strong connections produces
an immediate (2ms) postsynaptic response, without notable timing variability. The timing delay is equal
to column (c) and to Figure 6.1 (column b). Column (c): A high number of binary strong connections
produces an immediate (2ms) postsynaptic response as would be expected. Row 1: Overview diagrams of
input spike pattern and the strength of synaptic connections to the single postsynaptic neuron. Synaptic
connection strength is exemplified by thin grey lines for weak connections and wide black lines for strong
connections. Row 2: Main plot: Actual input spike scatterplots used in the computer simulations. Left
plot (within each column): Manually defined synaptic connection strengths (=weights) that were used
to project the input spike pattern onto the single postsynaptic neuron. Nonexistent connections shown
in white, weak connections shown in (light) grey, strong connections shown in black as in the overview
diagrams. Row 3: Membrane potential of the single postsynaptic neuron (arbitrary units). A black dot
below the membrane trace indicates the first postsynaptic response spike, while any grey dots (see following
figures) indicate subsequent response spikes. The dashed magenta line indicates the time of pattern onset.
Row 4: Distribution of timing variability of the first response. Onset distribution histogram was computed
from 200 repetitions of the simulation. See Appendix A.3.4 (page 182) for simulation details.
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Figure 6.3: Correlated inputs allow the response onset delay to encode the mean strength of synaptic
connections when all synaptic connections have a common real-valued strength. As the timing order
of individual spikes from correlated input units is by definition random (undefined), many repetitions are
required to find the average response delay. Correlated inputs allow more information to be extracted from
responses of a postsynaptic neuron than if perfectly synchronous inputs were used (see Figures 6.1 and
6.2), but less than when truly polychronous inputs are used (see Figures 6.5 and 6.6). See Appendix A.3.4
for simulation details and Figure 6.2 for the description of rows. Column (a): A large number of weak
connections is unable to elicit a postsynaptic spike. Column (b): A large number of medium-strength
connections produces a slower (13ms) postsynaptic response, with some timing variability. The small
variability in response times here is because we provide a near-constant number of input spikes to the
postsynaptic neuron per time step, only distorted by little background activity (0.2 Hz). The response
onset delay is equal to Figure 6.4 (column b) but slower than column (c) of this figure. Column (c): A
large number of strong connections produces a fast (7ms) postsynaptic response after a sufficient number
of inputs has arrived.
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Figure 6.4: Correlated inputs allow the response onset delay to encode the mean strength of synaptic
connections when a fraction of binary synaptic connections is strong. The membrane responses
here are slightly more erratic than in Figure 6.3, but produce the same mean response times. When only
some weights are strong (column b), the timing of first responses is more variable than in any other case
shown in this section. See Appendix A.3.4 for simulation details and Figure 6.2 for the description of
rows. Column (a): A small number of binary strong connections is unable to elicit a postsynaptic spike.
Column (b): A medium number of binary strong connections produces a slower (13ms rounded mean)
postsynaptic response, with much timing variability. This is because only a fraction of arriving spikes
actually increase the postsynaptic membrane potential, and the time until the postsynaptic membrane
reaches spike threshold therefore depends on which input units randomly fire first on a given pattern
presentation. We still provide a near-constant number of input spikes to the postsynaptic neuron per time
step, as in Figure 6.3. While there is more variance, the mean of the response onset delay is equal to Figure
6.3 (column b) but slower than column (c) of this figure. Column (c): A high number of binary strong
connections produces a fast (7ms) postsynaptic response after a sufficient number of inputs has arrived.
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6.1.2 Detection Performance for Correlated Inputs
Correlated inputs are those spike trains that arrive from input units which have some
tendency of being active together. While the amount of correlation between two spike
trains can be easily calculated (Chapter 4), it may not describe the complete relationship
between two spike trains sufficiently. However, as it is easy to detect correlated activity in
many biological recordings of spiking neurons, this approach to modelling synaptic inputs
of a spiking neural network is currently the most commonly used method for testing the
performance of spike timing dependent plasticity (STDP).

If we present a detector neuron with correlated inputs through strong connections, it
will have a tendency to quickly respond to the peaks of correlated activity (Figure 6.3
right). If the connections were very weak, the postsynaptic detector neuron may not
respond at all (Figure 6.3 left). But if the correlated inputs arrive through synaptic con-
nections with some medium strength, we see a different behaviour than in the synchronous
case:

As the inputs are no longer perfectly synchronous, a smaller number of input spikes is
arriving at the postsynaptic neuron at any moment in time. During a peak of input activ-
ity, the membrane of a postsynaptic cell is drawn towards its firing threshold only slowly,
and may remain beneath this threshold for the time being. Without further inputs, leak
currents would cause the neuron’s membrane potential to return back to resting poten-
tial. But if the heightened input activity continues, the postsynaptic neuron’s membrane
potential can further increase above this threshold, causing a response spike (Chapter 2).
The slope of this comparably slow ramp of membrane potential during a peak of input
activity depends on the strength of connections between the spiking input units and the
postsynaptic neuron. Therefore, for a fixed number of correlated inputs, the time that
a detector neuron takes to respond to a peak of correlated inputs contains information
about how strong the synaptic connections to this correlated input group are (Figure 6.3).
In theory, the delay that a detector neuron takes to respond to the onset of a peak in cor-
related activity may pass on a hint on how certain it is that a given pattern of correlated
inputs that the detector is tuned to is present.

However, in practice, all synapses connecting a group of correlated inputs to a post-
synaptic neuron rarely have exactly equal strength. Also, the mean number of inputs
arriving at each point in time is only sufficiently smooth for very large groups of input
units. During a peak of correlated input activity, some inputs may coincidentally fire early
and at the same time be connected to the postsynaptic detector neuron through strong
synapses, causing it to respond a lot sooner. Similarly, if coincidentally all early firing
input units of an activity peak happen to be connected through less strong synapses, they
may not excite the postsynaptic neuron enough for it to respond quickly. Just as ran-
domly, it may happen that most inputs that have strong connections with a postsynaptic
neuron fire late during a peak in correlated input activity, causing the detector neuron to
respond late, too. Therefore, in a more realistic setting, correlated inputs lead to a high
variance of response timings in the postsynaptic detector neuron (Figure 6.4 center).

In this case, it is hardly possible to infer any statement about a detector neuron’s
certainty in reaching a decision by observing the time it took to respond in a single
instance. As we will see in section 6.2, this random response timing for correlated inputs
is a main factor for sub-optimal STDP performance when using merely correlated spike
trains as input data.

I will therefore now examine the idea of temporal coding (Thorpe et al., 2001) for
detecting structured information within a stream of incoming spikes, and explain how any
uncertainty in a pattern detector neuron’s classification decision can thereby be passed on
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Figure 6.5: Polychronous inputs allow the response onset delay to encode the strength of a subset of
synaptic connections. When all incoming synaptic connections have a common real-valued strength, the
response is similar to that of correlated inputs when the same average number of spikes arrives on each time
step/bin (Figure 6.3). See Appendix A.3.4 for simulation details and Figure 6.2 for the description of rows.
Column (a): A large number of weak connections is unable to elicit a postsynaptic spike. Column (b): A
large number of medium-strength connections produces a slower (13ms) postsynaptic response, with little
timing variability. The response onset delay here is similar to Figure 6.3 (column b) but slower than Figure
6.6 (column b) because the earliest set of inputs arrives through a stronger subset of connections there.
Only polychronous patterns take account of which subset of connections transmits the earliest inputs. For
synchronous input patterns (and zero-lag correlation) as in the previous figures, only the mean connection
strength counts. Column (c): A large number of strong connections produces a fast (7ms) postsynaptic
response after a sufficient number of inputs has arrived.

to later processing stages.

6.1.3 Detection Performance for Polychronous Inputs
Spatiotemporal coding of synaptic inputs to biological neural networks have long been ac-
knowledged to exist in many parts of the brain (Bair and Koch, 1996; Gawne et al., 1996;
Hopfield, 1995; Mainen and Sejnowski, 1995; O’Keefe and Recce, 1993). A strong propo-
nent argument for temporal coding was made in (Thorpe et al., 2001), but the general
neuroscience community has continued to model synaptic inputs to spiking networks as
merely correlated groups of input units (with random spike order) and thereby avoids the
question of how such structured inputs may look. Izhikevich et al. (2006; 2004) found that
a recurrent plastic network tends to produce repeating groups of spatiotemporally struc-
tured spikes and coined the term of polychronous patterns which I use here for describing
spatiotemporal inputs in a feed-forward setup. While it has been hard to detect repeating
patterns of exact spatiotemporal ordering within biological recordings so far (Berger et al.,
2010; Gerstein et al., 2012; Schrader and Grün, 2008), there are many hints that point
to the existence of such a spatiotemporal neural code, albeit not in a perfectly precise
manner. Starting with the transmission of detection uncertainty as described above, it
seems logical that the brain as a whole needs some mechanism of passing on each neuron’s
“confidence” in its own classification decision. While a neuron’s spike delay is a good can-
didate for this kind of information, it is of course not conclusive evidence for the existence
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Figure 6.6: Polychronous inputs allow the response onset delay to encode the strength of a subset of
synaptic connections. When only a fraction of binary synaptic connections is strong, the delay until
first response depends strongly on how many of the earliest inputs arrive through synaptic connections
that happen to be strong. As in polychronous patterns the order of spike arrival is by definition not fully
random, the response delay for a given set of weights allows inferences on how well the incoming pattern
fits the detector neuron’s receptive field. If the pattern itself is unreliable (Sections 7.1.2 to 7.1.4), response
delay may also encode certainty about pattern presence within background noise. See Appendix A.3.4 for
simulation details and Figure 6.2 for the description of rows. Column (a): A small number of binary
strong connections is unable to elicit a postsynaptic spike. Column (b): A medium number of binary
strong connections produces a fast (7ms) postsynaptic response, iff the subset matches the earliest inputs.
Only polychronous patterns take account of which subset of connections transmits the earliest inputs.
Column (c): A high number of binary strong connections produces a fast (7ms) postsynaptic response
after a sufficient number of inputs has arrived.
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of spatiotemporal coding in deep, fast-responding parts of the brain. A second hint for the
existence of spatiotemporal coding though comes from the shape of typical spike timing
dependent plasticity rules and will be the subject of the remainder of this chapter (see
Section 6.2). First, however, I will now describe the effects of spatiotemporal coding on
detection performance and detection speed, and explain a useful scenario for delaying a
neuron’s response.

Figures 6.5 and 6.6 show an example of a perfectly timed, precisely ordered spatiotem-
poral code that is used as input to a single detector neuron in a feed-forward setting.
While very weak inputs (Figure 6.5 left) still evoke no postsynaptic spike as any devia-
tions in the membrane potential are too weak to pass the neuron’s firing threshold, the
neuron does respond to slightly stronger (Figure 6.5 center) and strong (Figure 6.5 right)
inputs. In opposition to a synchronous burst of input activity (Figures 6.1 and 6.2), the
postsynaptic detector neuron now shows a response time delay that is somewhat inversely
proportional to the synaptic strength of connecting synapses. In opposition to the case
of merely correlated inputs (Figure 6.4), the response delay for a mixed group of strong
and weak synapses is now reliable (Figure 6.6 center) and depends only on the identity
of which connections are strong at the time of transmission. For a given set of synaptic
weights, the response delay of a spiking neuron that receives such a spatiotemporal input
pattern is much more predictable than if it received randomly firing correlated inputs.
This predictability is what allows later processing stages to read out information from
the firing delay of the detector neuron. The onset time for measuring this delay can be
signaled through multiple events, and I introduce possible candidate events together with
an option for solving the onset problem in section 6.1.4.

We have just established that the detector neuron’s response delay can convey the
average strength of synapses it has formed to input units that fire early in a precise spa-
tiotemporal order. It signals the match between its receptive field and the spatiotemporal
pattern being presented to it. This information is transmitted in a single spike by a single
detector neuron, while a correlation code requires either a large postsynaptic population
or many repetitions to access this information. For synchronous inputs, this information
is simply not available without testing a range of synaptic connection strengths for each
occurrence of synchronous inputs.

The goodness of fit between a detector neuron’s receptive field and an incoming pattern
is, however, not the only information that can be passed on through the delay of a detector
neuron’s response after some onset event. When a given set of inputs tends to fire in some
spatiotemporal order to represent a message of information (Chapter 4), a corrupted or
partial message may be represented by some of the inputs remaining quiet or firing out
of order. If more early-firing inputs remain quiet than usually would if the message were
uncorrupted, the response of the postsynaptic detector neuron is also delayed. If all or most
inputs that would normally take part in presenting a spatiotemporally ordered pattern of
spikes to a detector neuron remain quiet, the detector neuron’s response may be delayed
infinitely. The response delay therefore also contains information about how clear the
pattern of spatiotemporal spikes is present within the stream of inputs. Similarly, if some
input units show earlier or multiple spikes during pattern presentation, this may decrease
the response time of a postsynaptic detector neuron if no adaptive countermeasures are in
effect. The response delay therefore can also signal the presence, or amount of detectability,
of a pattern within a stream of continuous inputs.

How much of the detector neuron’s response delay is caused by a pattern’s inherent
detectability or contrast, and how much is caused by how well the detector is tuned to
that pattern? This may not be easily extracted through observation of a single spike from
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the detector neuron alone. If, however, two (or more) detector neurons were to receive
the same inputs and one detector responded earlier than the other, the detector neuron
with the earlier response must be better tuned to the occurring pattern. This can be
easily tested by giving two detector neurons identical inputs so that the different response
timings must be due to different receptive fields. The total delay observed in the second
detector neuron is then not just due to a weak contrast or corruption of the presented
message/pattern, but at least in part due to a worse match between the second detector’s
receptive field and the pattern that was received. While a pattern’s inherent detectability
or contrast may cause similar response delay in all neurons, divergent receptive fields cause
a relative difference in response timing. In this way, later processing stages can extract
valuable information about the relative tuning quality of all detector neurons even if the
absolute influence of a pattern’s inherent detectability within a stream of input spikes
remains unknown. This will be further established in section 6.1.4. The shortcomings
of unreliable transmission of detection uncertainty to downstream targets will play an
important role in Section 6.2, when STDP is used to tune a neuron to reliable sources.

A major cause for bad detectability of a pattern that encodes a given message of
information is noise and the pattern’s signal to noise ratio. As discussed in Chapter 4,
noise can be introduced into a system through multiple sources, and a main goal of any
classifier or pattern detection system is to filter out reliable information from a haystack of
random background data. For a neuron, this goal translates to the task of deciding which
of its inputs to ignore and which to pay attention to, via the distribution of strengths
of its synaptic connections. While it is easy to set up a model neuron that has maximal
connections to always-reliable inputs and has no or very weak connections to always-
random inputs, the task becomes more difficult when input units transmit a mixture of
random noise and meaningful spikes. The default solution to this is to require multiple
excitatory inputs to become active together, where a concerted increase in activity on
strong synapses signals the postsynaptic neuron to fire. However, this does not mean that
the inputs must be randomly correlated or even synchronous, but also covers polychronous
codes. How sudden and how far this activity must be increased for successful detection
is defined by the detector neuron’s leak current (Section 2.2.2) and/or a combination of
other (homeostatic) factors. A too weak leak current leads to many false alarm detections
(=false positives), while a leak current that is too strong may make the detector neuron
miss (=false negatives) all but the most synchronous inputs.

Equally important as being able to respond to the existence of a given message within
a stream of input data (=true positives) is the ability to remain quiet if the message to
be detected is not present. Correct rejections (=true negatives) of distractor patterns
are rarely explicitly tested when describing the response of a biological neuron to some
real-world stimulus in experimental neuroscience publications. This is owed to the fact
that instantaneous rates and LFPs are often used as basic form of measurement, while the
response properties of single neurons are considered to be highly stochastic. Responses of
larger groups of neurons are only considered if they show a population response that is
measurable in the LFP, while pattern-specific ordering of the single spikes within popula-
tion responses are hardly ever tracked. In section 6.1.4 I show how information may be
contained in the spatiotemporal structure of population responses while the LFP shows
no difference between responses.

In the input layer, if the increase in activity of a few inputs is not masked by a similar-
sized decrease of activity of some or all other inputs during that time, the mean rate
over all inputs increases slightly and can be detected in the local field potential (LFP) of
the input layer. This is usually the case when modeling perfectly synchronous or slightly
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correlated input codes, as it is hard to tell how many of the other inputs should be
used for compensation. When using a spatiotemporal code, however, the occurrence of a
spatiotemporally structured pattern can be easily hidden from the LFP while postsynaptic
detector neurons are still able to detect it. This will be demonstrated in Chapter 7 with
the pattern types introduced in Section 7.1.1 and shows that much more information can
be encoded/hidden in spatiotemporal patterns within the spike train than is extractable
from a recorded LFP alone.

As the delay of responses to polychronous inputs encodes a neuron’s “confidence” in
its own detection decision, decisions that are made with high confidence are transmitted
earlier. This ensures that the minimum time for reaching a safe classification decision
is taken by each detector neuron, while waiting for more inputs in favor of supporting
evidence when the earlier inputs have been inconclusive. This shortest-time-to-decision
code lets the single postsynaptic neuron respond earlier to easy decision tasks while it
spends more time gathering evidence on more difficult decision problems.

6.1.4 Multiple Detector Neurons recreate a Spatiotemporal Code
As proposed above, a detector neuron’s firing delay signals both the match of its receptive
field to a given stimulus and the degree to which that spatiotemporal stimulus is present
within some noisy background activity. Any later processing stage can use this information
to decide how much it trusts the detector neuron’s decision to fire. As the best detectors
for a given pattern respond first, early responses should be given the most consideration
by later processing stages.

Figures 6.7 and 6.8 show the responses of 100 postsynaptic (detector) neurons with
different receptive fields as they detect a given spatiotemporally structured input pattern.
As the pattern in Figure 6.7 is clearly visible within the background activity, it is detected
by all postsynaptic neurons, but across a timespan of many tens of milliseconds due to the
different receptive field of each detector neuron. When the pattern is less clear within a
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Figure 6.7: Multiple Detectors can recreate a polychronous spike pattern when patterns preserve neigh-
bourhood (Sections 6.3 and 7.1.7) and connecting weights are sparse and evenly map the full space of inputs
to a group of output neurons. The group response gives a hint on the relative tuning of each detector
neuron when all receive the same input. The polychronous input patterns seen here were generated with
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the input and output spike trains via the weight matrix.
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noisy background (Figure 6.8), the response of all detectors becomes slightly delayed and
more jittery due to random noise spikes among the background inputs. Still, the general
ordering of responses is kept equal to that of input spiking, thanks to the diagonal weight
matrix that was set by hand here.

While the relative tuning of each detector neuron to each pattern is encoded in its
relative response delay, the overall pattern detectability within the stream of noisy input
spikes leads to a constant delay of detection. If later processing stages wanted to measure
a detector’s response delay since pattern onset, they would require at least one direct
connection from an input unit that fires early within that pattern, in addition to receiving
the outputs of the detector neurons. This information would be needed for each different
possible pattern, so would require connections from many input neurons in a network. On
top of this, the activity of single noisy input neurons is inherently unreliable, which is why
the detector neurons are needed in the first place. Therefore, it will usually be impossible
for later processing stages to measure a detector neuron’s response delay since stimulus
onset time.

However, this may not be much of a problem. We have established above that postsy-
naptic neurons that work to detect the earliest part of a given spatiotemporally ordered
(polychronous) pattern should only fire when they have gathered enough evidence to make
their decision. Therefore the earliest detector response signals the earliest point in time
when any later processing stage can reliably assume the existence of a given stimulus
within the environment. So although the ground truth of when the stimulus appeared in
the environment is not available to most of the brain, the relative delay of detectors may
contain enough information as it represents the earliest time this stimulus can be reliably
detected. Candidates for onset events from which the delay of detector responses should
be measured are therefore the earliest responses that arrive from the group of detectors.
From the point of view of a later processing stage, the earliest arriving response would
have a delay of 0 ms, while the delay of any later responses is measured from the arrival
time of the first response only.

In a multi-layered network like the brain, if a small group of neurons proves to be
reliable in signaling the start time of some stimulus, synaptic connections may be formed
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Figure 6.8: Multiple Detectors can recreate a polychronous code even when the inputs are very noisy.
Here, patterns were created directly from 25 Hz background noise (pattern type D, Section 7.1.1, p. 104),
thereby preserving a homogeneous input firing rate that contains no information about pattern presence.
While the weight matrix was set by hand here, we will see in the next section and chapter 7 that STDP
can achieve a similar sparse map of receptive fields in some cases without requiring recurrent inhibition
(esp. Figure 7.11, p. 119). See Appendix A.3.4 and Table A.14 (p. 184) for simulation settings.
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that skip a few layers. But as early processing stages also tend to be less reliable in
their detection performance, it is probable that most of those connections will decay over
time as Hebbian synaptic plasticity that has negative synaptic drift only supports reliable
synaptic connections, as will be now demonstrated.

6.2 Synaptic Plasticity, Pruning and Sparseness
In Section 6.1 we established that polychronous patterns allow the responses of a post-
synaptic neuron to carry more reliable information in response timings than when syn-
chronous or correlated (=random spike order) input spikes are used. When polychronous
patterns are used, more information can be transmitted, including some notion of detection
(un)certainty. This has direct implications when a synaptic plasticity rule can actually
take advantage of such precise timings.

In this section, I point out the advantages that spike timing dependent plasticity
(STDP) has over traditional Hebbian plasticity when dealing with a precise spatiotemporal
spike code, and how this advantage is lost when stochastically spiking or synchronous
inputs are used. I argue that STDP has been undervalued as being comparably as powerful
as traditional Hebbian learning and that some behaviours of STDP that have been treated
as detrimental to learning success are actually very useful features when the learning
problem is rephrased. By examining the type of tasks that STDP is good in solving,
inferences can be made as to the typical learning tasks that neurons in our brains face,
and typical spike codes that may prevail in brain areas that feature STDP.

I now use the high reliability of the precise response delay to explain how STDP
finds the start of spatiotemporally structured input patterns in continuous input streams
(Masquelier et al., 2008), and point out some additional observations that have so far seen
little attention (Section 6.2.1). After combining various versions of STDP (as introduced
in Chapter 5) with various families of input patterns (partially introduced in the previous
section) and comparing their success in forming selective receptive fields, I then discuss
similarities of the code that STDP promotes to efficient codes from information theory and
explain how automatic pruning in STDP circumvents the need for accessing some original
stimulus for computing a reconstruction error as needed by more abstract gradient descent
algorithms to function (Section 6.4).
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Figure 6.10: On synchronous inputs, STDP increases all connections until all are strong. The response
of the postsynaptic neuron always happens after the incoming pattern (output train and orange dashed
line), so all connections are strengthened (red plus signs) to their maximum. The response time of the
postsynaptic neuron is reduced as far as membrane dynamics permit. No sparsification takes place. Line
indicators and colours as in Figure 6.9.

6.2.1 STDP finds the earliest reliable predictors of a message
Spike timing dependent plasticity has been shown (Guyonneau et al., 2005; Masquelier
et al., 2008) to tune a postsynaptic neuron to those input units that tend to fire a spike
during the start of a repeating polychronous pattern. This has been described with some
puzzlement in Masquelier et al. (2008) and has been tried to be counteracted by sup-
pressing simultaneous responses through mutual inhibition between multiple postsynaptic
(detector) neurons. A second feature of STDP that has seen little attention is that it
not only strengthens connections to early inputs but also actively weakens connections to
late firing inputs. This is visualised in Figure 6.9, where a connection that was initially
strengthened (because it initially always fired before a postsynaptic spike) is later weak-
ened when the postsynaptic response starts to happen earlier than inputs through this
initially strengthened connection. This feature will prove to be very useful in all following
sections and chapters and only works if the patterns are polychronous (compare Figures
6.9, 6.10, 6.11).

The general function of STDP when working with spatiotemporally structured patterns
can be understood by imagining the following sequence of events:

1. At first, the postsynaptic neuron just fires randomly. Therefore it also happens to
fire occasionally while a polychronous pattern is being presented.

2. Whenever the postsynaptic neuron fires, this causes a strengthening of all connec-
tions to input units that have recently fired a spike. It will also cause a decrease
of connections to all input units that happen to fire after the postsynaptic neuron
(assuming negligible axonal and dendritic conduction delays).

3. Over time and many spike pairings, connections to input units that fire together
become stronger than connections to randomly firing input units. This is because
inputs that tend to fire together have a higher chance of evoking a postsynaptic re-
sponse and therefore are potentiated more often than they are depressed. Randomly
firing inputs, on the other hand, are depressed equally often as they are potentiated,
causing them to perform a random walk. See also Figure 5.2 (p. 41). As a result, the
receptive field of the postsynaptic neuron is shaped towards the presented pattern.

4. The next time the pattern is presented, the postsynaptic neuron has a slightly higher
probability to respond. Also, as it reaches its firing threshold a little earlier, it will
respond a little sooner, too. (compare Figure 6.6 center and Figure 6.9)

5. Connections to those early inputs that fired before the postsynaptic response are
further strengthened. Connections to inputs that (now) fire after the postsynaptic
neuron are weakened.
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specification (as for polychronous inputs). Each connection strength underlies a random drift that depends
on the specifics of the STDP rule and pairing statistics as seen in Sketch 5.2. Line indicators and colours
as in Figure 6.9.

6. Continue this (go to list item 4) until the minimal group of earliest inputs that is
still large enough to elicit postsynaptic firing has been found. (compare Figure 6.9)

Figures 6.12 and 6.13 combine an attractor-less weight-dependent STDP rule with
polychronous input patterns. A subset of 2000 presynaptic input units repeatedly present
this pattern to a single postsynaptic output model neuron, while also taking part in random
background spiking. While the simulation shown in Figure 6.12 uses negatively biased
STDP, Figure 6.13 shows the results of the same simulation setup when unbiased STDP
is used (for STDP parameters see Table A.4, p. 181).

Let us first look at the similarities between the two simulation results. Both figures
show how the single postsynaptic neuron quickly succeeds in forming strong connections
to the earliest spiking units that present the pattern (ca. units 700-750) within the first
ten seconds of simulation. This causes the postsynaptic neuron to respond early after the
start of each pattern presentation. In Figure 6.12, we can see that initially the neuron
does not quite tune to the earliest inputs but rather chooses inputs near units 750-800 to
form connections with, resulting in an initial response delay of ca. 20ms. However, within
the first ten seconds of simulation, the strong connections have changed to input units
700-750 and remain there, allowing the postsynaptic neuron to reliably respond to pattern
onset with only 5ms delay. This is the mentioned predictive learning feature of STDP
(Farries and Fairhall, 2007; Guyonneau et al., 2005) and can also be seen very clearly in
supplementary Figure A.1 (p. 174).

As was announced above and indicated in the diagrams of Figure 6.9, connections to
pattern-presenting input units that regularly fire after the postsynaptic response (units
800-1300) are actively weakened. That is, they decrease faster than connections to units
that only fire random spikes and do not take part in pattern presentation (units 1-700 and
1301-2000). The fact that connections to randomly firing units decrease at all is because
Figure 6.12 uses negatively biased STDP (see Chapter 5). Taken together, predictive
learning of early inputs and active weakening of late inputs allow the combination of STDP
and polychronous spike patterns to produce a sparse distribution of synaptic weights that
makes the postsynaptic neuron highly selective, without requiring any external teaching
signal. For brain regions that need to minimise the response time to incoming stimuli
including the basal ganglia, such a plasticity paradigm is likely vital for allowing an animal
to learn fast and precise reactions to the earliest reliable indicators of events happening
in the physical world.

While both biased and unbiased STDP (Chapter 5) strengthen early inputs and weaken
late inputs, they each show a different behaviour for those input units that fire randomly
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Figure 6.12: Polychronous input patterns with attractor-free biased STDP reliably form a sparse
receptive field that detects the earliest parts of a polychronous spike pattern and nothing else. Simulation
settings of this and all following similar figures are given in Appendix A.3.5. Row 1: Input patterns at
four different times during the simulation. The pattern is presented by 600 input units (#701-#1300) and
all other 1400 input units only present random poisson-distributed spikes at 10 Hz. Row 2: Membrane
responses of the single postsynaptic neuron (blue). X-axis is equal to row 1. Responses to two immediately
preceding and two immediately succeeding pattern presentations shown in grey as an indicator of response
variability. Row 3: Weight development of incoming connections to the single postsynaptic neuron over
the course of simulation. wmin = 0 and wmax = 1. Row 4: Response delay plot over the course of the
simulation. X-axis shows simulation time. Y-axis shows the delay, if any, of postsynaptic spikes after the
start of each pattern presentation. The polychronous pattern was presented every 200ms, and lasted for
100ms, allowing for 100ms of unstructured (poisson-distributed) noise between patterns.

and therefore cause random spike timing differences between pre- and postsynaptic neu-
rons. When timing differences occur randomly in a uniform manner (pre- and postsynaptic
neurons are uncorrelated), the sign of the STDP rule’s integral gives the direction in which
the strength of a synapse drifts. To take advantage of a depressing synaptic drift for ran-
dom inputs, most STDP publications in the literature use negative-integral STDP rules
(see Table A.1, p. 177) or argue towards the existence of some weak attractor that is close
to the minimum weight and has a similar effect (see Table A.2 and Chapter 5).

In Figure 6.13 an unbiased STDP rule is used for learning polychronous patterns. Here,
many synaptic connections that do not take part in pattern presentation (units 1-700 and
1301-2000) become strong in contrast to Figure 6.12. However, the postsynaptic neuron
still forms strong connections to the earliest pattern-presenting inputs and decreases con-
nections to late-firing pattern-presenting units as before. The formation of many randomly
strong connections here is due to the condition that the postsynaptic neuron is allowed to
respond freely to its inputs (compare Gütig et al., 2003; Rubin et al., 2001; Song et al.,
2000). In Chapter 5, this was not yet allowed, and an unbiased STDP rule there instead
lead to a uniform distribution of weights for randomly occurring spike pairings (see Figure
5.6, column A, rows 6 and 7, grey area, p. 49). This means that some connections to ran-
domly firing inputs become strong although they do not contain any causal relationship
with postsynaptic spikes. In turn, this produces far more noise in the responses of the
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Figure 6.13: Polychronous input patterns with attractor-free unbiased STDP form a sparse re-
ceptive field within the set of pattern-presenting units, but also allow many randomly strong connections
to form within the group of non-presenting input units (#1-#700 and #1301-#2000). The behaviour of
non-presenting input units has also been seen in (Gütig et al., 2003; Rubin et al., 2001; Song et al., 2000),
where exclusively non-polychronous inputs were used. Note also how due to the exponential shape of STDP
rules the synaptic weights of very late-firing pattern-presenting input units (900-1300) are reduced more
slowly than those of input units that fire just shortly after a postsynaptic spike (units 750-900). However,
the weights of all pattern-presenting input units that fire later than postsynaptic spikes (750-1300) are
reduced faster than the mean weight of non-presenting units. In principle, a neuron that uses unbiased
STDP can even form multiple stable groups of strong inputs within the range of pattern-presenting inputs
if it coincidentally tunes to two parts of the pattern at the start. Such a conflict can then not be resolved
because both sides of the STDP rule have equal magnitude in unbiased STDP (example figure not shown).
See Figure 6.12 for a description of rows and Appendix A.3.5 for simulation settings.

postsynaptic neuron (Figure 6.13, response delays). Using unbiased STDP hence has a
detrimental effect on the formation of good receptive fields for robust pattern detection.

The response delay of a neuron that learns polychronous patterns through negatively
biased STDP is much more precise than if unbiased STDP is used.

6.2.2 Non-polychronous patterns fail to harness the power of STDP
I now compare the use of polychronous patterns to some other families of (correlated)
inputs while again using unbiased and biased STDP rules with attractor-less weight-
dependent scaling.

The motivation for this is to examine if only polychronous patterns can reliably allow
a single postsynaptic STDP neuron to form a predictable sparse receptive field without
additional external influences, or if this may also be possible when other pattern families
are used. The reader should keep in mind here that only one single postsynaptic neuron is
used, and therefore no mutual inhibition between multiple postsynaptic neurons is possible.
This is different from traditional Hebbian plasticity, where the mutual information between
multiple postsynaptic neurons can be minimised to help form a sparse code (Bell and
Sejnowski, 1995). The aim here is to uncover categorical differences between STDP and
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Figure 6.14: Synchronous input patterns with attractor-free unbiased STDP form more strong
connections to pattern-presenting input units than they do to non-presenting units. However, strong
connections are formed to both groups of inputs. This unguided formation of strongly bimodal weight
distributions was seen as a disadvantage of attractor-less STDP by (Gütig et al., 2003; Rubin et al., 2001)
and others, leading to the preference for attractor-based STDP by many (Chapter 5).
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Figure 6.15: Synchronous input patterns with attractor-free biased STDP form a large number of
strong connections to pattern-presenting input units, allowing the postsynaptic neuron to respond with
minimal latency. However, the set of strong synapses is not minimised as for polychronous patterns and,
instead, the identity of which connections become strong is random within the pattern-presenting group
of inputs. Inter-pattern noise then produces additional random responses. Without inter-pattern noise,
all connections to pattern-presenting input units would become strong. No connections to non-presenting
inputs (units 1-700 and 1301-2000) become strong due to the use of negatively biased STDP.
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traditional Hebbial learning. The manifestation of these differences, however, depends on
which type of inputs STDP is treated to. The simulations displayed in Figures 6.16 - 6.21
use the exact same parameter settings as in Figures 6.13 and 6.12, except for different
types of input pattern family. The effects of non-polychronous arrangement of inputs
versus polychronous inputs will become highly visible.

Synchronous Inputs

Figures 6.14 (unbiased STDP) and 6.15 (biased STDP) show the development and effects
of synaptic weights when synchronous inputs are used. In both figures, the single postsy-
naptic neuron quickly begins to form many strong connections to the pattern-presenting
input units (#701-#1300) while strong connections to other inputs are rare. As the
synchronous firing of all pattern-presenting input units produces a fast peak in the instan-
taneous firing rate of the input population, the postsynaptic neuron is likely to respond
to this causally, so the dominance of pattern-presenting input units in the set of weights
is to be expected. However, not all connections to pattern-presenting input units become
strong, and not all connections to non-presenting input units become weak (at least for
unbiased STDP). A slight difference between unbiased and biased STDP can be seen in the
number of strong connections that are formed with pattern-presenting input units. Un-
biased STDP (Figure 6.14) forms more strong connections while negatively biased STDP
(Figure 6.15) forms slightly less. Similarly, the number of strong connections within the
group of non-presenting inputs is also reduced for biased STDP, in agreement with Section
6.2.1 and Chapter 5.

The selection of which connections to pattern-presenting units become strong appears
random, as no inner structure that could control this has been defined in the simulations.

In summary of Figures 6.14 and 6.15, we can say that synchronous input patterns
form a less sparse distribution of synaptic weights, and that the identity of which synaptic
connections win and become strong is only randomly selected.

Correlated Inputs

Within the present example, correlation between input spike trains is introduced by chang-
ing the firing rate of 600 poisson-distributed input units in unison. At pattern onset, the
firing rate of these units is increased for a limited time span, and reduced again after a
fixed number of milliseconds (here 50 ms). The resulting pattern can be seen in the first
row of Figures 6.16 (unbiased STDP) and 6.17 (biased STDP).

Again, unbiased STDP causes a random selection of synaptic weights to become strong,
with more strong connections forming with input units #701-#1300 than with background
units that do not change their underlying firing rate. The reason for a higher tendency
of pattern-presenting units to form strong connections again lies in the higher probability
of postsynaptic spikes happening shortly after a positive jump in input firing rate, just
as for synchronous input patterns. The two groups of input units (pattern-presenting vs.
background) here show a less clear distinction than for synchronous inputs, though.

Biased STDP here causes a decrease of both background synapses and pattern pre-
senting synapses, but the synapses to pattern presenting input units decrease slower here.
In fact, whether we see a decrease of weights to pattern presenting units or an increase
depends on the interplay of two factors. As first factor, the sudden increase of firing rate
at the start of pattern presentation tends to evoke a postsynaptic response and thereby
would increase synaptic weights to the pattern-presenting group. This is comparable to
what happens for synchronous inputs, as the sudden increase in presynaptic population

89



Figure generated using function chapter202PolychronousPatterns_STDPFigures (chapter202PolychronousPatterns_STDPFigures.m) from git revision 452466d359db55a229c15ca2153e43df4a6d40af (branch publications) 
and supporting files from revision ec3bc96a32b94bdc5873f6d29767822fc9cfc20e (branch publications) in repository "git@git.assembla.com:simonscnstuff.git" 
(file names: StaticClassBGDisplay.m, StaticClassBGAnalyse.m, simscript_LearningOnePattern.m, ClassBGNucleiNetwork.m, ClassBGLayerFluctuatingNoiseToPolychronousPatterns.m, ClassBGLayerIzhikevich1D.m ) 
Filename of this figure: "chap202secPlasticPruning_simon2Weightdependence_correlatedPatternfamily_symmetricSTDP_wCentre0.1_wRange0.05_randomGrowthRate0.001_for301seconds.*"  

in
p
u
t 
p
a
tt
e
rn

s

(u
n
it
 #

)

re
s
p
o
n
s
e

(m
V

)

s
y
n
a
p
ti
c
 w

e
ig

h
ts

 (
#
)

(r
a
n
d
o
m

) 
 (

p
a
tt
e
rn

) 
 (

ra
n
d
o
m

)

re
s
p
o
n
s
e
 d

e
la

y
s

v
s
. 
p
a
tt
e
rn

 o
n
s
e
t 
(m

s
)

0.9 1 1.1

700

1300

time (s)

5
0
 m

V

4.9 5 5.1

700

1300

time (s)

24.9 25 25.1

700

1300

time (s)

249.9 250 250.1

700

1300

time (s)

0 50 100 150 200 250 300
0

50

100

time (s)

50 100 150 200 250 300

1

700

1300

2000 

 

0

0.2

0.4

0.6

0.8

1

Figure 6.16: Correlated input patterns with attractor-free unbiased STDP form many strong input
connections to correlated inputs (units 701-1300) but also form some strong connections to uncorrelated
inputs (units 1-700 and 1301-2000). The identity of strong connections is random as in (Gütig et al.,
2003; Rubin et al., 2001). The slightly higher ratio of strong connections in the pattern-presenting group
is merely due to pattern duration, as patterns are generated as an intermediate between Figures 6.14 and
6.18 See Figure 6.12 for a description of rows and Appendix A.3.5 for simulation settings.
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Figure 6.17: Correlated input patterns with attractor-free biased STDP form some stronger-than-
average connections to pattern-presenting input units and reduce all other connections to non-presenting
inputs. This figure shows an intermediate case between those of Figures 6.15 and 6.19: The input patterns
consist of a brief period (50ms) of higher random input activity, after which activity of “pattern-presenting”
input units falls back to normal (10 Hz). The correlation here comes from the condition that all pattern-
presenting input units increase and decrease their firing rate together.
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firing rate facilitates a postsynaptic response. The second factor, however, is the spread
of increased firing rate over a longer time span than for synchronous inputs. The higher
input firing rate during pattern presentation does not help synaptic growth because the
time at which each of the pattern-presenting units fires is sometimes before and sometimes
after the postsynaptic response to the whole group (see diagram in Figure 6.11). As the
sign of spike timing differences at any given synapse is random, the higher presynaptic
rate merely produces a faster negatively biased random walk. This is further explored in
Figures 6.18 and 6.19.

The tendency for potentiation vs. depression of synapses to the pattern-presenting
group can be controlled by changing these two factors. In the current example (Figure
6.17), the relationship between pattern onset effect and pattern duration lead to a slow
decrease of weights. This also slowly decreases the number of responses of the postsynaptic
neuron.

Higher-Rate Inputs

In Figures 6.18 and 6.19, I further show the effect of different firing rates on synaptic drift
for unbiased and biased STDP, respectively. As the only difference between the “pattern-
presenting” group of input units (units #701-#1300) and the background group (units
#1-#700,#1301-#2000) is now just a difference in constant target rate, we no longer
have a pattern onset time that could be used to measure postsynaptic response delay.
Therefore, in Figures 6.18, 6.19, 6.20 and 6.21, the response delay subplot in each figure’s
lowest row is replaced by simply the firing rate of the postsynaptic neuron.

The second factor controlling synaptic drift direction that was mentioned in Corre-
lated Inputs is here the only factor affecting synaptic drift direction. No synchronous or
correlated events happen here, and any concurrent occurrence of presynaptic input spikes
is by construction purely random. The increased frequency of presynaptic spike arrivals
(input units #701-#1300) produces more frequent spike timing dependent weight update
steps, which leads to more STDP updates within a given timespan.

For unbiased STDP, this leads to a faster differentiation of the weights into randomly
selected strong synapses. In agreement with (Gütig et al., 2003; Rubin et al., 2001), the
higher input rate also produces a smaller number of strong connections in that input
group (units #701-#1300). As the simulation progresses, the group of background inputs
(input units #1-#700,#1301-#2000) catches up in synaptic differentiation, but settles at
a higher ratio of strong synapses (also in agreement with Gütig et al., 2003; Rubin et al.,
2001).

For biased STDP, the depressing synaptic drift is also stronger for synapses connecting
input units #701-#1300 than for background units. As the attractor-less but weight-
dependent STDP rule used here slows synaptic step sizes as they approach the minimum
weight (w → 0), the difference in synaptic drift intensity remains visible.

Inputs driven by an Ornstein-Uhlenbeck process

A possibly more realistic (but also less controlled) way of implementing correlation between
input spike trains is to use an Ornstein-Uhlenbeck (O-U) process (Uhlenbeck and Ornstein,
1930) to control a dynamic target spike rate for a subset of input units. The variability and
mean reversion speed of an O-U process can be adjusted to either produce frequent changes
in the target spike rate or instead allow more lengthy phases of just slowly changing target
spike rates, while generally reversing back to some preset goal. Figures 6.20 and 6.21 show
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Figure 6.18: Higher-rate random inputs with attractor-free unbiased STDP randomly form strong
connections with some of the input units. The identity of which connections become strong does not reflect
any meaningful information as all inputs fire random poison-distributed spikes. Differentiation happens
slightly faster for higher-rate inputs, as more spike pairings then happen within a given timespan. See
Figures 6.12 and 6.19 for a description of rows and Appendix A.3.5 for simulation settings.
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Figure 6.19: Higher-rate random inputs with attractor-free biased STDP decrease synaptic connec-
tions faster than normal-rate inputs due to accelerated depressing drift when spike pairings happen more
often. The synaptic weights are here kept from reaching zero through a growth parameter that activates
when the neuron has no strong connections (see Section 5.3.1), as the neuron would otherwise quickly
become quiet. Both groups of input units now are uncorrelated, so we can no more speak of presenting
“patterns” to the postsynaptic neuron. The last row therefore only shows the postsynaptic firing rate
instead of a response delay plot. See Figure 6.12 for a description of rows 1-3.
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Figure 6.20: Random inputs driven by a single Ornstein-Uhlenbeck process with attractor-free
unbiased STDP allow more strong connections to form with correlated inputs (units 701-1300) than
with uncorrelated inputs. However, not all correlated inputs become strong and not all uncorrelated
inputs become weak. The identity of strong connections remains random, placing this figure (at given O-U
settings) between Figures 6.14 and 6.16. See Figures 6.12 and 6.19 for a description of rows.
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Figure 6.21: Random inputs driven by a single Ornstein-Uhlenbeck process with attractor-free
biased STDP show no clear winners yet after 5 minutes of simulation. The O-U process introduces
correlation between inputs (units 701-1300), but can also lead to periods of increased input firing rate.
The formation of strong synaptic connections therefore depends on the parameters of the O-U process and
here puts this resulting figure at an intermediate between Figures 6.17 and 6.19. The postsynaptic neuron
is again kept active through a growth parameter as in Figure 6.19 (Section 5.3.1). See Figures 6.12 and
6.19 for a description of rows and Appendix A.3.5 for simulation settings.
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the effect of an O-U controlled, dynamically changing target spike rate for input units
#701-#1300.

As would be expected due to the described similarities, the development of synaptic
weights for unbiased STDP (Figure 6.20) looks very similar to that shown in Figure 6.16.
There is a higher relative number of strong synaptic connections for the group of correlated
inputs (units #701-#1300) and a smaller ratio of strong connections for the background
of uncorrelated inputs (#1-#700,#1301-#2000). The exact relation between strong and
weak connections depends on the chosen O-U parameters, and shall be of no further
concern here (but see Appendix A.3.5). What should be noted, is that again the identity
of which units become strong is randomly selected, as by construction the simulation setup
does not contain any structure that causes a particular arrangement of strong synapses.

Biased STDP also behaves similar to Figure 6.17, where background units have their
synaptic weights decreased slightly faster than the O-U-correlated group. As mentioned
above, the decision whether the correlated group or the background group decreases faster
results from an interplay between the degree of correlation and the firing rate during more
constant phases of presynaptic activity. If correlation were reduced while firing rate were
increased for input units #701-#1300, the speed of synaptic decay of this group would be
faster than that of the background group and become more comparable to Figure 6.19.

In summary, we can say that a highly selective receptive field that represents actual
inputs can only be formed without an external teaching signal when polychronous input
patterns are combined with a negatively biased STDP rule that is anti-symmetric and has
no strong weight-dependent attractor.

Otherwise, a random subset of synapses may become strong that does not represent
anything but random fluctuations in the input data. While the resulting weight dis-
tribution may possibly be called sparse because it is often binary with only few strong
connections, the random permutations of strong synaptic connections do not carry any
specific information that could be used to represent different messages of information.

If STDP is not combined with polychronous input patterns, a given group of presy-
naptic input units can therefore transmit only a single boolean or, when encoded in firing
rate, one scalar (one-dimensional) value. When polychronous input patterns are used,
the (continuous) transmitted value need not depend on firing rate (see Section 6.3), while
firing rate could additionally be used for additional information throughput.

6.2.3 Attractor-based STDP hinders learning of polychronous patterns
As seen in Chapter 5, a strong stable fixed point attractor in “multiplicative” STDP
rules makes it difficult for synaptic weights to escape the attraction even when they are
constantly being increased by repetitive pre-before-post or depressed through repetitive
post-before-pre spike pairings. While attractor-based STDP may allow the formation of
stable receptive fields if the attractor is either very weak (Section 5.2.2) and/or very close
to w = 0 (Section 5.2.4), these adjustments to attractor-based STDP only work because
they make it more similar to attractor-free STDP.

Figures 6.22 and 6.23 show an example of the attractor-based rule of van Rossum et al.
(2000) (see also Equation 5.5, p. 44) when postsynaptic activity is no more fixed to regular
firing as it was in Figures 5.6 (p. 49) and 5.7 (p. 54), but depends solely on presynaptic
inputs.

Figure 6.22 (unbiased STDP with attractor-based scaling) shows how the strong fixed
point attractor keeps most weights close to central values (w ≈ 0.5). Of the pattern-
presenting units, only those synapses that connect to units near #700 become slightly
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Figure 6.22: Polychronous inputs with attractor-based unbiased STDP as in Van Rossum et al.
(2000) (Equation 5.5, p. 44). With no directed synaptic drift, the weight-based attractor keeps all synaptic
weights near w = 0.5 here. STDP produces slightly stronger weights near the start of the polychronous
pattern and slightly weaker weights near the end. But this is a minor effect compared to that of the
attractor, and the postsynaptic neuron just fires constantly, with a frequency that depends only on input
rate. See Figure 6.12 for a description of rows and Appendix A.3.5 for simulation settings.
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Figure 6.23: Polychronous inputs with attractor-based biased STDP as in Van Rossum et al. (2000)
(Equation 5.5, p. 44). The postsynaptic neuron is unable to form a selective receptive field that would
allow it to reliably respond only to the start of the polychronous pattern. Instead, it reacts to the increased
input rate due to the inclusion of polychronous spikes. STDP does form a slight preference for the early
part of the pattern, but this is insufficient for yielding robust output responses. See also Chapter 5. See
Figure 6.12 for a description of rows and Appendix A.3.5 for simulation settings.

95



Figure generated using function chapter201WeightBounds_ComparisonChart (chapter201WeightBounds_ComparisonChart.m) from git revision a423a7eb57f0c20159274d66769a8c51f38e5178 (branch publications) 
and supporting files from revision ec3bc96a32b94bdc5873f6d29767822fc9cfc20e (branch publications) in repository "git@git.assembla.com:simonscnstuff.git" 
(file names: StaticClassBGDisplay.m, simscript_STDPBoundRuletests.m, ClassBGWeights.m ) 

       −50ms 0ms +50ms          

0

1
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Figure 6.24: Traditional Hebbian plasticity rule. While Hebbian learning is often defined on the level of
firing rates (see Section 2.3.1), it can easily be emulated in a spike timing context by making both sides
of an STDP rule positive and mirror-symmetric (A+ = −A− = 1 and τ+ = τ− in Equation 5.1). As all
plasticity is potentiating, some additional form of “homeostatic” change to synaptic weights is necessary
to keep synaptic weights from increasing to infinity. I therefore add a constant synaptic decay at each time
step in Figure 6.25 (see also Appendix A.3.5).

stronger than w = 0.5, while those that are near #1300 become slightly weaker than the
value that all weights of uncorrelated input are pulled towards (w = 0.5). However, this
slight deviation from central values is not sufficient to allow the pattern-presenting input
units to take control over postsynaptic firing, which continues to be controlled by a broad
excitation from all input units together.

Figure 6.23 (biased STDP with attractor-based scaling) shows a clearer distinction
between those input units at the start of the polychronous pattern (units ca. #701 - #801),
which become stronger than average, and input units that present the end of the pattern
(units ca. #1200 - #1300), which become weaker than average. The overall negative drift
of the biased STDP rule also moves the fixed point attractor slightly further towards lower
weights w ≈ 0.3 (compare Figure 5.7 vs. Figure 5.6, column C), just enough to allow the
neuron to become quiet when no pattern is being presented to it (Figure 6.23, 2nd row).
Apart from the initial response to pattern onset (Figure 6.23, 4th row), postsynaptic spike
times during pattern presentation appear increasingly irregular as pattern presentation
progresses. The response timing seems to depend only on the change of firing rate of
the input layer during pattern presentation (see also Section 7.1 for generating patterns
without affecting the firing rate). While very close tuning of network parameters may
help in improving detection of patterns (van Rossum et al., 2012), the unstable nature of
this required tuning disqualifies attractor-based STDP with strong central attractors from
being useful for practical applications to pattern detection.

6.2.4 Traditional Hebbian plasticity fails on polychronous patterns
We have now seen that only polychronous input patterns allow anti-symmetric STDP
to form a robust and predictable sparse receptive field (Sections 6.2.1 and 6.2.2), and
that additionally any weight-dependent scaling of STDP should have a nonexistent (or
at least only weak) fixed point attractor for the formation of sparse receptive fields to be
successful (Section 6.2.3). I now examine whether the anti-symmetric shape of standard
STDP rules is indeed necessary for successful formation of sparse receptive fields of a single
postsynaptic neuron.

An alternative mirror-symmetric version of STDP is shown in Figure 6.24, where the
change of synaptic connection strength does not depend on causal order of pre- and post-
synaptic spikes. In continuation of this idea, any weight-dependent scaling of synaptic
updates is attractor-free, so does not change the ratio between potentiation and depres-
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Figure 6.25: Traditional Hebbian plasticity is not able to take advantage of polychronous inputs.
Every spike pairing adds to the synaptic weight, so the STDP rule is inherently unstable. Close tuning of
a constant synaptic decay term can keep the weights from reaching the maximum (wmax = 1) or decaying
to the minimum (wmin = 0), but this still produces a neuron that is very volatile and can hardly detect
polychronous pattern presentations, apart from possible co-occurring increases in input firing rate. In
order to detect polychronous patterns, they would either need to be presented with far less background
noise so that the neuron could detect the pattern’s rate increase, or only a subset of inputs could be
used for detection with the help of some external teaching signal. While the synaptic connections to the
pattern-presenting input units do appear slightly stronger than connections to non-presenting background
units, this is merely a transient effect due to the added input firing rate during pattern presentation. Soon
after each pattern-presenting input unit fires its additional spike as part of pattern presentation, its weight
decays back to the level of background units. The increased mean synaptic strength that can be observed
for pattern-presenting input units in row 3 is a direct consequence of the time at which each pixel-column
of row 3 was recorded: At the start of each second of simulation, the end of the previous polychronous
pattern presentation is always exactly 50ms past, so synaptic decay has not yet fully equalised all synapses.
This also explains why late-firing input units (50ms ago at the time of sampling) in the plot (row 3) are
seen as having a slightly stronger synaptic weights than early-firing input units (150ms ago at the time of
sampling). See Figure 6.12 for a description of rows and Appendix A.3.5 for simulation settings.

sion for any synaptic weight. This makes the rule presented in Figure 6.24 a spike timing
dependent implementation of traditional Hebbian rules, where a synapse’s connection
strength increases whenever its two neurons repeatedly fire together (are correlated). As
in rate-based Hebbian plasticity, the purely potentiating rule shown in Figure 6.24 re-
quires some additional synaptic decay to be implemented to prevent all synapses from
increasing to infinity (or the predefined upper bound w = 1). As mentioned in Section
2.3.1 (p. 16), this can be done through a variety of homeostatic mechanisms, including
short-term synaptic scaling to obtain either a target output firing rate or a target sum
of all weights. While synaptic scaling can be implemented with only minimal tuning of
parameters, I avoid using synaptic scaling because it requires the assumption of existence
of either a target firing rate or a target sum of all incoming synaptic connections to a
postsynaptic neuron. Instead, I use a constant synaptic decay of all synapses on each
time step to counteract the correlation-based increase of synaptic strengths, even though
it does require finding a useful step size of decay (see methods in Appendix A.3.5).
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Figure 6.26: When multiple patterns are used in conjunction with STDP, two-sided polychronous patterns
should be chosen instead of one-sided polychronous patterns. (a) One-sided patterns have been used until
now for didactic purposes. They are formed by simply letting all neurons fire in an ordered fashion. (b)
In order to use multiple patterns in a plastic network, we need an alternative way of generating patterns
that allows for stable receptive fields to be formed. From now on, two-sided polychronous patterns will
be used whenever pattern similarity should reflect stimulus similarity. This also resembles biological spike
wave fronts more closely than one-sided patterns. See also Section 7.1.7.

Figure 6.25 shows the simulation of a single postsynaptic neuron that receives poly-
chronous inputs just as before. The time constant of synaptic decay was chosen high
enough to keep synapses from reaching the upper bound, but not too high as to avoid all
weights becoming zero. The 2nd and 4th rows of Figure 6.25 show that the postsynaptic
neuron remains constantly active for this setting. The synapses connecting the postsy-
naptic neuron to the pattern-presenting inputs (input units #700 - #1300) are slightly
stronger than other synapses. On closer inspection, one can see that the synapses just
below #1300 are also slightly stronger than those just above #700. Unfortunately, in-
stead of representing some stable receptive field, this increased strength of synapses that
transmit spikes towards the end of each pattern presentation is merely an artefact of the
time at which the state of all weights is tracked. As the STDP rule is not able to form
sparse receptive fields, the random background activity of all 2000 input units continues
to strongly affect postsynaptic response times. The highly random spike times of the
postsynaptic neuron in turn produce highly random spike pairings for STDP, which has
a negative drift. So what we see is in fact a quickly decaying set of weights since the last
pattern presentation that had temporally increased the firing rate of pattern-presenting
input units. If the presentation of input patterns was halted, this memory of pattern
presentation would decay in a matter of seconds.

This shows that without biologically questionable practices such as constant synaptic
scaling or the introduction of a target firing rate, traditional Hebbian learning fails to learn
sparse codes from polychronous patterns. Without these supplementary assumptions, only
anti-symmetric STDP can form sparse receptive fields when polychronous input patterns
are used.

6.3 Multiple Overlapping Polychronous Patterns
After having demonstrated how the repeated presentation of a single polychronous pattern
can lead to a sparse or near-sparse distribution of incoming connections of a single neu-
ron, let us now think about the general usefulness of this way of presenting information.
Depending on the order of input spike arrival, the postsynaptic neuron begins to respond
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Figure 6.27: Multiple polychronous patterns presented by the same input units allow a single postsynaptic
neuron to tune to one of those patterns and ignore the others, as long as two-sided patterns are used instead
of one-sided. This allows the formation of sparse receptive fields without the need for mutual inhibition
between multiple postsynaptic neurons. Simulation details are given in Appendix A.3.6. Compare also to
Figures A.3 (p. 175) and A.4 (p. 176).

to only a minimal set of inputs while ignoring all others. If other input units repeatedly
fired first, the postsynaptic neuron might tune to those, instead. Hence the same group of
input units might be used for presenting a large number of polychronous patterns, where
the difference between patterns is the order in which the involved input units tend to fire.
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6.3.1 Forming Multiple Patterns
A first way of producing multiple polychronous input patterns may be to shift the spike
times of all pattern-presenting input units in a circular manner. This first example can be
seen in Figure 6.26a.

However, if we want a single group of input units to present multiple polychronous
spike patterns to a postsynaptic neuron, we need to allow for stability of the resulting
receptive fields. If the polychronous input patterns are too similar, the postsynaptic
neuron may end up constantly retuning to every pattern that is presented, causing highly
unstable receptive fields. When multiple patterns are generated through a circular shift
from a one-sided polychronous pattern as in Figure 6.26a, the first three units to fire
in the first pattern 1 also fire together in patterns 2 and 3. In a plastic network, this
prevents the receptive field of a postsynaptic neuron from tuning to precisely one pattern
(see supplementary Figure A.3, page 175, as a negative example). This fails because the
group of earliest firing units that fire at the beginning of one pattern also fire in close
temporal proximity within each other pattern. See Section 7.1.7 for an evaluation of
pattern distances.

Instead, we need to find a way to prevent all early-firing units of one pattern from firing
together at later stages of any other pattern. It would, however, be nice if we could retain
similarity between patterns representing similar stimuli, as there might be cases in which
this is necessary. The solution then is to arrange the spike order of the pattern-presenting
units in a two-sided manner, as shown in Figure 6.26b. Again, Section 7.1.7 explains why
this simple rearrangement allows the single postsynaptic neuron to succeed in forming
stable receptive fields that are selective to exactly one of the presented patterns. The
aim of the current section is instead to first introduce the reader to the idea of presenting
multiple distinct polychronous patterns through the same set of input units.

6.3.2 Learning with Multiple Patterns
Figure 6.27 shows the successful case of using two-sided polychronous input patterns as
inputs to a plastic neuron that uses STDP. In the beginning, the postsynaptic neuron
responds randomly to all patterns, but then soon starts to respond primarily to pattern 3,
while responding much less to patterns 1, 2, 4 and 5 and may eventually completely stop
responding to those other patterns. The start of each pattern is marked by dashed vertical
magenta lines in the first and second panel rows (input patterns and membrane voltage).
The patterns compete with each other over control of the postsynaptic neuron. When
the neuron begins to preferentially respond to the presentation of one of the patterns, any
other units that may coincidentally be active due to random noise during the postsynaptic
response will have their connections slowly decreased due to the negative drift of STDP.
No mutual inhibition between multiple postsynaptic neurons is necessary for learning
multiple polychronous patterns as long as the STDP rule has a negative drift and all in-
put units occasionally fire random spikes. This also shows how important noise is within
the neural system, as without noise there would be much less competition between poly-
chronous patterns. The system may likely be called non-ergodic, as it randomly settles on
one of many presented patterns and then forms a robust receptive field to detect the start
of exactly this pattern. However, I leave a formal proof of this to future work. The choice
of input patterns by multiple postsynaptic neurons will be further explored in Section 7.3,
and the generation of multiple polychronous patterns for simulations will be handled in
Section 7.1.1.

For completeness, a third variant of forming multiple polychronous patterns (see Sec-
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tion 7.1.5) was also used for training a single postsynaptic neuron. The results can be
seen in supplementary Figure A.4 (page 176).

6.4 Rephrasing the Question: From STDP to Neural Coding
We have now established that STDP can form highly selective receptive fields from poly-
chronous inputs without the need for artificial scaling or mutual inhibition. The automatic
sparsification of receptive fields comes for free when STDP is paired with polychronous
input spike patterns.

In light of this seemingly perfect match between attractor-free STDP rules and spa-
tiotemporally structured input patterns, a certain question arises. Has neuroscience been
oversimplifying the expected inputs to STDP-capable neurons for too long by using merely
correlated or synchronous inputs? Has this led us to miss powerful features of STDP that
are only seen when polychronous patterns are presented? Should the mere existence of
STDP in many brain areas then not point us towards the idea that all those areas use
polychronous coding of neural information to some extent?

Also, the uses of the observed features of general STDP should be further explored.
If STDP automatically leads to highly selective receptive fields for polychronous patterns
under good conditions, could this help to form a sparse network as in (Olshausen and
Field, 1996b) without the need for precise mutual inhibition and biologically implausible
approaches that require the availability of some original stimulus for calculation of a
reconstruction error (as in gradient descent / matching pursuit algorithms)? What could
the benefits still be under bad conditions, when a perfectly sparse representation is not
achievable due to insufficient or noisy data?

What are the implications of having a detector that makes a decision about a message
before the complete message has even been received. How can we “be sure” that the
remainder of the message did not also contain some important information? How does the
transmitting side “know” when to stop transmitting a message or if more data is needed?

In the following I discuss some more questions and possible new directions of research
that arise from using polychronous patterns together with STDP for neural computation.

6.4.1 Neural Signal Detection as a Decision Problem
The classical distinction between “coincidence detector” and “integrator” neurons (Section
2.2.2) appears artificial when polychronous inputs are used, as a minimum number of
distinct coincident inputs need to be sustained over some time for the postsynaptic neuron
to respond. As is commonly modelled in more abstract rate-based models, the decision
whether to fire or not to fire can likely also be described as a decision process with two
alternatives for a single neuron receiving polychronous inputs.

6.4.2 Comparison to Entropy Coding
A postsynaptic neuron that learns to respond to an incoming polychronous pattern will
begin to respond earlier after the pattern has occurred (and likely caused it to fire) multiple
times (Section 6.2.1). When the postsynaptic neuron is initially tuned to input units that
fire late within pattern presentation, the response delay after some amount of training
will (loosely) correlate with the number of pattern presentations. Patterns that occur
often will be responded to with short delay, while patterns that occur only rarely will be
responded to with longer delay after pattern onset. If we liken the number of presynaptic
input spikes occurring before the postsynaptic response to the length of a message that
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is being transmitted, then the postsynaptic neuron is using short messages for common
pieces of information, and longer messages for rare events. This then bares some general
similarity to entropy coding techniques used for compression and efficient transmission in
computer science.

Of course the comparison with entropy coding is not a perfect match, however, as
entropy coding is commonly described as a lossless transmission method while biological
systems can hardly claim this. A late response to an incoming pattern may also have many
reasons, such as noise in the external world (e.g. night or fog), internal noise (fluctuations
in the activity of background inputs or membrane noise), or a simple absence of any
strong connections for a given stimulus. Still, the inherent shortening of decision time as
a neuron becomes more tuned to a given stimulus remains intriguing and deserves to be
further explored in future work.

6.4.3 Matching Pursuit and Sparse Filters
In efficient coding as presented in Olshausen and Field (1996a) or Bell and Sejnowski
(1995), a large (overcomplete) set of filters is made to represent each element of a training
set through a weighted combination of a minimal number of filters that can still together
reconstruct the training examples to a given precision. The two constraints for using a
filter here are often (1) how well the filter helps in reconstructing the training example,
and (2) how different it is from other filters. In non-biological implementations, this
decomposition of sources into a set of filters with a minimal set of non-zero coefficients has
proven to be highly useful in solving a number of blind source separation tasks (Lulham
et al., 2011). But the algorithms used to decompose a set of training examples into a set
of sparsely active filters are currently very slow in rate-based networks (Savin et al., 2010)
or use shortcuts that are likely not available in biological neural networks (Zhao et al.,
2012).

When polychronous patterns are used together with anti-symmetric STDP, the neu-
rons (=filters) that best represent the earliest part of incoming patterns (stimuli) will
respond first, and together transmit a fast and good representation of the encountered
stimulus. This implies that the earliest responses also indicate the most important part
of an incoming pattern, which may compete with the possible interpretation given in Sec-
tion 6.4.2. However, the interpretation of this may also depend on the use case and more
research into performing blind source separation with polychronous input patterns and
STDP is necessary in future work.

6.4.4 A Continuum of Pattern Families
Synchronous patterns can be seen as a subset of polychronous patterns (Figure 6.28),
which themselves are a subset of patterns created through random permutations of spike
order (Section 7.1.5), which again is a subset of patterns created through frozen random
noise (used in Masquelier et al., 2008). However, a restriction of pattern set size appears
useful for coping with dimensionality when exploring the functionality of STDP. But as has
become clear in this chapter, the reduction from (seemingly) randomly occurring spikes
in electrophysiological measurements to synchronous patterns or merely correlated spike
trains is an oversimplification that causes the loss of most of the additional power that
STDP has over traditional Hebbian plasticity. When reducing biological complexity to a
computational model that uses STDP, new models should retain the possibility of using
polychronous firing.
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Figure 6.28: Synchronous spike patterns are merely a subset of all polychronous patterns. Similarly,
zero-lag correlated inputs can be seen as the repeated presentation of jittered synchronous patterns. It
seems highly questionable why one should artificially restrict the expected neural code to only (jittered)
synchronous patterns. Especially as we have just seen the increased computational power of STDP when
polychronous patterns are used instead of (jittered) synchronous input spike patterns. In Chapter 7 we
also generate polychronous patterns with (slightly) more jitter.

6.5 Summary
In this chapter, we found that neural codes consisting of polychronous patterns are far
more powerful than codes consisting of synchronous patterns or rate-based codes. This was
found first in Section 6.1, where polychronous inputs allowed the response time of a non-
plastic detector neuron to encode how well its receptive field matches the incoming pattern.
It was then shown again for plastic neurons that used standard (anti-symmetric) STDP to
form a highly selective receptive field. Neither traditional (symmetric) Hebbian plasticity
nor weight-dependent STDP with strong attractors are able to do this. Also, merely rate-
based inputs and inputs with highly fluctuating rates (but without polychronous patterns)
failed to produce a predictable, robust, and selective receptive field (Vogt and Hofmann,
2015c).

Zero-lag correlation can be viewed as a jittered version of synchronous codes, while
nonzero-lag correlation is comparable to the repeated presentation of a single polychronous
pattern. However, polychronous codes may also use a given set of inputs to present a large
number of polychronous patterns, as will be further discussed in the next chapter.
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Chapter 7

Exploring Robust Network Parameters for
STDP

In the previous two chapters, I first described how largely attractor-free STDP rules out-
perform attractor-based STDP rules in their sensitivity to spike timing differences (Chap-
ter 5). I then showed how only polychronous input patterns uncover the full potential of
STDP in forming highly selective receptive fields that allow fast and robust detection of
recurring stimuli (Chapter 6).

In this chapter, I will now present some practical issues that arise when working with
polychronous input patterns within computer simulations. This allows us to infer the type
of spatiotemporally structured spike groups we should be looking for within electrophysi-
ological multielectrode recordings when trying to decipher possible complex neural codes
in the future.

Specifically, I first present a variety of easy-to-generate polychronous pattern types,
and demonstrate their possible camouflaging within a stream of seemingly random inputs
(Section 7.1). I then discuss general effects like network size and presentation duration
(Section 7.2) before expanding the number of postsynaptic neurons from 1 to 100 in order
to reveal differences in the distribution of receptive fields (Section 7.3). I then take a
quick look at increasing levels of noise (Section 7.4) and discuss mechanisms for purposely
biasing the learning outcome (Section 7.5).

7.1 Generating plausible polychronous input patterns
There are many ways in which spatiotemporally structured input patterns may be present
within a recorded stream of spikes from multiple units, which may not appear directly
visible to the naked eye. I present here some ideas I have had, together with the benefits
and possible drawbacks of each.

7.1.1 Pattern Types
I will restrict my examples to four methods of pattern generation, retracing the thought
process that leads to the development of well-camouflaged patterns that do not stand
out in typical descriptions of electrophysiological recordings as they are used today. The
random background activity is generated via a simple poisson process where the probability
of a spike occurring within a time bin of 1ms is re-evaluated on each time step of the
simulation. For small enough time bins and low enough firing rates, this simplified method
of generating Poission spikes has been demonstrated to approach the full mathematical
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Figure 7.1: Pattern types A-D showing a single pattern each. (a)-(d) Each set of subplots shows one of
pattern types A-D. Within each set of subplots, the largest (main) plot shows the freshly generated spike
trains that may be presented to a postsynaptic neuron for detection or training. Below and to the right
of each main plot are the instantaneous and unit-wise firing rates of the pattern-presenting population of
units, respectively. Magenta lines represent target (background noise) firing rate while blue lines represent
actual firing rate. On the far right we see an overlay of 200 pattern presentations, again together with the
averaged instantaneous population rate below each overlay plot. The greyscale colour bar’s maximum is
set to the maximum number of times any unit fires within a given time bin during pattern presentation.
This also shows that pattern generation type D produces less predictable spike times than the other three
types.

105



Figure generated using function chapter203RobustParams_PatternShapes (chapter203RobustParams_PatternShapes.m) from git revision fe76301f06e6731e0c07e1f0348c37358043edc3 (branch publications) 
and supporting files from revision ec3bc96a32b94bdc5873f6d29767822fc9cfc20e (branch publications) in repository "git@git.assembla.com:simonscnstuff.git" 
(file names: ClassBGLayerFluctuatingNoiseToPolychronousPatterns.m, ClassBGLayerStochastic.m, ClassBGWeights.m, ClassBGNucleiNetwork.m ) 
Filename of this figure: "PatternShapes_multiplepatterns_7.*"  

(a)
in

p
u
t 
u
n
it
 (

#
)

ra
te

 (
H

z
)

100 200 300 400 500 600 700

50

100

150

200

250

300

350

Showing 350 of 3750 input spike trains

 

 
all spikes

first spike of unit

0 100 200 300 400 500 600 700
0

15
30

time (ms)

200 presentations

 

 

0 50 100

50

100

150

200

250

300

350

0 10

0 50 100
0

15
30

relative time (ms)

0 15 30

Hz

Figure generated using function chapter203RobustParams_PatternShapes (chapter203RobustParams_PatternShapes.m) from git revision fe76301f06e6731e0c07e1f0348c37358043edc3 (branch publications) 
and supporting files from revision ec3bc96a32b94bdc5873f6d29767822fc9cfc20e (branch publications) in repository "git@git.assembla.com:simonscnstuff.git" 
(file names: ClassBGLayerFluctuatingNoiseToPolychronousPatterns.m, ClassBGLayerStochastic.m, ClassBGWeights.m, ClassBGNucleiNetwork.m ) 
Filename of this figure: "PatternShapes_multiplepatterns_4.*"  

(b)

in
p
u
t 
u
n
it
 (

#
)

ra
te

 (
H

z
)

100 200 300 400 500 600 700

50

100

150

200

250

300

350

Showing 350 of 3750 input spike trains

 

 
all spikes

first spike of unit

0 100 200 300 400 500 600 700
0

15
30

time (ms)

200 presentations

 

 

0 50 100

50

100

150

200

250

300

350

0 5 10

0 50 100
0

15
30

relative time (ms)

0 15 30

Hz

Figure generated using function chapter203RobustParams_PatternShapes (chapter203RobustParams_PatternShapes.m) from git revision fe76301f06e6731e0c07e1f0348c37358043edc3 (branch publications) 
and supporting files from revision ec3bc96a32b94bdc5873f6d29767822fc9cfc20e (branch publications) in repository "git@git.assembla.com:simonscnstuff.git" 
(file names: ClassBGLayerFluctuatingNoiseToPolychronousPatterns.m, ClassBGLayerStochastic.m, ClassBGWeights.m, ClassBGNucleiNetwork.m ) 
Filename of this figure: "PatternShapes_multiplepatterns_6.*"  

(c)

in
p
u
t 
u
n
it
 (

#
)

ra
te

 (
H

z
)

100 200 300 400 500 600 700

50

100

150

200

250

300

350

Showing 350 of 3750 input spike trains

 

 
all spikes

first spike of unit

0 100 200 300 400 500 600 700
0

15
30

time (ms)

200 presentations

 

 

0 50 100

50

100

150

200

250

300

350

0 5 10

0 50 100
0

15
30

relative time (ms)

0 15 30

Hz

Figure generated using function chapter203RobustParams_PatternShapes (chapter203RobustParams_PatternShapes.m) from git revision fe76301f06e6731e0c07e1f0348c37358043edc3 (branch publications) 
and supporting files from revision ec3bc96a32b94bdc5873f6d29767822fc9cfc20e (branch publications) in repository "git@git.assembla.com:simonscnstuff.git" 
(file names: ClassBGLayerFluctuatingNoiseToPolychronousPatterns.m, ClassBGLayerStochastic.m, ClassBGWeights.m, ClassBGNucleiNetwork.m ) 
Filename of this figure: "PatternShapes_multiplepatterns_8.*"  

(d)

in
p
u
t 
u
n
it
 (

#
)

ra
te

 (
H

z
)

100 200 300 400 500 600 700

50

100

150

200

250

300

350

Showing 350 of 3750 input spike trains

 

 
all spikes

first spike of unit

0 100 200 300 400 500 600 700
0

15
30

time (ms)

200 presentations

 

 

0 50 100

50

100

150

200

250

300

350

0 5 10

0 50 100
0

15
30

relative time (ms)

0 15 30

Hz

Figure 7.2: Pattern types A-D showing multiple patterns each. (a)-(d) Each set of subplots shows one of
pattern types A-D presented by units #1-#250. Other units only fire randomly. Subplots are as in Figure
7.1. Multiple patterns are made by circularly shifting the order of firing (seen as vertical shift here). For
multiple patterns, differences in time-averaged per-unit rate vanish for pattern type B here. For pattern
type A, the increased instantaneous firing rate during pattern presentation is still visible here because
spikes are simply added to background activity, while the instantaneous firing rate remains independent
of pattern presentation for pattern types B-D. The overlay plots also show that patterns are harder to
identify, but some diagonal structure is still visible. The grey scale of the overlay plots also shows that
units fire far less often (ca. 15 spikes max.) within specific time bins than when only a single pattern is
being presented (ca. 150-200 spikes max. in Figure 7.1).
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description (Brette, 2009; Macke et al., 2009) and is more computationally efficient for
large-scale simulations (Brette, 2009).

Type A: Ad-hoc Overlay

The usual first idea for embedding structured information within a stream of random
input spikes is to simply add on some additional spikes that are spatiotemporally ordered.
Figures 7.1a and 7.2a show such overlaid additional spikes within a stream of random
background activity, for patterns that encode a single value or multiple values, respectively.

While this type of pattern is useful as an easy example for didactics, it does not hide
very well among the background activity as is visible in firing rate changes whenever a
pattern is present (shown below main plot). While a correlation between pattern occur-
rence and local field potentials may indeed exist in some brain regions, we should for now
not yet rule out the possibility that structured information may be encoded without any
indicators that appear within the overall instantaneous population firing rate.

Type B: Latency-based Row Sorting

A second thought is then to use a latency-based, or rank-ordered, rearrangement of the
backround spike trains (Figures 7.1b and 7.2b). As each background spike time is indepen-
dent of any previous spikes (no explicit refractory period implemented for the inputs), a
simple permutation of the rows of input spike trains is enough to form detectable patterns
that do not show in the population’s instantaneous firing rate. A refractory period could
also be implemented, but would not have much effect on learning outcome at the typical
input firing rates of 10Hz-15Hz used here.

While the instantaneous population rate shows no indication of pattern occurrence
(because the original random data is simply row-permutated), a strong difference in each
input unit’s overall activity is definitely observable in Figure 7.1b (vertical rate plots). At
least, this difference in unit activity vanishes when multiple values are presented equally
often (Figure 7.2b).

The remaining visible indicator of pattern occurrence and even value identity are the
large white areas that result from permuting all rows by latency. This is also very visible
in the overlay view on the right of Figure 7.1b, but at least becomes less pronounced in
Figure 7.2b as more values are presented by the same group of units.

Type C: Spike Time Shifting

The next idea for avoiding large areas of white space may be to circularly shift the spike
times of each unit back or forward in time to again form one or two diagonal lines within
the random input data (Figures 7.1c and 7.2c). Each unit hence keeps its original spikes
and only the times at which they occur are shifted. This gets rid of the large white
areas of pattern type B while also hiding pattern occurrence from both instantaneous
population-averaged and per-unit firing rates.

However, there remains a problem with this type of polychronous pattern generation.
Consider Figure 7.3, where the underlying rate parameter that was used to generate the
random spikes was not constant, but changed with time. If spike timings of each unit are
shifted around in time to form a reoccurring polychronous pattern, a fluctuating population
rate cannot also be adhered to (compare Figure 7.3c).
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Type D: Random Choice Row Sorting

The last example for pattern generation is shown in Figures 7.1d and 7.2d, and is formed
by similar methods as pattern types B and C. Specifically, as in pattern type C, a random
spike is selected from each unit that happened to fire at least once. But different from
pattern type C, each unit’s spikes are then not shifted in time to form the pattern. Instead,
as in pattern type B, the rows of spike trains are permuted to bring the selected spikes of
each row in to an increasing order to form the polychronous pattern. This leads to slightly
more fluctuating shapes than e.g. the perfect lines in pattern types A and C, and is still
nicely detectable by STDP under most circumstances.

This pattern type is much more difficult to detect by naked eye than any of the pre-
vious types, even when units are displayed in sorted order to improve visibility. Further
camouflaging is possible, as will be shown in sections 7.1.2, 7.1.3 and 7.1.4.

7.1.2 Hiding Patterns in Fluctuating Rates
In the real world, the actual population rate within a recorded group of neurons is never
perfectly constant. Small fluctuations of firing rates constantly happen, and are sometimes
correlated with the occurrence or even identity of information within a network. This
subset of informative rate fluctuations has led to the widespread belief that the firing rate
of neurons within a network is all that is necessary to understand most of the brain. In
Figure 7.3 I demonstrate that information-carrying patterns of neural activity may be
completely independent from fluctuations in the overall population rate, opening up a
wide window of search options for deciphering our brains’ neural code.

Especially pattern type D may be a good candidate to guide the search for polychronous
patterns within the brain, as it shows none of the potentially revealing drawbacks of the
other presented pattern types. Pattern type B also closely follows the varying target rate
that drives spike probability (magenta line), while pattern types A and C warp the actual
population rate (blue line) and are therefore only useful for constant or hardly changing
population rates.

Besides using an Ornstein-Uhlenbeck process for controlling the fluctuating population
rate target, any template target waveform such as ramps or sine waves may be useful for
simulations and have been implemented.

7.1.3 Hiding Patterns through fractional participation
For a given type of pattern and underlying firing rate, the difficulty of pattern detection
can be increased by simply reducing the number of units that take part in presenting a
pattern. As seen in Figure 7.4a, this can be done by using a small but fixed-size set of
pattern-presenting units for each value that is to be represented, potentially leading to a
reduction of overlap between structured patterns.

7.1.4 Hiding Patterns through random participation
Alternatively, the decision whether a unit takes part in presenting a pattern may be ran-
domised on each pattern presentation, leading to a less predictable but overall wider group
of pattern-presenting units (Figure 7.4b). STDP is able to easily detect such patterns by
simply strengthening the connections to those inputs that fire together more often than
not. In a short-time recording of neural activity, however, this type of unreliable participa-
tion may indeed be hard to detect by a brute-force spike-to-spike matching data analysis
algorithm.
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Figure 7.3: Polychronous spike patterns generated with independently fluctuating background firing
rate. Background noise spike rate was driven by an Ornstein-Uhlenbeck process (θ = .05, σ = 2.55) and
polychronous patterns were generated through either overlay (a, pattern type A) or rearrangement of spikes
(b-d, pattern types B-D) as described in Section 7.1.2. While in (b) and (d) the actual instantaneous spike
rate (blue line below each main plot) closely follows the target spike rate (magenta line) that was given by
the O-U process, the two lines mismatch in (a) and (c) during pattern presentation. Pattern type D (d)
is the only one where both actual instantaneous (below main plot) and actual per-unit (right side of main
plot) firing rates always match the given target rate.
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Figure 7.4: Different strategies for hiding polychronous patterns within background noise. Based
on pattern type D. (a) Partial participation of units in a shifted pattern (Section 7.1.3). (b) Random
participation on each presentation (Section 7.1.4). (c) Fixed random permutations can define a single
pattern (Section 7.1.5). (d) Same as c, but for 40 separate recurring patterns (Section 7.1.5). When patterns
do not need to conserve neighbourhood, the use of frozen random permutations can look very similar to
white noise when overlaying 200 pattern presentations (overlay subplot of d). This may additionally be
combined with e.g. random participation (Section 7.1.4) to further obfuscate the existence of structured
information within a stream of noisy spike trains. However, given enough time (=samples), a postsynaptic
neuron can still learn these patterns, as can be seen in supplementary Figure A.5 (p. 179).
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7.1.5 Frozen random permutations of spike order
Until now, all previously presented example pattern types represent different values by
shifting the order of spiking units circularly. Neighbouring input units thereby are always
correlated, as can be seen in Figure 7.5a. While patterns can be more difficult to detect
through cross-correlation of spike trains when some of the above measures for hiding
patterns are used (Subsections 7.1.2, 7.1.3 and 7.1.4), they remain detectable by overlaying
all spike trains at specific time windows (Figures 7.1, 7.2, 7.3 and 7.4b, right) and other
brute-force matching methods (Gerstein et al., 2012).

But providing a strict order in which input units fire is of course not the only way
in which polychronous patterns may be arranged. It would, for example, be possible to
generate a random permutation of spike order whenever a new value is to be represented
through a polychronous pattern for the first time. This permutation then comes to rep-
resent that specific value throughout the remainder of the simulation. Similar values are
then no more represented by similar patterns, and the spike lag of single input units then
can no more be used to interpolate between represented values. Two single presynaptic
input units may have very different spike lags when representing neighbouring values, and
may coincidentally have very similar spike lags when representing distant values. An ex-
ample of this type of polychronous pattern is shown in Figures 7.4c and 7.4d for 1 and 40
different values, respectively. Any of the previously described pattern generation methods
(Types A-D) can be used to generate such randomly permuted patterns, simply by choos-
ing a distinct random permutation for each value that needs to be represented. While
Subsection 7.1.6 examines the correlation coefficients of spike trains with either ordered
or randomly permuted arrangement of unit order during pattern presentation, Subsection
7.1.7 further examines similarity between patterns. Appendix A.1.3 discusses learning
with fixed random permutations of spike order.

7.1.6 Steady-state correlations between spike trains
A first approach when examining a set of spike trains for structured information encoded
in the relative timing of individual spikes may be to compute the pairwise cross-correlation
coefficients between any two spike trains in the set. If logically (e.g. topologically) adjacent
units tend to fire spikes at similar times (Chapter 6 and Section 7.1.1), we receive a neural
code that shows increased correlation in the spike train of neighbouring units. Figure
7.5a shows the correlation coefficients of the spike trains of 700 input units, of which 600
repeatedly present a pattern that was generated with method D from Section 7.1.1. As
the patterns used here had the form of a double-sided wave (originating from a single first
unit #300 and propagating in two directions from there), there is also an orthogonal line
crossing the central diagonal when one pattern is repeatedly presented (column 1). When
multiple polychronous patterns are repeatedly presented, more orthogonally diagonal lines
of increased correlation are visible. But with increasing number of different patterns, each
orthogonal correlation line becomes less pronounced.

When instead of ordering by adjacency, a new random permutation of unit order is
chosen for each pattern, correlations between pattern-presenting units are far less clear
(Figure 7.5b). While single pairs of units still remain highly correlated when one pattern
is repeatedly presented (column 1), any structure within the spike trains becomes very
hard to detect through computing the correlation coefficients when multiple patterns are
presented (columns 2 and 3). For improved visibility, each plot of Figure 7.5 contains a
zoomed-in version in its lower left corner. Also, the colour scale of each plot is set to
the minimum and maximum of non-diagonal correlation coefficients, producing a slightly
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Figure 7.5: Correlation coefficients of spike trains of 600 input units, containing 200 polychronous pattern
presentations. Pattern duration was 100ms, with another 100ms of noise between any two patterns,
yielding a total length of 40s per spike train (1ms time bin size). Insets show zoomed-in version. The
value to be represented by the patterns was either fixed (column 1) or selected randomly from 5 or 20
equidistant value options (columns 2 and 3). (a) Patterns generated via pattern type D (ordered, Section
7.1.1). The lines orthogonal to the diagonal are due to the two-sided shape of the patterns as seen e.g.
in Figure 7.1. (b) Generated via pattern type D (unordered, Section 7.1.5). Correlation does not follow
from neighbourhood. However, some dark speckles can be seen in column 1, indicating correlation. Colour
scale is set to minimum and maximum of correlation coefficients that are not on the diagonal (because the
diagonal merely represents the autocorrelation coefficients of each spike train with itself). Notice how the
maximum crosscorrelation coefficient decreases as more patterns are presented (darker subplots in columns
2 and 3 than in column 1).

darker overall tone in column 3 of Figure 7.5b.
Although correlations between the spike trains of pattern-presenting (input) units are

hardly visible when spike order is randomised and multiple patterns are being repeatedly
presented, we found that STDP succeeds in learning to detect such obfuscated patterns
within a stream of arriving spikes (see supplementary Figure A.5, p. 179).

7.1.7 Pattern Similarity and Unit Overlap
How do patterns differ when they are presented by the same set of input units? In Section
7.1.1, patterns for different values are generated by circularly shifting the center of the
spike wave around the set of pattern-presenting units while maintaining neighbourhood
relationships between units. In Section 7.1.5, the adjacency-preserving circular shift is
replaced by a new random permutation of spike timing for each new value that is to be
presented. In the first case, patterns for similar values likely also have some similarity
in the timing of spikes, while patterns representing distant values may differ more. In
the second case, the degree of similarity between patterns is maybe less intuitive. We
can use a standard metric for comparing spike trains and measure the number of time
bins each spike within one pattern would need to be shifted in order to receive any of
the other patterns. This comparison is shown exemplarily in Figure 7.6, where a set of
40 patterns is compared in terms of the sum of absolute spike timing differences. While
ordered (adjacency-preserving) pattern types show a small difference between patterns
that represent similar values and a strong difference between distant values is a circular
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arrangement (a,b), the difference between randomly permuted patterns remains largely
constant around some mean value (c). As all other patterns are compared to the pattern
representing the value 0.25 in this figure, the point of zero difference is at this value on
the x-axis. All of the three general pattern generation techniques shown here (a,b,c) have
likely identical mean pattern differences, at about two thirds of the maximum difference
for ordered patterns.

There is, however, a strong drawback to this method of measuring differences between
patterns. According to the metric of summing the absolute spike timing differences that
is used here, it seems unimportant whether one-sided (Chapter 6) or two-sided (Sections
6.3 and 7.1.1) ordered patterns are used, as the plots in (a) and (b) of Figure 7.6 are
identical. This is not the case. Even if the absolute difference between spike times of
different patterns is high, a neuron using STDP may not allow the receptive field to settle
on a specific pattern when the earliest units that fire together in one pattern also fire
in close temporal proximity within some other pattern. If the early part of a pattern
matches some other part of another pattern, a receptive field that is tuned to detect the
first pattern may easily be attracted by the second pattern, thus leaving the first pattern
without any neurons that detect it. This is because STDP always tunes a receptive field
to only the earliest inputs, as was explained in Section 6.2.1 (p. 84). Also, how high is the
probability of this happening when patterns are created through random permutations as
in Section 7.1.5?

We therefore need a new metric that respects this feature of STDP. The first inputs of
a polychronous pattern are more important than inputs that arrive later. This is because
only the earliest inputs take part in causing the first postsynaptic response after pattern
onset. Specifically, the size of this group of early-firing input units is bounded by the time
at which the postsynaptic neuron tends to respond after pattern onset. We can measure
this timespan and use it as a (rectangular) shifting window to see how many of these
early-firing units of one pattern are also active together within close temporal proximity
in any other pattern.

Let us call the size of this group m and assume that m = 30 early units fire before a
postsynaptic neuron can respond. We also assume the total number of pattern-presenting
units to be 600 and a total pattern duration of 600 time bins within this example. As
each time bin then contains exactly one spike, the timespan needed for the first 30 units
to spike is then exactly 30 time bins wide. We use this timespan as our shifting window
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Figure 7.6: Distance between patterns when generated with predefined spike ordering (a,b) or when only
random ordering is used (c). When patterns are generated through circular shift of spike order (Section
7.1.1), any patterns representing adjacent values are more similar than patterns representing distant values
(a,b), while all patterns have a mean difference of two thirds of the normalised maximum range when
random permutation (Section 7.1.5) is used (c). Pattern distances were calculated by counting the number
of shifts required for all spikes of one pattern (here representing the value 0.25) to match all spikes of any
second pattern. The differences between 40 patterns are shown here for visual clarity. The standard spike
distance metric used here is insufficient to discriminate between (a) and (b), so we need an alternative way
of measuring the differences between one-sided and two-sided ordered spike arrangements (see Figure 7.7).
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Figure 7.7: Distance between patterns for all three variants: one-sided ordered, two-sided ordered, and
randomly permuted. (a-c) The timespan required for the first m = 30 units firing in pattern #5 is used
as a shifting window within each pattern to track how many of these units fire together again at any
other time or for any other pattern. Colour shows number of matches. 20 distinct patterns are used here
(rows), and 600−m = 570 starting timepoints are used for the shifting window (columns). (a) one-sided
pattern variant. (b) two-sided pattern variant. (c) randomly permuted (=unordered) pattern variant.
(d) Normalised distances between each of the three pattern generation variants, for any group size m of
earliest firing units out of a total of 600 pattern-presenting units. The grey area indicates typical group
sizes of strong weights produced by STDP in simulations. As polychronous patterns allow STDP to form
sparse receptive fields (Section 6.2.1), the differentiation to distinct selective receptive fields is ensured
for randomly permuted and for two-sided ordered pattern variants. Summary of metric algorithm: The
minimum distance (= maximummatch) is taken for each pattern, and the average distance of other patterns
is divided by the distance of the selected pattern for normalisation. This fraction is then computed for
each of the 20 patterns, repeated ten times, and again averaged to form a datapoint in the plot. Variance
is too small to display.

and count how many of the 30 earliest units of one pattern are active together within any
other pattern at any shift position. This produces plots (a), (b) and (c) in Figure 7.7 for
each of the three pattern generation variants, respectively. We now see a clear difference
between one-sided (a) and two-sided (b) patterns. When one-sided ordered patterns are
used, the first 30 units of pattern #5 also fire together in all other patterns, only shifted
in time. This is indicated in Figure 7.7a as a bright yellow area in each row. A receptive
field that is tuned to the earliest units of one pattern can therefore easily be attracted by
any other pattern and prevent the receptive field from settling on any single pattern at
all.

In contrast, two-sided ordered patterns overlap with only half of the earliest units in
any other two-sided pattern (Figure 7.7b). Assuming the other network parameters are
set up in such a way that half of the earliest units are insufficient to evoke a postsynaptic
response, this simple construction of two-sided polychronous patterns allows the receptive
fields to settle on distinct sets of early-firing input units, i.e., the beginning of different
patterns. In practice, STDP will prune the set of earliest firing input units to the minimum
necessary to evoke a postsynaptic response (see Section 6.2.1), so the requirement that
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half of these input units should not evoke a postsynaptic response is easily fulfilled.
The careful observer will have seen that in Figure 7.7b the full set of 30 earliest units

of pattern #5 also fire in close temporal proximity at the end of pattern 15 (out of 20
patterns). In practice, this apparent competition between opposite patterns does not pose
a problem for the stability of receptive fields because any attraction by late units of pattern
#15 will be matched by the early parts of pattern #5, and negative synaptic drift will
therefore at most reduce synaptic weights but not succeed in snatching the receptive field
away from pattern #5, as long as both patterns remain to be presented equally often.

When input units fire in a fixed random permutation (Figure 7.7c), it is very uncommon
for more than a third of the earliest input units of one pattern to ever fire together in any
other pattern. This is indicated in the example figure by the fact that the only bright
yellow area is at the original location of the earliest units of pattern #5. However, random
matches of around 10 of these input units are often encountered, causing a patchy dark
red area throughout most of the plot.

The minimum group size m of strong input connections required to evoke a postsy-
naptic response depends on a number of factors including the maximum strength of each
EPSP, somatic excitability, somatic leak, and the average timespan during which reliable
inputs arrive in a non-synchronous pattern. We can therefore not restrict our new metric
to a fixed group size of earliest firing input units, and need to compute similarity for a
range of group sizes.

The basic idea of the new metric for comparing pattern distances is that we contrast
the maximum number of units that fire within close temporal proximity with how many
of these fire together within other patterns on average. We do this for a large number of
group sizes m and for all three pattern generation variants to produce the three curves in
Figure 7.7d. The algorithm is given in pseudocode in Appendix A.3.8.

Figure 7.7d shows that the average distance between two-sided ordered patterns is
always higher than one-sided ordered patterns when only a small set of early-firing input
units is used for comparison. The grey area marks typical values for m as produced by
STDP. When topological structure is to be contained in similarity between patterns, then
two-sided ordered patterns should be used instead of one-sided ordered patterns because
only two-sided patterns allow robust receptive field formation. However, when topological
structure is not of importance, randomly permuted unit order has the highest average
distance.

7.2 Effects of Network Size, Pattern Duration, etc.
On top of the pattern generation method that is used, a number of other parameters affect
the learning outcome and speed.

7.2.1 Network Size and Projection Scaling
The number of inputs to the postsynaptic detector neuron would strongly affect postsy-
naptic firing rate if it was not compensated for. The effect that each incoming spike has on
the postsynaptic membrane potential therefore is divided by the total number of inputs.

It is important that a sufficiently large input network size is used, as very small input
sizes (ca. < 500 units) will give each incoming spike a too strong influence on postsynaptic
activity, circumventing the need for many inputs to arrive together to evoke a postsynaptic
spike. If a single input unit can strongly affect the postsynaptic response, the postsynaptic
neuron may tune to single input units instead of a given pattern of spatiotemporally firing
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units, no matter if those units take part in presenting polychronous patterns or if they
just constitute background noise spikes. The problem of too small network sizes has also
been mentioned in (Gütig et al., 2003), where random winners were seen only for very
small input networks.

7.2.2 Pattern-presenting vs. Background Units
The ratio between pattern-presenting input units and those that only ever fire randomly
and contain no inherent meaningful information (background inputs) has a noticeable
impact on initial learning success. However, the effect of background units on postsynaptic
activity decreases strongly as (simulated) learning progresses, when a biased STDP rule
with negative drift is used. (See e.g. the decrease of connection strength to units #1-#700
and #1301-#2000 in Figure 6.12, p. 86).

After this decay of connections to randomly firing background units, they have little
effect on postsynaptic activity. That is, as long as the level of possibly existing neuro-
modulators remains constant (See Part 3 of this text). In Chapter 8, as I present a new
method for applying dopaminergic modulation to an STDP-based network of neurons, the
randomly firing background units become important once again, as a source of entropy
for causing random postsynaptic responses on low levels of the neuromodulator.

7.2.3 Pattern Duration and Interpattern Spacing
The duration of polychronous patterns in all previous examples in this chapter has been
100ms, but shorter timespans of e.g. 50ms, 30ms or 15ms are also detectable by STDP
within a very noisy environment, depending on network parameters. Even if a fully trained
detector neuron can respond to an incoming pattern within 3-5ms, a further shortening of
pattern duration has a drawback during the learning process: When the pattern duration
is very short, the postsynaptic neuron has only a very small time window in which it
must coincidentally fire in order to catch the pattern. With shorter pattern duration it
may therefore take a long time until a postsynaptic neuron begins to tune to a given
pattern. For longer pattern durations, the postsynaptic neuron may fire at any point
during this time and thereby begin to respond to that pattern. Due to the STDP-inherent
migration of strong synaptic connections to the earliest firing units (Section 6.2.1, pp. 84),
any postsynaptic neuron that picks up a pattern at any point during its presentation will
soon respond to it with minimal delay.

The minimum space between two patterns should be large enough to avoid a fusion of
similar patterns that often occur in fixed order to fuse into one. As the usual STDP time
constant is around 15ms-30ms, I choose an inter-pattern spacing of 100ms during which
only random noise spikes are fired by all units.

7.3 Multiple Postsynaptic Neurons & Input Space Coverage
We have until now been dealing with the effects of polychronous patterns on a single
postsynaptic neuron. I have shown that a single neuron chooses to tune to one of many
polychronous patterns, and forms a minimal set of strong connections that allow it to
robustly detect further occurrences of that pattern (Section 6.3, p. 98). The choice of
which pattern a postsynaptic neuron will tune to and which final receptive field it will
settle upon has seemed difficult to predict until now. In particular, it was unknown
whether each pattern has the same probability of being learnt by a postsynaptic neuron,
or if some yet to be uncovered additional factors influence the choice of pattern that a
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Figure 7.8: Multiple independent repetitions of the simulation experiment yield a smooth coverage of the
full space of input patterns. This is an overview figure that captures the results of multiple repetitions
(trials) of the same simulation (also used in Chapter 9). The first and second panels from the left show
all synaptic weights between postsynaptic neurons and pattern-presenting input units (here #1 - #600) in
original unsorted arrangement (panel 1) and sorted by similarity of receptive fields (panel 2). The peak of
strong weights of each receptive field is found for each postsynaptic neuron, and the 600 presynaptic input
connections are compressed into a histogram of peak locations, which is then convolved with a Gaussian
smoothing window to form a single column (panel 3). The compressed representation of the first two
panels can be seen as the first (=leftmost) column in panel 3. Panel 4 finally is a combined histogram of
all eight repetitions (trials) which roughly hints at the total number of neurons that learnt each pattern.

postsynaptic neuron tunes to. To isolate the cause for this choice, I constructed and
ran a set of simulation experiments that differ only in the small fluctuations of random
background activity of input units, and how these presynaptic units are connected to one
or more postsynaptic neurons.

First, a set of 50 simulations with a single postsynaptic neuron each (see diagram
in Sketch 7.9, center) and exactly equal initial settings but random background activity
was set up and run (see Appendix A.3.9 for simulation details). I found that giving each
postsynaptic neuron its own set of independent inputs leads to a uniform distribution of
receptive fields across the full range of presented patterns. Figure 7.8a shows the receptive
field of each neuron after simulation, which when ordered according to similarity (Figure
7.8b) resembles a diagonal line across the full range of synaptic weights. Hardly any neu-
rons share identical receptive fields, and nearly all of the space of inputs is covered by
a receptive field peak of at least one neuron. Figure 7.8c shows that the distribution of
receptive field peaks – or what I now call a receptive map – resembles a uniform distri-
bution, and this remains true for many repetitions (trials) of the experiment. The first
two panels of Figure 7.8 are shown in a compressed view in panel 3 (trial 1), smoothed

pre

post

post

pre

Sketch 7.9: We now expand our network topology from a single postsynaptic neuron (left) to multiple
postsynaptic neurons without recurrent connections. In Figure 7.8, every postsynaptic neuron receives an
independent set of inputs, comparable to independent repetitions of the simulation (center). In all other
figures, all postsynaptic neurons receive the same inputs, including random fluctuations of the background
firing rate (right).
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Figure 7.10: When all postsynaptic neurons receive identical inputs, any random fluctuations in the input
firing rate are received by all neurons. This usually leads to a common bias towards a subset of patterns
and the resulting distribution of receptive fields is no longer uniform. As this non-uniformity is not based
on any meaningful information but comes from known randomness, it should be treated as an unwanted
artifact in the learning process. Instead, any clusters in the distribution of receptive fields should represent
non-random significant features. Figure description as in Figure 7.8.

by a Gaussian bell shape for visual clarity. The other trials in this panel are repetitions
of the complete experiment. While there is variation in the distribution of receptive field
peaks from trial to trial, the peaks are overall evenly dispersed across the full range of
pattern-presenting inputs. The sum of all peaks at all positions in all trials is shown as a
uniform-like histogram in Figure 7.8d.

However, these uniform distributions of tuning probability only hold when each post-
synaptic neuron really receives individual inputs with independent background rate fluc-
tuations. Unfortunately, this is an unrealistic case for a biological neural network where
the neurons in one (cortical) layer always receive (at least partially) overlapping inputs
from many neurons of some previous layer. A more biologically plausible case can be
simulated by connecting the postsynaptic neurons to a single group of input units instead
of connecting each neuron to a separate set of inputs (compare Sketch 7.9 right). This
not only presents the same polychronous patterns to all postsynaptic neurons at the same
time, but also provides them with identical fluctuations in the input firing rate. When we
run this simulation and feed the generated input data into multiple postsynaptic neurons
(Figure 7.10a+b), the resulting distribution of receptive field peaks is a lot more clustered
(Figure 7.10c). The neurons have a high probability to tune to the same set of patterns.
As each pattern was presented equally often and all fluctuations in background input fir-
ing rate are by design random, the location of clusters does not represent any meaningful
hotspot of information.

It would be nice if it did. If clusters within the receptive field map would not happen
accidentally, we could use them to signify some important event, as a cluster in the re-
ceptive field map means that many postsynaptic neurons will be responding to the same
stimulus / input spike pattern. In Part 3 of this text and in Section 7.5 of this chap-
ter I examine possible uses for receptive map clusters and how to guide their formation
intentionally.

But first, if clusters in the receptive map are to signify meaningful information, we need
to ensure that without any intentionally encoded information, the distribution of randomly
forming receptive field peaks shows little or no variation from trial to trial. In particular, if
each pattern really does have the same probability of being learnt by a postsynaptic neuron,
the distribution of receptive field peaks should always approach the uniform distribution.
I wondered whether it may be possible to regain a uniform distribution of receptive fields
even when strongly overlapping inputs are given to multiple postsynaptic neurons. A few
solutions come to mind.
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Figure 7.11: An easy solution to the problem of accidental cluster formation from rate fluctuations that
by design are known to be random. By simply beginning the learning process of all postsynaptic neurons
at different times, a uniform-like distribution of receptive fields is again obtained. This solves the question
of how to learn a weight matrix for Figure 6.8 (p. 82). See Figure 7.8 for subpanel descriptions.

7.3.1 Avoiding Mutual Inhibition
A common approach for restricting the random formation of clusters within the receptive
map of a neural network is to use mutual inhibition between postsynaptic neurons. When
the first neuron begins to respond to a given pattern, (predefined) inhibitory connections
may be used to inhibit the response of other neighbouring neurons to the same pattern,
which keeps them from also tuning to that pattern. Depending on the maximal strength
of inhibitory connections, multiple k winner neurons may be required to respond to a
pattern together in order to sufficiently inhibit further neurons from responding.

There are a few problems with this approach, however. First, it assumes the existence
and dedication of inhibitory mutual connections between neurons in a group that receives
common inputs. It gives no hint on how a similar feature may be implemented in a part of
the brain where no inhibitory mutual connections have been found anatomically. It also
prematurely prescribes a fixed role to the inhibitory connections of brain regions that do
contain inhibitory mutual connections, closing the mental door to a possible examination
of alternative uses for those connections.

Second, if the dominance of a group of receptive fields within a group of neurons was
actually intended through external circumstances, mutual inhibition that is targeted at
discouraging accidental receptive map clusters will also hinder such an intended formation
of clusters in the receptive map.

Instead of assuming that a large portion of mutual inhibition within a group of neurons
is dedicated to decorrelating accidental clusters that arise from strong overlap between the
inputs to a group of neurons, I chose to look at ways of forming unbiased receptive maps
without the use of mutual inhibition.

7.3.2 Smooth Coverage of Input Space through Delayed Onset
A simple solution to this presents itself in the idea of neurogenesis. With the insight that
in the brain, no two neurons are alike and new connections (and new neurons) are formed
continuously, it is highly unlikely that a large number of new neurons will reach their
critical period of being highly responsive to most inputs at the same moment in time.
This is often not reflected in computer simulations of neural plasticity, where learning
starts at the same time for all virtual neurons of the simulation.

I ran computer simulations where a postsynaptic neuron became plastic every second
until all neurons had activated STDP. Already at this onset time delay, the resulting
distribution of receptive field peaks approaches a uniform distribution again, as seen in
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Figure 7.11. As in the two previous figures, panel (c) summarizes the results of multiple
repetitions of the simulation experiment, showing the improvement over the case when all
neurons became plastic at the same time (Figure 7.10). While the distribution of receptive
field peaks may not be perfectly uniform yet for an onset delay of 1s, the random formation
of clusters is already largely reduced. It is to be assumed that a further increase of onset
delay would further allow the distribution of receptive field peaks to approach uniformity.
As this would also increase the total time the simulation needs to run until the last neuron
has settled into a stable receptive field, and the gain would be minimal, I henceforth keep
the onset delay at 1s for the rest of this text.

7.4 Noise: A feature, not a bug?
The brain, as any physical system, is noisy. A continuous goal of any neural system, there-
fore, is to improve the signal-to-noise ratio of meaningful pieces of information compared
to random background activity. This separation between signal and noise is not always
clear, and seemingly random spikes may be found to contain valuable information for ful-
filling a certain task. At the same time, an input signal that would need many bits of
information to be described (has high entropy) may still contain little useful information
for a task at hand (see Chapter 4).

In the previous section, I showed how the choice of a neuron’s receptive field can
be strongly influenced by random fluctuations in its inputs’ background activity. These
background spikes contain by definition no meaningful information, as they were generated
for the simulation by a random number generator. Still, this background noise can have
a strong influence on the choice of pattern that the neuron will eventually tune to.

The negative drift of biased STDP (Chapter 5) helps to improve the signal to noise
ratio of a neuron’s response through learning to ignore inputs that have in the past fired
(mostly) at random and have not been seen to transmit useful information. But where
should the line be drawn between a randomly firing background unit and, for example, a
unit that fires random spikes only most of the time but occasionally takes part in presenting
a structured pattern of spikes that could be picked up by a postsynaptic neuron over time?

While exact definition boundaries depend on the specific parameters of the (biological
or simulated) neural network, the principle behaviour of STDP may be evaluated under
conditions of increasing noise in future biological experiments. Noise originating in the
system itself may be a detrimental factor when trying to robustly detect a pattern of spikes
that represent some external stimulus. But another cause for a bad signal to noise ratio
may indeed be the unknown presence of a given stimulus within the world. It is important
for the neural system to not overestimate the presence of some external stimulus and not
overtrain on unreliable data. Noisy inputs help to prune less informative synapses through
negative synaptic drift for the benefit of more informative ones and thereby keep the set
of strong synapses that a neuron needs to maintain at a minimum (see Sections 5.1 and
6.2 for pruning of synapses that convey little information).

7.5 Biasing Learning Direction
In many cases, we would like to use spike timing dependent plasticity to learn to respond to
specific features of the world. So how can we transform the unsupervised learning paradigm
that is STDP into supervised learning without having to work against the unsupervised
nature of STDP? This section lists some approaches that may help to use normal STDP
in a supervised (or reinforcement learning) task.
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7.5.1 Non-uniform pattern presentation counts
A first easy approach to steering STDP is to control the relative number of pattern pre-
sentations a plastic network encounters. Without further normalisation, a pattern that is
presented more often than others will have a higher probability of being picked up by a neu-
ron’s receptive field than a pattern that is presented rarely. This indeed has such a strong
effect that it poses a problem for the application of neural networks to real-world data
without introducing additional inhibition between neurons. If only a single postsynaptic
neuron is observed that receives no additional inhibitory inputs to account for stimulus
frequency, it may easily be pushed into tuning to the most frequent pattern/stimulus.

However, this feature may also be used to the experimenter’s advantage in tasks where
he/she has control over the number of pattern presentations and can control the relative
effect of compensatory inhibition.

7.5.2 Background rate modification with certain patterns
Another approach is to take control of the background firing rate of inputs for influencing
the time of postsynaptic responses (Section 7.1.2). If the background firing rate is increased
reliably whenever a specific pattern is presented to the network, the postsynaptic neuron
will fire more often during presentation of this pattern, which in turn will increase the
probability of tuning the postsynaptic neuron’s receptive field to this pattern.

However, the presynaptic background rate is in reality influenced by a large number
of factors, and it seems unlikely that changes of background rates are used as the main
mechanism in biology to control which pattern or stimulus becomes trained. Still, this
remains an option that may occasionally be used in biology and seems useful in some
computer simulation tasks.

7.5.3 Pattern-dependent changes to noise level
As mentioned in Sections 7.1.3, 7.1.4, and 7.4, it is possible to hide patterns in the back-
ground noise. When this is done for only some patterns and not for others, those that are
less hidden will be responded to more often, and more postsynaptic neurons will tune to
less hidden patterns. When the noise level is artificially increased for specific patterns, it
may be hard for the postsynaptic neuron to tell whether this is an internal function of the
brain or if a specific stimulus is less present in the environment.

As for the non-uniform pattern presentation probabilities mentioned above, this method
also may lead to an over-learning of the less hidden patterns.

7.5.4 Contrast enhancement or worsening
An interesting possibility is to increase the contrast of specific pattern-presenting input
units whenever they present a pattern that is to be learned. This is different from the
previous point in that the contrast of some inputs versus others may be controlled during
synaptic transmission and does not need to include changes to the presynaptic input layer.
Indeed, we use this method for transforming the unsupervised learning function of STDP
into a reinforced process in Chapters 8, 9 and 10.

7.5.5 Multiplication by scalar value
Unfortunately, a bad example for turning unsupervised STDP into supervised or reinforced
learning is to multiply the prospective weight change computed by an STDP rule by

121



some scalar value as is often done in traditional Hebbian learning. The increased level of
biological reality when moving from correlation-based learning to timing-based learning is
lost when the scale of STDP is suddenly changed vastly on each learning step. Chapter
5 closely examines the importance of the scale of LTP and LTD in STDP for synaptic
drift and how this effects random inputs relative to inputs that contain some inherent
spatiotemporal structure.

When this method for biasing STDP is used in the literature (Frémaux et al., 2010),
it often leads to the need for active suppression of the main (unsupervised) features of
STDP.

7.6 Summary
In this chapter, we saw how polychronous patterns may be generated efficiently for a
computer simulation and be hidden within a stream of seemingly random spikes. The
fact that it is so easy to hide spatiotemporal patterns may point us towards a renewed
search for polychronous patterns within electrophysiological recordings in the future (Vogt
and Hofmann, 2015d). Especially the unreliable participation of units in presenting a
polychronous pattern (Section 7.1.4) and the possibility that polychronous patterns may
be independent of population rate (Section 7.1.2) while still being detectable by a neuron
that was trained through STDP may lead us to new experimental methods in the future.
For instance, the idea of spike-triggered averages may be extended into pattern-triggered
averages where only the presence of a specific polychronous pattern instead of a single
unit’s spike activated some trigger within the recording software.

In Section 7.3 we explored what happens when multiple postsynaptic neurons without
any recurrent connections are given the same inputs to learn a polychronous code. It
turns out that when the background fluctuations for each postsynaptic neuron are fully
independent while being given the same patterns, we receive an evenly distributed map
of receptive fields. When all postsynaptic neurons receive completely identical inputs
(= identical background fluctuations), the development of receptive fields becomes biased.
But this can be largely restored through the simple trick of initialising neurons at different
times, which seems very likely in biology as part of neurogenesis.

After having established a framework for plasticity with temporal coding though STDP
and polychronous patterns in Chapters 5, 6 and 7, we can now combine this with neuro-
modulation in the next three chapters.
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Part III

Neuromodulation in spiking networks
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Chapter 8

Influencing Plasticity through Modulation
of Synaptic Transmission

In order to understand procedural learning in the brain, we cannot settle for unsupervised
learning methods such as STDP alone. Reinforcement learning models of the basal ganglia
have been suggested, but usually only in a very abstract form. In the past, the application
of a reward error or reinforcement signal into a (spiking) neural network has usually
been done by multiplying some prospective weight change with some scalar value (Farries
and Fairhall, 2007; Izhikevich, 2007b; Morrison et al., 2008; Potjans et al., 2009). The
biological justification for doing this was taken from biological experiments (Reynolds and
Wickens, 2000, 2002) in which dopamine was found to influence the outcome of a plasticity
process in the basal ganglia’s striatum. As modellers have moved from more abstract
models of plasticity to using a specific dependence on spike timing (Chapter 2), they have
oftentimes continued the simple multiplication of a scalar “reinforcement” value with the
otherwise biologically well documented weight changes arising from STDP (Section 3.3.2).
It may be time to take a closer look at possible mechanisms of how dopamine and other
neuromodulators may affect synaptic plasticity in a more realistic manner.

Another strong motivation for the existence of this chapter are biological findings
that dopamine by far does not only influence synaptic plasticity. Instantaneous effects
of dopamine on the excitability of neurons have been found in dopamine-receiving brain
areas including the basal ganglia and prefrontal cortex (Kroener et al., 2009; Thurley et al.,
2008). More low-level instant influences on postsynaptic currents across cell membranes
have also been observed (Hernández-López et al., 1997; Lee et al., 2004a; Nicola et al.,
2000; Nicola and Malenka, 1997; Rotaru et al., 2007; Waters and Helmchen, 2006).

Finally, some authors have speculated that dopamine may act as a contrast enhancer
for glutamatergic inputs to a dopamine-receiving cell (Nicola et al., 2004), but no models
(other than ours) have captured this on the level of spiking neural networks until this
date. In Vogt and Hofmann (2012), we not only construct a model that captures the
effects of instantaneous modulation of contract in synaptic transmission within spiking
neural networks, but also demonstrate first effects that this has on synaptic plasticity.

The remainder of this chapter is a close reproduction of our 2012 paper, with some
changes especially in Section 8.2 (Model and Methods) for improved clarity and better inte-
gration with the rest of this text. The following two chapters (Chapters 9 and 10) further
explore the implications of the new paradigm for synaptic plasticity. As a consequence
of the paradigm for reward-modulated synaptic transmission that is presented here and
in Vogt and Hofmann (2012), it will likely be possible to build powerful reinforcement
learning models with high biological realism in the future.
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8.1 Introduction
Recent experiments have indicated that dopamine may directly influence the spiking ac-
tivity of prefrontal neurons by increasing signal-to-noise ratio (Kroener et al., 2009) or
gain (Thurley et al., 2008) during synaptic transmission. These studies suggest that an
instant effect of dopamine may only be present during additional glutamatergic synaptic
input and that dopamine may not be capable of eliciting a synaptic response on its own
here.

While the influence of varying dopamine on synaptic learning processes has been recog-
nised and modelled in a large number of publications (Farries and Fairhall, 2007; Izhike-
vich, 2007b; Morrison et al., 2008; Potjans et al., 2009; Reynolds and Wickens, 2002), this
has usually been done by directly adapting the STDP rule to include an additional third
factor signalling dopaminergic reinforcement, beside the inclusion of the pre- and postsy-
naptic activities. The requested synaptic weight change defined by STDP would often be
multiplied by a reinforcement factor in the interval [-1,1], yielding no synaptic learning for
baseline levels of dopamine (zero reinforcement) and inverted, or “anti-hebbian”, learning
for negative values of reinforcement. Postsynaptic activity would be only indirectly af-
fected by dopamine in these models, through the gradual synaptic weight change induced
by reinforced STDP.

However, there have been modelling studies incorporating experimental evidence on
increased postsynaptic facilitation under dopamine exposure (Chorley and Seth, 2011),
albeit by affecting the neuron-wide recovery function of the postsynaptic model neuron.
To our knowledge, no previous modelling studies of dopaminergic influence on synap-
tic transmission with an only indirect effect on the synaptic learning process have been
published.

We chose to investigate the possible network level implications of a (dopamine-like)
neuromodulator purely affecting synaptic transmission on a local scale. As any postsynap-
tic activity is highly dependent on the received synaptic input, changes to this input di-
rectly affect the postsynaptic neuron’s spiking activity as the second factor in usual STDP
rules (Bi and Poo, 2001). Any neuromodulation of synaptic transmission is therefore in
principle able to affect the learning outcome of STDP, even when no direct involvement
of the modulator in the actual weight adjustment process is present.

There are in theory two ways of affecting the amount of synaptic input a neuron re-
ceives. The first would need sufficient control over the spiking activity of presynaptic
neurons (see also Sections 7.5.1 and 7.5.2), which is difficult to provide for inputs arriving
from distant brain areas such as the axonal endings arriving in the basal ganglia’s striatum
from all parts of the cortex. The second possibility would be to introduce a short-term, re-
versible effect on the actual process of synaptic transmission, which regulates the amount
of input arriving at a postsynaptic neuron through the synaptic connection when a presy-
naptic neuron fires. If a neuromodulator were to influence the short-term transmission
efficacy of synaptic connections, it would temporarily be changing the effective weight of
those synaptic connections for all intents and purposes.

We therefore modulate only synaptic transmission in our model, and show that we
can still influence the learning outcome with a standard two-factor STDP rule. Without
any direct reference to existing chemical neuromodulators, we coincidentally call our neu-
romodulatory reinforcement factor DA. However, simply multiplying the actual synaptic
connection strength (henceforth called baseline weight) with the current DA level to form
a temporary effective weight would be problematic: Whenever the applied reinforcement
would reach a value around zero, all synaptic transmission would stop, which is unwanted
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Figure generated from data storage EMBEDDED using function generateimageTypicalEffectiveWeightDistributions (generateimageTypicalEffectiveWeightDistributions.m) from git revision 9bddbf120dd535a471a9bb50c03c39243ff89b55 .
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Figure 8.1: Effects of the proposed effective weight rule on four examples of actual (baseline) weight
distributions. Example weight distributions at DA = 1 are given in the centre column (effective weights
are equal to baseline weights when DA is at baseline). The threshold θ was chosen to be θ = 0.5 in this
figure, but additional values are shown in Supplementary Figure A.6 (p. 180). Left: Columns 1 and 2
show the resulting distributions of effective weights for low levels of DA. Right: Columns 4 and 5 show
effective weight distributions for high levels of DA, in accordance with Eqs. 8.3 and 8.4. Rows 1 and 2:
Any double-peak distribution where the two peaks are on opposite sides of θ will remain so for high DA,
but with increased sparseness. For low DA levels, the two peaks move closer to θ, and thereby make
discrimination of strong vs. weak weights increasingly difficult. Rows 3 and 4: A uniform or a normal
distribution of weights around θ will act as a true bimodal distribution for high DA levels and become a
thin unimodal distribution for low levels of DA. The reduced signal-to-noise ratio for low DA and increased
ratio for high DA (assuming the signal is represented by the strong weights) becomes visible.

behaviour for a neuromodulated synapse. Instead, we use a power law relationship be-
tween baseline weights and the current level of DA to form the effective synaptic weights
used for transmission.

We define a threshold value θ that divides the baseline weights into strong and weak
weights (see Figure 8.1). For low DA, all effective weights are made to become tem-
porarily more similar to θ than their baseline counterparts, while for high DA all effective
weights temporarily move away from θ, towards the extremes of the defined weight range.
Throughout this chapter, we therefore call θ the generalisation threshold for low levels of
the reinforcement signal and the sparsification threshold for high levels. Strong baseline
weights always produce effective weights that are above θ and weak baseline weights always
produce effective weights below θ during modulated synaptic transmission. For stability,
it is helpful to assume that the DA-dependent effective weights always remain within the
same bounds as baseline weights, so our rule for computing effective weights from baseline
weights and DA level ensures this (Figure 8.3, Eqs. 8.3 and 8.4). For a possible chemical
interpretation of θ and of DA-dependent effective weights (used only for transmission), see
Section 8.4 (Conclusion).

Synaptic plasticity (e.g. via STDP) is only ever applied to baseline weights, and the
DA-dependent effective weights are then instantly updated accordingly.
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Figure 8.2: Network structure and dynamics overview. Left: Network structure. Npre = 1800 presynaptic
input units transmit spikes via DA-modulated synapses to one postsynaptic output neuron. The modu-
lation influences the synaptic transmission process, and has no direct involvement in updating long term
weights during STDP. Right Top: Asymmetric STDP rule. The integral over the full range of the curve is
negative, so random firing normally leads to a slow decrease of weights. Right Middle: Interspike interval
(ISI) of background noise. The mean ISI is 100 ms in a right-skewed gamma distribution, giving a mean
background firing rate of 10 Hz. Right Bottom: Soft bound on weights, as described in Chapter 5, Section
5.2.6. The step size of STDP is greatest at medium weight values, and decreases towards the boundaries
on each side. This also has the effect that synaptic connections are most volatile at medium weight values,
while becoming more robust for more extreme weight values.

8.2 Model and Methods
8.2.1 Network Structure
The network structure is shown in Fig. 8.2 (left), where the two-layer network consists
of Npre = 1800 presynaptic units (inputs) that are fully connected to one postsynaptic
model neuron (output) via DA-modulated synapses. The modulation instantly affects
the excitability of each synapse, which can be perceived as a change in effective synaptic
weight. The activity-dependent learning process (STDP rule) is not altered.

Neuron Model

We use the standard Izhikevich model in its one-dimensional form (Izhikevich, 2004) as
postsynaptic neuron. This gives us the realism of a delayed, self-firing neuron while im-
proving predictability and computational complexity for large-scale simulations. The pre-
dictability specifically benefits from the reduction to a one-dimensional model as the neu-
ron’s future activity is fully described by only its present membrane state and the present
sum of arriving input currents. The neuron’s membrane potential v is controlled by a
variant of Eq. 2.3:

v′ = 0.04v2 + 5v + 140− u+ I (8.1)

where u is fixed at its typical dimensionless starting value of −13, and I is the weighted
sum of inputs arriving at the neuron. The amount of current arriving at the postsynaptic
neuron was computed by multiplying each weighted input with 3000/Npre to achieve some
scalability to the number of input units.

127



Input Patterns and Background Noise

We use polychronous pattern type A (Section 7.1.1) to present inputs to the single post-
synaptic neuron. Only a fraction of 200 input units is involved in presenting each of three
patterns (Section 7.1.3). As each pattern is presented by a distinct set of input units, we
can use one-sided patterns (compare Figure 6.26, Section 6.3). Pattern duration is 50 ms
(see Figure 8.5a).

The input units here also insert random background spikes with an interspike interval
(ISI) distribution that follows the gamma distribution with shape k = 3 and a mean firing
rate of 10 Hz. As the background activity of an input unit is affected by any pattern it
presents, the overall firing rate of the input layer is only slightly affected during pattern
presentation, and remains in the range of random background variation (see Figure 8.5a,
input rate).

Plasticity rule

Our weight update rule is based on that of spike-timing dependent plasticity (STDP) as
used in (Masquelier et al., 2008). It is from the class of anti-symmetric rules where the
sign of weight modification depends on the sequence in which the pre- and postsynaptic
units fire. It is also a negatively biased rule (Chapter 5) in that the area-under-curve
of the negative side (long term depression, LTD) is greater than that of the positive side
(long term potentiation, LTP) for the full defined range. This property slowly decreases the
overall strength of synaptic weights towards zero when input spikes occur at random times
and the postsynaptic neuron is forced to keep firing. Alternatively, if the postsynaptic
neuron is allowed to become quiet as all its input weights decline, this biased rule leads to
a habituation to the input background activity, making the neuron highly reactive to any
non-random time-structured inputs.

The negative integral of the STDP curve within [-50,50] ms does not prohibit the
bounded integral from becoming positive within shorter ranges around ±5 ms, e.g. for
very high firing rates or bursting, which could lead to a possibly unintended overall increase
of synaptic weights. A possible solution for dealing with higher firing rates is proposed in
(Pfister and Gerstner, 2006). We circumvent the problem by avoiding the occurrence of
bursts through a reduction of the standard two-dimensional Izhikevich model (Izhikevich,
2003) to a one-dimensional model (Izhikevich, 2004).

The STDP rule used in this chapter is the same as was introduced in Chapter 2 (Eq.
2.13) and explored in Chapter 5 (Eq. 5.1):

∆w =

 A+ · λ · e
∆t
τ+ · g+(w) for tpre < tpost (LTP)

−A− · λ · e
−∆t
τ− · g−(w) for tpre > tpost (LTD)

(8.2)

where A+ = 1 and A− = 0.85 are positive scaling factors, τ+ = 16.8 ms and τ− = 33.7 ms
are the exponential decay time constants, ∆t is the difference between presynaptic (tpre)
and postsynaptic (tpost) spike arrival times at a synapse (∆t = tpost − tpre), λ = 1

32 is a
constant that controls the learning rate (see Table A.1), and g(w) is a dynamic weight-
dependent scaling parameter that is defined below.
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Useful features of this STDP rule include (Chapters 5 and 6):

• Causal firing (pre, then post) leads to fast potentiation.

• Anti-causal firing (post, then pre) leads to fast depression.

• Acausal (random) firing leads to slow depression because the integral of the
STDP curve is negative.

We apply STDP in an all-to-all pairwise matching scheme. To keep all weights within an
interval of [0,1], we apply the following soft bound on the weight change.

Weight Bounding

We use an attractor-less weight-dependent update scaling rule from Chapter 5 for g+(w)
and g−(w). This reduces the step size of synaptic updates as the synaptic strengths
becomes close to the lower (w = 0) or upper (w = 1) bound of the defined weight range.
We choose the shifted cosine window (Eq. 5.9, p. 61) as the mapping function for this
chapter, as it gives us the characteristics of a wide range of applied change around medium
weight values and reduced change as weights come closer to their extremes (see Figure 8.2
bottom right). Different soft bound kernels with steeper slopes may be also used in future
work.

8.2.2 Modulation Mechanics
We propose the existence of a neuromodulator which directly affects the process of synaptic
transmission. Depending on the ratio of enabling receptors (henceforth called D1-type)
to attenuating receptors (henceforth called D2-type) in a neuron’s synapse, an increase
of neuromodulator above baseline levels may sparsify synaptic transmission by further
easing signal transmission through strong synapses and hindering transmission through
weak synapses. Similarly, we suggest that declining amounts of neuromodulator in the
surrounding tissue may have a generalising effect on synaptic transmission, where the
efficacy of strong and weak synapses becomes more equal around some threshold ratio θ.

We further assume that the threshold θ at which the sparsification bifurcates, and
to which the generalisation tends, may slowly be regulated by homeostatic (chemical)
gradients within the cell. This will be explored in future chapters.

Here, we examine the implications of our proposition, and show that synaptic learning
can be reliably modulated by only the given mechanisms. No direct influence in the actual
spike timing dependent plasticity process is needed for modulation to succeed.

Affecting Synaptic Excitability

We define a modulatory parameter DA that contains our reinforcement information within
the range [0, 2], where the value 1 stands for no specific feedback. If it were to be mapped
to the activity of dopaminergic cells in the Substantia Nigra pars compacta (SNc), DA = 1
would be equivalent to normal tonic firing and default levels of dopamine released into the
striatum.

We simulate DA-dependent changes in perceived synaptic efficacy as changes to ef-
fective weights eij used for computation of synaptic transmission, in distinction from the
default efficacy of synapses at baseline levels of the neuromodulator (DA = 1), which
we call baseline weights wij . Assuming a range of synaptic weights where wmin = 0 and
wmax = 1, we set
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eij =

θ
(wij
θ

)ξ
wij ≤ θ

1− (1− θ)
(

1−wij
1−θ

)ξ
wij > θ

(8.3)

and

ξ = 2r(DA−1) (8.4)

where θ ∈ [0, 1] is the above-mentioned threshold for weight sparsification and generali-
sation, DA ∈ [0, 2] is the level of dopamine currently applied to the network, and r is a
range parameter for controlling the impact on sparsification or generalisation the neuro-
modulator can have (see Figure 8.3). For simplicity we assume r = 5 and θ = 0.5 within
most of this chapter. Slow adaptation of θ will be explored in future chapters. The double
power law relationship between the baseline weight and the current DA level (introduced
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Figure 8.3: Proposed effects of a reinforcement signal DA on synaptic transmission, perceived as a DA-
dependent synapse-local change of effective weights. As in biological dopaminergic systems, a tonic base
line of the reinforcement signal (DA = 1) exists, which here keeps the effective weights equal to their
actual baseline values. The threshold for defining strong and weak weights can be changed by varying θ.
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by combining Eq. 8.3 and Eq. 8.4) allows a bijective projection between actual (=baseline)
weights and effective weights, and makes the curves for high DA levels mirror those of low
DA levels across the DA = 1 line. As this study aims to predict biological mechanisms,
we should not restrict our nonlinearity too much yet. For exploring the concept, Eq. 8.3
and 8.4 merely aim to keep the range of effective weights equal to that of baseline weights,
and provide some basic symmetry.

Effective Weight Distribution

The formulation of effective weights allows us to compare any instant changes in the per-
ceived distribution of weights that are due to changes in neuromodulator level. In Figure
8.1 (and supplementary Figure A.6) we show a selection of baseline weight distributions
in a centre column, and their DA-induced changes as effective weight distributions in the
other columns. Synaptic transmission is computed using the current effective weights,
while any STDP-induced weight change is applied to the baseline weights. The effective
weights are updated on any change of baseline weights or DA level.

As the neurotransmitter level is increased, any broad distribution of weights be-
comes more bimodal, away from the sparsification threshold θ. Slightly stronger synapses
(weights above the threshold) thereby become dominant in guiding postsynaptic acti-
vation, while connections with weights even slightly below the threshold loose influence
on postsynaptic activation. A slightly trained network therefore acts as if it has under-
gone more training and acts more selective to a smaller number of inputs. Any over-
representation of strong effective weights that would lead to excessive postsynaptic firing
is then gradually reduced by our negatively biased STDP rule towards sparse coincidental
firing, given random uncorrelated inputs (see Chapter 6). This competition reduces the
number of strong synapses and readies the neuron for detecting more structured, non-
random inputs by adapting it to mostly ignore random background input activity.

As the neuromodulator level is decreased, any distribution of effective weights becomes
more centred around the generalisation threshold θ, leading towards an equalisation of
effective weights. The effect of each synaptic connection on membrane activity of the
postsynaptic neuron becomes less dependent on the actual (baseline) synaptic strength.
Instead, all connections start to behave increasingly similar in transmission efficacy, mak-
ing it harder for the neuron to discriminate strong learnt inputs from ignorable background
activity. This amplified noise level leads to frequent random weight adjustments, causing
existing baseline weights to perform a semi-random walk. This randomisation process
causes the baseline weights to become less sparse, while their mean is also reduced due to
the negative drift of the STDP rule used (Section 5.1). Even a strongly trained neuron
can thereby be “reset” to a general state with unimodal distribution of weights if the
decrease in DA and range parameter r are large enough and the postsynaptic neuron is
kept firing. As most weights act as being close to θ for very low amounts of neuromod-
ulator, the definition of θ directly affects the output activity of the postsynaptic neuron:
A high value of θ leads to infinite firing of the postsynaptic neuron, while a low value of
θ may make the postsynaptic neuron silent as soon as the strongest connections cease to
be able to provoke postsynaptic firing. A slow adaptation of θ as a local variable within
the postsynaptic neuron may therefore prove useful for continued activity, which may or
may not be implemented as a slow chemical gradient for homeostasis.
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Figure generated from data storage EMBEDDED using function generateimageLowestFiringMembraneOnDA (generateimageLowestFiringMembraneOnDA.m) from git revision 9bddbf120dd535a471a9bb50c03c39243ff89b55 .
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Figure 8.4: Effects of various DA levels ∈ [0, 2] on firing onset membrane potentials of a 1D-Izhikevich
neuron (Izhikevich, 2004). At baseline level (DA = 1) the onset potentials seem evenly distributed across
a voltage range defined by the amount of neural input (green dots). Lower DA makes the onset potentials
become less dependent on the actual weight of the input synapses and instead approach a central mean
value dependent on θ as DA goes towards 0 (blue dots). As the activity of the postsynaptic neuron now
depends less on the actual weights but mostly on the overall input to the network, we can argue that the
firing pattern of the postsynaptic neuron becomes less causal (less dependent on specific inputs) compared
to baseline DA levels. In the opposite case of high DA (DA → 2), the effect of the weights also changes.
Increasing levels of DA make inputs arriving through weak connections have an even smaller effect on
the postsynaptic neuron’s activity (The upper membrane boundary seen near -53.5 mV in the figures is
the neuron’s onset potential in absence of any inputs). The influence of inputs arriving through already
stronger connections is increased up to a maximal effect when effective weights are near the maximum
value of 1 (The lower membrane boundary seen in the figures is the neuron’s lowest onset potential for
the given number of inputs). The effect of partially trained synapses is thereby enhanced, up to a binary
effect strongly depending on the synaptic strength.

8.3 Results
We performed two stages of tests with our proposed new method of modulation. During the
first stage, we examined the direct effect on postsynaptic activity for a typical distribution
of fixed weights, while on-line synaptic modification using spike timing dependent plasticity
was incorporated during the second stage of tests.

8.3.1 Instant Effects
A central feature of our method is its instant effect on the activity of the postsynaptic cell.
All later differences in learning are guided only by this alteration of postsynaptic spiking
activity. No modulation whatsoever takes place within the STDP rule itself. The fact
that an influence in synaptic learning processes can still be observed in our simulations
points to the high importance of how exactly these instant effects in synaptic transmission
change the postsynaptic neuron’s instant response.

Firing Tendency

In the first test, we examined the amount of input needed to produce a spike response
from the one-dimensional Izhikevich neuron. As its recent history can be summed up in
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Figure 8.5: Typical response snapshot for a fixed-weights trial. (a): Input patterns created by presynaptic
input units (see Model and Methods). Pattern 1 is repeatedly presented by units 001-200. Pattern 2 by
units 401-600. Pattern 3 by units 801-1000. The first 100 units that present pattern 3 are connected to
the postsynaptic neuron through strong weights around 0.7 while all other neurons are connected through
weak weights around 0.1 (compare Figure 8.6a). The purple dots represent the firing activity of input unit
804 (used in Figure 8.6d as Unit 3), with striped lines representing the times of a spike for comparison with
the postsynaptic response. Purple lines signal a spike within pattern presentation, and grey lines signal
spiking due to random background activity. The instantaneous firing rate of the input layer is shown below.
Only little variation in presynaptic rate is discernible. (b): The membrane response of the postsynaptic
neuron for different levels of DA with θ = 0.5. The full data from which this image is a snapshot was used
for the results shown in Figure 8.6.

the model neuron’s current membrane state, we can ask the question differently: At which
preset level of membrane depolarisation does the model neuron still fire, given a specific
number of synchronous unit inputs?

The answer is plotted in Figure 8.4 for 1, 5 and 10 synchronously arriving inputs, and
for range parameters r = 5 and r = 3. At a membrane potential above about -53.5 mV,
the model neuron will fire even without inputs. This upper bound is approached when
all actual weights are far below θ and the level of neurotransmitter is increased above
baseline (DA > 1). Analogously, when all weights are above θ while neurotransmitter
level is increased, the neuron’s membrane threshold before inputs can be more negative
as any inputs are fully transmitted to the postsynaptic neuron.

For decreasing levels of neurotransmitter (DA < 1), synaptic transmission always
approaches that of weights around the current value of θ. The effect of this may be
imagined as a neuron-level reduction in signal to noise ratio, as the effect of strong synapses
(possibly having learnt structured patterns) is decreased while that of weak synapses
(possibly having learnt to ignore background activity) is increased. This tendency is
shown in section 8.3.2 .

The amount of synaptic transmission depends less on the actual baseline weight of a
synapse as the level of neurotransmitter moves away from baseline. The range of trans-
mission effects is evenly distributed for DA = 1 (green dots in each plot), while decreasing
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Figure 8.6: Effective weight distributions and resulting changes in relative spike event pairings. As any
deviation of DA from 1 temporarily alters the effective weight of each synapse in our model, we show the
effective distribution of weights for three levels of DA above. (a): Actual (baseline) weight distribution
used for this test. (b): DA-dependent effective weight distributions for DA levels 0, 1, and 2. As all
firing of the postsynaptic neuron is caused only by inputs from the input layer, the relative amount of
spike pairs gives a hint at the causality relationship between pre- and postsynaptic events. Causal or
anti-causal event pairings are counted if a presynaptic and a postsynaptic event occur within 100 ms of
each other. If two events occur with longer time difference, both are counted as single presynaptic and
single postsynaptic events. (c): Comparison of event times where the presynaptic event is the presentation
time of each pattern, and the postsynaptic event is the time of each spike of the postsynaptic neuron. (d):
Comparison of event times where the presynaptic event is the time of spike of input unit 004 for pattern
1, 404 for pattern 2, and 804 for pattern 3.

levels of DA make the transmission effect become solely dependent on θ (blue dots) and
increasing levels make the effect go towards that of weights in the extremes of 0 and 1
(red dots).

Causal Postsynaptic Response

Due to its temporary changes in effective weight distribution, our proposed rule for DA-
dependent modulation of synaptic efficacy leads to a change in causal relationships between
presynaptic and postsynaptic activity.

Figure 8.5a shows a snapshot of typical input data generated online as described in
Model and Methods, together with the instantaneous firing rate in 1ms bins. The purple
dots exemplify the spiking behaviour of one input unit that happens to take part both in
the random background activity and in representing the partially trained time-structured
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input pattern 3.
The inputs are projected via DA-modulated synapses with fixed, partially trained

weights to the postsynaptic model neuron, evoking an output response that strongly de-
pends on the current neuromodulator level (Figure 8.5b). For visual clarity, we again
used θ = 0.5 during this test, which has the side effect that the postsynaptic firing rate is
increased for low values of DA and decreased for high values of DA for any typical (right-
skewed) weight distribution. However, apart from the changes in firing rate, the important
difference between the three response plots is the increasing selectivity of action potentials
on presentation of the partially trained pattern as the neuromodulator level increases.
While near-random firing is observed for low values of DA, the output behaviour becomes
more sparse at DA = 1, with no misses but some false positives in detecting pattern 3.
The detection of the pattern becomes perfect for the highest level of DA = 2 in this case,
as the postsynaptic neuron now fires if and only if pattern 3 is presented.

To make a statement on the general applicability of this observation, we chose a fixed
distribution of weights as shown in Fig. 8.6a and simulated the response of a postsynaptic
neuron for 20 s on each of three different levels of DA, repeated 100 times for each DA level.
The vast majority of 1800 synapses had random weights around 0.1, while 100 connections
to units coding pattern 3 were given weights around 0.7 (units 801-900). By repeatedly
counting the number of occurrences of single events, of causal pairs, and anti-causal pairs,
we can examine the relative change in selectivity for the values DA = 0, DA = 1, DA = 2.
Events in this context were either a spike of a presynaptic input unit taking part in coding
the beginning of a pattern, the presentation of the patterns themselves, or a spike of the
postsynaptic neuron. Event pairs were either causal (pre-synaptic spike followed by post-
synaptic spike within 50 ms) or anti-causal (post-synaptic spike followed by pre-synaptic
spike within 50 ms).

Each bar plot in Figure 8.6c shows groups of causal and anti-causal event pairs and
single events where a presynaptic event is the respective onset time of each of the three
time-structured input patterns. A postsynaptic event is a spike of the postsynaptic neuron.
While the distribution of events is similar for all three patterns on DA = 0, there is a slight
increase in causal pairs and a slight decrease in single postsynaptic firing for DA = 1 on
presentation of pattern 3 compared to presentation of the other patterns. The difference
becomes obvious for DA = 2, as pattern 3 reliably and perfectly provokes a postsynaptic
spike on each presentation, with no false positives or misses. The equally high white single
event bars for patterns 1 and 2 represent the same postsynaptic activity that was counted
as part of the causal pair for pattern 3, except that here it represents a single event,
unrelated to neither pattern 1 nor 2.

A more noisy result is seen when comparing not the onset of pattern presentation to
postsynaptic firing, but the spiking activity of a presynaptic unit that happens to take
part in presenting the pattern. Figure 8.6d shows the results of this comparison, where the
same tendency can be observed: The response to all three patterns seems highly similar
for the lowest level of DA, while a slight difference is seen for normal neuromodulator
levels. Again, a strong change in response to the unit presenting pattern 3 is observed
when the neuromodulator level reaches DA = 2.

The differences in total number of events for different levels of DA are again due to the
chosen value of θ = 0.5, which increases the effective weight of the majority of synapses
for low levels of neuromodulator. In a (biologically less plausible) left-skewed weight
distribution with the majority of weights above θ, the opposite effect on firing rate would
be observed. Automatically keeping θ within a homeostatically plausible range is therefore
an important topic for widespread applicability in large scale multi-layer networks.
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Figure 8.7: Development of baseline weights: Unsupervised learning of structured input patterns by 10
independent postsynaptic neurons at baseline DA levels (DA = 1). Given equal inputs (see Fig. 8.5a) and
a narrow range of starting weights, the 10 neurons tune to different patterns. The slight preference for
choosing pattern 2 here comes from the coincident timing of the equal background inputs, and different
random background inputs lead to a different pattern preference. Here, all connections start with strong
weights around 0.8, leading to an initial overall decrease due to high postsynaptic activity and the asymme-
try of the STDP rule. Then, as only the recurring polychronous inputs repeatedly cause the postsynaptic
neuron to fire, the weights of the connections to input units reliably firing just before postsynaptic activa-
tion begin to be strengthened. As the now stronger weights (shown in red) lead to an earlier onset of firing
of the postsynaptic neuron relative to pattern presentation times, connections to even earlier firing input
units are strengthened. The earliest firing units of a repeating pattern soon form the strongest connection,
as seen by the rise of red lines in the weight development plots (see also supplementary Figure A.1). Also,
connections to input units representing a late part of a pattern are now weakened, because they repeatedly
fire after a postsynaptic spike. Far Right: Input response delay plots for each of the three patterns show
an initially decreasing and then constant delay of the postsynaptic neuron’s response to learnt pattern
2, and an extinction of responses to patterns 1 and 3, to which the neuron did not tune. Bottom Right:
Instantaneous firing rate of postsynaptic model neuron.

8.3.2 Effects with Synaptic Plasticity
After testing our proposed neuromodulation approach on fixed-weight networks, we now
examine the modulatory effects of our transmission rule on freely acting synaptic plasticity.
As described in Model and Methods, no modulation whatsoever is factored directly into
the STDP rule we use. The only adjustment in how STDP-induced synaptic plasticity
is converted to actual weight changes is the soft bound to keep all weights within the
interval [0, 1]. After examining unsupervised behaviour of STDP at baseline levels of DA,
we test reinforced learning with fixed, non-baseline levels of neuromodulator and examine
the effects of sudden DA level changes on synaptic plasticity characteristics.

Fast variation of neuromodulator gradients for large-scale reinforcement learning will
need automatic adjustment of θ (see Chapters 9 and 10).

Learning with Baseline Modulator Levels

When the level of neuromodulator remains around the baseline of DA = 1, the network
performs unsupervised learning, depending only on the structure of arriving inputs. Figure
8.7 shows a test where 10 independent postsynaptic neurons were trained in parallel to the
same inputs. Each neuron’s weights were initialised randomly around 0.8 within the range
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(b)

Figure 8.8: Modulated learning of polychronous input patterns by each of two independent postsynaptic
neurons (a,b) at high levels of DA. Each postsynaptic neuron is more likely to tune to any of the patterns,
where just slightly increased baseline weights act as high effective weights, enabling further strengthening
of those connections. (a): For DA = 1.8, this neuron quickly tunes to all three patterns, but initially
only with a late response to presentations of pattern 2. Because of natural STDP behaviour (see Chapter
6), the neuron slowly re-tunes to input units representing the start of pattern 2, while connections to
late-firing input units in pattern 2 are weakened. The shortest response delay for pattern 2 is reached after
about 30s of simulation, with a seemingly stable double spike response to pattern 2 presentations. (b):
For DA = 1.3, this neuron happens to only tune to one input pattern, but the effect of high DA levels
on weights to background inputs is nicely visible (compare Figure 8.7): While the weights to input units
taking part in pattern 3 quickly go towards either 0 (blue) or 1 (red), all other weights are only slowly
weakened when background activity happens to coincide with postsynaptic firing. Although the baseline
weights to background inputs are still around 0.1 and would usually induce postsynaptic firing for normal
DA levels, the DA-dependent effective weights to input units that present only background spikes have
become low enough to have no chance in activating the postsynaptic neuron.

[-0.025,0.025] in a uniform distribution. No random growth (Section 5.3.1) was used in this
chapter. Spike timing dependent plasticity was allowed to change the weights of synaptic
connections, but no modulation signal was given (DA = 1). At the start of the simulation,
the postsynaptic neurons begin to fire excessively for a short time due to the high mean
of inputs arriving at each simulation step (thin red vertical line at t=0 in each plot). This
is then reduced by the negatively biased all-to-all STDP rule which adapts the weights to
account for the random background activity arriving through the input units (light blue).
Without structured patterns occurring within the input stream, all postsynaptic firing
would stop at this point (data not shown). However, after about 3 s, the first postsynaptic
neurons begin to increase the weights of synaptic connections to pattern presenting input
units. After usually no more than 10 s, all postsynaptic neurons have tuned to at least
one structured pattern (yellow to orange), and start developing strong connections to the
first input units of each pattern (dark red). Shortly after this, synaptic weights to any
input units that fire repeatedly at a later stage in pattern presentation are reduced to near
zero (bright cyan). This fast LTD is due to the repeated (anti-causal) post-pre pairing of
spikes in opposition to the slower LTD induced by uncorrelated background activity.

The decision which of the patterns is learnt depends here both on the random starting
distribution of weights and on coincidental peaks in the background activity (noise). Be-
cause of the soft bound on weights we use, narrow initialisation ranges near the extremes
can have a similar exploratory effect on tuning preference as a wide initialisation range
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(b)

Figure 8.9: Modulated learning of polychronous input patterns by two postsynaptic neurons at low levels
of DA. Each postsynaptic neuron is less likely to tune to patterns, as any initial increase in baseline weights
is masked by the high similarity of all effective weights. Any polychronous inputs are increasingly difficult
to discriminate from background activity as the DA level decreases. (a): For DA = 0.7, this neuron does
finally manage to reliably tune to pattern 2 after about 70 s, and even forms a double spike response shortly
before 90 s of simulation have passed. Note that here we were able to start with very low baseline weights
around w = 0.1, because the high value of θ = 0.5 keeps the initial effective weights high enough to produce
a postsynaptic response. (b): For DA = 0.2, no more learning is possible. Most effective weights come
very close to θ, completely blocking out any baseline weight variation. In this case, as θ is fixed at θ = 0.5,
the DA-dependent grouping of effective weights around this value also leads to continuous, pathological
firing of the postsynaptic neuron. While this high activity could be reduced by (automatically) lowering
θ, the masking of trained vs. untrained connections can not.

has around the centre weight value of 0.5.
In absence of dopamine or other strong modulatory factors, previous approaches stopped

all form of learning (Izhikevich, 2007b). In our proposed method, learning simply switches
from reinforced to unsupervised learning when the modulatory signal remains fixed at
baseline level.

Learning with Non-Baseline Modulator Levels

We now add some permanent reinforcement into the simulation by changing the applied
level of neuromodulator. Figures 8.8 and 8.9 show the typical development of weights for
DA = 1.8, DA = 1.3, DA = 0.7 and DA = 0.2.

For DA = 1.8 (Figure 8.8a), the postsynaptic neuron has the highest tendency to
quickly tune to multiple (non-overlapping) polychronous input patterns. The probability
of tuning to new patterns is highest during the first few seconds of simulation and dimin-
ishes in absence of any homeostatic weight adjustment due to random background activity
while simulation progresses. Here, the postsynaptic neuron starts responding to all three
input patterns quickly, but initially has a high response delay (∼ 50 ms) when detecting
pattern 2 because it happens to initially tune to late input units of this pattern. It then
slowly re-tunes to the first input units repeatedly firing within pattern 2. As the postsy-
naptic neuron continues to tune to the first spiking input units of the pattern, connections
to units representing late parts of the pattern are again actively decreased, as indicated
by the gradual upwards shift of the middle red line.

For DA = 1.3 (Figure 8.8b), the postsynaptic neuron tends to tune to less input pat-
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(b)

Figure 8.10: Modulated learning behaviour for baseline levels of DA, dropping to low levels after 60 s.
During the first 60 s, the weight development is similar to Fig. 8.7, and both (a) and (b) happen to tune
to pattern 1 with a double spike response. (a): When DA drops to zero, the neuron instantly starts firing
quickly as all effective weights move close to θ = 0.5. The effect on trained weights is slower, as it takes
about 3 s after DA drop for the first group of weights to be decreased. After about 8 s, all weights have
been decreased to values close to zero, as the high spiking activity of the postsynaptic neuron is continued.
The drop of DA hereby led to a deletion of trained weights, or unlearning of previously learnt patterns.
If weights of this neuron were randomly increased in the future, it would be ready to learn completely
new patterns without relation to its previous identity. (b): When DA only drops to 0.5, the neuron
still instantly increases its firing rate, but manages to recover by further reduction of synaptic weights
to background inputs. The group of weights causing the second spike response on each presentation of
pattern 1 is reduced towards zero during the initial phase of high postsynaptic firing. But the group of
weights causing the repeating first spike response to pattern 1 survives here. After the neuron recovers to
normal firing, the first-spike response to pattern 1 is still intact. A sudden decrease of DA may therefore
be useful as a pruning measure to sparsify trained neural responses.

terns. Once it has started to fire regularly to one of the patterns, the random background
activity continues to diminish all weights to other (randomly active) input units not taking
part in the tuned pattern. As the weights to units taking part in other patterns are hereby
also slowly reduced, the postsynaptic neuron slowly looses its ability to further tune to
more patterns and remains highly specialised. The reduction of weights to background
inputs is slower than in Figure 8.7, as the increased DA level here decreases transmission
by below-θ (weak) weights earlier and the lower resulting firing rate of the postsynaptic
neuron produces slower LTD on background activity.

For DA = 0.7 (Figure 8.9a), we still see the neuron tune to one of the structured
patterns, albeit only after a long time of uncertainty (here ∼ 75s). Coincidentally, it also
repeatedly fires twice on each pattern presentation for the remaining duration of the test.
Note that in this test we were able to start with a very low initial range of baseline weights,
because our low DA level lets the effective weights act as being closer to our generalisation
threshold θ = 0.5.

For DA = 0.2 (Figure 8.9b), no more tuning is observed, and the postsynaptic neuron
reaches a pathological state of relentless firing. While this high postsynaptic activity
could be controlled by lowering θ, the failure in tuning can not be compensated as DA
goes towards zero. The structured inputs vanish in the random background activity that is
transmitted to the neuron with equal efficacy. From the neuron’s perspective, the signal-
to-noise ratio between structured and random inputs is strongly reduced and can no more
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be used for successful learning.
In the next test we reduce the neuromodulator level suddenly after 60 s of simulation

time. Figure 8.10a shows results of a trial that starts with DA = 1 and drops to DA =
0 after some initial training has occurred. While the neuron now instantly enters the
pathological state of excessive firing due to the high θ value (all effective weights approach
eij = 0.5 because θ = 0.5), a delayed influence on the learnt weights becomes visible. The
response delay plot for pattern 1 shows a repeating two-spike response before the DA level
drop. This is due to strong learnt connections to input units ∼ 1-50 as indicated by the
wide red bar at the top of the main plot. About 2-3 s after DA drop, the weights to
input units 27-47 are quickly reduced as they move away from the maximum value defined
by the soft bound. In a normally firing neuron, this would remove the second response
spike to pattern 1, and may be used for pruning a neuron’s response. At about 10-12 s
after DA drop, the last existing strong weights (1-23) break down and all weights of the
neuron go towards zero. This complete formatting of weights resets the neuron into an
unspecialised state. For allowing the neuron to tune to new patterns, some homeostatic
form of re-enabling spiking activity would need to be added to the neuron. This may be a
combination of either random weight growth or automatic adjustment of θ together with
low DA levels. Moderate baseline weight increase can then allow new tuning to correlated
inputs as used in Figure 8.9a.

Figure 8.10b shows a reduction to DA = 0.5 after 60 s, which again initially leads
to fast postsynaptic firing. However, in this case the neuron is able to recover normal
operation after a few seconds by further reducing weak connections to a level low enough
to not be pulled up to high effective weights near θ by the given DA level anymore. This
sudden reduction of DA still allows pruning of double spiking to take place, but preserves
the single-spike response to trained patterns 1 and 3.

Synaptic Competition

With the described effects of our proposed rule for DA-dependent signal transmission, we
can affect the network learning process without directly changing the STDP rule. While
we can push the network or single neuron into sparsely fitting an active input signal
for high levels of DA, we can induce a randomisation process through low levels of DA,
thereby resetting the neuron into a less selective state, or “forgetting” the learnt patterns.
Dopamine, or any combination of neurotransmitters signalling reinforcement, can in this
way be simulated to either increase the probability of learning a given input pattern or to
reduce the probability of learning and even forgetting learnt weights to active inputs. The
inputs must be active at least occasionally in order for any change to occur, so completely
silent inputs would always remain unchanged.

Apart from fast LTP and LTD through repetitive causal or anti-causal event pairs, we
induce slow LTD by taking advantage of the fact that random firing causes weight decrease
for negatively biased STDP rules. So by equalising the effective synaptic weights towards
θ on low DA, we are allowing the random background activity to induce slow LTD.

If the inputs through strong synapses are strong enough to produce spikes in the post-
synaptic neuron and repeatedly happen in close temporal proximity as is the case for
polychronous patterns, the causal relation between the repeated presentation of inputs
and postsynaptic firing leads to a further strengthening of these weights (see also Masque-
lier et al., 2008). If, on the other hand, the number of strong weights is high and the
presynaptic neurons fire mostly independently, causing the postsynaptic neuron to fire
at random, the noisy input leads to an overall decrease of even these strong weights as
synapses compete for control over postsynaptic activation. The network behaviour for
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high levels of DA is therefore the following: If many synapses are strong at the beginning
of DA application, an overall reduction of weights takes place, until most synaptic weights
have passed the threshold θ and are effectively close to zero. When only a small number
of strong weights remain, the competition between synapses for control over postsynaptic
firing that caused the overall decrease is weaker, which allows a small number of weights
to remain strong and even be reinforced again up to maximal selectivity when some inputs
are correlated in time. This allows a sparse distribution of synaptic weights to develop.

8.4 Conclusion
In this chapter, I demonstrated how we can influence the learning outcome of a spik-
ing network simply by applying some global reinforcement during synaptic transmission.
All synaptic modification is only dependent on the pre- and postsynaptic spiking activ-
ity, and no third (modulatory) factor is used during spike-timing dependent plasticity.
Through controlling a global level of neuromodulator concentration, we are able to influ-
ence the effective range of synaptic efficacies, and thereby the discriminability of trained
vs. untrained inputs arriving at a postsynaptic neuron. This change in synaptic efficacy
is computed locally in each synapse, using only the current synaptic strength and the
current global neuromodulator concentration.

A variable neuron-wide threshold θ will be used in the next chapters as a homeostatic
slow parameter that automatically updates to retain normal excitability on varying neu-
romodulator levels for non-uniform weight distributions. The size of θ would likely come
to be far below 0.5 in an automatically adopting implementation.

Applying modulation by locally affecting synaptic transmission instead of direct ma-
nipulation of the STDP rule gives the advantage of direct control over the causal firing
relationship between selected presynaptic and postsynaptic neurons, which can instantly
be observed as the modulation factor changes. In terms of network learning, the reinforce-
ment signal does not directly increase or decrease active synapses, but instead leads to a
temporary sparsification of effective weights for high reinforcement and a generalisation
around θ for low reinforcement.

As the modulatory factor needs to be present during the arrival of inputs, we do not
approach the distal reward problem (Izhikevich, 2007b) through our model, but assume for
the case of delayed reward an involvement of hippocampus and cortical working memory
instead of direct application of delayed reward into an STDP rule. Instead, we hope to
provide a possible explanation for experimentally observed (Kroener et al., 2009; Thurley
et al., 2008) instantaneous effects during neuromodulator application. Assuming the pro-
cess of novelty detection by subcortical sensory nuclei performs faster than or equally fast
as the semantic processing of some signals in the cortex (Trimmer et al., 2008), our model
may also be useful for learning the short-latency novelty portion (Redgrave and Gurney,
2006) of the nigral reinforcement signal (Schultz et al., 1997).

Although we have until now only been studying pairwise rules of STDP, there is no
reason to assume that the proposed modulation rule should not be combinable with STDP
learning based on triplets of spikes (Pfister and Gerstner, 2006) or voltages (Clopath et al.,
2010). Specific examination of this combination is not focus of the current work.

Our model presents some interesting questions for biological validation: It is currently
unclear how exactly dopamine affects signal transmission locally at single synapses. Little
is known about the exact local concentrations of dopaminergic receptors across a neuron’s
membrane (Reynolds and Wickens, 2002; Shen et al., 2008; Surmeier et al., 2007). Also,
it might be useful to look for a biological analogy to our theoretical sparsification and

141



generalisation threshold θ, as this may explain many of the observed instant effects of
dopamine or related substances. Heteromeric co-expression of D1+D2 receptors comes to
mind (Aizman et al., 2000; Fauchey et al., 2000; Hasbi et al., 2009; Lee et al., 2006, 2004b;
Perreault et al., 2012, 2010; Rashid et al., 2007; So et al., 2005; Thompson et al., 2010).

A chemical prediction by our proposed rule may start at the ratio between D1-type
and D2-type receptors on a dopamine-modulated synapse of a D1-dominant postsynaptic
neuron. While a neuron-wide baseline ratio of dopaminergic receptors may represent a
homeostatic default configuration similar to θ in our model, any strengthening synaptic
connection may be found to also increase the local concentration of D1-type receptors
towards a higher excitability on raised levels of dopamine. Similarly, a weakening synaptic
connection may reduce the local concentration of D1-type receptors, allowing the exist-
ing D2-type receptors to become locally dominant in controlling the synapse’s reaction
to drops in global dopamine concentration. Although the actual curve of θ-dependent
neuromodulation of synaptic efficacy would be up for experimental refinement, such a
weight-dependent dynamic reconfiguration of D1-type/D2-type receptor ratio might allow
for fast dopamine-dependent modulation of synaptic transmission to take place. Similarly,
on D2-dominant neurons, the concentration of D2-type dopaminergic receptors may be lo-
cally increased with a strengthening of synapses, leading to a supposed opposite behaviour
on application of dopamine.
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Chapter 9

Reinforcing specific spatiotemporal patterns

9.1 Introduction
In the previous chapter I established that a dopamine-like neuromodulator may affect a
neuron’s learning outcome by solely influencing the contrast of synaptic transmission. I
thereby showed that a chemical modulator need not act strictly through explicit scaling of
a spike timing dependent plasticity rule, but that a network effect that quickly influences
postsynaptic responses to spatiotemporal inputs can also account for observed dopamine-
dependent changes in synaptic connection strengths. In addition, my presented mechanism
also qualitatively replicates the instantaneous effects that dopamine has on neuronal gain
and signal to noise ratio in many brain areas, which is not captured by dopamine-dependent
rules that simply scale STDP.

My proposed mechanism of dopaminergic reinforcement works by changing the diffi-
culty of an unsupervised learning task. It is therefore not in competition with the un-
supervised nature of spike timing dependent updates to the synaptic strength (e.g. by
trying to undo weight changes coming from the unsupervised learning rule), but rather
enhances or inhibits the ability of a postsynaptic neuron to pick up and tune to a recurring
spatiotemporal pattern that it may tune to anyway in a completely unsupervised setting.
The definition of what constitutes learning success therefore changes here in comparison
to a simpler case where some Hebbian update is multiplied by some scalar reinforcement
value. As above-baseline dopamine in my model increases the probability of fast pickup of
a certain pattern while below-baseline dopamine delays (possibly infinitely) the pickup of
tuning to a presented pattern, learning success may be measured by the number of neu-
rons that reliably respond quickly to a rewarded pattern vs. unrewarded. The detection
of a positively reinforced pattern may hence be seen as a faster and stronger population
response, while negatively reinforced patterns would show a weaker population response
on presentation. As seen in Part II of this text, the population response may itself be
spatiotemporally structured (Figure 6.8, p. 82), allowing a detailed recognition by later
layers in a feed-forward setting.

In this chapter, I therefore test whether it is possible to use my proposed neuromod-
ulation framework to specifically reinforce some spatiotemporal patterns over others and
read out this information by looking at the strength of a population response to a given
set of inputs. A high fraction of instantaneously responding postsynaptic neurons would
signal a previously reinforced, high-value stimulus, and a low number of quickly or reli-
ably responding neurons would signal a stimulus that has not been previously rewarded
or has not yet been encountered. The biological analogue to this within the context of
basal ganglia circuits may be the striatal part of the direct pathway (D1R-MSNs), while
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Figure 9.1: Neuromodulator levels now change as a function of the value associated with specific poly-
chronous patterns. Neighbourhood is preserved here through the choice of ordered pattern variants (see
Figure 6.26, p. 98) and similar patterns are assigned similar values. The large black filled circles here
represent example values that will be assigned to each of ten example patterns, where 0 ≡ 2π. Colours
(and Y-axis) indicate neuromodulator level (DA) as in the previous chapter, and will be reencountered
in the following figures. While the nearly full range of DA ∈ [0.1, 1.9] is shown here as an example, the
actual range of neuromodulator levels applied in simulations may differ. (a) Pattern-specific increases of
neuromodulator level (above-baseline DA) will be explored in Section 9.3.1. (b) Pattern-specific decreases
of neuromodulator level (below-baseline DA) will be explored in Section 9.3.2.

active detection of negative stimuli for avoidance may be performed by the basal ganglia’s
indirect pathway.

9.2 Methods
Input data

Spatiotemporal input patterns were generated by the type B pattern generation method
(see Section 7.1.1) without random permutations (Section 7.1.5) from the poisson dis-
tributed spike trains of 600 out of 2000 input units. The remaining 1400 input units
continued random poisson distributed firing without any further structure imposed on
their outputs. No information about pattern identity could be extracted from the firing
rate of input units, and steady-state correlations between input unit spike trains were also
kept uninformative (see Section 7.1.6, p. 111).

The circular input space of the 600 pattern-presenting units was used to present 40
different equidistant patterns of 100ms length (see also Section 7.1.7). Inter-pattern noise
also lasted for 100ms, leading to a new pattern being presented every 200ms. The choice
of which pattern to present was drawn uniformly from all 40 options on each new presen-
tation. Neighbouring patterns were similar in that they shared more units with similar
spike delay (relative to pattern onset) than non-neighbouring patterns.

Output neurons

The group of postsynaptic neurons consisted of 100 Izhikevich-1D model neurons (Izhike-
vich, 2003, 2004), without any mutual inhibition (no recurrent connections). Plasticity
was allowed with the start of simulation, but input connection strengths were initially too
small to allow the postsynaptic neurons to fire. Learning onset was delayed by 1s per
neuron, leading to a maximum learning onset delay of 99s for the last neuron. Apart from
the onset delay, all postsynaptic neurons were initialised to exactly identical values.

Connectivity

Connections were formed from each input unit to each output neuron in an all-to-all feed-
forward setup and initialised to a synaptic connection strength of w = 0.05 for every
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Figure 9.2: Example variations of simulated dopamine during pattern presentations. The neuromodulator
concentration leaves baseline levels shortly before pattern onset and returns to baseline shortly after the
end of each pattern (see main text). The temporary level of non-baseline dopamine is specified by the
pattern that is to be presented (Figure 9.1). Actual DA ranges may vary. (a) Incoming spike trains of 800
out of 2000 input units. The first 600 units present polychronous patterns (type B) while the remaining
1400 units produce purely random spike trains. Only 1

12 of spike trains are shown to avoid visual clutter.
(b) Positive reinforcement as used in Section 9.3.1. (c) Negative reinforcement as used in Section 9.3.2.

connection. No recurrent connections were formed. The initial connection strength did
not allow postsynaptic membranes to reach spiking threshold. Instead, we implemented a
small normally distributed weight jitter where the synaptic weights of untrained postsy-
naptic neurons would randomly change in tiny steps until some synapses randomly became
strong enough to allow postsynaptic spiking. See Homeostatic Parameters. This caused
postsynaptic neurons to only begin regular spiking after about 20-30 seconds of simulation
time after activation of plasticity for any given neuron. The time at which a postsynaptic
neuron begins to respond to any inputs marks the begin of its critical period in this case,
as STDP requires both pre- and postsynaptic spikes to take effect (see also Section 5.3).

Homeostatic Parameters

In order to allow neurons to begin to respond to inputs even when connections were
initialised very low, a small growth parameter was applied to all weights whenever the
sum of all strong synaptic connections of a neuron (we call this the neuron’s trainedness)
was below a given threshold. This homeostatic parameter is not necessary when synaptic
connections are initialised to higher values, as done in Chapter 8. See Chapter 5 (Section
5.3.2, p. 68) for a further discussion of activity-independent synaptic growth and other
homeostatic effects.

Neuromodulation

Synaptic transmission was modulated by the method introduced in Chapter 8. The neu-
romodulatory parameter DA was allowed to leave baseline (DA = 1) and vary according
to the pattern currently being presented. As neighbouring patterns were similar, changes
to the postsynaptic representation of one pattern would also affect its neighbouring pat-
terns. This was reflected in pattern dependent neuromodulator levels by using a wider
pattern-dependent DA basin as shown in Figure 9.1. Whenever a polychronous pattern
was randomly selected for presentation, DA levels were adjusted 10 ms before pattern
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onset and set back to baseline exactly at the end of each pattern. The effect of DA timing
is further explored in the next chapter.

Sparsification/Generalisation Weight Threshold

The threshold for neuromodulator-dependent contrast enhancement θ was chosen to al-
ways represent the median of the current baseline weight distribution of each untrained
postsynaptic neuron. For trained neurons (neurons with a sufficient number of strong
connections), θ was kept between the two peaks of the bimodal weight distribution that
results from attractor-less STDP. This was done to allow the simulated dopamine to in-
deed act as a contrast enhancer, where high levels of neuromodulation (DA > 1) would
sharpen the distribution of effective weights into a situation where above-median synapses
would “over-confidently” act as having an increased effect on the postsynaptic membrane,
and below-median synapses would “under-confidently” act as having a decreased effect on
the postsynaptic membrane potential. For low levels of neuromodulation, the synaptic
contrast was instead decreased, by gathering the effective weights of all synapses around
the threshold θ, as demonstrated in Chapter 8.

Further Simulation Parameters

The network was repeatedly simulated for 180 seconds, after which the 600 weights to
pattern-presenting input units were plotted for each postsynaptic neuron (Figures 9.3 and
9.4).

9.3 Results
The learning task here can be described as a modulation of unsupervised learning by
dynamically increasing or decreasing the contrast within the learning domain as learning
progresses. This means that the formally unsupervised learning mechanism of STDP
becomes controlled by making the learning problem harder or easier, depending on the
type of pattern currently being presented to each postsynaptic neuron.

9.3.1 Distorting the receptive map towards a given pattern range
Unmodulated unsupervised learning already forms slight differences in the receptive fields
of the postsynaptic neurons due to variations within background noise and the nature
of STDP combined with polychronous inputs (as presented in Chapter 6). These slight
differences in receptive fields are pronounced by a phasic increase in neuromodulator level
(DA > 1) such that only those postsynaptic neurons tend to respond to concurrently spik-
ing presynaptic input units that already have (by chance) slightly stronger connections
to those active units. Postsynaptic neurons that only have strong connections to other,
not currently active, presynaptic units have a lower probability to respond. Therefore, in-
creasing the simulated dopamine level together with the presentation of specific patterns
increases the tuning probability of yet hardly selective neurons to this pattern. Neurons
that are already reliably tuned to any pattern are less affected by this form of neuromod-
ulation, because receptive fields that are already strongly distinctive do not much change
the neuron’s response when there is a temporary increase of dopamine. As an example,
imagine a postsynaptic neuron that has a very different receptive field from that required
to respond to some presented incoming pattern. As STDP with polychronous patterns
produces sparse receptive fields, a neuron with such a different receptive field will likely
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Figure 9.3: Overview images of repeated simulations where a subset of polychronous patterns was presented
together with above-baseline dopamine. Levels of simulated dopamine ranged fromDA = 1.01 toDA = 1.1
within the paradigm described in Chapter 8. Higher levels of dopamine paired with pattern presentation
lead to more postsynaptic neurons tuning to this range of patterns. The exact location of the peak of
receptive fields also becomes more predictable. Each simulation was repeated eight times (8 trials), as
seen in the third column. Subplot descriptions as in Figure 7.8 (p. 117). Simulation parameters given in
Appendix A.3.10.
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have very weak connections to the input units active together during presentation of the
given pattern. Likewise, most strong incoming synapses of this postsynaptic neuron will
be connected to input units that do not fire or fire late during pattern presentation.

As pattern-coupled neuromodulator increases continue to reinforce the pickup of se-
lected patterns, the number of postsynaptic neurons responding to these patterns rises.
This can be seen in the weight matrices after multiple seconds of simulation in Figure 9.3.
When the increase of DA is only slightly above baseline (Figure 9.3, top), a slight tendency
to tune to a reinforced pattern (first units of pattern around unit #300) can already be
seen. However, some of the 100 postsynaptic neurons still tune to other patterns.

When the same simulation experiment is repeated with slightly higher increases above
baseline DA, a larger fraction of postsynaptic neurons tunes to the reinforced pattern. At
DA = 1.10, all postsynaptic neurons reliably tune to the reinforced pattern, thereby form-
ing a strong population response as soon as the reinforced pattern begins to be presented,
and not responding at all when other patterns are presented.

Pattern-dependent increases in simulated dopamine level hence have a strong effect
on receptive field formation. Keep in mind that no direct scaling of synaptic plasticity
is allowed here, and only changes in the postsynaptic neurons’ activity due to modulated
synaptic transmission can influence the formation of receptive fields.

9.3.2 Distorting the receptive map away from a given pattern range
To find out if it is possible to specifically avoid the pickup of a negatively reinforced pattern,
we combine below-baseline DA with the presentation of specific patterns. As visualised
in Figure 9.1b, the simulated concentration of dopamine (or similar neuromodulator) was
dropped whenever a given range of patterns was presented to a group of 100 postsynaptic
neurons. Again, all neurons were initialised with exactly equal synaptic weights and mem-
brane dynamics, and the only difference was the time at which plasticity was switched on
in each neuron (1s offset), emulating different times of neurogenesis. Differences between
receptive fields were therefore solely due to variations of the background noise at the time
when neurons reached criticality (began to respond).

The near-uniform coverage of the input space without modulation (at DA = 1, see
Figure 7.11) became less uniform when some patterns were paired with lower-than-baseline
dopamine (DA < 1). For DA = 0.99 (Figure 9.4, top row), patterns centred around
input unit #300 had a slightly smaller tendency of being learnt. When simulations were
repeated with stronger drops of DA, the avoidance of affected patterns became even more
pronounced (Figure 9.4, rows 2-5).

However, with the current setup, it did not seem possible to completely stop negatively
reinforced patterns from being learnt. The bottom row of Figure 9.4 still shows rare oc-
casions where postsynaptic neurons do tune to negatively reinforced patterns, albeit more
rarely. The next chapter therefore further explores ways in which negative reinforcement
may be used in a D1R-type network to avoid the pickup of specific patterns.

9.4 Conclusion
In this chapter, I showed that my approach to neuromodulation which was introduced
in Chapter 8 can indeed be used to shape the map of receptive fields without directly
interfering with an unsupervised STDP rule. Instead, the way in which neuromodulation
is applied only to synaptic transmission (instead of directly influencing plasticity) changes
the difficulty of the learning problem from a postsynaptic neuron’s perspective. This is
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Figure 9.4: Overview images of repeated simulations where a subset of polychronous patterns was presented
together with below-baseline dopamine. Levels of simulated dopamine ranged from DA = 0.90 to DA =
0.99 within the paradigm described in Chapter 8. Lower levels of dopamine paired with pattern presentation
lead to less postsynaptic neurons tuning to this range of patterns. However, avoidance of synaptic tuning
to these patterns could not be completely stopped within these tests, so Chapter 10 further explores the
low-DA case. Each simulation was repeated eight times (8 trials), as seen in the third column. Subplot
descriptions as in Figure 7.8 (p. 117). Simulation parameters given in Appendix A.3.10.
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done through a dynamic increase or decrease of contrast of polychronous patterns within a
stream of noisy background spikes. Only this change of contrast in synaptic transmission
then influences possible spike responses of the postsynaptic neuron(s). And only due
to these changed response characteristics does dopaminergic modulation influence the
outcome of plasticity in this candidate model.

Instead of working against the unsupervised nature of spike timing dependent plasticity
(Frémaux et al., 2010), unsupervised learning is allowed to take place and only sped up
or slowed down through changes of contrast. It can, for example, only learn to detect
patterns that are actually present within its inputs. And if the modulatory factor remains
constant on any level, the underlying unsupervised learning mechanism will always try to
form the best representation of inputs it can achieve for the given fixed level of contrast.

The possibility that dopamine may act as a contrast enhancer has been suggested by
Nicola et al. (2004) and others, but only on a broad scale without specific ideas of how a
temporary dopamine-dependent variation in contrast may be useful for neural information
processing. With this chapter, I have now shown that a dynamic variation of contrast can
indeed be made useful within a functional implementation of spiking neurons that learn
to preferably detect some patterns over others. The new mechanism tested here (and
proposed in Chapter 8) may also be useful for understanding neuromodulatory effects
in brain areas other than the basal ganglia (Thurley et al., 2008), and may also apply
to neuromodulators other than just dopamine (Calabresi et al., 2000; Daw et al., 2002;
Delgado et al., 2008; Hasselmo and McGaughy, 2004; Wang et al., 2006).

The definition of reinforced learning I use here aims to either learn positively reinforced
patterns or not learn negatively reinforced patterns. This definition of learning success is
different from some reinforcement learning tasks that aim to detect either some option A
or some option B. However, learning not to select a negatively reinforced option B may
be achieved by not learning to choose it. The avoidance of negative options need not be
performed by the same mechanisms/networks that learn to choose positively reinforced
options in the brain, and there is some evidence that this is indeed the case (Centonze
et al., 2002; Daw et al., 2002; Delgado et al., 2008; Frank et al., 2007).

In the current chapter, I only used a class of polychronous input patterns that involved
a fixed ordering of neighbouring input units. That is, no randomly permuted input pat-
terns were used (Section 7.1.5). This allowed the presented patterns to yield neat clusters
of strong weights within each neuron’s receptive field. Future examinations need to test
the contrast-altering method of modulation while using randomly permuted patterns.

The choice of pattern class also influenced reinforcement of neighbouring patterns.
As neighbouring patterns shared many common presenting input units with only slightly
shifted spike timing offsets, any reinforcement (positive or negative) of one pattern also
changed the degree to which neighbouring patterns were favoured or avoided. This is the
main reason why it was difficult to further narrow down the trough of pattern avoidance
for negatively reinforced patterns (see right-most histograms in Figure 9.4).

To further explore this method of neuromodulatory control on STDP-based learning of
polychronous patterns, more work is necessary. Especially the tendency of a group of post-
synaptic neurons to all learn identical receptive fields as soon as a subset of polychronous
input patterns are paired with slightly enhanced dopamine need to be understood if we
wish to establish this method as a possible explanation of how dopamine may affect fast
information processing, action selection, and plasticity processes within the basal ganglia
and other parts of the brain. The next chapter therefore explores a possible mechanism
of self-regulation that could prove useful in preventing over-representation of reinforced
patterns within a dopaminergic reinforcement paradigm for the basal ganglia.
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Chapter 10

Limiting representational monopolies

10.1 Introduction
We saw in Chapter 9 that the training of groups of polychronous input patterns can indeed
be affected by the new method of dopaminergic modulation that I proposed in Chapter
8. However, it is still far away from being declared a universal plasticity mechanism for
procedural learning in the basal ganglia. One large issue that became apparent in Chapter
9 and needs to be solved first is that of how to avoid the formation of identical receptive
fields when positively reinforcing a pattern.

For baseline levels of dopamine, I showed in Chapter 7 (Section 7.3, p. 116) that a
simple delayed onset of plasticity and a uniform probability of pattern occurrence forms
a uniform distribution of receptive fields across the space of input patterns. If we wish
to distort this uniform dispersion of receptive fields to approximate (some smooth rep-
resentation of) some continuous value function as known from the field of reinforcement
learning, we need to be able to control the amount of distortion to precisely represent
received feedback.

The next step therefore is to test if the over-representation of partially reinforced
patterns can be controlled. For this, we make use of basal ganglia anatomy and known
behaviours of dopaminergic outputs of the substantia nigra pars compacta (SNc, p. 25).

10.2 Methods
Input data

As in the previous chapter, spatiotemporal input patterns were generated by a method that
leaves no trace of pattern identity or even pattern presence in the firing rate of input units.
Two-legged (Section 6.3) type D patterns (Section 7.1.1) without random permutations
(Section 7.1.5) were used as input data for 600 out of Npre = 2000 presynaptic input units.

In opposition to the previous chapter, only a single pattern was repeatedly presented
(see 1st row of Figures 10.1 - 10.3). Pattern duration was again 100 ms, with 200 ms (Sec-
tions 10.3.1 and 10.3.2) or 400ms (Section 10.3.3) between the start of two presentations.

Output neurons

As in the previous chapter, Npost = 100 Izhikevich-1D model neurons (Izhikevich, 2003,
2004) were used as postsynaptic receivers. Plasticity was activated (or reset once per
simulation) with a one second delay per neuron, so that the last neuron began to learn
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99s after the first (see Section 7.3.2). Apart from the onset delay, all postsynaptic neurons
were initialised to exactly identical values.

Connectivity

No recurrent connections between postsynaptic neurons were allowed. Any differences
between the receptive fields of two postsynaptic neurons can therefore not arise through
mutual inhibition.

Connections from the group of presynaptic inputs to each postsynaptic neuron were
initialised in an all-to-all feed-forward setup with initial synaptic strength of w = 0.05 for
all connections. Differences between the receptive fields of any two postsynaptic neurons
therefore need to arise from variations in input noise at the time when each postsynaptic
neuron first becomes responsive.

Homeostatic Parameters

In order to allow neurons to begin to respond to inputs even when connections were
initially very low, a small growth parameter was applied to all weights whenever the sum
of all synaptic connections of a neuron was below a given threshold. This homeostatic
parameter is not necessary when synaptic connections are initialised to higher values, as
done in Chapter 8. But as Section 10.3.3 requires neurons to be quiet when they have not
yet formed a selective receptive fields, initialising all synaptic connections to strong weights
was not an option here. See Chapter 5 (Section 5.3.2, p. 68) for a further discussion of
homeostatic effects.

Neuromodulation

Synaptic transmission was modulated by dopamine through the method introduced in
Chapter 8. In Sections 10.3.1 and 10.3.2, simulated dopamine (DA) is repeatedly set to
below-baseline values (DA < 1) for some period during each pattern presentation. This
repeating pattern-related drop of neuromodulator level starts at either t = 1s or t = 90s
in the results shown, and ends at t = 280s (20s before the end of simulation). These times
were chosen because they allowed a good visualisation of effects (see Results). Outside
of this timespan, the level of simulated dopamine was kept constant at “tonic” baseline
(DA = 1).

In Section 10.3.3, dopamine is no more controlled explicitly through predefined timing,
but depends on the number of postsynaptic neurons that respond to a given stimulus. Each
spike of a postsynaptic neuron here decreases the level of simulated dopamine by a small
constant value, while the dopamine variable recovers back to baseline exponentially with
τDA = 100ms. This produces a comparably smooth change of dopamine level in opposition
to Sections 10.3.1 and 10.3.2.

Sparsification/Generalisation Weight Threshold

The threshold for neuromodulator-dependent contrast enhancement θ was chosen to al-
ways represent the median of the current baseline weight distribution of each untrained
postsynaptic neuron. This was done to allow the effect of DA to indeed approach that
of contrast enhancement, where high levels of neuromodulation (DA > 1) would sharpen
the distribution of effective weights into a situation where above-median synapses would
over-confidently act as having an increased effect on the postsynaptic membrane and
below-median synapses would act as having a further decreased effect on the postsynaptic
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membrane potential. For low levels of neuromodulation, the synaptic contrast would be
decreased by gathering the effective weights of all synapses around the weight threshold
θ, as demonstrated in Chapter 8.

Further Simulation Parameters

The network was simulated for 300s (5 minutes, Sections 10.3.1 and 10.3.2) or 1200s (20
minutes, Section 10.3.3), after which the 600 weights to pattern-presenting input units
were plotted for each postsynaptic neuron. A tabular summary of simulation parameters
is given in Appendix A.3.12.

10.3 Results
We now examine how the formation of receptive fields for a specific pattern can be slowed
and/or avoided. This is necessary to avoid over-representation of patterns among the map
of receptive fields. We therefore repeatedly present the same (polychronous) pattern to
each of 100 postsynaptic neurons, and try to pause unsupervised learning of this pattern
by varying the level of simulated dopamine (DA). While the goal is to test whether it is
possible to set up a self-regulating feedback loop that uses dopamine for controlling the
number of neurons that form selective receptive fields for a given pattern (Section 10.3.3),
we first need to find out if it is at all possible to pause the unsupervised learning process
through a reduction of dopamine-dependent contrast. While Section 10.3.1 examines the
effect that the timing of DA change has in relation to pattern onset, Section 10.3.2 tests
how far the dopamine level needs to be reduced in our model to have a noticeable effect.

For each case, we also test if the time at which the level of dopamine begins to change
has any effect on the overall outcome. We test this by repeating each experiment for two
cases of DA change onset (1s and 90s), shown on the left (onset 1s) and right (onset 90s)
of the following figures.

10.3.1 Timing effects of dopaminergic change
In the first set of tests, the level of simulated dopamine was reduced to DA = 0 for the
duration of each pattern and some time after that. The time at which DA is reduced
was varied from 10 ms before pattern onset, to 10 ms after and 50 ms after pattern
onset. Simulated dopamine always returned back to baseline exactly 50 ms after pattern
completion, as will be seen in the figures. Figures 10.1, 10.2 and 10.3 show how these
predefined changes of simulated dopamine level affect the formation of receptive fields.

10ms before pattern onset

As the first test, we decrease the level of simulated dopamine to zero at 10 ms before each
pattern onset. It is kept there for 160 ms (=50 ms before next pattern), after which it is
set back to baseline (DA = 1). In Figure 10.1a-f, this pattern-related change of dopamine
level begins already after t = 1s of simulation and ends only 20s before the end of the 300s
simulation (t = 280s). While there is a slight decrease of synaptic connections to input
units that take part in presenting early parts of each pattern (units around ca. #300 in
d-f), no strong connections are formed at all. This is understandable as the extreme low
level of simulated dopamine does not allow any reliable postsynaptic response to its inputs
to take place.
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Figure 10.1: Development of synaptic weights under rapid changes of dopamine level 10ms before each
pattern. Activation of non-baseline DA after 1s (left) or after 90s (right). (a,g) Polychronous input
patterns formed by 600 out of 2000 input units. Time scale as in b,h. Pattern onset marked by vertical
magenta line. (b,h) Area plot of dopamine levels during one second of simulation. Pattern onset marked by
vertical magenta line as in a,g. Here, the drop of DA level occurs slightly (10ms) before pattern onset, and
lasts until 50 ms before the onset of the next pattern. (c,i) Zoomed-out overview of dopamine variability
during full course of simulation. Grey area visualises phases of rapidly changing dopamine, with upper
and lower bounds showing maximum and minimum of dopamine level per second. A single thick black line
shows phases when dopamine is fixed to a single value. (d,j) Time course of input weight matrices of five
postsynaptic neurons (out of 100) during simulation. Only the connections to the 600 pattern-presenting
input units are shown (y-axis) for reduced clutter. Simulation time is shown on the x-axis. (e,k) Snapshots
of weight matrices of all 100 postsynaptic neurons at different stages of simulation (time t shown above
each plot). As postsynaptic neurons are each reset once with 1s delay, the development of initially diverse
receptive fields can be noticed in subplots where t < 100s. (f,l) Repetitions of the same experiment show
qualitatively similar results, while the distinct initial receptive fields are different each time. However, as
only one polychronous pattern is being presented in these tests, the final receptive field will always settle
on those input units that take part in presenting the initial spikes of each pattern, i.e. near input unit
#300 (see Section 6.2.1).

However, we wish to not completely prevent the formation of postsynaptic receptive
fields, but only pause their further development after some initial neurons have already
had the chance to partially tune to the presented pattern. We therefore repeat the set
of simulations while giving the postsynaptic neurons a chance to form some preliminary
receptive fields before activating the rapid drop of dopamine. In the simulations shown in
Figure 10.1g-l, simulated dopamine remains fixed at baseline (DA=1) for the first 90s of
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simulation. As can be seen in the weight matrix subplot for t = 90s (Figure 10.1k), many of
the early initialised postsynaptic neurons have formed or are forming a distinctive receptive
field to detect the occurrence of the polychronous input pattern. This set of receptive fields
is kept stable while dopamine keeps to drop to DA = 0 during pattern presentation (e.g.
t = 180s, t = 280s), which can also be seen in Figure 10.1j as the development of the
input weight matrices of five postsynaptic neurons remains constant during the period
of t = 90 to t = 280 seconds. Before and after this period, the receptive fields of the
shown postsynaptic neurons develop normally, as would be expected from Chapter 6. The
pausing of receptive field development is particularly visible for postsynaptic neurons #1
and #2 in Figure 10.1j, where two groups of strong weights begin to move towards central
(ca. #300) presynaptic units until time t = 90s, at which point no further changes to
the weight vectors happen until t = 280s. The same here can also be observed for the
weight vectors of postsynaptic neurons #3 and #5, which are initially tuned to later parts
of the polychronous input pattern. Postsynaptic neuron #4 is also affected by the rapid
changing of DA, but as its receptive field already reaches the first pattern-presenting input
units before t = 90s, no further changes to the receptive field of postsynaptic neuron #4
are observed after this point.

In summary, it seems as though reducing the level of simulated dopamine to zero before
each pattern presentation acts as to fully block postsynaptic receptive field formation.

10ms after pattern onset

We now examine the effect of a subtle difference in dopaminergic timing on the formation
of postsynaptic receptive fields. Instead of dropping to zero 10 ms before pattern onset,
our simulated neuromodulator now drops to zero 10 ms after pattern onset.

This already has a noticeable effect on the left side of Figure 10.2, where simulated
dopamine already begins dropping to zero at t = 1s of simulation time. While in Figure
10.2d most postsynaptic neurons still remain unselective during the first 280 seconds of
simulation, the fourth shown postsynaptic neuron here coincidentally forms a strong re-
ceptive field for early-firing input units (near presynaptic input unit #300) and keeps it
stable during the rest of the simulation. Rows (e) and (f) show that this now happens
repeatedly, but only for a minority of postsynaptic neurons during the simulated 300 sec-
onds. Also, it should be noted that no receptive fields initially start out tuned to input
units that fire later during pattern presentation as was seen in Figure 10.1k,l. The 10 ms
delay of dopamine drop after pattern onset only allows the possibility of tuning to the
earliest pattern-presenting input units.

When the repeated rapid drop of simulated dopamine is only started after t = 90s
of simulation time (right side of Figure 10.2), the result is more similar to the right side
of Figure 10.1. However, Figure 10.2l now shows some additional receptive fields tuned
to the early parts of the presented polychronous pattern, which were not there in Figure
10.1l. For receptive fields that have started to form before t = 90s and therefore partially
also represent later parts of the polychronous pattern, the pausation effect of dropping
DA to zero is still present (see e.g. the fourth shown postsynaptic neuron (#8) in Figure
10.2j).

50ms after pattern onset

If a subtle delay of DA change in relation to pattern onset already shows noticeable
differences in the resulting receptive fields, how does a delay of 50ms after pattern onset
affect receptive field formation? Figure 10.3 shows that the formation of selective receptive
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Figure 10.2: Development of synaptic weights under rapid changes of dopamine level 10ms after each
pattern. Activation of non-baseline DA after 1s (left) or after 90s (right). See Figure 10.1 for description
of subplots.

fields is then a lot more common. Again, the left side of the figure shows the process of
receptive field formation while simulated dopamine repeatedly drops to zero rapidly from
the first second (t = 1s), while the right side shows the effects when the neuromodulator
only leaves baseline between t = 90s and t = 280s.

Figure 10.3d now shows all five displayed postsynaptic neurons form a selective recep-
tive field to exactly those input units which take part in presenting the first milliseconds
of the pattern. Indeed, all 100 postsynaptic neurons form a selective receptive field to a
small range of early-firing input units (Figure 10.3f). In the development snapshots at
seconds 10, 90, 180 and 280 (Figure 10.3e), the process of formation can be observed as
each postsynaptic neuron is once reset during the first 100 seconds of simulation. While
all postsynaptic neurons form selective receptive fields, any initial receptive fields respond
to input units that fire during the first 50ms of pattern presentation, because the initial
development of receptive fields that select later-firing input units is being blocked by the
dopaminergic drop to zero that always happens 50ms after pattern-onset.

The right side of Figure 10.3 at first sight looks as if the tuning process can proceed
normally when DA first leaves baseline at t = 90s. In Figure 10.3j, all of the five post-
synaptic neurons show a random-looking initial position of weight matrices, which then
slowly converges on the early-firing input units for the presented pattern. However, when
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Figure 10.3: Development of synaptic weights under rapid changes of dopamine level 50ms after each
pattern. Activation of non-baseline DA after 1s (left) or after 90s (right). See Figure 10.1 for description
of subplots.

looking at Figure 10.3l, one can see that some receptive fields that are initially selective
for very late-firing input units (near presynaptic unit #1 and #600) do see a pause of
convergence. In these final weight matrices after 300s of simulation, every receptive field
has either converged to the start of the polychronous pattern (input units ca. #151 -
#450), or remains selective to input units that only take part in presenting parts of the
polychronous pattern that happen more than 50ms after pattern onset (input units ca.
#1 - #150 and #451 - #600).

The relative delay of simulated dopamine drop in relation to pattern onset can hence
be used to control which postsynaptic receptive fields continue to converge on the earliest
inputs, and which postsynaptic neurons have their receptive fields remain fixed to detect
only late-firing input units.

10.3.2 Scaling effects of dopaminergic change
Now that we have looked at the effects that the timing of a drop in neuromodulator level
can have on receptive field development, we also would like to know how far the level of
simulated dopamine needs to be reduced in this framework (Chapter 8) for the effect to be
visible. Of course the absolute values of simulated dopamine used here have only little in
common with real biophysical concentrations of dopamine-like neurotransmitters within
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Figure 10.4: Development of synaptic weights under rapid changes of dopamine level 10ms after each pat-
tern. Non-baseline dopamine drops to DA = 0.3 (left) or DA = 0.5 (right) during pattern presentation.
See Figure 10.1 for description of subplots.

neural tissue. But as the principle of influencing synaptic weight development through
rapidly modifying the contrast of synaptic transmission has only just been established
in Chapter 8, we first need to understand the dynamical implications in our model en-
vironment before searching for quantitive matches with (yet to be gathered) biological
data.

Figure 10.4 shows the development of synaptic weights when dopamine is not lowered
all the way to zero. The drop of simulated dopamine here happens 10ms after pattern
onset, as was used in Figure 10.2. In both sets of simulations on the left and right of
Figure 10.4, dopamine only leaves baseline between t = 90s and t = 280s as this is the
more interesting case (see Section 10.3.1). The difference between the two sides of Figure
10.4 is that dopamine is dropped to DA = 0.3 on the left, while it is dropped to DA = 0.5
on the right side. The choice of displayed dopamine levels was made for the different
effects on postsynaptic receptive field development that happens near DA = 0.4 for the
current set of parameters.

Figure 10.4d shows a pause in receptive field convergence for postsynaptic neuron #5
when dopamine is dropped to DA = 0.3. Also, in Figure 10.4e the receptive fields of the
first 50 postsynaptic neurons do not seem to change much after t = 90s. This is very
similar to what happens when dopamine is dropped all the way to DA = 0 (Figure 10.2).
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Figure 10.5: Setup of dopaminergic feedback. Left: Inhibitory D1R neurons of the striatum also project to
SNc while mainly projecting to SNr and GPi. This forms a dopaminergic feedback loop as less dopamine
is then released in the striatum. Compare Figure 3.6 (p. 29). Right: In our model, we chose a nonlinear
relationship between the number of inhibitory striatal output spikes arriving at the SNc and dopamine
(DA) concentration in the striatum. After inhibition, the level of simulated dopamine relaxes back to
baseline exponentially. See Appendix A.3.12 for implementation notes.

In contrast, when simulated dopamine is only dropped to DA = 0.5 on the right side
of Figure 10.4, convergence of receptive fields towards the earliest input units does not
completely stop but carries on slowly. Figure 10.4k shows how most receptive fields of
the first 50 postsynaptic neurons continues to converge towards central values (input unit
#300) even while dopamine is repeatedly dropping to DA = 0.5 exactly 10ms after each
pattern onset. In Figure 10.4j, the development of the weight vectors of postsynaptic neu-
rons #3, #4 and #5 also continues to develop in spite of the pairing of each polychronous
input pattern with low dopamine, albeit maybe slower than before t = 90s.

The lower value of simulated dopamine drop can hence possibly be used to control the
speed at which postsynaptic neurons tune to a specific polychronous input pattern. This
might help to explain the successful self-regulation of receptive field formation through
dopaminergic feedback that is described in the next subsection.

10.3.3 Dopaminergic Feedback for Self-Regulation
In the previous results presented in this chapter, the level of simulated dopamine (DA)
was always set manually to specific values at specific times during the simulation. We now
extend the method of dopamine timing to construct a closed loop feedback system that
regulates its own dopamine level to prevent the network from over-learning repeatedly
presented patterns. The idea here is that the basal ganglia should habituate to recurring
behavioural situations and compensate for expected rewards arriving at the SNc from
other brain areas. As the striatal neurons (D1R-MSNs) begin to respond to a specific
behavioural situation (represented by a polychronous pattern arriving from the cortex
and/or thalamus), their GABAergic direct pathway projections also inhibit SNc cells (see
Chapter 3). Following our working hypothesis (Section 3.3.3), this results in a temporary
decrease in activity of SNc cells and therefore a temporary reduction of dopamine level in
the striatum. As more striatal D1R neurons tune to a given pattern, the stronger decrease
in dopamine level should prevent more striatal neurons from tuning to the same pattern.
We tested this in a set of simulations shown in Figure 10.6.

The SNc and its dopaminergic projections to the striatum are here implemented as a
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Figure 10.6: Development of synaptic weights under dynamic changes of dopamine level through feedback
with every postsynaptic spike. Dopamine level relaxed back to baseline (DA = 1) exponentially with
τDA = 100ms. Example weight development of one simulation (left) and pattern onset dependent changes
in dopamine level (right). See Figure 10.1 for description of subplots (a)-(f). (g) Neuromodulator levels
from 100ms before until 400ms after polychronous pattern onset. Pattern onset marked by dashed magenta
line. Colours as in (b). Shown for 10 repetitions of simulation experiment, of which resulting weight
matrices are shown in (f).

single variable that controls the dopamine level in the striatum and rests by default at
some baseline level of dopamine (DA = 1) through implicit tonic activity of dopaminergic
cells. Any spike by a striatal D1R-type (inhibitory) neuron deflects the dopamine level
released in the striatum, which then slowly recovers back to baseline exponentially with
a time constant τDA (Figure 10.5). This view of dopamine level regulation is highly
simplified, but serves the point of testing whether some of SNc activity may possibly be
dynamically influenced by inhibitory projections from striatal direct pathway neurons to
reduce dopaminergic responses as a stimulus ceases to be novel. As we do not model
any other inputs to the SNc here, the resulting trajectory of dopamine levels can not be
likened to biological data of SNc activity just yet. One reason for this is the continued
lack of experimental data on precisely timed inputs to the SNc, together with the still
uncertain coupling of SNc activity to the dynamic changes of dopamine concentrations in
the striatum (e.g. Howe et al., 2013).

As dopamine was to be kept sufficiently below baseline for the course of each poly-
chronous pattern (pattern duration 100ms), the recovery time constant τDA was chosen
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to be τDA = 100ms. This in turn necessitated an increase of pattern offset from 200ms
to 400ms in order to allow the DA level to recover sufficiently towards baseline before the
next pattern was presented.

Figure 10.6a shows the input patterns with an increased offset, while the dynamic
dopamine level that is now controlled through the number of responding postsynaptic
neurons is shown in Figure 10.6b. A slight dip of dopamine level can be seen shortly after
the onset of each polychronous pattern (dashed magenta vertical lines), which indicates a
reliable number of postsynaptic responses to each pattern presentation at this late stage
of simulation (t = 1198s). However, other dips in dopamine concentration are also visible.
A full display of pattern onset-related dips in dopamine concentration of this simulation
is shown in Figure 10.6g (repetition 1), where the dips that occur shortly after pattern
onset can be seen to be reliable while other dips in concentration are not. Figure 10.6g
will be further explained below.

In Figure 10.6c, the overview of simulated dopamine levels during the full simulation
shows that while the maximum of dopamine levels always remains close to DA = 1, the
minimum decreases linearly while more postsynaptic neurons are activated during the first
100s of simulation time, and then remains noisily constant around DA = 0.4 thereafter.
The maximum DA level settles just below baseline, which is due to the interplay between
the DA recovery time constant of τDA = 100ms and the pattern-to-pattern offset of 400ms,
and could likely be changed by further increasing the time between pattern presentation
or by using some improved model for dopamine diffusion within striatal tissue in future
iterations of the model. As an optimal model for dopamine diffusion is not the main
topic of this work, however, we do not further optimise the time course of dopamine
concentrations here.

Figure 10.6d shows that some postsynaptic neurons (neurons #1, #3 and #5) soon
form selective receptive fields within the first 200 seconds of simulation, while others
(neurons #2 and #4) remain unselective throughout the full 20 minutes of simulated time.
This can be further seen in the development of all 100 postsynaptic neuron’s receptive fields
in Figure 10.6e.

The final receptive fields of each of the 100 postsynaptic neurons is shown for ten
repetitions in Figure 10.6f. Only a fraction of postsynaptic neurons have become selective
to the presented input pattern in each repetition, with a slight bias towards those post-
synaptic neurons that were initialised first and could therefore reach the critical period
(Section 5.3) earlier than postsynaptic neurons that were initialised later during the first
100s of simulation. However, the order of initialisation does not ensure that a neuron
indeed forms a selective receptive field, as evidenced by Figure 10.6d.

Also, the number of postsynaptic neurons that finally possess a selective receptive
field is variable. For example, in repetitions 5 and 7 (Figure 10.6f), a larger number of
postsynaptic neurons has become selective than e.g. in repetitions 8 to 10. The relative
number of selective postsynaptic neurons can likely be made more predictable in future
work when an improved self-regulation model for dopamine is conceived and used.

The development of dopamine responses for all ten repetitions of the simulation exper-
iment is shown in Figure 10.6g. There, the dopamine levels around each pattern presenta-
tion are shown as a row each for every presentation time (y-axis), with each row showing
the level of simulated dopamine from 100ms before to 400ms after pattern onset (x-axis).
As the receptive fields shown in Figure 10.6f indicate, the strongest dopaminergic response
to pattern onset was seen in repetitions 5 and 7. However, this strong response started
later during the simulation than medium and weak dopamine responses.

In summary, we find that the method of neuromodulation for spiking networks that
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was introduced in Chapter 8 can successfully be used to form a self-regulatory dopamin-
ergic feedback loop that limits over-learning of repeated polychronous patterns in the
absence of any external reinforcement signals. The group of plastic neurons modelled here
represents striatal medium spiny neurons with D1-type dopamine receptors (D1R-MSNs),
the input units represent either cortical or thalamic inputs, and the self-regulating DA
feedback signal represents dynamic responses of SNc neurons and the subsequent diffusion
of dopamine within the striatum of the brain’s basal ganglia.

10.4 Conclusion
This chapter explored whether a dynamic feedback of dopamine (or similar neuromodu-
lators) may in principle succeed in regulating learning processes in substructures of the
basal ganglia. More specifically, we wanted to find out if the known anatomical path-
ways between the basal ganglia’s striatal D1R-neurons and the dopamine-releasing cells
in the SNc that project back to the striatum may interact to prevent the over-training of
a network of plastic neurons to repeatedly occurring stimuli.

We showed that this interaction can indeed be used to control the formation of sparse
receptive fields and thereby possible selection channels in the basal ganglia’s striatum,
hinting at a possible function for these anatomical connections of the so-called direct
pathway in biology (Vogt and Hofmann, 2015b).

Similar mechanisms may also be in place within the indirect pathway, where an anatom-
ical loop from striatal D2R-neurons to the SNc exists via the GPe. However, a possible
indirect pathway mechanism could not yet be explored and remains for future work.
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Part IV

Epilogue
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Chapter 11

Summary and Conclusion

In this last chapter, I summarise the contributions made here to the field of computational
neuroscience, give an outlook on future work, and conclude this text (see also Appendices).

11.1 Contributions to the Field
Clarification of Synaptic Drift The behaviour of synapses that implement spike timing de-
pendent plasticity (STDP) and receive noisy input spikes was described. It was clarified
that the synaptic drift does not only depend on the full integral of an STDP rule, but
specifically on a windowed interval that depends on the distribution of spike pairing dis-
tances. For highly correlated inputs, the effective window for spike pairings becomes more
narrow. This may invert the direction of synaptic drift from depression into potentiation
for more realistic (τ+ < τ−, A+ > A−) STDP rules (Section 5.1).

Clarification of the Effects of Weight Dependent Scaling of STDP It is not the multipli-
cation with a weight-dependent scaling factor that causes unimodal weight distributions
of “multiplicative” STDP, but the existence of a stable fixed point attractor within the
range of possible synaptic strengths. A fixed point is only created when potentiating
and depressing weight update steps depend on synaptic weight through different rules,
respectively. I show this by giving a counter-example that uses weight-dependent scaling
of an STDP rule without producing an attractor. The new rule fits experimental data
better than many “multiplicative” STDP rules, while behaving more similar to an “addi-
tive” rule. I therefore suggest the terms “attractor-based” and “attractor-less” instead of
“multiplicative” and “additive” to refer to the weight dependent behaviour of STDP rules
(Section 5.2).

A new class of weight-dependent, attractor-less STDP rules I extend the counter-example
from above into a new set of useful weight-dependent STDP rules that approach the
bounds of a predefined (physical) range of possible synaptic weights softly, instead of using
abrupt clipping as in classical “additive” STDP. This is especially useful when synaptic
connection strengths approach their minimum, because random spike pairings due to noise
have a smaller chance of disrupting sparseness (Section 5.2).

Attractor-based STDP leads to Damaging Competition between Structured Inputs and Synap-
tic Drift In a large comparison between many attractor-based and attractor-less scaling
rules for unbiased as well as negatively biased STDP, I demonstrate that the existence
of an attractor prevents STDP from forming a robust selective receptive field in response
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to spatiotemporally structured (polychronous) incoming spike patterns if the attractor
is reasonably strong. The unimodal weight distribution that is known to result from
attractor-based STDP actively impedes the creation of sparse receptive fields. In later
chapters, I demonstrate that the identity of strong synaptic connections in a sparse recep-
tive field does not need to be random, but can be precisely predicted when polychronous
input spike patterns are used (Section 5.2 and Chapter 6).

Structural synaptic growth can keep a neuron with negatively biased STDP within a critical
regime until it settles for a selective receptive field As introduced in Section 5.3, the critical
regime is here the period of synaptic weight development during which a postsynaptic neu-
ron is responsive to all inputs in general while not yet having formed a selective receptive
field. Instead of attempting to remain in this period through attractor-based STDP, it
is rather easily sustainable through a combination of structural synaptic growth and any
negatively biased STDP rule. An attractor-less STDP rule with depressing synaptic drift
then maintains a unimodal distribution of synaptic weights while input units spike at ran-
dom, which switches into a bimodal distribution that represents a selective receptive field
when inputs (begin to) contain repeating spatiotemporal patterns that can be detected
by the plastic neuron. The selectivity of the neuron’s receptive field can be measured and
used as a slow variable that eventually turns off structural growth. In fact, structural
growth is only absolutely necessary when neurons start with very weak incoming synap-
tic weights that are unable to elicit postsynaptic responses, because STDP requires by
definition both pre- and postsynaptic spikes to take effect (Section 5.3).

Detection of polychronous patterns provides more reliable information to subsequent layers
The response time of a neuron receiving polychronous inputs depends on the mean strength
of synapses within the group of earliest firing inputs. The response delay will therefore con-
tain information on how well the postsynaptic (detector) neuron’s receptive field matches
the incoming pattern of spikes. This may indicate either how much training a neuron
has previously received on a particular stimulus that is represented by the incoming spike
pattern, or the signal-to-noise ratio of this presentation of the stimulus. This conundrum
may be solved by comparing the response times of multiple postsynaptic neurons (Section
6.1).

Multiple detector neurons can re-create a spatiotemporal code When the map of sparse
receptive fields of multiple postsynaptic neurons evenly represents the start of a set of
neighbourhood-preserving (ordered) polychronous patterns, noisy polychronous inputs can
be reproduced with less noise by a group of detector neurons. This is because the response
onset delay of each neuron then represents the degree of match between patterns and
receptive fields. (Section 6.1.4).

Traditional Hebbian plasticity cannot take advantage of polychronous spike patterns Synaptic
plasticity rules that use only the absolute spike pairing difference for changing synaptic
weights (sign-independent spike-to-spike distance between pre- and postsynaptic units)
can not produce maximally sparse receptive fields (Section 6.2.4).

STDP behaves similar to traditional Hebbian plasticity for synchronous (or zero-lag correlated)
spike patterns When (jittered) synchronous spike patterns are used as repeating inputs,
attractor-less STDP may randomly select any subset of synapses to become strong. It
will not succeed in reliably selecting a predictable subset of synapses (Section 6.2.2). The
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resulting spike timing of the postsynaptc neuron will therefore be erratic, allowing only
rate-coded readouts. Attractor-based STDP is even worse, as receptive fields never become
sparse (see above and Section 6.2.3). Standard zero-lag correlation between input units
represents a jittered version of a synchronous code, which therefore also does not allow
the development of receptive fields to be predictable.

Only polychronous input patterns combined with STDP allow a neuron to form highly selec-
tive receptive fields Polychronous input spike patterns can be used by STDP to find the
earliest set of reliably firing input units, also known as predictive learning. What has yet
seen little attention is that the anti-symmetric nature of standard STDP rules also actively
decreases all connections to other inputs that reliably fire later in a (e.g. synfire) chain.
This actively produces a sparse receptive field when all inputs regularly fire in a fixed
order, and succeeds even for higher levels of background noise. Inputs that fire without
any repeating order (random spiking) reliably reduce connection strength when the STDP
rule is negatively biased (= has a depressing synaptic drift). In combination, standard
STDP rules that have a negative depressing synaptic drift produce sparse receptive field
where only the earliest of the sufficiently reliable inputs form strong synapses with the
postsynaptic neuron (Section 6.2, esp. 6.2.1).

Multiple polychronous patterns can signal multiple messages A given set of input units can
repeatedly present many distinct polychronous patterns. The postsynaptic neuron uses
STDP to tune to the start of exactly one pattern if all patterns are presented by each
unit in the group (Section 6.3). The choice of pattern depends on (random or controlled)
fluctuations in input population rate at the time of repeated pattern presentation (Sections
7.1.2 and 7.5.2). If fluctuations are random, then the choice of selected pattern is also
random (see also Section 7.3).

Polychronous patterns can be generated from any random input noise I show practical ways
of generating polychronous patterns without this being reflected in firing rates or simple
cross-correlations. I also present various ways of further embedding polychronous patterns
within background noise, hence hiding them from the naked eye (Section 7.1).

Multiple polychronous patterns may not show up in cross-correlation analysis of spike trains A
time-shifted (nonzero-lag) correlation code can be interpreted as the repeated presentation
of a single highly jittered polychronous pattern (Section 6.4.4). However, the presentation
of multiple polychronous patterns produces varying time shifts depending on which pattern
is being presented. A simple cross-correlation analysis between spike trains may therefore
be unable to detect multiple patterns when they are being presented during a limited-time
(electrophysiological) recording (Section 7.1.6).

Implications of polychronous patterns for new experimental methods Jitter and occasional
omission of spikes by units that take part in presenting polychronous patterns is of little
importance for the overall detection robustness of polychronous codes by postsynaptic
detector neurons. While not synchronous, the code is still redundant, or rather holographic
(each unit represents similar, but slightly different information). Also, each unit may fire
randomly outside of pattern presentation at any time. This provokes the question whether
established experimental techniques such as evoked responses or spike-triggered averages
could be extended into evoked multiunit responses or pattern-triggered averages.
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Multiple neurons can form a sparse receptive map without requiring mutual inhibition As
each neuron individually becomes highly selective when STDP is used together with poly-
chronous patterns, the choice of pattern the neuron’s receptive field tunes to is randomly
selected from a probability distribution that depends on fluctuations in background pop-
ulation rate of all inputs together (Section 7.1.2), other forms of noise (Section 7.4), and
relative pattern presentation counts among other factors (Section 7.5). When multiple
neurons are given the same input patterns and initialised with identical weights and mem-
brane parameters, tiny background fluctuations in the input population rate decide which
pattern a neuron tunes to. When plasticity is activated at a different time for each neuron,
the resulting map of receptive fields approaches a broad representation of all presented
inputs (Section 7.3). This formation of a sparse code requires no mutual inhibition be-
tween neurons. Instead, it depends only on the probability distribution of tuning to each
pattern. If the probability distribution is uniform, then the resulting map also represents
all patterns uniformly.

Neuromodulation of synaptic transmission can affect learning outcome I show that when
neuromodulator level is allowed to affect the contrast of synaptic transmission, the altered
behaviour of postsynaptic neurons also affects plasticity. This accounts both for observed
instantaneous effects of dopamine on neural excitability as well as for neuromodulator-
dependent changes to synaptic strength. Neuromodulation does not need to be directly
integrated into an STDP rule to take effect, in contrast to a widespread practice in com-
putational neuroscience and biological reinforcement learning (Chapter 8).

The new method allows for fast pattern-dependent changes through dopamine that produce
reinforcement of specific patterns Plasticity need not just be influenced in a general, time-
independent manner through modulating synaptic transmission. When neuromodulator
levels are changed together with specific (groups of) patterns, this changes the probability
of certain patterns being learnt. The resulting receptive map then reflects positive or
negative reinforcement that was delivered together with specific (groups of) polychronous
patterns (Chapter 9).

Learning can be slowed and paused through precisely-timed dopamine Over-representation
of a specific repetitively incoming pattern can be avoided by dropping the level of dopamine
below baseline (negative reinforcement) at specific times relative to pattern onset. Both
the relative time (Section 10.3.1) and the amount of neuromodulator concentration drop
(Section 10.3.2) affect plasticity and the resulting receptive map.

Self-regulatory control of a dopaminergic feedback loop can limit overtraining The precisely
timed drop of dopamine concentration relative to the presentation of specific patterns can
be autonomously controlled through a feedback loop that is found in the basal ganglia.
After some neurons have tuned to a single repeating polychronous pattern in the computer
simulation, they begin to inhibit dopamine-releasing cells, which in turn decreases the
probability of further neurons tuning to this pattern (Section 10.3.3). This may give a
biological agent more robustness to vastly different presentation counts of distinct stimuli.
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11.2 Outlook and Future Work
By recombining the biological building blocks of temporal coding, spike timing dependent
plasticity and dopamine-like neuromodulation in new models and testing them in a number
of computer simulations, we came a little closer to understanding how the brain, and
especially the basal ganglia, may work. Besides further improving and inventing future
computer models of brain function, the next step is also to apply our new knowledge
to experimental paradigms and biological data analysis. I now present some main open
questions and future directions of research.

On Unsupervised Learning in Spiking Networks

Learning Polychronous Patterns with Inhibition Although we have seen that STDP can use
polychronous patterns to form a sparse receptive field without mutual inhibition, recurrent
connections do exist in the brain. Why could this still be useful to a group of neurons that
use STDP to learn a polychronous code? Multiple answers come to mind. If two otherwise
distinct patterns share the same group of early firing units, the standard behaviour of
STDP is to tune any postsynaptic neuron’s receptive field to the earliest part of both
patterns. If a first neuron that tunes to the common set of inputs were to inhibit all other
potential candidates until the input patterns diverge, any additional postsynaptic neurons
may each remain tuned to the later parts of each pattern. This was partly approached
by Masquelier et al. (2009), albeit assuming that mutual inhibition was necessary for
any development of distinct receptive fields. A second but similar purpose may be to
use mutual inhibitory connections to indeed maximise independence when polychronous
patterns are otherwise very similar.

New analysis methods for biological data The insight that STDP only reveals its full power
when polychronous patterns are used as inputs has some implications for the analysis of
real biological data. When (constrained) spike timing dependent plasticity is found to exist
in any brain area, we should consider the strong possibility that temporal coding through
relative spike times of a large group of neurons may play a role here. This assumption
may prove helpful for the analysis of experimental recordings. For example, we may want
to consider extending the well-known method of spike-triggered averages, which finds the
average stimulus that happens before each spike of a specific recorded neuron. This could
be extended into a paradigm that first uses artificial neurons with STDP to learn to
detect noisily repeating spatiotemporal patterns within the stream of spikes, and then
use the occurrence of these patterns as a trigger to recreate the average stimulus that
was present whenever a given polychronous pattern of spikes passes through the buffer
of (freshly) recorded data. A similar extension could be made to the practice of evoked
responses, where a stimulus is repeated multiple times and the average responses of single
units are tracked. When we assume that neurons respond very unreliably to inputs, with
detectability only minimally above noise level, the observation of a large group of neurons
may similarly allow us to detect a polychronous spike pattern even though the background
population rate may be highly fluctuant (Section 7.1.2). A single recorded neuron may
either represent varying parts of a repeating pattern, which would show as large jitter
in recorded spike timings, or not respond at all on all but a few stimulus presentations
(Section 7.1.4). It will be interesting to transform these ideas into new experimental
paradigms in the future.
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Embedded Implementation and Neuromorphic Hardware Artificial neurons receiving real-
time electrophysiological data arriving from multi-electrode recording systems may prove
useful as an online analysis method that learns repeating polychronous patterns of neural
spiking activity on the fly. An embedded implementation on small neuromorphic chips
may make it possible to integrate spike train analysis directly into electrode probes or
build fully implantable chips that support or replace brain functions that have been lost
through disease or injury. However, a number of problems still need to be solved before
this can be tried, the most important of which is the formulation of a concept of neural
codes throughout the brain as well as binding ethical rules on the circumstances under
which interventions should be allowed.

On Reinforcement Learning in Spiking Networks

D2R-type feedback loop As we have seen in the introductory chapters of this text, the
basal ganglia consist of a number of reentrant loops, many of which interact with the
striatum and the release of dopamine. While a possible use for the direct pathway loop
was evaluated in Chapter 10 as a mechanism for dopamine self-regulation, we have yet
to explore the possible effects of an indirect pathway loop, which consists of projections
from striatal D2R-neurons to the GPe and from there to the SNc, which in turn also
changes the amount of dopamine being released in the striatum. As the indirect pathway
(D2R-type) neurons of the striatum are often described as reacting to dopamine in a
way that is opposite to direct pathway (D1R-type) neurons, the existence of a second
inhibitory projection in this loop (via the GPe) may have a similar self-regulatory effect
on D2R neurons of the indirect pathway as the direct inhibitory projections of D1R-type
neurons to SNc have for the direct pathway. The stability of such an indirect pathway
dopaminergic feedback loop though needs to be evaluated both alone and in combination
with other known basal ganglia interactions, especially that between GPe and STN.

Build a reliable act-or-delay network With the knowledge gained from dopamine self-
regulation in the direct and indirect pathways and assuming that the feedback loop be-
tween STN and GPe indeed acts to integrate uncertainty in the cortex and the striatum,
we may build a spiking neural network model of the basal ganglia that decides to either
act quickly or delay action in response to behavioural contexts. Depending on incoming
stimuli, a biologically realistic implementation of such functionality will wait for sufficient
information to arrive in order to make the best decision when enough time is available, or
make quick (impulsive) decisions when decision time is constrained. The switch between
slow good decisions and fast impulsive decisions should be gradual and depend on an
evaluation of the current world context.

Implement skill learning in a biologically more plausible manner With the knowledge of how
to construct a network that only transitions between behavioural states when there is
reason to do so, we may be able to implement a true biologically realistic reinforcement
learner that takes meaningful advantage of structures and dynamics of the basal ganglia.
The biological implementation of multiple skills, the swift switching between them, and
easy generalisation towards performing completely new tasks may be understood through
this approach. A first reinforcement learning task that could be performed with this new
method could be the widespread Morris watermaze task (Morris et al., 1982) as used in
Vasilaki et al. (2009). Extensions could then involve the acquisition of multiple skills in one
environment and their application to solving tasks in a second environment (Barto et al.,
2004; Singh et al., 2005; Sutton et al., 1998). While aiming to reproduce the full range
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of basal ganglia functionality through biologically realistic mechanisms, we will be vastly
extending our knowledge on why the basal ganglia and connected brain structures are
formed the way they are, and may also find new efficient forms of reinforcement learning
for use in autonomous agents.

More realistic implementation of neuromodulator-dependent contrast adjustment While the
observations of dopamine affecting instant excitability and contrast have led to the con-
struction of the dopamine-dependent synaptic transmission paradigm that was introduced
in Chapter 8, we have in this work concentrated on introducing and evaluating the basic
principle of reward-modulated synaptic transmission. However, it seems promising to fur-
ther increase the biological realism of neuromodulated transmission of electric membrane
potentials from axon via synapse to dendrite in improved models. Apart from demon-
strating the effects of this on synaptic plasticity, more realistic models may also provide a
sub-cellular explanation for why a dynamic modulation of contrast through dopamine may
be a viable solution to including external reward into dynamical processes in the brain.

Roles for striatal interneurons, other subpopulations, other neurotransmitters It is still un-
clear which functions the other neuron types in the basal ganglia fulfil. Acetylcholine is
released by tonically active neurons, and has strong but yet hardly explored effects on
dopamine release from nigral terminals in the striatum (Calabresi et al., 2000). Similarly,
the interaction between dopamine and serotonine is still unclear, as is the effect of fast-
spiking interneurons and newly isolated projections from a subpopulation of GPe neurons
back to the striatum (Mallet et al., 2012). We need to understand the various elements of
this highly dynamic system if we want to separate functionally significant features from
replaceable implementation details. A true description of the functionality of the striatum
and the rest of the basal ganglia can only be agreed upon when at least all dynamical
effects and anatomical substructures are accounted for.
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11.3 Conclusion
In the present work, I have explored and recombined experimentally found building blocks
of brain function on a level of abstraction that seems the most likely candidate for link-
ing higher cognitive functions to biochemical implementations of supporting capacity. I
used plasticity in spiking neural networks to examine the effects and implications of tem-
poral codes that use unreliable spikes to reliably transmit and process messages in high
speed. Within the model framework of the basal ganglia, I then found an alternative way
of modulating the outcome of spike timing dependent plasticity through controlling the
contrast of synaptic transmission and showed that this can be used to reinforce specific
actions / patterns / stimuli in relation to others. Future work includes the construction
of a plastic spiking neural network that models the full basal ganglia and is able to per-
form typical reinforcement learning tasks as seen in behavioural neuroscience and machine
learning. While many questions have been answered here, many more have been and will
be spawned and resolved as a consequence of this work.
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Appendix A

Supplementary Data and Simulation
Parameters

A.1 Supplementary Figures
A.1.1 Additive STDP (Section 6.2)
In addition to the attractor-less weight-dependent scaling rule used in Section 6.2.1 (Equa-
tion 5.9), similar figures can be produced by using attractor-less STDP that is mostly not
dependent on synaptic weight except for a hard clipping at the bounds of the defined range
(“additive” STDP, Equation 5.3). See Figures A.1 and A.2 for examples using purely “ad-
ditive” STDP with a biased and unbiased shape, respectively. Simulation settings are
listed and further explained in Appendix A.3.5.

A.1.2 One-sided and randomly permuted patterns (Section 6.3)
When multiple polychronous patterns are used together with STDP, it needs to be ensured
that the start of each pattern is not equally part of some other pattern (Sections 6.3 and
7.1.7). If in Figure 6.27 (p. 99) we had used the special case of one-sided polychronous
patterns instead of two-sided patterns, the set of strong weights would not settle and
keep shifting (Figure A.3). However, the probability of such similar patterns happening
by chance can be controlled by increasing the number of input units. Figure A.4 shows
polychronous patterns created through fixed random permutations (Section 7.1.5) and the
single postsynaptic neuron successfully tunes to exactly one of the presented polychronous
patterns. The patterns are invisible to the naked eye (row 1), but the response plots show
the definitive preference.

A.1.3 Learning multiple randomly permuted patterns (Section 7.1.5)
Pattern generation through fixed random permutations was also tested (see Figures A.4
and A.5). Learning progresses slower because single input units that fire at different times
for different patterns may initially contradict each other. However, given sufficient time,
a postsynaptic neuron with a negatively biased STDP rule will learn any repeatedly pre-
sented polychronous pattern that is sufficiently different from other repeatedly presented
patterns (Section 7.1.7).
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Figure generated using function chapter202PolychronousPatterns_STDPFigures (chapter202PolychronousPatterns_STDPFigures.m) from git revision 452466d359db55a229c15ca2153e43df4a6d40af (branch publications) 
and supporting files from revision ec3bc96a32b94bdc5873f6d29767822fc9cfc20e (branch publications) in repository "git@git.assembla.com:simonscnstuff.git" 
(file names: StaticClassBGDisplay.m, StaticClassBGAnalyse.m, simscript_LearningOnePattern.m, ClassBGNucleiNetwork.m, ClassBGLayerFluctuatingNoiseToPolychronousPatterns.m, ClassBGLayerIzhikevich1D.m ) 
Filename of this figure: "chap202secPlasticPruning_additiveWeightdependence_polychronousPatternfamilyType7_asymmetricSTDP_wCentre0.85_wRange0_randomGrowthRate0.001_for301seconds.*"  
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Figure A.1: Polychronous inputs with attractor-free biased STDP as in Equation 5.3. See Figure
6.12 for description of subplots and Appendix A.3.5 and A.1.1 for simulation settings. The formation of
a highly selective receptive field is successful. By chance, the typical behaviour of STDP is also nicely
visible in this figure: The postsynaptic neuron here coincidentally began to respond to input units near
#1100, and then proceeded towards the start of the polychronous pattern as mentioned by Guyonneau
et al. (2005) and in Section 6.2.1.

Figure generated using function chapter202PolychronousPatterns_STDPFigures (chapter202PolychronousPatterns_STDPFigures.m) from git revision 452466d359db55a229c15ca2153e43df4a6d40af (branch publications) 
and supporting files from revision ec3bc96a32b94bdc5873f6d29767822fc9cfc20e (branch publications) in repository "git@git.assembla.com:simonscnstuff.git" 
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Figure A.2: Polychronous inputs with attractor-free unbiased STDP as in Equation 5.3. See Figure
6.13 for description of subplots and Appendix A.3.5 and A.1.1 for simulation settings. While the con-
nections that receive polychronous inputs aim to become somewhat selective, the lowest weights remain
around 0.25 and never come close to zero. Random inputs perform even worse. No selective receptive field
is achieved.
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Figure generated using function chapter202PolychronousPatterns_MultiplePatterns (chapter202PolychronousPatterns_MultiplePatterns.m) from git revision ed6b11c299c88f272025987b063d084ba528b742 (branch publications) 
and supporting files from revision ec3bc96a32b94bdc5873f6d29767822fc9cfc20e (branch publications) in repository "git@git.assembla.com:simonscnstuff.git" 
(file names: StaticClassBGDisplay.m, StaticClassBGAnalyse.m, simscript_MultiplePatterns.m, ClassBGNucleiNetwork.m, ClassBGLayerFluctuatingNoiseToPolychronousPatterns.m, ClassBGLayerIzhikevich1D.m ) 
Filename of this figure: "chap202secMultiplePatterns_polychronousPatternsType7OneLeggedOrdered_asymmetricSTDP_additiveWeightDependence_Neuron2.*"  
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Figure A.3: Polychronous patterns generated in the one-sided ordered variant do not allow a postsynaptic
neuron to form a stable receptive field (compare Figure 6.27, p. 99). This is because the early-firing units
of each pattern also fire together at later stages of each other pattern. See Sections 6.3 and 7.1.5 for
explanation. See also Appendix A.3.6 (p. 187) for simulation details.
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Figure generated using function chapter202PolychronousPatterns_MultiplePatterns (chapter202PolychronousPatterns_MultiplePatterns.m) from git revision ed6b11c299c88f272025987b063d084ba528b742 (branch publications) 
and supporting files from revision ec3bc96a32b94bdc5873f6d29767822fc9cfc20e (branch publications) in repository "git@git.assembla.com:simonscnstuff.git" 
(file names: StaticClassBGDisplay.m, StaticClassBGAnalyse.m, simscript_MultiplePatterns.m, ClassBGNucleiNetwork.m, ClassBGLayerFluctuatingNoiseToPolychronousPatterns.m, ClassBGLayerIzhikevich1D.m ) 
Filename of this figure: "chap202secMultiplePatterns_polychronousPatternsType9TwoLeggedOrdered_asymmetricSTDP_simon2WeightDependence_Neuron2.*"  
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Figure A.4: Five polychronous patterns generated with fixed random permutations (Section 7.1.5) are
presented to a single postsynaptic neuron (compare Figure 6.27). See Appendix A.3.6 (p. 187) for simula-
tion details. The neuron chooses one pattern (pattern 4) and begins to respond robustly and selectively
only to this one pattern when STDP is used to form the receptive field. (Around minute 10, some close
competition between patterns 3 and 4 can be observed, which pattern 4 wins.)
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A.1.4 More examples of effective weights (Section 8.2)
The example effective weight distributions shown in Figure 8.1 were computed for θ = 0.5.
Figure A.6 shows the same transformations for different values of θ.

A.2 Supplementary Tables
A.2.1 STDP rules in the literature
The tables A.1, A.2 and A.3 list the STDP settings of a number of publications for
reference. Negative synaptic drift is often invoked by scaling A+ < A− and less often by
using τ+ < τ−. A combination of A+ > A− with τ+ < τ− is hardly ever used, likely due
to the added complexity of STDP behaviour.

A.2.2 Biased and Unbiased STDP
Independent of any weight-dependent scaling terms g+ and g−, the interaction between
A+, A−, τ+ and τ− already leads to synaptic drift. Throughout this work, I use the terms
unbiased STDP and biased STDP to refer to two sets of configurations as shown in table
A.4.

λ A+ A− τ+ τ− drift
(Bi and Poo, 2001, 1998)
(Froemke and Dan, 2002) 101% 52% 14.8 ms 33.8 ms −
(Kistler and van Hemmen, 2000) 1 ? 1 ? 20 ms 20 ms 0 (?)
(Song et al., 2000) 0.005 1 1.05 20 ms 20 ms 0
(van Rossum et al., 2000) 20 ms 20 ms 0 (?)
(Rubin et al., 2001)a 0.005 1 1.05 10 ms 10 ms −
(Rubin et al., 2001)m
(Billings and van Rossum, 2009)n 0.005 1 1.05 20 ms 20 ms −
(Billings and van Rossum, 2009)w 0.005 1 2.28 20 ms 20 ms −
(Izhikevich et al., 2004) 0.004 1 1 15 ms 20 ms −
(Izhikevich, 2006) 0.1 1 1.2 20 ms 20 ms −
(Izhikevich, 2007b) 1 1 1.5 12.5 ms 12.5 ms −
(Gütig et al., 2003) 1 (?) 1.05 (?) ? ? − (?)
(Gilson et al., 2010)
(Morrison et al., 2007) 0.1 1 0.11 20 ms 20 ms +
(Guyonneau et al., 2005) 1 1 20 ms 22 ms −
(Masquelier et al., 2008) 0.03125 1 0.85 16.8 ms 33.7 ms −
(Vogt and Hofmann, 2012) 0.03125 1 0.85 16.8 ms 33.7 ms −

Table A.1: STDP model parameters in the literature. λ scales A+ and A− equally, so is a learning rate.
See also Tables A.2 and A.3 and Section A.2.1.
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A.3 Figure Settings
A.3.1 Effect of Leak (Figures 2.5 and 2.6)
The model neuron used here was the one-dimensional Izhikevich neuron with default pa-
rameter settings. See Table A.5. Synaptic weights and input currents were chosen to
produce good example behaviour for didactics.

A.3.2 Synaptic Drift (Sketch 5.2)
The settings used in Sketch 5.2 can be seen in Table A.6, which includes a third set of
STDP settings for the central column in the figure.

A.3.3 Comparison Charts (Figures 5.6, 5.7, 5.14, 5.15)
Figures 5.6 and 5.7 show the effects of weight-dependent update bounding rules on un-
biased and biased STDP, respectively. While the weight dependence is only seen at the
range borders for additive bounding (column A), its effects are highly visible for one-sided
multiplicative (columns B,C) and interpolated, nearly-additive update rules (column D).

The first row of each figure plots each weight bounding rule from Equations 5.3 to
5.6. Red lines are used for the weight-dependent bound g+(w) on potentiating steps while
blue lines show g−(w) on depressing steps. Purple lines indicate balanced bounding rules
where g+(w) = g−(w). Underneath this, row 2 shows five realisations of effective STDP
rules under influence of weight dependent bounding for weights [1

6 ,
2
6 ,

3
6 ,

4
6 ,

5
6 ]. Note how

the effective shape of the STDP rule and especially the ratio between LTP and LTD
(for multiplicative rules) changes with the synaptic weight. Row 3 shows the gradient of
weight-dependent STDP updates within a timing window of [-50,50] ms over the full range
of possible synaptic weights. The colors show the size of update steps for a given weight and

window pairing g+(..) g−(..) attractor
(Bi and Poo, 2001, 1998) [−50, 50] ms (?) nn ? 1 w yes
(Froemke and Dan, 2002) [−100, 100] ms other ? ? ?
(Kistler and van Hemmen, 2000) nn 1 - w w yes
(Song et al., 2000) a2a
(van Rossum et al., 2000) nn 1 w yes
(Rubin et al., 2001)a ? 1 - w w yes
(Rubin et al., 2001)m
(Billings and van Rossum, 2009)n [−5τ−, 5τ+] ms ? 1 1 no
(Billings and van Rossum, 2009)w [−5τ−, 5τ+] ms ? 1 w yes
(Izhikevich et al., 2004) [−50, 50] ms other 1 1 no
(Izhikevich, 2006) [−50, 50] ms 1 1 no
(Izhikevich, 2007b) [−50, 50] ms 1 1 no
(Gütig et al., 2003) (1− w)µ wµ yes
(Gilson et al., 2010) (1− w)µ wµ weak
(Morrison et al., 2007) [−∞,∞] ms (?) a2a wµ1 wµ2 yes
(Guyonneau et al., 2005) [−∞,∞] ms (?) a2a ? 1 1 no
(Masquelier et al., 2008) [−7τ−, 7τ+] ms nn 1 1 no
(Vogt and Hofmann, 2012) [−50, 50] ms a2a sin(πw) sin(πw) no

Table A.2: STDP model parameters in the literature. Spike consideration rules (“pairing”) are all-to-all
(a2a), nearst neighbour (nn), or “other”. See also Tables A.1 and A.3 and Section A.2.1.
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Figure generated using function StaticClassBGDisplay.showDelayPlots (StaticClassBGDisplay.m) from git revision d14b823e8f0416aa989d2028c50496908cce4e5d (branch simulationRuns) 
and supporting files from revision 9a3b72cf80d520d72beba1b57a9e232ed1b47a86 (branch simulationRuns) in repository "git@git.assembla.com:simonscnstuff.git" 
(file names: StaticClassBGAnalyse.m ) 
from data source with unique identifier "parsim2014−8−26_20.19.55_results_psim1" 
Filename of this figure: "showDelayPlots_parsim2014−8−26_20.19.55_results_psim1.*"  
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Figure A.5: Response delay plots of 50 neurons that have each learnt to respond to exactly one of five
patterns. Y-axis signals response delay in milliseconds. Short latencies are indicated in red. Only ten
neurons were shown for avoiding clutter, but every neuron became responsive to exactly one pattern.
No mutual inhibition was used. Patterns were generated with method D, while the order of firing was
randomly permuted for each of the five patterns (Section 7.1.5). Simulation parameters were tracked in
–local:parsim2014-8-26_20.19.55_results– and discussed in Appendix A.1.3 and A.3.6.

remarks
(Bi and Poo, 2001, 1998) experimental paper ;
(Froemke and Dan, 2002) experimental paper ; pairing: “spike suppression”
(Kistler and van Hemmen, 2000)
(Song et al., 2000)
(van Rossum et al., 2000)
(Rubin et al., 2001)a
(Rubin et al., 2001)m
(Billings and van Rossum, 2009)n
(Billings and van Rossum, 2009)w attractor is just below w = 0.5
(Izhikevich et al., 2004) pairing: “last opposite spike”
(Izhikevich, 2006)
(Izhikevich, 2007b) low (1Hz) input rate, so a2a ≈ nn.
(Gütig et al., 2003) µ scales between "additive" and "multiplicative" STDP
(Gilson et al., 2010) attractor is very weak because µ << 1
(Morrison et al., 2007) µ1 = 0.4 and µ2 = 1. Attractor vanishes for µ1 == µ2
(Guyonneau et al., 2005) no clipping, but sigmoid mapping to [0,1] for projection
(Masquelier et al., 2008) standard additive STDP with clipping to [0,1]
(Vogt and Hofmann, 2012) own publication

Table A.3: STDP model parameters in the literature. Additional remarks. See also Tables A.1 and A.2
and Section A.2.1.

179



Figure generated from data storage EMBEDDED using function generateimageTypicalEffectiveWeightDistributions (generateimageTypicalEffectiveWeightDistributions.m) from git revision 9bddbf120dd535a471a9bb50c03c39243ff89b55 .

0 θ 1

baseline

0 θ 1

lower DA

0 θ 1

low DA

0 θ 1

high DA

0 θ 1

higher DA

0 θ 10 θ 1 0 θ 1 0 θ 1 0 θ 1

0 θ 10 θ 1 0 θ 1 0 θ 1 0 θ 1

0 θ 1

DA = 1
0 θ 1

DA = 0.2
0 θ 1

DA = 0.7
0 θ 1

DA = 1.3
0 θ 1

DA = 1.6

Figure generated from data storage EMBEDDED using function generateimageTypicalEffectiveWeightDistributions (generateimageTypicalEffectiveWeightDistributions.m) from git revision 9bddbf120dd535a471a9bb50c03c39243ff89b55 .
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Figure generated from data storage EMBEDDED using function generateimageTypicalEffectiveWeightDistributions (generateimageTypicalEffectiveWeightDistributions.m) from git revision 9bddbf120dd535a471a9bb50c03c39243ff89b55 .
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Figure A.6: Effective weights for different values of θ than in Figure 8.1 (p. 126). Range is always r = 5
(Equations 8.3 and 8.4). Top: θ = 0.4 . Middle: θ = 0.3 . Bottom: θ = 0.2 . Note that at baseline levels
of DA (DA = 1), effective weights always remain unchanged from baseline weights.
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variable value
λ 1/32
A+ 1
A− 1
τ+ 20 ms
τ− 20 ms
g+(w) Equation 5.9
g−(w) Equation 5.9

(a) Unbiased STDP

variable value
λ 1/32
A+ 1
A− 0.85
τ+ 16.8 ms
τ− 33.7 ms
g+(w) Equation 5.9
g−(w) Equation 5.9

(b) Biased STDP

Table A.4: Default settings when referring to unbiased and biased STDP. Weight-dependent scaling func-
tions g+(w) and g−(w) only apply when not otherwise noted in the text.

variable value
a 0.02
b 0.2
c -65
d 2
Vinit -65
Uinit -13

(a) Standard (two-dimensional)

variable value
a n.a.
b n.a.
c -65
d n.a.
Vinit -65
U -13 (constant)

(b) One-dimensional

Table A.5: Default parameters for the Izhikevich neuron (Izhikevich, 2003, 2004) used throughout this
work. If not otherwise mentioned, the one-dimensional version is used.

variable value
λ 1/32
A+ 1
A− 1
τ+ 20 ms
τ− 20 ms
(a) Unbiased (U)

variable value
λ 1/32
A+ 0.85
A− 1
τ+ 20 ms
τ− 20 ms

(b) Negative bias (B1)

variable value
λ 1/32
A+ 1
A− 0.85
τ+ 16.8 ms
τ− 33.7 ms

(c) Negative bias (B2)

Table A.6: Settings for the three STDP rules shown in Sketch 5.2.
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Figure A.7: Input data for weight bounding test simulations. Most input units fire uncorrelated poisson-
distributed spikes, but two small groups of units also present polychronous patterns either shortly before
(first group) or shortly after (second group) each regularly occurring postsynaptic spike (indicated by
orange dashed line). For more information see Appendix A.3.3. Data taken from simulation, colours
added manually.
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pairing difference, where red/yellow is used for potentiating steps, blue/cyan for depressing
steps, and green for very small or zero-size update steps. Note how “multiplicative” rules
are much less balanced than additive or additive-like rules. In row 4, random pairings
(uniformly distributed) of spikes arriving at a given synapse visualise the relation of large
to small weight update steps, and the grainy nature of stochastic pairings for stochastically
firing input or output neurons. The weight-dependent tendency for overall potentiation
vs. depression (synaptic drift) can also be vaguely noticed here. Row 5 gives a closer view
of overall drift tendency, or mean weight update, from row 4 (black line) together with
standard deviation (yellow line, scaled by 1

5). Potentiating drift (positive sign of mean
step size) is shown as red area and depressing drift (negative sign of mean step size) is
shown as blue area. Mean values were computed for each of 200 weight bins from 20000
random pairings per bin.

I ran example simulations for each bounding rule that show the development of synap-
tic weights over the time course of 1200 seconds (20 minutes). 3200 presynaptic inputs
produced stochastic, poisson-distributed spikes while one postsynaptic unit was controlled
to regularly fire at exactly 1 Hz. In addition, two groups of 600 inputs each were overlaid
with additional spikes happening exactly before (55ms to 5ms) and exactly after (-5ms to
-55ms) each postsynaptic spike. The arrangement of inputs can be seen in Figure A.7.
Row 6 of Figures 5.6 and 5.7 shows an example simulation with the given STDP rule
(unbiased or biased ) for each weight bounding rule and a learning rate around 0.03 as
used in (Guyonneau et al., 2005) and 1ms time step. Weight distribution histograms of
all 3200 weights for each second of simulation are shown as rows of grey pixels (back-
ground). Example biased random walks/drifts of ten inputs per group from causally (red)
and anti-causally (blue) firing unit groups are overlaid to show the divergence of synapses
for structured inputs relative to unstructured inputs. Note that the two groups with fixed-
order pairings also contain mostly random events, hence there is a competition between
random pairings and ordered pairings in these synapses. Row 7 shows the resulting distri-
bution histograms after 20 minutes of simulation. Synaptic weights to uncorrelated inputs
(relative to postsynaptic firing) that do not belong to any of the two input groups are
shown in grey, weights to units in groups with positively shifted correlated inputs (“usu-
ally before”) shown in red, and weights to inputs with a dominance in negatively shifted
correlations to postsynaptic firing (“usually after”) shown in blue. Histograms stacked in
upward order: grey → red → blue.

A.3.4 Detection Features (Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8)
Simulation parameters for Figures 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6 are given in Tables A.9 -
A.12. The parameters of Figures 6.7 and 6.8 are given in Table A.13 and A.14, respectively.
The source code function and git revision that produced the figures can be seen in each
figure’s lower left corner in light grey (zoom in via electronic version of this document).

A.3.5 STDP and pattern families (Figures 6.12 - 6.22, 6.25, A.1, A.2)
This appendix subsection lists the simulation settings used to generate Figures 6.12, 6.13,
6.15, 6.14, 6.17, 6.16, 6.19, 6.18, 6.21, 6.20, 6.23, 6.22, 6.25, A.1, and A.2.

Common Settings

Most simulations described here use identical settings. Table A.15 shows the settings
used in Figures 6.13 and 6.12, which also serve as the default values for all other figures
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variable value
Nsmooth_total 600 units
wweak 0.021
wmedium 0.5
wstrong 1.0

Table A.7: Settings for simulations of Figures 6.1, 6.3 and 6.5. More settings in Tables A.9, A.10 and A.11.

variable value
Nbinary_total 600 units
Nfew 13 units
Nsome 300 units
Nmany 600 units

Table A.8: Settings for simulations of Figures 6.2, 6.4 and 6.6. More settings in Tables A.9, A.10 and A.11.

variable value
pattern family synchronous
pattern type n.a.
pattern shape n.a.
pattern duration 1 ms
inter-pattern spacing 199 ms

Table A.9: Additional settings for simulations of Figures 6.1 and 6.2. More settings in Table A.12.

variable value
pattern family correlated
pattern type n.a.
pattern shape n.a.
pattern duration 100 ms
inter-pattern spacing 100 ms

Table A.10: Additional settings for simulations of Figures 6.3 and 6.4. More settings in Table A.12.

variable value
pattern family polychronous
pattern type A
pattern shape ordered (one-sided)
pattern duration 100 ms
inter-pattern spacing 100 ms

Table A.11: Additional settings for simulations of Figures 6.5 and 6.6. More settings in Table A.12.

variable value
Ninputs 2000 units
pattern-presenting input group size 600 units
background noise source homogeneous poisson 0.2 Hz
number of distinct patterns 1
projection multiplier 3000/Ninputs

wnonpresenting 0.0
Noutputs 1 model neuron
output neuron model default Izhikevich-1D

Table A.12: Common settings for all simulations of Figures 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6.
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variable value
Ninputs 2000 units
pattern-presenting input group size 600 units
background noise source homogeneous poisson 0.2 Hz
number of distinct patterns 5
pattern family polychronous
pattern type A
pattern shape ordered (two-sided)
pattern duration 100 ms
inter-pattern spacing 100 ms
projection multiplier 6000/Ninputs

wother 0.0
wnotconnected 0.0
wconnected 1.0
Nconnected 18 units
Noutputs 100 model neurons
output neuron model default Izhikevich-1D

Table A.13: Parameter settings for the simulation of Figure 6.7.

variable value
Ninputs 2000 units
pattern-presenting input group size 600 units
background noise source homogeneous poisson 25 Hz
number of distinct patterns 5
pattern family polychronous
pattern type D
pattern shape ordered (two-sided)
pattern duration 100 ms
inter-pattern spacing 100 ms
projection multiplier 6000/Ninputs

wother 0.0
wnotconnected 0.0
wconnected 1.0
Nconnected 18 units
Noutputs 100 model neurons
output neuron model default Izhikevich-1D

Table A.14: Parameter settings for the simulation of Figure 6.8.
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described here.
The projection multiplier regulates the effect that each arriving presynaptic spike can

have on the postsynaptic membrane potential. This accounts for the fact that synaptic
weights are normalised to the range w ∈ [0, 1] throughout this work. The projection
multiplier can also be used as a static handle to manually down-regulate the maximum
effect incoming spikes can have on the postsynaptic membrane when the STDP scaling
rule being used produces a large number of strong synapses. Without adjustments to the
projection multiplier in Tables A.20, A.21, and A.22, the STDP variants presented there
would do even worse.

Settings for Figures 6.13 and 6.12

As mentioned above, Figures 6.13 and 6.12 directly use the settings shown in Table A.15.
The creation of pattern type A is described in Section 7.1.1 (p. 104). During the 100
ms of pattern presentation, each of the 600 pattern-presenting input units (group A) fires
exactly once, in addition to the background noise already produced by the homogeneous
poisson process. This increases the firing rate of the input layer by 3 Hz during pattern
presentation. Other pattern generation types that do not affect firing rate are also shown
in Section 7.1.1, but here a pattern-dependent change of firing rate is more close to the
following methods of input generation.

Settings for Figures 6.14 and 6.15

Synchronous input pattern are created by simply decreasing the duration of patterns to
the simulation step size of 1 ms. This produces a synchronous “action potential” in 600
of the 2000 total input units, leading to a strong spike in the input group’s firing rate.
Inter-pattern spacing is adjusted accordingly. See Table A.16 for non-default parameters.

Settings for Figures 6.16 and 6.17

Correlated input patterns can be generated by a common increase of firing rate at the
beginning of each pattern and a common decrease of firing rate at the end of each pattern.
While each input unit of group A still fires exactly once, the timing is now random within
each presentation of a pattern. The only reliable timing that remains in the simulation is
therefore the start and end of each pattern presentation. See Table A.17 for non-default
parameters.

Settings for Figures 6.18 and 6.19

We can also remove the last piece of reliable timing information from the inputs. By
removing pattern timing completely, STDP can only use differences in firing rate to guide
plasticity. See Table A.18 for non-default parameters.

Settings for Figures 6.20 and 6.21

An alternative way of implementing correlated inputs is to use a inhomogeneous poisson
process. The Ornstein-Uhlenbeck is a simple biased random walk process that returns to
some predefined central value. As the drifting value here is the target firing rate of the
spike-generating poisson process, we want it to always return to some goal (10 Hz) instead
of performing a truly random walk. See Table A.19 for non-default parameters.
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variable value
Ninputs 2000 units
input unit group A 600 units
input unit group B 1400 units
group A noise source homogeneous poisson 10 Hz
group B noise source homogeneous poisson 10 Hz
pattern onset time 450 ms
pattern family polychronous
pattern type A
pattern shape ordered (one-sided)
pattern duration 100 ms
inter-pattern spacing 100 ms
number of distinct patterns 1
projection multiplier 3000/Ninputs

Noutputs 1
output neuron model Izhikevich-1D
winitCenter 0.15
winitRange 0
τhebbianDecay 0 ms

Table A.15: Default settings for all simulations shown in the figures described in A.3.5, unless otherwise
noted. Common STDP parameters are shown in Table A.4.

variable value
pattern family synchronous
pattern type n.a.
pattern duration 1 ms
inter-pattern spacing 199 ms

Table A.16: Non-default settings for the simulations of attractor-less STDP with synchronous inputs shown
in Figures 6.14 and 6.15.

variable value
pattern family correlated
pattern type n.a.
pattern duration 50 ms
inter-pattern spacing 150 ms

Table A.17: Non-default settings for the simulations of attractor-less STDP with correlated inputs shown
in Figures 6.16 and 6.17.

variable value
group A noise source homogeneous poisson 30 Hz
group B noise source homogeneous poisson 10 Hz
pattern onset time inf
pattern family n.a.
pattern type n.a.
pattern shape n.a.
pattern duration n.a.
inter-pattern spacing n.a.

Table A.18: Non-default settings for the simulations of attractor-less STDP with correlated inputs shown
in Figures 6.18 and 6.19.
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Settings for Figures 6.22 and 6.23

The previous use of attractor-less STDP should be contrasted to the use of attractor-based
STDP. As attractor-based STDP with very weak attractors or with attractors very close to
the minimum weight (w = 0) act very similar to attractor-less STDP, they would provide
a weak contrast here. I therefore choose a commonly used weight-dependent scaling rule
for STDP that has a strong centrally located attractor (see Chapter 5). See Table A.20
for non-default parameters.

Settings for Figure 6.25

Traditional Hebbian plasticity does not care about spike order. I emulate this by making
A− negative, setting A+ = −A− in Equation 5.1. As all activity-related plasticity is
now potentiating, I use decaying synapses that decay towards w = 0 with a time constant
τhebbianDecay. The reason for using decaying synapses is explained in the main text (Section
6.2.4). The time constant was manually chosen to sufficiently counteract the timing-
dependent potentiation, but could likely be automatically computed through consideration
of network size, projection multiplier, firing rate of input units, and membrane excitability
of the postsynaptic neuron. As this would likely not much change the principal message
of Figure 6.25, I did not fine-tune this time constant. See Table A.21 for non-default
parameters.

Settings for Figures A.2 and A.1

On a side note, I also compare attractor-less weight-dependent STDP rules as in Equation
5.9 to the common “additive” STDP rule shown in Equation 5.3. The behaviour of “ad-
ditive” STDP when given polychronous input patterns as shown in Figures A.2 and A.1
is qualitatively similar to that of Figures 6.13 and 6.12. All figures show some degree of
tuning to the start of repeating patterns (Section 6.2). While unbiased STDP also shows
an increase of many (Figure 6.13) or most (Figure A.2) connections to background units,
biased STDP is successful in producing a robust sparse receptive field that can reliably
detect pattern occurrence in both figures 6.12 and A.1. See Table A.22 for non-default
parameters.

A.3.6 Multiple Patterns (Figure 6.27 and supplementary Figures A.3, A.4, A.5)
Figure 6.27 uses the same settings as noted in Table A.15, except for the changes shown
in Table A.23. Figure A.3 also uses the same settings as noted in Table A.15, except for
the changes shown in Table A.24. Figure A.4 uses the same settings as defined in Table
A.15, except for using pattern type D for 5 patterns and presenting randomly permuted
patterns. See Table A.25.

Figure A.5 uses the same settings as Figure A.4, except for using 50 postsynaptic
neurons instead of 1, and using Section A.4.1 for randomising early synaptic weights.

A.3.7 Pattern Generation (Figures 7.1, 7.2, 7.3 and 7.4 )
The source code for generating input patterns can be found in the class file
ClassBGLayerFluctuatingNoiseToPolychronousPatterns.m.
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variable value
group A noise source inhomogeneous (ornstein-uhlenbeck) poisson 10 Hz
group B noise source homogeneous poisson 10 Hz
pattern onset time inf
pattern family n.a.
pattern type n.a.
pattern shape n.a.
pattern duration n.a.
inter-pattern spacing n.a.
θOU 0.05
σOU 4.5

Table A.19: Non-default settings for the simulations of attractor-less STDP with correlated inputs shown
in Figures 6.20 and 6.21.

variable value
g+(w) Equation 5.5
g−(w) Equation 5.5
projection multiplier 1000/Ninputs

Table A.20: Non-default settings for the simulations of attractor-less STDP with correlated inputs shown
in Figures 6.22 and 6.23.

variable value
λ 1/32
A+ 1
A− -1
τ+ 20 ms
τ− 20 ms
g+(w) Equation 5.3
g−(w) Equation 5.3
projection multiplier 1000/Ninputs

τhebbianDecay 160 ms

Table A.21: Non-default settings for the simulations of attractor-less STDP with correlated inputs shown
in Figure 6.25.

variable value
g+(w) Equation 5.3
g−(w) Equation 5.3
projection multiplier 1000/Ninputs

Table A.22: Non-default settings for the simulations of attractor-less STDP with correlated inputs shown
in Figures A.1 and A.2.

variable value
pattern type C
pattern shape ordered (two-sided)
number of distinct patterns 5
STDP rule Table A.6c
g+(w) Equation 5.3
g−(w) Equation 5.3

Table A.23: Settings of Figure 6.27 that are different from those used in Table A.15.
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A.3.8 Polychronous Distance Metric (Figure 7.7)
The pseudocode for the distance metric that respects the higher importance of early parts
of polychronous patterns is shown in Algorithm 1 (p. 190). For the actual implementation,
see the MATLAB function chapter203RobustParams_PatternSimilarity.m in the git
repository.

A.3.9 Multiple Neurons (Figures 7.8, 7.10 and 7.11)
The overview figure in which each postsynaptic neuron received completely independent
inputs (Figure 7.8) was formed from simulation results in which each of 50 postsynap-
tic neurons received 2000 inputs. It was implemented here as an input layer of 100000
input units with a connection matrix such that each postsynaptic neuron received non-
overlapping inputs from exactly 2000 units. Due to the slow simulation speed, only 50
neurons were used here. Alternatively, a simulation with 2000 input units and one output
neuron could have been repeated 50 times to produce the same figure. See Table A.26
for a summary of parameters. Figure 7.10 also used zero onset lag as in Figure 7.8. But
different from Figure 7.8, Figure 7.10 postsynaptic neurons did not receive independent
inputs. Instead, all postsynaptic neurons receive the same inputs, including random fluc-
tuations of input population background rate. See Table A.27 for parameters. Figure 7.11
uses nearly equal settings to Figure 7.10, except that postsynaptic neurons began to be
plastic with 1 second offset each. See Table A.28.

A.3.10 Reinforcing Specific Pattern Ranges (Figures 9.3 and 9.4)
Each row of Figure 9.3 summarises multiple simulations of above-baseline dopamine. Apart
from the changed dopamine settings, all other simulation settings are identical. See Table
A.29 for parameters that differ from the defaults of Table A.15.

Each row of Figure 9.4 summarises multiple simulations of below-baseline dopamine.
Apart from the changed dopamine settings, all other simulation settings are identical. See
Table A.30 for parameters that differ from the defaults of Table A.15.

A.3.11 Exploring DA timing effects (Figures 10.1, 10.2, 10.3 and 10.4)
Simulation settings for Figure 10.1 are shown in Tables A.31 and A.32. Simulation settings
for Figure 10.2 are shown in Tables A.33 and A.34. Simulation settings for Figure 10.3 are
shown in Tables A.35 and A.36. Simulation settings for Figure 10.4 are shown in Tables
A.37 and A.38.

A.3.12 Self-regulation of DA (Figure 10.6)
In Figure 10.6, DA level is finally controlled by the number of spikes arriving at the SNc
at any given time. See Table A.39 for special simulation parameters. The implementation
of the dopamine-defining nonlinearity can be seen in source code file
ClassBGLayerSpikesToReinforcementFeedback.m .

A.4 Other Settings
A.4.1 Activity-independent synaptic growth
See source code in the following functions for implementation details:
ClassBGWeights.randomwalkWeightIncrease()
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variable value
pattern type A
pattern shape ordered (one-sided)
number of distinct patterns 5
STDP rule Table A.6c
g+(w) Equation 5.3
g−(w) Equation 5.3

Table A.24: Settings of Figure A.3 that are different from those used in Table A.15.

variable value
pattern type D
pattern shape unordered
number of distinct patterns 5

Table A.25: Settings of Figure A.4 that are different from those used in Table A.15.

Algorithm 1: Computation of Distance Metric for Polychronous Patterns
Input: window size m
foreach pid ← pattern do

Data: theEarlySet ← set of units that fire within first m timebins in pid
foreach oid ← other pattern do

foreach wpos ← shifting window postition do
count how many units of theEarlySet are active within the shifted
window in pattern oid;

end
Data: maxMatch ← maximum over window shift positions

end
Data: avgMaxMatch ← average maximum match over all other patterns
(normalise via ratio between avgMaxMatch and number of units in theEarlySet)

end
Result: avgAvgMaxMatch ← average over all patterns
(repeat for more averaging);

variable value
group A noise source homogeneous poisson 15 Hz
group B noise source homogeneous poisson 15 Hz
pattern type B
pattern shape ordered (two-sided)
number of distinct patterns 40
Noutputs 50
independent inputs yes
plasticity onset lag 0 s
weight random walk rate 0.001 (A.4.1)

Table A.26: Non-default settings for all simulations shown in Figure 7.8. Compare default parameters
given in Table A.15.
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variable value
group A noise source homogeneous poisson 15 Hz
group B noise source homogeneous poisson 15 Hz
pattern type B
pattern shape ordered (two-sided)
number of distinct patterns 40
Noutputs 99
independent inputs no
plasticity onset lag 0 s
weight random walk rate 0.001 (A.4.1)

Table A.27: Non-default settings for all simulations shown in Figure 7.10. Compare default parameters
given in Table A.15.

variable value
group A noise source homogeneous poisson 15 Hz
group B noise source homogeneous poisson 15 Hz
pattern type B
pattern shape ordered (two-sided)
number of distinct patterns 40
Noutputs 99
independent inputs no
plasticity onset lag 1 s
weight random walk rate 0.001 (A.4.1)

Table A.28: Non-default settings for all simulations shown in Figure 7.11. Compare default parameters
given in Table A.15.

variable value
group A noise source homogeneous poisson 15 Hz
group B noise source homogeneous poisson 15 Hz
pattern type B
pattern shape ordered (two-sided)
number of distinct patterns 40
Noutputs 100
independent inputs no
plasticity onset lag 1 s
inner DA range 0.1
outer DA range 0.2

Table A.29: Non-default settings for all simulations shown in Figure 9.3. Compare default parameters
given in Table A.15.
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variable value
group A noise source homogeneous poisson 15 Hz
group B noise source homogeneous poisson 15 Hz
pattern type B
pattern shape ordered (two-sided)
number of distinct patterns 40
Noutputs 100
independent inputs no
plasticity onset lag 1 s
inner DA range 0.1
outer DA range 0.2

Table A.30: Non-default settings for all simulations shown in Figure 9.4. Compare default parameters
given in Table A.15.

variable value
group A noise source homogeneous poisson 15 Hz
group B noise source homogeneous poisson 15 Hz
pattern type C
pattern shape ordered (two-sided)
number of distinct patterns 1
Noutputs 100
independent inputs no
plasticity onset lag 1 s
τDA 0 ms
start of DA variations 1st second
end of DA variations 280th second
DA timing at start of pattern -10 ms
DA timing at end of pattern +50 ms
non-baseline DA level 0.0

Table A.31: Non-default settings for all simulations shown in Figure 10.1a-f. Compare default parameters
given in Table A.15.

variable value
start of DA variations 90th second
end of DA variations 280th second
DA timing at start of pattern -10 ms
DA timing at end of pattern +50 ms

Table A.32: Non-default settings for all simulations shown in Figure 10.1g-l that are not already defined
in Table A.31. Compare default parameters given in Table A.15.

variable value
start of DA variations 1st second
end of DA variations 280th second
DA timing at start of pattern +10 ms
DA timing at end of pattern +50 ms

Table A.33: Non-default settings for all simulations shown in Figure 10.2a-f that are not already defined
in Table A.31. Compare default parameters given in Table A.15.
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variable value
start of DA variations 90th second
end of DA variations 280th second
DA timing at start of pattern +10 ms
DA timing at end of pattern +50 ms

Table A.34: Non-default settings for all simulations shown in Figure 10.2g-l that are not already defined
in Table A.31. Compare default parameters given in Table A.15.

variable value
start of DA variations 1st second
end of DA variations 280th second
DA timing at start of pattern +50 ms
DA timing at end of pattern +50 ms

Table A.35: Non-default settings for all simulations shown in Figure 10.3a-f that are not already defined
in Table A.31. Compare default parameters given in Table A.15.

variable value
start of DA variations 90th second
end of DA variations 280th second
DA timing at start of pattern +50 ms
DA timing at end of pattern +50 ms

Table A.36: Non-default settings for all simulations shown in Figure 10.3g-l that are not already defined
in Table A.31. Compare default parameters given in Table A.15.

variable value
start of DA variations 90th second
end of DA variations 280th second
DA timing at start of pattern +10 ms
DA timing at end of pattern +50 ms
non-baseline DA level 0.3

Table A.37: Non-default settings for all simulations shown in Figure 10.4a-f that are not already defined
in Table A.31. Compare default parameters given in Table A.15.

variable value
start of DA variations 90th second
end of DA variations 280th second
DA timing at start of pattern +10 ms
DA timing at end of pattern +50 ms
non-baseline DA level 0.5

Table A.38: Non-default settings for all simulations shown in Figure 10.4g-l that are not already defined
in Table A.31. Compare default parameters given in Table A.15.
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ClassBGWeights.newbornWeightIncrease()
ClassBGWeights.updateTrainedness()

A.4.2 Simulation time step size
All computer simulations were performed with 1ms time step. Izhikevich neuron models
were updated twice per timestep with half scale, as suggested by original example code of
(Izhikevich, 2003).

variable value
τDA 100 ms
start of DA variations 1st second
end of DA variations 280th second
DA timing at start of pattern feedback-dependent
DA timing at end of pattern feedback-dependent
non-baseline DA level feedback-dependent

Table A.39: Non-default settings for all simulations shown in Figure 10.6a-f that are not already defined
in Table A.31. Compare default parameters given in Table A.15.
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Appendix B

Simulator Development

As the presented work explored many new concepts or new combinations of known con-
cepts, a high flexibility was required of any neural simulation environment that was to
be used in the process. After evaluation of some neural simulation software packages,
and comparing the overhead work needed to adjust them to my needs, I decided to use
a prototyping language for my own software development instead. I chose to implement
my own simulation code in MATLAB, as this environment presents a tolerable balance
between flexibility and predefined library functions to quickly implement new ideas at the
expense of execution time.

B.1 Simulator Structure
My simulator code consists of the three main classes

• AbstractClassBGLayer.m

• ClassBGWeights.m

• ClassBGNucleiNetwork

which all inherit from MATLAB’s handle class to allow their objects to be passed around
within MATLAB without copying. AbstractClassBGLayer.m is then extended by any of
the following classes to produce layer objects that contain state variables and functions to
actually run the simulation:

• ClassBGLayerDirect.m

• ClassBGLayerIzhikevich.m

• ClassBGLayerIzhikevich1D.m

• ClassBGLayerRateToRegularSpikes.m

• ClassBGLayerRateToSimultaneousSpikes.m

• ClassBGLayerRateToUncertaintyValue.m

• ClassBGLayerRLVariablesToChainedNoisySpikePatterns.m

• ClassBGLayerRLVariablesToCurvedNoisySpikeChain.m

• ClassBGLayerRLVariablesToShuffledNoisySpikeChain.m
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• ClassBGLayerFluctuatingNoiseToPolychronousPatterns.m

• ClassBGLayerSpikesToReinforcementFeedback.m

• ClassBGLayerSpikesToRateThreshold.m

Any two “layers” can then be connected through the creation of a ClassBGWeights.m
object, and grouped in a network via ClassBGNucleiNetwork, which also provides house-
keeping functions such as recording of membrane history for later analysis. Simulations are
described in separate simulation scripts for each scientific question that is to be explored,
and additional classes help in recurring visualisation tasks.

All files are tracked in a Git version control repository1, and frequent changes are also
committed to a specific branch of this repository whenever a new simulation is started
on a remote server (see Appendix C). This ensures that simulation results are always in
sync with a committed Git revision that produces them. The standard visualisation func-
tions use common functions in PublicationSettingsAndHelpers_simulationRuns.m or
similar publication-specific settings to embed a tiny watermark with the originating Git
revision, figure-generating source code file name, dependent functions, and any additional
data sources in vector image files they create. See the lower left corner of any simulation
figure in the electronic version of this document for an example.

B.2 Performance
Simulation performance was optimised using the MATLAB profiling functionality. The
execution time of simulations highly depended on network size and total simulated time.
Code optimisations via vectorisation reduced the initial runtime of a typical 10-minute
biological time simulation with activated STDP and dopamine effects from days down to
around 30 minutes execution time.

While MATLAB proved to be highly useful for fast exploration of new ideas, further
large improvements in simulation speed are likely only possible by migrating the code to
a more performance-oriented programming language and/or platform.

B.3 Other Simulator Software
Other simulator software that is commonly used for neural modelling includes:

• GENESIS - General Neural Simulator System. This software package was writ-
ten for modelling multi-compartmental neurons in a Hodgkin-Huxley-type manner.
While the software has been extended to support both more complex levels of detail
(e.g. ion channel mechanics) and simpler point neurons, the plasticity mechanisms
of the GENESIS simulator are rather rudimentary and the source code is said to be
hardly maintainable.

• Neuron - The Neuron simulator is very similar to GENESIS in its intended level
of detail. As it was also developed for multi-compartmental simulations of single
neurons, it also appears as unsuited for highly plastic network simulations as the
GENESIS simulator.

1The repository can be found at git@git.assembla.com:simonscnstuff.git
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• NEST - The Neural Simulation Tool is aimed at large scale simulations of many
point neurons, and may therefore be an interesting candidate for extension by my
new paradigms. However, it does not (yet) support the features I needed for this
work (e.g. generation of polychronous input patterns or neuromodulation of synaptic
transmission) and was therefore not used for this work. However, now that the
mechanisms shown in this work have been established, an efficient implementation
of the missing features in NEST’s C++ code may be appropriate.

• Brian - The brian simulator is written in scientific Python, and is advertised as
promoting the flexible exploration of ideas with a simulator that does not get in the
way of the user. As mentioned above, when given the choice between a prototyping
language and a tool written in another prototyping language, I chose to use the
language directly. However, the Brian simulator implements some very neat ideas
about neural modelling and should be given increased attention in future work.

• Emergent - The simulator software used by (Frank, 2006) and others uses a strong
graphical approach to neural network simulation. It may therefore have some didac-
tical advantage for teaching. On the other hand, it does not seem to be widely used
outside of the labs that develop it.

• GeNN - A fairly new entrance to the ever-changing group of neural simulators is
GeNN. This GPU enhanced Neural Network simulator uses Nvidia GPUs to run
neural network simulations. It may be interesting to test the performance in runtime
versus programming time for this new class of neural simulators.

This list is by no means complete. More overview pages can be found online at:

• http://software.incf.org/software?getTopics=Large+scale+modeling

• http://www.cnsorg.org/software

• https://grey.colorado.edu/emergent/index.php/
Comparison_of_Neural_Network_Simulators

• http://en.wikipedia.org/wiki/Neural_network_software#Research_simulators
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Appendix C

Parameter & Results Tracking

Figure C.1: Main View.

The large number of exploratory computer simulations performed during this work needed
to be tracked in an organised manner. I therefore designed and implemented a “Simu-
lation Manager” software package in the Python programming language (v2.7), with an
HTML/CSS/Javascript based frontend. Features include:

• Automatic GIT version tracking of both simulation parameters and development
code of the simulator software.

• Graphical user interface for entering the topic of / questions asked in new simulations
with automatic highlighting of changed parameters (see Figure C.2).

• Dropdown choice of simulation server, with automatic gathering of load per server
before starting new simulations (Figure C.2).

• Automatic check-in and push of GIT changes to any web service via SSH, remote
login to the selected simulation server, remote GIT pull of changes to selected server,
and initiation of remote execution of simulations on the remote server.
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Figure C.2: “New Simulation” screen.

• Overview list of all simulation experiments, with quick view of simulation topic,
result comments, simulation status, size on server disks, and time of initialisation
(Figure C.1).

• Detailed view of simulation progress and simulation results, with screen output
stream and error stream automatically downloaded from server, as well as automatic
download and thumbnail generation of any figures generated by the simulation code.
The details view also again lists the GIT differences again for later reference, and
summarises collected runtime parameters of the server environment that was used
for a given simulation (Figure C.3).

• Option to enter comments and thoughts on any simulation as a memory support
for future reference (Figure C.3). Implemented via the GIT notes feature. This
means that all relevant information on simulation topic and result comments are
also available via any standard GIT browser that supports the display of GIT notes.

• Figure View. Automatically downloaded figures can either be viewed inline with
the main details view of a given simulation, or opened full-screen (e.g. in a new
browser tab) for in-depth analysis of visualised simulation results. The figure view
(Figures C.4 and C.5) organises downloaded figures into a large table with snapshot
figures of progressing stages of simulation in the columns, and parallel repetitions in
the (major) rows. Within each repetition and time snapshot, multiple visualisation
figures can contain multiple views on specific observed parts of a simulation.

• Regular Expressions can be used to limit the display of snapshot figures (Figure
C.4). This is especially useful when viewing multiple downloaded figures in full size.

• Keyboard control. Many hotkeys have been defined via javascript to ease quick
navigation within the figures view and between multiple simulations in the web
browser. This vastly speeds up the exploration of simulation results by the user, and
allows an animation effect when browsing through multiple snapshots at once.
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Figure C.3: “Simulation Details” screen.
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Figure C.4: “Figures” screen with regular expressions.

Figure C.5: “Figures” screen without regular expressions but with overview figure.
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• Display of summary images. Downloaded figures that do not belong to a specific
parallel run of the simulation, but rather describe an overview of all repetitions of
a given simulation are displayed above the table of visualisation thumbnails in the
Figure View (Figure C.5).

• Portability. Due to the minimal system requirements, the Simulation Manager is
highly portable and can be accessed on many systems (see next item).

• Minimal system requirements: Only Python (e.g. v2.7), a minimal webserver (e.g.
lighttpd), GIT, and some optional packages for syntax highlighting are needed to
run the Simulation Manager software. Any web browser can be used for viewing,
while the best results have been achieved using the cross-plattform Google Chrome
web browser.

The source code is available as part of the software CD provided with this thesis, and
anytime upon request. An open source release with accompanying publication is planned.

C.1 Versioning-based Simulation Tracking
Each different simulation is committed as its own Git revision with unique hash identi-
fier, with a complete snapshot of the current state of the simulator code at the time of
simulation. Scientific questions and result comments are notes in Git’s commit messages
and notes feature, respectively. This approach minimised the danger of incompatible code
versions between parameter/simulation scripts and the executing simulation code.

C.2 Results Viewer
The existence of a central place to access all past simulations over multiple months and
years provided an indispensable resource for scientific discovery. The interaction between
the many dynamic properties involved in spatiotemporally structured spike patterns, plas-
ticity, and instantaneous neuromodulatory effects could not have been evaluated without
a clean way of planning, executing, viewing, annotating, and organising simulation results.

C.3 Comparison to other software
Recently, the development of a second simulation tracking framework has become public,
to be found at https://pythonhosted.org/Sumatra/.

While the Sumatra package shares some features with our software and implements
a direct Python interface, it does not provide a graphical interface for initiating new
simulations and instead relies on a terminal command for this. However, talks with people
close to Sumatra development have opened the possibility of integrating the two projects
in the future.
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Appendix D

DeepBrainRecorder Software

Figure D.1: UML Model of the DeepBrainRecorder.

For a cooperation with the Department of Neurology, University of Lübeck (Löffler et al.,
2008; Ramrath et al., 2009), I wrote a general-use biosignal recording and online pro-
cessing software for interfacing with various hardware for deep brain electrophysiological
recordings. The software was later also extended to incorporate input modules for a num-
ber of self-designed biological-data acquisition systems that were being designed at the
Institute for Signal Processing, University of Lübeck (Vogt et al., 2010a). The software
was also demonstrated in a live setup at the INCF Conference for Neuroinformatics (Vogt
and Hofmann, 2009).

D.1 Motivation
The institute for signal processing acquired four USBAmp biosignal amplifiers from g.tec
(http://www.gtec.at) for use both in single-cell electrophysiological recordings of spikes

203

http://www.gtec.at


Figure D.2: Screenshot (Windows) of the DeepBrainRecorder.

as well as for EEG and EKG recordings in the context of multimodal patient monitoring
(Klostermann et al., 2009; Mankodiya et al., 2010a,b,c, 2009; Vogt et al., 2010b). While the
early versions of the USBAmp software were well-suited for EEG-type data acquisition, the
much higher sampling rate and data throughput of electrophysiological spike recordings
could not be handled robustly by the shipped software that was bundled with the device,
although the hardware itself is capable of producing high data rates. Specifically, the
shipped software crashed after a few minutes whenever data acquisition was performed at
very high sampling rates.

A reduction of the sampling rate was not an option for use in single-cell spike record-
ings, and so we searched for alternative ways of using the hardware. Fortunately, the
USBAmp’s drivers also supported lower-level API access, and so Christ et al. (2010) wrote
a C-based Win32 driver interface and enabled direct communication with the driver. A
JNI interface to the Java programming language was also written, enabling a new user
interface to be written in a more high-level language with less proneness to memory leaks.

Input plugins for the new software quickly extended possible data sources beyond
g.tec’s USBAmp, and the software was henceforth used also as data acquisition and online
analysis and visualisation tool for many self-built data acquisition devices around the lab,
including the embedded biosignal acquisition prototype introduced in Appendix E.

D.2 Structure and Efficiency
The software was written in the Java programming language in order to use the features
of modern programming languages to avoid typical C-style errors that may lead of hard
to debug instabilities as was seen in the original, unreliable, software. Performance was
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Figure D.3: The DeepBrainRecorder in practice (Mac OSX).

monitored through the use of profiling tools, and garbage collection was kept at a mini-
mum through economical use of memory, especially by avoidance of repeated creation of
java objects. At full throughput of 14.7 Mbit/s maximum USBAmp sampling rate, the
implemented java software never used more than 2% of CPU load on an old 2003 Dell
Laptop to receive, analyse, display and store the data stream.

The UML class diagram of the software can be seen in Figure D.1. Screenshots of the
software running under windows and under Mac OSX are shown in Figures D.2 and D.3.

D.3 Recording, Analysis, and Storage Modules
The software uses a modular design to ease the creation of new recording, analysis, or
storage modules. Due to this feature, the software’s flexibility could be extended towards
providing a general online signal analysis and interpretation tool for the use in real-time
experiments.

The source code is located on the Hofmann Group’s revision control server and is
available upon request.
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Appendix E

Embedded Systems Development

Figure E.1: Development environment while testing SPI signal timing via DMA transfer over Texas In-
struments’ OMAP3530 McBSP bus.

As part of a multiparty cooperative project, I implemented various embedded prototype
systems that perform signal acquisition and online analysis within a low-power, low-
maintenance context. The target aim of the project was to produce the technology for a
future implantable intelligent deep brain stimulator device that would allow closed-loop
control of brain regions affected by neurodynamical disorders such as Parkinson’s Dis-
ease. While the processing hardware available for low-power execution of computationally
complex online analysis algorithms has seen a surge due to the rise of fast smart phone
processors in recent years, the bottleneck for building an intelligent deep brain stimulator
is not the processing hardware but rather the lack of existing knowledge about neurody-
namics of the brain regions in question. Still, I will present a very short overview of some
embedded hardware projects I have performed during the early developmental stages of
this text.
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E.1 Hardware and Development Environments
Development hardware I actively used includes the following development boards:

• DSK6713 - A stand-alone digital signal processing board containing a single floating-
point C6713 DSP core.

• OSK5912 - The first OMAP development board that was widely available to uni-
versities and the general public. The OMAP family of processors consists mostly of
multi-core designs where a DSP is combined with one or more ARM cores for divi-
sion of labour between real-time signal processing on the DSP core and preemptive
multitasking and asynchronous operation on the ARM core.

• LDK5912 - A proprietary OMAP board that uses the same processor as the OSK5912
but includes a touchscreen display. We reverse-engineered undocumented ports of
the LDK5912 to access the processor’s known McBSP signals to control and receive
data from an analog-to-digital converter that we connected to the LDK5912.

• BeagleBoard - Open-source hardware containing the 3rd-generation OMAP3530 pro-
cessor by Texas Instruments. This was the main development board of the lab for
some time, and can be seen in Figure E.1.

• Overo Gumstix - This proprietary hardware used the same processor as the open-
source BeagleBoard, but is much smaller in size.

• BeagleBone - Based on the ideas of the BeagleBoard, this open source hardware
development board is a low-cost alternative to many of the expensive boards above,
but does not contain a dedicated DSP processor. However, it does contain a GPU and
a dedicated ISP (image signal processing unit) as most current embedded application
processors now do.

The ADS1258 is a 24 Bit, fast channel cycling Delta-Sigma analog-to-digital converter.
Notable features include:

• 24 Bits, No Missing Codes

• Fixed-Channel or Automatic Channel Scan

• Fixed-Channel Data Rate: 125kSPS

• Auto-Scan Data Rate: 23.7kSPS/Channel

• Single-Conversion Settled Data

The software toolchain used during hardware development was based on the OpenEmbed-
ded open source project and is documented in the Hofmann Group’s internal wiki.

E.2 Linux Kernel Driver System
As only basic SPI ports without interrupt generating functionality were exposed to the
user space of the default embedded linux distribution at the time, I wrote a linux kernel
module to access the more powerful and flexible McBSP ports of the OMAP3530 proces-
sor. The module sets up two DMA transfer channels for the McBSP port and exposes
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them to the linux user space as a user-accessible device. A user-space daemon or embed-
ded DSP core can then access the data in memory for further analysis or transmission. I
also implemented network code to pass on the (buffered) stream of incoming electrophys-
iological data to any ethernet client on the local network. This data could be received by
the DeepBrainRecorder software of Appendix D for display and further online analysis or
storage.

The linux kernel driver code is located on the Hofmann Group’s revision control server
and is available upon request.

E.3 ADC driver development
The ADS1258 data acquisition chip is a register-controlled analog-to-digital converter,
which means that it needs to be set up programmatically before it can be used in a
controlled manner. Communication with the ADS1258 chip was established from the
DSK6713, the OSK5912, the LDK5912, and the BeagleBoard (including BeagleBoard-xM).
However, only on the BeagleBoards was the communication via the ADS1258 established
from within a linux environment, while the proprietary Code Composer Studio software
by Texas Instruments was used for communication with the DSK6713, OSK5912, and
LDK5912.

The hardware system was then tested via a hardware-in-the-loop testing environment
created in our lab (Haid et al., 2010; Vogt et al., 2009).

Figure E.2: ADS1258 analog-to-digital converter for which the Linux driver prototype was written. The
image shows the ADS1258EVM fast prototyping board, with the ADS1258 chip located in the center.

Figure E.3: BeagleBoard embedded development board connected to ADS1258 and a pre-amplifier for
electrophysiological signal recording. The minimisation process still leaves some space for optimisation. ;)
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