
On the Space and Circuit Complexity
of Parameterized Problems

Christoph Stockhusen

From the Institute of Theoretical Computer Science
of the Universität zu Lübeck

Director: Prof. Dr.math. Rüdiger Reischuk

On the Space and Circuit Complexity of Parameterized Problems

Dissertation
for the Fulfillment of
Requirements for the

Doctoral Degree
of the Universität zu Lübeck

from the Department of Computer Science

Submitted by

Christoph Stockhusen
from Hamburg

Lübeck, 2016

1

First referee Prof. Dr. Till Tantau
Second referee Prof. Dr.Heribert Vollmer

Date of oral examination 19. 01. 2017
Approved for printing Lübeck, 24. 01. 2017

2

Preface

In this dissertation I present the core results from the research I did at the Insti-
tute of Theoretical Computer Science at the Universität zu Lübeck – something
that I would never have thought of when I started my studies in Lübeck. My
first contact with theoretical computer science was in the fourth semester. Out-
side the classroom, just before the first lecture, lots of students were gathering,
more than usual. Soon we found out that many of them were actually in higher
semesters, but they had to repeat the class since they did not pass the final
exam the year before. Most of them were angry about this, telling us that
“Einführung in die Informatik 4”, the actual name of the class, was the hard-
est of the whole studies, the nearly invincible barrier that only few were able
to overcome, held by the most demanding professor they ever met, filling the
lecture with the most unnecessary stuff you can imagine. They did not fail to
make us a little nervous. However, things turned out to be completely different.
Prof. Rüdiger Reischuk gave one of the most interesting classes I had during
my studies, challenging us with hard and demanding, but also addicting prob-
lems. What impressed me the most was something that none of the professors
of the classes I previously attended was able to show us: The limits of human
knowledge. During Prof. Reischuk’s class we continuously walked on the bor-
der of what mankind knew and what mankind did not know. He presented us
numerous questions that were easy to understand, but that nobody knew how
to answer. This was something fascinating to me. Even more fascinating were
all the theorems and researchers that pushed the boundary of knowledge that
far as it was back then. In the remaining semesters I thus attended many of the
classes given by the “theoreticians” of the university, not seldomly with only
a handful of other interested students. When it came to writing my diploma
thesis, I immediately knew that I wanted to write about theoretical computer
science, especially complexity theory. Prof. Till Tantau from the institute had
just published a strong paper, presenting logspace versions of the Theorems of
Bodlaender and Courcelle, see Elberfeld et al. (2010), and he offered me the
opportunity to write about new applications of these theorems. While working

3

on this thesis, we started looking at these theorems from the perspective of
parameterized complexity instead of classical computational complexity, and
we noticed that there were no complexity-theoretic counterparts developed in
this theory so far. This observation was the initial momentum of this thesis.

I am glad that I had the opportunity to do my part on pushing the border of
human knowledge further and further. During the last years I have often been
frustrated by the many drawbacks I have been going through, but now that
I am writing this dissertation, I am happy and proud of my work. However,
without the help of many, many people, this dissertation would not exist.
In alphabetical ordering I am deeply thankful to my collegues Max Bannach
and Michael Elberfeld for many fruitful discussions at numerous coffee breaks,
Rüdiger Reischuk for the great introduction to theoretical computer science
back then and the possibility to write this thesis at his institute, my parents
Andree and Heike Stockhusen for giving me the opportunity to study and write
this thesis, my advisor Till Tantau for all the lessons that I learned from him,
and my collegue Oliver Witt for being a nice guy and always cheering me up.

Especially, I would like to thank my son Jonte and my wife Katharina for
their love.

Christoph Stockhusen
Lübeck, 2016

4

Abstract

Parameterized complexity theory studies the computational complexity of com-
putational problems from a multi-variate point of view: Instead of only mea-
suring the amount of resources required to solve a problem relative to the size
of the input, parameterized complexity also measures them relative to many
other parameters of the input. Since its introduction, parameterized complex-
ity theory has been a fruitful field, giving many important insights into the
complexity of computational problems, especially by refining our knowledge
about NP-complete problems. Being a relatively young field, however, param-
eterized complexity theory has not yet properly investigated two important
aspects of complexity: space complexity and circuit complexity. While param-
eterized complexity theory mainly builds on time as the central resource, this
thesis discusses the importance of space and circuit complexity in a parame-
terized setting.

After an introduction of natural parameterized space and circuit classes, we
study their relation to parameterized time classes, and we will see that many
parameterized problems can be better classified using parameterized space and
circuit classes instead of parameterized time classes. Inspired by the Weft-
Hierarchy, we study the concept of bounded nondeterminism with respect to
space and circuits from a parameterized point of view, and we show that the
resulting classes capture the complexity of natural problems like the associa-
tive generability problem exactly. Finally, we study classes of simultaneous
time-space bounds, something that is not possible in classical computational
complexity if we focus on well-established classes like polynomial time and log-
arithmic space, and we show that these classes capture exactly the complexity
of natural problems like the longest common subsequence problem, answering
a long-standing open problem of parameterized complexity.

5

6

Zusammenfassung

Die Parametrisierte Komplexitätstheorie beschäftigt sich mit der multivariaten
Untersuchung der Berechnungskomplexität von algorithmischen Problemen:
Statt die zur Lösung eines Problems benötigten Ressourcen ausschließlich in
Abhängigkeit von der Eingabegröße zu messen, werden in der Parametrisierten
Komplexitätstheorie weitere Parameter der Eingabe zur Messung herangezo-
gen. Seit ihrer Vorstellung hat die Parametrisierte Komplexitätstheorie viele
wichtige Einblicke in die Komplexität von Berechnungsproblemen ermöglicht,
insbesondere in die Komplexität von NP-vollständigen Problemen. Zwei wichti-
ge komplexitätstheoretische Aspekte wurden im relativ jungen Gebiet der Para-
metrisierten Komplexitätstheorie bisher jedoch nicht tiefergehend untersucht:
Platzkomplexität und Schaltkreiskomplexität. Während die Parametrisierte
Komplexitätstheorie bisher auf der Zeit als zentrale Resource aufbaut, wird in
dieser Arbeit die Wichtigkeit von Platz- und Schaltkreiskomplexität für diese
Theorie erörtert.

Nach einer Einleitung in parametrisierte Platz- und Schaltkreisklassen wer-
den wir deren Beziehung zu den bisherigen Zeitklassen untersuchen und sehen,
dass viele parametrisierte Probleme mithilfe von Platz- und Schaltkreisklassen
besser klassifiziert werden können als mit Zeitklassen. Auf Basis der Weft-
Hierarchie untersuchen wir weiter das Konzept des beschränkten Nichtdeter-
minismus’ aus der Perspektive der Parametrisierten Komplexitätstheorie und
zeigen, dass mit den davon abgeleiteten Klassen die Komplexität vieler natür-
licher Probleme wie beispielweise dem assoziativen Generatorproblem formal-
isiert werden können. Zuletzt betrachten wir noch Klassen mit simultanen Zeit-
Platz-Schranken, einem Konzept welches in der klassischen Komplexitätstheo-
rie bei Betrachtung der verbreitetsten Komplexitätsklassen wie polynomieller
Zeit oder logarithmischem Platz nicht sinnvoll ist. Wir zeigen dann, dass
diese Klassen genau die Komplexität natürlicher Probleme wie dem Problem
der längsten gemeinsamen Teilsequenz formalisieren, ein Ergebnis welches eine
lange unbeantwortete Frage der Parametrisierten Komplexitätstheorie beant-
wortet.

7

8

Contents

1. Introduction 11

1.1. My Thesis . 11

1.2. Results . 12

1.3. Organisation of this Thesis . 15

2. Parameterized Space and Circuits 17

2.1. Parameterized Problems . 19

2.2. Para-Classes and X-Classes . 21

2.3. Parameterized Reductions . 32

2.4. Review of the Weft-Hierarchy 36

3. Bounded Nondeterminism 43

3.1. Classes and Structural Properties 44

3.2. Natural Problems for paraW-Classes 52

3.3. Natural Problems for paraβ-Classes 70

4. Simultaneous Time-Space Classes 87

4.1. Classes and Structural Properties 88

4.2. Natural Problems for Time-Space Classes 91

5. Conclusion 109

5.1. Summary . 109

5.1.1. Parameterized Space and Circuits 109

5.1.2. Bounded Nondeterminism . 110

5.1.3. Simultaneous Time-Space Classes 111

5.2. Outlook . 111

9

10

1. Introduction

1.1. My Thesis

Parameterized space and circuit complexity are fundamental and essen-
tial concepts of parameterized complexity theory. Parameterized space and
circuit classes give us the ability to understand the reasons behind param-
eterized tractability and intractability results in a deeper way than classes
of parameterized time complexity alone because many important problems
are deeply connected to the concepts of space and parallel computation.
Therefore, to gain a full understanding of the complexity of parameterized
problems, it is necessary to study – in addition to their time complexity –
their space and circuit complexity.

The focus of the study of the complexity of computational problems in both
classical as well as parameterized complexity theory has always lain on the
time required to solve a problem. The space or circuit complexity required to
solve it has often been considered as being of scholarly interest, at best. In
the context of classical computational complexity theory, there may be three
reasons for this:

1. The classes of problems solvable in deterministic or nondeterministic log-
arithmic space are contained in the class of polynomial time, and most
of these problems can be solved practically by very fast polynomial time
algorithms that make use of a polynomial amount of space. The addi-
tional requirement to only use a logarithmic amount of space to solve such
problems often results in algorithms whose runtime is much higher than
the runtime of algorithms that are allowed to use a polynomial amount
of space, thus yielding algorithms that are not considered practically rel-
evant. Therefore, the study of logarithmic space is – even in the field
of theoretical computer science – often regarded as being less important
than the study of polynomial time.

2. The class of problems solvable in polynomial space contains a huge diver-
sity of problems: problems that are solvable very fast and problems that

11

are highly intractable, like the class of NP-complete or PSPACE-complete
problems. Therefore, the criterion that a problem is solvable via an al-
gorithm requiring a polynomial amount of space does not give us any
information about whether this problem is solvable efficiently in terms of
the time required to solve it. Only the information that a problem is hard
or complete for the class of polynomial space shows us that this problem
can be considered intractable, but this insight can also be derived from
showing that the problems is hard for NP.

3. Circuits are mainly used for proving lower bounds. While this is clearly
an important task when studying the computational complexity of prob-
lems, circuit complexity had only a short time in limelight because the
vast majority of lower bounds that could be proved using circuits are
all inside P, thus not showing that a problem is intractable from the
perspective of time. On the other hand, designing circuits to solve com-
putational problems and, hence, prove their tractability, can be a tedious
task, while showing that a problem can be solved in polynomial time is
comparatively easy.

The fact that the study of space and circuit complexity is not in vogue
in classical computational complexity theory carried over to the world of pa-
rameterized complexity theory: Parameterized complexity theory as far as it
has been developed by Downey and Fellows is based on the concept of poly-
nomial time. Its fundamental class FPT is a class of parameterized polynomial
time. This also holds for classes like para-NP and XP, and even the classes
of the Weft-Hierarchy are based on the concept of polynomial time since they
are defined as the FPT-closure of weighted satisfiability problems. I believe
that relying on polynomial time as the only underlying notion of parameter-
ized tractability, and, moreover, using time classes to define parameterized
intractability is insufficient. In this thesis I want to convince you that space
and circuit complexity must be studied in order to complement parameterized
complexity theory to an even more fruitful theory, explaining the intriguing
world of problems, computations, and complexity.

1.2. Results

In this dissertation I show that parameterized space and circuit complexity are
indeed a reasonable and fruitful complementation of “traditional” parameter-
ized complexity theory. For this, the dissertation contains two main contribu-
tions:

12

1. I develop a framework that extends the existing one of the theory of
parameterized complexity. It contains parameterized complexity classes
and appropriate reduction notions that augments the hitherto existing
framework of parameterized complexity from the perspective of parame-
terized space and circuits.

2. I apply these classes to natural parameterized problems. This gives more
insights into their complexity and, at best, allows to capture the com-
plexity of problems that were not exactly classifyable beforehand.

More detailed, I present the following results: I generalize the relaxed notion
of polynomial time, i. e., of FPT to relaxed notions of classical circuit and space
classes, yielding classes like para-L, para-NL, para-AC0, para-TC0, para-NC1,
etc., which are all subclasses of FPT. For these classes I show that they allow
a refined view on the complexity of natural problems that have only been
classified as “contained in FPT” beforehand. The main result here is that
p-Vertex-Cover lies in para-AC0, i. e., it lies in a very small subclass of FPT

and, moreover, admits a highly parallel algorithm running in parameterized
constant time. I also show that the parameterized feedback vertex set problems
for directed and undirected graphs, p-DFVS and p-FVS, respectively, do not
admit such algorithms, i. e., both are provably not in para-AC0. Moreover,
I show that we can use para-classes to obtain lower bounds that are related
to questions from classical computational complexity theory by showing that
p-FVS ∈ para-NC1 implies NC1 = L, and p-DFVS ∈ para-L implies L = NL.

A second way to relax the notion of tractability is to use X-classes. In anal-
ogy to the systematical introduction of para-classes, I introduce the X-classes
XL, XNL, XAC0, XTC0, XNC1, etc., and I show how these classes provide an
even more detailed view on the complexity of parameterized problems. For
example, I show that p-Vertex-Cover ∈ XAC0 and p-Clique ∈ XAC0, but
that p-FVS 6∈ XAC0 and p-DFVS 6∈ XAC0.

Alongside with the study of computational complexity using complexity
classes always comes the need for appropriate reduction notions, thus I discuss
para-AC0-, para-L-, and para-P-reductions. While these reductions are clearly
relevant for the classes above, I show that they are very important for the Weft-
Hierarchy, for which I give a critical review in this thesis. Most importantly, I
show that there is no para-AC0-reduction from p-DFVS to p-Clique, which
is suprising because p-DFVS ∈ FPT, p-Clique ∈ W[1], and FPT ⊆ W[1],
and from classical computational complexity theory we know that most classes
are closed under very weak reductions. I thus discuss the importance of the
Weft-Hierarchy and suggest an alternate view on para-classes and Weft-classes

13

as notions of parameterized tractability or intractability when studying param-
eterized problems.

Following the discussion of the Weft-Hierarchy, I combine the notion of
bounded nondeterminism with the notion of para-classes I introduced be-
fore, yielding classes of read-once bounded nondeterminism like paraβ-L where
we allow to read a bounded amount of nondeterministic bits only once and
classes of read-again bounded nondeterminism like paraW-L where we allow to
read a bounded amount of nondeterministic bits arbitrarily often. Concern-
ing read-again bounded nondeterminism, I show that three types of problems,
p-Family-Union-A, p-Subset-Union-A, and p-Weighted-Union-A for lan-
guages A are deeply connected to these classes: First of all, p-Family-Union-A
is complete for a class paraW-C if the underlying language A is complete for
C under a certain reduction notion which is both natural and in fact of-
ten used in practice. Secondly, we can often reduce p-Family-Union-A to
p-Subset-Union-A as well as p-Subset-Union-A to p-Weighted-Union-A
quite easily, and all of these problems lie in paraW-C. I also show that many im-
portant problems like the weighted satisfiability problem p-Weighted-SAT,
the reachability problem in edge-colored directed gaphs p-Colored-Reach
and undirected graphs p-Colored-Undirected-Reach, or the associative
generability problem p-AGen can be expressed as such union problems and,
thus, are complete for classes of bounded nondeterminism (p-Weighted-SAT
is complete for paraW-NC1, p-Colored-Reach is complete for paraW-NL,
p-Colored-Undirected-Reach is complete for paraW-L, and p-AGen is
complete for paraW-NL). Moreover, I use classes of read-again bounded nonde-
terminism for proving additional lower and upper bounds for the feedback ver-
tex set problem: p-FVS ∈ paraW-L, p-DFVS ∈ paraW-NL, p-FVS ∈ paraW-
NC1 if, and only if, NC1 = L, and p-DFVS ∈ paraW-L if, and only if,
L = NL. Concerning read-once bounded nondeterminism, I discuss variants
of the parameterized distance problem p-Distance. The main results here
are that both p-Distance and p-Undirected-Distance are complete for
paraβ-L, p-Large-Distance is complete for para-NL, the undirected version
p-Undirected-Large-Distance is complete for paraβ∀-L, a variant of paraβ-
L but with universal instead of existential nondeterminism, p-Exact-Distance
is complete for paraDβ-L, a parameterized logspace variant of DP, and that
p-Longest-Path is complete for paraβ-L.

Finally, I study simultaneous time-space classes, especially para-P/XL, the
class of simultaneous “para-P-time” and “XL-space”, and para-NP/XNL, the
nondeterministic variant of para-P/XL. I show that these classes capture the

14

complexity of several natural problems, forming a reduction chain that leads
to the main result that the longest common subsequence problem p-LCS is
complete for para-NP/XNL, thus finally settling a long-standing open problem.
Furthermore, I show that p-FVS ∈ para-P/XL, and if p-DFVS ∈ para-P/XL,
then L = NL, two non-trivial upper and lower bounds for the feedback vertex
set problem.

I published most of these results in Elberfeld et al. (2012), Stockhusen and
Tantau (2013), Elberfeld et al. (2015), and Bannach et al. (2015).

1.3. Organisation of this Thesis

My dissertation consists – besides this introductory chapter and the conclusion
– of three main chapters. Chapter 2 introduces the basic notions that will be
used in the subsequent chapters, and, should be read before them. Chapters 3
and 4 are, as far as possible, independent from each other and can be read
separately.

Parameterized Space and Circuits

Chapter 2 reviews the basics of parameterized complexity theory and connects
them with the concepts of space and parallelism using circuits. Space and
circuit analogues of the fundamental parameterized time classes FPT, para-
NP, and XP are defined, and basic properties and relations of them are proved.
Moreover, first problems like the vertex cover problem and the feedback vertex
set problem are studied with respect to these classes. A reduction notion
for these classes is given under which all the classes of this dissertation are
closed, and, finally, the Weft-Hierarchy is reviewed from the perspective of
parameterized space and time.

Bounded Nondeterminism

Chapter 3 is devoted to parameterized computations using a bounded amount
of nondeterminism. The classes of the preceeding chapter are combined with
this notion, and natural complete problems for these classes are presented,
namely the weighted satisfiability problem, the reachability problem in edge-
colored graphs, the associative generability problem, and several variants of
distance problems. Futhermore, this section investigates problems that are not
complete for these classes like the feedback vertex set problem, but that can
be separated from each other using classes of bounded nondeterminism.

15

Simultaneous Time-Space Classes

Chapter 4 interweaves the concepts of time and space by studying simultane-
ous time-space classes. While in classical computational complexity the study
of simultaneous time-space bounds with respect to fundamental classes like
polynomial time or logarithmic space does not make much sense, we will see
why the situation is different in the setting of parameterized complexity theory.
Completeness results for these classes are given, for example for the the longest
common subsequence problem that could not be classified exactly before, when
considering only time or only space.

16

2. Parameterized Space and Circuits

Computational complexity theory is the part of computer science that studies
reasons for why computational problems are easy or hard to solve for comput-
ers, that is, why some problems can be solved by very simple computers in
fractions of seconds while others require days or weeks or longer even on huge
supercomputers. A central approach for this study is to measure and compare
the resources used by algorithms that solve problems. The standard way of
measuring is to use functions that map the size of the input to the required
amount of the resource. Using this approach, scientists have compared and
classified a huge variety of computational problems. However, the approach
of measuring the complexity of a problem in terms of the input size has its
disadvantages. For example, consider the vertex cover problem:

Input: An undirected graph G with G = (V, E) and a natural num-
ber k.

Question: Is there a set C with C ⊆ V and |C| ≤ k such that every
edge of the graph is incident to at least one vertex of C, i. e., for
every edge {u, v} of the graph we have |C ∩ {u, v}| > 0?

Karp (1972) showed that the vertex cover problem is complete for the com-
plexity class NP of problems solvable in nondeterministic polynomial time. Up
to now, it is unknown whether these problems can be solved in deterministic
polynomial time, thus the known deterministic algorithms for these problems
require an exponential amount of time with respect to the size of the input,
which is unacceptable in practice. But this is not the end of the road. Downey
and Fellows (1995a) introduced the concept of fixed-parameter tractability
based on an idea that is described in Downey and Fellows (1997) as a “deal
with the devil”: They regard algorithms as acceptable when the runtime of
the algorithm is polynomial with respect to the input size and only some as-
pects, the so-called parameters of the problem, contribute in a “devilish” way,
for example exponential or even worse. The hope with this approach is that
the “devilish” parameters do not get very large in real-life applications. An

17

example for a problem that admits such an algorithm is the above-mentioned
vertex cover problem where we consider the size of the desired vertex cover as
the parameter. Downey and Fellows (1995c) showed that this problem can be
solved in time O(2k · n). Downey and Fellows (1995a) also observed that not
every graph problem seems to admit such algorithms, for instance the clique
problem:

Instance: An undirected graph G with G = (V, E) and a natural
number k.

Question: Is there a set C with C ⊆ V and |C| = k such that between
every two vertices from C there is an edge, i. e., for every u and v
with u 6= v and u ∈ C and v ∈ C we have {u, v} ∈ E?

To capture the intractability of such problems in terms of the relaxed and
“devilish” notion of tractability, Downey and Fellows (1995a) introduced the
so-called Weft-Hierarchy or W-Hierarchy, a hierarchy of classes defined in
terms of reduction closures of circuit satisfiability problems. They showed
that the clique problem is complete for the first class W[1] of this hierarchy
if parameterized via the size of the desired clique. Even though it is still
unknown whether this rules out the fixed-parameter tractability of the clique
problem, it is still a strong hint into this direction because the fixed-parameter
tractability of a W[1]-hard problem would immediately answer long-standing
open questions like the one of whether the strong exponential time hypothesis
holds, see Chen and Meng (2008).

Besides these classes, Downey and Fellows (1997) and Flum and Grohe
(2006) defined further classes of parameterized intractability, and classified,
together with numerous other researchers, hundreds of problems as fixed-
parameter tractable or intractable. Despite this huge success of parameterized
complexity theory, the theory had two major problems: First, many prob-
lems that have been classified as fixed-parameter tractable seemed to actually
have different complexities, which was not reflected by the theory. While for
some of them only algorithms with huge runtimes were known, others admit-
ted algorithms that were extremely fast. Back then, it was unknown for many
problems whether the explanation of these discrepancies was the lack of effi-
cient algorithmic techniques showing that these problems do not have different
complexities or a lack of the framework to appropriately formalize the different
complexities. Second, for many parameterized problems it was known that
they are hard for, say, W[1], but, despite all effort, it was not possible to show
that they are complete for any class of parameterized intractability. Again, it
was unknown whether the reason for this was the lack of adequate proof tech-

18

niques or a lack of expressibility of the theory. In this thesis we will see that,
as a matter of fact, in many cases the expressibility of the framework is the
reason for the problems described above and that parameterized space and cir-
cuit classes are reasonable extensions of parameterized complexity theory that
help to overcome these problems. Thus, the rest of this chapter is a review of
the basics of parameterized complexity theory interwoven with a presentation
of parameterized space and circuit classes that I derived from their time-based
companions. Section 2.1 reconsiders the concept of parameterized problems in
the context of space and circuit complexity. Section 2.2 defines space and cir-
cuit analogues of the class FPT of fixed-parameter tractable problems and XP of
slice-wise polynomial-time solvable problems. Section 2.3 discusses reduction
notions appropriate for the classes presented in this section.

2.1. Parameterized Problems

The core idea of parameterized complexity is to not only measure the complex-
ity of a problem in terms of the algorithmic resource consumption with respect
to the size of the problem input, but to refine this measure by also considering
different parameters of the problem. For instance, think of the vertex cover
problem from above. In order to refine our algorithm analysis by measuring
the resource consumption with respect to the graph size and the parameter k,
we make use of the concept of parameterized problems.

. Definition 1 (Parameterized Problems). A parameterized problem consists
of a tuple (Q,κ) where Q with Q ⊆ Σ∗ for an alphabet Σ is a language and
κ : Σ∗ → N is a function, the so-called parameterization, that maps instances
to its parameter values.

The parameterized version of the vertex cover problem thus can be stated
as follows:

. Problem 2 (Parameterized Vertex Cover).

Input: An undirected graph G with G = (V, E) and a natural num-
ber k.

Parameter: k.
Question: Is there a set C with C ⊆ V and |C| ≤ k such that every

edge of the graph is incident to at least one vertex of C, i. e., for
every edge {u, v} of the graph we have |C ∩ {u, v}| > 0?

To distinguish between the parameterized and unparameterized versions
of problems, it is common to prepend the name of the problem with “p-”

19

in the parameterized case. Hence, let us denote the parameterized version
of the problem Vertex-Cover by p-Vertex-Cover. While in the case of
p-Vertex-Cover the parameterization via k is quite natural, for many other
problems there exist several natural parameterizations. For example consider
the problem of computing longest common subsequences:

. Problem 3 (Longest Common Subsequence).

Instance: A set S of strings over an alphabet Σ and a natural num-
ber l.

Question: Is there a string s ∈ Σl such that s is a common subse-
quence of the strings in S, i. e., from every s ′ with s ′ ∈ S we can
obtain s by only deleting symbols from s ′.

For example, given the set S with

S = {abcabcabc, cbacbacba, aaabbbccc},

there is a common subsequence s of length 3, for example aaa, but no common
subsequence of length 4.

The longest common subsequence problem has several natural parameteri-
zations: The length l of the subsequence asked for, the size |S| of the given set
of strings, the size |Σ| of the alphabet, or combinations of these parameters. If
it is not clear from the context, I will denote the parameterization used as the
index of the prefix “p-”. For example, I will denote the different parameteri-
zations of the longest common subsequence problem from above by pl-LCS,
p|S|-LCS, p|Σ|-LCS, and so on, respectively.

As can already be seen from the above example of the longest common sub-
sequence problem, the parameter values of an instance do not necessarily have
to be given explicitly with the instance like in the case of p-Vertex-Cover,
but can come along with the input rather implicitly. However, many algo-
rithms require that the parameter value of an instance is known in order to
work correctly. Hence, if the parameter is not given explicitly with the input,
algorithms must be able to compute it. While Downey and Fellows (1995a)
only considered parameterized problems where the parameter is explicitly given
along with the input or can be computed somehow from it, Flum and Grohe
(2006) demanded that the parameterization is computable in polynomial time,
i. e., there is a polynomial-time bounded Turing machine that computes the
binary representation of the parameter value from the input instance. How-
ever, since this thesis discusses results on parameterized complexity classes
that have their origin in classical complexity classes that lie deep in P, we

20

have to impose even stronger restrictions and, thus, augment our definition
from above: For the rest of this thesis, we require that the parameterization
is first-order computable or, equivalently, computable by logarithmic-time uni-
form AC0-circuits. For an introduction into first-order computations see the
textbook of Immerman (1999), for an introduction into circuit complexity see
the textbook of Vollmer (1999).

2.2. Para-Classes and X-Classes

The central idea of parameterized complexity is to use a relaxed notion of
tractability: Instead of requiring that a problem has to be solvable in polyno-
mial time, this relaxed notion demands that the runtime has to be polynomial
in the overall input size, but may be worse than polynomial in the problem
parameter. The hope is that for real-life instances the parameter values are
small and therefore the overall runtime behaves polynomial. This idea has
been formalized by Downey and Fellows (1997), thus shaping the notion of
fixed-parameter tractability :

. Definition 4 (FPT). A parameterized problem (Q,κ) lies in the class FPT of
fixed-parameter tractable problems if there is an algorithm deciding x ∈ Q for
any instance x in time f

(
κ(x)

)
·p

(
|x|
)

where f : N → N is an arbitrary function,
p is a polynomial, and |x| is the size of the input x.

One of the most famous problems that lies in FPT is p-Vertex-Cover. A
rather simple algorithm showing that this problem is fixed-parameter tractable
uses the observation that for every edge of the graph at least one of its incident
vertices has to be in the vertex cover. Hence, on input of an undirected graph G
with G = (V, E) and a parameter k, we make use of a binary search tree of
depth k where every node represents a partial vertex cover. The root of the
tree is the empty set. We then append children recursively to the nodes of the
tree: If the partial vertex cover is C, we pick an edge {u, v} of G − C which
denotes the graph G with all vertices of C and its incident edges removed.
Since at least one of the vertices u and v has to be in the vertex cover, we
append two children to the current node of the search tree: One with label
C ∪ {u} and one with label C ∪ {v}. If in the search tree of depth at most k
we find a vertex labeled with C such that G − C has no edges, we have found
a vertex cover. Otherwise, there is no vertex cover of size k. Since the search
tree is binary and has depth at most k, it has at most 2k nodes. For every node
of the search tree with label C we have to compute G − C and find an edge
of the remaining graph, which can be done in polynomial time. Overall, the

21

algorithm on input x then has the runtime O
(
2κ(x) ·p(|x|)

)
for a polynomial p,

showing the fixed-parameter tractability of p-Vertex-Cover.
The vertex cover problem is not the only fixed-parameter tractable problem.

To the present day, literally hundreds of problems have been shown to be fixed-
parameter tractable. However, breaking the “FPT-barrier” usually marks the
end of the structural complexity-theoretic analysis of a problem; the subsequent
studies of a problem after showing its fixed-parameter tractability typically
focus on improving the runtime of the corresponding algorithms. In classical
complexity theory, however, showing that a problem is tractable, i. e., showing
that the problem is solvable in polynomial time immediately rises the question
whether we can show that the problem is actually solvable in nondeterministic
or deterministic logarithmic space or with even less computational power. In
the same way we can ask in the context of parameterized complexity if we can
do better than “only” showing that a problem is fixed-parameter tractable. This
motivates the study of parameterized complexity classes that are subclasses of
FPT. To formalize and study such classes, we make use of a generalization of
the relaxed tractability notion given by Flum and Grohe (2003):

. Definition 5 (Para-Classes). Let C be a classical complexity class. Then,
para-C is the class of parameterized problems (Q,κ) with Q ⊆ Σ∗ for an
alphabet Σ such that there exists an alphabet Π, a computable function π : N →
Π∗, and a language X with X ⊆ Σ∗×Π∗ such that X ∈ C and for every instance x
of (Q,κ) we have x ∈ Q if, and only if,

(
x, π(κ(x))

)
∈ X.

More intuitively, Flum and Grohe (2003) defined para-C as the class of
parameterized problems that are in C after a precomputation that only de-
pends on the parameter, i. e., a problem (Q,κ) lies in para-C if, and only if,
there exists an algorithm working in two stages: In the first stage, the algorithm
does an arbitrary complex computation based on the parameter value. In the
second stage, the algorithm does a computation whose resource consumption
is bound due to C that decides the problem on the remaining instance.

A classical example for an algorithm using the concept of precomputation
on the parameter is the model-checking problem of strings and monadic second-
order formulas:

Instance: A logical structure S from the class of strings together with
a monadic second-order formula ϕ of an appropriate vocabulary.

Parameter: |ϕ|.
Question: Is S a model for ϕ, i. e., S |= ϕ?

Büchi (1960) showed that a language L is regular if, and only if, it is definable

22

in monadic second-order logic, i. e., the fragment of second-order logic where
we restrict the second-order variables to have arity 1. Moreover, Büchi showed
that, given a monadic second-order sentence ϕ, a nondeterministic finite au-
tomaton A with L(ϕ) = L(A) can be computed and vice versa. With this
observation we can solve the problem above using an algorithm that makes a
precomputation on the parameter: In the first stage, the given sentence ϕ is
translated into a corresponding nondeterministic automaton A ′ using Büchi’s
Theorem, which is then transformed into an equivalent deterministic automa-
ton A such that L(ϕ) = L(A). In the second stage, this automaton is simulated
on the input string encoded in the given logical structure and the input instance
is accepted if, and only if, the automaton accepts the input string. While the
only known algorithms for the generation of a deterministic finite automaton A
for a given sentence ϕ with L(A) = L(ϕ) generates automata of size more than
superexponential in |ϕ|, the simulation of the resulting automaton requires
only polynomial time. Hence, the first stage of the algorithm above is a pre-
computation on the parameter, and the second stage runs in polynomial time
after the precomputation. Altogether, this algorithm shows that the problem
lies in para-P.

Using the view of precomputations on the parameter, Flum and Grohe
(2003) showed that the class FPT is exactly the class of problems that lie in P

after a precomputation on the parameter, thus underlining the naturalness of
their definition:

. Fact 6 (Flum and Grohe (2003)). FPT = para-P.

If we, instead of polynomial time, insert natural subclasses of P like (non-
deterministic) logarithmic space or circuit classes into the definition above, we
get parameterized complexity classes with the following properties (for better
readability let us for the rest of this thesis abbreviate κ(x) with k, f(κ(x)) with
fk, and |x| with n):

para-L The class of languages that are decidable via a deterministic Turing
machine that uses at most O

(
fk + log(n)

)
many read-write cells.

para-NL The class of languages that are decidable via a nondeterministic Tur-
ing machine that uses at most O

(
fk + log(n)

)
many read-write cells.

para-AC i The class of languages that are decidable via family of circuits over
the standard base, with unbounded fan-in, size O

(
fk · p(n)

)
for some

polynomial p, and depth O
(
fk + logi(n)

)
if i > 0 and depth O(1) if

i = 0.

23

para-TC i The class of languages that are decidable via family of circuits over
the standard base together with threshold gates, with unbounded fan-in,
size O

(
fk · p(n)

)
for some polynomial p, and depth O

(
fk + logi(n)

)
if

i > 0 and depth O(1) if i = 0.

para-NC i The class of languages that are decidable via family of circuits over
the standard base, with bounded fan-in, size O

(
fk · p(n)

)
for some poly-

nomial p, and depth O
(
fk + logi(n)

)
.

On first sight, one would correctly expect that the space bound and the depths
of the circuits should be of the form O

(
logi(fk + n)

)
because we desire a

logarithmic amount of space or logarithmic depth after a preprocessing on the
parameter, but basic calculus shows that we have O

(
logi(fk + n)

)
= O

(
f ′k +

logi(n)
)

for i > 0, and the second form reflects the properties of the circuits
in a more intuitive form.

Before we start investigating the structural properties of these classes, let
us briefly discuss the circuit classes above from the perspective of parallelism.
Circuit classes like AC and NC capture the notion of problems that admit fast
parallel algorithms. The idea behind this is that the depth of the circuit corre-
sponds to the parallel time and the size of the circuit corresponds to the parallel
work required to solve a problem. Thus, a problem solvable via AC1 circuits is
solvable in parallel time in O

(
log(n)

)
and polynomial work. This carries over

to parameterized circuit classes: A problem solvable in para-AC1 is solvable in
parameterized parallel time O

(
fk + log(n)

)
and parameterized parallel work

O
(
fk · p(n)

)
for a polynomial p. For more details on the connections between

circuits and parallelism see Vollmer (1999).
From the definition of para-classes we can directly conclude that they inherit

their inclusion structure from the underlying classical complexity classes, i. e.,
we have for two classes C and C ′ that C ⊆ C ′ if, and only if, para-C ⊆ para-
C ′, and C (C ′ if, and only if, para-C (para-C ′. Hence, we get the inclusion
chain

para-AC0 ⊆ para-TC0 ⊆ para-NC1

⊆ para-L ⊆ para-NL

⊆ para-AC1 ⊆ para-TC1 ⊆ para-NC2

⊆ para-ACi ⊆ para-TCi ⊆ para-NCi+1 with i > 1

⊆ para-P ⊆ para-NP ⊆ para-PSPACE,

with the known proper inclusions

para-AC0 (para-TC0, para-NL (para-PSPACE.

24

Equipped with these classes, we can continue our investigation of the struc-
tural complexity of parameterized problems inside FPT. This has partially
already been done by Cai et al. (1997). They investigated p-Vertex-Cover
and showed that p-Vertex-Cover lies in para-L, although they used a dif-
ferent definition of para-L and probably were not aware of the inclusion chain
presented above. For their result, they used a technique, that is now known
as kernelization. The main idea behind kernelization is to turn the idea of a
precomputation on the parameter upside down: In the first stage, a fast algo-
rithm is used on the input instance, computing a kernel which is an equivalent
instance whose size only depends on the parameter. Then, in the second stage,
an algorithm with a possibly much worse runtime is run on the kernel.

. Definition 7 (Kernelization). A kernelization for a parameterized problem
(Q,κ) is an algorithm K that, on input x, computes an instance K(x), the
kernel, such that |K(x)| ≤ f

(
κ(x)

)
for an arbitrary function f and x ∈ Q if, and

only if, K(x) ∈ Q.

One of the most well-known kernelizations is Buss’ kernelization1 for the
vertex cover problem. Buss noticed that if a graphG has a vertex cover of size k,
then any vertex v with at least k+ 1 adjacent vertices has to be in the vertex
cover, since otherwise all of v’s neighbors have to be in the cover, immediately
exceeding the maximal allowed size k of the vertex cover. Moreover, if a graph
has only vertices with degree at most k and more than k2 edges, then it has no
vertex cover of size k, because every selection of k vertices can, due to the low
degree of at most k, cover at most k2 edges. We can apply these observations
as follows: On input of a graph G and a natural number k, we search for
the first vertex with degree larger than k. Since this vertex has to be in the
vertex cover, we remove this vertex and its incident edges from the graph (let
us call the resulting graph G ′) and repeat the procedure for G ′ and the new
parameter value k − 1 because it remains to find a vertex cover of size k − 1
for the remaining edges. We continue this process until we either have that
the graph still has edges and the parameter is 0, or we obtain a graph H and
a parameter l such that no vertex of H has degree larger than l. In the first
case we output a graph that consists of two vertices that are connected with an
edge and the parameter 0, i. e., an instance that has no solution. In the second
case we remove all isolated vertices from H because there is no need to add
them to the vertex cover, and then we check if the number of remaining edges

1This observation has never been actually published, it only was mentioned by Buss and
Goldsmith (1993), but since then it is known as Buss’ kernelization

25

exceeds l2. If this is the case, there is no vertex cover for the graph and we,
again, output the instance without a solution mentioned above. If the graph
has less than l2 edges, then we output H and l.

We can now observe that the algorithm above outputs a graph H and a
parameter l such that H has a vertex cover of size l if, and only if, the original
input graph G has a vertex cover of size k. Moreover, the size of the resulting
graph H is bounded by a function that only depends on k: If the fixed instance
without a solution is output, this is clearly the case. If a possibly solvable
instance H and l is computed, then H has no isolated vertices, at most l2

edges, and, thus, at most 2 · l2 vertices. The size of this instance is therefore
bounded by a function that only depends on l with l ≤ k. Altogether, the
algorithm above is a kernelization algorithm for vertex cover.

Kernelizations play an important role in parameterized complexity theory
because there is a deep connection between polynomial-time computable ker-
nelizations and fixed-parameter tractability: Niedermeier (2002) showed that a
problem is fixed-parameter tractable if, and only if, it admits a polynomial-time
computable kernelization. Thus, the example above gives us another proof of
the fixed-parameter tractability of p-Vertex-Cover.

Above, we generalized the concept of fixed-parameter tractability to other
complexity classes using para-classes, which is reasonable from the perspective
of kernelization as the following lemma shows:

. Lemma 8. Let (Q,κ) be a parameterized problem and C be one of the com-
plexity classes ACi, NCi, TCi, L. Then, (Q,κ) ∈ para-C if, and only if, (Q,κ)
has a kernelization that is computable within the resource bounds defined by
C, i. e., using ACi-, NCi-, TCi-circuits, or in logarithmic space, respectively.

Proof Idea. Instead of proving this lemma for the classes mentioned above, let
us take a look at the technique that can be used to prove this lemma (the proof
itself is then straight-forward).

If the problem (Q,κ) lies in para-C via an algorithm A, we construct a
kernelization: On input x, compute the value of the parameter and compare it
to the input size:

– If the value of the parameter is “large”, then the parameter dominates the
input size and, therefore, the input is already the kernel.

– If the value of the parameter is “small”, we can use A to compute the
answer using resources that are only bound in terms of the input size.
Therefore, we compute the solution using A, and output, depending on

26

the solution, fixed positive or negative instances of the decision prob-
lem Q, whose sizes are clearly bound by the parameter.

For example, assume that we have (Q,κ) ∈ para-L via an algorithm A using
space O(2k+ log(n)). In this case, our decision would, for instance, depend on
whether the parameter k is large or small compared to log(log(n)): If we have
k ≥ log(log(n)) for a given instance x, then we also have 22

k ≥ n, thus the
input is already a kernel. On the other hand, if we have k < log(log(n)), then
we can use A to decide x ∈ Q, which effectively requires space O(log(n)), and,
depending on the result, we output a fixed positive or negative instance.

The backward direction essentially works the same way: We compute the
parameter value, and, depending on its value compared to the input size, we
either argue that the whole computation can be seen as an arbitrary complex
precomputation on the parameter or as a computation within the resource
bounds of the underlying class C.

Using this lemma, we can show that the vertex cover problem is not only
fixed-parameter tractable, but lies deep inside FPT:

. Theorem 9 (Bannach et al. (2015)). p-Vertex-Cover ∈ para-AC0.

Proof. We, again, make use of Buss’ kernelization idea, but now we cannot
use the algorithm from above, because we are only allowed to use circuits of
constant depth and an implementation of the kernelization described above
requires depth polynomial in the parameter value, as it deals with high-degree
vertices one after another. However, Buss’ kernelization also works if we remove
all high-degree vertices in parallel!2 Now we only have to argue that all of these
steps can be done via AC0 circuits. For this, note that checking whether a vertex
has high degree, computing the reduced graph, and counting the remaining
edges can be done using threshold gates, yielding that the kernelization can
be computed using TC0 circuits. However, looking more closely reveals that
the thresholds computed by these gates are all bounded by the parameter and,
thus, are independent of the input size. This allows us to apply an involved
result from Newman et al. (1990) showing that thresholds of polylogarithmic
size can be computed using AC0 circuits: Before we start the kernelization
process, we compute the parameter value. If k ≤ log(n), i. e., the parameter
is at most logarithmic in the input size, we apply Buss’ kernelization where
we substitute the threshold gates with small AC0 circuits in the manner of

2In fact, Buss’ kernelization mentioned in the original paper of Buss and Goldsmith (1993)
works in parallel.

27

Newman et al. (1990). If k > log(n), the overall input size is bounded by
the parameter, and, thus, we already have a kernel. Overall, this gives us
a kernelization for p-Vertex-Cover that is computable using AC0 circuits,
which immediately gives us p-Vertex-Cover ∈ para-AC0.

The previous theorem, stating that p-Vertex-Cover lies in the small-
est reasonable para-class, underlines an empirical observation that has been
made by many researchers: p-Vertex-Cover belongs to the easiest problems
in parameterized complexity theory. Additionally, this theorem – and thus
parameterized space and circuit complexity – shows one more aspect of the
vertex cover problem: It is perfectly parallelizable! The algorithm above is in
fact a parallel algorithm solving p-Vertex-Cover in parameterized parallel
constant time and parameterized parallal polynomial work because the depth
of the circuit is in O(1) and the size of the circuit is in O

(
fk · p(n)

)
. Param-

eterized space and circuit complexity theory thus provided us with insights
into the complexity of the vertex cover problem that where not revealed by
parameterized time complexity theory alone.

While p-Vertex-Cover lies deep inside para-P, there are also examples
of problems that are, either under reasonable assumptions or even provably,
placed much higher inside para-P. Two of them are the directed and undirected
versions of the feedback vertex set problem:

. Problem 10 (Directed and Undirected Feedback Vertex Set).

Instance: A graph G with G = (V, E) and a natural number k.
Parameter: k.
Question: Is there a set C with C ⊆ V and |C| = k such that every

cycle in G contains at least one vertex of C? In other words: Is the
graph that we obtain if we remove C and its incident edges from G

cycle-free?

Let us call the version of this problem restricted to undirected graphs p-FVS
and the version for directed graphs p-DFVS.

. Fact 11 (Bodlaender (1993), Chen et al. (2008)). p-FVS and p-DFVS lie
in para-P.

While both the directed and the undirected version of the feedback vertex
set problem are fixed-parameter tractable, applying parameterized space and
circuit classes show first differing lower bounds for these problems, thus giving
a first hint on their different complexity:

28

. Theorem 12.

1. If p-FVS ∈ para-NC1, then NC1 = L.

2. If p-DFVS ∈ para-L, then L = NL.

3. p-FVS 6∈ para-AC0.

4. p-DFVS 6∈ para-AC0.

Proof. For the first part, assume that p-FVS ∈ para-NC1 holds. Then there is
a uniform family of circuits of size O

(
fk ·p(n)

)
and depth O

(
log(fk+n)

)
that

decides p-FVS. Now consider the following trivially parameterized problem
p0-Cycle-Free:

. Problem 13 (Trivially Parameterized Cycle-Free Graph).

Instance: An undirected graph G with G = (V, E).
Parameter: 0.
Question: Is G cycle-free?

Since an undirected graph is cycle-free if, and only if, it has a feedback
vertex set of size 0, the circuit-family for p-FVS also decides p0-Cycle-Free.
However, due to the fixed parameter value of p0-Cycle-Free, there is thus
a circuit family with circuits of size O

(
p(n)

)
for a polynomial p and depth

O
(
log(n)

)
, i. e., an NC1 circuit family, deciding the unparameterized problem

Cycle-Free. Cook and McKenzie (1987) showed that Cycle-Free is in fact
complete for L. Thus, p-FVS ∈ para-NC1 implies NC1 = L.

For the second part, we can proceed in a similar way using the fact that
Cycle-Free for directed graphs, Directed-Cycle-Free, is complete for NL,
see Jones (1975) together with Immerman (1988).

The last two items are now simple corollaries of the first two items. Let us
prove the first of them, the other one can be shown in a similar way. Assume
that p-FVS ∈ para-AC0. With the arguments of the first point this implies
that L = AC0, which is well known to be not the case, as was shown by Furst
et al. (1984).

Later in this thesis, we will see that we can adjust this proof to obtain
even stronger lower bounds for much larger classes. However, even from the
theorems above we can see that parameterized space classes reveal a fine struc-
ture of para-P that would be invisible without them: p-Vertex-Cover has a
provably smaller complexity than p-FVS and p-DFVS, and even p-FVS and
p-DFVS are presumably of different complexity. Interestingly, we can even ob-
serve effects in the world of parameterized time that are presumably related to

29

our space- and circuit-based results. For example, p-Vertex-Cover, p-FVS,
and p-DFVS are all in para-P, but there are huge differences in the complex-
ity of their fixed-parameter tractability. The following table shows the time
requirements of the currently fastest algorithms for the mentioned problems:

p-Vertex-Cover O(1.2738k + k · n) Chen et al. (2006)
p-FVS O(3.83kk · n2) Cao et al. (2010)
p-DFVS O(4kk3k! · n4) Chen et al. (2008)

We can see that the problem with the lowest computational complexity admits
the fastest algorithm, the one with the highest computational complexity the
slowest. However, if or how the space and circuit complexity of a parameterized
problem in para-P is connected to its time complexity is unknown.

Up to now, we used para-classes to study the fine structure of para-P. We
considered para-versions of well-known space and circuit classes, and showed
that several problems lie in these subclasses of para-P and others, under reason-
able assumptions, do not. However, there is another way of studying the fine
structure of para-P: X-classes. While para-classes provide a relaxed notion of
tractability by allowing nearly arbitrary resource consumption in terms of the
parameter but staying efficient with respect to the overall input size, a second
way to relax tractability is to connect the degree of efficiency with respect to
the overall input size to the parameter. To formalize this, we use X-classes:

. Definition 14 (X-Classes). Let C be a classical complexity class. Then, XC

is the class of parameterized problems (Q,κ) with Q ⊆ Σ∗ for an alphabet Σ
such that for every language Qk with Qk = { x | x ∈ Q ∧ κ(x) = k} we have
Qk ∈ C via a single algorithm A.

The most famous X-class is presumably XP, the class of parameterized
problems (Q,κ) such that every language Qk we have Qk ∈ P. If we turn to
the O-notation, we get that XP is the class of parameterized problems that are
decidable in time O(nfk). Inserting standard space and circuit classes, we get
the following X-classes:

XL The class of languages that are decidable via a deterministic Turing ma-
chine that uses at most O

(
fk · log(n)

)
many read-write cells.

XNL The class of languages that are decidable via a nondeterministic Turing
machine that uses at most O

(
fk · log(n)

)
many read-write cells.

XAC i The class of languages that are decidable via a family of circuits over
the standard base, with unbounded fan-in, size O(nfk), and depth O

(
fk ·

logi(n)
)
.

30

XTC i The class of languages that are decidable via a family of circuits over
the standard base together with threshold gates, with unbounded fan-in,
size O(nfk), and depth O

(
fk · logi(n)

)
.

XNC i The class of languages that are decidable via a family of circuits over
the standard base, with bounded fan-in, size O(nfk), and depth O

(
fk ·

logi(n)
)
.

Like in the case of para-classes, X-classes inherit their inclusion structure
from the underlying classical complexity classes. More interesting relations can
be observed if we compare X-classes with para-classes. First, we get the follow-
ing lemma if we consider para-classes and X-classes with the same underlying
classical complexity class:

. Lemma 15. Let C be a classical complexity class. Then we have para-C ⊆ XC.
If C is one of the classes L, NL, P, NP, PSPACE, then the inclusion is strict.

The inclusion of the lemma above follows directly from the definition. To
show that the inclusion is strict, one can make use of the well-known time
and space hierarchy theorems, see for example Papadimitriou (1994). Since
these proofs are straight-forward, we omit them here, but an example proof
showing that para-P (XP can be found in the text book of Flum and Grohe
(2006). Instead, let us have a look at two examples of problems in XAC0. The
first example is our well known victim p-Vertex-Cover. We have already
seen that p-Vertex-Cover ∈ para-AC0, and, since para-AC0 ⊆ XAC0, this
immediately implies that p-Vertex-Cover ∈ XAC0. The other example is
a problem that we briefly discussed before, namely the parameterized clique
problem p-Clique:

. Problem 16 (Parameterized Clique).

Instance: An undirected graph G with G = (V, E) and a natural
number k.

Parameter: k.
Question: Is there a set C with C ⊆ V and |C| = k such that between

every two vertices from C there is an edge, i. e., for every u and v
with u 6= v and u ∈ C and v ∈ C we have {u, v} ∈ E?

. Theorem 17. p-Clique ∈ XAC0.

Proof. To find a vertex cover of size k, we construct a circuit family where each
circuit consists of

(
|V |
k

)
subcircuits, each checking for a selection of k vertices

from the vertex set V of the input graph whether it is a clique, i. e., whether

31

they are pairwise connected. Using gates of unbounded fan in, the circuits of
the circuit family have constant depth and size O

(
|V |
k

)
, which can be bounded

by O(|V |k).

Comparing this result of “X-complexity” with the “para-complexity” of
problems like p-Vertex-Cover, p-FVS, or p-DFVS above, we can observe
something that will later become a fundamental approach for studying the
complexity of a problem: X-classes and para-classes of different underlying
complexity classes lie often orthogonal to each other: As we have discussed
briefly before, p-Clique is presumably not fixed-parameter tractable, but
lies in XAC0. On the other hand, p-FVS and p-DFVS are fixed-parameter
tractable, but do not lie in XAC0, which can easily be seen from the same ar-
guments used in the proof of Theorem 12. p-Vertex-Cover, however, lies in
both para-P and XAC0. Illustrated as a Venn diagram, the situation is, under
the assumption that p-Clique is not fixed-parameter tractable, as follows:

XAC0

para-AC0

para-P

p-Clique

p-Vertex-Cover

p-FVS

p-DFVS

To wrap up this section, Figure 2.1 illustrates the classes introduces so far
together with the classes that will be introduced in the remaining part of this
thesis.

2.3. Parameterized Reductions

To work with the classes we have seen so far, we need one more ingredient:
reductions. Although this notion is very basic to complexity theory, it is
worth reviewing them in the context of this thesis because some of the classes
we study later are defined with respect to different reduction notions and we
have to deal with the resulting effects. Let us therefore briefly review how
reductions are used in classical computational complexity theory looking at the
notion of many-one reductions : We say that a language A over alphabet Σ
many-one-reduces to a language B over alphabet Γ if there is a computable

32

para-AC0

para-TC0

para-NC1

para-L

paraβ-Lparaβ∀-L

paraDβ-L

para-NL

para-P

paraβ-P

para-NP

para-PSPACE

paraW-NP

paraW-P

paraW-NL

paraW-L

paraW-NC1

paraW-TC0

paraW-AC0

XNP/para-PSPACE

XP/para-PSPACE

para-NP/XNL

para-P/XL

XNP

XP

XNL

XL

XNC1

XTC0

XAC0

W[t]

W[SAT]

=

= W[P] =

Figure 2.1: Diagram of the most important complexity classes discussed in
this thesis together with their inclusions where A B denotes the inclusion
A ⊇ B.

33

function f with f : Σ∗ → Γ∗ such that for every x with x ∈ Σ∗ we have that
x ∈ A ⇔ f(x) ∈ B. If we can reduce A to B, we also write A ≤ B. For
an example, let us consider the vertex cover problem and the independent-set
problem, where the independent-set problem is defined as follows:

Input: An undirected graph G with G = (V, E) and a natural num-
ber k.

Question: Is there a set C with C ⊆ V and |C| = k such that for
every edge {u, v} of the graph we have |C∩ {u, v}| < 2, i. e., between
the vertices of C there are no edges?

In the form of languages, we can define these problems by

Vertex-Cover = { code(G, k) | G has a vertex cover of size k},

Independent-Set = { code(G, k) | G has an independent-set of size k},

where code denotes an appropriate encoding function mapping into the under-
lying alphabet. Then, we can reduce Independent-Set to Vertex-Cover
by using a reduction function that maps code(G, k) to code(G, |V | − k) where
|V | denotes the number of vertices of G (and, of course, respects the underly-
ing alphabets). It is easy to see that this reduction is correct, i. e., we have
code(G, k) ∈ Vertex-Cover ⇔ code(G, |V | − k) ∈ Independent-Set be-
cause a set of vertices is vertex cover if, and only if, every edge of the graph
is incident to one of the vertex cover’s vertices, and, hence, there are no edges
between the vertices that are not in the vertex cover. Thus, the remaining
vertices form an independent set.

Having a reduction that reduces A to B, we can conclude that if we are able
to solve B, then we can also solve A by first computing the reduction and then
deciding B on the output of the reduction. Moreover, if we can compute the
reduction and decide B efficiently, then we can also decide A efficiently. On the
other hand, if we already know that we are not able to decide A (efficiently),
but have an (efficiently) computable reduction from A to B, then it is impos-
sible that we can decide B (efficiently). Let us return to the example above.
The reduction from Independent-Set to Vertex-Cover is computable very
effciently because we only have to count the number of vertices of the graph
and subtract k. Hence, if we find a polynomial-time computable algorithm
for Vertex-Cover, we immediately have a polynomial-time computable al-
gorithm for Independent-Set, and, on the other hand, if we can prove that
there is no such algorithm for Independent-Set, we immediately know that
there is no such algorithm for Vertex-Cover. Based on these observations,
problems, classes, and reductions are studied with respect to the concepts of

34

closedness, hardness, and completeness : We say that a class C of problems
is closed under a fixed reduction notion if for every language A and B we have
that A ≤ B and B ∈ C implies that A ∈ C. For example, the class NP is well
known to be closed under polynomial-time computable reductions. We say a
problem B is hard for a class C of problems if for every problem A with A ∈ C
we have A ≤ B, and, moreover, a problem B is complete for a class C if B is
hard for C and we have B ∈ C. With these notions from classical computational
complexity theory, let us now turn to the parameterized world.

As we have seen above, the independent set problem reduces to the vertex
cover problem by simply changing the parameter to |V | − k. If we study the
parameterized versions of these problems where we parameterize by the size of
the requested independent set and the size of the vertex cover, there is a prob-
lem: While we still have the property that the complement of an independent
set is a vertex cover, the reduction has a drastic influence on the parameter by
making the new parameter depend on the input size. Hence, if we allow this
reduction, we cheat! By reducing p-Independent-Set to p-Vertex-Cover
in the mentioned way, we secretly place the size of the graph in the parameter,
and the conclusion that since p-Vertex-Cover is fixed-parameter tractable
also p-Independent-Set is fixed-parameter tractable is wrong because we
then use the size of the graph within the quickly growing function that we
originally only allowed to depend on the parameter. This issue is resolved by
the following reduction notion:

. Definition 18 (Parameterized Reductions). Let (Q1, κ1) with Q1 ⊆ Σ1 and
(Q2, κ2) with Q2 ⊆ Σ2 two parameterized problems. We say that (Q1, κ1)

many-one-reduces to (Q2, κ2) if there is a computable function r with r : Σ1 →
Σ2 and a function g with g : N → N such that

1. for every x with x ∈ Σ1 we have x ∈ Q1 ⇔ r(x) ∈ Q2,

2. κ2(r(x)) ≤ g(κ1(x)), i. e., the new parameter value is bound only in terms
of the old parameter value.

To ensure the closedness of our classes, we also have to restrict the com-
putational power of the reductions we use. In this thesis we will consider the
following three reductions:

. Definition 19 (para-AC 0-, para-L-, and para-P-Reductions).

para-AC 0-Reductions The reduction function is computable by a logarithmic-
time uniform para-AC0-circuit family.

para-L-Reductions The reduction function is computable by a para-L-restrict-
ed Turing machine.

35

para-P-Reductions The reduction function is computable by a para-P-restrict-
ed Turing machine.

While every class discussed in this thesis is closed with respect to para-
AC0-reductions, it is only known that para-L and its superclasses are closed
under para-L-reductions and para-P and its superclasses are closed under para-
P-reductions.

However, let us return to the reduction of parameterized independent set
to parameterized vertex cover. From the definition above, we can immediately
see that the reduction is not a parameterized reduction, since the reduction
violates the rule that the new parameter has to be bound in terms of the
old parameter alone. In fact, it is unknown whether a para-P-reduction from
p-Independent-Set to p-Vertex-Cover exists, and, more interestingly, the
existence or non-existence of such a reduction is connected to very important
open questions of computational complexity, as we will see in the next section.

2.4. Review of the Weft-Hierarchy

Up to now we used para-P as a relaxed notion of tractability and considered
subclasses like para-L and para-AC0 with the aim of giving more structure to
this tractability notion. Much effort has been spend by many researchers to
show that problems are tractable within this notion, but, however, there a
problems that refuse to admit parameterized tractability. For these problems
we require a notion of parameterized intractability. Over time several such no-
tions have been studied, the so-called Weft-Hierarchy introduced by Downey
and Fellows (1995a) being undoubtedly the most successful among them. Since
its introduction, many equivalent definitions of the Weft-Hierarchy have been
developed, in this thesis I will stick to the one of Flum and Grohe (2006):

. Definition 20 (Weft-Hierarchy). For every t with t ≥ 1 the t-th level of the
Weft-Hierarchy W[t] is defined as

W[t] =
⋃

ϕ∈Πt

[p-WDϕ]
para-P

i.e. the closure under para-P-reductions of the family of parameterized problems
p-WDϕ that are defined by

36

. Problem 21 (p-WDϕ).

Instance: A logical structure S with universe U and a natural num-
ber k.

Parameter: k.
Question: Is there a relation A with A ⊆ Us and |A| = k such that
S |= ϕ(A)?

Here, Πt denotes the set of first-order formulas with a single free second-order
variable in prenex normal form where, starting with universal quantifiers as
the outermost quantifiers, there are at most t− 1 alternations of universal and
existential quantifiers. Moreover, ϕ(A) denotes the formula ϕ where we replace
every occurrence of the free second-order variable with the relation A.

One of the most famous problems of the Weft-Hierarchy is p-Clique. Given
an instance of p-Clique, we can easily reduce this instance to p-WDϕClique

with

ϕClique(X) = ∀x∀y
(
(Xx∧ Xy∧ x 6= y) → Exy

)
using a para-P-computable reduction (in fact, our reduction does essentially
nothing because the given input graph is already the desired logical structure
and the parameter value does not change at all). Since ϕClique has no quantifier
alternation, we can conclude that p-Clique ∈ W[1].

Another famous example for a problem that is placed on a higher level of
the Weft-Hierarchy is p-Dominating-Set, the parameterized dominating-set
problem.

. Problem 22 (Parameterized Dominating Set).

Instance: An undirected graph G with G = (V, E) together with a
natural number k.

Parameter: k.
Question: Is there a set C with C ⊆ V and |C| = k such that for

every vertex v of the graph we have that either v ∈ C or there is a
vertex u with u ∈ C that is connected with v via a direct edge.

Using the formula ϕDominating Set(X) with

ϕDominating Set(X) = ∀x∃y
(
Xx∨ (Xy∧ Exy)

)
we can conclude that p-Dominating-Set ∈ W[2].

From the definition of the Weft-Hierarchy we get the inclusion chain

para-P ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[t] ⊆ W[t+ 1] ⊆ · · · ⊆ XP ∩ para-NP

37

where W[t] ⊆ XP ∩ para-NP follows from the facts that for a fixed Πt for-
mula an XP machine has enough time to iterate over all possible relations of
size k searching for the one that satisfies ϕ, and a para-NP machine can use its
nondeterminism to just guess it.

The Weft-Hierarchy has been widely regarded as the parameterized version
of intractability because, as Chen and Meng (2008) state it in their survey
paper, extensive computational experience and practice have given strong evi-
dence that para-P 6⊆ W[1]. Hence, showing that a problem is complete for one
of the classes of the Weft-Hierarchy has been widely accepted as a very strong
hint that the problem is not fixed-parameter tractable. Two early examples of
problems that are complete for classes of the Weft-Hierarchy are the already
mentioned problems p-Clique and p-Dominating-Set:

. Fact 23 (Downey and Fellows (1995a,b)). The problems p-Clique and
p-Dominating-Set are complete for W[1] and W[2] under para-P-reductions,
respectively.

Under the assumption that para-P 6= W[1], we can immediately conclude
from this result that there is no para-P-computable reduction from p-Clique
to any problem in para-P, for example p-DFVS. This is all we can see using
parameterized time classes. However, since we are interested in parameterized
space and circuit classes, we usually consider much weaker reductions like para-
L-reductions or para-AC0-reductions. With these reductions in mind we can
observe something interesting:

. Theorem 24. There exists no para-AC0-reduction from p-DFVS to p-Clique.

Proof. The statement follows with arguments similar to the arguments of The-
orem 12 together with the fact that p-Clique ∈ XAC0: If there was a reduction,
we could immediately conclude that the reachability problem in undirected
graphs is solvable in AC0, which is absurd since we know that AC0 6= L from
Furst et al. (1984).

This is something, one would not expect at first sight: Immerman (1987,
1999) noticed that in computational complexity theory ‘natural’ problems that
are complete via polynomial-time reductions for some complexity class tend to
remain complete via first-order reductions. However, from the theorem above
we see that this does not carry over into the parameterized setting of the Weft-
Hierarchy: p-Clique is not complete for W[1] under para-AC0-reductions! One
can argue that, since the Weft-Hierarchy is defined via para-P-reductions and
AC0 6= P, it is somehow natural that there are problems that are not complete

38

for W[1] under para-AC0-reductions but under para-P-reductions – and this is
right. However, using para-P-reductions to define the Weft-Hierarchy hides an
important fact that can only be revealed using parameterized space complexity:
p-DFVS is not a “Weft problem”. Imagine that the Weft-Hierarchy was defined
in terms of para-AC0-reductions, para-NC1-reductions, and para-L-reductions
instead of para-P-reductions, and the t-th level of these hierarchies was denoted
by W[t]para-AC0

, W[t]para-NC1

, and W[t]para-L, respectively, i. e., formally we
have

W[t]para-AC0

= [p-WDϕ]
para-AC0

,

W[t]para-NC1

= [p-WDϕ]
para-NC1

,

W[t]para-L = [p-WDϕ]
para-L with ϕ ∈ Πt.

Then, p-DFVS does not even lie in the Weft-Hierarchy if we consider para-
AC0-reductions as the underlying reduction notion, and if we consider para-
L-reductions as the underlying reduction notion, then the question whether
p-DFVS lies in the Weft-Hierarchy is directly related to one of the most im-
portant open questions from classical computational complexity theory:

. Theorem 25.

1. p-DFVS 6∈ W[t]para-AC0

for any t.

2. If p-DFVS ∈ W[t]para-L for some t, then L = NL.

Proof. Let us start with the first statement. First, note that W[t]para-AC0

⊆
XAC0 for every t because XAC0 is closed under para-AC0 reductions and for
every fixed first-order formula ϕ there is a uniform AC0 circuit family that
is equivalent to ϕ, see Vollmer (1999). Now, to decide for a given structure
whether there is a satisfying assignment for ϕ of size k we use a circuit that,
in parallel, tests for every of the O(|U|k) subsets of the universe U of size k
whether it satisfies ϕ and accepts if there is one such subset.

For the sake of contradiction let us assume that p-DFVS ∈ W[t]para-AC0

for some t. Then we have that p-DFVS ∈ XAC0 and can conclude with
arguments similar to the ones in the proof of Theorem 12 that the reachability
problem for directed graphs can be decided using AC0 circuits, which is absurd
because AC0 6= NL.

Let us now turn to the second statement. The proof is mostly identical to
the proof of the first statement, but now we cannot conclude that if p-DFVS ∈
W[t]para-L, then we also have p-DFVS ∈ XAC0, because XAC0 is not closed
under para-L-reductions. However, we can conclude that p-DFVS ∈ XL be-
cause XL is closed under para-L-reductions, and with the same arguments as

39

in the proof of Theorem 12 we then have that the reachability problem for
directed graphs can be decided in logarithmic space which implies L = NL.

Figure 2.2 gives an overview of the classes and problems we have discussed
in this section so far together with some classes we will discuss in the next
chapter.

So, what makes a problem a “Weft problem”? Since its introduction, many
attempts to obtain a deeper understanding of the Weft-Hierarchy have been
made. These studies are based on weighted satisfiability problems for Boolean
circuits, see Downey and Fellows (1995a), weighted definability problems for
first-order formulas, see Flum and Grohe (2006), and alternating Turing ma-
chines and bounded nondeterminism, see Buss and Islam (2006, 2007); Chen
and Flum (2003); Chen et al. (2003, 2005). All of these studies reveal a common
algorithmic approach to solve “Weft problems” that consists of three phases:

1. a preprocessing phase,

2. a guessing phase,

3. a verification phase.

Recall that we defined the t-th level of the Weft-Hierarchy, namely W[t], as the
para-P-computable reduction closure of the problems p-WDϕ for every fixed
formula ϕ with ϕ ∈ Πt. Here, the reduction closure corresponds to the prepro-
cessing phase, finding a monadic relation of parametric size that satisfies ϕ to
the guessing phase, and the evaluation of ϕ on the guessed relation to the ver-
ification phase. For an example, let us consider p-Clique. From the theorems
and examples above, it is easy to see that p-Clique ∈ W[1]para-AC0

because
the input for p-Clique is already a logical structure that we can apply our for-
mula ϕClique on, thus we only have to guess a satisfying assignment. Hence, we
have a para-AC0-preprocessing, a guessing phase that guesses k vertices of the
graph which requires O

(
k · log(n)

)
nondeterministic bits, and a Π1-expressible

verification phase.
If we turn to p-DFVS, a natural decision procedure would be to guess the

vertices of the feedback vertex set and then verify that the input graph is cycle-
free if we remove the feedback vertex set. However, testing whether a directed
graph is cycle-free is an NL-complete problem and not expressible in first-order
logic, see Papadimitriou (1994). Hence, there is no hope to decide p-DFVS
with this approach. Up to now, the only known way to decide p-DFVS in
the “Weft way” is by using a para-P-preprocessing phase, but since we have
p-DFVS ∈ para-P, the guessing phase and the verification phase are not re-
quired afterwards. Moreover, from the theorems above, we also see that under

40

para-AC0

para-TC0

para-NC1

para-L

paraβ-Lparaβ∀-L

paraDβ-L

para-NL

para-P

W[1]

W[2]

W[t]

W[SAT]

paraβ-P = W[P]

para-NP

W[1]para-AC0

W[2]para-AC0

W[t]para-AC0

W[SAT]para-AC0

W[1]para-NC1

W[2]para-NC1

W[t]para-NC1

paraW-NC1 = W[SAT]para-NC1

W[1]para-L

W[2]para-L

W[t]para-L

W[SAT]para-L

paraW-L

paraW-NL

p-DFVS

6∈

∈
membership

implies
L = NL

∈

p-Clique

para-P-complete
p-Clique 6≤para-AC0

p-DFVS

p-Clique ≤para-P p-DFVS implies W[1] = para-P

p-DFVS 6≤para-AC0

p-Clique

Figure 2.2: Diagram of Weft-classes with respect to different reductions to-
gether with their surrounding classes and inclusions where A B denotes
the inclusion A ⊇ B. Moreover, the relations between p-DFVS and p-Clique
as well as their relations to the drawn classes that were discussed in the previous
section are illustrated.

41

the assumption that L 6= NL a para-L-preprocessing is not sufficient to decide
p-DFVS. In Chapter 3 we will study the requirements to decide problems like
p-DFVS in more detail.

What can we learn from this? Hardness of a problem for a level of the
Weft-Hierarchy is a strong evidence, that the problem is not fixed-parameter
tractable. However, the Weft concept lies not at the core of parameterized
intractability, but is an additional ingredient, that makes a problem intractable:
Up to our knowledge, the Weft concept lies orthogonal to the concept of para-
classes. Some problems are deeply connected to this concept, for instance
p-Clique, while other problems like p-DFVS are not. Hence, in order to
study the computational complexity of parameterized problems, we should
stop to see para-classes and Weft-classes as a linear hierarchy, and start to
see the Weft concept as one dimension of a grid together with the concept of
para-classes on the second dimension. While this makes Weft-classes appear
somehow unattractive, they still serve as a good basis for further studies of
parameterized space and circuit complexity as we will see in the next chapter.

42

3. Bounded Nondeterminism

One of the most intensively studied and still most poorly understood and
thus most challenging concepts in computational complexity is the concept of
nondeterminism. Since its introduction by Rabin and Scott (1959), literally
thousands of research papers and theses that investigate nondeterminism have
been published, and this thesis is one of them.

Undoubtedly, the most famous application of nondeterminism is the study
of NP-hard and NP-complete problems. These problems are of special interest
because, firstly, many of them are very natural, and, secondly, showing that a
problem is NP-hard is widely regarded as a strong indication that the problem
is not solvable in polynomial time. Since Cook (1971) showed that the sat-
isfiability problem for propositional formulas is complete for NP, hundreds of
NP-complete problems have been discovered. An early but already impressive
list of more than 300 such problems is contained in the famous “black book”
of Garey and Johnson (1979). Since then, the number of problems known to
be NP-complete has grown enormously. Besides the study of time in terms of
polynomial time and nondeterministic polynomial time, nondeterminism also
plays an important role in connection with the concept of space, most impor-
tantly in form of deterministic and nondeterministic logarithmic space. Again,
many natural problems are complete for NL, see Jones et al. (1976).

An immediate question rising from the importance of nondeterminism when
studying the classical computational complexity of problems is: What is the
role of nondeterminism in the world of parameterized complexity? At first, this
question may seem easy to answer because from the generic definition of para-
classes and X-classes we can easily define parameterized analogues of classes like
NP and NL, for example para-NP and XNL, thus carrying over the knowledge
about nondeterminism obtained from classical computational complexity to
parameterized complexity. Moreover, Flum and Grohe (2006) already noticed,
that “all para-NP-complete problems are, in some sense, uninteresting from the
parameterized point of view because their hardness is already witnessed by
finitely many parameter values.” More formally, they show the following fact:

43

. Fact 26. Let (Q,κ) be a nontrivial parameterized problem in para-NP. Then
the following two statements are equivalent:

1. (Q,κ) is para-NP-complete under para-P-reductions.

2. There is a finite set I of natural numbers such that { x | x ∈ Q∧κ(x) ∈ I}
is NP-complete under polynomial-time computable reductions.

It is not hard to see from the proof in Flum and Grohe (2006) that this
also holds for other classes, for example if we focus on para-NL and para-
L-reductions instead of para-NP and para-P reductions. (We will prove this
result later for para-NL as a useful lemma when proving Theorem 51.) Hence,
only X-classes may seem to be of interest, but many problems do not appear
to be “X-problems”. Is thus nondeterminism in general uninteresting in the
parameterized setting?

In our discussion of the Weft-Hierarchy in the last chapter, we have already
seen an appearance of nondeterminism: In the guessing phase, Weft algorithms
make use of O

(
k · log(n)

)
nondeterministic bits where k is the parameter value

and x is the input. Hence, the amount of nondeterminism is not only bound
by the input length but also by the parameter. In the following, we will call
this bounded nondeterminism. It turns out that this concept gives us a large
variety of useful and interesting classes that capture the complexity of many
natural parameterized problems.

In this chapter, we will first study classes of bounded nondeterminism and
their structural properties in Section 3.1. Moreover, we will consider a generic
way of translating completeness results from classical computational complex-
ity to the world of parameterized complexity that we will call union operation.
We will see that many interesting and natural parameterized problems are in
fact union problems and, therefore, deeply connected to classical computa-
tional complexity theory. In Sections 3.2 and 3.3, we will study already known
and new natural problems from the perspective of bounded nondeterminism
and union problems that are inside and outside of para-P, respectively.

3.1. Classes and Structural Properties

Nondeterminism appears in many different shapes. Since in this thesis we
are mainly considering Turing machines and Boolean circuits, our working
definition of nondeterminism will be in terms of these computational models.
Let us turn to Turing machines first.

We consider nondeterministic Turing machines as deterministic Turing ma-
chines that are augmented with additional read-only tapes that we will call

44

choice tapes. We then say that a nondeterministic Turing machine accepts an
input if there is at least one bitstring for each choice tape that we can place
on the choice tape at the beginning of the computation such that the (apart
from the bitstrings deterministic) machine accepts. Using this model, we can
define the class NP in a straight-forward fashion as the class of problems that
are decidable by deterministic Turing machines in polynomial time that have
access to a choice tape. However, this does not work for NL. If we consider
Turing machines having a logarithmic space bound that are augmented with
choice tapes (note that the length of the bitstring on the choice tape is un-
bound), then these machines can decide far more than only problems in NL,
they can even decide every problem in PSPACE. This is because logarithmic
space suffices to check that the choice tape contains the encoding of a valid
computation of a PSPACE Turing machine, consisting of a sequence of con-
figurations of polynomial size each. Hence, to obtain a machine model that
characterizes NL, we have to impose further restrictions. The central idea for
this is to limit the access to the choice tape: In the following, we distinguish
between one-way access and two-way access to the choice tape, i. e., between
the possibilities to move the head on the choice tape in one fixed direction only
or in both directions. In other words, two-way access can be seen as the ability
to read nondeterministic bits repeatedly while one-way access can be seen as
read-once access to these bits. Now we can redefine NL: It is the class of prob-
lems that are decidable by Turing machines with logarithmic space bounds and
one-way access to their choice tapes.

Based on these observations, let us formally define nondeterminism in the
context of parameterized complexity.

. Definition 27 (Sequential Classes of Bounded Nondeterminism). Let C be
a classical complexity class that is defined in terms of a deterministic Turing
machine model. We then define para∃↔-C as the class of parameterized prob-
lems (Q,κ) over an alphabet Σ such that there is a para-C-machine M with a
single two-way accessible choice tape and for every input x with x ∈ Σ∗ we have
x ∈ Q if, and only if, there is a string b with b ∈ {0, 1}∗ such that M accepts
x with b on its choice tape. We define para∃→-C similarly, but now we only
allow one-way access to the choice tape. Moreover, for the classes para∃↔flog-C
and para∃→flog-C the length of b may be at most O

(
fk · log(n)

)
for a computable

function f. Let us call the classes where we impose a bound on the length of
the nondeterministic bitstrings classes of bounded nondeterminism.

Analogously, let us define the classes where, instead of an existential quan-
tifier, we have a universal quantifier in the natural way: The input is accepted,

45

if the machine accepts it for every possible content of the choice tape.
Finally, we define classes with sequences of quantifiers: For every quantifier

the machine is equipped with a choice tape, and the conditions of the quantifiers
must be met in order the quantifiers appear. For example para∀↔∃→flog-L is the
class of parameterized problems (Q,κ) decidable via a para-L-machine M with
a two-way and a one-way choice tape such that for an input x we have x ∈ Q
if, and only if, for every binary string on the two-way choice tape, there is a
binary string of length O

(
fk · log(n)

)
on the one-way choice tape such that M

accepts.

Using this definition, we can uniformly define the classes we previously
studied: para∃↔-P is the same as para-NP and para∃→-L is the same as para-
NL. Moreover, we can express parameterized complexity classes that we did not
mention until now, for example the important class W[P] defined by Downey
and Fellows (1995a) is the same as para∃↔flog-P, which can be seen from the
many definitions of W[P], for example in Flum and Grohe (2006). Now we can
express the classes we will focus on in the rest of this chapter:

para∃→flog-L, para∃↔flog-L, para∃↔flog∃→-L.

However, despite the fact that the notation introduced above expresses the
type of nondeterminism we make use of in a formal and clear way, it is very
cumbersome. Hence, we make use of the following abbreviated versions:

paraβ-L, paraW-L, paraW-NL.

Following the notation from Buss and Goldsmith (1993), we use β to denote
read-once bounded existential nondeterminism. The use of W is inspired by the
Weft-Hierarchy: As we have seen in the previous chapter, Weft algorithms have
a guessing phase and, during the verification, repeated access to the guessed
elements is possible.

The notation using the subscripted W allows us to extend the concept of
bounded nondeterminism to other computational models, for example circuits.
For this, note that the subscripted W effectively augments the input of the Tur-
ing machine with O

(
fk · log(n)

)
nondeterministic bits. From this view, we can

immediately define circuit classs of bounded nondeterminism in a reasonable
way:

. Definition 28 (Circuit Classes of Bounded Nondeterminism). Let C be a
classical complexity class that is defined in terms of circuits. We then define
paraW-C as the class of parameterized problems (Q,κ) that are decidable using

46

para-C circuits that are given O
(
fk · log(n)

)
nondeterministic bits along with

their input.

For example, paraW-AC0 is the class of parameterized problems decidable
via circuits of size O

(
fk · p(n)

)
for a polynomial p and depth O(1) with gates

over the standard base and unbounded fan-in that have access to O
(
fk · log(n)

)
nondeterministic bits. These nondeterministic bits prove to be quite powerful:
It is not hard to see that p-Clique ∈ paraW-AC0 holds.

With these classes, we are only missing one final notion before we can study
the complexity of actual problems in depth: the union operation.

The union operation is a generic method to show completeness for parame-
terized complexity classes that rely on the concept of bounded nondeterminism.
This operation allows us to connect the world of classical computational com-
plexity with the parameterized world by turning problems complete for classes
like P, L, or NL into problems complete for paraW-P, paraW-L, or paraW-NL,
respectively. It is based on the consideration that many problems studied in
computational complexity contain the task of selecting elements from the input
that form a solution. For example, the clique problem asks for a set of vertices
of the input graph that are pairwise connected, the satisfiability problems asks
for a set of literals that have to be set to true in order to satisfy the input
formula, and the subset sum problem asks for a set of numbers from the input
that add up to a specified target sum. The union operation enables us to for-
malize these problems in a uniform way and connect them to our classes and,
more generally, to the W-operator introduced above.

. Definition 29 (Union Operation). Let Σ be an alphabet that does not contain
the symbols ?, 0, and 1. We then call a word t with t ∈

(
Σ ∪ {?}

)
a template

and any word that is obtained from a template t by replacing every occurrence
of the symbol ? by either 0 or 1 an instantiation of t. Given instantiations
s1, . . . , sn of the same template t, we call the instantiation of t that has a 1 at
those positions where at least one of the si has a 1 and otherwise 0 the union
of s1, . . . , sn.

More intuitively, we can think of a template t as a checkered transparency
with symbols written in some of its boxes. Then, every instantiation of t is such
a transparency where some of the empty boxes of the original transparency are
additionally marked. We obtain the union of the instantiations by placing the
transparencies on top of each other such that the symbols of the template align.
Based on this intuition, let us define three union problems that, as we will see

47

in a moment, are deeply connected to the W-operator and connect problems
of classical complexity theory to parameterized problems.

. Problem 30 (p-Family-Union-A for a language A ⊆
(
Σ ∪ {0, 1}

)∗).
Instance: A family of k sets S1, . . . , Sk of instantiations of a common

template t with t ∈
(
Σ ∪ {?}

)∗
Parameter: k.
Question: Are there s1, s2, . . . , sk with si ∈ Si such that their union

lies in A?

. Problem 31 (p-Subset-Union-A for a language A ⊆
(
Σ ∪ {0, 1}

)∗).
Instance: A set S of instantiations of a template t with t ∈

(
Σ∪ {?}

)∗
and a natural number k.

Parameter: k.
Question: Is there a set S ′ ⊆ S with |S ′| = k such that the union of

the instantiations in S ′ lies in A?

. Problem 32 (p-Weighted-Union-A for a language A ⊆
(
Σ ∪ {0, 1}

)∗).
Instance: A template t with t ∈

(
Σ ∪ {?}

)∗ and a natural number k.
Parameter: k.
Question: Is there an instantiation s of t with exactly k many oc-

curences of the symbol 1 that lies in A?

While the origin of the names p-Family-Union-A and p-Subset-Union-A
are easy to see, it might be unclear where the name p-Weighted-Union-A
comes from. One reason for its name lies in the notion of the Hamming Weight
where the weight of a string is the number of non-zero elements of the string
(we only focus on the non-zero elements on positions where the template has
a ?). The second reason lies in its connection to fundamental parameterized
problems like the weighted satisfiability problem p-Weighted-SAT:

. Problem 33 (Parameterized Weighted Satisfiability).

Instance: A propositional formula φ and a natural number k.
Parameter: k.
Question: Is there a weight-k satisfying assignment of φ, i. e., an

assignment that sets exactly k of the variables of φ to true?

In fact, p-Weighted-SAT is a weighted-union problem: Let A be the
Boolean formula value problem BFVP discussed in Buss et al. (1992) and
Buss (1987) where we are asked to decide whether a given Boolean formula

48

together with a given truth assignment for its variables is satisfied. Moreover,
let the symbols 0 and 1 of the alphabet Σ solely encode the assignment to the
variables. For example, the formula

(x0 ∧ x1)∨ (x1 ∧ x2)∨ (x0 ∧ (x1 ∧ x2))

together with an assignment where x0 and x1 are set to be true and x2 is set
to be false could be encoded as

110# code
(
x0 ∧ x1)∨ (x1 ∧ x2)∨ (x0 ∧ (x1 ∧ x2)

)
where the first three symbols encode the variable assignment and the string
after the # encodes the formula using an alphabet that does not contain the
symbols ?, 0, and 1. Now, if we turn to p-Weighted-Union-BFVP, inputs
are encodings of formulas like the one above where the symbols 0 and 1 are
replaced by ?, together with a natural number k. For the formula above and
the parameter 2, the input would be(

???# code
(
x0 ∧ x1)∨ (x1 ∧ x2)∨ (x0 ∧ (x1 ∧ x2)

)
, 2
)
.

Now, the question is whether we can replace k of the symbols ? with 0 (and the
remaining occurences of ? with 1) such that the resulting word is an element of
BFVP. It is easy to see that this problem is equivalent to p-Weighted-SAT.

Besides p-Weighted-SAT, many other parameterized problems can be
expressed using union operations, for example p-Weighted-Circuit-SAT,
p-Clique, p-Vertex-Cover, or p-Subset-Sum. How can we benefit from
this? First of all, for many union problems it is easy to see that they are mem-
bers of classes of bounded nondeterminism. Recall that, when using bounded
nondeterminism, we are provided with O

(
fk · log(n)

)
many nondeterministic

bits that suffice to select O
(
fk
)

many positions within the input, for example
k of the given instantiations of a subset-union problem. We then only have
to compute the union of the instantions and check whether the result is a
member of the underlying language. Secondly, besides being a member of a
class of bounded nondeterminism, union problems are also often complete for
such classes. Before we formalize this in Lemma 35, we require the following
definition of format-preserving projections as the central ingredient for the
lemma:

. Definition 34 (Format-Preserving Projections). Let A with A ⊆ Σ∗ and B
with B ⊆ Γ∗ be two languages. A function p : Σ∗ → Γ∗ is a format-preserving
projection if

49

1. p is a reduction from A to B, i. e., for every w with w ∈ Σ∗ we have
w ∈ A⇔ p(w) ∈ B,

2. p is a projection, i. e., every symbol of p(w) depends on at most one
symbol of w,

3. p is format-preserving, i. e., for every n, the set {p(w) | w ∈ Σn} is a set
of instantiations of the same template t.

We say that p is an AC 0-computable format-preserving projection if p is
computable via a uniform family of AC0 circuits.

Intuitively, if there is a AC0-computable format-preserving projection from
A to B, then words of the same length are mapped to words of the same coarse
structure because the underlying template stays the same and only details
change. In other words, the occurences of ? within the template are filled
differently with 0 or 1.

Why do we consider such a cumbersome notion of reduction? First of
all, many classical problems that are complete for some reasonable complexity
class like NP or L are also complete for these classes with respect to format-
preserving projections as we will see later. Secondly, if a problem is complete
with respect to these reductions for some complexity class C, the accompanying
union problems can often shown to be complete for the corresponding class of
bounded nondeterminism:

. Lemma 35 (Union-Lemma). Let C be a complexity class with C ∈ {L,NL,P,

ACi,TCi,NCi+1} and i ≥ 0. Moreover, let A be a language with A ⊆
(
Σ∗ ∪

{0, 1}
)∗ where Σ does not contain the symbols ?, 0, 1. If A is complete

for C with respect to AC0-computable format-preserving projections, then
p-Family-Union-A is complete for paraW-C under para-AC0-reductions.

Proof. Let us first consider membership. On input of a template t together
with the family (S1, . . . , Sk), we interpret the nondeterministic bits given along
with the input as the description of k elements si with si ∈ Si. We compute
the union u of these si and run the underlying machine or circuit to decide
whether u ∈ A.

Our proof plan for the hardness of p-Family-Union-A is as follows: First,
we show that any problem (Q,κ) in paraW-C can be seen as a family-union
problem by showing that we can reduce (Q,κ) to p-Family-Union-L where L
is a certain unparameterized problem depending on (Q,κ). In the second step,
we reduce p-Family-Union-L to p-Family-Union-A.

Let (Q,κ) be a problem from paraW-C with Q ⊆ ∆∗ for an alphabet ∆.
How can we interpret such a problem as a family-union problem? We get the

50

answer for this question by looking at the definition of paraW-C: Since we
have (Q,κ) ∈ paraW-C, we know from the definition of paraW-C that there is
a language X with X ⊆ Γ∗ for an alphabet Γ , a computable function π : N → Π∗

for an alphabet Π, and a computable function f : N → N, such that for every
x with x ∈ ∆∗ we have x ∈ Q if, and only if, there is string b of length
O
(
fk · log(n)

)
over the alphabet {0, 1} with (x, π(k), b) ∈ X. Our language L

from the theorem will be X, i. e., we will reduce (Q,κ) to p-Family-Union-X.
The main idea for this is to translate the search for an appropriate b into a
search for elements of a family and to make sure that the union of the elements
gives us b. More formally, for an input x, we define a family (Sx1, . . . , S

x
fk
) by

Sxi =
{
(x, π(k), v) | v =

(i−1)·dlog(n)e︷ ︸︸ ︷
0 . . . 0w 0 . . . 0︸ ︷︷ ︸

(fk−i)·dlog(n)e

∧w ∈ {0, 1}dlog(n)e}.
Now, for an input x there is a b such that (x, π(k), b) ∈ X if, and only if,
there is a selection of si with si ∈ Sxi such that the union of these si lies in
X. In other words, there is a b with (x, π(k), b) ∈ X if, and only if, we have
(Sx1, . . . , S

x
fk
) ∈ p-Family-Union-X. Moreover, it is not hard to see that the

family (Sx1, . . . , S
x
fk
) can easily be computed using a para-AC0 circuit family.

Now that we have reduced (Q,κ) to p-Family-Union-X, we have to reduce
this problem to p-Family-Union-A, i. e., we have to map the (Sx1, . . . , S

x
fk
) to

a new family (Tx1 , . . . , T
x
f ′
k
) such that there is a selection of elements si with

si ∈ Sxi whose union lies in X if, and only if, there is is a selection tj with
tj ∈ Txj whose union lies in A. We define Txi by

Txi = {pi(w) | w ∈ Sxi }

where pi is based on p: For an input w with w = (x, π(k), v) the projection pi
effectively computes p(w), but it additionally obeys the following rules:

1. If the r-th symbol of p(w) depends on a symbol from v that belongs to
the i-th of the fk blocks of length dlog(n)e, the r-th symbol of pi(w) is
the same as the r-th symbol of p(w).

2. If the r-th symbol of p(w) depends on a symbol from v that does not
belong to the i-th of the fk blocks of length dlog(n)e, the r-th symbol of
pi(w) is 0.

3. In all other cases, the r-th symbol of pi(w) is the r-th symbol of p(w).

Since p is format-preserving, we have that the elements of the new family are
instantiations of the same template.

51

Altogether, we obtain a reduction from (Q,κ) to p-Family-Union-A by
first reducing a given instance of (Q,κ) to p-Family-Union-X and then re-
ducing it to p-Family-Union-A. Moreover, this reduction is computable by a
para-AC0 circuit family because the projection p is AC0-computable.

The union operation provides us with a useful framework to show that a
problem is complete for a class para-C by only showing that the underlying
classical problem is complete for C under AC0-computable format-preserving
projections. Fortunately, many classical problems have been studied with re-
spect to projections, and, indeed, many problems are complete under projec-
tions for natural complexity classes. Let us have a look at such problems in
the next section.

3.2. Natural Problems for paraW-Classes

The union operation together with the notion of AC0-computable format-
preserving projections provides us with tools for proving the completeness of
problems for classes of parameterized bounded nondeterminism by only looking
at their complexity from the perspective of classical computational complexity
theory. In this section, we will have a look at examples that illustrate the
application of the union operation, and, moreover, provide natural complete
problems for our classes. We will start with satisfiability problems, continue
our study with graph problems, and end with the most involved example of
this section, namely the associative generabilty problem. While this selec-
tion covers some of the most natural topics in computational complexity, we
will also come across some of the most important complexity classes and their
parameterized analogs.

Let us start over with two well-known satisfiability problems: the Boolean
formula value problem BFVP and the circuit value problem CVP. In the pre-
vious section, we already had a glimpse at BFVP and realized that the well-
known problem p-Weighted-SAT is in fact p-Weighted-Union-BFVP. So,
what can we learn about this problem if we take a look at BFVP from the per-
spective of AC0-computable format-preserving projections? First of all, BFVP
has been shown to be complete for NC1 under AC0-reductions by Buss (1987)
and Buss et al. (1992), and, moreover, this completeness can be established
by projections. To be more precise, Buss et al. (1992) showed that NC1 can
equivalently be characterized by alternating Turing machines with a logarith-
mic time bound and that these machines can be simulated using NC1 circuits.
The important detail here is that, for all the instances of a fixed length n, this

52

simulation can be performed by the same propositional formula where only
the values of the input gates change with the input of the machine. Hence,
BFVP is complete for NC1 under AC0-computable format-preserving projec-
tions. With the union lemma above we can then immediately conclude that
the family-union problem p-Family-Union-BFVP is complete for paraW-NC1

with respect to para-AC0-reductions. However, we can extend this result:

. Theorem 36. p-Weighted-Union-BFVP is complete for paraW-NC1 with
respect to para-AC0-reductions.

Proof. Since BFVP lies in NC1, membership in paraW-NC1 can easily be
achieved: On input of a template t encoding a propositional formula φ to-
gether with a parameter k, the circuit interprets its nondeterministic bits as
the description of k variables of φ that have to be set to true in order to sat-
isfy φ. Our circuit replaces every occurence of such a variable in φ with the
value true and every other variable with false and evaluates φ afterwards. If φ
evaluates to true, then the circuit accepts, otherwise it rejects.

For hardness, we show the reduction chain

p-Family-Union-BFVP ≤ p-Subset-Union-BFVP

≤ p-Weighted-Union-BFVP.

For the first reduction, let (S1, . . . , Sk) be an input for p-Family-Union-BFVP
and let φ be the encoded formula. Our aim is to compute a new set T such
that there are k elements in T whose union encodes a satisfied propositional
formula if, and only if, there are k elements si with si ∈ Si whose union encodes
a satisfied formula. To achieve this, we cannot simply let T = ∪k

i=1Si, because
then it would be possible to select elements from T that originate from the
same Si. To avoid this, we do a simple trick: We extend the formula φ to a
new formula φ ∧ ψ where ψ ensures that we do not pick two elements from
the same Si. The formula ψ introduces a fresh variable vi for every Si and is
defined by

ψ =

k∧
i=1

vi.

Moreover, we adjust the elements of the sets of the family in such a way that
exactly those elements assign true to the variable vi that originate from Si.
Setting the new parameter to k then enforces that a solution to the problem
has to contain exactly one element originating from each Si. For an example,

53

let the original instance be (S1, S2) with

S1 = {φ000, φ001},

S2 = {φ001},

S3 = {φ101, φ100, φ110}

where the strings after the φ encode the assignment, for instance, 001 denotes
the assignment where the first and the second variable are set to false and the
third variable is set to true. Since we have three sets, the new formula ψ is
defined by

ψ = φ∧ v1 ∧ v2 ∧ v3.

Furthermore, the set T is then defined by

T = {ψ000100, ψ001100,

ψ001010,

ψ101001, ψ100001, ψ110001},

where the last three bits of the assignment strings encode the assignment of
the variables v1, v2, and v3.

Since the new variables do not occur in φ, they do not have any influence
on the satisfiability of φ, and, hence, there is a selection of k elements of S
whose union satisfies φ ∧ ψ if, and only if, there are k elements, one from
each Si, whose union satisfies φ. Moreover, this reduction is clearly a para-
AC0-reduction.

Let us now turn to the second part of the reduction chain, namely the reduc-
tion from p-Subset-Union-BFVP to p-Weighted-Union-BFVP. Hence, let
S with S = {s1, . . . , sn} together with the parameter k be our input instance.
The main problem is that a selection of k elements of S can set an arbitrary
number of variables of the encoded formula to true, but in the weighted-union
problem we are only allowed to set a number of variables to true that may
only depend on the parameter k. Hence, we somehow have to “compress” the
variables that can be set by one of the si to a single variable. For this, we in-
troduce a variable vi for every si. Now, to make sure that setting this variable
to true sets φ to true at all the “places” that si would have set to true, we
adjust the formula φ to ψ by replacing every occurence of a variable xi by the
subformula ∨

j∈S[xi]

vj

54

where S[xi] denotes the set of the indices j of those instantiations sj from S

that set the variable xi to true. The remaining formula then has the variables
v1, . . . , vn, and any truth assignment to these variables corresponds to exactly
one subset of S, and vice-versa. Hence, there is a selection of k elements
of S whose union is a satisfying assignment of φ if, and only if, there is a
instantiation of ψ?n that sets k of the variables to true. Finally, we output
the new template ψ?n, where ?n is reserved for the assignment. Again, let us
have a look at an example: Let S be the input where

S = {φ000, φ101, φ010, φ011} with φ = x1 ∧ (x2 → x1)∧ x3.

The new formula ψ is then

ψ = v2 ∧
(
(v3 ∨ v4) → v2

)
∧ (v2 ∨ v4),

and, therefore, the template computed by the reduction is ψ?4, the parameter
stays k.

We already know that p-Weighted-SAT and p-Weighted-Union-BFVP
are the same, and this fact yields an interesting observation: The famous prob-
lem p-Weighted-SAT, which is complete for W[SAT], the class of problems
reducible using para-P reductions to p-Weighted-SAT, a superclass of W[t]
for every t, is also complete for paraW-NC1! It is tempting to conclude that
W[SAT] = paraW-NC1 and thus W[t] ⊆ paraW-NC1, but this is not possible at
the moment: Completeness of p-Weighted-SAT for W[SAT] has been shown
using para-P-reductions, but it is unknown whether paraW-NC1 is closed un-
der these reductions. However, we can conclude that W[SAT] is the para-
P-reduction closure of paraW-NC1, and this yields the following corollaries:

. Corollary 37. NC1 = P implies W[SAT] = para-P.

. Corollary 38. paraW-NC1 ⊆ para-P if, and only if, W[SAT] = para-P.

Let us turn to the second kind of problems studied within this section,
namely graph problems. The first natural question to ask is: what is a union
graph problem? Towards an answer of this question, let us consider an example:
Uncle Mirko wants to visit aunt Sophie in her hometown, and he wants to
visit her by train. Fortunately, there is a large railway network connecting
the cities nearby, but, unfortunately, due to privatization of the network, the
lines connecting the cities are operated by different providers. However, uncle
Mirko can only afford tickets of two different providers (every provider only

55

sells tickets that are valid for all the day within their whole network). The
question is, can he afford to visit aunt Sophie? The situation is illustrated in
the graphic below, and it is easy to see that Mirko has to spend money for at
least two tickets.

Mirko’s hometown.

Sophie’s hometown.

Provider 1
Provider 2
Provider 3

We can formalize and generalize this as a reachability problem in edge-
colored graphs where the colors of the edges represent the different providers,
denoted by p-Colored-Reach:

. Problem 39 (Parameterized Colored Reachability).

Instance: A directed graph G with vertex set V and edge relation E,
in which every edge is colored with at least one color. Moreover,
two vertices s and t of G and a natural number k are given.

Parameter: k.
Question: Can we choose k colors such that there is a path from s to
t in G where every edge along the path is colored with at at least
one color from the selected colors?

The problem p-Colored-Undirected-Reach is defined in the same way for
undirected graphs.

How is this problem related to union problems? If we focus on each color on
its own and consider only edges that are colored with the currently considered
color, we get a new graph with the same vertex set as before, but the set of
edges can be a subset of the original set of edges. In other words, we can
decompose the graph into several edge relations over the same vertex set, one
edge relation for each color. The task of the colored reachability problem is
then to find k of these edge relations such that their union contains a path
from s to t. What remains is to encode these graphs and edge relations as
templates and instances, but this is easily done: We simply use their adjacency

56

matrices. These are essentially instantiations of the template ?n
2

where n
is the number of vertices. From this point of view, it is easy to formulate
the colored reachability problem in terms of templates and instances: It is
p-Subset-Union-Reach where Reach is defined by

Reach = { code(G) | G with G = ({1, . . . , n}, E) contains a path from 1 to n}

where code maps a directed graph to its adacency matrix written row-wise in
one line, and, if we consider undirected graphs, the colored reachability problem
becomes p-Subset-Union-Undirected-Reach. After numbering the ver-
tices of the map to aunt Sophie from top to bottom and left to right, the prob-
lem can be seen as an instance (S, 2) of p-Subset-Union-Undirected-Reach
with

S = { 001000 000000 100000 000010 000101 000010,

000100 001010 010010 100000 011000 000000,

010000 100000 000110 001010 001100 000000 }.

We can obtain a possible solution by picking the first two edge relations. Their
union yields

001100 001010 110010 100010 011101 000010,

which is, displayed as the city map for visiting Sophie,

Mirko’s hometown.

Sophie’s hometown.

What can we say about p-Subset-Union-Undirected-Reach’s complex-
ity? First of all, if we stick to parameterized time classes, it lies in paraW-
P, a.k.a. W[P]. This is because a Turing machine with O

(
k · log(n)

)
non-

deterministic bits can interprete these bits as the description of the k colors
that have to be chosen in order to get from 1 to n, and testing reachability

57

in the remaining graph can easily be done in polynomial time. Can we im-
prove this result? Showing that the problem lies in some level W[t] of the
Weft-Hierarchy or even belongs to para-P seems to be a really tough task be-
cause the obvious approach of guessing a set of colors and verifying that in
the resulting graph 1 and n are connected via a path does not work: Recall
that W[t] is defined as the closure of p-WDϕ where ϕ is a first-order for-
mula with a free second-order variable. With such a formula we can easily
check whether the colors that are chosen with the set variable are k distinct
colors and we can also compute the resulting graph, but we cannot compute
whether the resulting graph contains a path from 1 to n, because reacha-
bility is not expressible using first-order formulas, see Papadimitriou (1994).
But maybe there is an alternative approach for solving this problem? Pa-
rameterized space complexity tells us: there is not – if we make use of the
reasonable assumptions that W[SAT] 6⊆ W[t] for any t. The reason behind this
is that p-Subset-Union-Reach and p-Subset-Union-Undirected-Reach
are complete for paraW-NL and paraW-L, respectively, as we will see in a mo-
ment. Moreover, we have already seen that p-Weighted-SAT ∈ paraW-NC1

and, thus, we also have p-Weighted-SAT ∈ paraW-L. Hence, showing that
p-Subset-Union-Reach ∈ W[t] or p-Subset-Union-Undirected-Reach ∈
W[t] immediately implies W[SAT] ⊆ W[t]. Let us now show the completeness
results whose consequences we just discussed:

. Theorem 40. With respect to para-AC0-reductions we have that

– p-Subset-Union-Reach is complete for paraW-NL,

– p-Subset-Union-Undirected-Reach is complete for paraW-L.

Proof. Let us consider the case of directed graphs, we can then prove the case
of undirected graphs in a similar way.

First of all, the classical reachability problem Reach is complete for NL,
and, as has been shown by Immerman (1987), this completeness can be ob-
tained using format-preserving AC0-computable projections. From the union
lemma we know that the problem p-Family-Union-Reach is complete for
paraW-NL, and, thus, we only have to reduce it to p-Subset-Union-Reach.
Hence, let (S1, . . . , Sk) be a family of sets of instantiations over the same tem-
plate ?n

2

for some fixed n, and let us denote the edge relation encoded by an
instance s with E(s). Our task is now to create a single set of edge relations
over the same vertex set such that there is a union of k of them that contain a
path from 1 to n if, and only if, there are k relations, one from each Si, whose
union contain a path from 1 to n. Again, we cannot simply compute the union

58

of the sets, because this might result in picking two relations from the same Si.
The main idea how to avoid this is to split the edges of the graph into chains
of edges and distribute the parts of the edges among the edge relations in such
a way that the corresponding path can only be formed if we pick one relation
from every Si. Formally, we define a new vertex set V ′ and edge relations Eis
with i ∈ {1, . . . , k} and s ∈ Si where Eall =

⋃
s∈Si∧i∈{1,...,k} E(s) as follows:

V ′ = V ∪
{
vi(a,b) | (a, b) ∈ Eall ∧ i ∈ {1, . . . , k}

}
,

Eis =
{
(a, v1(a,b)) | (a, b) ∈ E(s)

}
∪


{
(vi(x,y), v

i+1
(x,y)) | (x, y) ∈ Eall

}
if i < k;{

(vi(x,y), y) | (x, y) ∈ Eall
}

if i = k.

If k = 1, then we set E1s = E(s). The new instance for p-Subset-Union-Reach
is then ({

I(Eis) | s ∈ Si ∧ i ∈ {1, . . . , k}
}
, k

)
where I(E) denotes the instantiation for the edge relation E. Let us consider
an example for this construction. The top half of the next figure shows an
instance for p-Family-Union-Reach and the bottom half shows the instance
for p-Subset-Union-Reach contructed by the reduction from the instance
above.



1 2

34

,

1 2

34


,



1 2

34








1 2

34

v1(a,b)

v2(a,b)
,

1 2

34

,

1 2

34


, 2



For every instantiation from the original instance the reduction constructs a
single instantiation in the new instance, thus yielding a one-to-one correspon-

59

dence between the instantiations. Let us denote the instantiation that is de-
rived from s by s ′. To prove the correctness of the reduction, it suffices to
observe that for any selection of instantiations s ′1, . . . , s

′
k from the new in-

stance there is a path (a, v1(a,b), . . . , v
k
(a,b), b) with {a, b} ⊆ V and a 6= b in(

V ′,
⋃k

i=1 E(s
′
i)
)

if, and only if, the original si belong to k different sets in the
original instance and

(
V,

⋃k
i=1 E(si)

)
contains the edge (a, b). Thus, let us first

assume that s1, . . . , sk originate from k different sets and that (a, b) is an edge
in

(
V,

⋃k
i=1 E(si)

)
. We can assume that si ∈ Si. Since (a, b) ∈

(
V,

⋃k
i=1 E(si)

)
,

there is one E(si) with (a, b) ∈ E(si). Thus, we have (a, v1(a,b)) ∈ E(s ′i).
Furthermore, since the si are from different sets,

(
V ′,

⋃k
i=1 E(s

′
i)
)

contains
the paths (v1(x,y), . . . , v

k
(x,y), y) for every pair (x, y) in Eall. Hence, we have

(a, v1(a,b), . . . , v
k
(a,b), b) ∈

(
V ′,

⋃k
i=1 E(s

′
i)
)
. Let us now assume that for a se-

lection s ′1, . . . , s
′
k from the new instance the graph

(
V ′,

⋃k
i=1 E(s

′
i)
)

contains
a path (a, v1(a,b), . . . , v

k
(a,b), b) with (a, b) ∈ V2. Then, one of the s ′i has

to contain the edge (a, v1(a,b)) and, therefore, E(si) contains (a, b). It re-
mains to show that no two elements of {s ′1, . . . , s

′
k} originate from the same

Si. Thus, for a contradiction, assume that two elements s ′α and s ′β origi-
nate from Sγ. Then, there is a set Sδ such that Sδ ∩ {s1, . . . , sk} = ∅. This
means that

(
V ′,

⋃k
i=1 E(s

′
i)
)

does not contain a single edge leaving any ver-
tex vδ(x,y). Hence, there cannot be a path from a to b in

(
V ′,

⋃k
i=1 E(s

′
i)
)
,

which is absurd because we assumed that there is a path from a to b, and,
thus, we can conclude that for the selection s ′1, . . . , s

′
k the elements s1, . . . , sk

are from different sets in the original instance. Overall, we can conclude
that we have (S1, . . . , Sk) ∈ p-Family-Union-Reach if, and only if, we have({
s ′ | s ∈ Si ∧ i ∈ {1, . . . , k}

}
, k

)
∈ p-Subset-Union-Reach.

. Corollary 41. With respect to para-AC0-reductions we have that

– p-Colored-Reach is complete for paraW-NL,

– p-Colored-Undirected-Reach is complete for paraW-L.

The problems Reach and Undirected-Reach are probably the most well-
known NL-complete and L-complete problems, respectively, and, overall, the
completeness of the family-union and subset-union problems for the accom-
panying classes of parameterized bounded nondeterminism is a fairly natural
result. However, these results raise the question of which other problems are
complete for these classes. The following theorem gives a first answer to this
question.

. Theorem 42.

60

1. The following problems are complete for paraW-NL with respect to para-
AC0-reductions:

– p-Subset-Union-DAG-Reach,

– p-Subset-Union-Cycle.

2. The following problems are complete for paraW-L with respect to para-
AC0-reductions:

– p-Subset-Union-Tree,

– p-Subset-Union-Forrest,

– p-Subset-Union-Undirected-Cycle.

For all these problems their accompanying family-union problems are also com-
plete for the corresponding class. Here, the underlying problems are

– DAG-Reach, the reachability problem for directed acyclic graphs,

– Cycle, the problem of deciding whether a given directed graph contains
a cycle,

– Undirected-Cycle, the same as Cycle but for undirected graphs,

– Tree, the problem of deciding whether a given undirected graph is a
tree, i. e., connected and cycle-free,

– Forrest, the problem of deciding whether a given undirected graphs is
a forrest, i. e., cycle-free.

Proof. We can prove these results basically in the same way as in Theo-
rem 40 where we showed completeness of p-Subset-Union-Reach for paraW-
NL. With the fact that the above problems are all complete with respect
to AC0-computable format-preserving projections, see Immerman (1999) for
more details, what remains is to give a reduction from the corresponding
family-union problem to the subset-union version. For nearly all of of these
problems, we can use the reduction presented above, the only exception is
p-Subset-Union-Forest. The problem here is, that choosing two instantia-
tions that stem from the same Sα of the family-union instance, the resulting
graph becomes a collection of paths, i. e., a forrest, and this is exactly what
may not happen. Hence, we use a different reduction: For every si and sj with
si 6= sj from the same Sα we add three vertices to the graph. Let us call these
vertices a, b, and c. Then, we add the edges (a, b) and (b, c) to E(s ′i) and the
edge (c, a) to E(s ′j). This way, when we chose s ′i and s ′j, the resulting graph
contains a cycle and, therefore, is not a forrest. On the other hand, if we do not
pick such a pair, then the new vertices are only engaged into paths of length 1
or 2 and have no influence on whether the graph is a forrest or not.

61

Still, problems like Tree or Cycle can be seen as special kinds of reach-
ability problems, and it is therefore not surprising that they have the same
complexity as the underlying reachability problems for directed and undirected
graphs. Hence, let us turn to a problem that, on first sight, has nothing to
do with reachability in graphs: the problem of associative generability, a re-
stricted version of the more general generability problem Gen. In Gen we are
given a finite set U together with a mapping ◦ : U2 → U, an element x with
x ∈ U, the target element, and a set G with G ⊆ U, the set of generators.
The question is whether we can generate x from the generators, i. e., whether
the smallest superset of G that is closed under ◦ contains x. If we restrict our
attention to functions ◦ that are associative, we get the associative generability
problem AGen.

Both problems, Gen and AGen have been fully classified with respect
to their classical computational complexity: Jones and Laaser (1976) showed
that Gen is complete for P, and Jones et al. (1976) showed that the AGen is
complete for NL. In the parameterized setting, we study the problems p-Gen
and p-AGen.

. Problem 43 (Parameterized Generability and Associative Generability).

Instance: A finite set U, a target element x with x ∈ U, a set of
generator candidates C with C ⊆ U, a binary operator ◦ : U2 → U

given as a table, and a natural number k.
Parameter: k
Question: Is there a set G with G ⊆ C and |G| = k such that the

smallest superset of G that is closed with respect to ◦ contains x?

We denote this problem with p-Gen and the variant where we restrict the
operator ◦ to be associative with p-AGen.

Flum and Grohe (2006) studied the problem p-Generators, a variant of
p-Gen where no generator candidates are given, but the task is to find a set
of k generators that generates all of U. They showed that this problem is
complete for paraW-P, and it is not hard to see that, even though the problem
definition slightly changes, this essentially also proves that p-Gen is complete
for paraW-P. If we turn to p-AGen, it is not surprising that this problem is,
similarly to the classical case, complete for paraW-NL.1

. Theorem 44. p-AGen is paraW-NL-complete under para-AC0-reductions.
1However, it is still unclear whether p-AGenerators, the associative version of

p-Generators, is complete for paraW-NL.

62

Proof. Given an instance of p-AGen, a paraW-NL-machine interprets the con-
tent of its choice tape as a description of the set of generators. Due to the
associativity of ◦ the machine can check the generability of the target element
by successively guessing the elements of a sequence g1, g2, . . . of generators
and computing the values

(g1), (g1 ◦ g2), ((g1 ◦ g2) ◦ g3), (((g1 ◦ g2) ◦ g3) ◦ g4),

For this, it suffices to only store the lastly computed element, which can be
done in logarithmic space. Note that it is not necessary to guess a sequence of
more than |U| elements to generate x, because otherwise the resulting sequence
of values (g1), (g1 ◦ g2), ((g1 ◦ g2) ◦ g3), . . . contains an element twice, i. e.,
there is a shorter sequence that generates x.

Concerning hardness, we will proceed like in the proofs above: First, we
show that p-Family-Union-AGen is complete for paraW-NL using the union
lemma. Afterwards we describe the reduction chain

p-Family-Union-AGen ≤ p-Subset-Union-AGen

≤ p-Weighted-Union-AGen.

Finally, we argue that p-Weighted-Union-AGen is equivalent to p-AGen.
Before we discuss p-Family-Union-AGen, we have to fix a suitable encod-

ing of AGen that enables us to apply the union operation. The crucial part
is how to encode the set of generators because it is the only part that will be
affected by the union operation. Hence, we encode U, ◦, and x using Σ in a
reasonable way, and add a ? for each element of U that may be part of the
generators. If such a symbol is replaced by 1, the corresponding element of U is
considered to be in G, if it is replaced by 0, the element is considered to be not
in G. Note that by using this encoding it is possible to specify which elements
of the universe can be chosen to be a member of the generators because we
allow that not every element has a corresponding ? in the template.

Let us start with p-Family-Union-AGen. Jones et al. (1976) showed that
AGen is complete for NL, and it is not difficult to see that their reduction is
indeed a format-preserving AC0-computable projection: They give a reduction
from the reachability problem for directed graphs where the universe of the
resulting instance of AGen essentially encodes all possible edges between the
vertex set {1, . . . , n}, the target element is the edge from the start vertex to the
target vertex, the associative operation maps pairs of edges to its transitive
edges or, if no such transitive edge exists, to a certain error element, and
the set of generators is the set of edges that are actually contained in the

63

given graph. Hence, different input graphs with the same encoding length,
i. e., with the same number of vertices, are reduced to instantiations of the
same template where only the bits selecting the available generator elements
change from instance to instance. From the union-lemma we thus get that
p-Family-Union-AGen is complete for paraW-NL with respect to para-AC0

reductions.
We now reduce p-Family-Union-AGen to p-Subset-Union-AGen. For

this, let the input be a family of sets S1, . . . , Sk of instantiations of a com-
mon template that encodes a universe U, a target element x, an associative
operation ◦, and a set of generator candidates C. Then, every instantiation
additionally encodes a set of generators. Our aim is to construct an instance
of p-Subset-Union-AGen, i. e., a new set S ′ of instantiations of a common
template that encodes a universe U ′, a target element x ′, an associative oper-
ation ◦ ′, and a set of generator candidates C ′ such that there are k elements
s1, . . . , sk with si ∈ Si whose union is contained in AGen if, and only if, there
are k elements in S ′ and their union lies in AGen. The crucial part here is –
once more – that we cannot simply set S ′ =

⋃
i Si, because this would allow

picking two instantiations that stem from the same Si. To fix this, we first
set U ′ = U ∪ {e1, . . . , ek} and C ′ = C ∪ {e1, . . . , ek} for new elements ei. We
then augment the operator ◦ to ◦ ′ by defining it on these new elements such
that none of the new elements can be generated from any two other elements.
Moreover, we add a new target element x ′ to the universe that can only be
generated via the expression x ◦ ′ e1 ◦ ′ e2 ◦ ′ · · · ◦ ′ ek. Finally, we add a new
element error to the new universe that we will use to catch the evaluation of
undesired expressions by augmenting ◦ ′ such that any expression that is not
desired or already contains error is evaluated to error. The new set S ′ then
contains a string s ′i,j for every si,j with si,j ∈ Si that is essentially si,j adjusted
to U ′, x ′, ◦ ′, C ′. Moreover, we require that s ′i,j additionally selects ei as a
generator and no other of the newly introduced elements ei ′ with i 6= i ′. This
construction enforces that we, in order to generate x ′, have to pick k strings
s ′i1,j1 , s

′
i2,j2

, . . . , s ′ik,jk with ia 6= ib for a 6= b, i. e., strings that stem from
pairwise different sets of the original instance. Hence, there is a selection of k
elements, one from each S1, . . . , Sk, such that their union lies in AGen if, and
only if, there is a selection of k elements from S ′ such that their union lies in
AGen. However, we are not done yet.

Unfortunately, the new operator ◦ ′ is not a binary operator, and, therefore,
we cannot evaluate expressions like x ◦ ′ e1 ◦ ′ · · · ◦ ′ ek in one step. To make
it even worse, ◦ ′ has to be associative and, hence, it has to be possible to

64

evaluate every subexpression of a larger expression. In order to achieve these
properties, we conceptually use strings as elements of our universe that rep-
resent expressions that are evaluated “as far as possible”. For example, let us
consider the expression a◦ ′ b◦ ′ c◦ ′ e1 ◦ ′ e2 where a◦b◦ c does not evaluate to
the old target element x and we have k > 2. The “furthest possible evaluation”
is then d◦ ′ e1 ◦ ′ e2 for some element d. Hence, we want a representation of the
expression d ◦ ′ e1 ◦ ′ e2 to be part of the universe. To be exact, we formalize
this approach using replacement systems.

Given an alphabet Γ , we call a set R of rules w → w ′ with both w ∈ Γ∗

and w ′ ∈ Γ∗ a replacement system. An application of a rule w → w ′ to
a word uwv yields the word uw ′v, and we write uwv ⇒R uw

′v. We call a
word irreducible if it is not possible to apply a rule to it. Let us call ≡R

the reflexive, symmetric, transitive closure of the relation ⇒R, and define the
equivalence classes of ≡R by [u]R = { v | v ≡R u} for any word u over Γ . Finally,
an irreducible representative system of R is a set of irreducible words that
contains exactly one word from each equivalence class of Γ∗. Our aim is now to
replace the universe U ′ of our instance for p-Subset-Union-AGen by such an
irreducible representative system and let the corresponding operator represent
the replacement rules defined on this system.

For the reduction, we set Γ to U ′. Then, R contains the following rules:

ab→ c for elements a, b, c with a, b, c ∈ U and a ◦ b = c,

xe1e2 . . . ek → x ′,

erroru→ error for every u,

uerror → error for every u,

eiu→ error for every u with u ∈ (U ′ − {ei+1}),

x ′u→ error for every u.

With these rules we can finally define the output (U ′′, ◦ ′′, x ′′, G ′′) of our reduc-
tion from p-Family-Union-AGen to p-Subset-Union-AGen: The universe
U ′′ is an irreducible representative system of R, the operation ◦ ′′ maps a pair
(u, v) to the representative of [u ◦ v]R in U ′′, the target element x ′′ is the rep-
resentative of [x ′]R in U ′′, and C ′′ contains one representative of [c]R in U ′′

for each c ∈ C ′. We have already argued that the reduction underlying the
resulting representative system is correct, thus what remains is to show that
the reduction is indeed a para-AC0 reduction.

To see that our reduction is in fact a para-AC0 reduction, let us first con-
sider the size of the universe U ′′. The size of the universe, i. e., the number

65

of equivalence classes is at most 1 + |U ′|(k2 + 1). To see this, let us consider
any equivalence class [w]R and let w be irreducible. Then, w can be error.
If w is not error, then it cannot contain error together with other symbols,
because it would not be irreducible in this case. Moreover, in w there can-
not be any element of U to the right of any ei or x ′, because this would be
evaluated to error and, hence, w would, again, not be irreducible. Therefore,
w has to be of the form w1w2 where, due to its irreducibility, w1 must be a
single letter and w2 has to be x ′ or a sequence eiei+1 . . . ej with i ≤ j. This
shows the polynomial bound claimed above. Moreover, computing the new
generators ei, the error element, the new target element x ′, the table defining
the operator ◦ ′, and the resulting representative system is tedious but possi-
ble using parameterized AC0 circuit families. Overall, we can conclude that
p-Family-Union-AGen reduces to p-Subset-Union-AGen.

Let us now turn to the second part of the reduction chain, namely the
reduction from p-Subset-Union-AGen to p-Weighted-Union-AGen. We
are given a set S of instantiations of a common template that encodes a uni-
verse U, a binary associative operator ◦ : U2 → U, a target element x, and a
set of generator candidates C. Our task is now to compute the template that
encodes a new universe U ′, a new binary operator ◦ ′, a new target element x ′,
and a new set of generator candidates C ′, such that there is selection of k
instantiations s1, . . . , sk from S whose union lies in p-AGen if, and only if,
there is an instantiation of the new template that lies in p-AGen and that has
weight f(k) for some function f. The problem here is, that in the instance of
p-Subset-Union-AGen a single instantiation can select an arbitrary number
of generators, but in an instance of p-Weighted-Union-AGen the number
of elements that we may select is fixed to the parameter. The overall idea for
our reduction thus is to essentially use the old universe, operator, and target
element, and add new elements to the universe that enable us to enumerate the
generator elements that a single instantiation of the input instance can select.
In other words, if an instantiation s selects the generators a, b, c, we add a sin-
gle new element to the universe that enables us to enumerate a, b, c by using
appropriate expressions. Then we only have to select k of these enumerating
elements, but we are still able to enumerate an arbitrary number of generators.
Moreover, like in the previous reduction, we make use of replacement rules
with an appropriately chosen set of irreducible representatives as our universe.
Let us get into the details and discuss the new elements of the universe:

1. We have an error element error with similar rules as above to catch
unintended expressions.

66

2. We have a new end element / that we require for technical reasons and
that we will use to mark the end of expressions. The element / is not
generated by any expression, i. e., it is not on the right-hand side of a
replacement rule, if it is not already on the left-hand side. Hence, /

has to be element of any generating set. Moreover, we have the rules
/u→ error for every u with u ∈ U ′.

3. We have a new counter element . Like /, this element cannot be gen-
erated and, therefore, has to be an element of any generating set.

4. We have new selector elements σi, one for each si with si ∈ S. To-
gether with the counter element we will use these selector elements to
enumerate the elements u1, . . . , ul that the corresponding instantiation
si selects. Our aim is, that an expression like σi evaluates to u3, the
third generator element selected by si.

In the resulting template, the set of generator candidates is then the set of
representatives of error, /, , and σi for every i. Hence, there will be a selection
of k + 3 generators that suffice to generate the target element if, and only if,
there is a selection of k elements of S such that their union lies in AGen. Let
us now discuss the replacement rules and the definition of the binary operator
on the new elements.

Consider the two expressions

σ1 σ3 σ2 and σ1 σ3 σ2

and let the values of these expressions be well-defined elements of the universe.
Note that the first expression is a subexpression of the second one because
the second has an additional counter element at the right end. Since the
operator ◦ ′ has to be associative, it must be possible to completely evaluate
any subexpression of these expression. Hence, if σ1 σ3 σ2 evaluates to the
representative of an element e of the original universe, it must be possible
to evaluate the expression e , but, unfortunately, the value of this expression
is not well-defined by ◦ or by our replacement rules. Moreover, since e can
be selected by different selector elements, say we have σ1 = e and σ2 = 3,
we cannot fix an e ′ that e evaluates to, because we may have σ1 6= σ2 .
At this time, all we know is that σ1 and σ3 are well-defined generators,
but this is just because we already know that there are no counter elements
directly on the right next to them. If we are presented a pure subexpression
like σ2 , we cannot fully evaluate it to an element of the universe because we
do not “know” whether there will be a symbol on the right of this expression

67

or what this symbol is. To fix this issue, we make use of the end symbol /.
This symbol has to be placed at the end of every expression, and enables us to
unambiguously evaluate it. In terms of replacement rules, if σi should select
u3, we have the rules

σi u→ u3u if u 6= .

Hence, strings like σi are irreducible. Moreover, to ensure that we do not get
overly long sequences of counter elements, we add the rule

n → error with n = |U|.

Finally, we set the target element to x/.
Let us argue that the number of equivalence classes is polynomially in the

size of the universe U. For this, note that irreducible strings start and end
with at most n counter elements and, in the middle, have a single element of
the universe that is possibly followed by a selector element. In toto, the size of
the resulting irreducible representative system is at most polynomial. Again,
it is not hard to see that this reduction is AC0-computable, thus giving us the
theorem.

Before we start using classes of bounded nondeterminism to study problems
within para-P in the next section, let us revisit a problem from Section 2.2,
namely the feedback vertex set problem. We have already seen in Theorem 12
that p-DFVS ∈ para-L implies that L = NL, and p-FVS ∈ para-NC1 implies
NC1 = L. Using classes of bounded nondeterminism we can improve and
strengthen these result:

. Theorem 45.

1. p-FVS ∈ paraW-L.

2. p-DFVS ∈ paraW-NL.

3. p-FVS ∈ paraW-NC1 if, and only if, NC1 = L.

4. p-DFVS ∈ paraW-L if, and only if, L = NL.

Proof. To see that p-FVS ∈ paraW-L, let (G, k) with G = (V, E) be an instance
of p-FVS. A paraW-L-machine can now interpret its O

(
fk · log(n)

)
nondeter-

ministic bits on the choice tape as the description of a possible feedback vertex
set of size k of G. Hence, the machine only has to check whether G without
these vertices is a forest, which can be done in logarithmic space, see Cook
and McKenzie (1987). With essentially the same arguments we can show that

68

p-DFVS ∈ paraW-NL. Here we only have to argue that testing whether a
directed graph is a forest can be done in nondeterministic logarithmic space.
This, however, directly follows from Immerman (1988).

The proofs of items 3 and 4 are essentially the same as the proofs of The-
orem 12: If we had p-FVS ∈ paraW-NC1, then we can use the corresponding
circuit family to solve p0-Cycle-Free, the problem of deciding whether a
given undirected graph is cycle-free with the trivial parameterization. In con-
trast to the proof of Theorem 12 our circuit now also has access to O

(
fk ·log(n)

)
nondeterministic bits. However, since we use the trivial parameterization, the
number of nondeterministic bits is effectively in O

(
log(n)

)
. This means that

we can get rid of the requirement for nondeterministic bits by creating poly-
nomially many copies of the circuit, one for each possible choice of the nonde-
terministic bits, and testing in parallel whether one of them accepts. Overall,
the resulting circuit family is effectively a NC1 circuit family, thus giving us
Cycle-Free ∈ NC1. On the other hand, if NC1 = L, then we also have paraW-
NC1 = paraW-L and together with item 1, that p-FVS ∈ paraW-NC1. Item 4
can be shown in a similar way.

Let us conclude this section with a discussion on the relations between
the classes of bounded two-way nondeterminism studied in this section and
the Weft-Hierarchy. This discussion is of particular interest because both the
classes of this chapter and the Weft-Hierarchy share two-way bounded nonde-
terminism as a central and fundamental aspect of them: While this is obvious
for the classes of this chapter, recall that a problem is conceptually a “Weft
problem” if we can solve it using a preprocessing phase, followed by a guessing
phase using a bounded amount of nondeterminism, followed by a verification
phase. Thus, the classes of the “Weft-Hierarchy” are inherently connected to
the concept of bounded nondeterminism which immediately leads to the ques-
tion of how all these classes are related to each other and what hardness or
completeness results of problems for classes like paraW-L tell us about their
relations to Weft classes and vice versa. Let us start our investigation with the
lower classes of the Weft-Hierarchy, i. e., with the classes W[t]. We defined these
classes as the para-P-reduction closures of problems p-WDϕ with ϕ ∈ Πt, a
definition that directly exhibits the pattern of Weft problems. Note now that
the preprocessing phase corresponds to the reduction closure and that the ver-
ification phase corresponds to the evaluation of the underlying formula ϕ, i. e.,
for every fixed problem the evaluation of a fixed first-order formula. With
the well-known fact that for the class of first-order definable sets FO we have
FO = AC0, see for example Vollmer (1999) or Immerman (1999), it follows im-

69

mediately that W[t]para-AC0

⊆ paraW-AC0. Hence, if we show that a problem
is hard for paraW-AC0, it is also hard for W[t] for every t. However, we cannot
conclude that W[t] ⊆ paraW-AC0 because paraW-AC0 is not closed under para-
P-reductions. Note that we, implicitly, have already seen a result of this kind
before when we discussed that W[SAT] is the para-P-closure of paraW-NC1: If
problem is hard for paraW-NC1, then it is also hard for W[SAT] – and in this
latter case this statement also holds if we substitute “hard” with “complete”.

In both of the previously studied cases, namely that paraW-AC0-hardness
implies W[t]-hardness and that paraW-NC1-hardness or completeness implies
W[SAT]-hardness or completeness, respectively, the para-P-reduction in the
definition of the Weft-Hierarchy proves to be a very powerful component. On
the other hand, the verification phase of the classes of the Weft-Hierarchy is
relatively weak compared to classes like paraW-L. In toto, these two aspects
make it hard to compare the Weft-Hierarchy and the hierarchy of classes of
bounded two-way nondeterminism. For example, W[SAT] ⊆ paraW-NL implies
that para-P ⊆ para-NL and, thus, NL = P. On the other hand, it is completely
unclear whether paraW-L ⊆ W[SAT] is true or not.

While the classes of the Weft-Hierarchy and the classes of bounded two-way
nondeterminism share a common foundation, they appear to be very different
and largely incomparable. On first sight this might seem to be a shame, but,
on the other hand, this actually enriches the theory because their (presum-
ably) orthogonal structure allows us a more refined view on the complexity of
parameterized problems than a linear structure of complexity classes.

3.3. Natural Problems for paraβ-Classes

While classes like paraW-L or paraW-NL perfectly capture the complexity of
natural problems like the colored reachability problem p-Colored-Reach or
the associative generability problem p-AGen, these classes have the drawback
that they presumably lie orthogonal to the fundamental class para-P. Hence,
if we want to use these classes of bounded nondeterminism to study problems
within para-P, we have to study the intersections of para-P with these classes.
However, this is somehow unsatisfying because, under reasonable assumptions,
this implies that we will not be able to show completeness of problems within
those intersections for any of the classes involved in the definition of the inter-
section. If we want to study the complexity of problems within para-P, it is
therefore preferable to use subclasses like para-L. Unfortunately, many natural
problem do not seem to fit to classes like para-L or para-NL. One of these prob-

70

lems is the parameterized distance problem p-Distance which asks whether
two given vertices of a given graph have at most a given distance. In this
section, we show that this problem is complete for paraβ-L, a parameterized
space class using a bounded amount of nondeterminism, and we study natural
variants of p-Distance, showing that subtle differences in the problem defi-
nition yield problems of many different complexities that, however, can all be
characterized using parameterized space classes. Let us start our investigation
with a formal definition of the parameterized distance problem p-Distance:

. Problem 46 (Parameterized Distance).

Instance: A directed graph G, two vertices s and t of G, and a natural
number k.

Parameter: k.
Question: Is there a path from s to t in G of length at most k?

. Theorem 47. p-Distance is paraβ-L-complete under para-L-reductions.

Proof. To solve p-Distance using a paraβ-L-machine, the machine succes-
sively guesses a sequence v1, v2, . . . , vk+1 of vertices with s = v1 and vk+1 = t,
and checks whether the graph contains edges (vi, vi+1) for i ∈ {1, . . . , k}. For
an instance of n vertices, the machine then requires O

(
k · log(n)

)
nondetermin-

istic bits and space O
(
log(k) + log(n)

)
to store the number of already guessed

vertices and a description of the current vertex of the sequence. We thus have
p-Distance ∈ paraβ-L.

Let us now prove hardness. For this, we show how to reduce any problem
in paraβ-L to p-Distance. Hence, let (Q,κ) be such a problem and M be a
paraβ-L-machine that decides Q. Using standard techniques, we may assume
thatM has exactly one accepting configuration and that its configuration graph
is always acyclic. The main idea for the reduction is now, given an input x,
to compute the configuration graph of M on x and ask whether the distance
from the single initial configuration to the single accepting configuration in the
configuration graph is at most a certain value l. The question now is: what is
this value?

Since the space bound of M lies in O
(
fk + log(n)

)
, the size of its config-

uration graph lies in O(f ′k · nc) for a constant c and a function f ′. Hence, l
can be at most this large. However, there is a problem here: Since l is the
parameter, we have to ensure that l only depends on the old parameter and
not on the size of the input instance – which is not the case here. To tackle
this problem, we do some processing on the configuration graph: Because the
underlying machine M may use at most O

(
fk · log(n)

)
nondeterministic bits,

71

on every path starting at the node of the initial configuration in the acyclic con-
figuration graph there are at most O

(
fk · log(n)

)
nodes that have an out-degree

larger than 1. Let us call these nodes together with the nodes corresponding
to the initial and the accepting configuration the red nodes and the remaining
nodes the black nodes. In a first step, we contract paths of black vertices. For
this, we iterate over the nodes of the configuration graph and, for every red
vertex ur, we replace every outgoing edge (ur, v) with an edge (ur, vr) to the
first red node vr reachable from v. Now, we drop the black vertices. In the
resulting graph, the length of every path starting from the node of the initial
configuration lies in O

(
fk · log(n)

)
, which still is not exclusively bounded in the

parameter. Hence, in a second step, we get rid of the O
(
log(n)

)
by augmenting

the graph with shortcuts that allow “jumps” of logarithmic length: For every
vertex v, we iterate over all paths of length O

(
log(n)

)
starting at v and insert

an edge to every vertex w that we reach during this process. Since the maxi-
mal out-degree of the vertices is determined by the machine M, namely by the
maximum number of different states reachable in a nondeterministic step, the
maximal out-degree of the graph is constant. This allows us to describe every
path of logarithmic length using O

(
log(n)

)
space. In the resulting graph, there

then is a path from the vertex of the initial configuration to the vertex of the
accepting configuration of length O(fk) if, and only if, there is a path from the
vertex of the initial configuration to the vertex of the accepting configuration
in the original configuration graph. Because each of the steps above can be
performed in parametric logarithmic space, we obtain a para-L-reduction.

So far, every time we considered graph problems, we could observe that
the complexity of the problem drops if we switch from directed to undirected
graphs. An interesting problem that shows a special behaviour and, thus,
does not fit to this pattern is the distance problem. It is well-known that the
unparameterized distance problem is complete for directed as well as undirected
graphs, see Tantau (2005). This carries over to the parameterized setting:

. Theorem 48. p-Undirected-Distance is paraβ-L-complete with respect to
para-L-reductions.

Proof. To show that p-Undirected-Distance lies in paraβ-L, we proceed like
in the previous theorem: We let our machine nondeterministically guess a path
of at most the given length. To show hardness, we reduce from the distance
problem in directed graphs, namely p-Distance: For a given directed graph G
with G = (V, E), two vertices s and t, and a given number l, we construct a
new undirected graph G ′ with vertices s ′ and t ′ such that there is a path from

72

s to t in G of length at most l if, and only if, there is a path of length l from
s ′ to t in G ′. We construct l copies of the vertices of the original input graph
and interpret them as layers. Let us denote the i-th copy of vertex v by vi.
We then insert an edge between vi and wi+1 if, and only if, there is an edge
from v to w in the original graph, thus making the connections from one layer
to the next layer reflect the original edge relation. Moreover, we insert edges
between vi and vi+1 for every v and every i that allow us to move down the
layers without switching the currently considered vertex. Now, since “going
back” one layer and, therefore, using an edge in the “wrong direction” prolongs
the resulting path by at least 2 steps, there is a path from s1 to tl of length l
in G ′ if, and only if, there is a path from s to t in G of length at most l.

What happens if, instead of asking whether the distance is at most l, we
ask whether the distance between two nodes is at least l, i. e., what is the
complexity of the problem p-Distance-At-Least:

. Problem 49 (Parameterized Least Distance).

Instance: A directed graph G, two vertices s and t of G, and a natural
number k.

Parameter: k.
Question: Is the distance of t from s in G at least k, i. e., there is no

path from s to t of length less than k?

Clearly, the problem p-Distance-At-Least is essentially the complement
of p-Distance, and, therefore, lies in co-paraβ-L. Moreover, since p-Distance
is complete for paraβ-L, we can also conclude that p-Distance-At-Least is
also complete for co-paraβ-L. But what exactly is co-paraβ-L? For a prob-
lem (Q,κ) in paraβ-L we require that, for any instance x, we have x ∈ Q if,
and only if, there is a binary string b of length O

(
fk · log(n)

)
such that the

para-L machine M deciding (Q,κ) accepts with b on its choice tape. Equiv-
alently, we can require that, for any instance x, we have that x 6∈ Q if, and
only if, our machine rejects for every such binary string b on its choice tape.
Hence, and because of the well-known fact that L is closed under complement,
the class co-paraβ-L can equivalently be defined as the class para∀→flog-L, which
we abbreviate in the following with paraβ∀-L. This notion also gives us a much
more intuitive understanding of why p-Distance-At-Least is contained in
paraβ∀-L: A corresponding machine verifies for every content of the choice
tape that if it is a valid description of a path in the input graph, then this
path does not lead to the target vertex. Note that with essentially the same

73

arguments and the fact that both the directed as well as the undirected version
of the distance problem are complete for paraβ-L, we can also conclude that
p-Undirected-Distance-At-Least is complete for paraβ∀-L.

p-Distance-At-Least asks whether the distance of the target vertex from
the start vertex is at least a certain value where we consider the distance to
be infinite if the target vertex is not reachable from the start vertex. In many
cases, however, this is not what we are looking for. Typically, asking whether
the distance between two vertices is at least a certain value implies that we
still require that there is path from the start to the target vertex. Between
these two closely related problems of asking whether the graph contains no
short path and the graph contains is no short but still a long path there is,
however, a notable gap in complexity. To study this gap, let us first formalize
p-Large-Distance, the variant of the distance problem we are discussing:

. Problem 50 (Parameterized Large Distance).

Instance: A directed graph G, two vertices s and t of G, and a natural
number k.

Parameter: k.
Question: Is there a path from s to t in G, but the length of every

such path is at least k?

. Theorem 51. p-Large-Distance is complete for para-NL with respect to
para-L-reductions.

Proof. To prove this, we first show that p-Large-Distance lies in para-NL,
and then that there is a NL-complete slice of p-Large-Distance which, to-
gether with a useful technical lemma, suffices to show para-NL-completeness.
Hence, let us start with membership.

The central idea of how to show membership is based on a technique of Im-
merman (1988): Using double-inductive counting, we successively enumerate
the vertices of the input graph with larger and larger distance from the start
vertex. During this enumeration, we make sure that the target vertex is not
reachable within k− 1 steps from the start vertex, but is reachable at last, and
we accept and reject accordingly.

For hardness, we make use of a lemma that is based on a theorem of Flum
and Grohe (2006):

. Lemma 52. Let (Q,κ) be a nontrivial parameterized problem in para-NL.
Then (Q,κ) is complete for para-NL (with respect to para-L-reductions) if,

74

and only if, there are natural numbers m1, . . . ,ml such that the language{
x | x ∈ Q∧ κ(x) ∈ {m1, . . . ,ml}

}
is complete for NL with respect to L-computable reductions.

Proof. For the first direction, let (Q,κ) be a nontrivial para-NL-complete prob-
lem over the alphabet Σ, and let Q ′ be an NL-complete problem over the al-
phabet Σ ′. Since Q ′ lies in NL, we have (Q ′, κone) ∈ para-NL for the trivial pa-
rameterization κone that maps everything to the fixed value 1, and, since (Q,κ)

is complete for para-NL, there is a para-L-computable reduction r : (Σ ′)∗ → Σ∗

from (Q ′, κone) to (Q,κ). Due to the trivial parameterization, we can, for
any x, compute r(x) in space f(1)+O

(
log |x|

)
for some function f, and we have

κ(r(x)) ≤ g(1) for some function g. Hence, r is in fact a reduction from Q ′

to
{
x | x ∈ Q∧ κ(x) ∈ {1, . . . , g(1)}

}
that is computable in logarithmic space.

Since Q ′ is complete for NL, this implies NL-completeness of the language{
x | x ∈ Q∧ κ(x) ∈ {1, . . . , g(1)}

}
.

For the other direction, assume that
{
x | x ∈ Q∧κ(x) ∈ {m1, . . . ,ml}

}
with

Q ⊆ Σ for an alphabet Σ is NL-complete. Now, let (Q ′, κ ′) be a problem in
para-NL over the alphabet Σ ′. From the definition of para-NL we then have that
there is a function π : N → Π∗ for some alphabet Π and a language X in NL such
that for every x with x ∈ Σ ′ we have x ∈ Q ′ if, and only if,

(
x, π(κ ′(x))

)
∈ X.

From the assumption that
{
x | x ∈ Q ∧ κ(x) ∈ {m1, . . . ,ml}

}
is complete for

NL we can conclude that there is a reduction r : (Σ ′)∗ × Π∗ → Σ∗ from X to
this language that is computable in logarithmic space. Based on r, we define a
new reduction s : (Σ ′)∗ → Σ∗ from (Q ′, κ ′) to (Q,κ) by

s(x) =

r(x) if κ(r(x)) ∈ {m1, . . . ,ml};

x0 otherwise

where x0 is a fixed element with x0 ∈ (Σ∗−Q), which exists because we assumed
Q to be nontrivial. Since we have κ(s(x)) ∈ {m1, . . . ,ml, κ(x0)}, the function s
is indeed a parameterized reduction, and, moreover, it is a para-L-computable
reduction because checking whether we have κ(r(x)) ∈ {m1, . . . ,ml} can easily
be done in parameterized logarithmic space due to the fact that r is computable
in logarithmic space.

Now, consider the language

{ x | x ∈ Large-Distance ∧ κ(x) = 0}.

75

This clearly is the NL-complete language Reach. Hence, with the lemma
above and the fact that p-Large-Distance ∈ para-NL, we have proven the
theorem.

While p-Distance-At-Least and p-Undirected-Distance-At-Least
are both complete for the same class, namely paraβ∀-L, this behaviour does
not carry over to p-Large-Distance and p-Undirected-Large-Distance,
the undirected version of p-Large-Distance:

. Theorem 53. p-Undirected-Large-Distance is complete for paraβ∀-L with
respect to para-L-reductions.

Proof. Instead of “directly” proving that p-Undirected-Large-Distance is
complete for paraβ∀-L, we just show that its complement is complete for paraβ-
L. From the definition of p-Undirected-Large-Distance we get that the
complement is p-Undirected-Only-Short-Distance

. Problem 54 (Parameterized Undirected Only Short Distance).

Instance: An undirected graph G, two vertices s and t of G, and a
natural number k.

Parameter: k.
Question: Is there a path from s to t in G of length at most k or no

path from s to t at all?

We can decide this problem using a paraβ-L-machine by first checking
whether there is a path from s to t of arbitrary length using the famous theo-
rem of Reingold (2008). If there is no path, we accept. Otherwise we have to
test whether there is a short path, which we do in the same manner as before
when we decided p-Distance: We nondeterministically guess a path from s to
t and accept if we find such a path.

For hardness, we reduce from p-Distance. Let (G, s, t, k) be an instance
of p-Distance. We have to face three possible situations:

1. There is a path from s to t of length at most k in G.

2. There are paths from s to t in G, but any of them has length at least k+1.

3. There is no path from s to t in G.

Case 1 and case 2 are no problem because any machine deciding the prob-
lem p-Undirected-Only-Short-Distance gives us the correct answer for
p-Distance on input of a graph matching any of these cases. Case 3 is a
problem: While a machine deciding p-Undirected-Only-Short-Distance
accepts an instance of this case, any machine deciding p-Distance does not.

76

However, we can solve this problem by adding a fresh vertices and edges to
the graph that form path of length k + 1 from s to t. Now, if we had a short
path before, we still have a short path in the new graph. If there were only
long paths, we still have only long paths. However, if there has been no path
from s to t before, there is such a path now. Hence, on input of such a graph,
a machine deciding p-Undirected-Only-Short-Distance now rejects this
input. Morever, adding a path of length k + 1 can easily be done using para-
L-reductions. Hence, we get the theorem.

Up to now we discussed several variants of distance problem, question-
ing whether the distance between two vertices is at most a certain value or
whether it is at least a certain value. The single case that remains is the natu-
ral question what happens if we want both, namely that the distance between
two vertices is exactly a certain value. Let us formalize this as the problem
p-Exact-Distance:

. Problem 55 (Parameterized Exact Distance).

Instance: A directed graph G, two vertices s and t of G, and a natural
number k.

Parameter: k.
Question: Is there a path from s to t in G of length k but no shorter

path?

Such “exact optimization problems” have already been studied in the setting
of classical computational complexity, most notably is the work of Papadim-
itriou and Yannakakis (1984): They introduced the class DP, which is defined
by DP = {L1 ∩L2 | L1 ∈ NP∧L2 ∈ co-NP} and that captures the complexity of
many important exact optimization problems like, for example, Exact-TSP,
the traveling salesperson problem where we ask whether the shortest tour has
precisely a certain length. The main idea of DP is that if we ask for a solution
to a problem that has exactly a given value c, we might equivalently ask for
a solution that has a value less or equal to c and, at the same time, a value
greater or equal to c. This translates into complexity classes by using the
intersection of languages in NP and co-NP: The NP-part ensures that there is
at least one solution of a given value, the co-NP-part ensures that there are no
solutions with a value below the given one. Let us now transfer this into our
world of parameterized space complexity.

77

Equivalently to the definition above, we can define p-Exact-Distance by

p-Exact-Distance = (Q1 ∩Q2, κ) with

(Q1, κ) = p-Distance and

(Q2, κ) = p-Distance-At-Least

which, together with the concept underlying DP, directly leads us to the def-
inition of a new class capturing exact optimization problems in the world of
parameterized space complexity:

. Definition 56 (paraDβ-L). The class paraDβ-L is defined by

paraDβ-L =
{
(Q1 ∩Q2, κ) | (Q1, κ) ∈ paraβ-L ∧ (Q2, κ) ∈ paraβ∀-L

}
.

From the definition we immediately get p-Exact-Distance ∈ paraDβ-L,
but we can even show that paraDβ-L exactly captures the complexity of this
problem:

. Theorem 57. p-Exact-Distance is complete for paraDβ-L with respect to
para-L-reductions.

Proof. We have already seen above that p-Exact-Distance lies in paraDβ-L,
thus the only thing that remains to show is the hardness of p-Exact-Distance.
Hence, let (Q,κ) be a problem in paraDβ-L. Then we know that there are
two problems (Q1, κ) and (Q2, κ) such that Q = Q1 ∩ Q2. Moreover, since
p-Distance and p-Distance-At-Least are complete for paraβ-L and paraβ∀-
L, respectively, there exists a reduction r1 from (Q1, κ) to p-Distance and a
reduction r2 from (Q2, κ) to p-Distance-At-Least. We will now combine
these two reductions to form a reduction from (Q,κ) to p-Exact-Distance.

A first idea may be to, for an instance x of (Q,κ), compute r1(x) and
r2(x), i. e., instances (G1, s1, t1, k1) and (G2, s2, t2, k2) of p-Distance and
p-Distance-At-Least, respectively, and to combine them to an instance
(G, s1, t2, k1 + k2) where G is made up from G1 and G2 by identifying t1
and s2. This, however, does not work for various reasons:

– We cannot conclude that if (G1, s1, t1, k1) and (G2, s2, t2, k2) are positive
instances of p-Distance and p-Distance-At-Least, respectively, that
there is a path in G from s1 to t2 of length exactly k1 + k2 because k1
and k2 are only upper and lower bounds, respectively.

– Since (G2, s2, t2, k2) is also a positive instance of p-Distance-At-Least
if there is no path from s2 to t2 at all, there might also be no path from
s1 to t2 in G at all, even though (G1, s1, t1, k1) and (G2, s2, t2, k2) are
positive instances of p-Distance and p-Distance-At-Least.

78

To avoid these problems, we roughly proceed as sketched above, but we have
to do a little more work: First, we apply a layering trick similar to the one in
the proof of Theorem 48 but now with careful attention to the edge direction
to (G1, s1, t1, k1) which yields (G ′

1, s
′
1, t

′
1, k1), a graph that contains a path

from s ′1 to t ′1 of length exactly k1 if, and only if, there is a path from s1 to
t1 in G1 of length at most k1. Moreover, this trick ensures that there is no
shorter path from s ′1 to t ′1. Now, we create the new graph (G, s ′1, t2, k1 + k2)

from (G ′
1, s

′
1, t

′
1, k1) and (G2, s2, t2, k2) by first taking the disjoint union of the

vertices and edges of G ′
1 and G2, then inserting edges from t ′1 to every vertex

that is reachable from s2 via a direct edge, and finally adding fresh vertices
and edges that form a path of length k2 from t ′1 to t2. Altogether, from this
construction we obtain a graph G that has a path from s ′1 to t2 of length k1+k2
and no shorter such path if, and only if, x ∈ (Q,κ).

The following graphic shows an example of this construction. The left hand
side shows two instances (G1, s1, t1, k1) and (G2, s2, t2, k2) of p-Distance and
p-Distance-At-Least, respectively. The right hand side shows the result of
the reduction that combines these instances to (G, s ′1, t2, k1 + k2).


G ′

1


G1 with k1 = 3



G2



G2 with k2 = 3


Path of
length k2

s ′1

t ′1

s1 t1

s2 t2s2 t2

While it is not hard to see that this reduction can be computed by a para-
L machine if r1 and r2 can be computed by para-L machines, the correctness
of the reduction may not be obvious. Hence, let us briefly discuss the possible
cases:

79

1. Suppose that we have x ∈ Q. This means that r1(x) is a positive instance
of p-Distance and r2(x) is a positive instance of p-Distance-At-Least.
Let r1(x) = (G1, s1, t1, k1) and r2(x) = (G2, s2, t2, k2). We then know
that there is a path of length at most k1 from s1 to t1 in G1 and no
path of length k2 or shorter from s2 to t2 in G2. Now let (G ′

1, s
′
1, t

′
1, k1)

and (G, s ′1, t2, k1 + k2) be constructed like discussed above. Then, in G,
there is a path from s ′1 to t ′1 of length exactly k1 and no shorter path
between these two vertices. A shortest path from t ′1 to t2 is the newly
constructed path of length k2. Hence, the shortest path from s ′1 to t2 in
G has length k1 + k2, thus we have that (G, s ′1, t2, k1 + k2) is a positive
instance of p-Exact-Distance.

2. Suppose now that x /∈ Q. Hence, we have that r1(x) is a negative instance
of p-Distance, r2(x) is a negative instance of p-Distance-At-Least,
or both r1(x) and r2(x) are negative instances. If r1(x) is a negative
instance of p-Distance, then there is no path of length at most k1 from
s1 to t1 in G1 and, hence, no path from s ′1 to t ′1 in G at all, which implies
that (G, s ′1, t2, k1+k2) is a negative instance of p-Exact-Distance. On
the other hand, if r2(x) is a negative instance of p-Distance-At-Least,
then there is path from s2 to t2 in G2 of length less than k2. This means
that, depending on whether r1(x) is a positive or negative instance of
p-Distance, there is either a path of length shorter than k1 + k2 in G
from s ′1 to t2 or no path between these vertices. Thus, (G, s ′1, t2, k1+k2)
is then a negative instance of p-Exact-Distance.

We can conclude that p-Exact-Distance is complete for paraDβ-L.

The results that we have studied so far show that distance problems are
strongly related to parameterized space complexity. Let us now, for the rest
of this section, do a little twist: Instead of searching short paths, let us search
long paths! Formally, let us study the parameterized longest path problem :

. Problem 58 (Parameterized Longest Path).

Instance: A directed graph G and a natural number k.
Parameter: k.
Question: Is there a simple path of length k in G, i. e., a path that

contains no vertex twice?

The unparameterized Longest-Path is well known to be NP-complete, see
Garey and Johnson (1979) for details, and has been studied mostly from the
perspective of approximation algorithms. After Bodlaender (1993) showed that

80

p-Longest-Path lies in para-P, the focus from the parameterized point of view
laid on improving the dependency of the runtime on the parameter for differ-
ent graph classes. However, Chen and Müller (2015) studied p-Longest-Path
from the perspective of conjunctive queries as well as embedding and homo-
morphism problems, and they showed that p-Longest-Path is complete for
paraβ-L. In their proof, they make use of a useful technique that allows a
paraβ-L machine to make sure that her nondeterministic guesses are “injec-
tive”, i. e., they show how a paraβ-L machine can make sure that no two of the
O(fk) blocks of O

(
log(n)

)
nondeterministic bits are equal. Since their proof

is based on embedding problems and, moreover, uses a special machine model
named jump machines, we will reprove their result now, but with our focus on
the mentioned technique and in the context of the distance problems discussed
so far.

. Theorem 59. p-Longest-Path is complete for paraβ-L with respect to para-
L-reductions.

Proof. Let us start with the proof of hardness because this is straight-forward.
We reduce from p-Distance: Similar to the proof of Theorem 57, we first
transform the graph G of the given instance (G, s, t, k) into a layered graph
with k+ 1 layers such that there is path from the new start vertex to the new
target vertex if, and only if, there is a path of length at most k from s to t
in G, and such that every path from the new start vertex to the new target
vertex has length exactly k. Then we add two additional vertices to the graph.
We insert an edge from the first fresh node to the start vertex, and a second
edge from the target vertex to the other fresh node. Finally, we set the new
parameter to k+ 2. The follow graphic shows an example of the construction:
On the left hand side the instance for p-Distance is depicted, on the right
hand side the result of the reduction on this instance.

81



G ′ with k ′ = 5



G with k = 3

s ′

t ′

s t

Our claim is that this new graph contains a simple path of length k+ 2 if,
and only if, the distance of t from s in G is at most k. Hence, assume that
there is a path from s to t in G of length at most k. Then there is a path
v1s , . . . , v

k+1
t that is basically using the edges of the path in G, but on every

step this path advances to the next layer. Together with the two additional
vertices s ′ and t ′ and their accompanying edges (s ′, v1s) and (vk+1

t , t ′), this
makes up a path of length k+ 2. On the other hand, if there is a simple path
of length k + 2 in G ′, then this path has to start at s ′ and end at t ′ because,
due to the layering, this is the only possibility of a path of length k+ 2 in G ′.
This implies that there is a path from v1s to vk+1

t in G ′. Since the layering
only reflects the edges in G (together with an imaginary loop (t, t)), we can
conclude that there is also a path from s to t in G. Finally, it is not hard to
see that this reduction can easily be computed using para-AC0 circuits.

Let us now discuss why p-Longest-Path lies in paraβ-L. A first and
admittedly natural idea for an algorithm deciding p-Longest-Path is to use
the nondeterminism of the paraβ-L-machine to simply guess the vertices of a
path of length k. However, we run into a problem here: Because we cannot
store the already guessed vertices, we might accidentally follow a loop in the
graph without noticing, but what we really want is a simple path. Hence, we
somehow have to keep track of the already visited vertices, but we may only
use parameterized logarithmic space. The key idea to solve this problem is to
use hashing.

To ensure that we do not visit a vertex twice, we maintain a list of small
hash values for every vertex we already visited. If we never have a hash collision
during the process of nondeterministically guessing a path, we found a simple

82

path. However, we now have the problem that two different vertices on a path
may accidentally lead to a collision and that we have to compute and store the
hash values space-efficiently. To solve these problems, we make use of certain
families of k-perfect hash functions :

. Definition 60. For two sets M and N, a k-perfect family of hash functions
is a family H of functions mapping from M to N such that for every set K with
K ⊆M and |K| = k there is a function h in H such that for every x and y in K
with x 6= y we have h(x) 6= h(y), i. e., h is injective on K.

Hence, we now only have to find such families of hash functions that are
computable in parameterized logarithmic space and that allow us to store k
hash values within our limited space. Appropriate functions that meet these
requirements are known, see for instance Flum and Grohe (2006): They show
that the set{

hp,a | p is prime and p < k2 · log(n) and a ∈ {1, . . . , p− 1}
}

with

hp,a(x) = (a · x mod p) mod k2

is a family of k-perfect hash functions mapping from {1, . . . , n} to {0 . . . , k2−1},
and, indeed, we can use these functions within our limited space: storing the
prime number p and the factor a requires space at mostO

(
log(k)+log(log(n))

)
and storing the at most k hash values requires space at most O

(
k · log(k)

)
.

Moreover, computing the hash values can easily be done within our space
bounds. The last question remaining is how to choose the correct function of
these families on input of G and k? One way is to simply iterate over all these
functions, another possibility is to use the available nondeterminism to guess
the function, which requires O

(
log(k) + log(log(n))

)
and is therefore doable

within the available bounded nondeterminism of O
(
fk · log(n)

)
bits.

If we turn to the undirected version of the parameterized longest path
problem, the situation becomes less clear. It is tempting to conclude that, in
analogy to the directed and the undirected versions of the distance problem,
the undirected longest path problem is also complete for paraβ-L, but this does
not seem to be true:

. Theorem 61. p-Undirected-Longest-Path ∈ para-L

Proof. For a given instance (G, k) we iterate over every pair of vertices of G,
and for each such pair (s, t) we iterate over the functions of a (k + 1)-perfect
family of hash functions that map the vertices of G to the set {1, . . . , k +

83

1}. For each such function h we consider every function p : {1, . . . , k + 1} →
{1, . . . , k + 1} of the symmetric group Sk+1 and construct a new graph Gh,p

from G by removing all edges from G that do not connect vertices of “adjacent
hash values”, i. e., for every remaining edge {u, v} in Gh,p we have |p(h(u)) −

p(h(v))| = 1. In Gh,p we then test whether p(h(s)) = 1, p(h(t)) = k + 1,
and whether we can reach t from s using the Theorem of Reingold (2008). If
we find a pair (s, t) of vertices, a hash function h, and a permutation p such
that there is a path from s to t in Gh,p, we know that this path has to pass
at least k + 1 vertices, thus we have found a path of length k in G. In this
case, we accept, otherwise we reject, because if there is a path (v1, . . . , vk+1)

of length k with s = v1 and t = vk+1, then there is also a hash function h
such that h(vi) 6= h(vj) if, and only if, i 6= j, and a permutation p for h such
that p(h(vi)) = i. In other words: By iterating over all pairs of vertices, all
hash functions and all permutations, we consider every possibility of paths of
length k+ 1.

In the proof of Theorem 59 we have already seen that iterating over a
(k+1)-perfect family of hash functions can easily be done by a para-L machine.
Now note that both additionally testing for reachability and iterating over all
functions of Sk+1 can easily be done within the space bounds of para-L.

Whether p-Undirected-Longest-Path is also complete for para-L is a
part of current research, but recent results from Bannach et al. (2015) suggest
that this is not the case.

Let us conclude this chapter. Figure 3.1 summarizes its core results: We
have seen that the combination of parameterized space and circuit complexity
with bounded nondeterminism is a fruitful basis for the exact classification
of many natural and important computational problems that could not be
classified so far using parameterized time classes like colored reachability prob-
lems or the associative generability problem. These problems share a common
property: they are union problems. Many parameterized problems exhibit this
property, and we have seen that this property is linked to classes of read-again
bounded nondeterminism by the union lemma. Moreover, classes like paraW-
NC1, paraW-L, and paraW-NL provide additional upper and lower bounds (un-
der reasonable assumptions) for both the directed and undirected feedback ver-
tex set problem, thus extending the results from the previous chapter where we
studied classes of parameterized space and circuits without nondeterminism.
Another important observation we have made in this chapter is that space and
circuit classes of bounded nondeterminism are linked to the Weft-Hierarchy:
Showing that a problem is hard for paraW-AC0 suffices as a proof for the hard-

84

para-AC0

para-TC0

para-NC1

para-L

paraβ-Lparaβ∀-L

paraDβ-L

para-NL

para-P

paraβ-P

para-NP

para-PSPACE

paraW-NP

paraW-P

paraW-NL

paraW-L

paraW-NC1

paraW-TC0

paraW-AC0

W[t]

W[SAT]

=

= W[P] =

p-Weighted-SAT

para-P-complete

para-AC0-complete

p-Colored-Reach
p-Subset-Union-DAG-Reach
p-Subset-Union-Cycle
p-AGen

para-AC0-complete

p-Colored-Undirected-Reach
p-Subset-Union-Tree
p-Subset-Union-Forrest
p-Subset-Union-Undirected-Cycle

para-AC0-complete

p-DFVS
∈∈

member iff. L = NL

p-FVS
∈∈

member iff. NC1 = L

p-Distance
p-Longest-Path
p-Undirected-Distance

para-L-complete

p-Undirected-Distance-At-Least
p-Undirected-Large-Distance

para-L-complete

p-Undirected-Longest-Path

∈
p-Exact-Distance

para-L-complete

p-Large-Distance
para-L-complete

Figure 3.1: Diagram of classes of bounded nondeterminism together with some
of their surrounding classes and inclusions where A B denotes the in-
clusion A ⊇ B. Moreover, the relations between the problems and classes
discussed in this chapter are illustrated.

85

ness of the problem for W[t], showing that a problem is hard or complete for
paraW-NC1 suffices as a proof for the hardness or completeness for W[SAT], re-
spectively. Concerning read-once bounded nondeterminism, we have seen that
many natural distance problems are complete for the classes paraβ-L, paraβ∀-
L, and paraDβ-L.

While Flum and Grohe (2006) may be right when judging that classes like
para-NP (and thus also para-L and para-NL) as uninteresting, their statement
clearly does not hold when we switch to classes of bounded nondeterminism.
Bounded nondeterminism proves to be the right way of connecting the concept
of nondeterminism with parameterized complexity theory.

However, parameterized space and circuit complexity theory alone, even
when extended using bounded nondeterminism, is not a panacea. It is often
very useful to combine time and and space complexity in order to get deep
insights into the computational complexity of problems with high practical
relevance, as we will see in the next chapter.

86

4. Simultaneous Time-Space Classes

Time and space are the two fundamental resources when talking about the
computational complexity of algorithms. Starting with the works of Hartma-
nis and Stearns (1965) and Stearns et al. (1965), the study of the time and
space required to solve a problem is the central momentum of computational
complexity. One of the most important and at the same time hardest questions
to answer is: How are time and space related to each other? An incomplete
answer to this question is the well-known inclusion chain

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP,

which shows that time and space seem to be interleaved.
While this chain presents the simple and beautiful essence of the classical

theory of computational complexity, it has its disadvantages: It does not allow
the study of computations with simultaneous time and space bounds. Bound-
ing either time or space always limits the other resource. For example, it does
not make sense to study computations that require a polynomial amount of
time and a logarithmic amount of space, because this is already captured by
limiting the allowed use of space to a logarithmic amount alone. This changes
if we switch to the setting of parameterized complexity.

In parameterized complexity theory we deal with several kinds of complex-
ity classes: para-classes, X-classes, and classes of bounded nondeterminism like
paraW-classes and paraβ-classes. In Chapter 2 we have already seen that many
of these classes presumably lie orthogonal to each other and are therefore in-
comparable. While this makes the world of parameterized complexity appear
somehow less “easy” in comparison to classical computational complexity, it is
in fact an advantage: (Presumably) orthogonal classes like para-P and XL allow
us to study their intersection para-P ∩ XL or even the class of problems that
are decidable by a single machine simultaneously obeying the resource bounds
imposed by classes like para-P and XL, i. e., in time O(fk · nc) and space
O
(
fk · log(n) + fk

)
. This section is devoted to the study of such problems.

In Section 4.1 we will introduce the most important classes with simultane-

87

ous time-space bounds and study their structural properties. This includes the
investigation of some admittedly artificial complete problems for these classes.
However, we require these for our results in Section 4.2 where we will then use
the previously introduced classes and problems to study natural problems like
the longest common subsequence problem or the feedback vertex set problem.

4.1. Classes and Structural Properties

Before we start with our study of problems, we have to prepare our working
gear, which consists of a reasonable way to denote simultaneous time-space
classes and classes to deal with. Let us start with the notation:

. Definition 62 (Simultaneous Time-Space Classes). Let t and s be a time
bound and a space bound, respectively, that both depend on a parameter k
and the input length n. Then,

D[t, s] and N[t, s]

denote the class of parameterized problems that are solvable by a deterministic
and nondeterministic Turing machine, respectively, within time t(κ(x), n) and
space s(κ(x), n).

If we now plug in our previously discussed time and space bounds for para-
classes and X-classes, we get a whole bunch of complexity classes, many of
them unreasonable, but four of them are of interest:

D[fk · nc, fk · log(n)], N[fk · nc, fk · log(n)],

D[nfk + fk, fk · nc], N[nfk + fk, fk · nc].

In a more intuitive way, we can denote these classes by

para-P/XL, para-NP/XNL,

XP/para-PSPACE, XNP/para-PSPACE,

where, for example, para-P/XL denotes the class of problems decidable by a
para-P-machine that may use at most the space of an XL-machine. Figure 2.1
on page 33 shows where these classes are related to the previously discussed
classes.

The intuition behind para-P/XL is that it is a space-efficient variant of para-
P and, thus, a subclass of para-P allowing us to study the problems within para-
P. para-NP/XNL then is the nondeterministic variant of para-P/XL. Similarly,

88

the classes XP/para-PSPACE and XNP/para-PSPACE can be seen as space-
efficient variants of XP and XNP. Alternatively, if we focus on space as our
central resource, the classes above can be seen as time-efficient space classes.
However, even though we argue that space and circuit complexity is extremely
important, we will stick to time as the central resource of interest in this
chapter.

From the definition of these classes it is immediately clear that they are
subclasses of the underlying classes that define them, i. e., we have that, for
instance, para-P/XL is a subclass of both para-P and XL. Moreover, we have
the following relations to other parameterized complexity classes we previously
studied:

paraW-NP ⊆ XNP/para-PSPACE,

paraW-P ⊆ XP/para-PSPACE,

paraW-NL ⊆ para-NP/XNL,

para-L ⊆ para-P/XL.

The first inclusion follows from the trivial fact that paraW-NP = para-NP

and that a para-NP-machine always obeys the simultaneous time-space bounds
imposed by XNP/para-PSPACE. For the second inclusion note that we can
iterate over the possible contents of the choice tape of a paraW-P-machine
and simulate the machine on each of them within the bounds of XP/para-
PSPACE. For the third inclusion note that we can nondeterministically guess
the certificate of a paraW-NL-machine and simulate the machine afterwards
within the bounds of para-NP/XNL. To see the last inclusion just note that a
para-L clearly obeys the time-space bounds of a para-P/XL machine. For an
overview of how the above classes relate to the previously discussed classes see
Figure 4.1 on page 107

Before we start investigating natural complete problems for the classes in-
troduced above, let us first study a bunch of artificial complete problems that
we will use as a starting point. Typically, machine simulation problems are
a good basis for showing completeness of problems, and this is also the case
here. Thus, we consider the space-bounded acceptance problem, i. e., decid-
ing whether a given machine accepts the empty string using at most a certain
number of tape cells:

89

. Problem 63 (Parameterized Deterministic Space-Bounded Acceptance).

Instance: The code of a single-tape Turing machine M together with
a natural number s in unary.

Parameter: s.
Question: Does M halt in an accepting state on an initially empty

tape using at most s tape cells?

Let us denote this problem with p-DSBA and the variant of this problem
where we consider nondeterministic machines by p-NSBA. Moreover, let us
define two variants of p-DSBA and p-NSBA with an additional time con-
straint, namely p-Timed-DSBA and p-Timed-NSBA for deterministic and
nondeterministic Turing machines, respectively:

. Problem 64 (Parameterized Timed Deterministic Space-Bounded Accep-
tance).

Instance: The code of a single-tape Turing machine M together with
two natural numbers s and t in unary.

Parameter: s.
Question: Does M halt in an accepting state on an initially empty

tape using at most s tape cells and making at most t steps?

. Theorem 65.

1. p-DSBA is para-AC0-complete for XL.

2. p-NSBA is para-AC0-complete for XNL.

3. p-Timed-DSBA is para-AC0-complete for para-P/XL.

4. p-Timed-NSBA is para-AC0-complete for para-NP/XNL.

Proof. Let us start with containment and item 1. To see that p-DSBA lies in
XL, let the input be a tuple (M, 1s). To check whether M accepts the empty
string using at most s tape cells, we simply simulate M. This requires s blocks
of O

(
log(n)

)
space, each encoding a tape cell of M, i. e., a symbol of M’s

alphabet. To show item 2, i. e., the nondeterministic case, we can proceed
similarly, but we have to additionally use nondeterminism to simulate the
nondeterministic behaviour of the input machine. For the timed variants, i. e.,
item 3 and item 4, we argue in a same way, but now we get a tuple (M, 1t, 1s)
as input and also have to keep track of the the number of steps made by the
machine, which can easily be done in polynomial time. Hence, the overall
runtime does not exceed the para-P limit.

90

To prove hardness, we again start with item 1. Let (Q,κ) be a problem in
XL that is decided by a machineM in space sM(k, n) with sM ∈ O

(
fk · log(n)

)
.

The main idea of the reduction is to compute on input x a tuple (M ′, 1s) such
that M ′ simulates M on x and s is a space bound sufficient for this simulation
but that exclusively depends on the parameter κ(x), because in parameterized
reductions the new parameter may only depend on the the old parameter. To
achieve this, we proceed in two steps. First, we hard-wire x to M yielding Mx.
For this, we augment M’s set of states to O(|x|) copies of its old state set and
connect them in such a way that the input x and the movement of the head
on x is represented by these states. Using this technique, we get rid of the
requirement of passing x to M separately. In a second step, we have to make
sure that our new machine only requires fk tape cells for some function f. To
achieve this, we apply a classical compression trick: We augmentMx’s alphabet
such that every symbol encodes a block of at most O

(
log(|x|)

)
many symbols

together with one of the possible head position within this block, yielding
M ′. This enlarges the old alphabet Σ to O

(
|Σlog(|x|) × {0, 1, . . . , log(|x|)}|

)
,

where the first component encodes a block of O
(
log(|x|)

)
symbols and second

component encodes the head position, i. e., 0 means that the head is not in
this section, 1 means that it points to the first symbol, 2 to the second symbol,
and so on. Finally, we have to adjust the state transitions of M ′ such that it
correctly simulates the computation of Mx. While this may be tedious, it is
not complicated. The new instance is then the code of M ′ together with the
parameter fk. In the nondeterministic case of item 2 we proceed in exactly the
same way.

To show hardness of the timed variants, i. e., items 3 and 4, we proceed
in a similar way, but now we start with a problem (Q,κ) that is solvable
within space sM(k, n) and time tM(k, n), and we have to additionally construct
a unary encoded time bound. To do so, we simply set the time bound to
tM(κ(x), |x|). Note, that the time bound is not a parameter and, therefore,
may depend on the input length.

Now that we have our first problems that are complete for classes of si-
multaneous time-space bounds, we can start investigating natural complete
problems for these classes in the next section.

4.2. Natural Problems for Time-Space Classes

Despite the overwhelming success of parameterized complexity theory, numer-
ous parameterized problems could not be classified satisfactorily for decades.

91

The textbooks of Downey and Fellows (1997) and Flum and Grohe (2006) con-
tain long lists of problems that are annotated with “member of” and “hard for”
but that could not be shown to be complete for any complexity class. One of
these problems is based on the classical problem of computing longest common
subsequences that we already mentioned in Section 2.1 when we discussed the
concept of parameterized problems. Maier (1978) studied LCS in the context
of classical computational complexity and showed that LCS is NP-complete.
In the parameterized world we have to deal with several versions of this prob-
lem, depending on the chosen parameter. Bodlaender et al. (1995) showed that
p|S|-LCS is hard for W[t] for all t, pl-LCS lies in W[P] and is hard for W[2], and
p|S|, l-LCS is complete for W[1]. Moreover, they showed that if the underly-
ing problem is restricted to a fixed alphabet, then pl-LCS and p|S|, l-LCS are
complete for W[1], while they conjectured that p|S|-LCS remains W[t]-hard.
Pietrzak (2003) proved that this conjecture is right. Guillemot (2011) refined
this analysis by showing that p|S|-LCS is equivalent to p-Timed-NSBA with
respect to para-P-reductions, and, consequently, introduced the parameterized
class WNL as the closure of p-Timed-NSBA under para-P-reductions in order
to capture the complexity of p|S|-LCS. Apart from the fact that this result
underlined that the p|S|-LCS does not fit into the well-established complexity
classes and seems to require a new complexity class, Guillemot’s result has two
blemishes: First, since WNL is based on a problem, it lacks a machine-based in-
terpretation. This is somehow fixed by our result above that p-Timed-NSBA
is complete for para-NP/XNL. However, this reveals the second problem: para-
NP/XNL is presumably not closed with respect to para-P-reductions that were
used to show the equivalence of p|S|-LCS and p-Timed-NSBA by Guillemot
(2011). We fix this in this section by showing that p|S|-LCS is complete for
para-NP/XNL with respect to para-AC0-reductions, i. e., a very weak reduction.
For this we make us of a reduction chain that also shows the completeness of
several other reasonable problems for this class. In toto, this result under-
lines the importance of simultaneous time-space classes for the classification of
natural problems like p|S|-LCS.

The second problem that we study with respect to its simultaneous time-
space complexity is the problem of computing feedback vertex sets. In Sec-
tion 2.2 we already discussed that p-DFVS and p-FVS both lie in para-P,
and, moreover, in Theorem 12 we saw that they are separated within para-P
by parameterized space and circuit classes. In this section, we will go a step
further by additionally showing an upper bound for p-FVS and an additional
lower bound for p-DFVS using simultaneous time-space classes.

92

Let us begin our journey towards p|S|-LCS by studying a first intermediate
problem that is based on the computational model of cellular automatons, see
Wolfram (2002) for the wide range of their applications. The central parts of
a cellular automaton are its possibly infinitely many cells, which are arranged
in a certain manner such that every cell has a well-defined neighborhood of
other cells. Typical arrangements are the euclidian plane such that every cell
has exactly nine neighbors, or the line such that every cell has exactly two
neighbors. These cells perform a synchronized computation: Initially, every
cell is in one of a finite set Q of states. A state transition function that defines
for each cell its successor state depending on its own state and the states of
its neighbors is then applied repeatedly and simultaneously to the cells. There
are numerous applications of cellular automatons, most notably is probably
Conway’s Game of Life, presented by Gardner (1970).

The cellular automaton has proven to be a universal computational model,
i. e., it is equivalent to the Turing machine regarding its expressive power.
Hence, many problems concerning cellular automatons are undecidable, making
it reasonable to modify the model in order to obtain decidability. We consider
the natural variant where we restrict the number of cells of the automaton to be
finite. Consequently, the transition function has to cover the corner cases where
the cells do not have a “full” neighborhood. Moreover, we consider automatons
that have a set of accepting states, and we say that a automaton accepts its
initial configuration, which can be seen as its input, if one of its cells arrives at
one of the accepting states during the automaton’s computation. This yields
the natural problem p-DCA:

. Problem 66 (Parameterized Deterministic Cellular Acceptance).

Instance: A deterministic cellular automaton with k cells and an ini-
tial configuraton.

Parameter: k.
Question: Does the automaton accept?

Naturally, we can define this problem for transition relations, i. e., nonde-
terministic automatons, and we can even define timed versions where we want
to know whether the automaton accepts within a certain time (encoded as a
unary string along with the input). Let us denote these problems by p-NCA,
p-Timed-DCA, and p-Timed-NCA, respectively.

. Theorem 67.

1. p-DCA is para-AC0-complete for XL.

93

2. p-NCA is para-AC0-complete for XNL.

3. p-Timed-DCA is para-AC0-complete for para-P/XL.

4. p-Timed-NCA is para-AC0-complete for para-NP/XNL.

Proof. We start with containment. In order to simulate the computation of a
given automaton, we have to store the current configuration of the automaton’s
cells, which we can do in O

(
k · log(n)

)
space. Hence, we have p-DCA ∈ XL

and p-NCA ∈ XNL. Moreover, we have p-Timed-DCA ∈ para-P/XL and
p-Timed-NCA ∈ para-NP/XNL because the simulation of the automatons for
a number of steps that is given in unary can easily be done in time polynomial
in the number of cells and the input length.

For hardness, let us start with case 1, where we reduce from p-DSBA. We
are thus given the encoding of a Turing machine M together with a natural
number s in unary that is our parameter, and we must map this to a cellular
automaton C with at most f(s) cells for some function f that accepts if, and
only if, M accepts the empty string using at most s tape cells. The natural
idea here is to simulate M’s computation by C and use the cells of C to store
the contents of M’s tape cells and the current head position. We thus let C
have s cells that are arranged in a sequence c1, . . . , cs. Cell ci represents the
content of the i-th tape cell of M together with the information whether M’s
head currently points to the i-th cell or not, and, if so, also in what state the
machine currently is. For this, we let the state set of C be (Q∪ {⊥})×Σ where
Q is M’s state set, ⊥ does not occur in Q and Σ is M’s tape alphabet. If ci is
in state (q, γ), this means that the i-th cell of M contains the symbol γ, M is
in state q, and the head points to this cell. If ci is in state (⊥, γ), this means
that the i-th cell contains symbol γ and the head is on some other cell. For
example, the sequence

(⊥, a) (⊥, b) (q1, b) (⊥, a)

encodes that M’s tape contains the string abba, M is in state q1, and M’s
head points to the third tape cell. Using this encoding, C’s state transition
function can then simulate M’s behaviour based on M’s transition function.
The following table shows how the transitions of the Turing machine define
the transitions of the cellular automaton, showing the Turing machine tran-
sitions on the left hand side and the corresponding transitions of the cellular
automaton on the right hand side. The symbols ., /, � denote movements
of the head of the Turing machine to the left, the right, and staying on the
current cell, respectively. On the right, (a, b, c) 7→ d means that “a cell in state

94

b whose left neighbor is in state a and right neighbor is in state c transitions
into state d”. Moreover, the placeholders x and y may also be interpreted as
the “empty space” on the left or the right of the arrangement of cells to also
cover the corner cases.

(q, σ) 7→ (q ′, σ ′, .) :
(

x , (q, σ) , y
)
7→ (⊥ , σ ′)(

(q, σ), (⊥, γ), y
)
7→ (q ′, γ)

(q, σ) 7→ (q ′, σ ′, /) :
(

x , (q, σ) , y
)
7→ (⊥ , σ ′)(

x , (⊥, γ), (q, σ)
)
7→ (q ′, γ)

(q, σ) 7→ (q ′, σ ′, �) :
(

x , (q, σ) , y
)
7→ (q ′, σ ′)

The remaining part of the automaton’s transition function can be defined
arbitrarily, since these transitions correspond to cases that cannot occur, for
instance the case when two heads of the Turing machine points to two neigh-
boring cells.

The nondeterministic case now seems only a stone’s throw away, but we
have to be careful: Only generalizing from state transition functions to state
transition relations does not suffice! The problem is that while in the determin-
istic case above we can be sure that at any time the automaton only simulates
a single head, multiple heads can appear in the nondeterministic case, which
we definitely not want. For example, consider the case where the Turing ma-
chine may nondeterministically choose between moving its head to the left and
moving its head to the right. This translates into transitions for the automaton
that allow both of the cells surrounding the cell currently having the head to
take over the head. This results in the situation that the automaton simulates
two heads at the same time, and, hence, to undesired computations that may
erroneously accept the input. To overcome this, we make a preprocessing on
the Turing machine before we derive the transition rules of the cellular au-
tomaton: We replace every transition (qold, σ) → (qnew, σ

′, d) of the machine
by two transitions (qold, σ) → (qtmp, σ, �) and (qtmp, σ) → (qnew, σ

′, d) using
a fresh state qtmp, such that the first transition effectively does nothing but
change the state of the machine into a fresh intermediate state, and the second
transition yields the old desired state together with the tape modification and
the head movement done by the old transition. Here, d denotes the direction
the machine’s head moves to and � denotes that the head will not move. The
following picture shows informally how we modify the transition relation of the
machine:

95

qold qnew
σ : σ ′, d

qold qtmp qnew
σ : σ, � σ : σ ′, d

The new machine now has the property that during a nondeterministic
transition only the state of the machine changes, and, hence, movements of
the head only occur at deterministic transitions. This fixes the issue of having
transitions that “produce several heads”.

In the timed cases our reductions essentially work in the same way as in
the non-timed versions, but we additionally have to provide a time-bound. In
the deterministic case it suffices to simply copy the already given time-bound.
In the nondeterministic case we also have to double the length of the time-
bound because the preprocessing on the Turing machine doubles the length of
its computations.

For all these operations it is not hard to see that we can compute them
efficiently, i. e., we obtain para-AC0-reductions.

We are now just a small step away from our target, namely the longest
common subsequence problem. A last problem to solve is that the compu-
tation of a cellular automaton is a parallel computation while the sequences
are inherently sequential. Hence, we have to somehow “sequentialize” the com-
putations of cellular automatons if we want to reduce them to the longest
common subsequence problem. For this, let us define sequential cellular au-
tomatons. We obtain them by modifying the computational model of cellu-
lar automatons such that, instead of making parallel steps, initially only the
first cell makes a transition, then the second cell makes a transitions, and so
on. If the last cell made its transition, this process is repeated, starting with
the first cell. During this computation, if a cell has to make a transition,
the cell can already see the new state of the previous cell. Based on this
model we obtain the problems p-Sequential-DCA, p-Sequential-NCA,
p-Timed-Sequential-DCA, and p-Timed-Sequential-NCA that are de-
fined similar to the previously studied problems but now for sequential cellular
automatons.

. Theorem 68.

1. p-Sequential-DCA is para-AC0-complete for XL.

96

2. p-Sequential-NCA is para-AC0-complete for XNL.

3. p-Timed-Sequential-DCA is para-AC0-complete for para-P/XL.

4. p-Timed-Sequential-NCA is para-AC0-complete for para-NP/XNL.

Proof. We only show how to reduce p-DCA to p-Sequential-DCA because
the other reductions work similarly and membership of the problems can be
shown in the same way as in Theorem 67 where we showed that the non-
sequential problems are complete for the corresponding classes. Hence, suppose
that we are given a cellular automaton. What would happen if, instead of
letting its cells work in a parallel fashion, the automaton would proceed in
the sequential way described above? We cannot be sure that the result of the
two computations are the same because the cells “see” different states at their
neighbors during the computation: While in the first model every cell after the
i-th transition sees the states of the neighboring cells after the i-th transition,
in the second model every cell sees the state of its left cell after the (i+ 1)-th
transition and the state of the right cell after the i-th transition. In order to be
still able to simulate a purely parallel computation on the sequential cellular
automaton, we construct from the given automaton C a new automaton C ′

whose cells are able to remember their previous state besides the current state.
Formally, if the state set of C is Q, the state set of C ′ is Q×Q, which intuitively
can be seen as tuples whose first component is the previous state and the second
component is the current state. For every transition (qleft, qold, qright) 7→ qnew,
in C the automaton C ′ thus has transitions(

(qleft, x), (y, qold), (z, qright)
)
7→ (qold, qnew)

where x, y, and z are arbitrary states. Now, the cells make their transitions
based on the previous state of the left and the current state of the right cell,
which is exactly what we want. What remains is to adapt this construction to
the corner cases, i. e., the cells at the left and the right end of the automaton,
but this can be done in the obvious manner. Now, if C started on the initial
configuration (q1, . . . , qk) arrives in configuration (q ′

1, . . . , q
′
k) after t steps,

C ′ started on the configuration ((x1, q1), . . . , (xk, qk)) will arrive in the con-
figuration ((x ′1, q

′
1), . . . , (x

′
k, q

′
k)) after t · k steps for arbitrarily chosen states

x1, . . . , xk and appropriate states x ′1, . . . , x
′
k.

The other items can be proven in a similar way. In the nondeterministic
cases we have to deal with relations instead of functions, in the timed cases
we have to prolong the time bounds by the factor k, but this does not change
the essentials of the construction. Moreover, all of these reductions can be
implemented in para-AC0.

97

We are now ready to show the central result of this section:

. Theorem 69. p-LCS is complete for para-NP/XNL under para-AC0-reductions.

Proof. To show that p-LCS ∈ para-NP/XNL, we construct a nondeterminis-
tic machine that scans the first of the given strings and nondeterministically
guesses the common subsequence during this scan, verifying on the fly that
the other strings contain the guessed subsequence. For this, the machine re-
quires |S|−1 pointers p2, . . . , p|S| that are initially set to 0. The machine starts
scanning the first string, and if it nondeterministically guesses for a scanned
symbol σ that it is contained in the desired subsequence, the pointers pi are
increased in order to point to the position of the next occurence of σ in the i-th
string. If it is possible to guess a sequence of length l in the first string and
increase the pointers to the other strings accordingly, the machine accepts, oth-
erwise it rejects. Since every such pointer has at most the value n, the overall
space requirement is O

(
|S| · log(n)

)
. Moreover, the time requirement is clearly

polynomial.
To prove hardness we reduce from p-Timed-Sequential-NCA. Hence, let

(C, q1, . . . , qk) together with a time bound be the input for the reduction. By
Theorem 68 we may assume that the time bound is of the form t·k. If necessary,
we modify C such that it makes exactly t ·k steps if it accepts and strictly less
steps otherwise. We now construct 4 · k strings s11, s

1
2, s

1
3, s

1
4, . . . , s

k
1 , s

k
2 , s

k
3 , s

k
4

and ask for a common subsequence of these strings of length t · k. The idea is
that each block of 4 strings si1, s

i
2, s

i
3, s

i
4 encodes the behaviour of the i-th cell

of the automaton and every symbol of the subsequence encodes a transition of
the automaton.

Let us now construct the strings. To make the construction easier to ex-
plain, we first add some special symbols conceptually to the strings, i. e., we do
not really add these symbols to the strings, but we treat them as if they were
there. This way, we can use these symbols as markers, allowing us to specify
certain positions exactly. The set of these marker symbols is defined by{

〈q, i〉 | q ∈ Q∧ i ∈ {1, . . . , tk}
}

where Q with Q = {q1, . . . , q|Q|} is the automaton’s set of states. Intuitively, a
symbol 〈q, i〉 on one of the strings sj1, . . . , s

j
4 represents that the j-th cell is in

state q at the i-th step of the automaton’s computation. Initially, we construct
every block of 4 strings si1, s

i
2, s

i
3, s

i
4 to be as follows:

98

si1 〈 q1, 1 〉 〈 q2, 1 〉 . . . 〈q|Q|, 1〉 〈 q1, 3 〉 〈 q2, 3 〉 . . . 〈q|Q|, 3〉 〈 q1, 5 〉 〈 q2, 5 〉 . . . 〈q|Q|, 5〉 . . .

si2 〈q|Q|, 1〉 〈q|Q|−1, 1〉 . . . 〈 q1, 1 〉 〈q|Q|, 3〉 〈q|Q|−1, 3〉 . . . 〈 q1, 3 〉 〈q|Q|, 5〉 〈q|Q|−1, 5〉 . . . 〈 q1, 5 〉 . . .

si3 〈 q1, 2 〉 〈 q2, 2 〉 . . . 〈q|Q|, 2〉 〈 q1, 4 〉 〈 q2, 4 〉 . . . 〈q|Q|, 4〉 〈 q1, 6 〉 〈 q2, 6 〉 . . . 〈q|Q|, 6〉 . . .

si4 〈q|Q|, 2〉 〈q|Q|−1, 2〉 . . . 〈 q1, 2 〉 〈q|Q|, 4〉 〈q|Q|−1, 4〉 . . . 〈 q1, 4 〉 〈q|Q|, 6〉 〈q|Q|−1, 6〉 . . . 〈 q1, 6 〉 . . .

More formally, the above strings are defined by

si1 =

t·k∏
i=1

i≡1 mod 2

|Q|∏
j=1

〈qj, i〉

si2 =

t·k∏
i=1

i≡1 mod 2

1∏
j=|Q|

〈qj, i〉

si3 =

t·k∏
i=2

i≡0 mod 2

|Q|∏
j=1

〈qj, i〉

si4 =

t·k∏
i=2

i≡0 mod 2

1∏
j=|Q|

〈qj, i〉

where we denote the concatenation of symbols using the product symbol. Note
that some of the concatenations are in decreasing order! Due to this opposite
ordering, we will later have that no cell can be in two different states at the
same step of the computation.

Using the marker symbols, we now insert the real symbols of the string.
The real symbols will be tuples (q, s, i) where q = (qleft, qold, qright, qnew) is
an element of the transition relation, representing a possible transition of a
cell from qold to qnew if the left neighboring cell is in state qleft and the right
neighboring cell is in state qright, s is a step number, and i is a cell number.
Let us call these elements transition symbols. These elements are inserted
into the strings according to the following rules:

1. Iterate over all (q, s, i) in some fixed order and insert (q, s, i) directly
after 〈qold, s〉 in si1 if s is odd and in si3 if s is even. This ensures that
the transition q of cell i at step number s can only be made if the cell i
was in state qold directly before step number s is made.

2. Iterate over all (q, s, i) but now in reverse order, and insert (q, s, i) after
〈qold, s〉 in si2 if s is odd and in si4 if s is even. Due to the two opposite
orderings by this and the previous rule, it is now only possible to select
at most one of the many transitions of cell i at step s if the previous state

99

of the cell was qold. It is not possible to select two symbols (q1, s, i) and
(q2, s, i) with q1 6= q2 into a common subsequence, because they appear
in different orderings in si1 and si2 or si3 and si4.

3. Iterate over all (q, s, i) in some order and insert (q, s, i) directly before
〈qnew, s + 1〉 in si3 if s is odd and si1 if s is even. This ensures that the
state of cell i directly before step s + 1 is at least qnew (with respect to
the ordering of the states).

4. Iterate over all (q, s, i) but now in reverse order, and insert (q, s, i) di-
rectly before 〈qnew, s+ 1〉 in si4 if s is odd and si2 if s is even, in order to
achieve a similar effect as the combination of rules 1 and 2. Furthermore,
all the rules we have seen so far together with the opposite ordering of
the marker symbols ensure that (conceptually) for every step at most one
marker symbol can be chosen into a common subsequence and, moreover,
that the corresponding states of the marker symbols are consistent with
the chosen transition symbols.

5. Iterate over all (q, s, i) and insert (q, s, i) directly after 〈qleft, s + 1〉 in
si−1
3 and si−1

4 if s is odd and in si−1
1 and si−1

2 if s is even. If i = 1, then
no symbols are added to the strings. This ensures that the transition q
of cell i at step s can only be made if the left cell previously switched to
state qleft.

6. Iterate over all (q, s, i) and insert (q, s, i) directly after 〈qright, s〉 in si+1
1

and si+1
2 if s is odd and in si+1

3 and si+1
4 if s is even. If i = k, then no

symbols are added. This ensures that the transition q of cell i at step s
can only be made if the right cell previously switched to state sright.

7. Iterate over all the 4·k strings, and, for each such string sij, consider the set
of all (q, s, l) that are not present in sij. Add all of these symbols in some
fixed order t·k times after each symbol of sij. Since the previous rules only
added symbols to specific subsets of strings, this rule allows us to select a
subsequence of symbols that occurs in every string, without influencing
the restrictions on the subsequences introduced by the previous rules.

8. Finally, in order to reflect the initial configuration p1, . . . , pk, iterate over
all strings sij and remove all symbols before 〈qi, 1〉.

Note that the order of the rules above is important: Since rules 5 and 6 are
applied later than rules 3 and 4, the added symbols are closer to the associated
marker symbols, thus enforcing that the neighboring cells are in the correct
state before the currently considered cell can make its transition.

100

To see that the above construction is correct, first assume that the automa-
ton does accept its input q1, . . . , qk. By assumption, we then know that the
automaton makes t · k steps. Let the transitions of these steps be

f1,1, f1,2, . . . , f1,k, f2,1, f2,2, . . . , ft,k,

where fi,j with fi,j = (fi,jleft, f
i,j
old, f

i,j
right, f

i,j
new) is the element of the transition

relation used for the i-th transition of cell j. Let us now show that

(f1,1, 1, 1)(f1,2, 1, 2) . . . (f2,1, 2, 1) . . . (ft,k, t, k)

is a common subsequence of the constructed set of strings, and, thus, the strings
contain a common subsequence of length t · k as desired. Consider the first
symbol, (f1,1, 1, 1), and let f1,1 be the transition of the first cell from state
f1,1old to f1,1new. By rules 1 and 2, (f1,1, 1, 1) is present in s11 and s12 after 〈f1,1old , 1〉
since f1,1old = q1 and it has not been removed by rule 8. Moreover, the symbol
is present in s13 and s14, namely right before 〈f1,1new, 2〉. By rule 6, the symbol
is also contained in s21 and s22 directly after 〈f1,1right, 1〉. In all other strings, the
symbol is contained due to rule 7. Now consider the symbol (f1,2, 1, 2), which
represents the first transition of cell 2, going from f1,2old to f1,2new with f1,2old = q2,
f1,2left = f

1,1
new and f1,2right = q3. In all of the constructed strings (f1,2, 1, 2) indeed

comes after (f1,1, 1, 1): In the strings s21 to s24 this is due to the rules 1, 2, 3,
4. In strings s13 and s14 this is due to rule 5, and in strings s31 and 3

2 this is
due to rule 6. In all other strings, the symbol is contained due to rule 7. This
continues in a similar fashion for the remaining symbols of the subsequence.
Moreover, the sequence above clearly has the desired length t · k.

Let us now argue that if there is a common subsequence of the constructed
strings that has length t · k, then the automaton accepts the input. First note
that in order to have a sequence of length t · k, the sequence must be of the
form

(f1,1, 1, 1)(f1,2, 1, 2) . . . (f1,k, 1, k) . . . (f2,1, 2, 1) . . . (ft,k, t, k).

This is because for any two symbols (fs1,i1 , s1, i1) and (fs2,i2 , s2, i2) we have
that if s1 < s2, then the first symbol comes before the second symbol in every
of the constructed strings because we inserted them directly next to the marker
symbols for steps s1 and s2 and the marker symbols are placed in the strings
in increasing order with respect to the step number. If we have s1 = s2 and
i1 < i2, then the first symbol again comes before the second symbol because
rules 5 and 6 are applied after rules 1, 2, 3, 4, placing the symbols closer to
the marker symbols and thus ensuring the ordering. If s = s ′ and i = i ′, then

101

the opposite orderings in rules 1, 2 and 3, 4 guarantee, that at most one of
these two symbols may occur in the subsequence. Overall, the symbols of the
subsequence must strictly increase, and since the length of the subsequence
has to be t · k, the sequence has to be of the form presented above. We now
have to argue that the transitions of the sequence make the automaton accept.
The crucial observation here is that for every i with i < k the only symbol
(fs,i+1, s, i+ 1) that can follow (fs,i, s, i) is a symbol that encodes a transition
fs,i+1 that makes cell i + 1 change its state according to this transition. If
i = k, then we similarly have that the only symbol (fs+1,1, s + 1, 1) that can
follow encodes a transition that makes cell 1 switch its state according to this
transition. Since rule 8 ensures that the first transitions (f1,i, 1, i) start from
the initial configuration of the automaton, the overall sequence is therefore a
valid computation. Together with the assumption that the automaton accepts
its input if, and only if, it makes t · k steps, we have proven the claim of this
direction and, thus, of the whole theorem.

The above result shows that parameterized time-space classes serve as the
right tool for the exact classification of previously unclassifiable parameterized
problems like the longest common subsequence problem.

Let us conclude this section with revisiting two problems we already dis-
cussed several times in this thesis: The feedback vertex set problem for directed
and undirected graphs, i. e., the question whether there is a subset of the ver-
tices of a given graph such that removing the vertices of this subset from the
graph makes it acyclic. For a formal definition of these problems see page 28.
We already saw that while the theory of parameterized time complexity only
reveals that both the directed and the undirected version are fixed-parameter
tractable, the theory of parameterized space and circuit complexity discussed
in this thesis so far gives deeper insights into the complexity of these two prob-
lems: In Section 2.2 we showed that if p-FVS ∈ para-NC1, then NC1 = L, and
if p-DFVS ∈ para-L, then L = NL. In Section 3.2 we extended this by showing
that p-FVS ∈ paraW-NC1 implies NC1 = L, and p-DFVS ∈ paraW-L implies
L = NL. Parameterized time-space classes, however, reveal even more of the
nature of these problems:

. Theorem 70.

1. p-FVS ∈ para-P/XL.

2. If p-DFVS ∈ para-P/XL, then L = NL.

Proof. Let us start with the first item. Our proof is based on an algorithm
of Downey and Fellows (1997) showing that the undirected feedback vertex

102

set problem is fixed-parameter tractable. The crucial part here is to modify
their algorithm such that it only requires space at most O

(
fk · log(n)

)
while it

remains fast, i. e., requires time at most O
(
fk · p(n)

)
for a polynomial p.

In the following, we will repeatedly use phrases like “remove the vertex from
the graph”. This may be misleading. Since we consider machines with very
small space, we cannot store the resulting graph and, hence, do such an oper-
ation like it would be done in the domain of parameterized time. Instead, we
make use of the fact that logarithmic space-bounded computations are closed
under composition. For a more detailed elaboration on this see the textbook
of Papadimitriou (1994). In short: Instead of removing the vertices once and
for all from the graph and storing the result, we recompute the bits of the
result that are required by the subsequent parts of the computation. These
recomputations only add a polynomial factor to the running time, which is
okay because we only require to stay within the time bounds of para-P.

Let G with G = (V, E) be the given undirected graph and k be the parame-
ter. Since the vertices of a feedback vertex set only affect the cycles within the
connected component of the vertex, we consider the connected components of
the graph individually. Hence, let us assume that G is a connected component.
First, we test whether G admits a feedback vertex set of small size, i. e., size 0
or 1. To check if there is a feedback vertex set of size 0, we simply test whether
G is acyclic, to check if there is a feedback vertex set of size 1, we test whether
G gets acyclic after removing one vertex with its incident edges. Checking
whether a graph is acyclic or, equivalently, whether a graph is a forest can be
done in logarithmic space, see Cook and McKenzie (1987). At this point, we
accept if

– G admits a feedback vertex set of size 0 and k ≥ 0, or

– G admits a feedback vertex set of size 1 and k ≥ 1,

and we reject if

– G does not admit a feedback vertex set of size 0 and k ≤ 0, or

– G does not admit a feedback vertex set of size 1 and k ≤ 1.

For the remaining case where the feedback vertex set has size at least 2 and
k ≥ 2, we have to do more work. Our plan is as follows: First, we apply
some preprocessing to G. This preprocessing then enables us to apply a useful
lemma which essentially states that we only have to detect short cycles in a
graph in order to find a feedback vertex set. Finally, we show how to find these
cycles using logarithmic space.

103

First, we want to remove vertices of degree 1 from G because it does not
make sense to choose them for the feedback vertex set, and we want to do this
iteratively because removing vertices of degree 1 from the graph may yield new
vertices of degree 1. However, we cannot perform this iteration in the straight-
forward way because of the restricted amount of available space. Instead, we
remove larger components at once: We remove a vertex v if its connected
component is a tree, or if it is possible to remove an edge e from G such that G
decomposes into two non-empty components where v’s connected component
is a tree and contains at most one vertex from e. Since testing whether a graph
is a tree is possible in logarithmic space, see Cook and McKenzie (1987), we
can remove all these vertices independently of each other from G. Let us from
now on denote the resulting graph by G.

Next, we shrink paths within the graph. Let v1, v2, . . . , vl−1, vl be a path
from v1 to vl where v1 and vl have degree larger than 2 and v2, . . . , vl−1 each
have degree 2. Note that if removing any of the vertices v2, . . . , vl−1 from the
graph would destroy one of the graphs cycles, then we can instead remove v1
or vl because they also lie on the circle. Hence, we can compress these paths
by, for every vertex v of G and degree at least 3, following its outgoing paths of
vertices of degree 2 to a lexicographically larger vertex v ′ of degree at least 3.
We then insert an edge between v and v ′, and remove the inner vertices of the
path together with its incident edges. In the resulting graph, every vertex has
degree at least 3, and there may be self-loops and multiple edges between pairs
of vertices. Let us again denote the resulting graph by G.

If G contains a vertex v with a self-loop, we know that v has to be in the
feedback vertex set because the original input graph contained a cycle from
v to v via vertices of degree 2. We hence store v as one of the vertices of
the solution. Then, we restart the whole algorithm but with v removed from
the original graph. A similar situation arises if we find two vertices u and v
between which there are two edges. In this case, we know that at least one of
them has to be in the feedback vertex set. Hence, we do a branching over these
two possibilities, leading to a search tree with branching width 2 and depth at
most k.

Let us now consider the case that G does neither contain self-loops nor
multiple edges between two vertices and every vertex has degree at least 3.
We can now make use of a lemma by Downey and Fellows (1997), saying that
if an undirected graph has minimum degree 3 and a feedback vertex set of
size k, then the shortest cycle in the graph has length at most 2k. Using this
lemma, it remains to find these cycles of short length and, since at least one

104

of the vertices of such a cycle has to be contained in a feedback vertex set, do
a branching over the vertices of such a cycle, considering each as a possible
member of the solution. This branching will lead to a search tree of size (2k)k

and in toto yield a running time of O
(
(2k)k · nc

)
for some constant c. What

remains is to show how to identify these cycles quickly using little space. For
this, we make use of two nested depth-first search loops. Starting at a vertex v,
the outer loop visits all vertices reachable from v for increasing depth d with
d = 1, 2, . . . , k. For this, the outer loop requires space O

(
d·log(n)

)
to maintain

a stack storing the currently considered path starting at v. The inner loop does
the same using another stack. We stop both loops if their paths lead to the
same vertex w on different paths because then we have found a cycle. Note that
if v lies on a cycle of length at most 2k, then this method will find this cycle.
While this algorithm requires only O

(
k · log(n)

)
space, we still have to argue

that it only requires little time. The important observation here is that the
loops stop if they have identified two ways to reach a vertex w from a common
starting vertex v, and since they visit vertices with increasing distance, this
means that until they have reached a common vertex, there is a unique path
to every vertex visited so far. Hence, both the outer loop and the inner loop
can, for each distance, only visit at most n vertices, yielding at most n3 steps.
Since we have to start this algorithm on any vertex of the graph, the search
requires at most n4 steps.

To show the second item, i. e., if p-DFVS ∈ para-P/XL, then we have
L = NL, we can reuse the construction used in Theorems 12 and 45, that gives a
reduction from the NL-complete problem Unreachability using layerings and
a trivial parameterization. The important observation now is that a para-P/XL-
machine working on a constant parameter value is in fact an L-machine.

Once more, parameterized space complexity has proven to be a fruitful
concept – this time in combination with parameterized time in form of pa-
rameterized simultaneous time-space classes. Figure 4.1 gives an overview of
the results from this chapter. We have seen that the previously unclassifi-
able parameterized longest common subsequence problem is complete for para-
P/XL under para-AC0-reductions, finally settling this long-standing open prob-
lem. This alone justifies the study of parameterized simultaneous time-space
classes. But even if we do not talk about completeness, we can profit from the
concept of simultaneous time-space classes: Regarding the feedback vertex set
problems, we have seen that both p-FVS and p-DFVS are members of para-
P and that using parameterized space and circuit classes provide additional
upper and lower bounds that are directly related to important open questions

105

of classical computational complexity theory. In this chapter we have seen that
p-FVS lies in para-P/XL, but p-DFVS does presumably not, thus giving us
another aspect that separates these problems: While both problems can be
solved efficiently in the relaxed notion of fixed-parameter tractability, p-FVS
admits a space-efficient para-P-algorithm but p-DFVS does presumably not –
a fact that is clearly not exhibited by parameterized time classes alone but in
combination with parameterized space and circuit classes.

106

para-AC0

para-TC0

para-NC1

para-L

paraβ-Lparaβ∀-L

paraDβ-L

para-NL

para-P

paraβ-P

para-NP

para-PSPACE

paraW-NP

paraW-P

paraW-NL

paraW-L

paraW-NC1

paraW-TC0

paraW-AC0

XNP/para-PSPACE

XP/para-PSPACE

para-NP/XNL

para-P/XL

XNP

XP

XNL

XL

XNC1

XTC0

XAC0

W[t]

W[SAT]

=

= W[P] =

p-LCS

para-AC0-complete

p-FVS

∈
∈

p-DFVS

∈
∈

membership
implies
L = NL

Figure 4.1: Diagram of classes of simultaneous space and time together with
some of their surrounding classes and inclusions where A B denotes the
inclusion A ⊇ B. Moreover, the relations between the problems p-LCS,
p-FVS, and p-DFVS and the classes discussed in this chapter are illustrated.

107

108

5. Conclusion

In this thesis we discussed the space and circuit complexity of parameterized
problems. I tried to convince you that, in order to fully understand the com-
putational complexity of parameterized problems, the study of their space and
circuit complexity is unavoidable. For this, I presented to you a wide variety
of complexity classes and showed for numerous natural problems how they are
related to these classes. In this conclusion, I will first give you a brief summary
of what we have seen and achieved in this thesis, and then I will discuss some
future research directions.

5.1. Summary

This thesis consisted of three main parts: The first gave an introduction to pa-
rameterized space and circuits, and discussed parameterized problems as well
as para-classes and X-classes from the perspective of space-bounded computa-
tions and computations done by circuits. In the second part we augmented the
classes we have seen so far by studying classes of bounded nondeterminism.
In the third part we then combined time and space by studying classes that
are defined by computations that are simultaneously bounded with respect to
both time and space.

5.1.1. Parameterized Space and Circuits

After a brief introduction of the concept of parameterized problems, we dis-
cussed the idea of fixed-parameter tractability, and made use of its gener-
alization, namely the computation after a precomputation, to define param-
eterized variants of (nondeterministic) logarithmic space and circuit classes.
Using these para-classes, we showed several upper and lower bounds for prob-
lems like p-Vertex-Cover, p-FVS, and p-DFVS, giving us a more detailed
view of the complexities of these problems that are much more detailed than
the insights that we obtained from the perspective of parameterized time
alone: p-Vertex-Cover lies in para-AC0, a class lying deeply within para-P;

109

p-FVS ∈ para-NC1 implies NC1 = L, and p-DFVS ∈ para-L implies L = NL.
Besides the para-classes, we also defined X-classes based on classical space and
circuit classes, and we used them to show further upper and lower bounds:
Both p-Vertex-Cover and p-Clique lie in XAC0 but p-DFVS and p-FVS
do not. Finally, we discussed several reduction notions that are appropriate
for the classes we are dealing with, and had a review on the famous Weft-
Hierarchy from the perspective of parameterized space and circuit theory we
just obtained.

5.1.2. Bounded Nondeterminism

Motivated by the Weft Hierarchy, we defined the notion of bounded nonde-
terminism where we allow the access to O

(
fk · log(n)

)
nondeterministic bits.

Depending on whether we allow these bits to be read only once or read repeat-
edly, we obtained several parameterized classes that capture the complexity of
several interesting problems.

For the case that we allowed the nondeterministic bits to be read repeatedly,
i. e., if we considered classes like paraW-L or paraW-NC1, we first showed that
many natural problems like the colored reachability problem or the weighted
satisfiability problem can be expressed as union problems. Using with the con-
cept of format-preserving projections, we proved the union lemma, a useful
ingredient for showing completeness of problems for classes of bounded nonde-
terminism that may be read several times. We applied this lemma to show that,
for example, p-Weighted-SAT is complete for paraW-NC1 and that p-AGen
is complete for paraW-NL. Moreover, we investigated both the directed and the
undirected feedback vertex set problem from the perspective of bounded non-
determinism which yielded additional upper and lower bounds that are linked
to open questions from classical computational complexity: p-FVS ∈ paraW-
L, p-DFVS ∈ paraW-NL, p-FVS ∈ paraW-NC1 holds if, and only if, NC1 = L,
and p-DFVS ∈ paraW-L holds if, and only if, L = NL.

For the case that the nondeterministic bits may only be read once, i. e.,
in the case that we consider classes like paraβ-L or paraβ∀-L, we showed that
p-Distance is complete for paraβ-L and that many variants of this problem
like p-Distance-At-Least or p-Longest-Path are related to the distance
problem are complete for related classes, giving us a much more detailed picture
on para-P.

110

5.1.3. Simultaneous Time-Space Classes

Combining time and space, we studied machines that respect time and space
bounds simultaneously. While impossible for reasonable classes in the case
of classical computational complexity, this has proven a fruitful task in the
case of parameterized complexity theory. After definitions of classes and the
study of admittedly artificial problems, we were able to show completeness of
p-LCS for para-NP/XNL using para-AC0-reductions, answering a long-standing
open question on the classification of this problem for reasonable and robust
complexity classes. Moreover, we also showed that the undirected feedback
vertex set problem lies in para-P/XL while this is not the case for the directed
version of this problem under reasonable assumptions, a result underlining that
the difference of the directed and the undirected version of the feedback vertex
set problem lies in their space complexities.

5.2. Outlook

The study of parameterized space and circuits has proven as a fruitful com-
plementation of the concept of parameterized time. Parameterized space and
circuits gave us deep insights into the nature of parameterized problems and
raised several new problems. First of all, the classes discussed in this thesis
allow us to continue the hunt for new upper bounds because only showing that
a problem is fixed-parameter tractable is not enough any more. In order to ob-
tain a full view on the complexity of a parameterized problem, parameterized
space and circuit classes enable us to continue the study of problems inside
of para-P. Furthermore, also lower bounds are getting more possible to reach:
While proving that a problem does not lie in para-P can be hard or even impos-
sible, it is now possible to start showing smaller lower bounds, making it easier
or possible at all to attack a problem by starting with a small lower space or
circuit bound and raising it. Finally, the study of parameterized time, space,
and circuits yield, instead of a hierarchy of classes, a multi-dimensional grid of
classes that allows us to look at problems from many perspectives. Studying
the relations between these classes, separating them or showing that some of
them coincide is a promising task in order to find answers for the relations
between time and space in computations.

111

112

Bibliography

Max Bannach, Christoph Stockhusen, and Till Tantau. Fast Parallel Fixed-
Parameter Algorithms via Color Coding. In Thore Husfeldt and Iyad Kanj,
editors, 10th International Symposium on Parameterized and Exact
Computation (IPEC 2015), volume 43, pages 224–235. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2015. doi: 10.4230/LIPIcs.IPEC.2015.224.

Hans L. Bodlaender. On Linear Time Minor Tests with Depth-First Search.
Journal of Algorithms, 14:1–23, 1993.

Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Harold T.
Wareham. The parameterized complexity of sequence alignment and con-
sensus. Theoretical Computer Science, 147:31–54, 1995. doi: 10.1016/
0304-3975(94)00251-D.

J. Richard Büchi. Weak Second-Order Arithmetic and Finite Automata. Math-
ematical Logic Quarterly, 6:66–92, 1960. doi: 10.1002/malq.19600060105.
Originally appeared in “Zeitschrift für mathematische Logik und Grundlagen
der Mathematik”.

Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM
Journal on Computing, 22(3):560–572, 1993.

Jonathan F. Buss and Tarique Islam. Simplifying the weft hierarchy. Theoret-
ical Computer Science, 351:303–313, 2006. doi: 10.1016/j.tcs.2005.10.002.

Jonathan F. Buss and Tarique Islam. Algorithms in the W-Hierarchy. Theory
of Computer Systems, 41:445–457, 2007. doi: 10.1007/s00224-007-1325-3.

S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An Optimal Parallel
Algorithm for Formula Evaluation. SIAM Journal on Computing, 21(4):
755–780, 1992. doi: 10.1137/0221046.

113

S. R. Buss. The Boolean Formula Value Problem is in ALOGTIME. In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Com-
puting, STOC ’87, pages 123–131. ACM, 1987. doi: 10.1145/28395.28409.

Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice
classes of parameterized tractability. Annals of Pure and Applied Logic,
84:119–138, 1997. doi: 10.1016/S0168-0072(95)00020-8.

Yixin Cao, Jianer Chen, and Yang Liu. On Feedback Vertex Set: New Measure
and New Structures. In Haim Kaplan, editor, Algorithm Theory – SWAT
2010, volume 6139, pages 93–104. Springer Berlin Heidelberg, 2010. doi:
10.1007/978-3-642-13731-0_10.

Hubie Chen and Moritz Müller. The Fine Classification of Conjunctive Queries
and Parameterized Logarithmic Space. ACM Transactions of Computation
Theory, 7(2):1–27, 2015. doi: 10.1145/2751316.

Jianer Chen and Jie Meng. On Parameterized Intractability: Hardness and
Completeness. The Computer Journal, 51(1):39–59, 2008. doi: 10.1093/
comjnl/bxm036.

Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved Parameterized Upper Bounds
for Vertex Cover. In Mathematical Foundations of Computer Science
2006, volume 4162, pages 238–249. Springer Berlin Heidelberg, 2006. doi:
10.1007/11821069_21.

Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A
Fixed-Parameter Algorithm for the Directed Feedback Vertex Set Problem.
Journal of the ACM, 55(5):1–19, 2008. doi: 10.1145/1411509.1411511.

Yijia Chen and Jörg Flum. Machine Characterizations of the Classes of the
W-Hierarchy. In Matthias Baaz and Johann A. Makowsky, editors, Com-
puter Science Logic, volume 2803, pages 114–127. Springer-Verlag Berlin
Heidelberg, 2003. doi: 10.1007/978-3-540-45220-1_12.

Yijia Chen, Jörg Flum, and Martin Grohe. Bounded Nondeterminism and
Alternation in Parameterized Complexity Theory. In Proceedings of 18th
IEEE Annual Conference on Computational Complexity, pages 13–29.
IEEE, 2003. doi: 10.1109/CCC.2003.1214407.

Yijia Chen, Jörg Flum, and Martin Grohe. Machine-based methods in param-
eterized complexity theory. Theoretical Computer Science, 339:167–199,
2005. doi: 10.1016/j.tcs.2005.02.003.

114

Stephen A. Cook and Pierre McKenzie. Problems Complete for Deterministic
Logarithmic Space. Journal of Algorithms, 8:385–394, 1987. doi: 10.1016/
0196-6774(87)90018-6.

Steven A. Cook. The Complexity of Theorem-Proving Procedures. In STOC
’71, Proceedings of the Third Annual ACM Symposium on Theory of
Computing, pages 151–158. ACM, 1971. doi: 10.1145/800157.805047.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer New
York, 1997. doi: 10.1007/978-1-4612-0515-9.

Rod G. Downey and Michael R. Fellows. Fixed-Parameter Tractability and
Completeness I: Basic Results. SIAM Journal on Computing, 24(4):
873–921, 1995a. doi: 10.1137/S0097539792228228.

Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and
completeness II: On completeness for W[1]. Theoretical Computer Science,
141:109–131, 1995b. doi: 10.1016/0304-3975(94)00097-3.

Rodney G. Downey and Michael R. Fellows. Parameterized Computational
Feasibility. In Peter Clote and Jeffrey B. Remmel, editors, Feasible Math-
ematics II, 13, page 219–244. Birkhäuser Boston, 1995c. doi: 10.1007/
978-1-4612-2566-9_7.

Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace Versions of the
Theorems of Bodlaender and Courcelle. In Proceedings of the 51st Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2010),
pages 143–152. IEEE, 2010. doi: 10.1109/FOCS.2010.21.

Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the Space and
Circuit Complexity of Parameterized Problems. In Dimitrios M. Thilikos
and Gerhard J. Woeginger, editors, Parameterized and Exact Compu-
tation – 7th International Symposium, IPEC 2012, Ljubljana, Slove-
nia, September 2012, Proceedings, volume 7535 of Lecture Notes in
Computer Science, pages 206–217. Springer Berlin Heidelberg, 2012. doi:
10.1007/978-3-642-33293-7_20.

Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and
Circuit Complexity of Parameterized Problems: Classes and Completeness.
Algorithmica, 71:661–701, 2015. doi: 10.1007/s00453-014-9944-y.

115

Jörg Flum and Martin Grohe. Describing parameterized complexity classes.
Information and Computation, 187(2):291–319, 2003. doi: 10.1016/
S0890-5401(03)00161-5.

Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer-
Verlag Berlin Heidelberg New York, 2006. doi: 10.1007/3-540-29953-X.

Merrick Furst, James B. Saxe, and Michael Sipser. Parity, Circuits, and
the Polynomial-Time Hierarchy. Mathematical Systems Theory, 17:13–27,
1984. doi: 10.1007/BF01744431.

Michael Gardner. The Fantastic Combinations of John Conways New Solitaire
Games. Scientific American, 223:120–123, 1970.

Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

S. Guillemot. Parameterized complexity and approximability of the Longest
Compatible Sequence problem. Discrete Optimization, 8(1):50–60, 2011.
doi: 10.1016/j.disopt.2010.08.003.

Juris Hartmanis and Richard E. Stearns. On the Computational Complexity
of Algorithms. Transactions of the American Mathematical Society, 117:
285–306, 1965.

Neil Immerman. Languages that Capture Complexity Classes. SIAM Journal
on Computing, 16(4):760–778, 1987. doi: 10.1137/0216051.

Neil Immerman. Nondeterministic Space is Closed under Complementation.
SIAM Journal on Computing, 17(5):935–938, 1988. doi: 10.1137/0217058.

Neil Immerman. Descriptive Complexity. Graduate Text in Computer Sci-
ence. Springer New York, 1999. doi: 10.1007/978-1-4612-0539-5.

Neil D. Jones. Space-Bounded Reducibility among Combinatorial Problems.
Journal of Computer and System Sciences, 11:68–85, 1975. doi: 10.1016/
S0022-0000(75)80050-X.

Neil D. Jones and William T. Laaser. Complete problems for deterministic
polynomial time. Theoretical Computer Science, 3:105–117, 1976. doi:
10.1016/0304-3975(76)90068-2.

Neil D. Jones, Edmund Lien, and William T. Laaser. New Problems Complete
for Nondeterministic Log Space. Mathematical Systems Theory, 10:1–17,
1976. doi: 10.1007/BF01683259.

116

Richard M. Karp. Reducibility among Combinatorial Problems. In Raymond E.
Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of
Computer Computations, The IBM Research Symposia Series, page 85–103.
Springer US, 1972. doi: 10.1007/978-1-4684-2001-2_9.

David Maier. The Complexity of Some Problems on Subsequences and Super-
sequences. Journal of the ACM, 25(2):322–336, 1978. doi: 10.1145/322063.
322075.

Ilan Newman, Prabhakar Ragde, and Avi Wigderson. Perfect Hashing, Graph
Entropy, and Circuit Complexity. In Proceedings of the 5th Structure in
Complexity Theory Conference, pages 91–99. IEEE, 1990. doi: 10.1109/
SCT.1990.113958.

Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Habilitation
thesis, Universität Tübingen, 2002.

C. H. Papadimitriou and M. Yannakakis. The Complexity of Facets (and Some
Facets of Complexity). Journal of Computer and System Sciences, 28:
244–259, 1984. doi: 10.1016/0022-0000(84)90068-0.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet
shorest common supersequence and longest common subsequence problems.
Journal of Computer and System Sciences, 67:757–771, 2003. doi: 10.
1016/S0022-0000(03)00078-3.

M. O. Rabin and D. Scott. Finite Automata and Their Decision Problems.
IBM Journal of Research and Development, 3:114–125, 1959. doi: 10.
1147/rd.32.0114.

Omer Reingold. Undirected Connectivity in Log-Space. Journal of the ACM,
55(17):1–24, 2008. doi: 10.1145/1391289.1391291.

R. E. Stearns, J. Hartmanis, and P. M. Lewis II. Hierarchies of Memory Lim-
ited Computations. In Proceedings of the Sixth Annual Symposium on
Switching Circuit Theory and Logical Design, pages 179–190. IEEE Com-
puter Society, 1965. doi: 10.1109/FOCS.1965.11.

Christoph Stockhusen and Till Tantau. Completeness Results for Param-
eterized Space Classes. In Gregory Gutin and Stefan Szeider, editors,

117

Parameterized and Exact Computation – 8th International Sympo-
sium, IPEC 2013, Sophia Antipolis, France, September 4–6, 2013,
Revised Selected Papers, volume 8246 of Lecture Notes in Computer
Science, pages 335–347. Springer International Publishing, 2013. doi:
10.1007/978-3-319-03898-8_28.

Till Tantau. Logspace Optimisation Problems and Their Approximability
Properties. In Maciej Liśkiewicz and Rüdiger Reischuk, editors, Funda-
mentals of Computation Theory, Proceedings of the 15th International
Symposium, FCT 2005, Lübeck, Germany, August 17-20, 2005, pages
103–114. Springer Berlin Heidelberg, 2005. doi: 10.1007/11537311_10.

Heribert Vollmer. Introduction to Circuit Complexity. Texts in Theoretical
Computer Science, An EATCS Series. Springer-Verlag Berlin Heidelberg,
1999. doi: 10.1007/978-3-662-03927-4.

Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002.

118

	Introduction
	My Thesis
	Results
	Organisation of this Thesis

	Parameterized Space and Circuits
	Parameterized Problems
	Para-Classes and X-Classes
	Parameterized Reductions
	Review of the Weft-Hierarchy

	Bounded Nondeterminism
	Classes and Structural Properties
	Natural Problems for paraW-Classes
	Natural Problems for para-Classes

	Simultaneous Time-Space Classes
	Classes and Structural Properties
	Natural Problems for Time-Space Classes

	Conclusion
	Summary
	Parameterized Space and Circuits
	Bounded Nondeterminism
	Simultaneous Time-Space Classes

	Outlook

