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Lübeck 2016



Jens Hocke
Institute for Neuro- and Bioinformatics

Universität zu Lübeck
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Zusammenfassung

Es werden immer größere Datenmengen angesammelt. In vielen Anwendun-
gen sind diese Datenmengen so groß geworden, dass eine automatische Analy-
se nötig ist. Unser Ziel hier ist die Verbesserung von Klassifikationsraten durch
eine Änderung der Repräsentation der Daten. Es werden neue Methoden zur
linearen Transformation der Daten ebenso wie neue Architekturen zum Lernen
invarianter Repräsentationen beschrieben. Für die invarianten Repräsentationen
werden auch Zusammenhänge zwischen einer Theorie zur Invarianz und exis-
tierenden Methoden gezeigt. Zusätzlich haben wir ein Modell für die
Repräsentationen eines sehr frühen Teils des menschlichen visuellen Systems
entwickelt, um ein Wahrnehmungsphänomen zu reproduzieren.

Zunächst betrachten wir den k-NN Klassifikator, welcher wegen seiner Flexi-
bilität und Einfachheit beliebt wurde. Ein Nachteil des Standard-k-NNs ist das
festgelegte Distanzmaß. Dieses macht ihn abhängig von der initialen Skalierung
der Daten. Um dieses Problem zu beheben, lernen wir lineare Transformatio-
nen, um die Daten vorzuverarbeiten. Eine Methode, die wir einführen, skaliert
die Dimensionen der Daten entsprechend ihrer Relevanz, wobei auch irrelevan-
te Dimensionen gefunden werden. Die andere Methode lernt eine vollständige
lineare Transformation, welche es erlaubt weitere statistische Eigenschaften der
Daten zu berücksichtigen. Beide Methoden werden auf künstlichen Daten getes-
tet und dann auf echten Daten untersucht, wo sie gut im Vergleich zu anderen
Methoden abschneiden. Im Gegensatz zu den anderen Methoden sind sie un-
abhängig von der initialen Skalierung der Dimensionen.

Danach betrachten wir Transformationen von Objekten in Bildern und ver-
suchen Repräsentationen zu lernen, die invariant zu diesen Transformationen
sind. Wir bauen bei unserer Arbeit auf Tomaso Poggios i-Theorie auf, die ei-
ne mögliche Erklärung gibt, wie Invarianz im menschlichen visuellen System
entsteht. Wir zeigen Verbindungen zwischen dieser Theorie und bestehenden
Methoden zum Lernen invarianter Repräsentationen auf. Dann führen wir eine
neue Lernmethode für Repräsentationen ein, dessen Architektur direkt aus der
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Zusammenfassung

i-Theorie abgeleitet wurde. Des Weiteren passen wir ein “Convolutional Net-
work” an, indem sich langsam ändernde Ausgaben für Bildsequenzen
begünstigt werden, um invariante Repräsentationen zu lernen. In Experimen-
ten testen wir die Invarianzeigenschaften dieser Methoden.

Außer diesen Untersuchungen zum Lernen von Repräsentationen wird auch
ein neues Modell für einen frühen Teil des menschlichen visuellen Systems be-
schrieben. Es modelliert die visuelle Verarbeitung im Auge und ermöglicht die
Rekonstruktion eines Bildes aus dem Ausgabesignal unter Zuhilfenahme von
Methoden des Compressed Sensing. Bei der Rekonstruktion entstehen Bildfeh-
ler ähnlich dem Crowding, einem Defizit visueller Wahrnehmung. Diese Bildar-
tefakte untersuchen wir mit Bildern von Buchstaben, wie es auch oft in psycho-
logischen Wahrnehmungsexperimenten gemacht wird.
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Abstract

An ever increasing amount of data is collected. In many domains it has become
so large that an automatic analysis is mandatory. We focus on improving clas-
sification results by changing the representation of the input data. New linear
representation learning methods as well as new architectures for learning invari-
ant representations are described. For the invariant representations connections
between a theory of invariance and existing methods for learning invariant rep-
resentations are drawn. Additionally, we developed a model for the representa-
tions in the early human visual system to reproduce a cognitive phenomenon.

First, we consider the k-NN classifier, which has become popular due to its
flexibility and simplicity. A drawback of the standard k-NN is a fixed distance
measure. This makes it dependent on the initial scaling of the data. To allevi-
ate this drawback, we learn linear transformations to preprocess the data. One
method we introduce rescales the data dimensions according to their relevance
and also finds the irrelevant dimensions in this process. The other method learns
a full linear transformation, which allows this method to take more statistical
regularities of the data into account. Both methods are inspected on artificial
data and then evaluated on real-world data, where they compare well with com-
peting methods. In contrast to other methods they are independent from the
initial scaling of the data dimensions.

Second, we study transformation of objects in images and try to find a repres-
entations invariant to these transformations. We base our work on Tomaso Pog-
gio’s i-Theory, which gives a possible explanation how invariance emerges in the
human visual system. We explain connections between this theory and existing
methods for learning invariant representations. Then we introduce a new rep-
resentation learning method with a network architecture directly derived from
the i-Theory. Furthermore, we adapt a convolutional network to learn an in-
variant representation by encouraging slowly changing outputs for movie data.
Experimentally, both methods are tested for their invariance properties.

Besides these investigations into representation learning also a new model for
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Abstract

the representations in the early human visual system is presented. It models
visual processing in the eye and allows to reconstruct an image from the out-
put signal using methods from the compressed sensing framework. From this
strategy artifacts similar to crowding, i.e., a deficit of visual perception, arise.
These effects are analyzed using images of letters, as it is often done in psycho-
logical cognition experiments.
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1. Introduction

Everything changes and nothing
stands still.

Heraclitus

Data is collected almost everywhere: from scientific measurements of the ra-
diation from distant galaxies, over commercial recording of online shop usage
for recommendation systems, to personal tracking of the footsteps made. While
large amounts of data are collected and can be stored, they are too large for in-
terpretation by humans. Therefore, computer based approaches are developed.
Interpretation may involve assigning labels to data points, finding special data
points, or finding trends in the data.

Depending on the data, these tasks can be very challenging. Often, the relev-
ant labels and properties can not be measured directly. Usually, they are inferred
indirectly from sets of values that can be measured. However, these values will
only partially reflect the labels and properties of interest. Most likely many ir-
relevant properties are captured by these values. For example in a medical dia-
gnosis health can not be measured directly, it is inferred from several variables.
There may be measurements on heart rate, blood pressure, and concentrations
of antibodies in the blood available. But these measurements vary from person
to person and can also be influenced by the amount of recent physical activity. It
is likely in many scenarios, not only in this medical, that one of the underlying
variables (physical activity) changes over time and influences many measure-
ments. Therefore, it often seems like every measurement changes over time.

In the last decades considerable effort has been devoted to handle such data
and extract useful information. For assigning labels to data points, a process
called classification, methods like k-Nearest Neighbors [1], Support Vector Ma-
chines [2] and Deep Neural Networks [3] have been developed. They all use
training data, a set of data points with known labels, in order to label unknown
data. Each of these methods is performing well in various applications, but each
also has different disadvantages. k-Nearest Neighbors is simple and the results
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1. Introduction

are easy to interpret. However, the classification performance depends on the
initial scaling of the data dimensions. In contrast, Support Vector Machines and
Deep Neural Networks do not depend on the initial data scaling. Instead, it is
hard to analyze why a label was assigned to a data point1. A problem for all
classifiers is the size of the training data set. Particularly, if the data dimension
is large, a complex classifier is needed. But, to achieve good error rates on un-
known data, the number of training samples needed grows exponentially with
the complexity of the classifier, which is known as the curse of dimensionality.

Representations can help to bypass these problems. Often, they are applied
to reduce the data dimension by filtering out the irrelevant information. This
allows using classifiers with lower complexity. In addition to the application of
representations for improving classifiers, it is also possible to process the data
to better fit the human cognitive capabilities, thus allowing interpretation by
humans. Early, but still wide spread are predefined representations such as
Fourier-Transformation, wavelets [4, 5], and SIFT-Features [6]. These repres-
entations work well for many tasks. To find a good representation for arbit-
rary inputs without hand crafting, representations can also be learned. Popular
are statistical methods such as Principal Component Analysis [7], Independent
Component Analysis [8], and Sparse Coding [9] or Linear Discriminant Ana-
lysis [10].

In this thesis, I examine two specific applications of representation learning.
Using linear transformations for the representations, I adapt data in order to
eliminate the dependence of classifiers like k-Nearest Neighbors on the initial
scaling. Thus, the range of possible applications for these classifiers is extended.
Here, I contribute two new and robust representation learning methods [11–14].

Second, representation learning for obtaining invariance to image transforma-
tions is investigated. Transformations of objects cause highly entangled bound-
aries between their representations in the pixel space. This is a problem that can
be approached using a complex classifier and a huge amount of training data.
To handle all transformations that can naturally occur in the image domain the
amount of labeled training data needed seems infeasible. I show the close rela-
tions between existing methods and the i-Theory [15], a theoretical framework
for invariant representations. Then based on recent theoretical findings I pro-
pose a new network architecture in order to learn invariant representations [16].
Furthermore, I investigate a network architecture designed to achieve invari-

1Assuming the SVM uses a kernel.
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ance to multiple transformations simultaneously and that can be trained using
unlabeled movie data [17].

Besides this research on representation learning, I studied a phenomenon oc-
curring in human visual perception. Visual object recognition by the human
brain in most tasks performs much more reliable than any machine learning
method. According to a well accepted hypothesis visual processing in the brain
uses several layers of representation, where the input signal is transformed from
layer to layer to more abstract representations. Since this approach works so
well, it would be useful to understand how these representations are computed.
But it is hard to observe this directly. Fortunately, there are visual phenomena
showing deficits in the visual system. These deficits may indirectly reveal mech-
anisms of the visual system or at least restrict the set of possible models.

One visual phenomenon is crowding: an object that can be recognized in
solitude becomes unrecognizable in the presence of other objects surrounding
it. I propose a new model of crowding using concepts from compressed sens-
ing [18]. It reproduces important properties of crowding using image represent-
ations as prior.

In short, the contributions of this thesis are four different representation learn-
ing methods including their evaluation, new insights into the connections
between invariance learning methods, and a new model for visual crowding.

After this introduction representation learning and related concepts are in-
troduced in more detail in Chapter 2. Then the first main part on linear rep-
resentation learning follows. It provides an overview on the topic (Chapter 3)
and presents my new methods in the chapters 4 and 5. The second part is on
transformation invariant representation learning. Important methods and the-
oretical concepts are summarized and connections to the i-Theory are presented
(Chapter 6). Based on theoretical findings a new architecture is introduced in
Chapter 7, while Chapter 8 shows my slowness based architecture. The last part
is on crowding. Important concepts and models are described in Chapter 9. Fol-
lowed by the new crowding model in Chapter 10. While each chapter presenting
experimental findings contains a discussion, the final chapter provides a broader
discussion of all results.
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2. Basics

In the introduction we have seen that more and more data is collected in a di-
verse set of domains. Computational approaches are required to interpret the
data, and classifiers in combination with suitable data representations are one
essential solution. Here, we introduce terminology and algorithms essential for
this thesis.

First, we have a closer look at classification methods, their training process,
and under which general conditions they work well and, respectively, which
conditions cause problems. Then representations in their different facets are in-
troduced, and we describe how they are often combined with classifiers in order
to improve the classification performance. Finally, some basic tools for creating
and training representations are shown. This is by no means a comprehensive
introduction to the methods. For further insights we refer the reader to the text
books [19, 20].

2.1. Classification

Classification refers to the process of assigning class labels to data points, for
example a data point may contain several medical measurements and the labels
may be different illnesses. In general these labels are used to indicate that data
points with the same label belong to the same class. Labels can algorithmically
be assigned using classifiers. Mathematically, a classifier is a set of input-output
functions C. Each of these functions, identified by P , provides a mapping

y = CP (x) (2.1)

from some data point x to the label y. Often integers are used as labels. To get
good results for the classification, a classifier providing a suitable set of input-
output functions as well as a good input-output function needs to be selected.
Suppose the classifier is predetermined, P is then usually estimated based on a
set of known data point label tuples (yi,xi), i = 1, 2, . . . , I , which are referred to
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as training data. This estimation process is named supervised training. Ideally,
now the classifier can correctly assign labels to data points it has not seen pre-
viously. This, however, is not always true. To measure how well the classifier
works, it is tested on data points which were not presented in the training phase.
These tuples are referred to as test data. The ratio between correctly classified
data points and the total number of datapoints

E =
1

I

∑
i

L(yi, CP (xi)) (2.2)

is called error rate, a wide spread measure for the classification quality. Here,
L(yi, c(xi)) is a loss function, which returns one if xi was misclassified and zero
else. If the error rates on the training data and the test data are similar, the
classifier is said to generalize well.

There are two main factors which influence the error rate and generalization.
First, the classifier needs suitable input-output functions to separate the classes,
and, second, the training data needs to be a sufficiently large, representative
sample from the data distribution. Some classifiers are versatile, i.e. they can be
adapted to many different class boundaries. These classifiers, which are called
complex, will have low error rates on many training sets. However, they need
a lot of training data to generalize well, whereas classifiers with low complex-
ity require much less training samples for good generalization. This should be
considered when selecting a classifier. For a mathematically precise account of
these properties consider [2].

Here, we briefly introduce two popular classifiers, the linear classifier and
k-nearest neighbors [1]. Different instances of linear classifiers such as per-
ceptrons [21] and support vector machines (SVMs) [2] are available. They mainly
differ in the training algorithm. However, for the classification they all separate
two classes by a hyperplane (Figure 2.1). This is achieved by projecting all data
points x onto a weight vector w perpendicular to the hyperplane. Then a bias is
added and the threshold function σ(·) is applied in order to obtain the label y:

y = σ(wx + θ). (2.3)

The elements of the weight vector w and the bias θ are the parameters P =

{w, θ} to be learned. To obtain integer class labels the step function σ(·) is ap-
plied. A drawback of the linear classifier is that it can not separate classes with
non-linear class boundaries well, so for many data sets they do not provide suit-
able input-output functions. Also, they are not designed to handle more then
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two classes. Nevertheless, it is possible to adapt linear classifiers to multi-class
problems, but this is out of our scope. To allow for non-linear class boundaries so
called kernel methods have been developed. They transfer the linear separation
of the classes into a non-linearly transformed space and increase the complexity
of the classifier.

For non-linear classification boundaries and in multi-class settings the
k-nearest neighbors (k-NN) algorithm is more intuitive. It is a particularly simple
algorithm that directly stores the known data point label tuples as parameters.
The computations are moved to the classification step. For classifying a data
point the k nearest training data points are computed. The label occurring most
frequently in this neighborhood is assigned to that data point (Figure 2.1).

Since in the training phase tuples are only stored without further processing,
it is straight forward to adapt the classifier when new training tuples become
available. These tuples are then simply stored as well. Additionally, inspection
and analysis of the classification results is possible by looking at the neighbor-
hood. These properties made k-NN a popular choice in many domains. The
main problem of this method is that it needs an appropriate distance measure.
Often, the Euclidean distance is used, which is not always optimal, since the
Euclidean distance requires the data dimensions to be scaled according to their
relevance for classification.

2.2. Representations

Representations can help overcome some of the problems that arise in classific-
ation. Here, representations are introduced in the narrow scope of this thesis,
for a broader discussion the reviews by van der Maaten et al. and Bengio et
al. [22, 23] are recommended. All data we collect are representations of under-
lying information. However, different representations are suitable for different
tasks. Therefore, the representation of the data needs to be adapted. For clas-
sification a good data representation will remove irrelevant information and re-
duce the dimensionality, while preserving discriminative information in order
to improve generalization. Whereas for visualization, the main focus is on re-
ducing the dimensionality to two or three. Retaining the information is only a
secondary objective. Compressing data is another wide spread application of
representations with the main goal of reducing the redundancies in the data.

Formally, a representation maps a data point xoriginal ∈ RD1 with D1 dimen-
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?

?

Linear Classifier k-NN

Figure 2.1.: The linear classifier on the left separates two classes (Data points are
filled in cyan and red, respectively.) by a line. The label for a new data point
(Point with a question mark.) is assigned depending on which side of the line
the data point lies. So in this case cyan. In contrast, the k-NN algorithm selects
the label based on the k nearest neighbors. If for example k was one, the cyan
class label would be assigned, while for k = 3 it would be the red class label.

sions from data space to the representation space via a function FP

xnew = FP (xoriginal) (2.4)

where xnew ∈ RD2 is the data point in the new representation with D2 dimen-
sions, P is a set of parameters for the mapping function. This concept has been
introduced in multiple domains under different names [24]. In harmonic ana-
lysis and signal processing it is known as transformation. In learning theory it
is called a feature map, while in information theory it is called encoding.

Here, the focus is in the application to classification settings. As mentioned in
the previous section, a classifier may depend on the scaling of the data dimen-
sions. This is of course a matter of representation. Another problem is to obtain
good error rates for high dimensional data with non-linear class boundaries and
a limited set of labeled data points available (Figure 2.2). A complex classifier
is needed to separate the classes. However, such a classifier requires many data
points to generalize well. If it is possible to reduce the dimensionality and sim-
plify the class boundaries by a change of the representation, a classifier of low
complexity may be sufficient and, thereby, also good generalization using only a
few training samples may be achieved. Therefore, often the data representation
is changed prior to training and classification.
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change of representation

Figure 2.2.: Illustration of a representation change for the data points from two
classes (Data points are filled in cyan and red, respectively.). In many datasets
the representations for different classes are entangled as visualized on the left.
By changing the representation we try to disentangle these classes as shown on
the right.

Typically the mapping function FP and the parameters P have been selected
manually based on experience. Examples for such mappings in the computer
vision domain are histograms, edges, and corners. In many applications a fre-
quency representation obtained by the Fourier transformation or Wavelets has
been vital. This manual approach works well for many tasks, but experts and
time are required. Furthermore, in applications such as visual object recognition
in unrestricted environments the results are not satisfactory.

To overcome the limitations of handcrafted mapping functions, learning meth-
ods can be applied. They allow an automatic adaption to data. Classical meth-
ods are principal component analysis (PCA) [7], independent component ana-
lysis [8], sparse coding [9, 25], and linear discriminant analysis [10]. These meth-
ods exploit statistical relationships in the data to improve the representation. For
example the PCA assumes correlations in the data dimensions. The directions
of maximum variance contain most of the information about the data. There-
fore, after aligning the data dimensions with these directions, the low variance
dimensions can be discarded. A core idea of this method is that the original
representation is caused by underlying factors, which are entangled [26]. Of
course, the PCA uses a very simple statistical model. If the underlying factors
are entangled in a complicated manner, more sophisticated models are needed
to completely untangle the factors. It would be optimal if that was achieved.
Yet, significant improvements of error rates can be achieved without completely
untangling the factors, leaving parts of this task to the classifier.

9
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2.3. Learning Representations

Throughout large parts of this thesis new representation learning methods are
developed. In this section some basic concepts for developing these methods
are introduced. There are two main problems to be solved. A mapping function
FP is needed and the parameters P need to be found.

The mapping function depends on the goals pursued by the representation.
A rescaling of the data dimensions can be achieved via a linear transformation
using a diagonal matrix, where the matrix elements on the diagonal are the para-
meters to be learned. For disentangling factors non-linear transformations may
be required. However, there is no rule how to obtain these transformations. It is
subject to scientific research to come up with good mapping functions for vari-
ous tasks.

After a mapping function FP has been selected, we need to measure the qual-
ity of the outputs xnew, in order to optimize P . This requires to establish a goal,
and a measure to find out to which degree this goal has been achieved. For ex-
ample, one might want to halve the dimensionality of the data and loose as little
information as possible. Then a possible measure for the information loss is the
mean squared reconstruction error

E(P,X) =
1

I

∑
i

||xoriginal
i −F−1

P (FP (x
original
i ))||2 (2.5)

averaged over a data set X = [x
original
1 ,x

original
2 , . . . ,x

original
I ]. The function

E(P,X) is called energy function, since it is a positive scalar valued function
which indicates good models by small values. Note, it is quite common to use
the squared reconstruction error to obtain an energy function. Besides this di-
mensionality reduction objective from the example, many other objectives, such
as independence, sparsity and slowness have been proposed.

Assuming an energy function is available to measure the quality of the out-
puts from the mapping functionFP , the parameters P can be found by minimiz-
ing the energy. Optimal solutions can, however, not be guaranteed for arbitrary
energy functions. Local optima make the optimization difficult. This should be
considered when designing an energy function. Another pitfall are trivial solu-
tions, which can be avoided by constraints. For the optimization then a subset
of the available data, the training data is used. In case also the labels are needed,
the optimization is referred to as supervised training, just like in the case of clas-
sification. Commonly, no labels are needed, which often allows a much larger

10



2.3. Learning Representations

training set to be used by these unsupervised training methods, since the ex-
pensive labeling process is not required.

The two optimization methods used in this thesis are linear programming and
gradient descent, which are presented briefly in the following. Linear program-
ming can be used if the energy term and the constraints used are linear. It is a
well established approach which has been researched for a long time. As a result
there are several fast solvers that can guarantee to find the optimal solution. To
use such a solver, the term needs to be reformulated into a standard form:

min
p

cTp s.t. Ap ≤ b, p ≥ 0, (2.6)

where p ∈ RD is a vector of parameters to be optimized. The optimization term
with N constraints is established via c ∈ RD, b ∈ RN , and A ∈ RN×D. For a
more comprehensive introduction to linear programming the reader is referred
to [27].

For many problems it is hard to find a good linear energy term. Often it is
easier to model problems using non-linear energy terms. If a gradient ∂E(P,X)

∂P

for the energy E(P,X) is available, it can be used for optimization by gradient
descent. The main idea is to follow the gradient starting from a randomly ini-
tialized P0 iteratively to a minimum. The steps are given by the gradient and
scaled with a learning rate. Thus, the parameters Pt will change according to:

Pt+1 = Pt + η
∂E(P,D)

∂P

∣∣∣∣
Pt

, (2.7)

where Pt are the parameters at iteration step t. This is a very simple approach
to optimization that finds good solutions for many energy terms. For large data
sets it can be time consuming to compute the entire gradient. Often it is a lot
faster to approximate the gradient using only a single data point or a subset of
the data points, often referred to as mini-batch. In every iteration then a different
point or mini-batch is selected. This approach is called stochastic gradient des-
cent (SGD). Unfortunately, selecting good parameters is crucial for SGD. A good
practical guide for the parameter selection was published by Bottou [28]. In the
experiments of my thesis I avoided manually selecting parameters such as the
learning rate using variational-SGD [29] or the sum-of-functions optimizer [30].

One problem often encountered in SGD optimization is the poor performance
on highly correlated data with a large variation in variance. Therefore, often a
preprocessing step is applied prior to representation learning. By whitening the
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data, gradient steps tend to go to the optimum more directly. The zero com-
ponent analysis (ZCA) [31, 32] is a particularly popular method for whitening
in deep convolutional network domain. Similar to PCA, the data is projected
onto the eigenvectors [v1,v2, . . . ,vN ] = V , which together with the eigenvalues
diag([λ1, λ2, . . . , λN ]) = Λ are obtained from the covariance matrix C = V ΛV >

of the data set. By diag(λ) a diagonal matrix Λ with the elements of λ placed on
the diagonal is created. The projected data is rescaled and projected back to the
original domain. These three steps can be expressed using the matrix

WZCA = V Λ−1/2V >, (2.8)

where Λ−1/2 is a diagonal matrix with [1/
√
λ1, 1/

√
λ2, . . . , 1/

√
λN ] on the diag-

onal. The matrix WZCA is then used for a linear transformation

xwhitened =W>ZCAx
original (2.9)

to obtain the whitened data point xwhitened from xoriginal. In Figure 2.3 the trans-
formation vectors [w1,w2, . . . ,wN ] = WZCA obtained from a set of natural im-
ages are visualized. Clearly, they are local and very similar to each other. Due to
this similarity it is possible to use one of the central elements as filter for whiten-
ing. Note, this preprocessing step is a form of representation change which is
learned.

Figure 2.3.: ZCA components obtained from a set of 8 × 8 pixel natural images.
The component vectors were rearranged to form 8 by 8 pixel images.

12



Part I.

Linear Representation Learning

13





3. Introduction to Linear
Representation Learning

Real world data can be challenging to machine learning methods. But, by change
of the representation with a suitable linear transformation, the task can be sim-
plified. Consider the k-nearest neighbor classifier (k-NN) [1]. It can easily adapt
to various non-linear decision boundaries without a prior on underlying data
distributions. No training is required and, therefore, additional labeled data can
directly be incorporated to improve the error rates. These properties make it
popular in various applications. However, in the standard form it uses a Euc-
lidean metric, which depends on the scaling of the data dimensions. Hence, a
unsuitable scaling will cause bad a performance. This problem can be handled
by a linear transformation significantly improving the error rates [33]. The same
is true for other machine learning methods such as Learning Vector Quantiza-
tion (LVQ) [34] and k-Means [35], which depend on a fixed measure for estim-
ating distances. Note, while often the data has a non-linear class boundary, it is
not necessary to disentangle and linearize this boundary by a non-linear trans-
formation. The machine learning methods mentioned above are well suited to
cope with non-linear class boundaries.

In many applications the data is collected from different domains. For ex-
ample medical data may contain substance concentrations, blood pressure, and
heart rate. The relative scaling of such data is arbitrary, since there is no gen-
erally adequate scaling. However, the performance of many machine learning
methods, which measure distances between data points, depend on the scaling
of the input data and an arbitrary scaling may be disadvantageous. To adjust
this, each data dimension xµ, µ = 1, . . . , D can be rescaled by a weighting factor
wµ. This process called feature weighting will change the distance

d(x,x′) = ||x− x′||w =

√√√√ D∑
µ=1

w2
µ(xµ − x′µ)2 =

√√√√ D∑
µ=1

(wµxµ − wµx′µ)2 (3.1)

between pairs of points x and x′ in the new representation. This distance metric
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3. Introduction to Linear Representation Learning

is called weighted euclidean distance. Besides improving the distances between
data, also irrelevant dimensions can be removed by zero weights. This is benefi-
cial for machine learning methods due to an improved signal to noise ratio and
a decrease in complexity of the learning methods.

In addition to an arbitrary scaling there are also often correlations and thus
redundancies in the data. By a full linear transformation Lx of the data point
x by a transformation matrix L, the dimensionality of the output can be further
reduced compared to feature weighting. Therefore, also the signal to noise ratio
will increase, while the complexity of follow up methods can be decreased. Since
many of the learning methods that benefit from a linearly transformed repres-
entation are based on distances between data points, the metric for the distances
is changed instead of the representation. This adaption is referred to as metric
learning. Often a Mahalanobis distance

d(x,x′) = ||x− x′||W =
√

(x− x′)TW (x− x′) (3.2)

with the positive semidefinite matrixW is used. This distance, however, is equi-
valent to a linear transformation of the data:

||x− x′||W =
√

(x− x′)TW (x− x′) (3.3)

=
√

(x− x′)TLTL(x− x′) (3.4)

=
√

(Lx− Lx′)T (Lx− Lx′) = ||Lx− Lx′||2. (3.5)

Therefore, metric learning using a Mahalanobis distance can be seen as linear
representation learning. Furthermore, it is closely related to feature weighting,
since feature weighting can be realized by restricting the transformation matrix
L to a diagonal matrix.

For all these methods parameters need to be estimated. The main approach
to this are so called filter methods. These use a heuristic to improve the rep-
resentation. For example for classification it is beneficial if equally labeled data
(intraclass) is clustered closely, while differently labeled data (interclass) is far
apart.

This chapter reviews important methods for feature weighting and metric
learning. In the following two chapters one method for feature weighting and
one method for metric learning are introduced. Both with a focus on improving
the error rates of k-NN, a classifier still widely applied due to its simplicity and
ability to handle non-linear class borders.
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Data

Unit Circle

Euclidean Distance Weighted Euclidean 
Distance

Mahalanobis Distance

Figure 3.1.: Visualization of the effect of different metrics. The top row shows
data in its original representation on the left and two transformed versions next
to it. In the middle column only the axes were rescaled. On the right a full linear
transformation was applied. These changes of the distances can equivalently
be achieved by the weighted Euclidean distance for the middle column and the
Mahalanobis distance for the right column. Note, how the ratio of intraclass to
interclass distances is improved. The bottom column illustrates the adaption of
metrics using unit circles.

3.1. Feature Weighting

Despite useful applications for feature weighting, there are only few methods
available. The most simple approach to feature weighting is to rescale every
dimension through normalization of the data variance along every dimension.
However, this does not take class label information into account, and, therefore,
may even decrease the classification performance. The Relief algorithm by Kira
and Rendell [36] aims to account for this problem. Two extensions to the con-
cepts from Relief are Simba [37] and I-Relief [38]. Originally, all these methods
were developed to select the most important dimensions for classification by
learning a weight vector that indicates the relevance of each dimension. Yet,
this weight vector has proven to work well for feature weighting. To obtain ad-
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3. Introduction to Linear Representation Learning

ditional methods one could restrict the metric learning methods from the next
section to rescaling of the dimensions. Below, the well established methods Re-
lief and Simba are described.

3.1.1. Relief

Relief rescales the dimensions of input data assuming that it is beneficial if
equally labeled data is close together and differently labeled data is far apart.
The rescaling is done based on local measurements. For every point x the ratio
between the closest equally labeled datapoint nh(x), called nearest hit, and the
closest differently labeled data point nm(x), called nearest miss, is changed. This
is done iteratively. After the scaling factorswµ, µ = 1, . . . , D for every dimension
µ are initialized with zero, a random datapoint x is selected. The nearest hit and
the nearest miss are determined in the original space. Then the scaling factors
are updated by

wµ,t+1 =wµ,t + (xµ − nm(x)µ)2 − (xµ − nh(x)µ)2, (3.6)

for every iteration step t. Note, the update rule is a heuristic that is not derived
from a measure that describes the quality of the representation obtained by the
weight vectors. Nevertheless, convergence seems to be no problem. Problems
could be caused by the fixed nearest hits and misses, making Relief dependent
on the initial scaling of the data.

3.1.2. Simba

The main concept of Simba is very similar to Relief. Again the ratio between
nearest hit nh(x) and the nearest miss nm(x) are iteratively improved. Simba,
however, takes a more principled approach by introducing a cost function. This
allows for a gradient descent and, therefore, the representation is guaranteed to
improve. The cost function

E =
∑
i

θi (3.7)

uses a difference of weighted distances

θi =
1

2
(||xi − nm(x)i||w − ||xi − nh(x)i||w) (3.8)
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with

||z||w =

√∑
µ

w2
µz

2
µ. (3.9)

To find the D optimal weights wµ, µ = 1, 2, . . . , D an iterative approach is
chosen. First, the weights are initialized with wµ = 1 and then, for a random
data point x the nearest hit and the nearest miss are determined in the current
rescaled space. Then the gradient of the energy function is used to update the
weights wµ

wµ,t+1 =wµ,t +
1

2

(
(xµ − nm(x)µ)2

||x− nm(x))||w
− (xµ − nh(x)µ)2

||x− nh(x))||w

)
wµ. (3.10)

After the update the scaling factors are normalized by wµ/maxj w
2
j . These steps

starting from the selection of a random point x are repeated. In contrast to Relief,
the nearest hit and the nearest miss are redetermined in the rescaled space in
every iteration. However, this may cause multiple local optima.

3.2. Metric Learning

Linear representation learning by PCA is often applied for dimensionality re-
duction. As mentioned above this can easily be turned into a metric. The
main drawback, however, is that it does not take label information into ac-
count and, therefore, the resulting representation may loose discriminativity.
Here, a short review on popular linear metric learning methods, which op-
timize discriminativity, is given. These are Large Margin Nearest Neighbors
(LMNN) [39], Neighborhood Component Analysis (NCA) [33], and Mahalan-
obis Metric Learning for Clustering (MMC) by Xing et al. [35]. Besides these
methods, several non-linear and local metric learning methods have been pro-
posed, which are, however, not within the scope of this work. More detailed
reviews can be found in [40, 41].

3.2.1. Large Margin Nearest Neighbors

LMNN [39] is closely linked to the mechanics of the k-NN algorithm. A neigh-
borhood of the k closest equally labeled data points xj , j ∈ Ni is established
for every data point xi. The neighborhood points are identified by the set of
indices Ni. By adapting the metric LMNN tries to free this neighborhood from
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differently labeled data. Additionally, it tries to minimize the distance between
equally labeled data points. This goal can be formulated as a semidefinite pro-
gram

arg min
W

(1− α)
∑
i,j∈Ni

(xi − xj)
>W (xi − xj) + α

∑
i,j∈Ni,l

(1− hil)ξijl s.t. (3.11)

(1) (xi − xl)
>W (xi − xl)− (xi − xj)

>W (xi − xj) ≥ 1− ξijl (3.12)

(2) ξijl ≥ 0 (3.13)

(3) W � 0, (3.14)

and, therefore, an optimal solution can be found. Nevertheless, the authors have
adapted an optimizer specifically to this problem to obtain fast convergence. To
identify the data points indices i = 1, ...N , j = 1, .., k, and l = 1, ...N are used,
where N is the number of data points. The parameter α weights the terms for
minimizing within class distance and optimizing k-NN performance. In 3.11
a binary indicator function hil is used. It equals one if xi has the same label
as xl and zero else. Slack variables ξijl are needed for the problem to be always
solvable, since it can not be guaranteed that all neighborhoods can be freed from
the differently labeled data. The main drawback of LMNN is that it depends on
a good selection of the nearest neighbors by the Euclidean distance.

3.2.2. Neighborhood Component Analysis

Similar to LMNN, the NCA [33] tries to free an area around every data point
from differently labeled data. While LMNN uses discrete k-neighborhoods, the
NCA approach is stochastic and soft. It optimizes the leave one out classification
of k-NN. To avoid a discontinuous function as optimization criterion, k-NN is
replaced by a stochastic neighbor selection rule. For each point xi the neighbor
xj has an equal class label with probability

pij =
exp(−||Lxi − Lxj ||2)∑
i 6=k exp(−||Lxi − Lxk||2)

, pii = 0, (3.15)

where L is a transformation matrix. By adding the probabilities pij for all points
xj from the same class Ci as the point xi, the probability pi for correctly classify-
ing xi is computed. An objective function

E(L) =
∑
i

∑
j∈Ci

pij =
∑
i

pi (3.16)
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is then established by the sum of probabilities for all data points xi. The de-
rivative of this function is then used to adapt L by gradient descent. The main
drawback is that E(L) may have multiple local optima. Therefore, it will not
always find the optimal solution.

3.2.3. Mahalanobis Metric Learning for Clustering

An early metric learning method is MMC by Xing et al. [35]. Originally, it was
introduced in the context of clustering. But it can also be applied to domains
such as k-NN, since MMC is not specifically adapted to any machine learning
algorithm. It considers all pairs of data points in a global optimization. The
main idea is to minimize the sum of distances for all equally labeled data points
(xi,xj) ∈ S, while keeping the sum of the distances for differently labeled data
(xi,xj) ∈ D above a bound of one. This is reached via optimizing

arg min
W

∑
xi,xj∈S

(xi − xj)
>W (xi − xj) s.t. (3.17)

(1)
∑

xi,xj∈D

√
(xi − xj)>W (xi − xj) ≥ 1 (3.18)

(2) W � 0, (3.19)

where the second constraint enforces a positive semidefinite matrix W . To find
W , a gradient descent algorithm is combined with two projections to enforce the
constraints. This optimization is guaranteed to converge to the optimal solution.
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In the previous chapter feature weighting methods were presented. These meth-
ods all have in common that they use local neighbors for their optimization. If
the main goal is to optimize k-NN classification performance this is very intu-
itive, since k-NN is based on local neighborhoods. The neighbors are selected
either prior to the optimization process, which makes the resulting scaling de-
pendent on the initial scaling, or the neighbors are updated iteratively. The dis-
advantage of this iterative approach, as it is taken for example by Simba, is that
the optimization problem becomes non-convex, which might cause a decrease
in classification performance.

Here, I introduce a new feature weighting method for improved k-NN classi-
fication, which avoids these problems of local neighborhood dependent optim-
ization. It becomes independent of the initial scaling by global optimization, and
optimal solutions are guaranteed since the global criterion can be implemented
by linear programming. After introducing the basic method, it is extended by
soft constraints to handle noise and outliers in the training data more robustly.
Both methods are then evaluated on artificial and natural datasets. These meth-
ods and some of the experiments have been published in [11–13].

4.1. Maximum Distance Minimization

Our goal is to minimize the classification error of the k-NN algorithm by res-
caling the dimensions of the data. The dimensions are rescaled by a weighting
vector w, which we need to learn. In our approach we assume that equally
labeled data points should be close together and differently labeled data points
should be far apart for a good k-NN classification error. To achieve this we min-
imize the maximum distance between all pairs of data points that belong to the
same class. Additionally, the minimum distance of data points from different
classes is constrained to one. This constraint in combination with the minimiz-
ation criterion will improve the ratio of distances, while the constraint prevents
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the trivial solution w = 0. To avoid ambiguous solutions only positive weights
w ≥ 0 are allowed. Due to these main ideas, which are illustrated in Figure
4.1, we call our method Maximum Distance Minimization (MDM). Note, it is
possible to do the opposite and impose a maximum intraclass distance while
maximizing the minimum interclass distance (Minimum Distance Maximization
(MDM)). Both approaches are mathematically equivalent.

Given data points xi ∈ RD with class labels yi, i = 1, ..., N , we formally solve
the following constrained optimization problem:

||xi − xj ||2w ≥ 1 ∀i, j : yi 6= yj (4.1)

||xi − xj ||2w ≤ r ∀i, j : yi = yj (4.2)

min
w

r wµ ≥ 0 ∀µ. (4.3)

Here, r is the maximum intraclass distance. This optimizations problem can be
formulated as a linear program, with the number of constraints in this formu-
lation growing quadratically with the number of data points. Note, the con-
straints can always be fulfilled and, therefore, our optimization problem is al-
ways solvable despite having hard constraints. For our implementation we used
the MOSEK-solver1, one of the many fast solvers available.

Figure 4.1.: This figure shows two different settings. d1 denotes the shortest
interclass distance. This distance is fixed to one by equation (4.1). The largest
intraclass distance for class one (crosses) is d2 and for class two (circles) d3. The
larger distance of the two (d2) determines r in equation (4.2) and is minimized.

1http://www.mosek.com/
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Figure 4.2.: Illustration of the softness effect. d1 is the largest interclass distance.
There is no change in the influence of d1 compared to standard MDM. However,
there is a change for the intraclass distances d2 to d4. In a hard setting rwill equal
d4 and, therefore, the outlier will have a major effect on the final weight vector
w. The smaller C, the more intraclass tuples are allowed to have a distance
larger than r. All these tuples will influence w simultaneously and in that way
lower the influence of the outlier. Also the noise effect will be lower, if the final
w depends on several similar tuples like d2 and d3.

4.2. Soft Maximum Distance Minimization

Maximum Distance Minimization as introduced in the previous section takes
only the most distant data points into account. This hard constraint may make
MDM sensible to outliers and noisy data. Here, we extend MDM by introducing
slack variables ξi for every data point xi in order to implement soft constraints.
These soft constraints allow a few intraclass distances larger than r and, hence,
it reduces the influence of outliers and noise. In Figure 4.2 this soft approach is
illustrated. The new optimization problem with the slack variables ξi becomes

||xi − xj ||2w ≥ 1 ∀i, j : yi 6= yj (4.4)

||xi − xj ||2w ≤ r + ξi ∀i, j : yi = yj (4.5)

min
w

r + C
∑
i

ξi wµ ≥ 0 ∀µ, ξi ≥ 0 ∀i. (4.6)

ByC the use of the slack variables is regulated. Small values ofC will allow for a
large deviation from the hard constraints. Like the hard MDM version from the
previous section, Soft Maximization Distance Minimization can be implemented
using linear programming. However, the number of parameters to optimize
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Name Samples Dimensions Classes
Iris 150 4 3
Wine 178 13 3
Breast Cancer 683 10 2
Pima Diabetes 768 8 2
Parkinsons 195 22 2
Seeds 210 7 3
Breast Cancer 98 1213 3
DLBCL 180 661 3
Leukemia 248 985 6
Lung Cancer 197 1000 4

Table 4.1.: Description of the datasets. The top datasets are from the UCI repos-
itory, and the bottom ones are gene expression data.

grows linearly with the number of data points, and MDM is not parameter free
anymore, since C has to be chosen appropriately.

4.3. Experiments and Comparisons

To explore the basic properties of MDM we use artificial data sets. In the visual-
ization in Figure 4.3 the results are shown. The uncorrelated and well separated
data distributions allow for perfect discrimination using only one of the two di-
mensions. MDM assigns zero weight to the non-discriminative dimension. If the
distributions overlap, both dimensions are needed for good classification, which
is reflected in the MDM results. The correlated data requires metric learning for
proper handling. Hence, the small adaptions by MDM are reasonable. Note,
for both data sets with overlapping distributions, the dimensions are scaled up.
This is due to the interclass term promoting a distance of at least one for the
differently labeled points. Finally, the structured non-gaussian data is handled
nicely by removing the non-discriminative dimension.

Then MDM was evaluated on real world data using datasets from the UCI
repository [42] and gene expression datasets available from the Broad Institute
website2. Both are described in Table 4.1.

We compared MDM with results obtained with the standard Euclidean dis-

2http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi (Full dataset names: Breast-A,
DLBCL-B, St. Jude Leukemia, Lung Cancer)
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Figure 4.3.: Artificial 2D datasets are depicted in the original scaling on the left
and after application of MDM on the right.
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tance as well as obtained with the feature weighting algorithms Relief and Simba3.
As a reference and out of competition we also show the results obtained with
LMNN as a complete metric learning method. For the soft MDM, the soft-
ness parameter C was selected for each split of the data individually. From
the set {2−x|x ∈ {0, . . . , 10}}, the best C was chosen by 4-fold cross-validation
on the training data. For Relief and Simba we need to set the number of train-
ing epochs. Here we used one epoch, as this is default in the implementation
that we used. Longer training sometimes deteriorated the results. Due to the
non-convex optimization, five random starting points were chosen for Simba
for every training. For LMNN its parameter α was chosen to be 0.5. The authors
described this to be a good choice [43]. To evaluate the classification perform-
ance, we split the data into five almost equally large parts and used four of these
parts for training and one for testing. The partitioning was used five times for
training and testing, with each part being left out once. This was done for ten
different splits of the data, so that 50 different test and training sets were ob-
tained. After the weighting was learned on the training set, k-NN with k = 3

was used to obtain the error rates on the independent test set.

First, we compared the classification performance on the UCI datasets. Table
4.2 shows the results on the raw data. MDM is clearly superior. The error rates
are improved significantly compared to standard k-NN based on the original
scaling (”Euclidean”). Only for the iris data, the original scaling is a good choice.
Relief and Simba sometimes even worsen the classification performance com-
pared to the original scaling.

In Table 4.3 we see the results after a prior rescaling such that the data distri-
bution is normalized to zero mean and variance one along each dimension. With
prior rescaling, Relief and Simba become competitive due to a different initial se-
lection of the neighbors. Obviously, Relief and Simba seem to be very dependent
on a good initial scaling. It seems that the initial neighbors more or less remain
neighbors during the optimization procedure. But then, obviously, already the
initial scaling is a good choice and achieves good results. Even though the other
methods in general improve their results on the preprocessed data, MDM re-
mains very competitive. Interestingly, not for all datasets the preprocessing by
normalization yields improved results. Especially for the iris data the initial
scaling seems to be a better choice. This demonstrates that it is not always clear

3We used a implementation by A. Navot and R. Gilad-Bachrach, which is available at
http://www.cs.huji.ac.il/labs/learning/code/feature selection.bak/
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4.3. Experiments and Comparisons

Euclidean MDM MDM Soft Relief Simba LMNN
Iris 3.87(3.32) 4.33(3.10) 4.00(2.94) 4.00(2.86) 6.27(3.91) 4.00(2.86)

4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 3.96(0.20) 4.00(0.00)
Wine 30.28(7.25) 2.64(2.81) 2.13(2.56) 32.80(6.65) 32.52(7.19) 5.57(3.82)

13.00(0.00) 12.10(0.65) 12.08(0.67) 13.00(0.00) 13.00(0.00) 12.12(0.63)
Breast 39.20(4.35) 3.50(1.43) 2.86(1.27) 39.36(4.30) 39.36(4.30) 4.06(1.34)
Cancer 10.00(0.00) 9.94(0.31) 9.70(0.51) 10.00(0.00) 9.64(0.85) 8.02(0.25)
Pima 29.99(3.45) 27.34(2.52) 26.43(2.90) 29.41(3.18) 29.92(3.53) 28.42(3.15)
Diabetes 8.00(0.00) 7.90(0.30) 7.76(0.43) 8.00(0.00) 7.42(0.70) 8.00(0.00)
Parkinsons 14.72(4.96) 10.31(4.85) 7.59(4.21) 15.49(4.86) 15.64(4.75) 13.49(4.91)

22.00(0.00) 21.20(0.88) 20.44(0.73) 22.00(0.00) 22.00(0.00) 21.82(0.39)
Seeds 11.90(3.63) 7.52(3.74) 7.00(2.98) 11.71(3.56) 11.86(3.65) 4.86(2.84)

7.00(0.00) 7.00(0.00) 7.00(0.00) 7.00(0.00) 7.00(0.00) 7.00(0.00)

Table 4.2.: Results on UCI datasets. The top entry is the average test error in
percent followed by the STD in parentheses. Below the error rates, the aver-
age rank, again followed by the STD, is given. In case of the feature weighting
methods, the rank is equal to the number of non-zero weights. The best results
obtained with feature weighting are indicated by bold face.

Euclidean MDM MDM Soft Relief Simba LMNN
Iris 5.40(3.92) 4.33(3.10) 4.00(2.94) 4.87(3.10) 4.73(2.94) 4.47(3.27)

4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00)
Wine 3.88(2.84) 2.64(2.81) 2.13(2.56) 3.37(3.21) 3.43(3.03) 2.42(2.12)

13.00(0.00) 12.70(0.51) 12.96(0.20) 13.00(0.00) 12.54(0.91) 13.00(0.00)
Breast 3.60(1.43) 3.38(1.48) 2.75(1.36) 3.35(1.38) 4.04(1.42) 3.38(1.50)
Cancer 10.00(0.00) 10.00(0.00) 9.88(0.33) 10.00(0.00) 9.76(0.62) 9.48(0.79)
Pima 26.73(2.64) 27.34(2.52) 26.53(2.89) 26.90(3.54) 27.20(3.45) 26.46(2.67)
Diabetes 8.00(0.00) 8.00(0.00) 8.00(0.00) 8.00(0.00) 5.66(0.85) 8.00(0.00)
Parkinsons 9.13(3.85) 10.31(4.85) 9.59(5.10) 5.69(3.25) 7.13(3.92) 5.74(2.91)

22.00(0.00) 21.50(1.11) 21.16(1.89) 22.00(0.00) 21.92(0.27) 21.96(0.20)
Seeds 8.05(3.00) 7.52(3.74) 7.00(2.98) 10.24(3.51) 9.57(3.77) 6.67(3.50)

7.00(0.00) 7.00(0.00) 7.00(0.00) 7.00(0.00) 6.98(0.14) 7.00(0.00)

Table 4.3.: Results on the UCI datasets after prior rescaling. The dimensions
were normalized such that the data distributions have a mean equal zero and
a variance equal one. The notation and structure of this table is the same as in
Table 4.2.
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4. A new Feature Weighting Approach

Euclidean MDM Relief Simba LMNN
Breast 8.07(6.13) 11.42(7.25) 13.16(7.89) 14.47(7.43) 9.78(7.13)
Cancer 1213.00(0.00) 364.76(62.65) 1213.00(0.00) 1213.00(0.00) 1137.42(2.97)
DLBCL 13.11(5.24) 14.67(5.33) 12.00(5.62) 13.28(6.55) 15.44(4.32)

661.00(0.00) 293.86(34.13) 661.00(0.00) 661.00(0.00) 559.56(1.97)
Leukemia 2.21(2.27) 1.74(1.96) 2.18(2.45) 4.12(2.87) 0.69(1.33)

985.00(0.00) 473.24(55.28) 985.00(0.00) 984.96(0.20) 821.48(7.53)
Lung 4.37(2.77) 5.49(3.18) 4.88(2.78) 8.29(4.12) 4.78(2.66)
Cancer 1000.00(0.00) 536.62(78.55) 1000.00(0.00) 999.78(0.46) 870.86(1.87)

Table 4.4.: Results on gene expression data (after prior rescaling). The notation
and structure of this table is the same as in Table 4.2.

whether a prior rescaling and which rescaling is beneficial. The main advantage
of MDM accounts for this problem, since it is independent of such a prior res-
caling. Another interesting result is that although LMNN is much more flexible
and complex, it does not perform better, at least on these data sets.

In Table 4.4 we see the results on the gene expression data. They were ob-
tained with the same prior rescaling as used for the UCI data in Table 4.3. The
gene expression data are a lot more challenging because the number of data di-
mensions compared to the number of data points is very large, as shown in Table
4.1. This curse of dimensionality is very challenging for feature weighting and
metric learning methods. All methods perform on a similar level as standard
Euclidean distance, taking the large standard deviation into account. However,
we see a nice feature of our MDM method: MDM remarkably reduces the di-
mensionality of the data without the use of any parameters. The dimensionality
reduction is directly induced by the formulation of the optimization problem.
Methods like Relief and Simba, which where specifically designed for this task,
need a threshold to be set either by some heuristic or by hand. The dimension-
ality can be reduced even further if the soft MDM is used, but this comes at the
expense of the softness parameter which needs to be set.

4.4. Discussion

We developed a simple feature weighting method that can be implemented us-
ing linear programming. The problem of arbitrarily scaled data dimensions,
which often cause bad k-NN error rates, is handled by the global optimization
of our MDM method. MDM finds weights that yield very competitive k-NN
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classification results on standard benchmark problems. For most of the UCI data
sets MDM achieves error rates comparable to those of the much more complex
metric learning method LMNN. So the additional flexibility of metric learning
is not beneficial. A possible reason for this is that the flexibility is not needed
for a better representation, or leaning the additional parameters requires more
training data for reliable generalization. Hence, for some applications it is better
to use feature weighting and keep the interpretability.

What distinguishes our method from commonly used methods is that it uses a
global convex optimization criterion, which compares all tuples. This approach
avoids predefining which data points are adjacent. Due to the convex optimiz-
ation problem MDM finds a global optimum. Therefore, the results are almost
independent from the initial scaling of the data dimensions. However, since the
global optimum is not always a single vector, there may be still some variation in
the results. On most of the benchmark data MDM performs well. Of course, for
some data sets, such as the Parkinsons data from the UCI data sets, it is benefi-
cial to take local data structures into account. There, both local methods perform
better in our comparison (Table 4.3).

In addition to the classification performance, we demonstrated the capability
of our method to reduce the dimensionality of a given classification problem on
high dimensional data. Contrary to other methods, parameters as for example a
threshold are not needed to cut off dimensions with small weights. This makes
MDM a straightforward method to use for dimensionality reduction.

A disadvantage of MDM is that the number of constraints grows quadratic-
ally with the number of data tuples, which causes a demand of computational
recourses for large data sets. Since usually only a small fraction of the tuples is
responsible for the final weighting, it should be possible to find an equal solu-
tion with much less constraints, i.e. using only a fraction of the tuples.

Since MDM is not specifically adapted to the locally operating k-NN, we ex-
pect other distance based machine learning methods to also benefit from our
global and robust approach.
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5. A new Global Metric Learning
Approach

In Chapter 3 metric learning was introduced, which improves the performance
of distance based machine learning methods by changing the distances between
data points. Linear metric learning either adapts a Mahalanobis distance or a
linear transformation to achieve this improvement. Well known methods are
NCA [33] and LMNN [39, 43]. They try to free local neighborhoods from differ-
ently labeled data to improve the k-NN performance. NCA uses soft transitions
and optimizes a projection matrix, while LMNN has hard transitions and op-
erates on the Mahalanobis distance. Another popular method is MMC [35],
which globally minimizes intraclass distances using a Mahalanobis distance.
Minimum interclass distances are enforced by hard constraints. More details
on these methods can be found in Chapter 3.

This Chapter describes a metric learning method we published in [14], which
allows for a simple gradient descent optimization. Like NCA it uses soft trans-
itions and optimizes a projection matrix in order to improve the k-NN classific-
ation performance. However, it does not use a local model, but a global model
similar to MMC and MDM, our feature weighting method presented in the pre-
vious chapter.

5.1. Global Metric Learning

Our goal is to improve k-NN classification. Since k-NN classifies data points
based on label frequencies in their neighborhoods, good error rates are more
likely if the intraclass distances are small and the interclass distances are large.
To adapt the distances, the data points xi ∈ Rn are projected linearly using a
matrix W = (w1, . . . ,wn) ∈ Rn×m, where the number of output dimensions m
can be smaller or equal to the number of input dimensions n. The projection
matrix is optimized using a cost function with two parts weighted by a para-
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Figure 5.1.: Interclass cost function comparison. The linear function El(d) has a
constant gradient. Therefore, all interclass pairs influence the projection matrix
W equally. For the non-linear function Es(d), close by pairs have a larger influ-
ence due to their steeper gradient compared to the far apart pairs. In addition,
the non-linear function is continuously differentiable at the cutoff at d = 1.

meter α. The first part of the cost function punishes small distances of pairs
from the set of interclass tuples D = {(xi,xj) : yi 6= yj}. If the distance one
is reached, the cost will become zero due to a cutoff. We chose a squared cost
term to penalize close interclass pairs significantly more than far apart pairs
and to make a smooth transition at the cutoff. In Figure 5.1 the squared er-
ror term is compared to a linear term, where the gradient is constant and also
not continuous at the cutoff. The second part punishes large distances of intra-
class tuples from the set S = {(xi,xj) : yi = yj}. We use the distance measure
||xi − xj ||W =

√
(xi − xj)>WW>(xi − xj) in the cost function

E(W ) = α
∑

(i,j)∈D

(1−min (||xi − xj ||W , 1))2 + (1− α)
∑

(i,j)∈S

||xi − xj ||2W . (5.1)

Due to this purely cost function driven design without any hard constraints,
there is always a trade off between minimizing and maximizing distances influ-
enced by many tuples. There is a soft transition from tuples close to their desired
distance with little influence to tuples far from their desired distance with large
influence. All intraclass tuples are taken into account, making this a global ap-
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5.2. Experiments

proach with a Gaussian prior on the intraclass distances. Due to this property
we coin this approach Global Metric Learning (GML).

There are many optimizers available that will find good solutions. We use
stochastic gradient descent (SGD), because it works fast in case of redundant
data. To avoid the need to select a learning rate, we applied variance-based
SGD [29, 44]. Interestingly, in the context of visualizing high-dimensional data,
Hadsell et al. [45] use almost the same cost term to find a non-linear mapping.

5.2. Experiments

To asses the behavior of GML, it is applied to basic 2D problem sets for visualiza-
tion. In Figure 5.2 the results are shown. GML works well for the Gaussian prob-
lem sets. The uncorrelated perfectly separated data is reduced to one dimen-
sion. In case the data has a large overlap this dimensionality reduction, which
would be at the cost of classification performance, is not achieved. The correl-
ated and slightly overlapping data again is reduced to one dimension. GML,
however, is not able to reduce the expendable dimension in the structured non
Gaussian data. This is most likely due to the Gaussian prior introduced by the
intraclass term. These results were all obtained with the weighting parameter
set to α = 0.9 to emphasize the interclass distances. We keep this setting also
for the following experiments, even though tuning it for every dataset, e.g. by
cross-validation, may be beneficial.

For evaluation on real world data we used the same UCI datasets as in the
previous chapter. Additionally, the Balance Scale dataset from the UCI repos-
itory was evaluated. It contains 625 data points from three classes obtained in
physics experiments on levers. Due to the linear relationships in the 4 dimen-
sional measurements it is well suited for testing learned linear transformations.
For each data set 10 different random splits of 50% training data and 50% test
data were generated. GML was compared to LMNN, NCA and MMC via the
k-NN classification error rates with k = 3. After adapting the representations
to the training sets, the results were obtained by averaging the k-NN error rates
on the test set over the ten splits. As a reference also the Euclidean metric was
tested. Besides GML only LMNN has a weighting parameter, which was set to
α = 0.5 according to the authors advise. NCA and MMC are parameter free.

In Table 5.1 the 3-NN classification error rates after metric learning without
preprocessing the data are shown, followed by the standard deviation in par-
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Figure 5.2.: Basic 2D datasets are depicted in the original scaling on the left and
after application of GML on the right.
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LMNN NCA MMC GML Euclidean
Iris 3.07(1.89) 4.13(1.93) 2.27(1.99) 2.53(1.72) 3.33(1.81)
Wine 5.22(2.03) 29.78(5.87) 5.89(3.67) 2.89(1.75) 31.00(4.52)
Breast Cancer 3.80(0.57) 39.71(2.24) 3.60(0.44) 3.68(0.68) 39.68(2.21)
Pima Diabetes 29.14(2.33) 31.12(1.94) 27.19(1.34) 27.89(1.74) 30.78(1.99)
Balance Scale 15.50(1.95) 7.60(2.87) 10.00(1.14) 9.33(1.31) 21.73(1.36)
Parkinsons 14.18(2.90) 17.24(2.47) 16.63(3.57) 10.10(4.04) 16.73(2.46)
Seeds 6.95(2.88) 7.71(1.76) 6.86(2.14) 4.10(1.19) 11.33(2.64)

Table 5.1.: Classification results after metric learning. There was no prepro-
cessing applied to the data sets. The error rates are given in percent followed
by the STD in parentheses. The best results are marked in bold face and the
worst in italic.

entheses. We can see that GML performs well on all datasets. In three cases it
is slightly outperformed by MMC, and only on the Balance Scale data set it is
significantly outperformed by NCA. In the three cases where GML is the best,
it is by far the best. NCA is the worst on all other data sets and improves the
classification performance only marginally or even deteriorates it compared to
the standard Euclidean distance.

When preprocessing is done, the results for some methods change dramatic-
ally, as shown in Table 5.2. Here, each dimension is rescaled such that the data
distribution has variance one. While all other methods benefit clearly from the
preprocessing, there are only small changes in the results of GML and MMC. In
fact, due to the global cost function, there should be no change at all. However,
the stochastic gradient descent may not always find the global optimum in case
of GML, and also the small changes in MMC seem to be due to convergence
issues. GML still achieves the best results in three cases, and in the other four
cases is never much worse than best one. Note that for all methods except for
GML, there is always one dataset where it performs significantly worse than all
the others (the worst results are marked in italic).

We also tested the feature weighting performance of GML. In Table 5.3 the
results for preprocessed datasets are listed. The experimental set up and the pre-
processing is the same as for metric learning, however, GML was only used to
optimize the diagonal elements of W , leaving the off diagonal elements to zero.
For comparison the feature weighting methods MDM, Relief, and Simba were
used. Also in this feature weighting scenario GML performs well compared to
the other methods and is again the best in three out seven cases. Of course,
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LMNN NCA MMC GML Euclidean
Iris 2.80(1.93) 3.20(2.10) 2.27(1.99) 2.27(1.89) 3.60(1.55)
Wine 3.00(2.10) 5.67(1.85) 5.89(3.67) 2.67(1.67) 5.67(1.52)
Breast Cancer 3.65(0.57) 4.71(0.71) 3.60(0.44) 3.83(0.76) 3.74(0.76)
Pima Diabetes 27.97(1.33) 29.69(1.77) 27.19(1.34) 27.92(1.76) 27.84(1.93)
Balance Scale 14.41(1.90) 6.71(1.72) 10.03(1.25) 9.74(1.08) 18.95(0.85)
Parkinsons 9.49(2.26) 10.71(2.86) 15.10(3.36) 10.71(3.13) 10.00(3.22)
Seeds 6.67(2.06) 7.43(1.33) 6.86(2.14) 4.29(1.63) 8.29(2.50)

Table 5.2.: Classification results after metric learning on preprocessed data. The
dimensions of the datasets were normalized to variance one.

MDM Relief Simba GML Euclidean
Iris 2.93(1.97) 3.20(2.10) 2.93(1.51) 3.33(2.01) 3.60(1.55)
Wine 4.00(2.23) 4.22(2.39) 4.00(2.11) 2.67(2.11) 5.67(1.52)
Breast Cancer 3.54(0.67) 4.06(1.02) 4.12(0.71) 4.06(0.79) 3.74(0.76)
Pima Diabetes 28.49(1.87) 27.16(1.43) 27.86(2.04) 28.26(1.64) 27.84(1.93)
Balance Scale 18.95(0.85) 19.17(1.31) 19.23(1.24) 21.31(2.00) 19.23(0.95)
Parkinsons 10.00(4.13) 9.18(2.50) 10.82(3.73) 8.78(3.01) 10.00(3.22)
Seeds 8.29(3.56) 9.62(3.06) 10.19(3.39) 7.33(2.50) 8.29(2.50)

Table 5.3.: Results for feature weighting. In a preprocessing step the dimensions
of the datasets were normalized to variance one.

for feature weighting there is the same effect as observed for metric learning:
Global methods are robust to the initial scaling, while local methods are effected
heavily. Because the best results for the local methods were obtained in the pre-
processed setting, we only show those.

As we have seen in the previous chapter, when the metric learning and the
feature weighting results are compared (Tables 5.2 and 5.3), most error rates are
quite close, showing that often a proper scaling of the dimensions is sufficient
for good classification. Only for the Balance Scale and the Seeds datasets there
are significant improvements when using the more powerful metric learning.
To gain a better understanding we inspect the transformed spaces by t-SNE [46],
which embeds the data in a 2D space prioritizing the accuracy of small distances.
In Figure 5.3 exemplary results are shown. For both data sets the linear rep-
resentation learning methods improve the representations. When comparing
feature weighting to metric learning, for Parkinsons the results are qualitative
similar. Therefore, the additional model complexity of metric learning does not
help separating the classes, whereas, the wine data is separated much better by
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the metric learning model. Only one data point is in the wrong cluster. Here,
the similar results for metric learning are likely due to generalization problems,
since there are only few data points in the wine data set. These results should
be considered when choosing between feature weighting and metric learning.
Additionally, scaling only the original dimensions has the advantage that the
dimensions are not mixed, which makes it easier to interpret the results, e.g.,
extract relevant dimensions.

5.3. Discussion

We introduced a method to learn linear transformations for improved k-NN
classification. Similar to our feature weighting approach from Chapter 4 we use
a global model. This model with two weighted cost terms for the inter and intra-
class distances can easily be optimized by gradient descent. Optimizing the sum
of these terms yields a trade off between both. All intraclass pairs are taken into
account introducing a Gaussian prior on the distances. This global approach re-
duces the influence of the initial scaling, and in most cases the global optimum
of the energy function is found. This separates GML from well known methods
such as LMNN and NCA, which due to their local approach are very sensitive to
the initial scaling. A hard constraint as it is used for MMC is avoided, since such
a constraint makes the results dependent on few interclass tuples with small
distances. Instead GML uses a soft transition from very influential tuples with
small interclass distances to a boundary distance with no influence.

While GML is not always the best method on the datasets we used, it was
the best method most often (together with MMC), and it never performed much
worse than the others. In this sense it was the most robust method. By training
only the diagonal of the transformation matrix, GML can do feature weighting,
which despite the lower model complexity often gives similar results. Improv-
ing the computational complexity of GML is an important next step, since the
advantage of scale independence is acquired at the cost of a quadratic increase
in computational effort with an increasing number of samples. This restricts
GML to data of limited size, such as medical data sets. Often, many of the data
points are not relevant for classification and, therefore, the method should take
advantage of this.
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Figure 5.3.: Visualization of the UCI Parkinsons data on the left and UCI wine
data the right. The dimensionality was reduced using t-SNE. In the top row the
original data is shown. Below the results after feature weighting by GML and in
the bottom row after metric learning by GML are shown.
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6. Invariant Representations

When we have a walk outdoors and look around while taking steps forward
the view changes slightly. For us it is still easy to recognize objects we know.
Also we can learn to recognize new objects from only a few examples. In com-
puter vision these visual object recognition tasks are big challenges. Every step
we take will cause dramatic changes to the pixel representation of an 2D image.
Even small changes of an object’s pose like an animal moving its head as shown
in Figure 6.1 are causing too large changes in the image pixels to recognize it as
the same animal in all three images.

Figure 6.1.: Three images of a zebra moving the head. This movement causes
changes to the pixel representation, which makes generalization for classifiers
hard.

Much of the difficultly of object recognition arises from the way images are
formed. Light is emitted from different sources and reflected by objects. The re-
flection depends on the material of the object and, therefore, information about
that object is encoded in the light. A camera captures such reflected light by
projection onto a 2D sensor plane. This projection contains only partial inform-
ation on the object. Whenever the camera position or the object moves, different
information is captured, and by occlusion this information may be reduced. Ad-
ditionally, the position of the sensor pixels, where the information is collected,
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6. Invariant Representations

changes. Besides these camera and object movements also changes of the light
sources position, brightness, or color will change the image. For object recog-
nition it would be good to have a representation which is independent of these
changes, while encoding as much information about the object as possible. This
independence property, called invariance, is topic of the next three chapters and
will mathematically be defined in the next section. Our focus here are spatial
transformations of the object in the image plane.

State of the art object recognition methods are usually trained on a large num-
ber of samples showing every object in different poses, lightning conditions,
and from different perspectives. This helps to learn invariance implicitly, even
though their optimization criterion is the classification rate on a training set.
However, this invariance seems to transfer badly to objects unknown to the
classifier, since for every new object a large set of samples needs to be collec-
ted for a good classification rate. This works of course for a limited number of
objects or categories1, but it might be impossible or tedious to collect large data-
sets. In case it is possible to learn a transformation invariant representation for
images, the object recognition problem can be handled separately and becomes
much simpler. Consider translation, scaling and in-plane rotation. If all these
transformations can be applied to an object in an image in 100 discrete steps
(Horizontal and vertical translation count as two transformations.), this allows
for 1004 = 108 different images of the same object. In an invariant representation
all these images will be the same. Therefore, the complexity of the classification
task is reduced significantly and only a few samples are needed for good results,
which is much closer to the human object recognition capabilities.

This chapter we begin by introducing basic mathematical concepts in order
to define invariance. Then analytic invariant representations as well as exist-
ing methods for learning transformation invariant representations are reviewed.
As a theoretical tool to understand and analyze invariant representations the i-
Theory [15] is described and, finally, we show the close relation between the
i-Theory and two representation learning methods. This contribution has pre-
viously been published in [17]. Based on the i-Theory and the slow subspace
learning presented in this chapter, two new methods will be introduced and
analyzed in the following two chapters.

1Even up to a thousand of categories as in the ImageNet dataset [47, 48].
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6.1. Groups, Transformations, and Invariance

6.1. Groups, Transformations, and Invariance

Many image transformations can mathematically be modeled by group struc-
tures. These group structures help to understand and analyze the problem of
finding an invariant representation. Remember, a group (G, ◦) is a setG together
with an composition operation ◦ that satisfy four axioms:

• Closure: ∀g, g′ ∈ G : g ◦ g′ ∈ G

• Associativity: ∀g, g′, g′′ ∈ G : (g ◦ g′) ◦ g′′ = g ◦ (g′ ◦ g′′)

• Identity element: ∃! e ∈ G : ∀g ∈ G : e ◦ g = g ◦ e = g

• Inverse element: ∀g ∈ G : ∃g−1 ∈ G : g ◦ g−1 = g−1 ◦ g = e.

In our context G is a set of image transformations (e.g. all in-plane rotations)
and the group elements g are transformations with a specific parameter (e.g.
rotation by 42 degrees). The definition of groups restricts possible transforma-
tions due to the existence of an inverse element, which implies that there is no
information lost after applying the transformation. This excludes rotations in
three dimensions. However, transformations such as in-plane rotation, transla-
tion, and scaling are included [24].

Often the admissible transformations are further restricted by the mathem-
atical model the representation is based on. Widely used, due to their nice al-
gebraic properties, are orthogonal matrix transformations2 L, that is L−1 = L>.
They include transformations like in-plane rotation, cyclic translations, and any
pixel permutation.

Next we define invariance and uniqueness, two expressions often used in the
following chapters, based on [24]. Suppose we have an image x ∈ RD. It can
be transformed by the group elements g ∈ G, which are applied as group ac-
tions g(x). Our goal is to find a mapping µ which should be invariant in the
transformation group G. Hence, if we have two images x,x′ ∈ RD,

∃g ∈ G : x = g(x′)⇒ µ(x) = µ(x′) (6.1)

is true. This invariant mapping is sometimes also called signature. To be useful
for discrimination we also need a unique representation, defined by

µ(x) = µ(x′)⇒ ∃g ∈ G : x = g(x′). (6.2)
2They belong to the orthogonal group O(n).
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Much of the difficulty in representation learning arises due to the problem of
retaining uniqueness while achieving invariance.

6.2. Analytic Representations

Historically, invariant representations were found manually. Here, I shortly re-
view integral transformations, the cross-correlation method and moments as the
most important examples of invariant analytic representations. In this case ana-
lytic means that the representation is obtained by some mathematical frame-
work. This section is based on Woods review [49], which includes a compre-
hensive discussion of this topic.

A general class of transformations that can be used to find invariant repres-
entations are integral transformations. The general 2D integral transformation
of a function f(x, y) is

g(u, v) =

∞∫∫
−∞

f(x, y)k(u, v, x, y)dxdy, (6.3)

where k(u, v, x, y) is a function that is often referred to as kernel and g(u, v) is
called the response. If a suitable kernel is chosen, an invariant representation
can be obtained. One particularly well known example of an integral transform-
ation is the Fourier transformation. Remember, the 2D Fourier transformation is
defined as

F(u, v) =

∞∫∫
−∞

f(x, y)e−i2π(ux+vy)dxdy. (6.4)

So the kernel is k(u, v, x, y) = e−i2π(ux+vy). The amplitudes |F(u, v)|
=
√
Re(F(u, v))2 + Im(F(u, v))2 of this complex representation are invariant

to shifts in the (x, y)-plane. Several adaptions of the Fourier-transformations
have been made to account for different transformations such as rotation and
scaling.

Another widely applied approach is cross-correlation. For estimating the trans-
formation parameters (u, v), correlation coefficients

C(u, v) =

∞∫∫
−∞

f(−x,−y)p(u+ x, v + y)dxdy (6.5)

with pattern vectors p are computed. Usually some prototype of an object is
used as pattern vector. The largest correlation coefficient C(u, v) indicates the
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transformation parameters (u, v), which are then used to extract a patch taking
the transformation into account. In the form presented here, only translation
can be handled. However, an extension to other transformations is possible at a
considerable computational effort.

Algebraic methods to find invariant representations can be based on moments

mp,q =

∞∫∫
−∞

xpyqf(x, y)dxdy, (6.6)

where p, q ∈ N0. The complete set of moments uniquely identify a function
f(x, y) and, vice versa, f(x, y) determines uniquely the moments. To achieve
invariance to translation the moments can, for example, be centralized

mp,q =

∞∫∫
−∞

xpyqf(x− x0, y − y0)dxdy, (6.7)

with x0 = m1,0/m0,0 and y0 = m0,1/m0,0 as the center of gravity of f(x, y). By
taking quotients or powers of moments other invariances can be obtained.

6.3. Learning Methods

In the previous section methods were presented that are specifically designed to
represent images invariant to certain transformations. This works well in case
these transformations are known in advance. Here, we are interested in learning
invariances, which allows us to adapt to unknown transformations. This section
gives a brief summary of some central methods.

6.3.1. Convolutional Networks

An early learning architecture that helps to cope with image translations are
convolutional neural networks (CNN) [3, 50]. They are the basis for many com-
petition winning classifiers today in the context of deep learning. Usually, the
good classification rates are achieved by using extremely large sets of training
data. Similar to the classical multilayer perceptron (MLP) they use several layers
of computation, which are trained in a supervised manner.

First we have a look at the MLP. This is a network of so called neurons as basic
units. These neurons are arranged in layers, which are stacked. Each neuron in
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6. Invariant Representations

the network is modeled using a weight vector wi, a scalar bias b and a non-
linearity σ (e.g. σ(x) = tanh(x)). The activation y(l)

i of a neuron at layer l is

y
(l)
i = σ(

∑
j

w
(l)
i,j · y

(l−1)
j + b

(l−1)
i ). (6.8)

In case the input data samples are not vectors, they are reshaped to form vectors
that can be used as input y(0) to the network. Starting with random initialization
the weight vectors and biases can be trained using back-propagation [51] given
a suitable energy function, which could for example be the mean squared error
between the output of the network and the labels of a training set.

CNNs have two main processing layers, which are applied in an alternating
manner (Figure 6.2). First there is the convolutional layer. The outputs M (l)

k at
layer l are called maps. These maps are computed by

M
(l)
k = σ(W

(l)
k ∗ Y

(l−1) + b
(l−1)
k ), (6.9)

where Wk ∈ RU×V×D is a convolution kernel and Y (l−1) ∈ RI×J×D is the output
from a previous layer or the input data. The convolution operation is denoted
by ∗. Usually, the input is not reshaped as it is done for MLPs. Therefore, the
spacial relations in the data are retained and local connections in the network are
implemented by convolution. The convolution operation also causes repeated
use of these local connection, which is known as weight sharing. If we look at a
single map point m(l)

i,j,k for D = 1

m
(l)
i,j,k = σ(

∑
u,v

w
(l)
u,v,k · y

(l−1)
i+u,j+v + b

(l−1)
k ) (6.10)

we see the local and repeated use of connections as well as the similarity to the
MLP computations. In contrast to the MLP, the number of parameters is reduced
significantly due to these local, repeated connections. The next layer of the CNN
does subsampling over regions of these maps as well as over maps. Often the
average, the square or the maximum value of these regions is taken. This sub-
sampling is also referred to as pooling. After several alternating convolutional
and subsampling layers, fully connected layers like for the MLP are used (Figure
6.3). CNNs are trained like MLPs using backpropagation.

What makes CNNs interesting in the context of learning invariant represent-
ations is their ability to learn invariance indirectly if enough transformed ver-
sions of the training samples are presented. Any classifier can do this. However,
CNNs are particularly well suited. Shifts in the input will cause shifts of the
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kernel

input
convolutional map

convolutional map

Pooling

Convolution

pooling map

Figure 6.2.: Visualization of convolution and pooling. In the convolution step,
a kernel is compared with the input data and the result is stored in the con-
volutional map. This comparison is repeated for all shifts of the kernel on the
input. Note, how the spatial relations are preserved. Next the convolutional
map is downsampled by pooling. This is done by some nonlinear function like
the average or the maximum over several values from the convolutional map.
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input convolutional map 1 pooling map 1 convolutional map 2

MLP

pooling map 2 output

convolution pooling convolution pooling

Figure 6.3.: A convolutional network architecture of alternating convolution and
pooling steps followed by a multi-layer perceptron. This is the most common ar-
chitecture, which, however, in practice has more convolution and pooling steps.

representation at each layer due to the weight sharing. This behavior is called
equivariance. By subsampling the size of the shifts is reduced from layer to layer.
Even though this architecture helps gaining transformation invariance, no guar-
antees can be given how well this invariance transfers to new classes. Therefore,
many training samples are needed for every class. For a more principled ap-
proach to learning an invariant representation that generalizes well to unknown
classes, an objective function that enforces invariance instead of classification
seems mandatory.

6.3.2. Slow Feature Analysis

When a movie camera records two dimensional projections of the real world,
a signal that changes fast in its pixel representation is generated. However, the
objects in the scene change slowly. Therefore, it seems reasonable to optimize the
representation of such a sequence to change slowly and thereby gain invariance
to transformations contained in this temporal stream of data.

The Slow Feature Analysis (SFA) [52] is a prominent method exploiting this
slowness objective [53, 54]. For some input signal x(t) SFA seeks a function g(x),
which generates an output signal y(t) = (y(t)1, y(t)2, . . . , y(t)J)>with minimum
average change

〈ẏ2
j 〉 (6.11)
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for all outputs yj , j ∈ [1, . . . , J ] under the constraints

〈yj〉 =0, (6.12)

〈y2
j 〉 =1, (6.13)

∀j′ < j : 〈yj′yj〉 =0. (6.14)

Here, angle brackets are used for temporal averaging and ẏj is the temporal
derivative of yj . The zero mean constraint 6.12 and the unit variance constraint
6.13 prevent trivial solutions, while the decorrelation constraint 6.14 enforces a
diverse set of outputs. Generally, this is a difficult problem. By restricting the
mapping function g(x) for computing y(t), the problem becomes solvable. Only
weighted sums

gj(x) =
∑
k

wjkhk(x) (6.15)

of functions hk(x) are permitted. These functions, however, can be non-linear.
Often hk(x) is chosen to be the quadratic expansion hk((x1, . . . , xn)>)

= (x1x1, x1x2, x1x3, . . . , xnxn, x1, . . . , xn)>. This choice is guided [55] by compu-
tational limitations and the fact that linear and quadratic input-output relations
have been measured in real neurons [56]. The quadratic expansion increases the
data dimension dramatically, though.

6.3.3. Slow Subspace Learning

Subspace models have been introduced to the field of learning invariant fea-
tures by Kohonen [57] and they have shown to be very useful, because many
transformations can be modeled using linear subspaces [57].

A K-dimensional linear subspace can be represented by a set of orthonormal
vectors wi, i = 1, . . . ,K. The projection

x′ =
K∑
k=1

(w>k x)wk (6.16)

of a data point x on the K-dimensional subspace finds the closest point x′ in the
subspace to x. The length of this point x′

||x′||2 =

√√√√ K∑
k=1

(w>k x)2 (6.17)
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in the subspace is used as a feature in many subspace methods. To get a mean-
ingful representation several such features are needed.

Olshausen [58] motivates the use of two dimensional subspaces from a statist-
ical perspective. Sparse coding or independent component analysis can reduce
the statistical dependency of basis vectors wi ∈ RN for images. When a basis
W = (w1,w2, . . . ,wM )> ∈ RM×N for natural images is learned using one of
these methods, Gabor like basis vectors are obtained. An image x(t) ∈ RN at
time t in such a basis x(t) = Wy(t) is represented by coefficients y(t) ∈ RM .
When an object in x(t) moves, the coefficients in y(t) will transition among each
other. In case pairs of 90◦ phase shifted Gabor functions are used in the repres-
entation, circularly symmetric distributions over the coefficients y(t) are cause
by the transitions [59], so dependencies are introduced. Olshausen, therefore,
suggests to model pairs of dependent coefficients by polar coordinates [58]. Us-
ing polar coordinates M/2 amplitudes ai(t) and phases θi(t) are needed to en-
code y(t). The amplitudes

ai(t) =
√

(w>i2x(t))2 + (w>i2+1x(t))2 (6.18)

are equivalent to the length ofx(t) projected on 2D subspaces, which are spanned
by disjunct pairs of weight vectorswi2 andwi2+1. They can be used as invariant
features encoding image structure. Additionally, phases

θi(t) = tan−1 (w>i2+1x(t))2

(w>i2x(t))2
. (6.19)

can be computed to determine the location of the image structures. Of course,
these phases will not be invariant.

Kohonen introduced subspaces in the domain of self organizing maps [57].
Then they have been adopted to representation learning in form of the Inde-
pendent Subspace Analysis (ISA) [60]. Soon slowness and subspace architec-
tures were combined in [61], minimizing the energy change of the subspaces
over time. Newer approaches [62–64] also include sparsity [9].

Here, I present a slow subspace autoencoder model [63] that has been applied
successfully in object recognition tasks. It uses an autoencoder term to ensure
that the learned representation will encode a diverse set of structures from the
input data, while slowness over 2D subspaces encourages an invariant repres-
entation in the amplitudes ai(t). Additionally, this model allows to enforce a
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sparse representation. It is defined by the energy terms

Erec =
∑
t

||x(t)−W>Wx(t)||22 (6.20)

Eslow =
∑
t

||a(t)− a(t− 1)||1 (6.21)

Esparse =
∑
t

||a(t)||1 (6.22)

combined via

E =Erec + αEslow + βEsparse s.t. ||wi|| = 1. (6.23)

Here, α and β are weighting factors. Note, the unit norm constraint on the
weight vectors wi. This is necessary to avoid wi to become a zero vector if
large values of α or β are used. This energy model can now be optimized via
stochastic gradient descent.

6.3.4. Toroidal Subspace Analysis

Similar to the approaches from the previous subsection the Toroidal Subspace
Analysis (TSA) [65] uses 2D subspaces for the learned representation. In contrast
to the slowness based subspace approaches, the amplitudes of the subspaces are
fixed for pairs of transformed image patches, and the error for encoding one
patch in terms of the other is minimized. This requires to additionally model
the phase.

The Toroidal Subspace Analysis (TSA) [65] learns invariant representations
assuming that images undergo transformations that can be modeled by an or-
thonormal matrix L, which can be factored L = WR(ϕ)W>. Here, W is an or-
thonormal matrix that encodes the transformation group, while R(ϕ) is a block
diagonal matrix

R(ϕ) =


R(ϕ1)

. . .

R(ϕJ)

 (6.24)

with the 2× 2 submatrices

R(ϕj) =

(
cos(ϕj) − sin(ϕj)

sin(ϕj) cos(ϕj)

)
(6.25)

and the vector ϕ of J elements ϕj ∈ [0, 2π], which selects an element from the
group (e.g. it acts as a transformation parameter).
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Figure 6.4.: Plot of the von-Mises distribution for different parameters κ and
µ = 0.

An image pair (x1,x2) is related in the TSA model by

x2 = WR(ϕ)W>x1 + ε, (6.26)

were ε is Gaussian noiseN (0, σ2). This relation can be used to express the prob-
ability of some x2 given x1 and the transformation parameters encoded in ϕ

p(x2|x1, ϕ) = N (x2|WR(ϕ)W>x1, σ
2). (6.27)

The values ϕj are assumed to be marginally independent. Due to their period-
icity, the vectors ϕ are modeled by a von-Mises distribution M(ϕ|µ, κ), which
is the circular equivalent of the normal distribution. The parameters µ and κ

describe the circular mean and the concentration around this mean (Figure 6.4).
Then for a decoupled model the probability of some image x2 given x1 is

p(x2|x1) =

∫
ϕ
N (x2|WR(ϕ)W>x1, σ

2)
∏
j

M(ϕj |µj , κj)dϕ. (6.28)

From this equation the derivative d
dW log p(x2|x1) for the log likelihood can be

derived and W is found by gradient descent. Note, often the transformation

54



6.4. i-Theory

to be learned has much less parameters then J . This will result in coupled ϕ,
which could also be included in the model.

6.3.5. Gated Models

Gated models [66, 67] minimize the encoding distance between pairs of trans-
formed images, like TSA. However, the relation between images x and y is
modeled via the product of image coefficients u = Ux and v = V y

zk =
∑
f

Wkf (
∑
i

Ufixi)(
∑
j

Vfjyj) (6.29)

with a vector z of latent variables encoding the transformation parameters. The
basis matrices U and V are transformation dependent, while W is a matrix that
encodes the correlation pattern between the bases. To impose more structure W
is split into W = TP , where P is equal to one on all elements Pii and Pi(i+1). On
all other elements P is zero. This splitted representation causes pairs of coupled
weight vectors like the ones from the two previous subsections. Omitting T an
invariant representation r for an image x

rk =
∑
f

Pkf (
∑
i

Ufixi)(
∑
j

Vfixj) (6.30)

can be obtained [68]. To estimate U , and V , an energy term for this model can
be established by an autoencoder [69].

6.4. i-Theory

The i-Theory3 [15] proposes a theoretical framework of how invariance could
emerge in a feedforeward multilayer network with properties similar to the
visual cortex. It assumes local modules, which have non-linear units that com-
bine the outputs of linear units. These modules are then combined to a hier-
archy. A strong theoretical foundation of this theory allows to derive properties
for these modules and the hierarchy, which are beneficial to achieve invariant
and unique representations. In the following we will describe this concept as
detailed as needed for this thesis, and refer the reader to [15] for a more exhaust-
ive description of the theory.

3It used to be called the M-Theory. However, in his newest talks Tomaso Poggio is referring to
it as the i-Theory, presumably due to the naming conflict to an identically named theory in
physics.
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6.4.1. Basic Modules

First, we have a look at orbits. By applying all transformations gi ∈ G from
the group G to some image x an orbit Ox = {gi(x)|gi ∈ G} is induced. This
orbit is unique for the object in x, and it is invariant to the transformations in G.
For example the group of in-plane rotations would induce an orbit containing
all possible rotated versions of the original image x1. The orbit for some other
image x2 = gi(x1) that can be obtained from x1 by rotation would be the same,
because for both x1 and x2 all possible rotated versions are contained in the
orbit. Of course for some different image x3 that can not be obtained from x1 by
rotation the orbit would be different.

For object recognition we would need to generate and compare the orbit of
an unknown object to the stored orbit of a known object. However, it is not
clear how to measure the similarity of two obits. One possibility is to use the
probability distribution Px induced by the transformations gi on the image. For
these distributions the following holds:

x1 ∼ x2 ⇐⇒ Ox1 = Ox2 ⇐⇒ Px1 = Px2 , (6.31)

where x1 ∼ x2 denotes that x1 can be obtained from x2. However, these prob-
ability distributions are extremely high dimensional making it impractical to ob-
tain them. Therefore, we would like to embed the invariance and discrimination
properties of the distributions to a space of lower dimension. For x,p ∈ RD, the
Cramér-Wold theorem [15, 70] ensures that these high dimensional probability
distributions can be described by D distributions P〈gi(x),pn〉 over one dimen-
sional projections 〈gi(x),pn〉, where pn, n = 1, . . . D are the projection vectors
(Figure 6.5). To discriminate a finite number of distributions, empirically a small
number of projections N < D is sufficient [15].

Instead of transforming the input image x, we can also apply the inverse
transformation to the projection vectors pn:

〈gi(x),pn〉 = 〈x, g−1
i (pn)〉. (6.32)

By applying the transformations to the templates, we avoid transforming every
new image. This allows an invariant and discriminative representation using
two layers of computation. The first layer generates all the outputs using scalar
products of all weight vectors win = g−1

i (pn) with the input x, and the second
layer quantifies the distributions over the outputs of the first layer. The invariant
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Figure 6.5.: The orbits of two images generated by applying all transformations
from a transformation group are projected on a pattern vector pn and produce
distributions.

outputs µnk of these two layers can therefore be calculated as

µnk(x) =
1

|G|

|G|∑
i=1

νk
(
〈x, g−1

i (pn)〉
)

(6.33)

=
1

|G|

|G|∑
i=1

νk

(
w>inx

)
, (6.34)

using a set of nonlinear functions νk, k = 1, . . . ,K. These nonlinear functions
could be powers νk(·) = (·)k, which allow to quantify the distribution by mo-
ments, or sigmoids νk(·) = 1/(1 + e−((·)−k∆)) together with a bias k∆ could be
used to approximate a cumulative distribution function. In case moments are
computed often a few are sufficient.
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low layer modules

medium layer modules

high layer modules

Figure 6.6.: A hierarchy of modules. The bottom modules receive an image as
input and produce a representation that is invariant to local transformations. For
higher layer modules the range of transformation parameters increases. At the
top layer there are class specific modules, which can handle for example head
movements in 3D. The output of these layers is fed to some classifier.

6.4.2. Real World Problems

In real world implementations we are limited to finite size vectors w. This al-
lows us to process in-plane rotations in the way described above. However,
other transformations are only partially visible to w. For example translations
can move objects out of the observed area or scaling can result in objects larger
than the observed area. For a limited range of parameters invariance to these
partially observable groups can be achieved, if the pattern is sufficiently local.
Local means in case of a single parameter i transformation group that

〈x, gi(p)〉 = 0, |i| > a (6.35)

holds for a given small maximum parameter a. For non-group transformations
we relax this requirement to

〈xC , gi(p)〉 ≈ 0, |i| > a. (6.36)

Here, the images xC are restricted to a class C of similar images. This implies
sharply peaked correlations. If this is satisfied, approximate invariance to non-
group transformations can be achieved.

So far we considered only a single module representing an isolated object.
Global group transformations can be handled by such a module, but background
clutter can change the entire representation. This can be avoided by several
modules, which together observe the entire image, while each module observes

58



6.5. Relations of the i-Theory to Learning Methods

a local part of the image. The combined signature of these modules is only loc-
ally affected by clutter. Additionally, it takes a quite large set of vectorswin for a
single module to take multiple transformations into account. Unfortunately, it is
in general not possible to factorize transformations (i.e. first obtain translation
invariance in one module and then scale invariance in the next module), it is,
however, possible to factorize the range of invariance, which can again be done
by using multiple local modules [71]. Such a layer of local modules will produce
a signature invariant to local transformations. If we want to increase the range of
invariance or handle complex transformations, which can approximated locally
by simple transformations, we can stack layers to build a hierarchy as shown in
Figure (6.6). The range of invariance will increase with each layer. For this hier-
archical approach it is necessary that the covariance property is satisfied. That is,
the output of each layer transforms according to the same transformation group
as the layer input [71], i.e. if an input image is rotated, also the output of the
layers is rotated.

6.4.3. Relation to Biology

Hubel and Wiesel proposed that the area V1 in the visual cortex consists of
modules of cells performing nonlinear computations on the outputs of linear
cells [72]. These linear cells are usually referred to as simple cells, while the
nonlinear cells are named complex cells. This is exactly replicated by the mod-
ules of the i-Theory. Here, the modules also have two layers. The first layer
uses only scalar products, a linear operation. The second layer combines these
first layer results in a nonlinear way, which is biologically plausible if specific
nonlinearities such as sigmoid functions or quadratic functions are used.

Also it is a widely accepted theory that visual information is processed hier-
archically from a lower level region called V1 up to a high level regions such
as IT. This is closely resembled by the i-Theory. However, there are also many
feedback connections in the visual cortex, which are not used or explained by
the i-Theory.

6.5. Relations of the i-Theory to Learning Methods

The i-Theory provides a quite general framework for invariant architectures to
which several invariance learning methods can be related. To show these rela-
tions in the following subsections, we first consider projections of the orbit.
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6. Invariant Representations

If we assume that the transformations gr from the group G have only one
parameter r (e.g. degree for rotation) and they are ordered by this parameter,
we can assemble a matrix W . This matrix W = (g−1

r1 (p), g−1
r2 (p), . . . , g−1

rN
(p)) is

composed of column vectorswr = g−1
r (p). The parameters ri for the transform-

ations are uniformly distributed ri = N/I · (i − 1) with I being the maximum
transformation parameter. In the following line of thinking, we assume one pro-
jection vector p. Here, we abbreviate gri by gi and wri by wi. The representation
y of the image vector x is obtained by

y =W>x. (6.37)

For the transformed image gj(x) we obtain y′ = W>gj(x). If we observe a single
entry yi of y while applying transformation gj on x

yi =w>i x = w>i g
−1
j (gj(x)) (6.38)

=gj(wi)
>gj(x) (6.39)

=w>i+jgj(x) = y′i+j , (6.40)

we see that the entries of the representation vector shift indices. Only the first or
last elements of y′, depending on the direction of the transformation, may not
be related to y. By restricting the applicable transformations G to groups that
can be observed completely byW (e.g. cyclic shifts and rotation), a relation to all
entries in y can be established, because these group transformations are turned
into circular shifts in the representation vector y.

In the i-Theory the distribution over the entries in y are quantified, which
of course does not change if only the indices are shifted. However, for learning
methods it seems beneficial to keep the spacial information of the entries embed-
ded in y. The circular shifting of the entries can be described in the frequency
domain. A Fourier transform of ywill encode ywith amplitudes invariant to the
group transformation, while the phases encode the transformation parameter.
Via the n-dimensional Fourier transform an extension to n parameters is pos-
sible.

6.5.1. Relating the i-Theory to the Toroidal Subspace Analysis

Using the above Fourier transform approach we can model the relationship of
two images in order to learn the weight vector W and establish a connection to
the i-Theory. Letx(t) = g(x(t−1)) at time t be a transformed version of an image
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6.5. Relations of the i-Theory to Learning Methods

x(t − 1) in a sequence. From above we know that the Fourier amplitudes will
not change. Only the phase will change according to the Fourier shift theorem.
Thus, we can reconstruct x(t) by

x(t) =W−1F−1R(φ)FWx(t− 1) (6.41)

if the vector of phase shifts φ encoded in a diagonal matrixR(φ) is known. Here,
the Fourier transform is applied via the matrix F . This reconstruction can be
turned in a learning algorithm, where this autoencoder like energy term

E =
∑
t

||x(t)−W−1F−1R(φ)FWx(t− 1)||, (6.42)

and R(φ) are optimized in an alternating manner. Since the Fourier transforma-
tion is just an unitary transformation, it can be absorbed into W

E =
∑
t

||x(t)−W−1R(φ)Wx(t− 1)||, (6.43)

where W becomes complex. To avoid a complex difference vector, W and R(φ)

can be turned into real valued matrices. In W each complex row vector Wi is
replaced by two real ones<(Wi) and=(Wi). R(φ) then becomes a block diagonal
matrix as described in equation 6.25. To simplify the computations the transpose
instead of the inverse of W can be used

E =
∑
t

||x(t)−W>R(φ)Wx(t− 1)||. (6.44)

This is the essence of TSA [65] from Section 6.3.4. Note, by replacing the inverse
ofW by the transpose, only restricted transformations that can be handled, since
W>R(φ)W is an orthogonal transformation.

6.5.2. Relating Slow Subspace Learning to the Toroidal Subspace
Analysis

Next, we show the close relation between TSA and slow subspace approaches.
Since TSA uses 2D subspaces to establish an invariant representation, a close
relation to slow subspace approaches operating on 2D subspaces seems natural.
Here, we consider the slow subspace autoencoder model presented in Section
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6. Invariant Representations

6.3.3 omitting the sparsity term. Remember, the energy terms for that model are

E =Erec + αEslow s.t. ||wi|| = 1 (6.45)

Erec =
∑
t

||x(t)−W>Wx(t)||22 (6.46)

Eslow =
∑
t

||a(t)− a(t− 1)||1 (6.47)

with

ai(t) =
√

(w>i2x(t))2 + (w>i2+1x(t))2. (6.48)

And for the TSA we have

E =
∑
t

||x(t)−W>R(φ)Wx(t− 1)||. (6.49)

The relation of subspace methods to TSA and the i-Theory can be seen if all
energy terms are zero for any pair of group transformed images. Then subspace
methods have found a basisWslow, that can reconstruct all sample pairs x(t) and
x(t − 1) from a sequence, while a(t) does not change for consecutive samples.
Only the pairs of activations w>i2x(t) and w>i2+1x(t) can change over time. This
change can be interpreted as an angle change in polar coordinates, which is the
only change TSA allows to reconstruct x(t) from x(t−1). From that, we see, any
input image can be group transformed using Wslow and the matrix R(φ) for the
angle change. Therefore, Wslow is also an optimal solution for the TSA model.
The other way round, an optimal basis WTSA learned by TSA, will always have
a fixed a(t), and perfect self-reconstruction is guaranteed via not transformed
pairs x(t) and x(t− 1). Thus, WTSA is also an optimal solution for the subspace
model.
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7. Distribution Based Invariance
Learning

What is a good framework for learning invariant representations? The previous
chapter reviewed several invariance learning methods. None of these methods
has shown success on non-affine data, except for the convolutional networks.
These convolutional networks, however, are not guaranteed to transfer the in-
variance property well to unknown classes. For the other methods, possibly the
mathematical model for the representation is too restrictive. Here, we propose
a new invariance learning method based on the i-Theory [15]. This theory de-
scribes a quite concrete model for invariance. It assumes a hierarchy of modules
(see Chapter 6.4), where each module works in the same way. These modules
even allow approximate invariance to rotation in 3D.

To achieve invariance to a transformation group, the weight vectors in the
modules need to resemble an orbit induced by the transformation group. One
known approach to finding such weight vectors is to apply the transformations
from the transformation group to a random pattern. This, however, requires a
method for performing the group transformations on the input [15]. Another
approach extracts the weight vectors from data, but it needs a well prepared set
of training data and does not learn the weight vectors [73]. In contrast, we try to
find the weight vectors by supervised training. The contributions in this chapter
have been published previously in [16].

7.1. Learning Method

We follow closely the framework provided by the i-Theory for defining our in-
variant representation. There are two layers of computation to gain invariance
to the transformations g from the group G. For an input image x the first layer
is given by scalar products w>inx with the weight vectors win, i = 1, . . . I, n =

1, . . . N , which generates a projected orbit representation of x. After training,
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7. Distribution Based Invariance Learning

the weight vectors are supposed to contain N patterns each in I transformed
versions that resemble an orbit. The second layer quantifies the distributions of
the first layer outputs by moments m ∈ M out of a set of moments1 M . So the
overall output for the input image x is

ynm(x) =

I∑
i

(
w>inx

)m
. (7.1)

The quantities I,N, and the set M are parameters to be set. I describes the
resolution of the orbit and thus how invariant the representation can be. Larger
N and N will allow to discriminate more distributions and thus objects.

By optimizing the weight vectors win, we hope to obtain outputs ynm(x) in-
variant to the transformations g ∈ G. We follow an approach similar to the
methods introduced in the Chapters 4 and 5. We improve the ratio between in-
traclass distance and interclass distance. The main differences is that we assume
the same labeled inputs to be from the same orbit and thus we expect that the
intraclass distance can be minimized to approximately zero. When the intraclass
distances become zero invariance is reached. To implement this idea we estab-
lish an energy function. One term of this function will quantify the intraclass
distances. Instead of measuring the distance between pairs of input images, the
distance to a class prototype is used. This prototype has target values tcmn for
every class c ∈ C, moment m ∈ M , and all N projection patterns in the weight
vectors. Using the prototype, we can avoid an energy term where the compu-
tational complexity rises quadratically with the number K of images per class.
We minimize

ES =
1

K

K∑
k=1

∑
m∈M

N∑
n=1

(
tcmn −

∑
i

(
w>inxk

)m)2

(7.2)

to obtain invariance to the transformations in the training set. However, this
term can produce trivial solutions. To get outputs useful for classification, the
second energy term promotes a minimum interclass distance. Conveniently, this
can be done via the prototypes of all tuples of different classes c and c′

ED =
1

|C|(|C| − 1)

∑
c,c′

max (1− ||tc − tc′ ||, 0)2 , (7.3)

1Note, we used moments. In a first attempt we tried histograms with Gaussian and cumulative
distribution functions with sigmoids. These are, however, hard to train since their derivative
functions are close to zero for many inputs.
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7.2. Distance to Center Classification

with the target vectors tc =
(
tc,1,1, tc,1,2, . . . , t|C|,|M |,N

)>. Here, | · | identifies the
number of elements in a set. To prevent the distances from becoming infinitely
large, only those distances smaller than one contribute to the energy. The overall
energy is then a combination of ES and ED weighted by the factor α

E = αES + (1− α)ED. (7.4)

For training, the targets vectors tcmn and the weight vectors win are initialized
randomly. Then the energy term (7.4) is minimized by a gradient optimization to
find tcmn andwin. We used the Sum of Functions optimizer [30] for the gradient
optimization.

7.2. Distance to Center Classification

Invariant representations allow for simple and elegant classification. All images
x∗ in a class c∗ will be represented by outputs y(x∗) that lie exactly on the target
vector tc∗ . If the representation is only approximately invariant, the outputs
y(x∗) will be clustered around tc∗ . Therefore, the class label c for an image x
can be determined by the target vector closest to y(x∗):

c∗ = arg min
c
||y(x)− tc||, (7.5)

with y =
(
y1,1, y1,2, . . . , y|M |,N

)>. This strategy we call distance to center clas-
sification. In case invariance was not reached, large output clusters may be ob-
tained. Then distance to center classification might not work perfectly.

7.3. Experiments

In this section we test the learning model first on artificial data to see if it is be-
having as we expect it and then measure the influence of several parameters. We
used binary patches of size 4 × 4 pixels. Each pixel was randomly set either to
one or to minus one with probability 0.5. These patches were shifted using peri-
odic boundary conditions, resulting in 16 transformed versions of every patch
(Figure 7.1). Then the capability is tested on handwritten digits from the MNIST
dataset [3] (Figure 7.2) as a small real world example. For this dataset we assume
that each digit can be generated from some prototype by an unknown nonlinear
transformation. For training there are 60000 samples available, while the test set
contains 10000 samples.
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7. Distribution Based Invariance Learning

Figure 7.1.: The image shows 2 example patches in all their 16 possible shifts.
The circular shifts used are well understood group transformations.

Figure 7.2.: Hand written digits from the MNIST data set. For every row we as-
sume that the digits can be converted into each other by some unknown trans-
formation.
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Figure 7.3.: The plot shows the artificial test data in a 2D representation of our
model. Each patch is denoted by a different shape and color. Perfect shift invari-
ance is achieved since all shifted versions of a patch fall on the same point. The
2D coordinates for each point were obtained from the second moments of two
orbit projections, i.e., y1,2 and y2,2 from Equation (7.1).

The only model parameter we did not change during the experiments was α,
which controls if interclass or intraclass distances are emphasized. It was set to
0.01 for all experiments. This was mainly due to problems of diverging energies
for some parameter settings when training on the MNIST data. Additionally, we
observed faster convergence on MNIST data.

As a proof of concept we trained the model on the artificial data. For training
we generated 100 patches randomly and obtained via the transformations 1600

samples. On these samples we trained the model with N = 2 orbit projections
and I = 16 weight vectors per projection. I is determined by the size of the orbit
induced by cyclic translations on 4 × 4 pixel images in a discrete setting, which
is 16. The two orbit projections were chosen for visualization. After training we
tested the model using 160 samples obtained from 10 random patches generated
like the training images. In Figure 7.3 the results are shown. For each sample
x we obtain two values, the second moment for each projection as described in
Equation 7.1. Therefore, each point can be represented in two dimensions. Since
all transformed versions of a sample fall on a single point, this representation is
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Figure 7.4.: The minimum distance between target vectors averaged over 100

trials. Here, the number I of weight vectors per projection was fixed at 16. The
moments M and the number of projections N varies.

perfectly invariant.

The choice of the second moment in the previous experiment was arbitrary. It
was motivated by the observation of the authors of the i-Theory that often one
moment is sufficient. Here, we explore how different sets of moments influence
the results. For this experiment we train the model on different sets of moments
using the same training set as before. Then on a test set induced by 10 random
patches we measure the min distance (tc, tc′) by arg min(c,c′) ||tc − tc′ || between
all pairs of target vectors (tc, tc′). The results shown in Figure 7.4 are averaged
over 100 trials. We see on average mostly a distance of one is reached. Only if the
mean value (M = [1]) is used, the minimum distances become zero. All other
moments, therefore, allow for a discriminative representation that generalizes
well to unseen samples.

To see, if the representations learned are invariant, we measured the mean
distance

∑
k ||y(xk) − tc(k)||/K of the data point representations to the target

vectors they belong to. This was done using the same setup as for the target
vector distances. The the mean distances where all well below 0.02, except if
only the third moment was used, which resulted in an average distance of 0.35.
So any combination of moments will find an invariant representation, only that
third moment seems less useful on its own.

Next, we were interested how the number of weight vectors influence the res-
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Figure 7.5.: The minimum distance between target vectors averaged over 100

trials. Here, the moment M was fixed at 2, and the number of orbital projections
was also set to 2, while the number I of weight vectors per projection varies.

ult. For the artificial data, we know that the entire transformation orbit can be
represented by 16 transformed versions of a pattern and, therefore, the projec-
tion of the orbit can be done using 16 weight vectors. In this experiment the
number of weight vectors varied, while always the second moment and two
orbit projections were used. We measured again the distances between target
vectors and the distances from data points to the corresponding target vectors
in the same set up as before. The average distances from data points to their
target vector are all below 0.1, so approximate invariance was always reached.
For the distances between target vectors we see in Figure 7.5 a decline of the
minimum distances for a small number of weight vectors per projection, as ex-
pected. Interestingly, already 4 weight vectors per projection give a reasonable
average minimum distance. This is well below the calculated size for the orbits.

To understand why less weight vectors are needed then the size of the orbit
suggests, we plotted the learned basis functions. When using only the second
moment the resulting weight vectors seem to have little structure. By using the
moments M = [1, 2, 3] the set of admissible weight vectors was reduced due to
the better quantification of the distributions of the orbit projections. This con-
straint resulted in more structured weight vectors shown in Figure 7.6. Here, we
see for 4 weight vectors per projection that the learned patterns are structured
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7. Distribution Based Invariance Learning

Figure 7.6.: Visualization of the weight vectors for different sets of moments M ,
number of weight vectors N per orbital projection, and orbital projection index
i. Each weight vector was reshaped to the input pattern size of 4× 4 pixels.
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7.3. Experiments

such that less than 16 weight vectors are needed. For i = 1 the patterns have
almost constant intensity across the diagonal in one direction, and, thus, only
the smaller transformation group of shifts orthogonal to that direction needs to
be handled. This can be done using 4 vectors. For i = 2, two vectors are not
used. The other two vectors have a structure, which is repeated for shifts larger
than one. Therefore, only two vectors are needed. Also the larger model with 16

weight vectors per projection does not learn a single pattern in 16 transformed
versions. It learns multiple patterns per projection, with similar structures as for
the case N = 4. These results show that compared to arbitrary patterns, for cer-
tain structured patterns less weight vectors are needed to represent the orbits.
Therefore, models with few weight vectors per orbital projection work.

Going one step further, we tested invariance to the nonlinear transformations
in MNIST. This data is challenging, since the underlying transformations are
unknown. We have no hint how to select the number of weight vectors per
orbital projection, and, additionally, the number of parameters to learn for the
28× 28 pixel images is much larger compared to the 4× 4 pixel images from the
artificial data.

A small model using two orbital projections with 20 weight vectors each was
trained for the visualization shown in Figure 7.7. Each digit can be represen-
ted in 2D, because only the second moment was used for quantifying the dis-
tributions from the two orbital projections. The visualization of the test data
shows ten nice clusters for the digits. Equally labeled digits are often not per-
fectly aligned, therefore, only approximate invariance to the transformations in
MNIST was learned. However, a two dimensional representation may not offer
enough degrees of freedom for a dataset as complex as MNIST. To improve sep-
aration, the number of projections can be increased. In Figure 7.8, the error rates
on the test data for various parameter settings are shown. These error rates are
obtained by distance to center classification described in Section 7.2. Clearly, the
error rates significantly decrease for a larger number of projections. While the
two projections used for visualization yield 16.63% error rate, the best error rate
of 2.86% is achieved using 10 projections. However, more projections or weight
vectors do not improve the results. Furthermore, we tried to use the moment set
M = [1, 2, 3], which, however, increased the error significantly.

In Figure 7.9 the 286 errors made by the best model on the 10000 test samples
are shown. These errors have no clear pattern. Even samples easy to classify for
a human are misclassified. This suggests that the transformations underlying
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Figure 7.7.: This plot shows the MNIST test data in a 2D representation learned
by our model. Each digit is represented by a point colored according to the label.
Clearly, they form clusters.

MNIST are not well modeled. However, 17.97% of the samples are misclassified
when the distance to center classification is applied in the input pixel space of
768 dimensions. This shows a significant improvement in the organization of
the space.

7.4. Discussion

A new method for learning invariant representations was introduced. Using the
i-Theory as framework, we hoped to gain invariance to transformations more
general than state of the art methods can learn. In the experiments this super-
vised method showed invariance to periodic boundary translation. Hence, it is
capable of learning simple transformation groups, where optimal parameter set-
tings are known. For unknown transformations these parameters are of course
not given. Therefore, they need to be found empirically. We tested our model
on the MNIST data assuming each digit can be generated from a prototype digit
via an unknown transformation. The learned representations were, however,
not fully invariant. But they achieved a clustering in a low dimensional space
with decent classification performance. Since increasing the number of projec-
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Figure 7.8.: Error rates on the MNIST test data. The moments are denoted by
M , I is the number of weight vectors per orbit, and N is the number of orbit
projections.

tion vectors per orbit and weight vectors per projection did not improve the
invariance, there are either optimization issues or more general problems with
the model.

Our analysis of the model showed that several moments are needed to ob-
tain well structured weight vectors. This worked well for the artificial data, but
not on MNIST. The supervised approach we developed may cause some of the
problems with MNIST, since there are local optima in the energy function. Ad-
ditionally, this supervised learning requires labeled data, which is not available
for many transformations. Therefore, it seems necessary to adapt this learning
method to unsupervised learning.
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Figure 7.9.: The 286 errors made by a model with the parameters M = [2], N =

20, and I = 10 on MNIST. At the top right of each digit the correct label, while
on the bottom right the wrong label is displayed.
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8. Convolutional Slow Subspace
Learning

Objects in an image can usually be transformed by multiple transformations
simultaneously (e.g. translation and rotation). The unsupervised representation
learning methods from Chapter 6 can find representations invariant to many
common transformations. However, they seem not to be able to handle more
than one transformation group at a time. In this chapter, we examine an hier-
archical architecture with a design guided by the i-Theory to approach this prob-
lem.

First, we consider the slow subspace autoencoder [63] (Chapter 6.3.3) omitting
the sparsity term. We trained this model on pairs of random intensity patches,
where one patch is a transformed version of the other patch. These pairs were
used as very short image sequences. Figure 8.1a and 8.1b show the weight vec-
tors for a subspace representation invariant to periodic boundary shifts and ro-
tation. Remember, in slow subspace autoencoder pairs of weight vectors wi2

and wi2+1 are coupled to form amplitude coefficients

ai(t) =
√

(w>i2x(t))2 + (w>i2+1x(t))2 (8.1)

for an image vector x(t) at time t. Therefore, there are pairs of similar weight
vectors in Figure 8.1. These pairs can be described by sine-shaped patterns,
which in case of the rotation invariant representation are placed on a circle. wi2

andwi2+1 can be related by a 90◦ phase shift. These properties allow to represent
an image in terms of invariant amplitudes and transformation dependent phases
(Chapter 6.3.3).

Note that the weight vectors for the shifts closely resemble a Fourier basis,
which usually is also represented by amplitude phase pairs. For the Fourier
transformation the amplitudes are known to be shift invariant. However, it is
also well known that a large amount of spatial information is encoded in the
phases (Figure 8.2). Therefore, invariance is gained at the cost of uniqueness.
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8. Convolutional Slow Subspace Learning

(a) (b)

Figure 8.1.: Global bases learned from shifted and rotated patches of random
intensities are shown in (a) and (b).

(a) (b)

(c) (d)

Figure 8.2.: When the Fourier phases of image (a) and (b) are exchanged while
fixing the amplitude, the image (c) is obtained from (a) and (d) is obtained from
(b). This shows how much image information is in the phases.
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(c)

Figure 8.3.: A basis learned with a sparsity prior from natural movie sequences.

Since the rotation invariant representation also uses the amplitudes while omit-
ting the phases, it is likely that uniqueness is also lost here.

Another problem of these representations is that factorizing the invariance
problem by first gaining invariance to one transformation group in one module
and then invariance to a second transformation group in the next module seems
impossible [71]. However, factorizing the range of invariance is possible accord-
ing to the i-Theory [15]. By factorizing the invariance it is restricted to a local
window. This can be achieved for example via a sparsity term, since the pixels
in natural images are highly correlated only in local neighborhoods. In Figure
8.3 we see the results for the complete slow subspace autoencoder model, which
includes a sparsity term. The model was trained on natural movie sequences
from the van Hateren data set [74]. Of course, local windows will decrease the
invariance [75], but due to the local similarity of most transformations to shifts,
a diverse set of transformations can be handled and more spatial information
on the input is retained. Additionally, sensitivity to background clutter is de-
creased, as it only locally effects the representation.

In the following we will describe a similar convolutional subspace architec-
ture we published in [17], which enforces local invariance by its structure. To
increase the range of invariance, we add a second layer. Then we test the archi-
tecture for invariance to multiple transformations and make use of the convo-
lutional structure to investigate whether redundancy can help to overcome the
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8. Convolutional Slow Subspace Learning

input

Figure 8.4.: Visualization of a module. Two weighted sums over an area in the
input are squared and added. Finally, the root is taken to get a single output
value.

loss of uniqueness.

8.1. Convolutional Model

The goal of this convolutional model is to replicate the hierarchical architecture
suggested in the i-Theory and additionally to allow for unsupervised training
to achieve invariance. To implement the layers of local modules, convolution
is used. This will cause reuse of the same local module on all locations of the
layer. Using conventional convolution, a highly redundant representation will
be generated at the output of this layer due to the large overlap of the inputs for
the module. A strided convolution is applied to avoid this redundancy; i.e., for
a stride s in all directions of the convolution only every s-th value is calculated.

Each module is represented by filters Wj ∈ RU×V×D, j = 1, 2, . . . , J , where
pairs are coupled like the weight vectors in subspace learning methods (Figure
8.4). The output for an input X ∈ RA×B×D of a layer is

Oi(t) = ds(Zi(t)), (8.2)
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where the amplitude maps Zi(t) are given by

Zi(t) =

√√√√ 1∑
k=0

(Wi2+k ∗X(t))2. (8.3)

In this formal description of the layer output the strided convolution is de-
scribed by the equivalent of a standard convolution, denoted by ∗, followed
by downsampling using the downsampling operator ds, which takes every s-th
value in each direction.

We use an energy model to train this model. A convolutional autoencoder
term will encourage a diverse set of filters, while a slowness term ensures an
invariant representation. These terms are adapted to this convolutional setting
from the slow subspace autoencoder [63], which additionally uses a sparsity
term to find local features, whereas this convolutional model finds local features
due to the restricted size of the filters. The energies

Erec =
∑
t

||X(t)−
∑
j

(
W̃j ∗ us(ds(Wj ∗X(t))))

)
||22 (8.4)

Eslow =
∑
t

||O(t)−O(t− 1)||1 (8.5)

are combined via

E =Erec + αEslow s.t. ||Wj || = 1. (8.6)

Here, α is scalar for weighting the terms and W̃j is obtained from Wj by revers-
ing the order of the elements in the first two dimensions. For the autoencoder,
an upsampling operator us is introduced that reverses the downsampling by
filling in zeros. Note, the autoencoder (8.4) uses no zero padding for Wj ∗X(t),
which decreases the size of the output representation. To recover the original
size, zero padding is used for convolution with the upsampled representation.
In Equation (8.3) again no zero padding is used.

A multi-layer architecture is then trained layer by layer, bottom up. For train-
ing the first layer on sequence images, the images are preprocessed by ZCA
filtering (Chapter 2). Using these preprocessed images, filters for the convolu-
tional model were optimized by stochastic gradient descent. After training, the
first layer output mapsOi(t) can be computed via (8.2). The next layer is trained
on the output of the first layer for unprocessed images. Because these outputs
can have many dimensions, the number I of maps is reduced by filtering, and
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Figure 8.5.: A two layer network using stride two.

therefore also the number of parameters to be learned is decreased. As filters
we use the principle components of 1 × 1 × I patches extracted from the out-
puts. Note, this filtering retains the spatial structure of the data. Then the data
is ZCA filtered and used for optimizing the second layer filters. In my experi-
ence, ZCA whitening of the input of the currently trained layer is mandatory to
obtain useful filters. Higher layers can be computed analog to the second layer.
For computing the outputs of higher layers, only the PCA step is needed, and
thus ZCA filtering is omitted.

8.2. Experiments

We trained a two layer version of the convolutional model using natural movie
sequences from the van Hateren video database [76]. These are gray scale 128×
128 pixel movies collected from television containing mostly scenes of animals
in the wild. The top 15 pixels are, however, black. Therefore, only 113 × 128

pixel movies are used for our experiments.
For training the first layer with α = 50, the stride was set to 6, the filter size

was set to 15× 15 pixels and 36 filters shown in Figure 8.6a were trained. Then,
using the learned filters, the first layer output was generated using stride 2. To
train the second layer, the 18 magnitude maps from the first layer output were
reduced via PCA to three maps carrying more than 90% of the variance. For
training, the stride of the second layer was set to 6. The filter size was adapted
to 15×15×3 to handle all three maps, and 108 filters were learned with α = 100.
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(a) (b)

0° 45° 90° 135° 180° 225° 270° 315°

(c)

Figure 8.6.: Layer 1 filters are displayed in (a). In (b) only the top part of the
second layer filters is shown. This top part, which is for the first output map,
differs from the other parts only in the intensities of the filters. In (c) we see
weighted sums a1W1 + a2W2 of the first filter pair in the first layer. The vector
(a1, a2) is from the unit circle. This visualization demonstrates how well shifts
can be modeled.

We see the results for the top map in Figure 8.6b.

Clearly, for both layers we obtain Gabor like filters (Figure 8.6). For the second
layer the filters are repeated in every map, however, with different intensities.
By visual inspection (8.7), the covariance property can be verified. This prop-
erty is described in the i-Theory (Chapter 6.4.2) as prerequisite for an invariant
multilayer architecture. These findings suggest invariance to small shifts in the
first layer and an increased invariance to these shifts in the second layer. We
tested this translation invariance and also rotation and scale invariance using
100 patches of 64 × 64 pixels from the van Hateren image database [74]. We
measure the change in the output of each layer, as the input undergoes trans-
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Input

Layer 1

Time

Figure 8.7.: In the top row a stream of input images is shown. Below, an output
stream for the first filter pair in layer 1 is shown. Clearly this output stream
shows the same transformations and therefore, the covariance property is ful-
filled. Note, the layer one output has been generated with stride two. These
outputs have been scaled up by factor two for display.

formations. The MSE between the output of the original and the output of the
transformed patch is taken and normalized against the largest MSE, assuming
the patches are uncorrelated for these transformation parameters. The outputs
of both layers were downsampled with stride 3.

The plots in Figure 8.8 validate our assumption of invariance to small shifts.
We also see invariance to rotation and scaling, because these transformations can
locally be approximated by shifts. And, additionally, the invariance increases
from the first to the second layer.

Next, we were interested in the effect of the stride. The strides for both layers
were adapted simultaneously. Using the same approach as above, we measured
the MSE for different strides on shifted patches. The plots in Figure 8.9 show
that the first layer output is not affected, whereas, the second layer is. This is
due to the change of the represented area. The larger the stride in the bottom
layer the larger the area represented in the second layer.

These findings suggest using large strides. One of the main problems of in-
variant representations, however, is representing the input uniquely. To test how
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Figure 8.8.: Invariance experiment for varying degrees of shift (a), rotation (b),
and scale (c). The normalized MSE in layer 1 and layer 2 is plotted along with
results for the unprocessed input patches as reference.
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Figure 8.9.: The normalized MSE in layer 1 (a) and layer 2 (b) depending on the
amount of shift is plotted for different strides. As reference also a curve for the
input patches is shown.

Layer 1 Layer 2
Stride 6 1.48 12.88
Stride 3 1.41 6.35
Stride 2 1.43 5.01
Stride 1 1.42 3.28

Table 8.1.: Results for k-NN classification (k = 3) on MNIST. The error rates are
given in percent.

well information on fine image structures is retained at each layer, we perform
k-NN classification (k = 3) on the MNIST [3] dataset. The classification error on
the raw images is 3.09%. As we see in Table 8.1, there is a drop in the k-NN clas-
sification performance from layer 1 to layer 2, which can be reduced to a certain
extend by choosing small stride sizes. This clearly indicates a loss of important
information. Interestingly, the first layer error rates are significantly better than
on the input images. We think this is due to the small non-affine transformations
in MNIST, which may be handled well by the Gabor features.
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8.3. Discussion

8.3. Discussion

The architecture presented in this Chapter uses local modules in a hierarchy
to achieve invariance to multiple transformations. This structure is motivated
by the i-Theory which suggests factorization of the range of invariance to local
modules. We trained these modules using a convolutional variant of the slow
subspace autoencoder. The resulting representation layer is similar to a layer
of i-Theory modules. Indeed, invariance to multiple transformations was meas-
ured in the experiments and, as expected, there is an increase in invariance from
layer to layer.

However, there is also an information loss which increases from layer to layer
and can only be mitigated partially by increasing the redundancy of the layer
input. This information loss remains an open problem. Possibly, it can be re-
duced by learning more object specific representations in the modules. To do
this, I think, we need to avoid enforcing orthogonality in the filters and use lar-
ger subspaces.

Altogether, the proposed architecture seems to be a good starting point for
unsupervised training of deep invariant models. Using only one layer, it is ap-
parently capable of handling some of the non-affine transformations in MNIST,
which leads to improved classification results.
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Part III.

Crowding
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9. Introduction to Crowding in
Peripheral Vision

Humans have the impression of high-fidelity perception, although the eye
samples only a small fraction of an image mapped on the retina with high res-
olution. Most of the image is heavily subsampled. Nevertheless, our brain is
able to establish this illusion, which, however, is easy to disprove by trying to
recognize details of objects seen from the corner of one’s eye.

Reduced sampling rates in the periphery of the retina cannot entirely explain
the observed recognition deficits. The visual system seems to have deficits when
an object, which can be recognized in isolation, is viewed in a cluttered envir-
onment. This phenomenon is referred to as crowding. It could be caused by the
way images are represented by the visual system. Hence, understanding this
phenomenon could help understanding how the best available object recogni-
tion system - the human visual system - represents images.

We approach crowding by modeling. To reproduce crowding effects, images
are encoded by a simplified model of early vision and decoded from this rep-
resentation using a sparse image basis as prior. This chapter introduces the
crowding phenomenon as well as common theories and models. In the follow-
ing chapter our model is presented.

9.1. The Crowding Phenomenon

Scenes from the real world are projected by the eye’s lens onto the retina. The
most central part of the retina is called fovea. Here, the lens maps with high
accuracy and densely packed receptors sample the light with a high resolution.
With increasing distance to the fovea, which is often referred to as eccentricity,
both the quality of the mapped image as well as the sensor density decrease.
Vision in this area is called peripheral vision.

We use peripheral vision when we focus on a point and try to recognize a tar-
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Figure 9.1.: A typical crowding setup is illustrated. On the left side the eye with
light falling through the lens on the retina is shown. The retina is colored in dark
gray. The central region of the retina performs foveal vision with high sampling
rates due to the densely packed photoreceptors. Towards the outer parts of the
retina the receptor density decreases. Here, peripheral vision takes place. Note,
the extend of these regions indicated on the left is not to scale. The foveal vision
region is much smaller. On the right the stimulus is shown. The focus point is
projected to the center of the retina, while the targets and flankers are projected
to the peripheral part of the retina.

get in the periphery (Figure 9.1). It can be surrounded by other objects referred
to as flankers. If in peripheral vision an isolated target can be recognized, but
the same target with flankers can not be recognized, we call this phenomenon
crowding. An early description is due to Korte [77]. Since this phenomenon
has been discovered in 1923, there has been a vast amount of research. Never-
theless, it is still not understood. However, many experiments give cues on the
origin of crowding. These results have been reviewed recently [78–80]. Here,
we will focus on peripheral crowding, which has strong effects that can clearly
be discriminated from other phenomena. There is a debate if crowding is also
present in foveal vision [81], since the observed phenomena could also have
other causes.

In the following, properties of crowding are reviewed based on [79]. Crowded
objects can still be detected, they are visible, but change the appearance and
seem to obtain characteristics from flankers [82]. By this effect, identification
is impaired. But the impairment is not due to reduced contrast of structures.
Rather the structures are perceived as jumbled together and indistinct at seem-
ingly high contrast.

Crowding depends on the spacing between target and flankers. There is a
critical spacing, for smaller distances crowding will occur. This critical spa-
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9.2. Theories of Crowding

B ABC

Figure 9.2.: Example stimuli are shown. By focusing on the× the crowding effect
can be tested.

cing range increases with eccentricity [83]. The spacing is anisotropic, with
a larger influence of horizontally arranged flankers than vertically arranged
flankers [84]. Also the effect is not symmetric. Flankers arranged horizontally
next to the target have a larger effect if they are placed further away from the
fovea compared to flankers with the same distance to the target but closer to the
fovea [83].

Even though most demonstrations show spatial crowding only, crowding is
not limited to the spatial domain. Temporal flankers, i.e., objects shown in the
same location as the stimulus before and after stimulus presentation, can also
impair identification.

9.2. Theories of Crowding

A large body of literature has described settings and stimuli, where crowding
occurs, as well as targets which increase or decrease the deteriorating effect.
A variety of theories try to explain these findings, where the main categories
comprise pooling, substitution, and masking models – for a recent review, see
Levi [78]. Most theories are descriptive, and only few can directly be implemen-
ted as computational models. Both kinds are briefly introduced here.

Pooling models are inspired by classic object recognition models [26, 85]. They
assume that local features are measured and integrated over a pooling area, sim-
ilar to receptive fields, and only the output after pooling is available for recog-
nition. Due to the integration, image information is lost [86]. As noted in [87],
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these pooling areas are most likely small in the fovea and become larger towards
the periphery. Thus, less neurons are needed to handle the peripheral inputs.
While in the fovea a single object is covered by such a pooling area, there are
several objects in the peripheral pooling area, which then integrates all features
from these objects and causes crowding.

Studies show a high degree of spatial uncertainty in peripheral vision [88, 89].
Substitution models originate from these findings. These models assume that
individual features can be detected, but information on the precise feature loca-
tion is lost, so that features of the target stimulus may be substituted by features
of the flankers. This explanation is supported by experiments on the spatial res-
olution for discrimination tasks. In the fovea, the resolution of individual image
features is similar to the resolution of their conjunction. Whereas, in the peri-
phery the resolution of the feature conjunction is much lower than the resolution
of individual features [90].

Finally, masking models suggest that strong features of flankers suppress fea-
tures of the target. This idea extends ordinary masking. In general, masking
describes the impairment of the discriminability of a signal by a pattern. This
is a well establish phenomenon for signals and masking patterns that overlap.
Crowding appears to be just the same, except for the distance between the sig-
nal and the masking pattern [91]. Works by [81], however, suggest that masking
effects due to inhibition of features are to weak to explain crowding effects.

While all these approaches can capture different aspects of crowding, they do
not provide a mathematical framework for simulations. Here, we summarize
two pooling models supplying such a framework.

Balas et al. [92] hypothesize that in the visual system statistics of the activa-
tions from Gabor-like feature detectors are computed over local pooling regions.
These feature detectors are implemented by a complex wavelet transformation.
Then statistics, which in some cases are restricted to similar features, summarize
the local properties of the input. This model allows to synthesize images with
the same statistics and test them on human subjects.

Similarly, Freeman et al. [93] propose a model of Gabor-like feature detect-
ors, which then, in a second stage, are combined nonlinearly and averaged over
local regions. This process is only applied to features of neighboring orienta-
tion, scale, and position. They can also synthesize images that match the model
output.
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10. A Compressed Sensing Model of
Crowding

10.1. Introduction

Crowding sets a fundamental limit to object perception in peripheral vision as
we have seen in the previous chapter. To gain a better understanding of the
crowding phenomenon, a computational model is helpful, since it allows for a
precise analysis of the causes for degraded perception. Computational models
have been proposed before [92, 93]. However, these models make assumptions
such as that similar features are combined. Here, we avoid such assumptions.

We hypothesize crowding to be caused by a bottleneck of information trans-
mission from the retina to areas responsible for object recognition in the brain.
We present an alternative compressed sensing [94, 95] model for the bottleneck.
The work has been published previously [18]. First, a short introduction to the
compressed sensing theory is given on which our model is based. Then the new
model is presented and analyzed.

10.2. Compressed Sensing

A basic understanding of compressed sensing (CS) [94, 95] is needed to intro-
duce our model. According to the Shannon-Nyquist theorem a signal needs to
be sampled at twice the maximum frequency to allow for perfect reconstruction.
This is in general true for any signal. However, if prior knowledge about the
signal is available only fewer samples may be needed. In the compressed sens-
ing framework [94, 95] random samples are taken. For reconstruction signals
that have a sparse representation, such as natural images, are required. This
sparsity assumption introduces the prior knowledge, needed to solve a under-
determined systems of equations for reconstructing the input signal.

Mathematically, measurements are acquired by correlating a signal x with the
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sensing patterns θk:
yk = 〈x, θk〉, k = 1, 2, . . . ,m. (10.1)

Usually, a certain degree of randomness is involved in generating the sensing
patterns θk [94, 96]. This randomness ensures global measurements of the signal
as well as maximum differences between the sensing patterns. The sampling of
the signal is then done with several sensing patterns, which can be expressed by
a measurement matrix Θ with m sensing waveforms θk as rows:

y = Θx. (10.2)

Note that the problem of solving this equation for the original signal x given the
measurement vector y is underdetermined, since the dimension of y is smaller
than that of x. Hence, additional information is needed to find a unique solu-
tion and thereby recover x. This information is introduced by using a sparse
representation a of x, which is obtained by using a sparse basis Ψ

y = ΘΨa. (10.3)

Sparsity in the coefficients a is then used as a constraint to find a unique solution
to the underdetermined system of equations

arg min
a
||y −ΘΨa||2 s.t. ||a||0 < s, (10.4)

assuming the signal is s-sparse, i.e. a has s non-zero elements, in the basis Ψ.
This optimization problem can approximately be solved by using the Compress-
ive Sampling Matching Pursuit (CoSaMP) [97] method.

Compressed sensing has been introduced with uniform random sampling,
however, particularly good results were obtain with Poisson-disk sampling [98].
The sampling pattern is generated by randomly adding sampling points, while
enforcing a minimum distance. Because retinal photoreceptor mosaics are dis-
tributed similarly on the retina [99], Poisson-disk sampling is used in our model
for biologically plausible sampling.

10.3. Model of Visual Processing

Our model of visual processing considers the signal prior to processing in the
visual cortex. Many details of retinal processing are omitted and, therefore, it
does not account for all physiological data. We model two stages of convergence,
i.e., downsampling.
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10.4. Mathematical Model

The first convergence stage starts with the image sampled by the photore-
ceptors. In the retina the image is blurred and subsampled. This is known to
be highly eccentricity-dependent, and varies up to 1000-fold in the human ret-
ina [100, 101]. In the fovea the photoreceptors are tightly packed achieving high
sampling rates. Besides tight packing, there is also a low level of neural integra-
tion1. In the periphery, however, there is a low density of cones and, addition-
ally, neural integration due to lateral connections in the retina is high [101]. This
stage is modeled by a Gaussian blur and Poisson-disc sampling.

In the second convergence stage, the retinal output is obtained. This output
is downsampled, since there are less neurons in this layer than input signals.
These neurons are randomly connected to several input neurons. Each of these
input neurons can connect to several output neurons. Note that this randomized
projection of the input by the output neurons corresponds to what the sensing
matrix does in compressed sensing. Therefore, the signal can be transmitted
with reduced bandwidth. Again, the sampling rate is eccentricity dependent
with larger downsampling in the periphery. The downsampling in this stage is
beneficial for the image transmission through the optic nerve from the retina to
the visual cortex, since the optic nerve acts as a bandwidth-limited bottleneck.
The projections in this stage make this model a pooling model.

For analysis, the input signal is reconstructed from the output of the second
stage. This reconstruction is not needed for the brain to access the encoded
information. The reason for reconstructing the input is to obtain an intuitive
measure of how much information was lost during transmission by visualizing
the results. Mathematically, an underdetermined system of equations is solved.
To find a unique solution the sparseness of natural signals is used as prior. This
is analog to compressed sensing, where a randomly sampled signal is also re-
constructed using this prior. Therefore, standard compressed sensing tools can
be applied.

10.4. Mathematical Model

To perform experiments we need a mathematical description of our crowding
model. An image x is the input to this model. The first convergence stage then
blurrs and sub-samples x, with the blur described by the matrix C being Gaus-
sian. By blurring the image x we obtain xblur, which then is sub-sampled via the

1For every cone the signal is processed by at least one ganglion cell.
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Figure 10.1.: A foveal (left) and a peripheral (right) distribution of the sampling
scheme used in the first stage. The Poisson disk radius is 1 pixel for foveal
sampling and 3 pixels for peripheral sampling.

matrix Φ ∈ Rn×m (n < m). This matrix implements Posson-disk sampling. The
resulting image is xsampled. Combined, the first convergence stage is described
by:

xsampled = Φxblur = ΦCx. (10.5)

To generate the Poisson-disk distributed sampling patterns shown in Figure 10.1
we used Bridson’s algorithm [102].

In the retina the convergence due to blurring and subsampling increases
smoothly from the fovea to the periphery. For the purpose of our experiments,
we consider only block-wise constant convergence rates and vary them to sim-
ulate foveal and peripheral vision.

Then the samples defined in Equation 10.5 are used as input to a network
of neurons. The output neurons randomly connect with multiple inputs. Each
connection has random weights for the inputs. This network can be described
by a connection matrix Θ, where each output neuron is represented by a row.
For every connection to a input neuron there is a non-zero entry in the corres-
ponding column. The value of the entry represents the weight of the connection.
Using Θ the activation of the output neurons is computed:

xoutput = Θxsampled. (10.6)
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Figure 10.2.: Basis elements from the Dual Tree Complex Wavelet Transform.

In total, our model can be described by the linear transformation

xoutput = ΘΦCx, (10.7)

where xoutput contains the information available to later stages of the visual sys-
tem.

10.5. Input Reconstruction

Inferring the information still available in the output neuron is essential to test
the model. We do this by reconstructing an image from the output xoutput.
Of course, due to convergence, there is a dimensionality reduction in the data,
which makes reconstruction an underdetermined problem. However, since the
reconstruction problem in compressed sensing (Equation 10.4) is similar to this
problem, we can use methods from the compressed sensing framework. Never-
theless, the amount of information that can be encoded by the output neurons is
limited. If there is more information in the input signal, some information will
be lost. To reconstruct the image, it is represented in a sparse basis Ψ:

xoutput = ΘΦCΨa, (10.8)

where x = Ψa. As a sparse basis, the Dual Tree Complex Wavelet Transform
(DT-CWT) was selected [103, 104]. It is a biologically plausible choice, because
the basis elements are similar to the response properties of the simple cells in the
primary visual cortex [104]. The elements of this basis, illustrated in Figure 10.2,
are oriented Gabor-like functions. Using this representation the CoSaMP al-
gorithm can be applied to approximately solve

arg min
a
||xoutput −ΘΦCΨa||2 s.t. ||a||0 < s. (10.9)
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Then, the image x̂ can be reconstructed

x̂ = Ψa (10.10)

to visualize the information retained in xoutput after the two convergence stages
of the model.

10.6. Experiments

We used a letter recognition task for testing our model. To simulate the crowding
phenomenon qualitatively, 10 images, each with a letter in isolation and a letter
flanked by two random letters, were generated. The two letters were placed to
the left and to the right of the central letter. The images had a size of 128 by
128 pixels and about 30 pixels high bright letters were placed in the center on
a dark background. Foveal and peripheral representations of these letters were
obtained using our model. For the fovea only a small Gaussian blur of vari-
ance 2 was used and the radius for the Poisson disk sampling was just 1 pixel,
which resulted in roughly 10800 samples for the 16384 pixels of the image. In
the periphery, the images were blurred with a Gaussian of variance 4 pixels, and
the Poisson disk had a radius of 3 pixels, which resulted in about 1750 samples.
Convergence in the second model stage, i.e., the number of output neurons, was
varied from 1500 to 50, resulting in overall convergence rates of 11 to 328.

To estimate the amount of information represented by the final samples, the
input images were reconstructed as described above. The DT-CWT was used
with 5 levels of evaluation depth. In Figure 10.3 example reconstructions are
shown. One can see that the foveal output neurons have sufficient informa-
tion encoded to allow for a good reconstruction for both the un-flanked and the
flanked letter image. The overall quality of the reconstruction from the peri-
pheral output neurons is of course worse, but the letter ’X’ is still recognizable
if it is not flanked by other letters. Note that the reconstruction is based on only
1.5% of the input pixels in case of a convergence rate of 66 in stage 2 (250 output
neurons). If the letter is flanked by other letters the reconstructed images exhibit
typical crowding artifacts in the sense that the letter can be located, but its fea-
tures are jumbled and recognition is impossible. However, if the convergence
rate in stage 2 is decreased to 27 (600 output neurons), also the flanked letter ’X’
becomes recognizable.

To compare the input and output images quantitatively, the mean squared
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10.3.: The letter X is shown in isolation (a) and flanked by other letters
(e). All other images show reconstructed versions of these input images. The
letters can still be easily recognized after reconstruction from a high-bandwidth
foveal representation (b, f). These two images correspond to the two arrows
in the left plot of Figure 10.4; the convergence rate is 13, i.e. the second stage
has 1250 output neurons. The images on the right (c, d, g, h) are reconstructed
from the peripheral first stage (see text) with two different convergence rates in
the second stage. The four images correspond to the four arrows in the right
plot of Figure 10.4. The two convergence rates are 27 and 66, i.e., the second
stage had 600 and 250 output neurons, respectively. These four images illustrate
the available information at convergence rates where the flanked letter turns
unrecognizable while the un-flanked letter can still be read.

99



10. A Compressed Sensing Model of Crowding

overall convergence rate
101 102

M
S

E

0

0.01

0.02

0.03

0.04

0.05
low convergence in stage 1

two flankers
no flankers

overall convergence rate
101 102

M
S

E

0

0.01

0.02

0.03

0.04

0.05
high convergence in stage 1

two flankers
no flankers

Figure 10.4.: The graphs show the reconstruction errors for a foveal (left) and
a peripheral (right) sample of the first stage and as a function of the total con-
vergence ratio (number of input samples in x divided by the number of output
samples in xoutput), i.e., as a function of the number of output neurons in the
second stage. The parameters of the first stage are those given in the text. The
six arrows correspond to the six reconstructed images shown in Figure 10.3 and
the values of the parameters are given in the caption of Figure 10.3.

error (MSE) was used as a difference measure. The MSE was computed only
within a bounding box around the central letter to avoid measuring errors due
to the flanking letters. We tested the reconstruction quality depending on the
number of output neurons, and for the above selected values of the Gaussian
blur and Poisson-disc sampling. The errors were measured for all images and
averaged over 10 images. Figure 10.4 shows MSE as a function of the overall
convergence rate. The parameters of the first convergence stage have been kept
fixed at the same two foveal and the peripheral values that were used to create
the images in Figure 10.3. Only the number of output neurons in the second
convergence stage has been varied. First note that the errors increase with in-
creasing convergence rate and that the two error curves (single letter vs. flanked
letter) diverge. This shows us that the crowding effect in our model is due to a
limited encoding capacity of the output neurons. However, the first convergence
stage does also play a role since the results for the foveal and the peripheral sim-
ulation differ. It seems particularly interesting that the critical convergence rate
(where the errors start rising) differ for the four curves. Especially in the right
plot (peripheral first stage), it becomes evident that a convergence rate optim-
ized for single letters is not optimal for a letter with flankers. In the left plot
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(foveal first stage) the difference between the two optima is small. Note, also
that the reconstruction errors are in all cases higher for the flanked letter. For
both settings the errors of flanked and un-flanked images do not reach the same
level. The difference between the errors becomes smaller for the foveal model.
Probably the residual errors when many output neurons are used are not due to
a limited coding capacity, but due to the under-sampled deconvolution problem.
This deconvolution problem sets a limit to the best possible reconstruction. With
a full sampling of a sharp image by the receptors and the use of one fourth of
the number of pixels as output neurons, a perfect reconstruction is possible for
any number of flankers, since that is a standard compressed sensing problem.

10.7. Discussion

We have presented a simple model of low-level vision in the retina with two
convergence stages. It makes use of the fact that natural images exhibit redund-
ancies by compressing the image in the convergence stages. This compression
is achieved using random sampling similar to compressed sensing of a blurred
signal. Thus, the bandwidth needed for transmission through the optic nerve
is reduced. The convergence rates vary for both stages over the retina. In the
fovea the compression rate is low while it increases with eccentricity in the peri-
phery. This, of course, implies a varying degree of information loss. To explore
the consequence of compression in the retinal coding we used compressed sens-
ing method to restore the input signals. For the peripheral part of the model
we found clear crowding effects for flanked letters. By visual inspection we can
verify the jumbled together appearance, which still has high contrast in many
regions. Detection of the letters remains viable, while recognition is impossible.
Other properties such as eccentricity dependence and isometry can be explicitly
modeled via the shape of the field covered by the second stage neurons.

We analyzed our model for two parameter sets in the first convergence stage.
One yielding low convergence rates as found in the fovea, the other resembling
the high convergence rates of the periphery. The second stage convergence rate
was varied to measure its influence. For both first stage convergence rates, the
reconstruction error increases with the convergence rate of the second stage.
The increase also depends on weather there are flankers present. Flankers cause
a steeper increase of the error. Therefore, when the second convergence stage
is optimized for a good representation of the image at minimum bandwidth,
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the optima are different for the un-flanked and the flanked object. Un-flanked
objects need less bandwidth. These results suggest that evolution has optimized
foveal vision to cope with flanked objects to allow for good recognition rates,
while for peripheral vision recognizing un-flanked objects is sufficient.

Compared to alternative pooling models, we believe that our model is simple.
For example we avoid assumptions such as combinations of similar features, as
in the models of Balas et al. [92] and Freeman et al. [93]. Specific to our model
is that it models the retina. Although we modeled such an early part of visual
processing, we believe later stages may cause crowding effects as well.

In conclusion, we have shown that the compressed sensing framework has
the potential to provide new insights regarding visual coding in general and the
crowding phenomenon in particular.
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During the last few years research into classifiers and their enhancement by rep-
resentations has seen a huge rise. This rise is due to the ever increasing demand
for automatical analysis of data, which is collected in a diverse set of domains.
Classification already works in many domains. In this thesis, we explored three
different problems in representation learning and its application – linear repres-
entation learning to bypass the limitations of k-NN, invariant representations
for disentangling visual data, and understanding visual phenomena caused by
the representations in the human visual system.

Linear representation learning methods can be used to improve the error rate
of a classifier, such as k-NN. For k-NN it depends on the scaling of the input
data. Of course, this shortcoming can be circumvented by a linear change of
the representation. There are several methods already available. However, they
tend to depend on the initial scaling of the data. We developed two new meth-
ods. Both avoid a dependence on the initial scaling of the data by use of a global
optimization term. They globally minimize the distance of equally labeled data,
while establishing a minimum distance between differently labeled data.

The first method, MDM, focuses on rescaling the data dimensions. It is also
capable of reducing the weight of irrelevant dimensions to zero, thereby per-
forming dimensionality reduction. The global criterion used, does not impose
a data distribution as prior, thus avoiding restrictions to a limited class of data
sets. This is achieved by solving a linear program, which guarantees to find the
optimal solution for the criterion. GML, the second method, uses gradient des-
cent for the optimization. The global energy term used in this method introduces
a Gaussian prior. Contrary to MDM it not only rescales the data dimension, but
applies a full linear transformation. This allows to reduce statistical redundan-
cies and, thereby, improves the results for several data sets compared to feature
weighting methods such as MDM. However, we showed that for many data
sets, rescaling, as imposed by the feature weighting methods, is sufficient. In
the experiments MDM and GML showed little sensitivity to the initial scaling
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of the data sets, making them good choices. In case the data was preprocessed,
MDM and GML still find competitive representation with good robustness in
the sense that they never performed much worse then alternative methods.

MDM and GML both suffer from a quadratic increase in the number of data
pairs, which makes their application to large data sets inefficient. This should
be addressed in further development of these methods. At least for MDM this
seems possible, because only a small subset of the pairs is relevant to the MDM
results. Therefore, it seems reasonable to investigate the change of relevant pairs
to decrease the computational effort and memory usage. Moreover, the poor
performance of all feature weighting methods in the micro array data, which
exhibits very high dimensionality and simultaneously only a limited amount
of training samples, demand for better methods. Of course, this setting is in
general problematic. But, possibly some improvements can be made by better
dimensionality reduction, which is not yet guaranteed to be optimal.

Furthermore, disentangling of visual data was investigated. Due to the 2D
projections of scenes in the world, transformations of objects in these scenes
cause complicated changes to the pixel representation. Therefore, discriminat-
ing objects is a challenging and in general not solved task. I first showed the
close relationship between known architectures and the i-Theory. Then, a new
architecture based on the i-Theory was introduced, and evaluated. It showed
promising results for shifts in an artificial dataset, but for real world data we
observed difficulties in the training.

Second, a convolutional network using slow subspace autoencoders was in-
troduced. This network can be trained layer by layer on unlabeled image se-
quences. Low level layers only provide invariance in a small range. With each
layer the invariance range increases. However, simultaneously the information
loss increases. This information loss can only be mitigated to a certain degree.

The problem of finding discriminative and transformation invariant repres-
entations remains unsolved. Deep neural networks achieve invariance to a cer-
tain degree and a remarkable classification accuracy, when supervised training is
applied. Yet, they can easily be fooled. Changes barely visible to the human ob-
server cause misclassification [105]. This hints towards discontinuities in these
models. It is questionable weather this can be solved by supervised training of
a classifier. Hence, our methods directly optimize invariance. The difficulties
in training the first model are an interesting problem for further investigation.
More promising are, I think, slowness approaches as used in the second method.
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In the experiments Gabor-like filters have emerged in training. These filters are
also found in the first layer of a well working deep convolutional network after
supervised training for classification of images [47]. The architecture of deep
convolutional networks is capable of invariant representations of objects. This is
not only suggested by the i-Theory, but also by the experiments using Deep Con-
volutional Inverse Graphics Networks [106], which, however, need well labeled
data to achieve invariance in an artificial setting. I suggest to build on our slow-
ness based approach, and increase the size of the subspaces in order to achieve
better discriminative properties. Very helpful might be to decorrelate the pool-
ing layer outputs [107], instead of orthogonalizing the filter output. This might
allow to pass more information through the pooling layer in such an unsuper-
vised learning approach.

Finally, we applied concepts from compressed sensing to crowding, repro-
ducing this phenomenon of peripheral vision. Our model makes only few as-
sumptions compared to other models. It is placing the phenomenon in early
vision prior to passing information through the optic nerve, which is assumed
to be an information bottleneck. Some properties of crowding found in psycho-
logical studies such as eccentricity dependence and isometry could be explicitly
modeled. Nevertheless, we did not model these properties in our model. Also
an extension to multi-layer models would be interesting, since this phenomenon
could be introduced at multiple stages of representation in the visual system.
Although, we were able to reproduce the crowding effect in our model, further
phenomena and physiological data are needed to provide sufficient restrictions
to draw conclusions regarding the structure of representations in the human
visual system.

In conclusion, this endeavor to learn and understand representations, covers a
small selection of possible domains. The experiments on the presented learning
algorithms show that classifiers benefit from this processing of the data. Es-
pecially in domains as complicated as visual object recognition, representation
learning seems essential to reach human performance. Moreover, modeling of
visual phenomena is an opportunity to better understand representations in the
human visual system. This understanding again might help improve represent-
ation learning.
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Erklärung an Eides Statt

Ich versichere, dass ich die Dissertation ohne fremde Hilfe angefertigt und keine
anderen als die angegebenen Hilfsmittel verwendet habe. Weder vorher noch
gleichzeitig habe ich andernorts einen Zulassungsantrag gestellt oder diese Dis-
sertation vorgelegt. Ich habe mich bisher noch keinem Promotionsverfahren
unterzogen.

(Ort, Datum) (Unterschrift)


	Zusammenfassung
	Abstract
	List of Publications
	Introduction
	Basics
	Classification
	Representations
	Learning Representations

	Linear Representation Learning
	Introduction to Linear Representation Learning
	Feature Weighting
	Relief
	Simba

	Metric Learning
	Large Margin Nearest Neighbors
	Neighborhood Component Analysis
	Mahalanobis Metric Learning for Clustering


	A new Feature Weighting Approach
	Maximum Distance Minimization
	Soft Maximum Distance Minimization
	Experiments and Comparisons
	Discussion

	A new Global Metric Learning Approach
	Global Metric Learning
	Experiments
	Discussion


	Invariant Representation Learning
	Invariant Representations
	Groups, Transformations, and Invariance
	Analytic Representations
	Learning Methods
	Convolutional Networks
	Slow Feature Analysis
	Slow Subspace Learning
	Toroidal Subspace Analysis
	Gated Models

	i-Theory
	Basic Modules
	Real World Problems
	Relation to Biology

	Relations of the i-Theory to Learning Methods
	Relating the i-Theory to the Toroidal Subspace Analysis
	Relating Slow Subspace Learning to the Toroidal Subspace Analysis


	Distribution Based Invariance Learning
	Learning Method
	Distance to Center Classification
	Experiments
	Discussion

	Convolutional Slow Subspace Learning
	Convolutional Model
	Experiments
	Discussion


	Crowding
	Introduction to Crowding in Peripheral Vision
	The Crowding Phenomenon
	Theories of Crowding

	A Compressed Sensing Model of Crowding
	Introduction
	Compressed Sensing
	Model of Visual Processing
	Mathematical Model
	Input Reconstruction
	Experiments
	Discussion

	Summary and Outlook
	Bibliography


