
From the Institute of Medical Informatics

of the University of Lübeck

Director: Prof. Dr. rer. nat. habil. Heinz Handels

Direct Volume Rendering Methods

for Needle Insertion Simulation

Dissertation for Fulfillment of Requirements

for the Doctoral Degree

of the University of Lübeck

from the Department of Computer Sciences

Submitted by

Dirk Fortmeier

from Braunschweig

Lübeck 2016

First referee: Prof. Dr. rer. nat. habil. H. Handels, Institute of Medical Informatics

Second referee: Prof. Dr.-Ing. habil. A. Mertins, Institute for Signal Processing

Date of oral examination: May 18, 2016

Approved for printing. Lübeck, October 21, 2016

Abstract

This thesis presents a simulation framework and newly developed methods for visuo-haptic

rendering of a virtual liver puncture intervention. Visuo-haptics include both visual repre-

sentation and haptic rendering using a haptic input device for force display. The framework

includes methods and algorithms to simulate a medical intervention that consists of pal-

pation, ultrasound probing and X-ray imaging. Using these components, a percutaneous

transhepatic cholangiodrainage can be performed in virtual reality with the aim of provid-

ing an environment for training and planning.

The central aspect distinguishing the innovative approaches from comparable state of

the art methodology is the focus on methods that use direct volume rendering of medical

computed tomography image data. Therefore, no creation of an intermediate surface rep-

resentation of organ tissues has to be performed. These surface representations are needed

in comparable approaches in order to perform visualization, force feedback computation

and soft tissue simulation. To create these surface representations, it is necessary to per-

form a time-consuming segmentation process. This process took more than 60 hours in the

framework’s predecessor. It is essential to reduce this time in case a patient specific scenario

should be prepared based on new image data.

In the presented framework, the segmentation is reduced to structures that are central to

the intervention. The resulting partial segmentations and patient image data are then ren-

dered visually and haptically during run-time by adapted and newly developed rendering

approaches. Visual direct volume rendering is realized by ray casting of the volume data.

A soft tissue simulation component is included into the framework by computation of lo-

cal deformations on the regular grid of the volume data. The resulting deformed image

is then considered in the volume rendering process. Furthermore, respiratory motion can

be visualized by the framework and is integrated into the haptic algorithms. This is done

by using 4D CT image data and creation and application of resulting motion models. For

achieving real-time rendering capability, the visualization methods are implemented using

Nvidia CUDA.

First of all, this thesis summarizes the newly developed methods and obtained results

and then analyzes the components of the framework. It is shown that the methods and their

implementation fulfill the requirements with regard to the reduction of segmentation effort,

real-time capabilities and plausibility of visuo-haptic rendering.

iii

Zusammenfassung

In dieser Arbeit werden ein Simulationsframework sowie neu entwickelte Methoden zum

visuo-haptischen Rendering von virtuellen Leberpunktionen präsentiert. Visuo-haptische

Verfahren enthalten sowohl visuelles Rendering als auch haptisches Rendering, wobei Kräfte

mittels eines haptischen Eingabegeräts wiedergegeben werden. Das Framework enthält

Methoden und Algorithmen zur Durchführung eines virtuellen Eingriffs mittels Palpation,

Ultraschallsondierung und Röntgendurchleuchtung. Unter Zuhilfenahme dieser Kompo-

nenten kann eine virtuelle perkutane transhepatische Cholangiodrainage durchgeführt wer-

den. Ziel ist die Bereitstellung einer Umgebung zu Training und Planung.

Der zentrale Aspekt ist die Fokussierung der Entwicklung von Methoden, die auf direk-

tes Volumenredering von medizinischen CT-Daten zurückgreifen, ohne den Umweg über

eine Oberflächenrepräsentation zu gehen. Diese sind in vergleichbaren Ansätzen des State-

of-the-Art Grundlage für Visualisierung, Berechnung von haptischer Kraftrückgabe und

Weichteilsimulation. Um die Oberflächenrepresentation bereitzustellen, wird in der Regel

eine aufwändige Segmentierung der Bilddaten vorausgesetzt. Eine solche Segmentierung

benötigte im Vorgängerprojekt mehr als 60 Stunden pro Patient. Es ist daher essentiell, diese

Zeit zu verkürzen, um ausgehend von einem neuen Bilddatensatz eine patientenindividu-

elle Simulation bereitzustellen.

In dem vorgestellten Framework wird der Segmentierungsbedarf reduziert auf Gewebe

und Organstrukturen, welche für den Eingriff von zentraler Bedeutung sind. Die entste-

henden Segmentierungsmasken und nicht segmentierten Strukturen in den Bilddaten wer-

den zur Laufzeit mittels angepasseter sowie neuer, innovativer Renderingverfahren visuo-

haptisch dargestellt. Visuelles direktes Volumenrendering wird durch Ray-Casting-Verfahren

auf Grundlage der CT-Daten durchgeführt. Für die Berechnung von lokalen Deformationen

auf dem regulären Gitter der Bilddaten ist für das Framework eine neue Methode entwickelt

worden. Die dabei entstehenden Deformationen finden im Ray-Casting-Verfahren Beach-

tung. Weiterhin kann die Atembewegung eines virtuellen Patienten visualisiert und hap-

tisch gerendert werden. Dies geschieht durch den Rückgriff auf 4D-CT-Sequenzen und die

Erstellung und Nutzung daraus resultierender Bewegungsmodelle. Um Echtzeitfähigkeit

zu erreichen wurden die Visualisierungsmethoden in Nvidia CUDA implementiert.

Diese Arbeit beschreibt zum einen die entwickelten Methoden und die mit ihnen erziel-

ten Resultate und analysiert weiterhin die Komponenten des Frameworks. Es wird gezeigt,

dass die entwickelten Methoden und ihre Umsetzung im Simulationsframework die an sie

gestellten Anforderungen hinsichtlich Reduktion des Segmentierungsaufwands, Echtzeit-

fähingkeit und Plausibilität des visuo-haptischen Renderings erfüllen.

v

Danksagung

Zunächst danke ich Prof. Dr. rer. na. habil. Heinz Handels für die Vergabe und Betreuung

des interessanten und vielseitigen Promotionsthemas sowie für die Möglichkeit, dieses am

Institut für Medizinische Informatik zu bearbeiten.

Weiterhin gilt mein Dank allen Kollegen und Kolleginnen des Instituts für Medizinische

Informatik für wertvolle Ratschläge, Anregungen und für die angenehme und lehrreiche

Zeit.

Mein besonderer Dank gilt den Kollegen und Freuden Oskar Maier, Dr. rer. biol. hum.

Andre Mastmeyer, Matthias Wilms, Christoph Schröder und Martin Barron für die Anre-

gungen zur Verbesserung des Manuskripts.

Abschließend danke ich meiner Lebenspartnerin Miriam Karstens für die fortwährende

Unterstützung in der Zeit des Verfassens dieser Dissertation, sowie meinen Eltern und

Großeltern.

vi

Contents

1. Introduction 1

1.1. Surgery Simulation - State of the Art . 2

1.2. Motivation and Objectives . 5

1.3. Scientific Contributions . 6

1.4. Overview . 7

2. Background 9

2.1. Medical Background: Percutaneous Transhepatic Cholangiodrainage 9

2.2. Nvidia CUDA: Using the General Purpose Graphics Processing Unit 11

3. Direct Visuo-haptic Volume Rendering Algorithms 15

3.1. Input Data and Notations . 15

3.2. Ray Casting based Volume Rendering Methods 17

3.2.1. Ray Casting . 17

3.2.2. Clipping and Tagging . 18

3.2.3. Shadow Rendering . 19

3.2.4. Combined Volume Rendering and Rasterization 22

3.3. X-Ray Rendering and Contrast Agent Diffusion 22

3.4. Simulated Ultrasound Imaging . 24

3.5. A Bendable Needle . 25

3.5.1. Updating the Insertion Path . 26

3.5.2. Simulation of Needle and Tissue Coupling 28

3.5.3. Force Computation . 31

3.6. Palpation and Ultrasound Probing . 33

3.7. Experiments & Results . 37

3.7.1. Ray Casting . 37

3.7.2. X-Ray and Ultrasound Simulation . 40

3.7.3. Needle Algorithm . 42

3.7.4. Palpation & US-probing Algorithm . 44

vii

Contents

3.8. Discussion . 45

4. Visuo-haptic Rendering with Local Deformations 47

4.1. Background/Related Work . 48

4.1.1. Finite Element Method . 48

4.1.2. ChainMail . 49

4.1.3. Other Methods . 50

4.1.4. Image Registration . 50

4.2. Real-time Image-based Deformations . 51

4.2.1. A Priori Known Deformations . 52

4.2.2. Variational Formulation . 54

4.2.3. Regularization Terms . 56

4.2.4. Discretization using Finite-Differences 57

4.2.5. Finding a Minimal Solution . 58

4.3. Implementation . 59

4.3.1. Algorithm Overview . 59

4.3.2. Blocks and Threads . 61

4.3.3. The Kernel . 62

4.4. Optimizations . 62

4.4.1. Region-of-Interest Pyramid Approach 62

4.4.2. Multigrid Approach . 64

4.4.3. ChainMail . 65

4.4.4. Fast Explicit Diffusion . 65

4.5. Evaluation Framework with In-silico Ground Truth 65

4.6. Experiments & Results . 67

4.7. Discussion . 68

5. Visuo-haptic Rendering using Respiratory Motion Models 71

5.1. Related work . 72

5.2. Respiratory Motion as a Transformation . 72

5.3. Respiratory Motion Models . 73

5.3.1. Key Frame Approach with a Single Respiratory Cycle 75

5.3.2. Key Frame Approach using a Half Cycle 78

5.3.3. Model using Surrogate Signals . 78

5.4. Direct Visuo-haptic Rendering using Motion Fields 80

5.4.1. On-the-fly Inversion of the Displacement Field 80

viii

Contents

5.4.2. Surface based Rendering . 82

5.4.3. Haptic Rendering . 82

5.4.4. Modifications to Haptic Rendering of Needle Insertion 82

5.5. Implementation . 83

5.5.1. Remarks on Visualization Implementation on the GPU 83

5.5.2. Remarks on CPU Implementation for Haptics 84

5.6. Input data and Preparation of the Virtual Patient Model 84

5.7. Experiments & Results . 85

5.8. Discussion . 88

6. A Framework for Image-based Puncture Simulation 91

6.1. Puncture Atlases with Partially Segmented Data 91

6.1.1. Creation of Partially Segmented Data 92

6.1.2. Label Estimation Heuristic . 92

6.1.3. Property Tree . 93

6.1.4. Parameter Evaluation . 94

6.2. Haptic Workbench Hardware-Setup . 95

6.2.1. Workbench Constraints . 95

6.2.2. User Interface . 96

6.3. Software Architecture . 97

6.4. Discussion . 100

7. Summary & Discussion 103

8. Outlook & Conclusion 107

8.1. Future Work . 107

8.2. Conclusion . 109

List of Symbols 111

A. Appendix 113

A.1. Deflection Measurements for Two Needles . 113

A.2. List of Tissue and Organ Structures Needed for PTCD 114

Bibliography 115

List of Publications by the Author 129

ix

1. Introduction

Virtual reality surgery simulation aims to provide a training and planning environment for

physicians. The main reason to use such a tool is the prospect that a trainee can practice

without high risk and costs. Traditionally, the method for training of surgeons was “learn-

ing by doing” summarized in the motto “see one, do one, teach one” [VHRG04]. Obviously,

this method is not optimal and in the worst case mistakes by the trainee can be painful, dan-

gerous or even fatal for the patient. Alternatives to practicing on a patient are mannequins,

models and cadavers. These surrogates are often expensive, not reusable or ethically ques-

tionable. Virtual reality (VR) is a well researched field with applications in entertainment

and simulation. Even if VR is ubiquitously present in everyday life, it is beneficial to ex-

plicitly state its essential nature: The key idea is to provide an interactive environment that

behaves and acts similar to reality, but that has no physical existence in itself. Abstractly

speaking, computers produce synthetic sensory data and display it to the sensory system of

a user. Furthermore, the user can react to this input and interact with the system through

input devices. Most surgery simulation systems use a stereoscopic monitor and a haptic

device, making them capable of visuo-haptic rendering, see Fig. 1.1. In such a system, the

monitor is used to display visual representations of the virtual environment. For haptic ren-

dering two aspects have to be considered: The haptic device displays forces to the user, but

also the user can manipulate the haptic device and thus can interact with the simulation.

This creates a feedback loop, for which the development requires special attention.

This thesis presents a VR simulation system that uses visuo-haptic rendering for needle

insertion simulation. The chapter covers four key areas: Firstly, an overview of the cur-

rent state of surgical VR simulation with a focus on needle insertion interventions is given.

Secondly, the next section motivates and summarizes the objectives addressed in this dis-

sertation. The third section summarizes the scientific contributions that are subject of this

thesis and lists the associated publications. Finally, the last section of this chapter gives an

overview of the structure of the following chapters.

1

1. Introduction

General principle of visuo-haptic simulation

display

haptic device

simulation software

user / trainee

visual input

forces

interaction

visual rendering haptic rendering

hardware

software

Figure 1.1.: Visuo-haptic VR systems use visual and haptic rendering to display visual out-
put and provide haptic interaction. In comparison to visual rendering, the haptic
rendering forms a (force-)feedback loop.

1.1. Surgery Simulation - State of the Art

Research on interactive virtual reality surgery simulation began in the early 1990s and has

been continually refined since then, especially the areas of realism of visual display and hap-

tic interaction. Key technological advances for this are 3D graphics hardware and available

haptic devices. The first simulators included custom made prototypes, whereas nowadays

haptic devices are commercially available by manufacturers such as Geomagic (formerly

Sensable), Novint or ForceDimension. Depending on the number of degrees of freedom,

working space and maximally displayable force output, the costs of these devices range

from around two hundred Euros (Novint Falcon) to several tens of thousands of Euros,

making them the central cost factor for visuo-haptic simulation systems.

A high number of different surgical techniques exists that are based on very different

approaches including open surgery, minimal invasive surgery (laparoscopic surgery) and

needle insertion techniques. The simulation of these different techniques has to emphasize

different aspects and requires special attention, especially for the interaction between tools

and soft tissue.

In this thesis, the focus will be on needle insertion, for which the most recent and rel-

evant developments will be presented in the following. Needle scenarios that have been

simulated in the past include lumbar puncture, regional anesthesia, liver (vessel) puncture,

brachytherapy and biopsy. Noticeable examples are given in Fig. 1.2 and are compared in

the following list and table 1.1.

2

1.1. Surgery Simulation - State of the Art

Puncture simulation frameworks for different scenarios

A

B

D

E

C

F

Figure 1.2.: Puncture simulation frameworks with different application scenarios:
(A) Regional anesthesia simulator with augmented reality setup [CJGC11]
(B) Brachytherapy simulator with simulated needle insertion and TRUS probing
[GSS11] (C) Liver biopsy simulator [DWJ10] (D) Lumber puncture simulator
[FHGH09] (E) Regional anesthesia simulator with two haptic devices [UIK12]
(F) Liver puncture simulator [VBBG11]. All copyrights by the resp. authors.

3

1. Introduction

auth./name appl. visuals haptics soft body simulation
PalpSim regional anesthesia surf. surf. mesh based

Ullrich et al. regional anesthesia surf. surf. mesh based
Goksel et al. brachytherapy surf. surf. mesh based
ImaGINe-S liver puncture surf. surf./vol. Chain-Mail

Ni et al. liver puncture vol./surf. vol. geometric (US only)
Acus-VR lumbar puncture surf. vol. -

(*) liver puncture vol. vol. finite differences

Table 1.1.: Recent needle insertion simulation systems in comparison to the one presented in
this thesis (*). Different applications are targeted and visual and haptic rendering
differs in usage of volume or surface based methods. The simulation of soft tissue
is also handled in different ways.

PalpSim Needle insertion for regional anesthesia into the femoral artery was addressed

in [CJGC11]. This intervention requires a palpation of the femoral artery before performing

the actual needle insertion. In [CJGC11] this step is simulated by a gel pad tissue phantom

that can be palpated by the user’s finger. To provide immersion, the palpation process is

presented to the trainee by augmented reality (AR) techniques: The working environment of

the setup including the hands of the trainee and the haptic device are filmed by a camera and

are displayed on a screen. Using chroma key methods, the green background captured by

the camera is replaced by a virtual scene that includes the virtual patient. Using a modified

Phantom Omni, the user is also able to insert a virtual needle in the AR environment.

Ulrich et al. In contrast to this, in [UIK12] a setup using two Phantom Omnis is presented

also for simulation of regional anesthesia. In this setup one device is used for palpation, the

other one for needle insertion. For the computation of palpation forces a surface model of

the virtual patient and internal structures is used. This work includes a rigorous evaluation

by means of a user study that highly supports the applicability of visuo-haptic rendering for

surgery simulation.

Goksel et al. The work of Goksel et al. [GSMS13, GS09, GSS11] contain the first com-

plete brachytherapy simulation system. It includes virtual transcrectal ultrasound probing

(TRUS) with visual and haptic simulation using linear-strain quasi-static finite element sim-

ulation. The tetrahedral mesh representation of soft tissue consists of around 10,000 tetra-

hedra. Insertion of flexible and bevel-tipped needle together with placement of radioactive

seeds can be performed.

ImaGINe-S The “ImaGINe-S” system, which deals with a similar intervention as the one

in this theses, is presented in [VVA+13, VBBG11] and [VJHG08, VVH+09, VVL12, BBG+09].

It was designed for needle insertion into liver for biopsy and percutaneous transhepatic

4

1.2. Motivation and Objectives

From medical image data towards a virtual patient model

Segmentation Real-time visuo-haptic renderingFeature map extraction

Feature maps:
- Distance maps
- Material properties
- Image features
- Motion models

Image acquisition

Suitable Methods for different
structures:
- Thresholds
- Multi-Atlas
- Vesselness
- Manual

- Visual volume rendering
- Haptic rendering
- Computation of
 deformations

CT image data Label data Distance Image

Figure 1.3.: Overview of a conceptual pipeline for image-based patient specific surgery sim-
ulation. New algorithms for visuo-haptic rendering are the focus of this thesis.

cholangiography and features a respiration simulation component. Deformations induced

by the breathing are computed using a Generalized ChainMail [LB03] approach and visual-

ization uses a surface based approach.

Ni et al. The system presented by [DWJ10] also features a simulation system for ultra-

sound guided training of biopsy of lesions in the liver. Its main contributions are the fusion

of multiple 3D ultrasound images with segmented CT data and visuo-haptic rendering of

these. A simple respiratory motion model is used together with deformations of a needle to

introduce visible deformations into the rendering. The used haptic parameters have been

estimated by the help of expert radiologists and are given for the relevant structures: skin,

muscle and liver. It also includes a user study to evaluate the performance of trainees vs. the

performance of expert radiologist with and without the simulation of respiratory motion.

Acus-VR The predecessor of the framework here is the Acus-VR [FHGH09] simulator.

The scenario of application is lumbar puncture for which static patient models were created

based on CT data or colored RGB volume data from the Visible Human data set [SASW96].

1.2. Motivation and Objectives

For visual and haptic rendering, most of the simulation frameworks given in the previous

section rely on triangular surface data and mesh models. To produce a sophisticated virtual

patient a surface creation process has to be used that is based on real medical image data.

For instance medical image data is voxelized 3D image data obtained by a medical imaging

process such as CT or MRT imaging. Furthermore, each structure that has to appear in

5

1. Introduction

the simulation needs a segmentation mask, i.e., an assignment of a distinct label to each

voxel that is part of the concerned anatomical structure. This segmentation can then be

used for the creation of surfaces by the Marching Cubes algorithm [LC87] and follow up

post-processing steps [Fär09, Dal14].

The segmentation process is a time consuming task and often involves the manual inter-

action of a user. For the preparation of a virtual patient for lumbar puncture in Acus-VR

[Fär09], a time consuming process, that takes more than 60 h, was needed. Specifically, time

measurements given by [Dal14] are 20 h for bone structures, 4 h for ligaments, 3–4 h for

intervertebral disks, 7 h for spinal nerves, 3 h for liver, 14–15 h for muscular structures, 4

h for skin and 5–6 h for fatty tissue. Therefore, in case that a physician needs to create a

simulation for a specific patient in a fast and inexpensive way, i.e., patient specific virtual

reality simulation [WAVH+12], it is desirable to circumvent the segmentation and surface

creation steps. Computing all visual and haptic rendering directly based on the image data

is the alternative that is the central concern of this thesis.

In Fig. 1.3, a conceptual process for image-based patient specific simulation is proposed.

This process consists of four major steps: (1) the acquisition of new patient image data by

medical imaging, (2) segmentation of the image data, (3) extraction and generation of ad-

ditional feature images and finally (4) the real-time simulation of an intervention based on

the previous steps. In this thesis the last parts of this pipeline are addressed with a clear

focus on the real-time visuo-haptic simulation algorithms and software with the following

objectives:

• A) Segmentation effort should be low to keep the time needed for preparation of a new

patient specific simulation in a reasonable time frame.

• B) To provide an interactive environment it is necessary that the implemented compo-

nents exhibit real-time capability.

• C) The virtual environment created by the visuo-haptic rendering should be convincing

with regard to the displayed content and produced force feedback.

As a field of application, needle insertion into the liver with special focus on to the per-

cutaneous transhepatic cholangiodrainage (PTCD) has been chosen since this intervention

contains various interesting aspects and a training environment is highly desirable as ex-

plained in the next chapter.

1.3. Scientific Contributions

The result present in this dissertation is a new “Framework for Image-based Puncture Sim-

ulation”, which includes innovative algorithms for visuo-haptic simulation. In contrast to

6

1.4. Overview

the state of the art, these methods do not rely on mesh models for visualization, soft tissue

deformation simulation or respiratory motion but can work on virtual patient image data

defined on regular grids. This way, most segmentations and meshing procedures can be

avoided. Overall, the main contributions are:

• Direct visuo-haptic rendering for needle insertion, ultrasound probing and palpation.

This includes visualization of a virtual patient by ray casting, ultrasound rendering and

X-ray simulation, summarized in [FMSH16]. Also, a new haptic algorithm for needle

insertion [FWMH15] is presented. For simulation of palpation and ultrasound probing,

methods have been developed [FMH14, FMH13a] that use distance images for collision

detection and force computation.

• Computation and visualization of deformation of soft tissue represented by image

data, as occurring in a needle insertion and palpation scenario, can be performed by

the simulation framework [FMH12, FMH13a, FMH13b, FMH13c]. It is worth mention-

ing that the approaches developed for this framework differ from existing methods by

using a displacement field with a high resolution in comparison to existing frameworks

and methods that generally rely on a simplified unstructured tetrahedral mesh repre-

sentation of internal structures.

• Introduction of respiratory motion (breathing) into this simulation framework was

published in [FWMH15, WFMH15]. Using a 4D CT data set and a resulting displace-

ment function or motion model, a high-fidelity simulation of motion caused by the

breathing of a virtual patient was developed. Its innovation lies in the fact that the

displacement function is defined for each element of the image data of the simulated

virtual patient. Its generality is demonstrated by the straight-forward integration into

the rendering components of the framework.

• The framework is able to provide a training simulation of a liver puncture scenario

by only using partial segmentations of important structures of the virtual patient and

labeling heuristics, also published in [FMSH16]. This way, the time needed for seg-

mentation is largely reduced.

1.4. Overview

The thesis is structured as follows: First in chapter 2 background information is given on

the intervention that is simulated. Various design decisions were made during the devel-

opment of suitable algorithms concerning their parallelization. Since the parallelization has

been performed using Nvidia CUDA, an introduction to this language is given as well. Then

in the second chapter, general visuo-haptic rendering methods are introduced, consisting of

7

1. Introduction

the visual and haptic algorithms for components such as ray casting and needle insertion.

It also includes an algorithm for the visuo-haptic simulation of palpations and ultrasound

probing. Chapter 4 presents methods and algorithms for the computation of local defor-

mations caused by tool interaction of the user. Chapter 5 presents a method to introduce

global deformations caused by breathing motion into the simulation framework using mo-

tion models. The complete PTCD simulator is presented in chapter 6. It incorporates the

methods from the previous chapters, additional components for tool selection, description

of the visuo-haptic simulation workbench and it also describes the implementation of the

overall framework. After summarizing and discussing the overall results in chapter 7, the

thesis concludes and suggests further work in chapter 8.

8

2. Background

Before newly developed methods are presented in the next chapters required background

knowledge is given. Firstly, the medical background is summarized, consisting of the de-

scription of the intervention that can be trained by the proposed system. Secondly, a short

introduction to the CUDA programming language is given, which is considered helpful for

the reader to understand various design decisions made for the implementation and run-

time analysis of the visualization techniques presented in the following chapters.

2.1. Medical Background: Percutaneous Transhepatic

Cholangiodrainage

Percutaneous transhepatic cholangiodrainage (PTCD) is an extension of the percutaneous

transhepatic cholangiography (PTC), which is a medical intervention to visualize the bil-

iary tract [DBI11]. The idea of PTC is to insert a needle through the skin (percutaneous)

into the liver (transhepatic) and finally into the bile ducts. In this target structure, a con-

trast agent is injected making the biliary tract visible under fluoroscopy using X-rays sim-

ilar to angiographic procedures. Initially, this intervention has been developed for diag-

nostic purposes only and nowadays is replaced by methods such as endoscopic retrograde

cholangio(pancreato)graphy (ERP resp. ERCP) [Cot77] or endosonography-guided biliary

drainage (EUS-BD) [IDY14]. Modern medical imaging techniques as such as MRI or CT, also

enable 3D imaging and visualization of the liver and hepatic ducts.

The PTC intervention was developed further [DBI11] to perform a therapeutic drainage

of the biliary vessels in case of obstructed bile ducts. An obstruction is commonly caused

by a lesion or gallstone, see Fig. 2.1. As for PTC, needle insertion in the biliary vessels

is performed first and afterwards a drainage is placed by insertion of a catheter. For the

needle insertion, the surgeon first identifies a suitable insertion site which depends on the

location of the target vessel. This location is either in the right or left lobe of the liver, which

determines either an intercostal (generally between 10th and 11th rip, Fig. 2.1) or epigasteric

access respectively. After having determined the entry location by ultrasound probing and

palpation, a small incision is made at the insertion site. Through this incision, a needle

9

2. Background

Schematic overview of PTCD puncture

blood vessels

RHD
gall bladder tumor

intercostal fascia

CBD
rips

needle guide

ultrasound
probe

target structure

skin

risk structures

Figure 2.1.: Puncturing the hepatic ducts (green target region) is performed by percutaneous
transhepatic insertion of a needle through the intercostal spaces. Ultrasound
probing with attached needle guide can be used to ease the procedure. Here,
the right hepatic duct (RHD) is punctured since a present tumor obstructs the
common bile duct (CBD).

with removable stylet is inserted into the patient’s body. The needle diameter can be chosen

between 18 to 22 gauge (around 1.2 cm down to 0.7 cm), which influences the flexibility of

the needle noticeable (see section A.1 in the appendix for the bending behavior of a 16 resp.

20 gauge needle). Larger needle diameters cause more trauma and thus thinner needles are

preferable. Using ultrasound imaging and a needle guide attached to the ultrasound probe

can reduce the number of needed repositionings of the needle inside the patient. To check

the successful insertion of the needle into the bile ducts, the stylet is then removed and the

needle is checked for outflow of bile. Injection of contrast agent and fluoroscopy can also

be applied, which shows the contrasted bile ducts in the case that puncture was successful.

In cases of failures, the operator can slowly retract the needle and reperform the puncture

with a changed insertion direction. Overall, it is desirable to keep the number of trials, and

thus the radiation exposure, low, for which training with a VR simulator is considered to be

beneficial.

After needle insertion, the PTCD is completed by insertion of the drainage. This is per-

formed by the Seldinger technique, which is applied in many other areas (e.g. angiography)

as well: Through the needle, once the stylet is removed, a guide wire is inserted into the bil-

iary vessels. The needle is then removed while the guide wire remains in the patient. Now,

the catheter can then be inserted by pushing it over the guide wire and finally the wire is

removed. Before inserting the catheter it might be required to widen the insertion channel

by a dilator.

PTC by itself is performed less frequently today as there are now better imaging modali-

ties available for the sole purpose of visualizing the bile ducts (see above). PTCD is normally

10

2.2. Nvidia CUDA: Using the General Purpose Graphics Processing Unit

The Nvidia CUDA block and thread model

a grid of 4 x 4 blocksa block with 8 x 8 threads

3
2

 t
h
re

a
d
s

in
 1

st
 w

a
rp

3
2

 t
h
re

a
d
s

in
 2

n
d
 w

a
rp

Figure 2.2.: Exemplary block and thread distribution for the computation of the elements
of a 32×32 pixel image. The image is subdivided into 4×4 blocks. Each of the
blocks then is computed by the multiprocessors of the GPU, whereas for each
block 8×8 threads are executed in “warps” of 32 threads.

1 __global__
2 void cuDeformKernel(float4* A, float4* B, float4* C)
3 {
4 unsigned int x = blockIdx.x*8 + threadIdx.x;
5 unsigned int y = blockIdx.y*8 + threadIdx.y;
6 unsigned int index = x + y*32;
7 C[index] = A[index] + B[index];
8 }

Figure 2.3.: CUDA kernel source code for adding two 2D arrays A and B and storing the
result in array C for a 32× 32 pixel image.

only the second choice if ERCP is not possible or has failed [DBI11]. These facts make it de-

sirable to have a simulation tool at hand for regular training or planning of this intervention.

It is also noteworthy that with ultrasound contrast agents a completely radiation free PTCD

could be performed making the sonographic part of the intervention even more interesting

for visuo-haptic simulation.

2.2. Nvidia CUDA: Using the General Purpose Graphics

Processing Unit

Nvidia CUDA is a superset of the C++ programming language giving the developer the

possibility to design and implement highly parallelized algorithms [SK10]. The resulting

program can be run on general graphics hardware and is highly suitable for algorithms in

which the same instructions can be applied to a high amount of input data simultaneously.

11

2. Background

Examples for application of CUDA are manyfold. In the medical context these include visu-

alization, simulation and image registration [PX11, SSKH10].

CUDA is based on the “single instruction multiple thread” (SIMT) paradigm. This is

slightly different to the “single instruction multiple data” (SIMD) paradigm in so far as

SIMT programming allows simultaneous computation with branching. Using SIMD only,

the programmer is limited to apply exactly the same instructions on a large amount of data.

With SIMT it is possible to write a single piece of code executed in parallel that also contains

branching instructions, e.g. the IF statement, leading to different execution paths for each

parallel thread.

Abstractly speaking, a program written in CUDA consists of a single set of instructions

(the “kernel”), which is distributed onto “blocks” and in each of the blocks, several threads

run concurrently. This distribution scheme is exemplary demonstrated for the computation

of the elements of a 32×32 pixel image in Fig. 2.2. Fig. 2.3 also lists the code for a simple

kernel that adds two gray scale 32×32 pixel images. In each thread running this code the

location in the block and thread layout is known, enabling the thread to compute and store

the desired image values.

The actual distribution and execution by the CUDA cores is best understood by consider-

ing the hardware architecture of a modern general purpose GPU. Here, this is explained for

the GPU that is installed in the Nvidia Geforce GTX680 [Nvi12c] graphics card, which has

been used as the target architecture for design, implementation and evaluation of the visual-

ization algorithms in this thesis. The GTX680 uses one GK104 GPU from the Kepler family,

which is fabricated using a 28 nm process. As illustrated in Fig. 2.4, this GPU consists of

four Graphic Processing Clusters, each divided into two Next-Generation Streaming Multi-

processor (SMX) units. Each SMX itself comprises of 192 CUDA cores, memory (instruction

cache, registers, shared memory) and further functional units (PolyMorph 2.0 engine, warp

schedulers, see [Nvi12c]).

With a total number of 1536 cores, a very high number of threads can be executed simulta-

neously. In comparison, CPUs have a much lower number of cores available. As an example,

the Intel Core i7 CPU used for benchmarking has six distinct cores. During execution of a

kernel, a group of 32 CUDA cores each processes 32 threads at the same time. Together, the

32 threads form what is called a warp. If a warp waits for an instruction to complete for

the 32 parallel threads, stalling occurs. When this happens, the SMX can switch the con-

text of the cores executing the warp to a different warp. This switching is handled by one

of the four “warp schedulers” on the SMX. A high number of available registers makes it

possible to perform the context switch without having to save and restore the registers for

12

2.2. Nvidia CUDA: Using the General Purpose Graphics Processing Unit

the threads. Depending on the number of registers used by the kernel, registers for up to

64 active warps are available on a single SMX [Nvi12b]. For the programmer it is essential

to maximize performance by ensuring that a high number of warps are active on the SMX.

This is measured by occupancy, which is the actual number of active warps divided by the

maximum number of active warps for a streaming multiprocessor [Nvi12a].

The programmer has the possibility to use 64 KB of shared memory per SMX (L1 cache)

exclusively accessible by the threads run on the SMX. Apart from this shared memory, global

memory is available for read and write access by all threads. It is not possible for threads

that are not executed on the same SMX to communicate with each other without using the

global memory. However, the order of execution of blocks and threads is not specified and

may vary for different calls of a kernel. In the worst case, threads might wait for the execu-

tion of other threads for which processing will not start until the resources already blocked

are freed, deadlocking the whole execution. Knowledge of this fact and the resulting im-

plications is crucial for the successful implementation of parallelized algorithms in CUDA.

For instance, performing a reduction i.e., the computation of a single value based on the

results of all threads generally needs a separate kernel call and also a special strategy, see

for example [Lui14]. Avoiding algorithms that rely on reductions are thus better suited for

parallelization.

Another critical aspect is the avoidance of “thread divergence”, which occurs if the exe-

cution path of the threads of a single warp diverge by conditional execution, i.e., different

branches of an if-then-else conditional construct are taken for different threads. To resolve

this the SMX then has to stop the concurrent execution of members of the warp and has to

handle each thread separately, slowing down the execution. Different execution paths for

different warps are not problematic in this context.

13

2. Background

The Nvidia GK104 GPU and SMX

SMX (192 cores)

GPC

SMX (192 cores)

SMX (192 cores)

GPC

SMX (192 cores)

SMX (192 cores)

GPC

SMX (192 cores)

SMX (192 cores)

GPC

SMX (192 cores)

L2 Cache

PolyMorph Engine 2.0

Instruction Cache

64K x 32-bit registers

64 KB Shared Memory

Warp Schedulers

192 CUDA cores

Streaming Multiprocessor GK104 with a total of 1536 cores Photo of GK104 (© by Nvidia)

Figure 2.4.: Schematic hardware architecture of the Nvidia GK104 GPU and photo of the ac-
tual die. The chip contains four Graphic Processing Clusters (GPC), consisting of
two Streaming Multiprocessors (SMX) each. Altogether, the GPU facilitates 1536
CUDA cores capable of processing the same number of threads simultaneously.

14

3. Direct Visuo-haptic Volume Rendering

Algorithms

The following chapter will lay the foundation for chapters 4, 5 and 6. It explains how a CT

image can be used to represent a virtual patient in a visuo-haptic simulation without sur-

face or volumetric mesh representations being necessary for visual and haptic rendering. In

the preceding lumbar puncture simulation framework [FHGH09], surface meshes had to be

created and thus indirect volume rendering techniques were used (Marching Cubes [LC87]).

Here, the mesh creation prepossessing steps are omitted and rendering is performed directly

on the image data for both visualization and haptics. This is a unique property of the sim-

ulation system, distinguishing it from previous available puncture simulation systems. It

builds on haptic volume rendering algorithms given in [LYG02], which were adapted for

needle insertion simulation in the lumber puncture framework [FHGH09, MFH12].

First, the chapter presents new methods for realistic visual volume rendering based on

ray casting. Its novelties include the combined rendering of a voxel image and a deformed

sub-region and comprehends shadow rendering and different rendering modes. Further-

more, a fluoroscopy simulation with a novel contrast agent propagation algorithm based on

diffusion is included. It can be used for simulated angiography of the biliary ducts. These

methods have been mainly published in [FMSH16].

Apart from the visual rendering, haptic rendering of a bendable needle is presented that

is capable of puncturing non-linear paths, distinguishing it from preceding versions. It was

published in [FWMH15], with additionally taking into account respiratory motion. Here,

it will first be explained for a static patient model, which is detailed later in chapter 5 for

included respiratory motion. Also, a new haptic algorithm for palpation and ultrasound

probing is presented, published previously in [FMH13a] and [FMH14].

3.1. Input Data and Notations

The following methods and algorithms for visual and haptic rendering are depending on

volumetric image data and are influenced by interaction using a haptic device. The used

15

3. Direct Visuo-haptic Volume Rendering Algorithms

notations for the image data and data from the haptic device thus shall shortly be defined:

The CT image is stored in a voxelated fashion, which means that image values are only

stored for elements on a regular grid Ω̇ ⊂ R3. For rendering this image, image values in the

space in between the grid points are of interest, making it necessary to have a definition for

the image that is defined on a continuous domain ΩI ⊂ R3 . This definition of the image

will be denoted by the function I : ΩI → R in the following. In case of evaluation of I(xi)

at positions xi ∈ ΩI \ Ω̇ that are not lying on the image grid Ω̇, trilinear interpolation is

chosen since it is fast to evaluate. Apart from the function I, a function J : ΩJ → R with

ΩJ ⊂ ΩI represents a small deformed part of the image, for which the next chapter will

present computational methods. The visualization algorithms uses a combination of both

image functions by the following sampling function

s(xi) =


I(xi) if xi ∈ ΩI \ΩJ

J(xi) if xi ∈ ΩJ

0 else

(3.1.1)

Based on segmentation masks or heuristics, a labeling function l : R3 → L ⊂ N0 will be

used that yields a distinct label for a given location and 0 representing air resp. no segmen-

tation available. The subsets Lrisk and Ltarget of L are intervention specific. See A.2 in the

appendix for a list of labels and associated structures for the PTCD intervention. Similar to

the sampling function s(xi), the labeling function uses a combination of a deformed and an

undeformed image function but uses nearest neighbor instead of trilinear interpolation. For

this chapter, this definition is sufficient but chapter 6 will provide an extended definition

based on a combination of partial segmentations and heuristics.

The position of the haptic device in the virtual scene will be denoted by x ∈ R3. Its

orientation is encoded in the unit quaternion q ∈ H, ‖q‖ = 1. Quaternions are a more

compact form for representation of orientation than rotation matrices [Kui02]. Here, the

corresponding rotation matrix will be denoted as Q ∈ R3×3. Often, only the direction qz =

q · (0, 0, 1)> · q∗ = Q · (0, 0, 1)>, qz ∈ R3, ‖qz‖ = 1 will be needed in the following. It

represents the z-axis of the haptic device handle, i.e. the direction the handle is pointing.

For the haptic algorithms, and as well as in following chapters, properties updated in an

iteration of an algorithm are marked by +. For instance, x+ is the updated value of x for a

single iteration of an algorithm. It is simply a more convenient form of writing xt+1 and xt,

respectively.

16

3.2. Ray Casting based Volume Rendering Methods

3.2. Ray Casting based Volume Rendering Methods

Visualization of a voxel image can be performed in several ways. One way is ray casting,

which is extensively explained in [EHK+06]. It can be used for realistic rendering of the

image data with the purpose of presenting a virtual environment with high immersion. In

contrast to means of realistic and immersive visual rendering to provide a plausible and con-

vincing setting, it is also of interest to use the visualization in a functional way. This means,

it should be possible to inspect and explore the image data for educational and planning

purposes as it would not be possible with an actual patient. Both realistic and functional

rendering aspects are included in the ray casting presented in the following.

3.2.1. Ray Casting

Abstractly speaking, ray casting assumes the volumetric image to consists of a gas of parti-

cles that has certain light emitting and absorbing properties. It can be evaluated for viewing

rays that pass through the volume by the rendering integral [EHK+06]. In simple terms, a

ray is traversed for each pixel of the output image through the volume and color values are

sampled and accumulated along this ray. This ray R ⊂ R3 consists of equidistantly placed

sampling points xi. Here, the RGBA color value v(xi) ∈ [0, 1]4 at each sample point is de-

termined by the Hadamard product of the value of a transfer function and a mixed shading

and shadowing model

v(xi) = c(s(xi)) ◦ fshade (s(xi)) (3.2.1)

The transfer function c : R → [0, 1]4 relates the Hounsfield units of the CT image to a

RGBA color tuple. In the implemented framework, n transfer functions, each defined for a

single organ or tissue class, can be combined into a single one by

c(v) = ∑
1≤i≤n

αiai(v)


ri(v)

gi(v)

bi(v)

1

 (3.2.2)

where αi ∈ [0, 1] is a weight and ri, gi,, bi, ai are the individual channels of each of the com-

bined transfer functions. Alternatively, the function can be replaced by a piecewise linear

windowing ramp, which is also used in the multiplanar reformations already included in

the predecessor of the framework [Fär09].

17

3. Direct Visuo-haptic Volume Rendering Algorithms

Shading is performed by Phong-Shading based on the sum of the components for ambi-

ent, diffuse and specular lighting. A detailed explanation of Phong-Shading is included in

[EHK+06, pp. 114]. Using the lighting components, the shading function can be written as

fshade (s(xi)) =


ambient + (diffuse + specular) · fshadow(s(xi))

ambient + (diffuse + specular) · fshadow(s(xi))

ambient + (diffuse + specular) · fshadow(s(xi))

1

 (3.2.3)

The terms of diffusive and specular lighting are linearly influenced by the shadowing term,

which is explained in section 3.2.3.

Currently available visualization frameworks that include volume rendering implementa-

tions only support static volume images. This fact made it necessary to implement a custom

rendering framework that also supports the visualization of deformed parts of the image,

i.e. that is capable of using the sampling function defined by Eq. 3.1.1.

To increase the speed of rendering, the number of potential sampling points is decreased

by first limiting the rays to the boundaries of the image by using ray-box intersection [KK86].

Further improvement is achieved by leaping over empty space [AW87] that is represented

by a low resolution binary mask. Also, the ray casting is terminated early in case the re-

sulting color accumulator is fully saturated. These optimizations are illustrated in the left

part of Fig. 3.1; the sampling start is set at position xstart, caused by the ray-box intersection

and empty space leaping. Sampling ends as soon xend is reached or the color accumulator is

saturated.

3.2.2. Clipping and Tagging

In a training environment for educational purposes it is desirable to be able to easily inspect

the internal parts of the virtual patient although this is obviously not possible in a real inter-

vention. The same applies for planning application of the framework. To provide inspection

of internal structures, a “clipping” mode that uses the tool or haptic device orientation and

position to hide one half of the virtual patient is part of the ray casting, which is illustrated in

the right part of Fig. 3.1. For elements of this plane, shading and shadowing is disabled by

setting fshade = (1, 1, 1, 1)>. Also, the elements on this clipping plane can be augmented by

various tagging methods by replacing the transfer function term in Eq. 3.2.1. These tagging

methods are:

1. No tagging and shading. Simply use the transfer function to determine the color value

of the elements on the clipping plane: v1(xi) = c(s(xi))

18

3.2. Ray Casting based Volume Rendering Methods

Ray casting of the image data with performance optimizations and clipping plane

xstart

I

J xend

I

xstart

xend

Figure 3.1.: Overview of ray casting along a single ray. Left: After ray-box intersection (gray
dashed line) and empty space leaping (gray dotted line), sampling starts at xstart
until the accumulated color value is fully saturated or xend is reached. If a sam-
pling point lies within J, the deformed volume is sampled, otherwise I is used.
Right: To inspect internal structures of a virtual patient, parts of the patient can
be hidden by a clipping plane. Rendering starts on this clippling plane to reduce
the number of sampling points.

2. Target and risk structure overlay. Mix the color value determined by the transfer func-

tion with an overlay color representing target structures or risk structures. The color

depends on the label associated with the element xi

v2(xi) = 0.5 · c(s(xi)) +


(0, 0.5, 0, 0.5)> if l(xi) ∈ Ltarget ⊂ L

(0.5, 0, 0.2, 0.5)> if l(xi) ∈ Lrisk ⊂ L

0.5 · c(s(xi)) else

(3.2.4)

3. Label color overlay. Use a function clabel : L → [0, 1]4 that yields a color tuple for a

given label. Set the color of the element to the color associated with the label of xi

v3(xi) = clabel(l(xi)) (3.2.5)

3.2.3. Shadow Rendering

Depth perception of a virtual scene is important for immersion. As for example in painting,

a method to create the illusion of depth is to use perspective and perspective projection. Nat-

urally, depth is perceived by the human mind by fusing the images of the two eyes. Stereo-

scopic display, that is the display of two images taken from two different points of views,

is already a standard technique of modern multi-media. Another property that indicates

19

3. Direct Visuo-haptic Volume Rendering Algorithms

Computing the needle shadow

d3

l3

d1

d2

lb

b l

d3

d1 d2

Figure 3.2.: Shadow rendering is based on the light direction l and pose of the needle. The
needle shadow is approximated by the red overlay on the right side.

depths and spacial relations is shadowing and shading. For rendering of triangular surfaces

by rasterization, this is often implemented by shadow mapping [Wil78]. The basic idea is

this: Before rendering the scene from the position of the camera, it is first rendered from the

position of a light source and the resulting depth buffer is stored. It is then used during the

actual rendering pass to determine if the currently rendered fragment is in shadow.

This approach requires a first rendering pass from the position of the light source and also

an additional texture lookup for each sample position on a ray during volume rendering.

For means of needle insertion and basic tool interaction, it is only necessary to indicate to

the user the distance towards the skin of the virtual patient. Therefore, the shadow cast by

the tools or virtual finger is reduced to a suitable simplification and the resulting shadow is

represented implicitly in form of an algorithmic function. For a directed sun light source, i.e.

a light source with only direction but no explicit position (infinitely far away), this is illus-

trated in Fig. 3.2. For a single sampling point xi, a given light direction l, needle direction n,

needle tip position x and needle length l̄, the values d1, d2 and d3 are calculated and used in

algorithm 3.1 to determine if the sampling point is within the shadow of the needle, giving

a value for the shadowing term fshadow(s(xi)) in Eq. 3.2.3. The values returned by the algo-

rithm are constants. The value fshadow(s(xi)) = fout = 1 indicates that the sampling point

is not in the shadow and thus the calculated color is not affected for the sampling point.

The second case, i.e. fshadow(s(xi)) = fin < 1 indicating that the sampling point is within

the shadows and the shading terms for diffusive and specular lighting are affected. For a

shadow that is cast by a sphere, algorithm 3.2 is used. The shadows cast by the palpating

finger and the ultrasound probe are approximated this way.

20

3.2. Ray Casting based Volume Rendering Methods

Algorithm 3.1 Algorithm for determination if a sampling point xi is withing the simplified
needle shadow.

1: input: x← needle tip position
2: input: xi ← sampling point position
3: input: l← normalized light direction
4: input: n← normalized needle direction
5: input: l̄ ← needle length
6: input: b̄← needle base length
7: input: �l ← needle diameter
8: input: �b← needle base diameter
9: output: shadowing function value fshadow(s(xi))

10: q← l−n(n·l)
‖l−n(n·l)‖

11: d← xi − x
12: p← l× n
13: j← p× l
14: d1 ← d·p

p
15: d2 ← q · d
16: d3 ← j·d

j·n
17: if |d1| < 1

2�l and d2 > 0 and 0 < d3 < l̄ then
18: return fin
19: else if |d1| < 1

2�b and d2 > 0 and l̄ < d3 < l̄ + b̄ then
20: return fin
21: end if
22: return fout

Algorithm 3.2 Algorithms for shadowing of a simple sphere shaped object.
1: input: x← needle tip position
2: input: xi ← sampling point position
3: input: l← normalized light direction
4: input: n← normalized needle direction
5: output: shadowing function value fshadow(s(xi))
6: r ←sphere radius
7: k← l · (xi − x)
8: d← ‖(xi − x)− kl‖
9: if k > −r and d < r then

10: return fin
11: end if
12: return fout

21

3. Direct Visuo-haptic Volume Rendering Algorithms

3.2.4. Combined Volume Rendering and Rasterization

Surface based rendering methods used in the framework are implemented using VTK, which

relies on OpenGL for rasterization of surface meshes. It is possible to interface OpenGL and

CUDA without having to copy data back to the host system’s memory. Without this in-

terface, each result computed using CUDA would have to be copied from device (GPU)

memory to host (CPU) main memory and back to GPU memory, which is a costly oper-

ation. In practice, this interoperation is performed by OpenGL pixel buffer objects (PBO)

and is well supported by the CUDA API. For the combination of a ray casting of volume

data performed in CUDA and rasterized objects (such as for example the triangle mesh of

the virtual needle) in the OpenGL framebuffer, a shared depth buffer is needed. This depth

buffer is necessary to perform either hidden surface removal for the rasterization or for early

ray termination in the volume rendering. Otherwise, one of either the volume rendering or

rasterization would be simply rendered in front of the other without proper occlusions. In

terms of rendering a combined volumetric CT image and a needle mesh, without proper

occlusions, no visual penetration effect of the needle into the virtual patient model could be

created.

Since it is not possible to interface the OpenGL framebuffer or depth buffer directly from

CUDA, two options arise: One is to perform ray casting first, and store the resulting depth

values in a separate texture. Then, this depth image can be written to the depth buffer by

drawing a viewport filling square and a custom GLSL shader that only writes the texture

values to the depth buffer. The second option is to first perform the rasterization, followed

by copying the resulting depth buffer to a CUDA array. This is not trivial, since the OpenGL

function that provides the copy is very slow when copying from the standard depth buffer.

To perform this with reasonable performance, the rasterization process has to be performed

on a frame buffer object (FBO), which is not part of the standard VTK visualization pipeline.

It is possible to realize by using VTK render passes and implementing a custom render pass

that initializes rendering to a frame buffer object. Both options have been implemented but

the latter was finally chosen, because this way, rasterization is performed first, followed by

the volume rendering. This is important for rendering highly translucent volumes without

artifacts.

3.3. X-Ray Rendering and Contrast Agent Diffusion

The previous generation of the framework (ACUS-VR) featured a CPU-based implementa-

tion of fluoroscopy simulation [Fär09], that did neither include deformations nor the spread-

22

3.3. X-Ray Rendering and Contrast Agent Diffusion

ing of contrast agent in the bile ducts. In PTCD, it is necessary to check for contrast agent in

the bile ducts to confirm a successful puncture of the biliary vessels before placement of a

catheter. To this aim, the ray casting from the previous sections is adapted for simulated X-

ray. The simulation of X-ray and angiography has been performed previously: This includes

digitally reconstructed radiography based on CT data [RRM+05, SNC90], angiography sim-

ulation [WAC07] and training environments for brachytherapy [GSMS13] or C-arm based

fluoroscopy [WDL+12]. The contribution here is a simulation that incorporates contrast

agent and simulates the distribution in the bile ducts by a diffusive model on a regular grid.

As stated above, the approach is based on the ray casting methods from the previous sec-

tions. Instead of using a color transfer function, the attenuation a along a ray is used to com-

pute each pixel of the output image [RRM+05]. The attenuation along a ray is included in

the Beer-Lambert law Iout/Iin = e−a with radiation influx Iin and outflow Iout. To compute

the total attenuation, the ray can be subdivided into segments separated by the sampling

points. For each sampling point xi ∈ R on the ray R with sampling distance ∆x, the attenua-

tion is ai = µ(xi)∆x with a given attenuation coefficient µ(xi). This gives a total attenuation

of a = ∑xi∈R µ(xi)∆x [RRM+05]. Using the linear equation µ(xi) =
s(xi)·µwater

1000 + µwater from

[SNC90], the Hounsfield units given by the sampling function s(xi), which combines I and

J, can be used to calculate the attenuation coefficient for a sampling point. The attenuation

coefficient of water is depending on the energy of the photons emitted by the X-ray de-

vice. Values for attenuation coefficients for different energies can be found in [HS04]. In the

implementation presented here, a value of 0.1 MeV has been chosen, given an attenuation

coefficient of µwater = 0.17 m−1.

Apart from the attenuation caused by the tissue represented in the CT data, the contrast

agent also attenuates the amount of photons passing through the virtual patient. For fluo-

roscopy, iodine is an often used contrast agent. For the given energy of 0.1 MeV, iodine has a

high attenuation of µc(xi) = 1.942 cm2

g ρ(xi) for a given density ρ(xi). The overall attenuation

for a single ray then can be modeled by a = ∆x ∑xi∈R(µ(xi) + µc(xi)).

Given the segmentation of the bile ducts, the propagation of contrast agent can be simu-

lated by a diffusion process. The diffusion process is defined similar to heat diffusion using

explicit Euler integration

ρ+ = ρ + τ∆ρ + τι (3.3.1)

with τ being the step width of the process, ∆ the Laplace operator and ι the inflow of contrast

agent. To simulate contrast agent injection at the needle tip, the inflow is set to a constant

value at the tip and is zero everywhere else. Since the bile ducts are modeled by a grid, this

is performed by increasing the contrast agent density of the grid element that is the nearest

23

3. Direct Visuo-haptic Volume Rendering Algorithms

Diffusion of contrast agent on the bile duct segmentation grid

Bile duct elements

Nearest neigbor of needle tip

Diffusion grid elements

Figure 3.3.: Overview of the diffusion process of contrast agent, which takes place on the
grid given by the bile duct segmentation. Contrast agent flows in at the element
closest to the needle tip.

neighbor of the needle tip, see Fig. 3.3. In the implementation, this process takes place on

a cubic grid with a fixed number of elements much lower than the grid of the image data

to decrease the time needed for computation. The grid is placed centered on the puncture

location of the bile ducts during run-time. Using CUDA, the process can be implemented

efficiently by first adding the inflow to the density value of the nearest neighbor grid element

and then by computing the density for each grid element i by a single thread

ρ+i = ρi +

∑j∈N ρj − |N| ρi if l(xi) = Lducts

0 else
(3.3.2)

with N being the grid neighbors of element i that are part of the bile duct segmentation mask

Lducts. The term ∑j∈N ρj − |N| ρi approximates the Laplace-operator without conditions at

the boundaries. For instance, if an element is part of a thin tubular structure, i.e. it only has

two neighbors on opposite sides, only these two neighbors will be used for computation

of the Laplace operator and all other neighbors are discarded. Since the elements of the

diffusion grid that are part of the bile duct segmentation will be sparse, only a subset of

elements will be changed by Eq. 3.3.2, reducing the number for which the evaluation of the

Laplace operator has to be performed.

3.4. Simulated Ultrasound Imaging

As depicted in the background chapter, PTCD is often supported by ultrasound probing

with the purpose of reducing the number of needle repositionings [DBI11]. In comparison

to only using fluoroscopy for performing the PTCD, the patient is not exposed to X-ray

radiation by the ultrasound probing and thus providing a training scenario that supports

24

3.5. A Bendable Needle

Needle represented by discretized nodes and corresponding needle insertion path

n1

nm

n1

nm

n1

nm
p1

p1 p2 pl

pre-puncture needle on skin surface needle inside tissue

Figure 3.4.: Example of the needle nodes nj and path nodes pi for three phases during nee-
dle puncture. The needle is always discretized by the same number of nodes.
The path nodes form the insertion channel and their number depends on the
puncture phase and insertion depth of the needle.

ultrasound simulation may reduce the overall X-ray exposure of patient and operator in

real interventions.

The implementation used here [SMFH14] is based on the methods of [RPAS09], [KKWN09]

and [WBK+08], which use patient CT image data to estimate the acoustic properties of the

patient’s soft tissue. An addition is the use of partial segmentations. Also, tissue and organ

boundaries can be visualized, and also a prototypical Doppler mode simulation is included.

To compute the ultrasound image, several rays originating at the head of the transducer

are cast through the image volume. In a first step, the image values of a fixed number of

equidistant points are sampled. Then, these are converted to acoustic properties for the ele-

ments of the resulting simulated ultrasound image. Liver blood vessels are visualized by a

Doppler-mode simulation that assumes that from known blood pressure p(t), the magnitute

of the blood’s flow velocity can be estimated by v (t) =
√

2 · (p(t)/ρblood). Given this value,

arteries and veins are visualized by a red-to-yellow resp. blue-to-cyan color gradient.

3.5. A Bendable Needle

The predecessor of the presented simulation system included a simulated bendable needle.

However, it was limited in the following aspects:

• Puncturing of non-linear paths was not possible, the direction of insertion was fixed

from the moment of initial puncturing of the skin of the virtual patient.

• The elements of the needle are connected to multiple proxies and in an iteration of the

algorithms, the value of the image I and the segmentation mask have to be evaluated

at each proxy position, which is a time consuming process.

25

3. Direct Visuo-haptic Volume Rendering Algorithms

To mitigate these issues, the following needle algorithm has been developed. Its major dif-

ference is the fact that two sets of needle nodes are used. This is similar to finite element

needle insertion simulation as presented in [CAR+09]. One set represents the actual dis-

cretized needle and is also used to visually represent the needle, see [FDBH09]. The other

set represents the path of the needle in the virtual patient. This insertion path does not have

to be linear and these sets are defined as

• N = {nj ∈ R3}1≤j≤m: nodes representing the discretized needle

• P = {pi ∈ R3}1≤i≤l : nodes representing the needle insertion path

In Fig. 3.4, the behavior of these two sets are demonstrated for three phases of a needle

insertion: As long as the needle is outside the virtual patient, the needle path set P is empty.

As soon as the needle tip gets in contact with the virtual patient’s skin, a first node p1 is

placed at the insertion position. During further insertion, new elements are added to the set

while the needle is advancing and elements are removed while the needle is retracted. In

summary, the cardinality of P indicates the state of the needle:

• |P| = 0: the needle is outside the body,

• |P| = 1: the needle tip is on the skin surface of the patient,

• |P| ≥ 2: the needle is inserted into the patient.

The set P is updated in each iteration of the haptic algorithm based on the position x of the

haptic device. A desirable property of this algorithm is that the positions of the equidis-

tantly distributed path nodes do not change with exception of the path tip node, making it

possible to only update the values of material properties and material label at this tip node.

Otherwise, this would be necessary for each node along the path, which would increase

computational time.

The haptic algorithm is summarized in Alg. 3.3. It contains the update of path nodes,

physics simulation for the needle nodes and force feedback computation. These will be

explained now in detail.

3.5.1. Updating the Insertion Path

Associated to each of the nodes is a normalized direction vector. For the path nodes, this is

denoted by di ∈ R3 and for the needle nodes by rj ∈ R3. 3.4. To include a steering effect

into the needle path, the tangential direction dl in which the tip path node pl advances into

the tissue is set to the needle node direction vector rm as illustrated in Fig. 3.5. This update

step is denoted as dl ← calcTipDirection(...) in Alg. 3.3. All the tangents rj and needle

node positions nj are updated in each iteration of the haptic algorithm by a physical needle

model in case the needle is inside tissue, as described later in the next section.

26

3.5. A Bendable Needle

Algorithm 3.3 One iteration of the haptic loop. It computes new node positions P+ and N+

as well as the haptic force f and torque t.
1: input: x← haptic device position
2: input: q← haptic device orientation
3: input: P← set of path nodes from prev. step
4: input: N ← set of needle nodes from prev. step
5: output: N+, P+, f, t
6: if |P| 6= 0 then
7: dl ← calcTipDirection(...) // update tangential direction of path tip
8: end if
9: P+ ← updatePathNodes(...) // update path nodes

10: if |P+| 6= 0 then // if needle is inside of patient model
11: N+ ← updateNNodes(P+, N, x, q) // use physics simulation to update needle nodes

12: f← computeForces(P+, N+, x) // compute force feedback
13: t← computeTorque(P+, N+, x)
14: else // if needle is outside of patient model
15: N+ ← simpleNNodePlacement(x, q) // place nodes on a line/no forces
16: f← 0
17: t← 0
18: end if

Movement of needle nodes during insertion

dl
p1 p2

pl

n1

nm

rm

Figure 3.5.: Path Nodes pi are placed during insertion and constitute the insertion channel.
Here, it is illustrated that only the path tip node is moving dynamically for the
path node set and it is moving in direction of the needle tip node.

27

3. Direct Visuo-haptic Volume Rendering Algorithms

Alg. 3.4 summarizes the update procedure updatePathNodes(...) of the node posi-

tions P, for which the execution path is dependent of the current number of path nodes.

The algorithm includes the update of the tip node by calculation of a restricted movement.

(compPTipMov(...), Alg. 3.5). This enables the unrestricted backwards movement of the tip

node in direction towards the preceding node pl−1 and also the restricted forward move-

ment in tangential direction dl . The restriction limits the insertion depth of the needle to

the overall length l̄. Also, it is simulating a cutting force threshold that has to be exceeded

to permit advancing of the needle into the tissue. The force is modeled by a non-linear

quadratic spring with spring parameters fk1(pl) and fk2(pl) and the force has to exceed the

threshold fcutthresh(pl). These material properties are functions that vary and are defined

for each element of the image domain ΩI and can take into account the image I and the

label image L. The method for evaluation of the material property functions based on the

partially segmented data will be given in chapter 6.1.

Based on the new position of the needle path tip node and the resulting distance ∆l =

(pl − pl−1) · dl−1 one of the following is performed. A new node is inserted between pl and

pl−1 in case the distance is larger than 1.5 times the fixed needle spacing ∆p. In case ∆l <

0.5 · ∆p and the needle path consisting of more than two nodes, the tip node is approaching

the node after the tip, resulting in the removal of the latter from the set. If only two node are

remaining on the path, and the needle is withdrawn further, it is possible that the distance

∆l is becoming negative, which indicates that the needle was withdrawn from the patient’s

body, which is processed by emptying the path node set.

3.5.2. Simulation of Needle and Tissue Coupling

The needle model is implemented using the Bullet Physics library [Cou14]. In the physics

simulation, each needle node nj is synchronized with a rigid body object and adjacent nodes

are connected by ball-and-socket joints and a rotational spring. Additionally, to each path

node and corresponding rigid body inside the tissue, a virtual spring is attached (Fig. 3.6,

left side). These springs have a stiffness as defined by the material stiffness fk(pi) at the

position of the needle nodes. The purpose of these springs is to model the force acting on the

needle nodes perpendicular to the needle. This lead to the design decision of neglecting the

forces acting on the rigid body elements of the needle in tangential direction by projecting

the force on the plane perpendicular to the needle tangent, with exception of the tip node.

Furthermore, the base of the Bullet needle model is connected by a spring to a position v,

which induces bending to the needle in case the user angulates it. The bending of the needle

will influence the orientation of the needle tip node and thus will affect the insertion paht.

28

3.5. A Bendable Needle

Algorithm 3.4 New needle path node positions P+ are computed based on the movement
of the haptic device.

1: input: x← haptic device position
2: input: P← set of path nodes from prev. step
3: input: d1...l ← needle tangents at path nodes 1...l
4: output: new set of path nodes P+

5: if |P| = 0 then // if needle is not yet in tissue
6: if l(x) 6= ∅ then // and needle tip touches skin surface
7: P+ ← {x} // add first path node on skin surface
8: end if
9: else if |P| = 1 then // if needle is on tissue surface

10: ∆d← (x− pl) · dl
11: if ∆d > 0 then // if needle is inserting
12: P+ ← {p1} ∪ {(p1 + d1 · ∆d)} // add a second path node
13: else if ∆d < 0 then // or if needle is retracting
14: P+ ← ∅ // needle leaves body
15: end if
16: else // needle is moving in the tissue
17: p+

l ← pl + compPTipMov(...)
18: ∆l ←

(
p+

l − pl−1
)
· dl−1

19: if ∆l > 1.5 · ∆p then // if distance between tip and next path node is too large
20: P+ ← P ∪ {(pl−1 + ∆p · dl−1)} // insert new node behind tip
21: else if ∆l < 0.5 · ∆p ∧ |P| > 2 then // of if distance is too small
22: P+ ← {p1, ..., pl−2} ∪ {p+

l } // remove node behind tip
23: else if ∆l < 0 then // if only two nodes, distance can be decreased until
24: P+ ← ∅ // the needle is withdrawn fully
25: else // in all other cases
26: P+ ← P // no changes to needle set
27: end if
28: end if

Springs and forces acting on the needle

fbase

ffriction

fcut
v

Figure 3.6.: Left: The nodes of the discretized needle that are inside tissue are connected to
it by virtual springs. Middle: The base of the needle is connected to v. Right:
Different forces acting on the needle are simulated and accumulated to compute
the force given to the user.

29

3. Direct Visuo-haptic Volume Rendering Algorithms

Algorithm 3.5 Computation of path tip node movement compPTipMov(...). The movement
of the tip node is restricted in its tangential direction dl and also by the needle length l̄ and
simulation of cutting resistance.

1: input: x← haptic device position
2: input: qz ← haptic device direction
3: input: dl ← needle path tip node direction
4: input: P← set of path nodes from prev. step
5: output: movement of path tip node ∆pl
6: ∆d← (x− pl) · dl
7: if ∆d ≥ 0 then // if needle moves forward
8: f ← fk2(pl) · ∆d2 + fk1(pl) · ∆d // compute cutting force magnitude
9: if f > fcutthresh(pl)∧∑l

i=2 ‖pi − pi−1‖ < l̄ then // if force exceeds threshold and needle
is not fully inserted

10: if fk2(pl) = 0 then // if using a linear spring

11: ∆pl ←
(

∆d− fcut(pl)
fk1

(pl)

)
dl // set movement using linear spring

12: else // if using a non-linear spring

13: a← 0.5 · fk1
(pl)

fk2 (pl)

14: b← fcut(pl)
fk2 (pl)

15: ∆pl ←
(

∆d + a−
√

a2 + b
)

dl // set movement using non-linear spring

16: end if
17: else // or if force to small or needle fully inserted
18: ∆pl ← 0 // prohibit all movement
19: end if
20: else // unrestricted backward movement
21: ∆pl ← ∆d pl−pl−1

‖pl−pl−1‖ // move towards next node, not in tip direction
22: end if

30

3.5. A Bendable Needle

The position of v is based on the first path node position p1, the haptic device direction qz

and the length of the part of the needle that still remains outside of the body

v = p1 −
(

l̄ −
l

∑
i=2
‖pi − pi−1‖

)
qz (3.5.1)

3.5.3. Force Computation

After having computed new node positions N+ and P+, force and torque for display by the

haptic device are computed. In case the needle is moved freely without tissue contact yet,

no needle forces are computed and the needle nodes are placed along the ray defined by

haptic device position x and direction qz (simpleNNodePlacement). The force is divided

in three parts: A cutting resistance force, a friction force and a base force (see right side of

Fig. 3.6). These forces are assumed to act accumulated on the base of the needle, which

represents the interface between the user and the needle.

1. The cutting force is defined as the spring force of a quadratic spring with an extension

of ∆d = (x− pl) · dl , i.e. the projection of the difference between haptic device tip and

the last needle path node pl onto the cutting direction

fcut = −
(

fk2(pl) · ∆d2 + fk1(pl) · ∆d
)
· dl (3.5.2)

Note that the magnitude of this force is also used in Alg. 3.5 to restrict tip node move-

ment. Only in case the user applies a force large enough, the needle advances into the

tissue.

2. Apart from the cutting force, friction along the shaft has to take into account the mate-

rial at each point along the needle. Here, it is modeled for each node on the insertion

path by a simple friction law [HA00], that uses a spring-like force based on an offset

and material properties for maximum friction force fR(pi) and stiffness fk(pi). For the

friction, it is assumed that only the relative movement in tangential needle direction is

relevant, which is approximated by the relative movement ∆x = (x− x−) · dl of the

haptic device in needle insertion direction, based on the current haptic device position

and position from the previous iteration. The relative offset for each segment then is

∆xi ∈ R and it is updated in each iteration as

∆x+i =

∆xi + ∆x if |∆xi + ∆x| < fR(pi)
fk(pi)

fR(pi)
fk(pi)

sgn(∆xi + ∆x)
(3.5.3)

31

3. Direct Visuo-haptic Volume Rendering Algorithms

Based on all offsets and the corresponding stiffness values, the total frictional force

along the elements of the needle path is

f+ = ∑
2≤i≤l

fk(pi)
‖pi − pi−1‖

∆p
∆xi (3.5.4)

with ‖pi−pi−1‖
∆p being a weighting term that is 1 for all segments except the last. Spring

based haptic algorithms can exhibit unstable force calculation due to overshooting

when using high stiffness values for the springs. For example, if a constant stiffness

is assumed, the total stiffness of f increases linearly with the number of path nodes,

which can exceed the maximum stiffness of a stable simulation while inserting the nee-

dle. This maximum stiffness value kmax is known for the haptic devices and is used to

clamp the change of total friction force

∆ f = max
(
−‖kmax∆x‖ , min

(
(f+ − f), ‖kmax∆x‖

))
(3.5.5)

finally yielding the frictional force as

ffric = (f + ∆ f)dl (3.5.6)

3. Finally, a force that keeps the haptic device handle on the insertion vector is computed.

It takes the insertion direction at the first path node d1 as a plane normal and uses the

projection of the difference of the needle base n1 and the haptic device position x

fbase = κ · [(n1 − x)− (n1 − x) · d1] (3.5.7)

with κ being the stiffness coefficient of this spring. This coefficient has to be high enough

to facilitate compliance of the haptic device to the virtual needle base while not causing

oscillation of the haptic device handle.

Torque computation uses a quaternion based rotational spring. For this aim, a quaternion

qdest is defined as the quaternion for which the local z-axis is aligned with direction d1 and

the x- and y-axis aligned with the local axis qx and qy of the haptic device. Aligning it

in x- and y-axis with the haptic device will remove twisting torque so the needle is freely

rotatable around its shaft. Given qdest, a difference quaternion ∆q = q−1
dest · q is computed

and converted to Euler-angles e ∈ R3. Based on these, the torque in the space of the haptic

device is

t = q ·
(
kqe
)
· q∗ (3.5.8)

32

3.6. Palpation and Ultrasound Probing

with a spring coefficient kq = −300− ∑l
i=2 ‖pi − pi−1‖ · 50.0 that takes the insertion depth

of the needle into account.

3.6. Palpation and Ultrasound Probing

Palpation and ultrasound probing is common practice for many interventions making it

an interesting aspect to be featured in a visuo-haptic simulation. For example, for needle

insertion into the femoral artery with the aim of regional anesthesia or preparation of the

Seldinger technique, the artery has to be located first. This, for example, is included in the

simulation frameworks presented in [CJGC11] and [UIK12]. In the former, a sophisticated

hardware setup is used to give the user the possibility to palpate a tissue phantom with

his own fingers in a mixed-reality simulation environment. In contrast to this, in [UIK12]

a Phantom Omni haptic device is used. Algorithmically, the haptic device steers a single

interaction point, which uses surface models for handling contacts. Another approach for

virtual palpation is presented in [YS13]. There, organs are represented by mathematical

distance functions, which are used to render haptic force output for palpation. Haptic in-

teraction with a virtual patient using a simulated ultrasound probe is also included in the

framework of [VVH+09, BBG+09]. In general, interaction with volumetric data through the

use of haptic devices is presented for example in [LYG02, PCY07] and using distance maps

in [BG00].

Insertion of a needle in between the ribs for liver puncture includes the palpation of the

intercostal spaces to find a suitable insertion site. Furthermore, ultrasound probing is used

to guide the needle into the target structure. For the simulation of virtual palpation the

methods presented here include a newly developed algorithm [FMH13b, FMH14] that is

based on distance maps of segmentations of skin and bone. It uses multiple contact points

distributed on the virtual palpating finger or ultrasound probe and can make use of the 6

degrees of freedom of force output of the Phantom Premium haptic device. The distance

maps are computed in a preprocessing step based on the available CT image data and only

require the determination of reasonable thresholds for bone and skin surface classification,

making it suitable for patient-specific simulation. These thresholds can be set by the scenario

designer or estimated using the gray value distribution of a reference patient.

More precisely, in the preprocessing step, Euclidean distance maps are computed from

the image data as illustrated in Fig. 3.7. The image data is first thresholded by segmen-

tation thresholds tskin
air and tbone

fat to obtain segmentation masks. Afterwards, region grow-

ing is applied to the skin segmentation mask to remove air cavities from the segmenta-

tion. In the same fashion as for the image data, the distance maps are defined on the

33

3. Direct Visuo-haptic Volume Rendering Algorithms

Pipeline for computation of Euclidean distance maps

1. thresholding

Dskin

Dbone

2. region growing 3. distance map computation

1.
2. 3.

3.

Figure 3.7.: Creation of Euclidean distance maps for simulation of virtual palpation and ul-
trasound probing.

Distribution of contact nodes and force components acting on each node

xi

xqx

qy

qz

pisi

xi

ffriction

fskin

Skin

Ribs

fbone

Figure 3.8.: Left: Distribution of contact nodes on a virtual ultrasound probe in the local
frame of the haptic device. Right: Force components for haptic rendering of
palpation and ultrasound probing for a single contact node.

image grid, but using trilinear interpolation they can be represented as distance functions

D{skin,bone} : ΩI → R on the continuous image domain. Each of Dskin and Dbone yield the

signed distance for a given point to the closest element that represent the surface of the pa-

tient’s skin or bone respectively. A positive sign indicates that the given point is inside the

structure, whereas a negative sign indicates that the point is outside the structure. Calcula-

tion of the gradient ∇D{skin,bone}(xi) gives the direction of the shortest paths towards each

of the surfaces.

The algorithms use several contact points with proxies connected to them. Without loss of

generality, this is first explained for a single point on the surface of the interacting finger or

ultrasound probe. This point has a static location x0
i in the reference frame of the haptic de-

vice resp. ultrasound probe or palpating finger given by the rotation matrix Q = (qx, qy, qz).

In the world space, the location is given by the vector xi = x + Q · x0
i , see left side of Fig. 3.8.

As shown also in Fig. 3.8, the force is subdivided into three components, namely two

34

3.6. Palpation and Ultrasound Probing

penalty forces fskin and fbone and a proxy spring force ffriction. The direction of the penalty

forces is based on the gradient of the distance maps. For the skin force component, the

direction is

vs
i = −

∇Dskin(xi)

‖∇Dskin(xi)‖
(3.6.1)

Based on this direction and a force function fskin : R→ R, the force then is defined as

fskin = fskin(Dskin(xi)) · vs
i (3.6.2)

The force function relates the indentation of the skin to a force magnitude. For the case of

femoral artery palpation, such a force function is given in [CJGC11]. Since the measurements

have been performed for a large region of nearly homogenous soft tissue, it can be assumed

to be applicable for other regions as well. Using a curve fitting algorithm for the data from

[CJGC11] yielded the following cubic function

fskin(x) =

1.78 · 10−2x3 + 3.82 · 10−3x2 + 2.28 · 10−4x if x > 0

0 else
(3.6.3)

In theory, this approach could suffer from “pop-thru” effects in case the gradient of the

distance map flips its direction while the user is increasing the indentation of the skin. Since

the virtual patient is large in comparison to the possible indentation, this is not a problem in

reality.

The bone penalty force is calculated similar but incorporates a heuristic to adjust the di-

rection of the force in case the contact point is past the intercostal spaces, which would cause

the already mentioned “pop-thru”. Again, the base force direction is calculated as

vb
i = −

∇Dbone(xi)

‖∇Dbone(xi)‖
(3.6.4)

but it is corrected towards the surface force direction by

dbone =

vb
i if vb

i vs
i > 0

vb
i − 4 · vs

i (v
b
i vs

i) otherwise
(3.6.5)

in case the deviation of vb
i is larger than 90◦ towards vs

i .

35

3. Direct Visuo-haptic Volume Rendering Algorithms

As a force function for this component, the following function has been used

fbone(x) =

20 ·
(x

5

)−3 if x > 0

0 else
(3.6.6)

based on experiences with the system. Overall, this gives the total bone force

fbone = fbone(−Dbone(xi))
dbone

‖dbone‖
(3.6.7)

This force increases the closer the location xi is to the bone surface. In comparison, the force

representing the skin surface is increasing for locations that have already passed the skin

surface.

Apart from these penalty forces, the palpation and ultrasound probing haptic algorithm

includes a proxy-based component. The idea of a proxy-based haptic algorithm is that the

haptic device is connected to a proxy by a virtual spring, and the rendered object interacts

with the proxy. This rendered object can be represented by surface models [RKK97] or vol-

ume models [LYG02]. Here, a surface position si = xi − Dsurf(x) · vs
i corresponding to the

contact node at position xi (see Fig. 3.8) is connected to a virtual proxy pi. The behavior

of the proxy is then defined as follows: In each iteration, the movement of the proxy is

restricted by using the friction law of [HA00]

p+
i =

s+i −
d
‖d‖zmax if α(‖d‖) ‖d‖ > 1

pi +
∣∣s+i − si

∣∣ α(‖d‖)(d) otherwise
(3.6.8)

with d = s+i − pi and s+i being the newly computed surface position. Furthermore, as

suggested in [HA00], the term α(z) = 1
zmax

z8

z8
stick+z8 is used. To model friction based on the

force acting on the contact node, the values of zmax and zstick are adjusted:

fn = (fskin + fbone) (3.6.9)

zmax =

cfric fn · vs
i + 1 if fn · vs

i < 0

1 otherwise
(3.6.10)

zstick = zmax − 1 (3.6.11)

Since proxy based rendering uses a spring, Hooke’s law then can be used to calculate the

resulting spring force fslide = kfric (pi − si). The friction model uses two constants cfric and

kfric and can be adjusted to reflect the different behavior of palpating fingers and ultrasound

36

3.7. Experiments & Results

probing with a lubricant that reduces friction. Values of cfric = 2.0 and kfric = 0.4 can be

used for palpation with a finger. The reduced friction caused by the lubricant is reflected by

values of cfric = 0.4 and kfric = 0.3 [FMH14]. Also, higher values of cfric cause characteristic

tissue dragging, i.e. the contact nodes’ proxies have a higher stick threshold, increasing the

maximal distance between proxy and contact node.

The torque action on the haptic device is given by the cross product of the lever arm and

the total force fi = fskin + fslide + fbone acting on the contact node

ti = (xi − x)× fi (3.6.12)

Having computed the force and torque for a single contact position, now the final force and

torque can be computed given n contact nodes that are in contact with the virtual body as

fdevice =
1
n

n

∑
i=0

fi (3.6.13)

tdevice =
1
n

n

∑
i=0

ti (3.6.14)

Averaging of forces and torques is done to make these independent of the size of the contact

area and density of contact node distribution.

3.7. Experiments & Results

To demonstrate the realism of the presented methods, screenshots of the ray casting based

volume rendering, the X-ray simulation and ultrasound simulation have been taken. The

patient CT image data used for the experiments has a resolution of 256× 256× 234 voxels

and a voxel spacing of 1.55 mm × 1.55 mm × 2.00 mm.

Also, to confirm the applicability of implemented methods and their improvements, they

have to be analyzed for their run-time behavior on a Nvidia Geforce GTX680 graphics card.

Especially the ray casting based volume rendering is demanding in terms of computational

resources, for which an in-depth description follows.

3.7.1. Ray Casting

To analyze the run-time behavior of the volume rendering, a standard scene setup has been

defined, which corresponds to the setup shown in Fig. 3.9. All following experiments use

the camera pose defined for this standard scene to ensure reproducibility and comparability.

Also, a scripted needle insertion into the bile ducts is performed during the measurements,

37

3. Direct Visuo-haptic Volume Rendering Algorithms

Screenshots of volume rendering

Figure 3.9.: Results of volume rendering using different combination of transfer functions.
The results show the setup used for time measurments. Upper: αskin = αsoft =
αbone = 1.0 Lower left: αskin = 0, αsoft = 0.03 and αbone = 1.0 Lower right:
αskin = αsoft = 0 and αbone = 1.0

38

3.7. Experiments & Results

with a total duration of 10 seconds. For each experiment, the processing time of the volume

rendering CUDA kernels is measured during this insertion sequence. Thus, the processing

time directly influences the sampling rate. For volume rendering, three trapezoid shaped

transfer functions for rendering voxels with gray values representing the skin surface, soft

tissue and bone resp. have been defined. These are combined using Eq. 3.2.2 with weights

αskin = αsoft = αbone = 1.0 if not stated otherwise. As a default, the resolution of the

rendered image is set to 1225× 1016 pixels. Table 3.1 shows the measured times for which a

detailed description follows.

First, the performance of the kernel when using no improvements were measured (no. 1).

For the ray casting, two major speed improvements were implement: Ray-box intersection

and empty space leaping. In a second experiment, the unoptimized volume rendering is

compared to ray-box intersection (no. 2) and empty space leaping (no. 3-6) for the normal 1D

transfer function based rendering. The empty space leaping is performed for a volumetric

mask consisting of 16, 32, 64 and 128 elements in each spatial direction. Decreasing the

resolution of the rendering viewport to 612 × 508 and 306 × 254 pixels was measured in

experiments no. 7 and 8. As expected, the transfer function has a major influence on the

processing time: In experiment no. 9, a combination of transfer functions with weights

αskin = 0, αsoft = 0.03 and αbone = 1.0 was chosen. The visual result is also shown in Fig.

3.9. In the same fashion, no. 10 uses the weights αskin = αsoft = 0 and αbone = 1.0, see also

Fig. 3.9. For these two experiments, ray-box intersection and empty space leaping was also

activated.

To confirm the effects of different block and thread layouts (see section 2.2), blocks with

different number of threads have been tested (8× 8, 16× 16, 32× 32) in experiments no.

11-13. For each of this configurations, the Nvidia profiling tool Nsight states a theoretical

occupancy of 50% based on a number of 57 used registers per thread.

Furthermore, it is worth to analyze the contribution of single elements to the overall run-

time. This has been done for the shadowing term (no. 14) and the Blinn-Phong shading with

costly gradient computation (no. 15) by setting the result of the respective function values to

a constant value. Experiment no. 16 additionally uses a different transfer function. Finally,

it is worth to analyze the effect of thread divergence on the total run-time. Analyzing this is

tricky, so thread divergence is removed by using the same ray configuration for each thread

in a block (no. 17-18). This results in a “pixelated” render image (each element of a block

computes the same result) but gives a good hint on the effect of thread-divergence.

As can be seen, the transfer function used has a major influence on the number of samples

that have to be taken until the color accumulator is fully saturated and thus also a severe

39

3. Direct Visuo-haptic Volume Rendering Algorithms

Table 3.1.: Processing times in ms for the ray casting implemented in CUDA using a res-
olution of 1225 × 1016 pixel (with exception of experiment 7 and 8). For each
experiment, mean processing time, standard deviation and number of samples
are given.

no. comment mean stddev N

1 Unimproved 542.20 1.60 11
2 +Ray-box-intersect. 63.12 0.98 79
3 +Empty-space-leap. 163 elements. 28.04 0.34 110
4 323 elements 19.27 0.31 123
5 643 elements 14.98 0.21 128
6 1283 elements 14.08 0.19 122
7 Lower resolution 1

2 resolution 4.55 0.23 160
8 1

4 resolution 2.06 0.15 188
9 Different tfx αskin,soft,bone = (0.0, 0.03, 1.0) 113.32 0.54 67

10 αskin,soft,bone = (0.0, 0.0, 1.0) 54.28 0.36 110
11 Blocksize 8×8 14.21 0.35 195
12 16×16 14.69 0.26 192
13 32×32 19.74 0.34 181
14 w/o Shadowing fshadow = 1.0 13.56 0.31 196
15 w/o Shading fshade = 1.0 13.45 0.26 192
16 αskin,soft,bone = (0.0, 0.03, 1.0) 87.90 0.75 80
17 -Thread-divergence 11.15 0.42 195
18 αskin,soft,bone = (0.0, 0.03, 1.0) 98.21 1.04 77

effect on the rendering times. This is also valid for the experiments without shading and

with removed thread divergence: Overall, the measured times are lower for comparable

measurements (no. 4 vs no. 15+17 and no. 9 vs no. 16+18).

Apart from the simple 1D transfer function volume rendering, the clipping mode is demon-

strated in Fig. 3.10, including the target-and-risk-structure overlay, label color overlay and

windowing mode.

3.7.2. X-Ray and Ultrasound Simulation

Output of the X-ray simulation is included in Fig. 3.9. The processing speed of the X-ray

simulation component has been tested for two different resolutions of the output image

(256 × 256 pixel, 512 × 512 pixel) and a diffusion grid with 643 elements. For the lower

resolution, two additional timing tests have been performed. One without rendering of

contrast agent, i.e. setting µc = 0, and one with an increased size of 1283 elements of the

diffusion grid. The results are given in Tab. 3.2.

The performance of the contrast agent diffusion process was tested separately using four

different resolutions of 643, 963, 1283 and 1603 elements resp. with results in Tab. 3.3.

40

3.7. Experiments & Results

V
o
lu

m
e
 r

e
n

d
e
ri

n
g

 w
it

h
 c

lip
p

in
g

 p
la

n
e
 a

n
d

 t
a
g

g
in

g
 f

u
n

ct
io

n
s

Fi
gu

re
3.

10
.:

D
iff

er
en

tr
en

de
ri

ng
m

od
es

fo
r

cl
ip

pe
d

vo
lu

m
e

re
nd

er
in

g.

41

3. Direct Visuo-haptic Volume Rendering Algorithms

Table 3.2.: Processing times in ms for the X-ray simulation with mean, standard deviation
and number of samples.

no. resolution mean stddev N

1 Normal 256×256 12.83 0.10 130
2 512×512 48.92 0.13 88
3 w/o contrast agent 256×256 13.56 0.12 130
4 with increased desity field 256×256 12.83 0.11 130

Table 3.3.: Processing times in ms for the contrast agent propagation simulation with mean,
standard deviation and number of samples for different sizes of the grid.

no. resolution mean stddev N

1 64 0.33 0.06 110
2 96 0.60 0.05 110
3 128 1.00 0.06 105
4 160 1.55 0.07 90

Fig. 3.11 contains a screenshot of a simulated ultrasound image with highlighting of the

target structure bile ducts.

3.7.3. Needle Algorithm

In contrast to algorithms that produce visual results, i.e. images, the output of haptic algo-

rithms can only be presented by force plots. Fig. 3.12 shows such a plot for the presented

needle algorithms during a scripted sequence of bile duct puncture. Instead of using a phys-

ical haptic device, a software implementation is used that steers the haptic device position

x along a predefined trajectory starting outside of the patient, into the target structure bile

duct and back to the starting point over a period of 20 s. The force plot shows a distinct

puncture event of the intercostal fascia at ca. 7 s and puncture of the bile ducts at ca. 12 s.

By splitting the force into the components cutting force fcut and friction force ffric, it can be

shown that the algorithm works as expected: Cutting force depends on the material at the

needle tip and is zero when retracting the needle, the friction force increases linearly with

insertion depth and changes its sign when retracted.

Additionally, Fig. 3.13 shows the capability of the algorithm to puncture curved paths.

A slight bend of the needle is visible in the upper right part showing the needle nodes. In

the lower right part, the path nodes are shown which are placed in the tissue on a curved

insertion path. This was caused by angulation of the needle during insertion.

42

3.7. Experiments & Results

Ultrasound simulation and target structure

Figure 3.11.: Left: Screenshot of the results of the ultrasound simulation with outlining of
the target structure bile ducts (green) and needle path when using the needle
guide. Right: Screenshot of simulated scene with ultrasound probe with at-
tached needle guide. The clipping plane is fitted to the orientation of the ultra-
sound probe. Notice the correspondence of the target structure in both images.

0 5 10 15 20

Simulation time [s]

4

3

2

1

0

1

2

3

4

5

Fo
rc

e
 [

N
]

all

cut

fric

Figure 3.12.: Force plot for a scripted needle insertion into the bile ducts. The force total
force in insertion direction f is divided into the components of cutting force fcut
and friction force ffric. The insertion consists of skin puncture (ca, 4.5 s), fascia
puncture (ca. 7 s), bile duct puncture (ca. 12 s) and needle retraction.

43

3. Direct Visuo-haptic Volume Rendering Algorithms

Needle with non-straight path

Figure 3.13.: The needle was inserted perpendicular to the surface of a virtual tissue phan-
tom and has been angulated after a few centimeters. In the upper right, the
needle nodes N are shown (green) and in the lower right, the needle path nodes
P are shown (cyan).

3.7.4. Palpation & US-probing Algorithm

The major purpose of simulated ultrasound probing and palpation is to find a suitable in-

sertion site for the needle. For PTCD, the needle has to be inserted between the ribs, which

makes the localization of the intercostal spaces by palpation a feature that has to be part of

the simulation. To demonstrate that the presented method is capable of simulating these,

the following experiment has been performed: For palpation, the virtual finger was placed

on the skin surface of the virtual patient at the chest and was moved in cranial-caudal direc-

tion by manual steering of the haptic device by a user. To press the virtual finger onto the

patient’s skin surface in a controlled manner, the haptic device was programmed to output

a constant force of 1 N in distal-proximal direction, i.e. in this case in direction of the y-axis

of the world space. This way, it is simulated that the user of the haptic devices presses the

virtual finger with a constant force onto the skin, which cannot be performed by a human

user. Otherwise, this would have to be performed by another device capable of generating a

constant force. It is expected that by applying a constant force, the finger will be able to fur-

ther indent the skin surface between the rips and less when directly palpating on the rips. In

Fig. 3.14 (left) a resulting experimental curve is given. Distinct peaks can be recognized that

represent the expected behavior on and between the ribs. The difference between adjacent

peaks is in the range of around 50 mm, which is easily recognizable by an observer steering

the haptic device. The rightmost part with a high indentation, i.e., high y-values, reflects

44

3.8. Discussion

0 50 100 150 200 250

x [mm]

25

30

35

40

45

50

55

60

65

y
 [

m
m

]

0 50 100 150 200 250

x [mm]

40

50

60

70

80

90

y
 [

m
m

]

Figure 3.14.: Plots of position of the virtual finger (left) and ultrasound probe (right) in
cranial-caudal (x-axis) and distal-proximal (y-axis) directions during a mea-
surement sequence (time is omitted). For probing with the virtual ultrasound
device, two curves with different orientations of the probe are considered: The
green curve with visible indentation events represents parallel orientation of
the probe to the intercostal spaces.

the palpation of soft tissue after the last rib has been passed. In this area, the resistance to

indentation caused by the ribs is not present, and thus the soft tissue yields.

A similar experiment has been performed for ultrasound probing. In contrast to palpa-

tion, the ultrasound probe uses a pattern of contact nodes that reflect its typical shape (Fig.

3.8). This will have an influence onto the resulting force feedback when the user tries to

align the probe with the intercostal spaces. In case that the probe is not aligned, the inter-

costal space should not be easily palpable or distinguishable. If probe and intercostal spaces

are parallel to each other, the probe can ’sink’ into the spaces as the finger does. This behav-

ior can be measured very well and is shown for two device trajectories with and without

alignment also in Fig. 3.14.

3.8. Discussion

In this chapter, it has been shown that direct rendering of medical image data is valid ap-

proach to visuo-haptic rendering. As intended, the methods presented here do not rely on

polygonal surface meshes. For visualization and haptic rendering, a labeling function is

needed that can either rely on a full segmentation or partial segmentations and heuristics.

Nonetheless, the methods are independent of the actual implementation of the function,

which will be detailed later in chapter 6. The algorithm for virtual palpation and ultrasound

probing haptics use distance maps, which need threshold based segmentations. These only

45

3. Direct Visuo-haptic Volume Rendering Algorithms

need minimal user effort when setting these manually and can be created quickly. Also, the

high gradient at skin surface and between soft tissue and bones reduce the importance of

setting this value with high precision.

Concerning the real-time capabilities, it has been experimentally validated that visual ren-

dering using ray casting is capable of producing realistic and functional visualization within

reasonable time frames. Also the choice of transfer function was identified as an important

source of influence on the rendering time. It furthermore has been validated that additional

X-ray simulation is also possible within a few milliseconds. In [SMFH14], the rendering

times for ultrasound simulation are measured to be around 8 ms. To provide interactive

simulation, the total processing time of a single frame should not exceed 100 ms (10 Hz).

Summing the processing times of the three main visualization components normal render-

ing, X-ray rendering and ultrasound simulation, a total minimal time frame of around 35

ms is possible depending on the choice of transfer function. This corresponds to a frame

rate of around 28.6 Hz, which is well in the range of real-time requirements. Validiation of

sufficiently high rendering rates of the haptic algorithms can be found in [FMH14, FMSH16]

and [FWMH15].

Force and motion plots have been given for the needle insertion and palpation algo-

rithms to support the claim of plausible haptic rendering. Also, the user study published

in [FMSH16] includes positive reception of the direct visuo-haptic rendering components.

The validated good performance and applicability of these components forms the basis for

further refinements in the next chapters.

46

4. Visuo-haptic Rendering with Local

Deformations

In the previous chapter it was explained how a volumetric CT image can directly be ren-

dered visually and haptically to the user. It was also outlined how a small deformed sub-

image J can be rendered visually in combination with the complete image I, but it was not

specified how this sub-image actually is computed. This chapter describes and analyzes the

process that is used to compute the image J based on the interaction of interactive virtual

tools and the virtual patient’s body, using the state of the haptic algorithms and the a priori

known deformations resulting from this.

The methods presented here diverge from the typical approach of the state of the art of

using mesh based methods for the computation of deformations. Instead, all deformations

are computed on the grid of the image data, which makes it obsolete to create a mesh in the

first place. An initial version of the algorithm was published in [FMH12] for deformations

occurring in needle puncture, and further improvements and comparison of the results to

ground truth computed by the finite element methods were given in [FMH13c, FMH13b].

Additionally, the methods were extended and improved for palpation and ultrasound prob-

ing in [FMH13a, FMH14, FMSH16].

First of all, background information and related work from the literature are given, fol-

lowed by a description of how certain deformations can be considered as known a priori

for interaction of the needle, ultrasound probe and a palpating finger. The finite differences

approach embodied in the framework is then described in detail. For visuo-haptic render-

ing it is especially important that the used methods are capable of rendering in real-time.

Solving this equation for a convergent solution is expensive in terms of computational cost

even on a small grid, making it necessary to use optimizations. Thus, several methods that

have been employed to achieve better performance are proposed. An evaluation framework

is presented that was used to compare the general difference of a diffusive and the linear-

elastic approach. The speed up achieved by the different methods is also analyzed by this

framework. Lastly, visual examples and time measurement results are presented.

47

4. Visuo-haptic Rendering with Local Deformations

4.1. Background/Related Work

For realistic surgery simulation, it is essential to simulate the behavior of soft tissues un-

der deformation. These deformations can be caused by interaction of tools and tissue or

by physiological movement of organs. A computer simulation for surgery simulation of

soft tissue deformations has to take into account the large deformations that can occur, the

varying material parameters and the computational complexity of such a simulation. The

following presents different approaches to soft tissue simulation used in the literature.

4.1.1. Finite Element Method

The finite element method is an approach to solve differential equations describing the be-

havior of a continous medium [MWTT98]. To do this, the continuum is discretized into a

mesh of finite elements. Often, a discretization consisting of triangles (in two dimensions)

or tetrahedrons (in three dimensions) is used. The differential equation is then solved for

the finite elements by using basis functions. Apart from being used in engineering by using

offline computations, which can take up hours or days to solve, it is nowadays a part of

real-time computer graphics. Early application of finite element based approaches to com-

puter graphics include the methods presented in [TPBF87]. The work presented in [MG04]

uses finite element method with linear elasticity and a plasticity model that is capable of

interactive rendering of objects under large deformation and rotation. A stable and fast im-

plementation of another FE simulation is presented in [PO09], which was first used in the

2008 computer game “The Force Unleashed” and is now available as a commercial prod-

uct. With the advent of General Purpose Graphics Processing Units (GPGPU), fast imple-

mentations of FE models have been published, for example in [DGW10]. The use of these

techniques also have been researched for application in surgery simulation. One of the first

was presented in [BNC96, BN98]. Other work on interactive soft tissue simulation include

[CDA99][NMP+05]. In [MJLW07], a method especially suited for soft tissue is presented.

Recent simulation includes the work of [LZW14] and [WWD14] for simulation of deforma-

tions and cutting.

For the special application of needle insertion simulation the finite element method can

be found to be used in various publications. The major challenge involved in this is the

coupling of the virtual needle and the soft tissue simulation, which is performed in different

ways:

1. Node positions of the soft tissue mesh are modified in a way that they conform to the

needle model [DiM03, DS05]. To increase the simulation accuracy subdivision of tissue

48

4.1. Background/Related Work

around the needle tip can take place.

2. Coupling of tetrahedra and the nodes of the needle by constraining their barycentric

coordinates [DGM+09, PND+11].

3. Remeshing at the needle tip [Gok09, CAR+09]. This is different from pure subdivision

in the aspect that the elements at the tip are rearranged to better conform to the needle

path.

Needle insertion simulation can be used solely for the purpose of computation or prediction

of a needle path. The other application is of course visuo-haptic simulation, i.e., the cou-

pling of the virtual needle with a steerable haptic device. Since the finite element simulation

is generally performed at low update rates due to its computational demands, and haptic

interaction requires very high update rates, this is another major issue which is solved dif-

ferently in the various approaches. In [PND+11] this problem is focused on with special

attention.

For simulating and visualization of deformed medical image data, most surgery simula-

tion systems rely on a surface based approach. The tetrahedral mesh used for FEM com-

putation can then directly be applied for deforming the surface meshes: Each vertex of the

surface mesh can be transform by using their barycentric coordinates in the FEM mesh.

However, for direct rendering, that is rendering of the image data directly without inter-

mediate surface representains, e.g., by ray casting, different approaches are needed. To be

able to use standard ray casting approaches, the FEM mesh can be used to first resample

the image under consideration of the deformations. Real-time capable resampling has been

demonstarted in [MFMH15] and [ASPO15]. In [GW06], a pipeline for directed rendering

without resampling was presented. The advantage of using a resampled image is that this

image can be used for other visualization methods as well, for example simulated ultra-

sound.

4.1.2. ChainMail

The ChainMail algorithm was first published in [Gib97] and models deformations of vol-

umetric structures by assuming a behavior resembling medieval chain mail armor, i.e., if

one element is pulled or pushed, the movement and position of linked (chain) elements is

affected. Similar to the rings in a chain mail, each element can move unrestricted in a certain

area. This approach can be applied for elements of a voxel image [Gib97, RWE08, SBH07,

WF04]. The original algorithm is of a highly iterative nature: Based on a starting element,

all neighboring elements are added to lists. The elements in these lists are then checked for

compliance with the chain mail constraints. In the case that an element does not comply its

49

4. Visuo-haptic Rendering with Local Deformations

position is enforced according to the constraints and the unprocessed neighbors of this ele-

ment are added to the lists. The algorithm terminates as soon as all the lists are empty. For

GPU-based approaches this iterative nature is not desirable therefore parallizable variants

are given in [SBH07] and [RWE08]. The idea is to check the chain mail constraints iteratively

for consecutive shells and parallelize the process for all the elements of a shell: Starting at

the initially moved element, first, all direct neighbors (the first shell) are checked for com-

pliance and if necessary their positions are changed. This is then repeated for the next shell,

that is all neighbors of the first shell with exclusion of all the already processed elements

(the current shell and the start element). Repetition of this takes place until no elements

have been moved in a shell. Another method for parallelization is presented in [RLAM15].

The approach can also be extended to generalized 3D mesh structures [LB03], which is

for example applied in the ImaGiNe-S framework [BBG+09] for the soft tissue simulation of

liver under respiratory motion.

4.1.3. Other Methods

Besides these, other mesh based methods for computation of deformations can be found in

the literature. Mass-spring networks are a popular approach that works by connecting the

mesh nodes that represent the mass center of parts of the soft body by a set of springs. It

was researched intensively for the simulation of clothes [Pro95] and was also applied for

soft tissue simulation in medical contexts [MSN+06]. The major advantage of this method is

the straight forward implementation and efficient implementation made possible by using

the GPU [GW05]. The drawback is that soft tissue behavior simulated by mass-spring is

not directly related to material constitutive laws and the spring parameters have to be iden-

tified by dedicated methods [LMH07]. To better resemble the properties of real soft tissue

quadratic springs have been used in [SVAT12].

Furthermore, the methods presented for example in [DKS01, JJM+14] use meshless ap-

proaches by using a cloud of unconnected spheres or nodes that represent the tissue.

4.1.4. Image Registration

Non-linear image registration deals with the computation of displacement fields to warp

two image onto each other [Mod04]. Smoothness of the resulting displacement field is a

major concern and is often modeled by a physical process. It also deals with image data

defined on regular grids and thus methods developed in this domain are candidates for

real-time soft tissue simulation.

50

4.2. Real-time Image-based Deformations

The problem to be solved by 3D image registration can be represented by a variational

formulation

I [u] = D(T, R, u) + αS(u) u→ min (4.1.1)

with T : R3 → R being a template image that is matched onto the reference image R :

R3 → R, u : R3 → R3 being a displacement field, D(T, R, u) a distance measure and S(u)
a regularization term that is weighted by a constant a ∈ R. Minimizing this functional

results in a smooth displacement field that can be used to compute a warped version of the

template image that matches to the reference image. Since image data generally is defined

on an image grid, Eq. 4.1.1 is discretized and then solved for the displacement field at the

grid locations.

In the context of this thesis, the regularization term is of special interest. It forces the

resulting displacement field to be smooth, whereas smoothness can be defined by various

approaches. The most researched regularization terms used for image registration are diffu-

sion and linear elasticity, and both reflect physical behavior of matter.

Image registration is usually a computationally intensive process and not suited for real-

time execution when applied to large images. To speed up the process implementation on

the GPU [MOOXS08] and multi-resolution approaches [HM06, Ash07] can be applied.

4.2. Real-time Image-based Deformations

For the simulation framework a finite differences approach on a regular grid similar to im-

age registration was chosen since it can be directly applied on the grid of the image data and

in contrast to the ChainMail and mass-spring approaches, it can easily incorporate formu-

lations that are physically motivated. The following terminology is introduced for distin-

guishing the undeformed and deformed state of the virtual patient. The undeformed state

is the configuration of the virtual patient at time of image acquisition, meaning the CT im-

age data represented in the image I captures the undeformed state. A point in this will be

denoted by X ∈ R3 and is considered to be in reference space.

Interaction with the virtual patient will cause the tissue of the patient to deform, bringing

it into a deformed state. It is assumed that such a deformed configuration exists for each

time step t of the simulation. Likewise, for each point in reference space a corresponding

point xt for each time step exists. These points xt will be considered to be in world space.

This nomenclature reflects the terms Eulerian configuration and Lagrangian configuration,

or world and material space often used in finite element texts. The wording world space

and reference space is more general and intuitive for the application in the framework and

51

4. Visuo-haptic Rendering with Local Deformations

world space

xt X

u(X,t)

Illustration of world and reference space

reference space

Figure 4.1.: Left: World space with deformed object and displaced point xt. Right: Reference
space with an undeformed object and the corresponding point X.

will also be used in chapter 5. The relation of world and reference space is illustrated1 in

Fig. 4.1. Between the reference space and the world space a transformation exists, which

assigns to each point X a displacement vector u(X, t) such that

xt = X + u(X, t) (4.2.1)

These vectors form the displacement field u : ΩI → R3. The deformed image is then

given by J(x) = I(X + u(X)) = I(x + u−1(x)). As for I, the image J is defined for certain

grid points Ω̇J . This grid is a regular grid in the world space and resampling of the image

J is thus performed for elements x ∈ Ω̇J for which the corresponding X ∈ ΩI is unknown.

To be able to do so, it is mandatory to use the inverse u−1 of the displacement field, which

is either possible by performing the computations described in the following on the inverse

displacement field or by inverting the resulting field in an extra step.

4.2.1. A Priori Known Deformations

The domain on which a minimization procedure will be performed is limited to the neigh-

borhood of the tool interaction site. As illustrated in Fig. 4.2, the modeling of deformations

is based on the following assumptions:

1. For elements beyond and on the border ∂ΩJ of the local sub-region around a tool, all

deformations are zero.

2. Some structures represented by Ω̄ cannot be deformed. Namely, these are bone struc-

tures with high Hounsfield values in the CT image data.

3. The deformations ũ(X) of certain points X ∈ Ω̃ are known a priori. For a needle,

1For convenience, the illustration of objects in reference space is desaturated (gray scale) in the following
figures, whereas the world space is illustrated in full color.

52

4.2. Real-time Image-based Deformations

Image grid and a priori known deformations

∂ΩJ ̃ Ω

 Ω

 ΩI

 ΩJ

Figure 4.2.: Example of elements of the image grid and the sub image grid Ω̇I resp. Ω̇J and
the known deformations at the border ∂ΩJ , hard structures Ω̄ and points on tool
surfaces Ω̃.

Ω̃ contains all the points that lie on the needle shaft. For palpation and ultrasound

probing, these points are the contact points between the finger/US probe and the skin

surface.

The last point needs closer explanation: For a needle with OpenGL l̄, all points on the needle

shaft with distance d ∈ [0, l̄] to the tip are denoted by the functions X̃t(d) in the reference

and x̃t(d) in the world space. In the case that a stiff and bending free needle is simulated

and a simple proxy based haptic algorithm is used, a reasonable choice for these functions

are the linear functions [FMH13b]:

X̃t(d) = pt − rd (4.2.2)

x̃t(d) = xt − qzd (4.2.3)

with pt being the proxy position, r the needle insertion direction, xt the haptic device posi-

tion and qz the haptic device direction. For the bending needle presented in section 3.5, the

relation of the nodes of the needle path set P and needle node set N can be used as basis for

the function and in between the nodes interpolation can take place. Likewise, this can be

done for the contact nodes of a palpating finger (or ultrasound probe) as illustrated in Fig.

4.3.

53

4. Visuo-haptic Rendering with Local Deformations

Illustration of known deformations on a finger and a needle

X

x

X

x

x

Figure 4.3.: Deformations are based on the spatial relation of the palpating finger resp. nee-
dle in reference and world space. For a palpating finger the displacements at
the contact points on the surface of the finger are assumed to be known a pri-
ori. Likewise, this is assumed for the displacements along the needle shaft. The
location of these points are given by the haptic algorithms.

4.2.2. Variational Formulation

For each time step t of the simulation, it assumed that a deformed static state can be com-

puted based on the assumptions from the previous section. Based on these, the computation

of the displacement field is modeled as an initial value problem with boundary conditions

using a calculus of variations approach. For computing a solution that is usable in the simu-

lation a description of the deformations in form of partial differential equations, a discretiza-

tion of the continuum and a solving scheme are needed.

Similar to image registration, the problem can be written as a functional that on the one

hand enforces smoothness of the displacement field u and on the other enforces boundary

conditions:

J [u, ξ] = S(u) + B(u, ξ)
u,ξ→ min. (4.2.4)

with S(u) =
´

x∈ΩJ
S(u, x)dx being the regularization term and B(u, ξ) =

´
x∈ΩJ

B(u, x)dx

a boundary condition term using a Lagrange multiplier formulation with multipliers ξ :

ΩJ → R3. This formulation differs to the one of image registration given in Eq. 4.1.1 in so

far that the distance term D(T, R, u) is removed, and a boundary condition term is added.

The boundary condition term can be derived from the constraints from the previous section

and represent the known deformations. First of all, these are written as Dirichlet boundary

54

4.2. Real-time Image-based Deformations

conditions [BHWM10, p. 231]. The boundary conditions enforce zero displacement on the

border and the undeformable tissue and the deformations given by the haptic algorithms

u(x) = 0, x ∈ ∂ΩJ (4.2.5)

u(x) = 0, x ∈ Ω̄ (4.2.6)

u(x) = ũ(x), x ∈ Ω̃ (4.2.7)

These conditions are then written in form of a function by rearranging Eqs. 4.2.7 and

multiplication with the multipliers ξ

B(u, ξ, x) =


ξ(x)u(x) if x ∈ ∂ΩJ ∪ Ω̄

ξ(x)u(x)− ξ(x)ũ(x) if x ∈ Ω̃

0 else

(4.2.8)

It is important to note, that when solving Eq. 4.2.4, the actually resulting values for the

multipliers ξ are not of interest. They are only introduced to the equation to model the

boundary conditions.

Calculating the Euler-Lagrange equation ∂J
∂u −

d
dt

∂J
∂

∂dt ∂u
= 0 for Eq. 4.2.4 now gives a nec-

essary condition for a solution of Eq. 4.2.4. Here, both S(u) and B(u, ξ) do not depend on t

and can be discarded giving

δJ [u, ξ]

δu, ξ
=

∂S(u)
∂u

+
∂B(u, ξ)

∂u
+

∂S(u)
∂ξ

+
∂B(u, ξ)

∂ξ

=

ˆ
X∈ΩJ

∂S(u, x)
∂u

+
∂B(u, ξ, x)

∂u
+ 0 +

∂B(u, ξ, x)
∂ξ

dx (4.2.9)

= 0

For the constraints, the respective derivatives in Eq. 4.2.9 are with respect to the displace-

ment u and multipliers ξ

∂B(u, ξ, x)
∂u

=


ξ(x) if x ∈ ∂ΩJ ∪ Ω̄

ξ(x) if x ∈ Ω̃

0 else

(4.2.10)

55

4. Visuo-haptic Rendering with Local Deformations

∂B(u, ξ, x)
∂ξ

=


u(x) if x ∈ ∂ΩJ ∪ Ω̄

u(x)− ũ(x) if x ∈ Ω̃

0 else

(4.2.11)

For the term S(u) describing the elastic properties of the simulated tissue, several ap-

proaches are possible. Its derivative can be interpreted as the gradient of the minimization

process and resembles a differential operator and thus will be abbreviated as ∇S.

4.2.3. Regularization Terms

In image registration, diffusion is used as a regularizer to facilitate smooth deformation

fields. It is also suitable for a basic method to visualize deformations. For a simple diffusive

regularizer ∇SDiff resulting from the term

SDiff(u, x) =
1
2
〈∇u(x),∇u(x)〉 = 1

2
∇ |u(x)|2 (4.2.12)

the respective operator is given by [Mod04, p. 138] as

∇SDiff =
∂SDiff(u, λ, x)

∂u
=

∂

∂u
1
2
〈∇u(x),∇u(x)〉 = ∂

∂u
1
2
∇u(x)u(x)〉 = 1

2
∆u(x) (4.2.13)

The diffusive approach works well for image registration, but for physical simulation of soft

tissue, compression and shearing effects modeled by an elastic formulation better resemble

reality. The linearized elastic potential [Mod04, p. 83] is

P [u] =
ˆ

Ω

µ

4

3

∑
j,k=1

(∂xj uk + ∂xk uj)
2 +

λ

2
(div u)2dx (4.2.14)

It contains the Lamé constants µ and λ responds to the compression and shearing described

by the displacement field u. For this potential, the Euler-Lagrange equation are the Navier-

Lamé equations [Mod04, p. 83] giving the operator

∇SLE = µ∆u + (λ + µ)∇div u (4.2.15)

The material parameters µ and λ are directly related to the material properties Young’s mod-

ulus E = µ(2µ+3λ)
µ+λ and the Poisson ratio ν = λ

2(µ+λ)
.

The diffusive approach and the linear-elastic approach with constant values for µ and

λ do not distinguish the heterogeneous soft tissue present in a patient. Based on the as-

sumption that stiff tissues feature high Hounsfield values in the corresponding CT image

56

4.2. Real-time Image-based Deformations

data, anisotropic diffusion [PM90] can be used to introduce the image information into the

diffusion process, giving

∂S
∂u

= div(c(x)∇u) = c(x)∇2u +∇c · ∇u (4.2.16)

with a function c(x) : ΩI → R influencing the local effect of the process when the diffu-

sion is applied to the displacement field u. For edge preserving behavior, it is suggested in

[PM90] to set c(x) to a function based on the image gradient. Here, this function should

reflect the fact that image values above a certain threshold can be considerd hard tissue. The

value has been set heuristically to s = 100HU+250HU
2 representing the transition of soft tis-

sue to undeformable bone structures. For values above this threshold, the function should

approach 0.0 to maximally inhibit the diffusion process. Likewise for very soft tissue the

function should approach 1.0, making it reasonable to use the logistic function

fmat(x) = 1− 1
e−k(x−s)

(4.2.17)

with k = 0.001 close to zero as the function c(x). The operator

∇Smat
Diff = fmat · ∇SDiff (4.2.18)

thus denotes the anisotropic diffusion with c(x) = fmat(x).

Regarding the linear elasticity operator, a material function can be introduced similarly.

To capture the general concept of a material function influencing the linear elasticity, the

concerning operator will be denoted as

∇Smat
LE = fmat · ∇SLE (4.2.19)

The introduction of the material function by the dot operator can be implemented twofold:

On the one hand, the general process can be inhibited as for the diffusion process, or on

the other hand, the material function directly constitutes varying material parameters for

different tissue types. In the context of this thesis, the former is used, whereas varying

material parameters for linear elastic regularization in image registration is given in [Kab06].

4.2.4. Discretization using Finite-Differences

For computation, a discretization of the continuous formulation from the last sections is

needed that is suitable for implementation on the GPU. It is possible to do this by using

a finite element approach, which would be a reasonable choice. In the past, finite element

57

4. Visuo-haptic Rendering with Local Deformations

approaches have been preferred for real-time applications because they allow large homo-

geneous parts of the simulated object to be represented by a single element. Due to limited

computational power, it was highly required to simplify the simulated objects by as few as

possible elements. With modern GPUs, it is possible to perform the computation on a larger

number of elements, see for example [DGW10]. As an alternative, it is now also possible

to perform the computation on a high resolution regular grid, giving a finite differences

approach. For fulfilling the objectives of the simulation framework by circumventing addi-

tional meshing processes, the usage of the grid of the image data is very suitable. It is also

beneficial that the resulting displacement field is defined for the same elements of the image

domain which will be needed to resample the deformed image.

The fixed spatial difference between two elements on the image grids Ω̇J or Ω̇ is h =

(h1, h2, h3)> ∈ R3. For instance, the derivative of the first component of the displacement

with respect to the second dimension can be approximated by the central difference

∂u1

∂x2
≈ u1(x1, x2 + h2, x3)− u1(x1, x2 − h2, x3)

2h2
(4.2.20)

All needed differentiations of an element of the grid can be approximated likewise using

the values of the 26 neighbors on the grid. For elements on the border of Ω̇J , forward resp.

backward differences can be used.

4.2.5. Finding a Minimal Solution

To find a minimal solution for Eq. 4.2.4, the Euler-Lagrange Eq. 4.2.9 δJ [u,ξ]
δu,ξ = 0 has to be

solved for values u(x), x ∈ Ω̇J and ξ(x), x ∈ Ω̇J on the grid. These values can be arranged

by lexicographical ordering in the vectors u, v ∈ R3n with n =
∣∣Ω̇J

∣∣ being the number of

nodes in the grid. Using u as the solution and a system matrix A ∈ R3n×3n containing the

approximation of the differential operators, the problem now reduces to solving the set of

linear equations in the matrix form Au = 0. This of course has the trivial solution u = 0 and

thus the constraints captured in Eq. 4.2.10 and 4.2.11 can be added giving


A · · · 0
...

. . .
...

0 · · · 0

+ B


 u

v

 =

0

b

 (4.2.21)

with constraint system matrix B ∈ R6n×6n. In practice, several rows and columns can be

removed due to the boundary conditions. A solution for the values of the displacement field

can be found by solving Eq. 4.2.21 using inversion of the combined system matrix or more

58

4.3. Implementation

conveniently by the Conjugate Gradient (CG) method [She94]. However, the problem can

also be solved by explicit Euler integration, i.e., introducing an artificial time t and setting

ξ = 0 giving the derivative with respect to time

∂u
∂t

= −∇J u = −∇Su−∇Bu (4.2.22)

To find a solution for a single simulation step, the displacements can be initialized as

u0(x) =

ũ(x) if x ∈ Ω̃

0 else
(4.2.23)

which already fulfills the requirements of the boundary conditions. Eq. 4.2.4 can then be

minimized by iteratively solving

ut+1 = ut +

0 if x ∈ Ω̃ ∪ Ω̄ ∪ ∂ΩJ

τ ∂u
∂t else

(4.2.24)

with a fixed time step. This formulation keeps the boundary conditions enforced by explic-

itly treating the time derivate for these elements as zero.

4.3. Implementation

As with the visualization methods from the previous chapter, the minimization process was

implemented and parallelized using CUDA. The discrete displacement field of the sub re-

gion ΩJ is implemented as a double buffered CUDA array with a fixed size of grid elements.

4.3.1. Algorithm Overview

In each time step of the simulator the process of computation of a new displacement field

u+ is performed, which is summarized in Alg. 4.1 and is detailed now. The process is

performed on a double buffered array of displacement vectors: uA and uB. In an alternating

fashion one of the buffers is used for reading whereas the other is used for writing. The

result from the previous iteration of the algorithm can be used as an initial solution u0. This

requires that in each step the region of interest, i.e., the position of the deformed image does

not change. In reality, this is not always the case, so the algorithm has to reflect this by

copying the appropriate values from the old grid when initializing.

Before performing the actual computations by a CUDA kernel, the content of the read

only buffer at the elements as specified by Eq. 4.2.7 is set. This enforces the right values

59

4. Visuo-haptic Rendering with Local Deformations

at the boundaries and constrained elements. The algorithm then includes the application

of a CUDA kernel cuDeformKernel that iteratively minimizes Eq. 4.2.4 on the discrete

displacement field. This uses the explicit Euler approach, which has been chosen since it

does not rely on reductions and can be parallelized efficiently. A description of the kernel

follows below.

The general approach for minimization would be to iterate until a certain convergence

criterion is reached. For instance, if the sum of squared differences SSD(u, u+) = (u −
u+) · (u− u+) < ε between the results of two iterations falls below a threshold, the loop is

terminated. The problem with this kind of criterion is that it relies on a reduction of results

computed from the large displacement field to a single scalar value, which is an operation

that is not suited for parallel processing hardware. The maximum processing time is also

limited by the real-time requirements of the simulation, which makes it necessary to limit

the maximum possible time needed for computation. Both these arguments are reflected

in the choice of a fixed number of iterations of the deformation algorithm without using a

convergence criterion at all.

If the computation has not been performed on the inverse displacement field directly, it

is inverted by an iterative fixed-point scheme [CLC+08]. Finally, the displacement field is

used to sample the image values J(x), x ∈ Ω̇J representing the deformed image function J

used for visual rendering as explain in Chapter 3.

Algorithm 4.1 Computation of a new displacement field u and deformed image J
1: input: known deformations given by Eq. 4.2.7
2: input: double buffered displacement arrays uA, uB from previous iteration
3: input: fixed number of iterations n
4: output: array J̇ representing the deformed image values on the grid
5: if grid location has moved then
6: initialize uA with values from uB with offset
7: end if
8: for i← 1..n do
9: set uA as given by Eq. 4.2.7

10: apply cuDeformKernel(uA, uB)
11: set uB as given by Eq. 4.2.7
12: apply cuDeformKernel(uB, uA)
13: end for
14: set uA as given by Eq. 4.2.7
15: optionally invert uA
16: use uA to sample image values J(x), x ∈ Ω̇J

60

4.3. Implementation

Column vs. cube layout of CUDA blocks

border element

copied to shared memory

block element

not in current block

6-neigborhood

26-neigborhood

Figure 4.4.: Different block/thread setups in two dimensions with highlighting of the ele-
ments that are needed for the processing of all elements of a block. On the left:
A column shaped layout uses 5 resp. 9 neighboring columns. On the right: A
cube shaped layout in 2D.

4.3.2. Blocks and Threads

For implementation in CUDA, the choice of the layout of blocks and threads is an important

design decision. Fig. 4.4 shows two possible block/thread layouts: one that computes a

single column of the grid per block and a second one which uses a cubical region per block.

In both cases, a single thread is used to compute the value for a single grid element. The

main difference is in the number of neighboring elements taken into account in relation to

the number of grid elements processed for a single block. It is clear that for computing one

iteration of the minimization process for a single element, it is necessary to have available

the value of the element and its neighbors from the previous iteration. In an efficient im-

plementation, these values are first loaded into the shared memory of a single block for a

neighborhood of elements and then shared memory is used by each thread. Additionally,

the loading into shared memory should coalesce well. With a column based block layout

with columns aligned to sequential memory location, it is possible to load each column into

shared memory by a single coalesced copy instruction. For cube-shaped blocks, the coalesc-

ing effect might be reduced. In contrast, the ratio of memory that has to be fetched to results

computed (M/R) for a column based layout is much higher than for a cube-shaped layout.

For clarification, a short elaboration of these follows. For the column based layout, results

for W − 2 elements are computed, but the memory of 5 ·W elements (or 9 ·W elements,

depending on the model) has to be loaded into shared memory. In comparison, the cube-

61

4. Visuo-haptic Rendering with Local Deformations

shaped layout computes (w − 2)3 elements but only has to load w3 elements. For a large

grid size W, the ratio approaches 1/5 or 1/9 resp., for the column-shaped layout and 1 for

the cube-shaped layout. The layout also has a major influence on the theoretical occupancy.

4.3.3. The Kernel

For the diffusive approach, a simplified kernel code is listed in Fig. 4.5. In the listing, the

actual computation of element indexes is omitted to keep it generic and independent from

the block and thread layout. The time derivative du_dt includes the material function,

which for this implementation is multiplied with the regularization operator.

The kernel itself does not enforce the boundary conditions given in Eq. 4.2.7 explicitly. The

zero displacement on the border are indirectly enforced by skipping the evaluation of the

kernel for these elements. Special treatment of the elements on Ω̃ is not performed and these

elements are computed as all others to avoid thread divergence. Instead, the corresponding

boundary conditions are enforced by setting the values of the concerning elements before

and after the kernel call.

4.4. Optimizations

Under the restrictions of the limited amount of time given for the computation of the new

displacement field in each rendering frame the unoptimized minimization algorithm from

the previous section might not fully converge. To speed up the process several methods have

been developed and applied. During development, it became clear that needle insertion

and palpation/ultrasound probing have different requirements for convincing deformation

results. For needle insertion, the most important aspect is the small indentation of tissue at

the needle tip whereas for palpation a smooth and much larger deformation is required.

4.4.1. Region-of-Interest Pyramid Approach

A first approach is to vary the size of the region of interest during minimization. The idea

behind this is that deformations in the proximity of the needle tip are the most important for

visual plausibility and thus the solution of the minimization process for elements close to

the tip is more important. So instead of performing the minimization process on the full grid

Ω̇J in each iteration, it is first performed on a region of interest of the grid R2 ⊂ Ω̇J centered

around the interaction site, see left part of Fig. 4.6. Afterwards, it is performed with an

increased region size R1 and finally on the full region of interest (R0 = Ω̇J). This way, more

processing time will be used on elements that are closer to the needle tip, increasing visual

62

4.4. Optimizations

1 __global__
2 void cuDeformKernel(float4* _fieldin, float4* _fieldout)
3 {
4 // load values of neighborhood to shared memory
5 __shared__ float4 neighborhood[...];
6 unsigned int index = ...;
7 unsigned int nIndex = ...;
8 neighborhood[nIndex] = _fieldin[index];
9

10 // syncronize all threads of a block so
11 // the shared memory is filled with all needed values
12 __syncthreads();
13

14 // alias for neighbors t, b, l, r, f, h
15 const float4& t = neighborhood[nIndex + ...];
16 const float4& b = neighborhood[nIndex + ...];
17 ...
18

19 // alias for center element
20 const float4& c = neighborhood[nIndex];
21

22 // compute result of laplace operator
23 float4 lapl = c * -6 + t + b + l + r + f + h;
24

25 float f = getMaterialParameter(c);
26

27 float du_dt = f * lapl
28

29 // update value if not on border
30 // (omitting zero displacement boundary elements)
31 if(isBorder(index) == false)
32 // perform one step in forward Euler integration
33 _fieldout[...] = c + tau * du_dt;
34 }

Figure 4.5.: Simplified source code for a basic deformation kernel using diffusive regulariza-
tion and explicit Euler integration.

63

4. Visuo-haptic Rendering with Local Deformations

ROI pyramid vs. Multigrid approach

1. downsampling

2. downsampling
3. compute on L2

4. upsampling

6. upsampling

5. compute on L1

7. compute on L0

1. compute on R2

2. compute on R1

3. compute on R0

Figure 4.6.: Illustrations for optimization schemes. Left: The ROI pyramid applies the de-
formation process in different areas of the region of interest. Right: In contrast,
the multigrid approach also computes on differently sized grids but these grids
cover the same area.

plausibility in a smaller time frame. Performance gains of this and various settings of the

size and number of iterations can be found in [FMH13c].

4.4.2. Multigrid Approach

In practice, the ROI pyramid approach has been applied successfully for the simulation of

deformations of skin surface and organ capsules inflicted by the needle. With regard to

palpation, this approach did not converge fast enough to capture the large deformations

created by palpation. As for image registration [HM06, Ash07] or finite element simulation

[DGW10] a multigrid approach can be use. In contrast to the ROI pyramid approach, not

only is a subset of the grid is included in the computation, but grids with lower resolution

are used and the results computed on these are used as an initial solution for the grids with

higher resolution. As published in [FMSH16], three grids L0, L1, and L2 are used with the

resolutions of 643, 323 and resp. 163 elements are used. To find a solution, first the solution

from the previous time step is downsapled twice to the grid with the lowest resolution (L2).

The downsampling can be defined recursively as

Li(x, y, z) = Li−1 (2x, 2y, 2z) , x, y, z ∈ {1, ..., wi} (4.4.1)

with i being the grid level and wi the associated grid dimension. An intermediate solution

can now be computed on L2 as given by Alg. 4.1. This solution is then upsampled to the

grid L1 by

Li(x, y, z) = Li+1

(⌊ x
2

⌋
,
⌊y

2

⌋
,
⌊ z

2

⌋)
, x, y, z ∈ {1, ..., wi} (4.4.2)

with i = 1. The process is the repeated for L1 and finally, a solution is computed on L0.

64

4.5. Evaluation Framework with In-silico Ground Truth

4.4.3. ChainMail

Since a ChainMail implementation on the GPU [SBH07, Rößl09] is also a promising candi-

date for computation of deformations in a surgery simulation setting, it has been applied

in [FMH13a, FMH14] for palpation simulation. It is used to find an initial solution for the

minimization process already described.

Using a single contact node as in [FMH13a] is straight forward to realize with the Chain-

Mail algorithm. The element in the displacement field corresponding to the contact node is

used as the initially moved element. For the multiproxy scheme either the initially moved

element can be set to the grid location closest to the average of the position of the multi-

proxies or each contact node position can be used to create a set of initially moved elements.

In the latter case, the hull including all the initially moved elements has to be used as the

starting point for the iterative application of the ChainMail algorithm.

Deformations computed by the ChainMail method on a regular grid show a diamond

shaped regularity that is visually unconvincing, see [FMSH16], and the time needed for the

algorithm to terminate is highly influenced by the size of the computed deformation that

has to be computed.

4.4.4. Fast Explicit Diffusion

Fast Explicit Diffusion [GW10] is a time stepping scheme for explicit Euler integration. It

introduces a sequence of variable step OpenGL into the diffusion process for which some

steps are larger than the theoretically stable step OpenGL. It can be applied in diffusion

based regularization in image registration [SREWH12] and also in the soft tissue simulation

framework presented here. In [FMH13c], it has been shown that this approach decreases the

time needed for finding a stable solution. As a downside, this approach can only be applied

to diffusion and not to the approach based on linear elasticity.

4.5. Evaluation Framework with In-silico Ground Truth

Evaluating the performance and accuracy of the methods for computation of deformations

can be done by comparison to ground truth. Obtaining reasonable ground truth is of major

importance for the evaluation. Ideally, data based on in-vivo experiments is desired that

includes a series of volumetric images and force measurements for a needle insertion or

palpation. Image registration then could be used to create ground truth displacement fields.

Obviously, it is not easy to acquire such data. As a substitute, in-silico ground truth has been

generated in [FMH13c, FMH13b] by using FEM software and appropriate tissue properties

65

4. Visuo-haptic Rendering with Local Deformations

Evaluation framework with in silico ground truth

-

u from simulation u from FEM

finite element modelContourLabels

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

Distance Image

contour
extraction meshing

rastarzation

masking

MSSD
∑

Figure 4.7.: FEM evaluation pipeline. Based on the segmentation of a single image slice, con-
tours are extracted. From these, a FEM mesh consisting of triangular elements is
created. For simulation with a sliding boundary condition and fixed offset at the
needle tip, deformations are computed and the resulting displacements are ras-
terized and compared to displacements computed by the real-time simulation.
The result is a scalar value representing the mean squared distance between both
solutions. Ideally, in-vivo experiments would replace the FE model.

66

4.6. Experiments & Results

layout w mean stddev N

Normal
Diff Column 3.67 0.042 272
Diff Cube 4 1.05 0.032 952
Diff Cube 6 0.65 0.032 1525
Diff Cube 8 1.02 0.039 973
LE Column 5.21 0.044 192
LE Cube 4 1.41 0.024 706
LE Cube 6 0.87 0.031 1146
LE Cube 8 1.33 0.032 751

Multigrid
Diff Column 6.24 0.228 161
Diff Cube 4 1.85 0.068 540
Diff Cube 6 1.35 0.073 739
Diff Cube 8 1.80 0.073 554
LE Column 8.54 0.064 118
LE Cube 4 2.35 0.058 424
LE Cube 6 1.63 0.054 612
LE Cube 8 2.22 0.070 450

Table 4.1.: Mean processing times in ms for the application of Alg. 4.1 using the diffusive
(Diff) and linear elastic (LE) regularization kernels and the multigrid approach.
Column and cube layouts are analyzed.

and models. This way, the performance of the algorithms can be quantified with regard to

accuracy and convergence behavior.

In Fig. 4.7, the evaluation process is illustrated. The procedure is as follows: First, a

single slice of the patient image data is selected. A segmentation has to be available for

it. From the segmentation, the contours are extracted using 2D marching cubes and post-

processed manually using a 2D CAD software to obtain a 2D vector representation of the

organ boundaries. The contour of the simulated needle insertion channel is also added to

the CAD image with the tip of the needle at the interface between soft tissue and liver tissue.

Using the contours, a FE model consisting of triangles was created. The surface of the needle

insertion channel is modeled as a sliding boundary and the tip is displaced by a fixed offset.

After solving the FEM for the resulting displacements, the displacement field is rasterized

to make it comparable to the results of the real-time algorithm.

4.6. Experiments & Results

Here, the different thread layouts and kernels are analyzed in terms of their computational

efficiency. For an in-depth comparison of the accuracy, see [FMH13c, FMH13a]. As can be

67

4. Visuo-haptic Rendering with Local Deformations

Needle tip deforming tissue

Figure 4.8.: Deformations caused by an advancing needle in the region of the intercostal
fascia. In the upper row a cutaway view with transfer function rendering is
used. For the lower row label tagging is used.

seen in Tab. 4.1, the choice of the block/thread layout has a big influence on the actually

achieved processing times.

Additionally, Figs. 4.8, 4.9 and 4.10 shows visual results from the simulator. The first

shows the advancing needle and resulting deformations at the needle tip using ray casting.

For visualization of the different tissues, a 1D transfer function resp. label tagging is used.

Fig. 4.9 shows deformations issued by a palpating finger. To demonstrate that the finger

indents the tissue deeper at the intercostal spaces, a virtual force of 1 N is applied on the

haptic device, i.e. it is simulated that the user presses against the skin with a constant force.

Finally, Fig. 4.10 shows the propagation of deformations around the needle by visualization

of the displacement field by color coding its orientation and magnitude.

4.7. Discussion

The presented methods for simulation of soft tissue deformation not incorporate segmenta-

tion mask or a labeling function directly but rely on a material function based on the image

data. The function used for this only distinguishes between deformable soft tissue and un-

deformable hard tissue. Similar to the palpation algorithm from the previous chapter, this

function uses a threshold to perform this distinction between soft and hard tissue. Here,

this threshold has been set to a fixed conservative value and might have to be adjusted for

exceptional image data. Regarding time effort of adjustment of the threshold, it should be

68

4.7. Discussion

Palpation deforms the skin surface

Figure 4.9.: Deformations caused by palpation with and without clipping enabled. The force
exerted on the virtual finger is 1 N.

Deformation and color coded displacement field

uy

ux

α

α

10 mm

=

gray values

labels

color coded
deformations

t1 t2 t3 t4

Figure 4.10.: Needle advancement as seen in multiplanar reformations with CT image val-
ues and label taging. Third row: HSV color coded displacement field whereas
the hue represents the angle between the x-axis and the deformation vector
projected to the image plane; the saturation indicates the magnitude of the pro-
jected vector.

69

4. Visuo-haptic Rendering with Local Deformations

sufficient to use the one also used for the distance mask. However, it will be necessary to

check if such an approach is feasible.

Comparing the methods used for speeding up the simulation, the ChainMail approach

was usable but it relies on parameters that determine the positional constants. These have

no direct link to the soft tissues parameters and thus, this approach is considered rather

inelegant. Best results have been obtained with the multi resolution strategy, which is also

independent of the choice between linear elastic and diffusive approaches. Overall, the dif-

ference between the diffusive and linear elastic approach regarding simulation times do not

differ widely and thus the linear elastic approach should be preferred since it is represents

physical reality better. Without question, the choice of CUDA block and thread layout in-

fluences the processing times to a large extend and the optimal choice of layout (w = 6)

is rather unexpected and seems to be highly hardware dependent. Future implementation

and ports to different hardware must be performed with this in mind. The choice of the ex-

tent of the region of interest for which the deformations are computed is a trade-off between

computational effort and plausible results. Ideally, the field should be of infinite size or in

the range of the extent of the image data.

In general, the presented approach give good visual results. However, it is arguable how

physically accurate the resulting deformations are. To make them comparable with a bet-

ter suitable ground truth in-vivo or in vivo data should be acquired since the solutions of

FEM models are only an approximation to reality. In practice, the differences between the

diffusive and linear elastic approaches are not easily distinguishable to the untrained eye.

Nevertheless, future work should include more sophisticated physical models with varying

material parameters, non-linear materials and higher resolution of patient data and grid.

70

5. Visuo-haptic Rendering using Respiratory

Motion Models

In this chapter, a novel method is presented that can be used to provide a breathing virtual

patient model. This method, which has been published in [FWMH15] and [WFMH15], in-

cludes both visual and haptic volume rendering based on a model of the patient’s breathing.

The necessity of visuo-haptic methods that can render a breathing patient model arises from

the fact that the behavior of needles that are inserted into the abdominal region are highly

influenced by organ motion induced by respiratory motion. An example for this are the

parts of the liver that are close to the diaphragm; the diaphragm itself moves up to 5 cm

between full inspiration and full expiration [KYS13]. This displacement is not limited to the

region close to the diaphragm, but also includes other visceral organs. Thus, this movement

not only affects these tissues but also bends flexible needles while being inserted, leading to

variations in the insertion channel of the needle. Additionally, bending of the needle inside

of the patient causes tilting that can be seen or felt by the surgeon.

The requirements of convincing simulation of the phenomenon thus is twofold: On the

one hand, the displacement of tissue and needle inside the patient has to be visualized and

on the other hand, the tilting and torque has to be rendered haptically to the user via the

haptic device. This has been addressed by introduction of motion models into the render-

ing methods that were presented in chapter 3. The key idea is to use a motion model that

yields a time varying displacement field describing the movement for all image elements.

For visual rendering, the motion model is used to deform the rays of the ray casting pro-

cedure, see section 3.2. Similarly, the motion model displaces the proxy positions used for

haptic rendering as introduced previously in section 3.5 and 3.6. The overall result is a new

and distinct real-time capable approach that unifies the visual and haptic rendering using a

single motion model.

This chapter is organized as follows: First, related work on real-time respiratory motion

simulation is given followed by a description of the time varying displacement field func-

tion. Afterwards, the motion models are specified in detail then the new methods for visuo-

haptic rendering a presented. Finally, results are presented and discussed.

71

5. Visuo-haptic Rendering using Respiratory Motion Models

5.1. Related work

Previous work on respiratory in virtual reality simulations includes the work of [SID+08]

and [HNR+10]. The former presents a method for real-time simulation and rendering of a

deformable lung model based on 3D triangle meshes. Also, in [HNR+10] a fast to compute

motion model for the abdominal organs is given and recommended for real-time tumor

motion prediction using a depth image of a patient’s skin surface. For simulation of angiog-

raphy, the work of [WAC07] included a simple breathing model. This model is based on an

affine transformation that is driven by a sinusoidal function. These methods only compute

deformations for nodes of the 3D mesh of a patient data set and do not represent surgery

simulations that include needle insertion or haptics.

For liver biopsy, the simulator presented in [VVA+13, VBBG11] includes simulation of

needle insertion and visualization of respiratory motion of the liver and internal organs.

For this, the Generalized ChainMail algorithm was used to propagate the deformations and

parameters for the simulation were determined in [VVBJ12, VVL12]. However, the influence

of the breathing motion on needle bending is not covered in this simulator and the breathing

is driven by a sinusoidal function.

An other framework [DWJ10] covers the visualization of breathing motion in an ultra-

sound simulation of a liver puncture simulator. The respiratory motion is based on a si-

nusoidal displacement. Additionally, the resulting respiratory motion has no effect on the

haptic rendering of needle insertion forces.

5.2. Respiratory Motion as a Transformation

Without modification, the methods presented in chapter 3 can only be used for static vol-

umetric image data. Using the methods introduced in chapter 4, it is possible to deform

locally restricted regions of the image data but due to limitations imposed by hardware, it

is not possible to use these for global deformations of the virtual patient.

In this chapter, a time varying global displacement function u(X, t) : Ω→ R3(Ω ⊂ R3) is

used, which maps points X ∈ Ω in the static reference space (see section 4.2) to their corre-

sponding position x ∈ Ω in the world space. This formulation uses Lagrangian coordinates,

i.e., for a particle placed at X, the displacement function u(X, t) describes its trajectory in

dependence of the current time t ∈ R. For illustration, Fig. 5.1 shows this relation for u(X, t)

and the inverse mapping u−1(x, t). Ideally, the relation is required to be bijective, that is, the

inverse mapping u−1(x, t) has to exist.

72

5.3. Respiratory Motion Models

Breathing patient represented by time varying world space

World space at t Reference space

u-1(x,t)

X

x

u(X,t)

Figure 5.1.: For each time step t in the simulation, a relation between the the current state
of the breathing virtual patient and the reference state of the patient exists. This
relation is a transformation u(X, t) between the undeformed reference space and
the deformed world space at time step t.

For this displacement function, different implementations are possible. A simple example

would be u(X, t) = (0, a · sin(t), 0)>, which models a sinusoidal displacement with ampli-

tude a for all elements of the reference space. Such a function is obviously not a suitable

choice to represent the complex motion of internal organs. Indeed, three main requirements

exists for this function:

• It should model patient specific organ motion under respiratory breathing.

• It should include the naturally occurring variations of breathing.

• It has to be fast to compute to be usable in ray casting based visual rendering (high rate

of sampling points, low update rate) and haptic rendering (low rate of sampling points,

high update rate).

Following this specifications, the next section will present a detailed description of motion

models that have been integrated into the simulation framework.

5.3. Respiratory Motion Models

To simulate respiratory motion using a the time varying displacement field, i.e., the motion

model function u(X, t), spatio-temporal 4D CT image data [EWS+07] can be used. Using

this 4D CT data, it is possible to analyze the motion of internal structures of a patient with

the goal of improving radiation therapy in case of tumors present in the thorax or abdomi-

nal region. Given the 4D CT image data in form of sequence of 3D images, it is possible to

perform non-linear image registration between the elements of the sequence. Precise regis-

tration techniques have been in the focus of many researchers in the recent years as well as

the analysis and modeling of the respiratory motion present in the image data [EL13].

73

5. Visuo-haptic Rendering using Respiratory Motion Models

Here, the basis of the motion models are the displacement fields estimated from the 4D

CT data set. A data set is a sequence of n 3D CT images Ij∈{1,...,n} : Ω → R that includes a

respiratory cycle from maximum inspiration over expiration back to total inspiration. Fol-

lowing the convention, the cycle includes the states end inspiration (EI), mid inspiration

(MI), end expiration (EE) and mid expiration (ME). Without loss of generality, the image I1

is considered a reference phase. Similar to the methods in chapter 4, the image associated to

the reference phase is supposed to be defined on the reference space, i.e., it is the static state

of the undeformed virtual patient. Now, a non-linear transformation ϕj : Ω → Ω describes

the motion between the reference phase and the phase associated to Ij. Instead of represent-

ing the transformation by ϕj, it can be represented by a displacement field uj : Ω → R3

using ϕj = id + uj. This displacement field u is similar to the one defined in chapter 4 for

the local deformations.

Based on the fact that the 4D CT data set is a time series of 3D CT images representing

consecutive states in a breathing cycle it would be straight forward to directly use the image

sequence and display it in the visuo-haptic simulation. This could be done by replacing

the currently rendered image data in the rendering algorithms with the next image in the

series as done in stop motion video animation. Of course, this is impractical and has the

following problems: First, in each frame, all used image data including segmentation mask

and distance images would have to be replaced by the respective versions. Second, the

number of images in the sequence is low, i.e., a sequence of 7–14 phases is reconstructed

to form a 4D CT data set, which in relation to the length of the breathing cycle results in a

very low frame rate. This frame rate is not high enough to create the illusion of fluid visual

animation in a human observer. For haptic rendering, it is not clear how the transition

between two images should be handled. At least, the spatial relation of two adjacent images

should be used for the transition, making a registration that yields a displacement field

necessary.

Generally, non-linear image registration techniques are used to compute the transforma-

tions between the phases to estimate the respiratory motion. An active research area is the

case of lung motion estimation [SVR13, WSRHE14, MVR+11], which mainly focuses on the

lungs and lesions in the lung. However, for convincing simulation of breathing motion in

a virtual reality setting, it is necessary to model the movement of all structures of interest.

This is a challenging problem to solve, since the the motion fields are not generally smooth,

i.e., at sliding interfaces around organ borders such as the interface of lung and liver and

the surrounding tissue [SRWHE12]. To overcome this limitiation, the registration approach

presented by [SRWHE12] is used. It is able to handle sliding interfaces by modifying the

74

5.3. Respiratory Motion Models

smoothness constraints at organ boundaries. After computation of the transformations ϕj,

these are filtered by principal component analysis. This is a common approach [McC13]

to mitigate inconsistencies in the motion estimation that can occur because of independent

registration of each phase to the reference image. Noise and image artifacts present inde-

pendently in each image can be the source of these inconsistencies.

Now, to use the estimated motion in the simulator, it is necessary to know the transfor-

mation for each point in time and space to the reference phase. For this, in each phase j,

it is necessary to have available the inverse of uj to be able to relate a point in the world

space to the reference space. With a high resolution of the 3D displacement field and several

phases, the memory consumption of a model easily can be very high. Thus, it is necessary

to either directly implement the function u(X, t)−1 or perform an inversion of it during run-

time of the simulation. Theoretically, by inverting each of the resulting displacement fields

or by diffeomorphic registration, it is possible to directly create an inverse model. However,

in practice, no appropriate inverse model could be created. In the framework presented

here, the method of inversion of the displacement field on-the-fly at run-time is used and in

the following this will be detailed. For this several approaches have been developed. The

first category considers the idea of using the reference phases as key frames of animation of

the patient’s respiratory motion and linearly interpolate between key frames. Also to enable

out-of-sample predictions, that is states that are not captured in the cycle of transformations,

extrapolation takes place in a second approach. Different from this, a third approach uses a

surrogate signal to drive a linear model yielding the respiratory motion vectors.

5.3.1. Key Frame Approach with a Single Respiratory Cycle

To perform animation of virtual objects, virtual reality often uses the technique of defining

key frames of the pose of the virtual objects. For example, to make an object follow a path,

only start and endpoint of the path have to be defined. To animate the object, these two

positions then can be interpolated over time. For more complex movement, more key frames

have to be introduced to the path. This idea can be employed for using the motion fields

associated to the 4D CT image data. For each phase j with associated displacement field uj

and image Ij, a key frame can be defined, forming a circular sequence of key frames. Each

element can be considered to be placed on a normalized time line with associated τj ∈ [0, 1).

For a single point in reference space X, this is illustrated in the left part of Fig. 5.2 during a

full cycle. During this cycle, the displacement of the point in world space can be expressed

by b(X, τ) : Ω → R3, whereas τ ∈ [0, 1) is a normalized time value corresponding to the

current simulation time. It can be assumed that that for any τ two adjacent key frames with

75

5. Visuo-haptic Rendering using Respiratory Motion Models

Respiratory motion encoded in full and half cycle approach

EI (τ1)

ME (τ3)

EE (τ5)

MI (τ7)

X+b(X,τ)

X EI (τ1)

ME (τ3)

EE (τ5)

X+b(X,τ)

X

Figure 5.2.: With end of inspiration as reference phase, the respiratory motion for a single
point X for the full cycle approach (left) and the half cycle (right) is illustrated.
For the full cycle approach, n = 8 phases resp. key frames are used and in
between key frames, linear interpolation takes place. For the half cycle approach,
only n = 5 phases from the expiration phase are used and to predict samples that
are not within the cycle, extrapolation takes place beyond end of inspiration (EI)
and end of expiration (EE). (MI = mid inspiration, ME = mid expiration).

displacement functions ui and ui+1 and normalized time values τi and τi+1 are available that

can be used for linear interpolation, giving a definition

b(X, τ) = (1− α(τ))ui(X) + α(τ)ui+1(X) (5.3.1)

with α(τ) = τ−τi
τi+1−τi

being the weighting factor.

To relate the displacements given for the cycle on the normalized time line to the displace-

ment during simulation, i.e., u(X, t) = b(X, τ), it is necessary to define a function relating t

to τ, that is

τ = f (t) : R→ [0, 1) (5.3.2)

In the upper part of Fig. 5.3, three function types are proposed for this purpose: Their

common idea is that they run trough the cyclic sequence in a sawtooth shaped function.

Starting at EI with τ = 0, they run towards τ = 1, passing the values corresponding to

ME, EE, MI. As soon EI is reached again, the cycle starts anew. To introduce more natual

variation ob breathing into the cycles, the length of each period can be adapted by randomly

choosing a new cycle length or resp. choosing a new random derivative f ′(t) = α after each

cycle. Alternatively, the second derivative f ′′(t) can be randomly estimated after each cycle,

giving a smooth slope for the function f (t).

76

5.3. Respiratory Motion Models

Functions for cycling through τ using full and half cycle

t

EI 1.0
 τ

EI 0.0

EE 0.5

t

EI 1.0
 τ

EI 0.0

EE 0.5

t

EI 1.0
 τ

EI 0.0

EE 0.5

t

 τ

EI 0.0

EE 0.5

t

 τ

EI 0.0

EE 0.5

EI

EI

EE

EE

Figure 5.3.: Functions for cycling through the image sequence for full cycle (upper) and half
cycle approach (lower). (EI = end of inspiration, EE = end of expiration).

77

5. Visuo-haptic Rendering using Respiratory Motion Models

This full cycle approach is straight forward and naturally follows the fact that the 4D CT

image consists of several phases. To reflect the variations and hysteresis included in the

breathing motion of the patient, it is necessary to at least use key frames for each the phases

EI, ME, EE and MI. Of course it is desirable to use a high number of phases resp. all available

phases, but the memory consumption of these can easily exceed the available resources, see

also [FWMH15].

5.3.2. Key Frame Approach using a Half Cycle

The full cycle approach is only capable of looping through the sequence of phases of the 4D

CT image data and variation of the respiratory motion is only possible in terms of overall

cycle length resp. variation of the playback rate, i.e., time derivative of f (t). Maximum

inhalation and exhalation is fixed to the states captured by the passes associated to EI and

EE. Of course it is desirable to also be able to display states that represent inhalation and

exhalation beyond the data present in the key frames, i.e., it is necessary to perform out-of-

sample prediction to be able to include more natural variation.

A possible approach to do so is to only use half of the phases and perform extrapolation

for the parts beyond EI and EE, see Fig. 5.3. In-sample values are all values of τ in the range

τEI = 0 < τ < τEE, for which Eq. 5.3.1 is used. Values not within this range are considered

to be out-of-sample (OOS), making it necessary to perform extrapolation. This can be done

by using the displacements associated to EI and EE

boos(X, τ) = (1− αoos(τ))uEI(X) + αoos(τ)uEE(X) (5.3.3)

with αoos(τ) = τ−τEI
τEE−τEI

. For this approach, a different relation between normalized time τ

and simulation time t is needed. Here, it is necessary to use a smooth function that oscillates

between τEI and τEE (excluding out-of-sample prediction) resp. values below τEI and above

τEE (including OOS). In contrary to the full cycle approach, this method does not include

hysteresis, i.e., the displacements for both inspiration and expiration are on the same path.

5.3.3. Model using Surrogate Signals

Both the key frame approaches are limited in their possibility to include natural variation of

the respiratory motion by either being limited to a single sequence or by not being able to

include hysteresis. In a third approach, a motion model using a surrogate signal and its time

derivative is used. A surrogate signal is a measurement of the patient’s breathing that is ac-

quired by for example a spirometry device or abdominal belt, yielding a 1D signal as shown

in Fig. 5.4. Apart from a simple 1D signal, it is also possible to use higher resolution surro-

78

5.3. Respiratory Motion Models

0 10 20 30 40 50 60
t [s]

200
0

200
400
600
800

1000
1200

g(
t)

[c
m

3
]

Figure 5.4.: A surrogate signal measured by a spirometry device.

gate signals as for example a depth image captured by a time of flight camera. To use the

signal to build a model of the motion of the organs and tissues of the patient, it is assumed

that a linear correspondence between the motion and the signal exists. For the reconstruc-

tion of a 4D CT image, it is necessary to have available a surrogate signal measurement,

making it unnecessary to capture these in an additional step.

In the following, a motion model evaluated for lung motion is used [WWE+14]. The sur-

rogate signal and its time derivative is denoted by ẑ(t) = (g(t), g′(t))T : R → Rnsur . The

purpose of using the time derivative is to include an indicator for expiration resp. inspira-

tion for modeling hysteresis. Employing multivariate regression on the transformations ϕj

and associated zj, a linear model can be learned by using the before mentioned linear corre-

spondence between surrogate signal and respiratory motion. To do so, the transformations

are interpreted as column vectors using lexicographical ordering of the m image voxels of

Ij, giving bj ∈ R3m. The resulting linear model yields displacements m ∈ R3m based on the

mean motion b̄ and a system matrix B ∈ R3m×2

m = b̄ + Bẑ(t) (5.3.4)

To get to a form suitable for implementation, the Eq. 5.3.4 can be rewritten as

m = a1g(t) + a2g′(t) + a3 (5.3.5)

with a1..3 ∈ R3m being column vectors.

79

5. Visuo-haptic Rendering using Respiratory Motion Models

Respiratory motion for a single point using the linear model

u(X,t)

X
a3(X)

a1(X)
a2(X)

Figure 5.5.: Schematic representation of the linear motion model, which yields a displace-
ment for each point based on a linear combination of three vectors.

Each of these then can then be again transformed back to functions a1..3 : R3 → R3 yield-

ing a displacement vector for a position in world space by reverting the lexicographical

ordering

u(X, t) = a1(X)g(t) + a2(X)g′(t) + a3(X) (5.3.6)

This linear combination is shown in Fig. 5.5 for a single image element. Evaluation of the

model for a position X then can be implemented as three texture lookups and summation.

5.4. Direct Visuo-haptic Rendering using Motion Fields

Having defined a displacement function, it will now be detailed how the displacement func-

tion can be used in order to render a virtual patient model visually and haptically.

5.4.1. On-the-fly Inversion of the Displacement Field

To introduce breathing motion into the visual rendering by the ray casting method, the dis-

placement function is used. Normally, ray casting uses straight lines along which sampling

takes place. The idea is that instead of using straight rays for rendering a deformed body,

deformed rays are used on an undeformed body but giving the same result, see Fig. 5.6. For

rendering of the breathing virtual patient model, the render integral is evaluated for rays in

world space. Thus, it is necessary to find the corresponding position in reference space for

a sampling position on a ray, making it necessary to use the inverse displacement function

u−1(x, t). Even if u−1(x, t) exists for the whole image domain, it generally is not available

for a given u(X, t) in the simulation environment. It is of course possible to perform the

80

5.4. Direct Visuo-haptic Rendering using Motion Fields

Visual rendering of the breathing patient by a warped viewing ray

World space at t Reference space

u-1(x,t)

X
x

Figure 5.6.: Ray casting of the deformed state of the virtual patient can be interpreted as ray
casting using a warped viewing ray in the undeformed state. The same can be
applied to haptic rendering and the location of the haptic device.

required inversion, but real-time requirements prohibit to do this on the fly for each single

rendering frame.

To face this problem, an approximate on-the-fly inversion of u(X, t) is performed along

the sampling of the rays by applying an iterative scheme. Sampling along the ray is accom-

panied by iteratively updating the inverse, using an modified fixed point inversion scheme

[CLC+08]. For rendering methods that do not include sampling along viewing rays, but in-

stead samples on a regular grid as for example multiplanar reformations, the iterative fixed

point scheme can be directly applied without modification with several iterations per point.

Requiring an invertible displacement field, the method of [CLC+08] can be formulated so

that iteratively evaluating the sequence Xn=x− u(Xn−1) for a given position in world space

gives a corresponding positions in material space. It is shown there, that this methods only

needs a small number of iterations to reach a stable solution. For ray casting, iterative update

of the sampling position along the viewing ray in world space and simultaneous update of

the sampling position in the reference frame mimics the fixed-point approach along a view-

ing ray. Here, the fact that the change of displacement between sample points is generally

small is employed. The iterative formulation of this along the ray can be written as

x+ = x + d (5.4.1)

X+ = x+ − u(X + d, t) (5.4.2)

with d being the direction vector of the ray and ‖d‖ the sample distance. This approach re-

sults in a quasi bended viewing ray and can be used for direct volume rendering, simulated

X-ray and simulated ultrasound as presented in chapter 3.

81

5. Visuo-haptic Rendering using Respiratory Motion Models

5.4.2. Surface based Rendering

Rendering of surfaces that were reconstructed from the image data by for example the

Marching Cubes algorithm is an alternative to direct rendering by ray casting. Introducing

breathing motion to surface meshes that consist of vertices and polygons is straightforward

by calculating the position in world space by x = X + u(X, t) of the vertices based on their

position X in reference space.

5.4.3. Haptic Rendering

As for visual rendering, the haptic rendering methods of chapter 3 can be modified to in-

clude the breathing motion modeled by the displacement function u(X, t). In contrast, in-

stead of modifying the sampling positions, the idea is to translate the position of the haptic

device from world space to reference space using the displacement function. This can be

illustrated by considering the haptic device position being close to the virtual patient’s chest

surface at maximum inhalation; in this case, the haptic device position in world space is

close to the displaced surface in world space too. The same spacial relation in reference

space, where the chest surface position is known but the haptic device position is not, can

be enforced by setting X = x + u−1(X, t).

Again, the inverse u−1(x, t) would be needed to perform this step but can be substituted

by X+ = x− u(X, t), i.e., a single inversion step in each iteration of the haptic update loop.

Forces computed by the haptic algorithms can then be send to the haptic device for output

without having to translate back the resulting force vector to world space. This is possible

since the force vector would only change under rotation inflicted by the displacement func-

tion. Theoretically, the haptic device rotation should be considered and translated to refer-

ence space as well. In practice, the rotation presented in the displacement function is very

small for positions near the skin surface and thus rotational transformation can be neglected.

5.4.4. Modifications to Haptic Rendering of Needle Insertion

The previous considerations regarding the haptic rendering of ultrasound probing and for

palpation simulation can be applied to the proxy positions of the needle, see Fig. 5.7. This

suffices to introduce breathing motion into the needle simulation. For needle insertion, ro-

tation induced by the displacement function at the needle tip causes different path taken by

the needle and thus should also be considered.

To modify the algorithm to include the displacement at the tip, the needle tangent direc-

tion dl used in Alg. 3.5, which handles the advancement of the needle, is modified by the

82

5.5. Implementation

Needle nodes are influenced by respiratory motion

Figure 5.7.: The needle nodes representing the discretized needle are connected to proxies
(red) by springs. These proxies are displaced by the breathing motion, resulting
in adjusted proxy positions (blue) and thus to a bended needle and adjusted
insertion direction.

following procedure. First, the deformation matrix R ∈ R3×3 is computed based on the

needle tip’s proxy position pl :

R = ∂u(pl , t)/∂pl + I ≈


u(pl + (1, 0, 0)>, t)> − u(pl , t)>

u(pl + (0, 1, 0)>, t)> − u(pl , t)>

u(pl + (0, 0, 1)>, t)> − u(pl , t)>


>

+ I (5.4.3)

and then the transformed needle tangent is calculated by dl = R−1rm/
∥∥R−1rm

∥∥ using the

undeformed needle tip direction vector rm in world space coordinates.

5.5. Implementation

During run-time of the simulation, a rather large amount of data is accessed. Especially the

ray casting visualization has to take into account nearly every element of the image data

that is intersecting with viewing rays. In contrast to the the visualization, which computes

2D images at a low update rate with high parallelization, the haptic simulation has to access

and evaluate the motion model with a very high rate only for a few elements. Therefore, a

twofold implementation consisting of a GPU and CPU implementation had to be developed

and model data has to be stored twice in both CPU and GPU memory.

5.5.1. Remarks on Visualization Implementation on the GPU

For both the key frame approaches and the linear model, each frame resp. linear component

is stored as a CUDA 3D texture with four float components for each element (16 bytes). The

83

5. Visuo-haptic Rendering using Respiratory Motion Models

elements store the displacement field as x-, y- and z-component, the additional byte does

not store information but is necessary to perform faster texture lookups. Before evaluation

of u(X, t) takes place for the visualization component on the GPU, preliminary steps are per-

formed on the CPU. For the key frame model, this consists of evaluation of the indexes for

adjacent frames i and i+ 1 and the weighting factor α(τ). These values are the only informa-

tion that now has to be uploaded to GPU memory to be able to perform the visual rendering.

Regarding the surrogate signal approach, it is only necessary to upload the surrogate signal,

that is g(t) and g′(t).

It is worth noting that the linear model needs three texture look-ups to evaluate a single

value of u(X, t), whereas for the key frame approaches it is sufficient to only perform two

look-ups. However, for the latter, a larger number of textures (one for each phase) have to

be held in memory in contrast to the three necessary ones for the linear components of Eq.

5.3.6.

Using the above, the visualization components can use u(X, t) and perform the necessary

on-the-fly inversion and texture lookup for the actual image value or label in I and J resp.

Apart from the ray casting, it is of course possible to deform triangular surface models using

u(X, t) directly. For this, the vertices’ positions of the triangles have to be stored in a pixel

buffer object accessible from CUDA. After computation of their new positions in worldspace

x = X + u(X, t) in parallel, these can be rendered by OpenGL.

5.5.2. Remarks on CPU Implementation for Haptics

Similarly to the GPU implementation, the CPU side relies on texture look-ups. In this com-

ponent, the image data is stored as 3D VTK images. To save performance, the haptic algo-

rithms first determine the positions for which a texture look-up have to be performed. These

are the proxies for palpation and ultrasound probing resp. the needle node of the bending

needle. Together, these are evaluated by VTKs image interpolation methods for the adjacent

key frames resp. linear components.

5.6. Input data and Preparation of the Virtual Patient Model

For demonstration of feasibility of the approach, a single virtual patient was created from

a low dose 4D CT data set. For the data set, spirometry data is available as a surrogate

signal for each of the phases and also as continuous sequences, for an example see 5.4, that

can be fed to the simulation. The image date consists of 14 phases and has a resolution

of 512 × 512 × 460 voxel elements. Using the full resolution and all phases is obviously

84

5.7. Experiments & Results

prohibited by the large amount of memory needed for it. Only taking into account the 14

phases at full resolution result in a memory demand of 512× 512× 460× 14× 16 bytes ≈
25Gbyte, which is clearly not available on consumer grade graphics hardware at time of

writing.

To be able to fit the key frames resp. linear components into memory they have been

reduced to sizes of 643, 1283 and 2563 voxels. The reference image was also resampled to a

resolution of 2563 elements.

For low dose 4D CT data, the stuctures inside the liver are hard to distinguish due to low

contrast and noise. To overcome this limitation for a training scenario, the liver blood vessels

and bile ducts have been transfered from a different patient image by warping segmenta-

tion masks of these structures onto the 4D CT reference phase. To introduce these artificial

structures into the reference image, the image values of the CT data are adjusted to common

values for liver blood vessels and bile ducts. Also, an artificial mock-up lesion is added to

the image data by artistic means.

From the segmentations of the three structures, surface models have been created by us-

ing the Marching Cubes algorithm [LC87] followed by surface smoothing and decimation.

Furthermore, threshold based segmentations of patient’s skin surface and bone structures

were created.

5.7. Experiments & Results

The applicability of the presented method is now first shown for visualization without tool

interaction and afterwards results including haptic interaction are given.

Fig. 5.8 shows screenshots of a sagittal multiplaner reformation during respiratory mo-

tion. Both the half cycle approach and the linear model are used to visualize the phases

EI, ME, EE and MI and also out-of-sample predictions. For computation of the deformed

slice, the fixed-point inversion has been applied to each element of the grid. In Fig. 5.9,

screenshots of the visualization methods ray casting together with triangular surface mod-

els, X-ray simulation and ultrasound simulation are shown.

In Fig. 5.10, the effect of the respiratory motion on the bendable needle is shown. Also,

Fig. 5.11 shows a sequence of needle movements of a freely moving needle. For this, the

user first inserted the virtual needle via the haptic device into the abdominal region of the

patient model and then released the haptic device handle, showing that the force feedback

loop is stable and the breathing motion induces a plausible needle movement.

For palpation, Fig. 5.12 shows how a finger indents the soft tissue of the virtual patient

model, the color coded displacement field shows that both local deformations and global

85

5. Visuo-haptic Rendering using Respiratory Motion Models

Surrogate model vs. key frame model

E
I

M
E

E
E

M
I

Surrogate model

O
O

S
+

O
O

S
-

Keyframe model

uy

uz

α
α

10 mm

=

Figure 5.8.: Screenshots of sagittal slices of the virtual patient CT data under respiratory
motion. Two models are shown (surrogate/linear approach vs. half cycle key
frame approach). The displacements are shown using a color coding with color
indicating the direction based on the HSV wheel and magnitude being indicated
by opacity of the overlay. Maximal opacity of the color overlay corresponds to a
displacement of 10 mm and above.

86

5.7. Experiments & Results

Simulated X-ray and ultrasound with respiratory motion

X-ray Ultrasound

t1

t2

t3

Figure 5.9.: Screenshots of simulated X-ray and ultrasound imaging influcenced by the res-
piratory motion for different surrogate signal values g(t1) = −48.1, g(t2) =
491.4 and g(t3) = 655.8. Visualization of the movement is supported by arrows
pointing to the base of the lung in the X-ray simulation and by delineation of
the lesion segmentation in the ultrasound simulation. The ultrasound probe has
been placed along an intercostal space as in Fig. 2.1.

87

5. Visuo-haptic Rendering using Respiratory Motion Models

Bending needle insertion into virtual patient under respiratory motion

Figure 5.10.: Sequence of mixed surface and volume rendering with surface model of a le-
sion (yellow), bile ducts (light red), liver blood vessels (red) and bony ribs
(white). In between the screenshot acquisitions, the needle was advanced
deeper into the liver and finally into the lesion.

deformations from tool interaction and respiratory motion are taken into account at the same

time. Discontinuities in the displacement fields as are arising at sliding tissue interfaces

can lead to smearing artifacts (Fig. 5.13). These are depending on the resolution of the of the

displacement fields [FWMH15] and especially visible at surface visualizations of the ribs.

5.8. Discussion

In this chapter it was shown that using 4D CT image data containing respiratory motion, it

is possible to create a virtual reality simulation that includes the respiratory motion in both

visualization and haptics. Its main advantage is that it is straight forward to integrate into

the existing simulation components by employing the relation between world and reference

space given by the displacement function.

Regarding the preparatory effort, it is necessary to segment structures with sliding bound-

aries for the 4D registration. Lung segmentation requires less effort in comparison to the

liver in this regard due to the high contrast of Hounsfield values in this region. Liver seg-

mentation is necessary for preparation of a new patient in any case for haptic interaction. A

current limitation is the fact that 4D image sequences are necessary. Future work will inves-

tigate how to transform respiratory motion models to patient data for which only a single

phase is available.

In [FWMH15], it is shown that the time needed for ray casting is affected by the ray warp-

ing, but is still within reasonable time frames. For a comparable setting, times for the ray

casting without, with the key frame approach and with the linear model require ca. 16 ms,

88

5.8. Discussion

Needle inserted into patient abdominal region with free movement

Figure 5.11.: The needle has been inserted into the abdominal region of the virtual patient
by the haptic device. The user then released the haptic device handle, resulting
in a freely moving needle influenced by the respiratory motion.

Palpating finger and resulting displacement

uy

ux

α

α

10 mm

=

Figure 5.12.: Screenshot and MPR slice of tissue deformed by palpation together with respi-
ratory motion.

89

5. Visuo-haptic Rendering using Respiratory Motion Models

Renderig artifacts at non-smooth tissue interfaces

uz

ux

α

α

10 mm

=

Figure 5.13.: The discontinuities at sliding interfaces can cause smearing artifacts.

37 ms and 27 ms resp. The big difference between the key frame approach and linear model

can be explained by the fact, that the key frame approach has a much larger memory foot-

print overall.

The quality of the rendering is also highly dependent on displacement fields that are used

as input. The methods developed so far for 4D image registration focus on good registration

within the structures of interest. These are mainly the lungs, lesions within it or abdominal

organs. Proper registration of structures such as skin or bone apart from the ribs are not

subject to evaluation for these methods and so it is not guaranteed that the displacement

fields computed by image registration is valid for all elements of the image. The smearing

artifacts that can arise at the boundaries of sliding interfaces, i.e., large discontinuities in the

displacement field are the major problem of the method. Especially, the interface between

ribs and the lung are affected since the CT values are of high contrast in this interface region

due to the high Hounsfield values of bone and the low values of air contained in the lungs.

It is arguable that these rendering artifacts mainly occur at locations that are not in the target

region of the intervention and higher resolutions of the displacement fields might reduce the

problem in the future.

The effect of the respiratory motion on the haptics is well perceivable and stable. Having

inserted the needle into the patient, tilting and movement of the needle can be seen and felt.

Further evaluation of this effect might be necessary but challenging to perform in vivo. For

virtual palpation, the effect is also perceivable and can be compared easily to user experience

in the real world.

90

6. A Framework for Image-based Puncture

Simulation

The methods from the previous chapters, namely direct visual and haptic volume rendering,

rendering of local deformations caused by tool interaction and visual and haptic rendering

of breathing motion are integrated in a single framework. For this, first a method to create

virtual patient models using only partially segmented image data is presented and second

the overall integration of hardware and software components is detailed.

The contribution of using partially segmented data was previously presented in [MFH12]

for lumbar puncture and detailed in [FMSH16] for PTCD application. The second part of

this chapter is also partly presented in [FMSH16], but here a more in depths description of

used hardware and the developed software components is given.

6.1. Puncture Atlases with Partially Segmented Data

In chapter 3, the presented haptic and visual rendering algorithms rely on material proper-

ties of the virtual patient. These material properties are assumed to vary for different tissues

and include haptic parameters for stiffness, cutting resistance force, friction force and also

a RGBA-color tuple to indicate the tissue’s color. Abstractly, they have been defined as

functions that yield the properties for given positions in the reference space of the virtual

patient. Thus, it is apparent to use the image data and segmentation mask as the basis for

these functions. Apart from the image data, each virtual patient is also represented by a

property tree in the framework. This tree consists of a hierarchical description of the pa-

tient’s tissue classes. Based on the image data, a (partial) segmentation of tissues and the

property tree, the material parameters are estimated at run-time. These three components in

combination will be called a puncture atlas and the following will describe its creation and

usage at run-time of the simulation.

91

6. A Framework for Image-based Puncture Simulation

6.1.1. Creation of Partially Segmented Data

The predecessor of the framework was depending on fully segmented patient image data for

haptic rendering [Fär09]. Based on organ segmentations, the parameters for the correspond-

ing organs were used in the rendering. Also for the visual rendering, these segmentations

were needed to create triangular surface meshes by the marching cubes algorithm [LC87].

The practical limitation of this approach is the high amount of time needed for the creation

of the segmentation masks. In [Dal14], these are given to be more than 60 hours for a single

patient data set in a lumbar puncture scenario (see Introduction, p. 6). In an application sce-

nario, where a patient model is needed in a short time frame, i.e. planning or pre-operative

training, this is a major impediment.

To mitigate the problem, the idea is to reduce this time by only having to segment a subset

of organs and, if possible, perform this segmentation with suitable supporting algorithms.

For PTCD, the essential structures that have been identified to be of major importance are

the liver, liver blood vessels, bile ducts and the intercostal fascia. Especially liver blood

vessels and the bile ducts are risk and target structures resp. and thus have to be modeled

with high precision to be able to detect harm of risk structures and successfully insertion of

the needle into the bile ducts. These key structures have been segmented using Multi-atlas

segmentation strategies [MFM+13, BMFH14] for the liver and vesselness based techniques

[BMF+14]. Also, for each patient the intercostal fascia have been modeled and the resulting

surface models have been converted to segmentation masks. For the fascia, this completely

manual approach is necessary due to the fact that the fascia are not distinguishable from

surrounding soft tissue.

Similar to the labeling function l used in the previous chapters, a partial segmentation

function p(x) : R3 → L can be defined based on the segmentation masks created for the

key structures. These structures are listed in the Appendix A.2. Of course, other puncture

scenarios than PTCD will rely on a different set of partial segmentations and partial seg-

mentation function.

6.1.2. Label Estimation Heuristic

The partial segmentation function is fused together with a heuristic to define the labeling

function l used in the PTCD framework. Apart from the essential key structures that need

a segmentation mask, other structures on the needle insertion path are skin, fatty tissue and

bones resp. ribs, which can be classified via threshold heuristics during run-time. Thresh-

olds that delimit these classes, namely tskin
air , tfat

skin and tbone
fat , have to be estimated for this based

on the image data in a first step. In A.2, labels and associates structures and Hounsfield

92

6.1. Puncture Atlases with Partially Segmented Data

ranges are listed exemplary for a single patient. Generally, these thresholds have to be ei-

ther re-estimated for each new image data set or new image data has to be manipulated in a

way that these thresholds are valid for this new data set as well.

Given the thresholds, a heuristic that also incorporates the current needle insertion depth

d can be summarized by

h(x, d) =



lrisk if I(x) ∈ [−∞, tfat
skin) ∧ d > δ

lskin if I(x) ∈ [tskin
air , tfat

skin) ∧ d ≤ δ

lfat if I(x) ∈ [tfat
skin, tbone

fat)

lbone if I(x) ∈ [tbone
fat , ∞]

lair otherwise

(6.1.1)

with δ being a threshold that is used for detection of risk structures after the needle has

been inserted into the patient model. This heuristic checks if the image value I(x) is in the

the range defined by the thresholds and also checks for low image values within the virtual

patient that are either cavities or other risk structures as lung or intestines, which also have

low intensities in the CT image data.

A combination of the heuristic h(x, d) and the partial segmentations then is

l(x, d) =

p(x) if p(x) 6= 0

h(x, d) otherwise
(6.1.2)

and can now be used as the labeling function for the needle insertion and other haptic al-

gorithms. It is cheap to evaluate and thus very suitable for haptic rendering, which relies

on update rates between 500 to 2000 Hz. For visual rendering, an insertion depths is not

given for each rendering element, making it reasonable to either set d = 0 or use the in-

sertion depths given by the needle insertion algorithm. The latter changes the visualization

results during simulation in dependence of the current insertion depths, which is beneficial

for inspection of the results of classification but is distracting otherwise.

6.1.3. Property Tree

All tissue classes represented in a puncture scenario and contained in the puncture atlas are

part of hierarchical representation of tissues, which is called the property tree. Each leaf in

the tree represents a tissue class (liver, bile ducts, bone etc.) and to each of the leafs a unique

label from the set L can be assigned. Furthermore, to each inner node a group of tissues

(soft tissue, vessels, hard tissue etc.) can be assigned. The purpose of this tree-like structure

93

6. A Framework for Image-based Puncture Simulation

Parameter lookup using the property tree

...

...
soft tissue

fat liver

body
k=f(I(x))

(k)

(k) k=0.2

x1

N
m

x2
label

via threshold
heuristic

label via partial
segmentation

Figure 6.1.: Parameter estimation for a location in the image data first determines the ap-
propriate tree node by applying the label function. Then, the value definition is
looked up in the tree. Here, this is demonstrated for the stiffness k of the loca-
tions x1 and x2. For x1, no partial segmentation is available, making it necessary
to use the heuristic. Also, the property tree does not contain a definition directly
for the structure, but for its parent element, which contains a transfer function
definition of the value. For x2, a segmentation is available and the definition is
directly included in the tree node as a fixed value.

is to be able to define the same properties for groups of tissue and also to be able to refine

properties of different members of the same structure. This is done by inheritance: For each

node, properties are either defined or are inherited from the closest ancestor in the tree.

Apart from defining the tissue parameters used by the haptic algorithms as fixed values

for each structure, it is also possible to define them as transfer functions that relate image

intensity to the appropriate parameter value. For example, if a linear relation between image

intensity and the stiffness of a tissue with label j ∈ L exists, a linear function f j
k(v) = k j · v+ b

could be assigned to a tree node instead of a scalar value. To be able to approximate any

function, a piecewise linear function can be specified for each tissue parameter.

6.1.4. Parameter Evaluation

For evaluation of a parameter for a given location x, four steps are performed as illustrated

in Fig. 6.1: (1) First, estimate the label lx = l(x, d) of x by using the label function from the

previous section. (2) Then, find the tree node with the matching label. (3) If the parameter

is present in the node as a scalar value, the evaluation terminates and returns this value. If

it is a transfer function, it is evaluated for I(x) and this value is returned. (4) In case the

node does not contain a definition, the evaluation now considers the parent element of the

node to contain a definition and jumps back to step (3). This way, the parameters used by

the haptic algorithms are given for each location in the reference space.

94

6.2. Haptic Workbench Hardware-Setup

Workbench setup and user interfaces

US

☚

☢
ON
☢

OFF
☢

CT

Labels

Reset
Scoring

Start
Scoring

Stop

Scoring
Simple

Scoring
 at paths

Figure 6.2.: Left: Haptic workbench running the PTCD simulation. Middle: Numpad inter-
face. Right: Tablet PC interface to the simulator.

6.2. Haptic Workbench Hardware-Setup

The complete framework consists of both hardware and software components. For haptic in-

teraction, the simulation frameworks supports the Geomagic Touch and Phantom Premium

haptic devices (formerly Sensable Phantom Omni and Phantom Premium). Depending on

the operation system on which the framework is executed, it is possible to connect up to two

physical devices. This is limited by the driver support for Linux, which only supports a sin-

gle Touch device. Using Windows, it is possible to either use a single Touch and a Phantom

Premium or two Touch devices.

To display the rendered visual content, a haptic workbench (see Fig. 6.2) can be used. It

consists of a haptic device and a LCD monitor that is capable of stereoscopic 3D and uses a

semitransparent mirror to show the content of the overhead mounted monitor.

6.2.1. Workbench Constraints

This setup imposes several design constraints onto the framework. First, by mounting the

monitor upside down, the resulting viewport is rotated by 180 degrees and is flipped by the

mirror, resulting in an upside down configuration of the output image. In the preceding

framework AcusVR [Fär09], this was dealt by inverting the scan direction of the cathode ray

of the monitor by physical rewiring, which is not possible for LCD monitors. In fact, the

used graphics hardware driver provided by Nvidia does support rotation of the screen, but

not mirroring it, which thus makes it necessary to perform the mirroring using software.

This is integrated into the framework by applying a final rendering pass in the VTK render-

ing pipeline that copies and mirrors the resulting output window. Performing this step is

limited to the OpenGL output window and thus it is not possible to use the previously used

95

6. A Framework for Image-based Puncture Simulation

Qt graphical user interface (GUI) on the workbench screen. A minor issue that arises with

the inverted display is that mouse interaction is also inverted. Using a tool like Autohotkey1

on a workstation running Windows, the vertical mouse movement can be inverted in case

the cursor is on the primary display.

Second, the semitransparent mirror rotates the plane of polarization of the light emitted

by the screen. For stereoscopic 3D, the workbench uses liquid crystal shutter glasses. To

compensate the change of polarization caused by the mirror, the manufacturer of the work-

bench modified the shutter glasses by rotating the lens by 90 degree. In short, this prevents

the shutter glasses to be worn by a user when looking on the secondary LCD monitor of

the workbench. Since it is very inconvenient to put on and remove the glasses each time

the secondary monitor is needed, it is unreasonable to interface with the simulator using

a graphical user interface displayed on the secondary monitor. These constraints made it

necessary to come up with alternative interaction methods.

6.2.2. User Interface

To overcome the limitations imposed by workbench setup and the fact that simultaneous

interaction with the haptic device and the computer mouse is inconvenient since both would

be performed by using the user’s dominant hand, two alternatives shown in Fig. 6.2 are

provided. The first is an external number pad connect over USB: Each key can be used to

issue a certain command for interaction to the simulator, which is reflected in the pictograms

that have been applied to the keys. By this means, fast and robust interaction is possible.

It can be used to change the current haptic device, enable and disable the X-ray simulation

and change the display mode.

To provide an interface that is not limited by the amount of keys, an additional tablet PC

can be used. For this purpose, the simulation framework contains a web server to which a

browser can connect using the hypertext transfer protocol (HTTP). The interface provides

large buttons to change the tools and visualization modes of the simulator. The motivation

is that the user is able to simultaneously steer the virtual tools using the dominant hand and

at the same time change the simulator settings with the other hand. In comparison, the tablet

PC interaction mode can provide an interactive description of each of the steps that have to

be performed for a successful virtual intervention. From a developer perspective, this mode

is beneficial because it allows alterations of the interface at run-time of the simulator.

Furthermore, the framework uses the existing methods for scoring from [FHGH09]: The

user can choose between free puncture and puncture along predefined insertion paths and

1http://www.autohotkey.com/

96

http://www.autohotkey.com/

6.3. Software Architecture

the results are shown on the secondary screen using the Qt framework. Future iterations

of the framework should include the results in the browser-based graphical user interface.

Also, it is possible for the user to select one of three different difficulty settings: beginner,

advanced and expert. This selection influences the settings and availability of supporting

visualization modes.

6.3. Software Architecture

The software parts of the framework are written in the languages C++ and CUDA and

are subdivided into several sub-modules. Fig. 6.3 illustrates the flow of information for

the major modules. These modules are decoupled as much as possible and and are lay-

ered without cyclic dependencies, see Fig. 6.4. The main dependencies of the framework

are the VisualizationToolkit (VTK) for loading and processing of medical image data and

OpenHaptics for interfacing the Geomagic haptic devices. Each of the components has the

following responsibilities:

• HapticDevice: This is an abstraction layer for the hardware haptic devices and the only

modul that interfaces the OpenHaptics library. Also, it provides a virtual dummy hap-

tic device that can be steered by a scripted sequence or by user interaction using a GUI.

The scripts are loaded from special script files and can be used for demonstration of the

simulator and testing, or for path steering for evaluation of massive numbers of path

generated by path planning concepts.

• VirtualPatient: This module contains a class that holds information of a virtual patient

atlas, i.e. image data, segmentations, distance maps, classification heuristics, property

tree and motion models. Also it consists of auxiliary classes for loading the atlas data

from the hard disk using VTK and the XML library libxml2. To validate the data, it uses

a Document Type Definition (DTD) ensuring syntactically correct input.

• ImageDeformation: This library reflects the methods presented in chapter 4. It includes

classes that represent the image data and the deformable subimage and a class to apply

the deformation models implemented in CUDA.

• HapticAlgorithm: The haptic algorithms for needle insertion, palpation and ultrasound

probing presented in chapter 3 are included in this module.

• VolumeRendering: Visual volume rendering methods from chapter 3 are implemented

in this library. It provides methods for rendering deformed volume data by ray cast-

ing, ultrasound and X-ray simulation and multiplanar reformations. Also, it includes

rendering using the motion models presented in chapter 5. To conform to the VTK vi-

97

6. A Framework for Image-based Puncture Simulation

Information flow during run-time of the simulation framework

CudaVolumeRendering

image resampling
u-1

J

display

haptic device

volume rendering

X-ray simulation

HapticAlgorithms

ImageDeformation

PunctureSimulation

ultrasound simulation

inversion

deformation algorithm
u

haptic algorithms

forces

position
&

orientation

4D Motion Model

Image data
Partial Segmentations

Distance Maps

co
p
y
 d

e
p
th

 b
u
ff

e
r

update surfaces

Surface Data

VirtualPatient

combine Cuda volume
renderings and

VTK rasterization

flip final image

render tool representations

render deformed surfaces

load from file

Figure 6.3.: Data flow during simulation. The user interacts with the haptic device, the re-
sulting visualization is displayed on the screen. Haptic device and haptic algo-
rithm form a force feedback loop and information from the haptic algorithms
is given to the image deformation algorithms. Based on the the deformed im-
age, visual rendering is performed. This includes the combination of ray-casted
patient data and surface renderings.

98

6.3. Software Architecture

Dependency graph of the modules of the framework

HapticAlgorithm

HapticDevice VirtualPatient

VolumeRendering

ImageDeformation

Puncture Simulator

Figure 6.4.: Internal dependencies of the modules of the framework. Relevant external de-
pendencies of each module are indicated by a green (CUDA), red (VTK) and
orange (OpenHaptics) dot.

sualization pipeline, for each of the methods, a VTK actor is provided that renders the

results computed by code written in CUDA using CUDA/OpenGL interoperability.

• PunctureSimulator: This module integrates all before mentioned modules and also is

responsible for loading of the simulated scenario (available tools, visualization meth-

ods, predefined puncture paths). It connects the data model of the virtual patients to

haptic and visual algorithms. It provides the user interface implemented using Qt,

manages the display of data in various viewports (ultrasound, X-ray, main viewport,

multiplanar reformations, see Fig. X). For each availabe tool, a separate visual repre-

senation class and controller class exists to decouple model, view and controller (MVC

architecture). Furthermore, it provides the web server for accessing the simulator using

the tablet PC and a event pipeline.

The event pipeline in the last module is worth a detailed explanation: An event generally is

a request to change the settings of a component of the simulation or to issue a command as

saving of the current state of an algorithm into a file. For simplicity reasons, it is a string that

contains both the name of the event and parameters. To ease development, events can be

insertion into the pipeline by various interfaces. The first is a developer command console

included in the Qt GUI, into which the event can be typed directly. Secondly, it is possible

to insert an event by the scripted dummy haptic device. Last, the web server component

can issue event processing in case a HTTP request containing an event is send by e.g. the

browser of the tablet PC. As shown in Fig. 6.5, these events are passed along the components

of the simulator, each having the possibility to react to the event. By this means, it is easily

possible to develop new algorithms that can be configured at run-time of the simulation. It

99

6. A Framework for Image-based Puncture Simulation

Pipeline for event processing

tablet + browser

HapticDevice

MainGuiWindow

HapticAlgorithm
setParam(...)

Simulation

Representation

interpretCommandLine(...)

notifyAllCallbackListeners(...)

processEvent(...)
MainGuiWindow

processEvent(...)

processEvent(...)

web server + WIFI + HTTP

DummyHapticDevice
processInputFile(...)

Keyboard input in Qt Gui

Figure 6.5.: Event pipeline for sending messages from the user interface or the dummy hap-
tic device to the simulator components.

is possible to perform this by using the command console for a developer without having

to create a GUI. Additionally, it is possible to create a suitable user interface using the web

server, also at run-time.

6.4. Discussion

This chapter integrates the methods and components of the previous chapters into a single

framework and details the labeling function. Using this labeling function with the proposed

heuristics, it is possible limit the segmentation to key structures. For the PTCD intervention,

these are liver, liver vessels (blood vessels, biliary ducts, RHD), fascia and the lung in case

respiratory motion is demanded. The segmentation of the small key stuctures can be per-

formed in several hours. With an optimized segmentation framework, the preparation of a

new patient should be possible within half a working day.

Evaluation of the resulting labeling function is very fast to compute and did not noticeably

affect the haptic algorithms in comparison to using a full segmentation.

An intermediate version of the simulation framework without the 4D component was

evaluated by a user study in [FMSH16], which verified acceptance by the focus group of

medical students. Haptic parameters were transfered from the predecessor ACUS-VR and

100

6.4. Discussion

confirmed by two medical professionals. However, ongoing evaluation of the framework

during further development is a major concern. The dummy haptic device that is used in the

simulation framework uses a simple scripting language to steer a virtual haptic device and

issue events into the messaging pipeline. It can be used to perform a reproducible puncture,

which is not possible in case a real haptic device has to be steered by a human operator. To be

able to perform such a reproducible puncture without having to execute the full simulator,

the framework contains a needle path evaluation utility, which is a simplified command line

utility that executes the scripted sequence faster than real-time. Scripted insertion paths can

be generated by the output of a path planning algorithm [MHFH13, MHFH14], which can

be converted to sequence of movement commands for the dummy haptic device. Using this

tools provides a faster evaluation of the insertion sequences as would be possible by the full

visuo-haptic simulator. To fully employ this feature, ground truth based on real tissue or

phantoms is necessary.

The overall design of the architecture of the framework enables the replacement of com-

ponents. In case new haptic algorithms are to be developed, these can be integrated into the

respective libraries or new haptic devices can be integrated without having to rewrite the

framework.

101

7. Summary & Discussion

In the following chapter, the presented methods are summarized and their limitations are

discussed. Regarding the visuo-haptic rendering, it can be stated that the ray casting based

volume rendering is very appropriate technique for the application in a training simulator.

It has been shown that without having to create surface models of internal tissue and or-

gan structures, it is possible to visualize the needle insertion procedure with high detail.

In contrast to surface based, i.e. , indirect volume rendering, approaches, no information

is lost when performing direct volume rendering. Indirect volume rendering has the dis-

advantage that image data is reduced to the interfaces between the tissues and everything

in-between is discarded. However, the procedure used in the presented framework relies

on a 1D transfer function for the relation between Hounsfield values in the CT image data

and color information. Usage of 2D transfer functions that relate Hounsfield values and the

local gradient magnitude of image elements to color values are available in the literature.

First attempts at implementing higher dimensional transfer functions were promising.

The ray casting algorithm has been implemented in CUDA. This has been proven to be a

reasonable approach concerning the successful parallelization. However, for the successful

integration into the VTK or more specifically the OpenGL rendering pipeline, it was nec-

essary to integrate an intermediate rendering to a frame buffer object to be able to copy

the OpenGL depth buffer into memory available to CUDA. For a final product complex-

ity might be reduced and rendering performance might be increased by relying on a GLSL

based ray casting procedure as available in VTK. This also might be faster since CUDA does

not support hardware accelerated computations of texture normals which is essential for the

fast computation of lighting models.

The rendering of contrast agent in the X-ray simulation component is currently limited

regarding the size of the region the diffusion process is applied to. In the case that a large

region or the complete biliary tract is to be visualized this could cause unrealistic results at

the borders. Normally, for the PTCD simulation where the main concern is the checking of

successful puncturing of the bile ducts, this is acceptable. For other puncture scenarios the

size of the region might have to be increased. Furthermore, in the implementation only a

diffusive process in the bile ducts is integrated. Of course injection of the contrast agent into

103

7. Summary & Discussion

a vessel creates a fluid flow that could be simulated. For blood vessels it would also be more

realistic to simulate blood flow and propagation of the contrast agent. The simulation of

blood flow only considers the flow velocity in the ultrasound Doppler simulation and does

not incorporate the direction of blood flow. Regardless of this, the purpose of visualization

of risk and target structures in the ultrasound component is achieved.

A successful virtual palpation of intercostal spaces is possible using the presented multi-

proxy algorithm. Yet it is only applicable for this purpose. Palpation of the liver itself, which

is an often performed diagnostic tool, is not included. For PTCD puncture this is not a part

of the intervention, but nevertheless, the algorithm has the potential to include additional

force terms similar to the currently included structure force by creation of distance maps for

additional structures such as the liver and including them into the force term.

The simulator relies on a two step procedure in which the ultrasound probe is first used

to find a proper insertion site and then the user switches to the virtual needle and performs

the puncture. This procedure seems not to be intuitive for new users of the system and

further development should focus on using separate devices for ultrasound probing and

needle insertion each. At the same time it might be of value to also include the guide wire

and drainage insertion procedure into the training simulation.

For simulation of deformations, the framework relies on the reduction of computation in

a small region around needle, ultrasound probe or palpating finger. It is assumed that the

main deformations for the needle occur at the tip when puncturing organ capsules or skin.

For long needles, large deformations and deformations arising from the breathing motion

of a patient it will be necessary to compute deformations in a larger region. Additionally,

the models used for computation of deformations are of course simplifications of reality.

The diffusive process used can be regarded as a plausible visualization, but closer inspec-

tion reveals that the linear-elastic model has to be applied to achieve physically founded

behavior. A fully realistic simulation would also have to include anisotropy of the materials

and more importantly unique material parameters for distinct tissues. In the context of this

thesis the behavior of the simulated tissue has been compared to finite element simulations

using non-linear materials, which is an in-silico evaluation only. It has been restricted to in-

silico evaluation since it ethically unproblematic and can be performed without additional

extensive experimental setups.

A central contribution of this thesis is the visuo-haptic rendering of a breathing virtual pa-

tient based on a respiratory motion sequence. As shown in chapter 5, this approach works

well for a virtual patient for which both a static reference CT image and a reconstructed

sequence is available. For patients for whom a PTCD is indicated such a sequence will not

104

normally be available and it might be unreasonable to expose the patient to the radiation

dose associated with capturing a 4D image sequence. Therefore, methods for estimating a

respiratory model only based on a static reference image and further easy to measure infor-

mation (e.g. surrogate signals) are needed. Generally, the method shows rendering artifacts

around sliding interfaces as the region between lung and rib cage, which can be attributed

to the used linear interpolation. Higher resolution of the displacement fields or other inter-

polation methods could mitigate this problem. The resulting forces of the algorithm do not

have been compared to in-vivo ground truth. It is assumed that the consideration of dis-

placement is enough to produce realistic force feedback. This assumption neglects changes

of material properties under deformation and so further experiments could verify the devel-

oped methods in this regard. For the non-invasive palpation, experiments with force sensors

could be performed without concern. However, the acquisition of in-vivo needle force mea-

surements, e.g. those published in [MMvV+12], is complex and ethically problematic.

For generation the of new virtual patients models for usage in the framework, methods

have been published in [MFM+13, BMF+14, BMFH14] for segmentation of key structures.

Apart from the steps presented there, a manual process is needed for the modeling of inter-

costal fascia, which are nearly not visible in the CT image data. Altogether, the steps needed

for creation of a new patient can be performed in a reasonable time. A detailed description

of these and their time demand is planned to be published in the future.

The user study with medical students [FMSH16] gave good hints for further develop-

ment. This study consisted of 16 participants and supports the utility of the framework.

Nonetheless, a thorough evaluation with medical experts could further support the results

and could be used to identify further possible refinements.

Overall, the methods presented in this thesis are tailored for PTCD needle puncture but

could be applied to other insertion scenarios as well. Regarding surgery scenarios that in-

clude cutting operations the presented methods are not be applicable without further exten-

sion. Cutting introduces changes of the topology of the virtual patient’s body. By remeshing

operations mesh based approaches can introduce cuts into the patients body, which is not

possible when using a fixed regular grid. In the section on future work an idea to approach

this challenge is proposed.

To sum up, a novel simulation framework has been presented that does not depend on

surface or volumetric meshes. Specifically, methods for haptic and visual rendering have

been developed for this that include up-to-date methods such as soft tissue deformation and

respiratory motion. From these results further interesting research topics arise for which in

the next chapter possible solutions are presented as future work.

105

8. Outlook & Conclusion

Based on the discussion from the previous chapter, future work for advancing the frame-

work is suggested in the following.

8.1. Future Work

More realistic rendering A central aspect of the presented framework is the visual rep-

resentation of the virtual patient by using volume rendering. From an engineering perspec-

tive, it might be interesting to integrate the latest technological developments in volume

rendering, for example fast visibility encoding [KJL+11], to create a more realistic volume

rendering. This approach enables self shadowing of volumetric image data by storing local

visibility using a Spherical Harmonics approach. However, it is not clear if such methods are

applicable for volume rendering that contains local deformations and global displacements

caused by respiratory motion.

Cutting simulation To make the simulation framework applicable for additional surgery

scenarios cutting should be included. In other simulations this has been performed for fi-

nite element simulation [WWD14][LZW14] or meshless approaches [JJM+14]. For a finite

differences approach, cutting of tissue could be represented by a displacement field embed-

ded in more than three dimensions. Topological changes and rupture that would introduce

non-continuity of the displacement field could then be represented by keeping the field con-

tinuous while translating parts of the tissue around cuts not only in 3D but also in an extra

dimension. In Fig. 8.1 this concept is illustrated for 2D. Figuratively speaking, the extra

dimension acts as a “wormhole” along the cut. This approach might also benefit from the

fact that it is more efficient for computation when using CUDA to store the displacement

field using four components.

Better performance Scientifically more interesting will be the investigation of further de-

velopments of the finite element based deformation algorithms. Even if parallels to methods

from image registration exist it is much different due to the locality of deformations, which

only appear in vicinity to the interaction site of virtual tools. On the one hand, the efficiency

107

8. Outlook & Conclusion

Embedding the displacement field in a higher dimension

Figure 8.1.: Left: Undeformed mesh. Middle: Mesh with applied cutting, a discontinuity
arises. Right:Embedding the 2D displacement field into 3D and neglecting ele-
ments with a z-value greater than zero approximates cutting.

of computation will be in the focus of further development. New generations of graph-

ics hardware and the CUDA programming language provide new features that could be

utilized. The most interesting hardware development might be dynamic parallelism, that

is the launch of additional kernel calls from within the running execution on the graph-

ics hardware [Nvi12b]. This way locally adaptive strategies could be developed that only

perform computations on the grid where they are needed.

Due to the possibilities of highly parallel computation, real-time fluid simulation cur-

rently attracts lots of attention. Developments in this field might be applicable to soft tissue

deformation algorithms as well. Similarly to the tall grid cell model presented in [CM11]

for the simulation of fluid dynamics, the size of the grid could be dynamically adjusted to

both enable fast deformation computation and overcome the limitation of a region of inter-

est with a fixed size. In [JSP+15] a combination of fluid simulation and machine learning

methods (Regression Forests) has been presented.

Improved deformation simulation Apart from improving performance, future work will

include the development of deformation algorithms that include varying material parame-

ters for each image element based on image modalities other than CT imaging. Magnetic

resonance elastography (MRE) of the liver is already used for noninvasive assessment of

liver diseases [VYE13]. This imaging method relies on the generation of mechanical shear

waves within the soft tissue and imaging the wave by magnetic resonance imaging, giving

the stiffness of the tissue that is visible in the MRI image data. Using a 2D MRE image and a

registered CT image, the relation between CT Hounsfield units and the tissue stiffness could

be analyzed and the resulting relation could be integrated into the linear-elastic finite differ-

ence formulation. Given a 3D MRE image, it would be possible to use the information in the

haptic algorithms as well as in the computation of deformation. It will be necessary to adapt

108

8.2. Conclusion

the methods for soft-body simulation to include individual material parameters, which has

been previously presented for image registration in [Kab06].

Parameters from multi-dimensional transfer functions It will be interesting to further

investigate methods to derive material properties from a combination of (multi modal) im-

age features. Using graphics hardware with a high amount of available memory, several

images could be loaded and used to derive the various tissue properties, i.e., color and ma-

terial properties at run-time. If available this set of images could consist of CT, MRI and MRE

imaging as well as precomputed feature maps. In order to produce these, machine learning

algorithms could be trained using a ground truth for the tissue properties. The result of

the training could be stored in multidimensional transfer functions, or alternatively a fast

implementation of the trained machine learning algorithms could be applied at run-time.

Improved Immersion The workbench setup used in the framework provides a certain im-

mersion by stereoscopic 3D and colocating the haptic device work space and visual repre-

sentation. However, problems exist with this setup. The colocation is only valid for a single

and fixed viewpoint in front of the workbench. Moving of the head by the user thus leads

to discrepancy in the matching of haptic device workspace and visual scene representation.

This could be fixed by head-tracking as already available in consumer entertainment de-

vices (for example the Nintendo 3DS released in 2015). Evidence presented in [SUY07] sug-

gests that using a semitransparent mirror setup is inferior to head mounted displays (HMD).

With upcoming low-cost and high-performance customer grade HMDs (Oculus Rift, Sony’s

Project Morpheus and HTC Vive) the workbench setup could be replaced by a combination

of HMD and haptic devices. Augmented reality with consumer grade see-through HMDs

(Microsoft Hololens), will probably make a noticable impact in the near future.

8.2. Conclusion

Overall, an innovative framework for image based puncture simulation has been presented

that includes novel aspects regarding visual and haptic rendering as well as simulation of

soft tissue under deformation and displacement by breathing motion in real-time. As in-

tended these methods can be used without having to create surface or volumetric meshes,

which distinguishes it from other existing frameworks. In comparison to its predecessor

the framework circumvents the need for segmentation of the structures bones, skin and soft

tissue. These alone took around 30 hours to segment previously, see section 1.2. The newly

developed approach is unique and opens various possibilities for further research.

109

List of Symbols

I Reference image function, page 16

J Sub image function, page 16

s Image sampling function, page 16

l Labeling function, page 16

L Set of labels, page 16

Lrisk Set of risk structure labels, page 16

Ltarget Set of target structure labels, page 16

Ω̇ Image grid, page 16

ΩI Continuous image domain, page 16

Ω̇J Sub image grid, page 52

ΩJ Continuous sub image domain, page 16

Ω̄ Parts of the image that are hard structures , page 52

Ω̃ Contact points between tissue and tool, page 52

xi Position in world space, page 16

x Position of the haptic device, page 16

q Orientation of haptic device, page 16

Q Haptic device rotation matrix, page 16

qz Direction of haptic device, page 16

R Ray used for ray casting, page 17

fshade Shading function for ray casting, page 18

111

List of Symbols

fshadow Shadowing function used in ray casting, page 18

l̄ Total needle length, page 20

µ Attenuation coefficient for X-ray simulation, page 23

ρ Contrast agent density, page 23

m Number of needle nodes, page 26

N Set of needle nodes, page 26

nj Needle node, page 26

l Number of needle path nodes, page 26

P Set of needle path nodes, page 26

pi Needle path node, page 26

di Needle path node direction vector, page 26

rm Needle path node direction vector, page 26

fcut Needle cutting force, page 31

ffric Needle friction force, page 32

fbase Needle base force, page 32

fskin Penalty force for skin structures , page 35

fbone Penalty force for bone structures , page 36

fslide Proxy-spring force sliding at skin surface, page 36

Dskin Euclidean distance map for skin, page 34

Dbone Euclidean distance map for bone, page 34

X Position in reference space, page 51

t Simulation time step, page 51

u Displacement field or vector, page 52

∂Ω̂ Border of sub image domain., page 52

112

A. Appendix

A.1. Deflection Measurements for Two Needles

16 Gauge 16 Gauge* 20 Gauge
N mm N mm N mm

0.25 6 0.25 13 0.05 13
0.5 13 0.5 26 0.1 41

0.75 20 0.75 38 0.15 53
1 26 0.2 69

1.25 33

Table A.1.: Forces applied to 16 resp. 20 gauge needles and resulting deflection. The (*)
indicates measurements with removed stylet.

To get an impression of the bending of puncture needles, the deflection of the tip of two

needles have been measured. The first needle that was analyzed is a 16 gauge (= 1.6 mm)

needle, the second is a 20 gauge needle (= 0.9 mm). The shafts are ca. 165 mm resp. 200 mm

long and both needles contain a removable stylet. To measure the deflection, forces were

applied to the tip with a spring scale while the needle base was fixed by a bench vise. The

results are given in Tab. A.1 including measurements for the 16 gauge needle with removed

stylet.

113

A. Appendix

A.2. List of Tissue and Organ Structures Needed for PTCD

Structure Segmentation method Effort Notes

Air/Cavities online heuristic 0 h
Soft tissue/Fat online heuristic 0 h

Skin online heuristic 0 h
Bone online heuristic 0 h risk structure
Liver Multi-Atlas segm. < 5 h cluster parallelization
Fascia manual model fitting < 1 h
Lung Region Growing etc. < 1 h risk structure

Liver Blood Vessels Vesselness segm. < 1 h risk structure
Biliary Ducts Vesselness segm. < 1 h

Right hepatic duct Vesselness segm. < 1 h target structure

Table A.2.: Tissue and organ structures that are of major concern for PTCD with segmenta-
tion method and estimated segmentation effort.

Tab. A.2 contains the structures of major concern in PTCD simulation. These are either

heuristically determined during run-time or segmented in an offline preprocessing step. The

estimated effort reflects the experiences of the developers and are conservative statements.

Liver segmentation was performed using Multi-Atlas segmentation methods [MFM+13,

BMFH14], which can be parallelized on a large cluster computer. Fascia segmentation can

be performed by fitting a fascia model to the image data of a new patient model. Lung

segmentation is possible by convention segmentation methods as region growing and man-

ual post processing. Using Vesselness segmentation with manual post processing, the liver

vessels can be segmented [BMF+14].

114

Bibliography

[Ash07] J. Ashburner, “A Fast Diffeomorphic Image Registration Algorithm,” NeuroIm-

age, vol. 38, no. 1, pp. 95–113, 2007. 51, 64

[ASPO15] A. R. Aguilera, A. L. Salas, D. M. Perandrés, and M. A. Otaduy, “A Parallel

Resampling Method for Interactive Deformation of Volumetric Models,” Com-

puters & Graphics, vol. 53, Part B, pp. 147–155, 2015. 49

[AW87] J. Amanatides and A. Woo, “A Fast Voxel Traversal Algorithm for Ray Trac-

ing,” Proceedings of Eurographics, vol. i, 1987. 18

[BBG+09] F. Bello, A. Bulpitt, D. A. Gould et al., “ImaGiNe-S: Imaging Guided Interven-

tional Needle Simulation,” in Proceedings of Eurographics 2009 Short and Areas

Papers and Medical Prize Awards. Eurographics Association, 2009, pp. 5–8. 4,

33, 50

[BG00] D. Bartz and O. Gürvit, “Haptic Navigation in Volumetric Datasets,” Proceed-

ings of PHANToM User Research Symposium, pp. 43–47, 2000. 33

[BHWM10] K. Burg, H. Haf, F. Wille, and A. Meister, Partielle Differentialgleichungen und

funktionalanalytische Grundlagen. Springer, 2010. 55

[BMF+14] P. A. Behringer, A. Mastmeyer, D. Fortmeier, C. Biermann, and H. Han-

dels, “Segmentierung intrahepatischer Gefäße mit Vesselness-Verfahren,” in

Bildverarbeitung für die Medizin 2014, ser. Informatik aktuell, T. M. Deserno,

H. Handels, H.-P. Meinzer, and T. Tolxdorff, Eds., Springer, Berlin Heidelberg.

Aachen: Springer, Berlin Heidelberg, 2014, pp. 150–155. 92, 105, 114

[BMFH14] J. Beuke, A. Mastmeyer, D. Fortmeier, and H. Handels, “Entwicklung und

Vergleich von Selektionsstrategien zur atlasbasierten Segmentierung,” in Bild-

verarbeitung für die Medizin 2014, ser. Informatik aktuell, T. M. Deserno,

H. Handels, H.-P. Meinzer, and T. Tolxdorff, Eds., Springer, Berlin Heidelberg.

Aachen: Springer, Berlin Heidelberg, 2014, pp. 400–402. 92, 105, 114

115

Bibliography

[BN98] M. Bro-Nielsen, “Finite Element Modeling in Surgery Simulation,” Proceedings

of the IEEE, vol. 86, no. 3, pp. 490–503, Mar. 1998. 48

[BNC96] M. Bro-Nielsen and S. Cotin, “Real-time Volumetric Deformable Models

for Surgery Simulation using Finite Elements and Condensation,” Computer

Graphics Forum, vol. 15, no. 3, pp. 57–66, Aug. 1996. 48

[CAR+09] N. Chentanez, R. Alterovitz, D. Ritchie, L. Cho, K. K. Hauser, K. Goldberg,

J. R. Shewchuk, and J. F. O’Brien, “Interactive Simulation of Surgical Needle

Insertion and Steering,” ACM Transactions on Graphics, vol. 28, no. 3, pp. 1–10,

2009. 26, 49

[CDA99] S. Cotin, H. Delingette, and N. Ayache, “Real-time Elastic Deformations of Soft

Tissues for Surgery Simulation,” IEEE Transactions on Visualization and Com-

puter Graphics, vol. 5, no. 1, pp. 62–73, 1999. 48

[CJGC11] T. R. Coles, N. W. John, D. A. Gould, and D. G. Caldwell, “Integrating Haptics

with Augmented Reality in a Femoral Palpation and Needle Insertion Training

Simulation,” IEEE Transactions on Haptics, vol. 4, no. 3, pp. 199–209, 2011. 3, 4,

33, 35

[CLC+08] M. Chen, W. Lu, Q. Chen, K. J. Ruchala, and G. H. Olivera, “A Simple Fixed-

point Approach to Invert a Deformation Field,” Medical Physics, vol. 35, no. 1,

p. 81, 2008. 60, 81

[CM11] N. Chentanez and M. Müller, “Real-time Eulerian Water Simulation using a

Restricted Tall Cell Grid,” in ACM Transactions on Graphics, vol. 30, no. 4.

ACM, 2011, p. 82. 108

[Cot77] P. B. Cotton, “ERCP,” Gut, vol. 18, no. 4, pp. 316–341, 1977. 9

[Cou14] E. Coumans. (2014) Bullet Physics Library. Accessed on September, 10th 2014.

[Online]. Available: http://bulletphysics.org/ 28

[Dal14] D. J. Dalek, “Erstellung von Fallbeispielen für einen Virtual Reality Lum-

balpunktionssimulator und Evaluation der Trainingseffekte,” Ph.D. disserta-

tion, Univeristätsklinikum Hamburg-Eppendorf Institut für Computational

Neuroscience Prof. Dr. Claus-Christian Hilgetag, July 2014. 6, 92

[DBI11] C. F. Dietrich, B. Branden, and A. Ignee, “Perkutane Transhepatische Cholan-

giodrainage,” in Interventioneller Ultraschall, 2011, ch. 20, pp. 283–304. 9, 11,

24

116

http://bulletphysics.org/

Bibliography

[DGM+09] C. Duriez, C. Guébert, M. Marchal, S. Cotin, and L. Grisoni, “Interactive Simu-

lation of Flexible Needle Insertions based on Constraint Models,” International

Conference on Medical Image Computing and Computer-Assisted Intervention (MIC-

CAI), vol. 12, pp. 291–299, 2009. 49

[DGW10] C. Dick, J. Georgii, and R. Westermann, “A Real-Time Multigrid Finite Hex-

ahedra Method for Elasticity Simulation using CUDA,” Simulation Modelling

Practice and Theory, 2010. 48, 58, 64

[DiM03] S. P. DiMaio, “Modelling, Simulation and Planning of Needle Motion in Soft

Tissues,” Ph.D. dissertation, University of British Columbia, 2003. 48

[DKS01] S. De, J. Kim, and M. A. Srinivasan, “A Meshless Numerical Technique for

Physically based Real Time Medical Simulations,” in Studies in Health Technol-

ogy and Informatics, vol. 81, 2001, pp. 113–118. 50

[DS05] S. P. DiMaio and S. E. Salcudean, “Interactive Simulation of Needle Insertion

Models,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 7, pp. 1167–

79, 2005. 48

[DWJ10] N. Dong, Y. Wing, and Q. Jing, “A Virtual Reality Simulator for Ultrasound-

guided Biopsy Training,” IEEE Computer Graphics and Applications, vol. 31,

no. 2, pp. 36–48, 2010. 3, 5, 72

[EHK+06] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf, Real-time

Volume Graphics. AK Peters, Ltd., 2006. 17, 18

[EL13] J. Ehrhardt and C. Lorenz, Eds., 4D Modeling and Estimation of Respiratory Mo-

tion for Radiation Therapy. Springer Berlin Heidelberg, 2013. 73

[EWS+07] J. Ehrhardt, R. Werner, D. Säring, T. Frenzel, W. Lu, D. Low, and H. Handels,

“An Optical Flow based Method for Improved Reconstruction of 4D CT Data

Sets Acquired during Free Breathing,” Medical Physics, vol. 34, no. 2, pp. 711–

721, 2007. 73

[Fär09] M. Färber, “Entwicklung eines Virtual-Reality-Frameworks zur Simulation

von Punktionseingriffen,” Ph.D. dissertation, Universität zu Lübeck, 2009. 6,

17, 22, 92, 95

[FDBH09] M. Färber, T. Dahmke, C. Bohn, and H. Handels, “Needle Bending in a VR-

Puncture Training System using a 6DOF Haptic Device,” in Proceedings of

MMVR 17, vol. 142, Jan. 2009, p. 91. 26

117

Bibliography

[FHGH09] M. Färber, F. Hummel, C. Gerloff, and H. Handels, “Virtual Reality Simulator

for the Training of Lumbar Punctures,” Methods in Information and Medicine,

vol. 48, no. 5, pp. 493–501, Jan. 2009. 3, 5, 15, 96

[FMH12] D. Fortmeier, A. Mastmeyer, and H. Handels, “GPU-Based Visualization of De-

formable Volumetric Soft-Tissue for Real-Time Simulation of Haptic Needle In-

sertion,” in Bildverarbeitung für die Medizin, BVM 2012, ser. Informatik aktuell,

T. Tolxdorff, T. M. Deserno, H. Handels, and H.-P. Meinzer, Eds. Springer,

Berlin Heidelberg, 2012, pp. 117–122. 7, 47

[FMH13a] D. Fortmeier, A. Mastmeyer, and H. Handels, “Image-Based Palpation Simu-

lation with Soft Tissue Deformations Using ChainMail on the GPU,” in Bild-

verarbeitung für die Medizin, BVM 2013, ser. Informatik aktuell, H.-P. Meinzer,

T. M. Deserno, H. Handels, and T. Tolxdorff, Eds. Springer Verlag, Berlin,

2013, pp. 140–145. 7, 15, 47, 65, 67

[FMH13b] D. Fortmeier, A. Mastmeyer, and H. Handels, “Image-based Soft Tissue Defor-

mation Algorithms for Real-time Simulation of Liver Puncture,” Current Med-

ical Imaging Reviews, vol. 9, no. 2, pp. 154–165, 2013. 7, 33, 47, 53, 65

[FMH13c] D. Fortmeier, A. Mastmeyer, and H. Handels, “Optimized Image-based Soft

Tissue Deformation Algorithms for Visualization of Haptic Needle Insertion,”

in Medicine Meets Virtual Reality 20, MMVR 2013, ser. Studies in Health Tech-

nology and Informatics, vol. 184. IOS Press, 2013, pp. 136–141. 7, 47, 64, 65,

67

[FMH14] D. Fortmeier, A. Mastmeyer, and H. Handels, “An Image-Based Multiproxy

Palpation Algorithm for Patient-Specific VR-Simulation,” in Medicine Meets

Virtual Reality 21, MMVR 2014, ser. Studies in Health Technology and Infor-

matics, vol. 196. IOS Press, 2014, pp. 107–113. 7, 15, 33, 37, 46, 47, 65

[FMSH16] D. Fortmeier, A. Mastmeyer, J. Schröder, and H. Handels, “A Virtual Real-

ity System for PTCD Simulation using Direct Visuo-haptic Rendering of Par-

tially Segmented Image Data,” IEEE Journal of Biomedical and Health Informatics,

vol. 20, no. 1, pp. 355–366, 2016. 7, 15, 46, 47, 64, 65, 91, 100, 105

[FWMH15] D. Fortmeier, M. Wilms, A. Mastmeyer, and H. Handels, “Direct Visuo-Haptic

4D Volume Rendering using Respiratory Motion Models,” IEEE Transactions

on Haptics, vol. 8, no. 4, pp. 371–383, 2015. 7, 15, 46, 71, 78, 88

118

Bibliography

[Gib97] S. F. Gibson, “3D Chainmail: A Fast Algorithm for Deforming Volumetric Ob-

jects,” in Proceedings of the 1997Symposium on Interactive 3D Graphics. ACM,

1997, p. 149. 49

[Gok09] O. Goksel, “Meshing and Rendering of Patient-Specific Deformation Models

with Application to Needle Insertion,” Ph.D. dissertation, University of British

Columbia, 2009. 49

[GS09] O. Goksel and S. E. Salcudean, “B-mode Ultrasound Image Simulation in De-

formable 3-D Medium,” IEEE Transactions on Medical Imaging, vol. 28, no. 11,

pp. 1657–69, Nov. 2009. 4

[GSMS13] O. Goksel, K. Sapchuk, W. J. Morris, and S. E. Salcudean, “Prostate Brachyther-

apy Training with Simulated Ultrasound and Fluoroscopy Images,” IEEE

Transactions on Biomedical Engineering, vol. 60, no. 4, pp. 1002–12, 2013. 4, 23

[GSS11] O. Goksel, K. Sapchuk, and S. E. S. Salcudean, “Haptic Simulator for Prostate

Brachytherapy with Simulated Needle and Probe Interaction,” IEEE Transac-

tions on Haptics, vol. 4, no. 3, pp. 188–198, 2011. 3, 4

[GW05] J. Georgii and R. Westermann, “Mass-spring Systems on the GPU,” Simulation

Modelling Practice and Theory, vol. 13, no. 8, pp. 693–702, 2005. 50

[GW06] J. Georgii and R. Westermann, “A Generic and Scalable Pipeline for GPU Tetra-

hedral Grid Rendering,” IEEE Transactions on Visualization and Computer Graph-

ics, vol. 12, no. 5, pp. 1345–1352, 2006. 49

[GW10] S. Grewenig and J. Weickert, “From Box Filtering to Fast Explicit Diffusion,”

Pattern Recognition, vol. 6376, pp. 533–542, 2010. 65

[HA00] V. Hayward and B. Armstrong, “A New Computational Model of Friction Ap-

plied to Haptic Rendering,” Experimental Robotics VI, pp. 404–412, 2000. 31,

36

[HM06] E. Haber and J. Modersitzki, “A Multilevel Method for Image Registration,”

SIAM Journal on Imaging Sciences, vol. 27, no. 5, pp. 1594–1607, 2006. 51, 64

[HNR+10] A. Hostettler, S. A. Nicolau, Y. Rémond, J. Marescaux, and L. Soler, “A Real-

time Predictive Simulation of Abdominal Viscera Positions during Quiet Free

Breathing,” Progress in Biophysics and Molecular Biology, vol. 103, no. 2-3, pp.

169–84, 2010. 72

119

Bibliography

[HS04] J. H. Hubbell and S. M. Seltzer. (2004) Tables of X-Ray Mass Attenuation

Coefficients and Mass Energy-Absorption Coefficients (Version 1.4). Accessed

on April, 21th 2015. [Online]. Available: http://www.nist.gov/pml/data/

xraycoef/index.cfm 23

[IDY14] T. Iwashita, S. Doi, and I. Yasuda, “Endoscopic Ultrasound-guided Biliary

Drainage: A Review,” Clinical Journal of Gastroenterology, vol. 7, no. 2, pp. 94–

102, 2014. 9

[JJM+14] X. Jin, G. R. Joldes, K. Miller, K. H. Yang, and A. Wittek, “Meshless Algorithm

for Soft Tissue Cutting in Surgical Simulation,” Computer Methods in Biomechan-

ics and Biomedical Engineering, vol. 17, no. 7, pp. 800–811, 2014. 50, 107

[JSP+15] S. Jeong, B. Solenthaler, M. Pollefeys, M. Gross et al., “Data-driven Fluid Simu-

lations Using Regression Forests,” ACM Transactions on Graphics, vol. 34, no. 6,

p. 199, 2015. 108

[Kab06] S. Kabus, “Multiple-Material Variational Image Registration,” Ph.D. disserta-

tion, Universität zu Lübeck - Institut für Mathematik, 2006. 57, 109

[KJL+11] J. Kronander, D. Jonsson, J. Low, P. Ljung, A. Ynnerman, and J. Unger, “Effi-

cient Visibility Encoding for Dynamic Illumination in Direct Volume Render-

ing,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 3, pp.

447–462, Feb. 2011. 107

[KK86] T. L. Kay and J. T. Kajiya, “Ray Tracing Complex Scenes,” SIGGRAPH Computer

Graphics, vol. 20, no. 4, pp. 269–278, Aug. 1986. 18

[KKWN09] O. Kutter, A. Karamalis, W. Wein, and N. Navab, “A GPU-based Framework

for Simulation of Medical Ultrasound,” in SPIE Medical Imaging 2009, vol. 7261,

2009, pp. 726 117–726 119. 25

[Kui02] J. B. Kuipers, Quaternions and Rotation Sequences: A Primer With Applications to

Orbits, Aerospace, and Virtual Reality. Princeton University Press, 2002. 16

[KYS13] P. Keall, T. Yamamoto, and Y. Suh, “Introduction to 4D Motion Modeling and

4D Radiotherapy,” in 4D Modeling and Estimation of Respiratory Motion for Ra-

diation Therapy, ser. Biological and Medical Physics, Biomedical Engineering,

J. Ehrhardt and C. Lorenz, Eds., 2013, pp. 1–21. 71

120

http://www.nist.gov/pml/data/xraycoef/index.cfm
http://www.nist.gov/pml/data/xraycoef/index.cfm

Bibliography

[LB03] Y. Li and K. Brodlie, “Soft Object Modelling with Generalised ChainMail -

Extending the Boundaries of Web-based Graphics,” Computer Graphics Forum,

vol. 22, no. 4, pp. 717–727, Dec. 2003. 5, 50

[LC87] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution 3D Sur-

face Construction Algorithm,” in ACM SIGGRAPH Computer Graphics, vol. 21,

no. 4, 1987, pp. 163–169. 6, 15, 85, 92

[LMH07] B. A. Lloyd, S. Member, and M. Harders, “Identification of Spring Parame-

ters for Deformable Object Simulation,” IEEE Transactions on Visualization and

Computer Graphics, vol. 13, no. 5, pp. 1081–1094, 2007. 50

[Lui14] J. Luitjens. (2014, February) Faster Parallel Reductions on Kepler. Accessed

on April, 21th 2015. [Online]. Available: http://devblogs.nvidia.com/

parallelforall/faster-parallel-reductions-kepler/ 13

[LYG02] K. Lundin, A. Ynnerman, and B. Gudmundsson, “Proxy-based Haptic Feed-

back from Volumetric Density Data,” Eurohaptics Conference, 2002. 15, 33, 36

[LZW14] S. Li, Q. Zhao, and S. Wang, “Interactive Deformation and Cutting Simula-

tion Directly using Patient-specific Volumetric Images,” Computer Animation

and Virtual Worlds, vol. 25, no. 2, pp. 155–169, 2014. 48, 107

[McC13] J. McClelland, “Estimating Internal Respiratory Motion from Respiratory Sur-

rogate Signals Using Correspondence Models,” in 4D Modeling and Estimation

of Respiratory Motion for Radiation Therapy, ser. Biological and Medical Physics,

Biomedical Engineering, J. Ehrhardt and C. Lorenz, Eds. Springer Berlin Hei-

delberg, 2013, pp. 187–213. 75

[MFH12] A. Mastmeyer, D. Fortmeier, and H. Handels, “Direct Haptic Volume Ren-

dering in Lumbar Puncture Simulation,” in Medicine Meets Virtual Reality 19,

MMVR 2012, ser. Studies in Health Technology and Informatics, vol. 173. IOS

Press, 2012, p. 280. 15, 91

[MFM+13] A. Mastmeyer, D. Fortmeier, E. Maghsoudi, M. Simon, and H. Handels,

“Patch-Based Label Fusion Using Local Confidence-Measures and Weak Seg-

mentations,” in SPIE Medical Imaging 2013, Image Processing, Orlando, USA,

2013, pp. 86 691N–1–86 691N–11. 92, 105, 114

[MFMH15] M. Meike, D. Fortmeier, A. Mastmeyer, and H. Handels, “Real-Time Resam-

pling of Medical Images Based on Deformed Tetrahedral Structures for Nee-

121

http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

Bibliography

dle Insertion VR-Simulation,” in Bildverarbeitung für die Medizin 2015, ser. In-

formatik aktuell, H. Handels, T. M. Deserno, H.-P. Meinzer, and T. Tolxdorff,

Eds. Lübeck: Springer, Berlin Heidelberg, 2015, pp. 443–448. 49

[MG04] M. Müller and M. Gross, “Interactive Virtual Materials,” in Proceedings of

Graphics Interface 2004. Canadian Human-Computer Communications So-

ciety, 2004, pp. 239–246. 48

[MHFH13] A. Mastmeyer, T. Hecht, D. Fortmeier, and H. Handels, “Ray-Casting-Based

Evaluation Framework for Needle Insertion Force Feedback Algorithms,” in

Bildverarbeitung für die Medizin 2013. Springer, 2013, pp. 3–8. 101

[MHFH14] A. Mastmeyer, T. Hecht, D. Fortmeier, and H. Handels, “Ray-casting based

Evaluation Framework for Haptic Force Feedback during Percutaneous Tran-

shepatic Catheter Drainage Punctures,” International Journal of Computer As-

sisted Radiology and Surgery, vol. 9, no. 3, pp. 421–431, 2014. 101

[MJLW07] K. Miller, G. Joldes, D. Lance, and A. Wittek, “Total Lagrangian Explicit Dy-

namics Finite Element Algorithm for Computing Soft Tissue Deformation,”

Communications in Numerical Methods in Engineering, no. August 2006, pp. 121–

134, 2007. 48

[MMvV+12] A. Majewicz, S. P. Marra, M. G. van Vledder, M. Lin, M. A. Choti, D. Y. Song,

and A. M. Okamura, “Behavior of Tip-steerable Needles in Ex Vivo and In

Vivo Tissue,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp.

2705–2715, 2012. 105

[Mod04] J. Modersitzki, Numerical Methods for Image Registration. Oxford University

Press, 2004. 50, 56

[MOOXS08] P. Muyan-Ozcelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast Deformable Reg-

istration on the GPU: A CUDA Implementation of Demons,” 2008 International

Conference on Computational Sciences and Its Applications, pp. 223–233, Jun. 2008.

51

[MSN+06] W. Mollemans, F. Schutyser, N. Nadjmi, F. Maes, and P. Suetens, “Parameter

Optimisation of a Linear Tetrahedral Mass Tensor Model for a Maxillofacial

Soft Tissue Simulator,” in Biomedical Simulation, ser. Lecture Notes in Com-

puter Science, M. Harders and G. Székely, Eds. Springer Berlin Heidelberg,

2006, vol. 4072, pp. 159–168. 50

122

Bibliography

[MVR+11] K. Murphy, B. Van Ginneken, J. M. Reinhardt et al., “Evaluation of Registra-

tion Methods on Thoracic CT: The EMPIRE10 Challenge,” IEEE Transactions on

Medical Imaging, vol. 30, no. 11, pp. 1901–1920, 2011. 74

[MWTT98] W. Maurel, Y. Wu, N. M. Thalmann, and D. Thalmann, Biomechanical Models for

Soft Tissue Simulation. Springer, 1998. 48

[NMP+05] M. Nesme, M. Marchal, E. Promayon, M. Chabanas, Y. Payan, and F. Faure,

“Physically Realistic Interactive Simulation for Biological Soft Tissues,” Recent

Research Developments in Biomechanics, vol. 2, no. 2, 2005. 48

[Nvi12a] Nvidia. (2012) Best Practice Guide. Accessed on April, 2th 2015.

[Online]. Available: http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_

Practices_Guide.pdf 13

[Nvi12b] Nvidia. (2012) Kepler GK110. Accessed on April, 2th 2015.

[Online]. Available: http://www.nvidia.com/content/PDF/kepler/

NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf 13, 108

[Nvi12c] Nvidia. (2012) NVIDIA GeForce GTX 680. Accessed on April, 2th 2015.

[Online]. Available: http://www.geforce.com/Active/en_US/en_US/pdf/

GeForce-GTX-680-Whitepaper-FINAL.pdf 12

[PCY07] K. L. Palmerius, M. Cooper, and A. Ynnerman, “Haptic Rendering of Dynamic

Volumetric Data,” IEEE Transactions on Visualization and Computer Graphics,

vol. 14, no. 2, pp. 263–76, 2007. 33

[PM90] P. Perona and J. Malik, “Scale-space and Edge Detection using Anisotropic Dif-

fusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12,

no. 7, pp. 629–639, 1990. 57

[PND+11] I. Peterlik, M. Nouicer, C. Duriez, S. Cotin, and A. Kheddar, “Constraint-Based

Haptic Rendering of Multirate Compliant Mechanisms,” IEEE Transactions on

Haptics, vol. 4, no. 3, pp. 175–187, 2011. 49

[PO09] E. G. Parker and J. F. O’Brien, “Real-Time Deformation and Fracture in a Game

Environment,” Eurographics ACM SIGGRAPH Symposium on Computer Anima-

tion 2009, vol. 1, p. 165, 2009. 48

[Pro95] X. Provot, “Deformation Constraints in a Mass-spring Model to Describe Rigid

Cloth Behaviour,” in Graphics Interface, 1995, pp. 147–154. 50

123

http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf

Bibliography

[PX11] G. Pratx and L. Xing, “GPU Computing in Medical Physics: A Review,” Medi-

cal Physics, vol. 38, no. 5, pp. 2685–2697, 2011. 12

[RKK97] D. C. Ruspini, K. Kolarov, and O. Khatib, “The Haptic Display of Complex

Graphical Environments,” Proceedings of the 24th Annual Conference on Computer

Graphics and Interactive Techniques SIGGRAPH 97, pp. 345–352, 1997. 36

[RLAM15] A. Rodríguez, A. León, G. Arroyo, and J. Mantas, “SP-ChainMail: A GPU-

based Sparse Parallel ChainMail Algorithm for Deforming Medical Volumes,”

The Journal of Supercomputing, vol. 71, no. 9, pp. 3482–3499, 2015. 50

[Rößl09] F. A. Rößler, “Bridging the Gap between Volume Visualization and Medical

Applications,” Ph.D. dissertation, University of Stuttgart, 2009. 65

[RPAS09] T. Reichl, J. Passenger, O. Acosta, and O. Salvado, “Ultrasound goes GPU:

Real-time Simulation using CUDA,” SPIE Medical Imaging 2009, vol. 7261,

no. 1, pp. 726 116–726 116–10, 2009. 25

[RRM+05] D. B. Russakoff, T. Rohlfing, K. Mori, D. Rueckert, A. Ho, J. R. Adler, and C. R.

Maurer, “Fast Generation of Digitally Reconstructed Radiographs using At-

tenuation Fields with Application to 2D-3D Image Registration,” IEEE Trans-

actions on Medical Imaging, vol. 24, no. 11, pp. 1441–54, Nov. 2005. 23

[RWE08] F. Rössler, T. Wolff, and T. Ertl, “Direct GPU-based Volume Deformation,” in

Proceedings of Curac 2008, Leipzig, 2008, pp. 65–68. 49, 50

[SASW96] V. Spitzer, M. J. Ackerman, A. L. Scherzinger, and D. Whitlock, “The Visible

Human Male: A Technical Report,” Journal of the American Medical Informatics

Association, vol. 3, no. 2, pp. 118–130, 1996. 5

[SBH07] F. Schulze, K. Bühler, and M. Hadwiger, “Interactive Deformation and Visual-

ization of Large Volume Datasets,” in Proceedings of International Conference on

Computer Graphics Theory and Applications, vol. D, 2007, pp. 39–46. 49, 50, 65

[She94] J. R. Shewchuk, “An Introduction to the Conjugate Gradient Method without

the Agonizing Pain,” 1994, Carnegie-Mellon University. Department of Com-

puter Science. 59

[SID+08] A. P. Santhanam, C. Imielinska, P. Davenport, P. Kupelian, and J. P. Rolland,

“Modeling Real-time 3-d Lung Deformations for Medical Visualization,” IEEE

Transactions on Information Technology in Biomedicine, vol. 12, no. 2, pp. 257–70,

2008. 72

124

Bibliography

[SK10] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-purpose

GPU Programming. Addison-Wesley Professional, 2010. 11

[SMFH14] J. Schröder, A. Mastmeyer, D. Fortmeier, and H. Handels, “Ultraschallsimula-

tion für das Training von Gallengangspunktionen,” in Bildverarbeitung für die

Medizin 2014, ser. Informatik aktuell, T. M. Deserno, H. Handels, H.-P. Meinzer,

and T. Tolxdorff, Eds. Springer, Berlin Heidelberg, 2014, pp. 222–227. 25, 46

[SNC90] G. Sherouse, K. Novins, and E. Chaney, “Computation of Digitally Recon-

structed Radiographs for Use in Radiotherapy Treatment Design,” Interna-

tional Journal of Radiation Oncology Biology Physics, vol. 18, no. 3, pp. 651–658,

1990. 23

[SREWH12] A. Schmidt-Richberg, J. Ehrhardt, R. Werner, and H. Handels, “Fast Ex-

plicit Diffusion for Registration with Direction-Dependent Regularization,”

in Biomedical Image Registration, ser. Lecture Notes in Computer Science,

B. Dawant, G. Christensen, J. Fitzpatrick, and D. Rueckert, Eds. Springer

Berlin Heidelberg, 2012, vol. 7359, pp. 220–228. 65

[SRWHE12] A. Schmidt-Richberg, R. Werner, H. Handels, and J. Ehrhardt, “Estimation of

Slipping Organ Motion by Registration with Direction-dependent Regulariza-

tion,” Medical Image Analysis, vol. 16, no. 1, pp. 150–159, 2012. 74

[SSKH10] R. Shams, P. Sadeghi, R. A. Kennedy, and R. I. Hartley, “A Survey of Medical

Image Registration on Multicore and the GPU,” IEEE Signal Processing Maga-

zine, vol. 27, no. 2, pp. 50–60, 2010. 12

[SUY07] C. Sandor, S. Uchiyama, and H. Yamamoto, “Visuo-haptic Systems: Half-

mirrors Considered Harmful,” in Eurohaptics Conference, 2007 and Symposium

on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Hap-

tics 2007. Second Joint. IEEE, 2007, pp. 292–297. 109

[SVAT12] G. San-Vicente, I. Aguinaga, and J. Tomás Celigüeta, “Cubical Mass-Spring

Model Design Based on a Tensile Deformation Test and Nonlinear Material

Model,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 2,

pp. 228–41, Feb. 2012. 50

[SVR13] D. Sarrut, J. Vandemeulebroucke, and S. Rit, “Intensity-Based Deformable

Registration: Introduction and Overview,” in 4D Modeling and Estimation of

Respiratory Motion for Radiation Therapy, ser. Biological and Medical Physics,

125

Bibliography

Biomedical Engineering, J. Ehrhardt and C. Lorenz, Eds. Springer Berlin Hei-

delberg, 2013, pp. 103–124. 74

[TPBF87] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically Deformable

Models,” in ACM Siggraph Computer Graphics, vol. 21, no. 4. ACM, 1987,

pp. 205–214. 48

[UIK12] S. Ullrich, IEEE, and T. Kuhlen, “Haptic Palpation for Medical Simulation in

Virtual Environments,” IEEE Transactions on Visualization and Computer Graph-

ics, vol. 18, no. 4, pp. 617–620, 2012. 3, 4, 33

[VBBG11] P. F. Villard, P. Boshier, F. Bello, and D. A. Gould, “Virtual Reality Simulation

of Liver Biopsy with a Respiratory Component,” in Liver Biopsy, H. Takahashi,

Ed. InTech, 2011, ch. 20. 3, 4, 72

[VHRG04] J. Vozenilek, J. S. Huff, M. Reznek, and J. A. Gordon, “See One, Do One,

Teach One: Advanced Technology in Medical Education,” Academic Emergency

Medicine, vol. 11, no. 11, pp. 1149–1154, 2004. 1

[VJHG08] F. P. Vidal, N. W. John, A. E. Healey, and D. A. Gould, “Simulation of Ultra-

sound Guided Needle Puncture using Patient Specific Data with 3D Textures

and Volume Haptics,” Computer Animation and Virtual Worlds, vol. 19, no. 2,

pp. 111–127, 2008. 4

[VVA+13] P. F. Villard, F. P. Vidal, L. Ap Cenydd, R. Holbrey, S. Pisharody, S. Johnson,

A. Bulpitt, N. W. John, F. Bello, and D. Gould, “Interventional Radiology Vir-

tual Simulator for Liver Biopsy,” International Journal of Computer Assisted Ra-

diology and Surgery, pp. 1–13, 2013. 4, 72

[VVBJ12] P. F. Villard, F. P. Vidal, F. Bello, and N. W. John, “A Method to Compute Res-

piration Parameters for Patient-based Simulators,” in Medicine Meets Virtual

Reality 19, MMVR 2012, ser. Studies in Health Technology and Informatics,

vol. 173. IOS Press, 2012, pp. 529–533. 72

[VVH+09] F. P. Vidal, P. F. Villard, R. Holbrey, N. W. John, F. Bello, A. Bulpitt, and D. A.

Gould, “Developing an Immersive Ultrasound Guided Needle Puncture Sim-

ulator,” in Medicine Meets Virtual Reality 17, MMVR 2009, ser. Studies in Health

Technology and Informatics, vol. 142. IOS Press, Jan. 2009, pp. 398–400. 4, 33

126

Bibliography

[VVL12] F. P. Vidal, P. F. Villard, and E. Lutton, “Tuning of Patient-specific Deformable

Models using an Adaptive Evolutionary Optimization Strategy,” IEEE Trans-

actions on Biomedical Engineering, vol. 59, no. 10, pp. 2942–9, Oct. 2012. 4, 72

[VYE13] S. K. Venkatesh, M. Yin, and R. L. Ehman, “Magnetic Resonance Elastogra-

phy of Liver: Clinical Applications,” Journal of Computer Assisted Tomography,

vol. 37, no. 6, p. 887, 2013. 108

[WAC07] X. Wu, J. Allard, and S. Cotin, “Real-time Modeling of Vascular Flow for An-

giography Simulation,” International Conference on Medical Image Computing and

Computer-Assisted Intervention (MICCAI), vol. 10 Pt 1, pp. 557–565, Jan. 2007. 23,

72

[WAVH+12] W. I. Willaert, R. Aggarwal, I. Van Herzeele, N. J. Cheshire, and F. E. Ver-

massen, “Recent Advancements in Medical Simulation: Patient-specific Vir-

tual Reality Simulation,” World Journal of Surgery, vol. 36, no. 7, pp. 1703–1712,

2012. 6

[WBK+08] W. Wein, S. Brunke, A. Khamene, M. R. Callstrom, and N. Navab, “Automatic

CT-ultrasound Registration for Diagnostic Imaging and Image-guided Inter-

vention,” Medical Image Analysis, vol. 12, no. 5, pp. 577–585, 2008. 25

[WDL+12] M. Wagner, K. Dresing, W. Ludwig, C. A. Ahrens, and O. J. Bott, “SIScaR-

GPU: Fast Simulation and Visualization of Intraoperative Scattered Radiation

to Support Radiation Protection Training,” in Studies in Health Technology and

Informatics, vol. 180, 2012, pp. 968–972. 23

[WF04] X. Wang and A. Fenster, “A Virtual Reality Based 3D Real-time Interactive

Brachytherapy Simulation of Needle Insertion and Seed Implantation,” 2004

2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp.

280–283, 2004. 49

[WFMH15] M. Wilms, D. Fortmeier, A. Mastmeyer, and H. Handels, “Modellbasierte Sim-

ulation der Atembewegung für das Virtual-Reality-Training von Punktion-

seingriffen,” in Bildverarbeitung für die Medizin 2015, ser. Informatik aktuell,

H. Handels, T. M. Deserno, H.-P. Meinzer, and T. Tolxdorff, Eds. Springer,

Berlin Heidelberg, 2015, pp. 317–322. 7, 71

[Wil78] L. Williams, “Casting Curved Shadows on Curved Surfaces,” ACM SIG-

GRAPH Computer Graphics, vol. 12, no. 3, pp. 270–274, 1978. 20

127

Bibliography

[WSRHE14] R. Werner, A. Schmidt-Richberg, H. Handels, and J. Ehrhardt, “Estimation of

Lung Motion Fields in 4D CT data by Variational Non-linear Intensity-based

Registration: A Comparison and Evaluation Study,” Physics in Medicine and

Biology, vol. 59, no. 15, pp. 4247–60, 2014. 74

[WWD14] J. Wu, R. Westermann, and C. Dick, “Real-Time Haptic Cutting of High-

Resolution Soft Tissues,” in Medicine Meets Virtual Reality 21, MMVR 2014, ser.

Studies in Health Technology and Informatics, vol. 196. IOS Press, 2014, pp.

469–475. 48, 107

[WWE+14] M. Wilms, R. Werner, J. Ehrhardt, A. Schmidt-Richberg, H.-P. Schlemmer, and

H. Handels, “Multivariate Regression Approaches for Surrogate-based Diffeo-

morphic Estimation of Respiratory Motion in Radiation Therapy,” Physics in

Medicine and Biology, vol. 59, no. 5, pp. 1147–64, 2014. 79

[YS13] S. Yasmin and A. Sourin, “Image-Based Virtual Palpation,” in Transactions

on Computational Science XVIII, ser. Lecture Notes in Computer Science,

M. Gavrilova, C. Tan, and A. Kuijper, Eds. Springer Berlin Heidelberg, 2013,

vol. 7848, pp. 61–80. 33

128

List of Publications by the Author

Journal articles as first author

• D. Fortmeier, A. Mastmeyer, J. Schröder, and H. Handels, “A Virtual Reality System for

PTCD Simulation using Direct Visuo-haptic Rendering of Partially Segmented Image

Data,” IEEE Journal of Biomedical and Health Informatics, vol. 20, no. 1, pp. 355–366,

2016.

• D. Fortmeier, M. Wilms, A. Mastmeyer, and H. Handels, “Direct Visuo-Haptic 4D Vol-

ume Rendering using Respiratory Motion Models,” IEEE Transactions on Haptics, vol.

8, no. 4, pp. 371–383, 2015.

• D. Fortmeier, A. Mastmeyer, and H. Handels, “Image-based Soft Tissue Deformation

Algorithms for Real-time Simulation of Liver Puncture,” Current Medical Imaging Re-

views, vol. 9, no. 2, pp. 154–165, 2013.

Conference proceedings and presentation as first author

• D. Fortmeier, A. Mastmeyer, H. Handels, “An Image-Based Multiproxy Palpation Algo-

rithm for Patient-Specific VR-Simulation,” in Medicine Meets Virtual Reality 21, MMVR

2014, ser. Studies in Health Technology and Informatics, vol. 196. IOS Press, 2014, pp.

107–113.

• D. Fortmeier, A. Mastmeyer, H. Handels, “Optimized Image-based Soft Tissue Defor-

mation Algorithms for Visualization of Haptic Needle Insertion,” in Medicine Meets

Virtual Reality 20, MMVR 2013, ser. Studies in Health Technology and Informatics, vol.

184. IOS Press, 2013, pp. 136–141.

• D. Fortmeier, A. Mastmeyer, H. Handels, “Image-Based Palpation Simulation with Soft

Tissue Deformations Using ChainMail on the GPU,” in Bildverarbeitung für die Medi-

zin, BVM 2013, ser. Informatik aktuell, Springer Verlag, Berlin, 2013, pp. 140–145.

• D. Fortmeier, A. Mastmeyer, H. Handels, “GPU-Based Visualization of Deformable Vol-

umetric Soft-Tissue for Real-Time Simulation of Haptic Needle Insertion,” in Bildverar-

beitung für die Medizin, BVM 2012, ser. Informatik aktuell, Springer, Berlin Heidelberg,

2012, pp. 117–122.

129

List of Publications by the Author

Other journal contribution

• J. Schwartze, B. Haarbrandt, D. Fortmeier, R. Haux, C. Seidel: "Authentication Sys-

tems for Securing Clinical Documentation Workflows," Methods in Information and

Medicine, vol. 53, no. 1, pp. 3–13, 2014.

• A. Mastmeyer, T. Hecht, D. Fortmeier, H. Handels: "Ray-casting based Evaluation

Framework for Haptic Force Feedback During Percutaneous Transhepatic Catheter Drainage

Punctures," International Journal of Computer Assisted Radiology and Surgery, vol. 9,

no. 3, pp. 421–431, 2014.

Other proceedings contributions

• M. Wilms, D. Fortmeier, A. Mastmeyer, H. Handels, "Modellbasierte Simulation der

Atembewegung für das Virtual-Reality-Training von Punktionseingriffen," in Bildver-

arbeitung für die Medizin, BVM 2015, Informatik aktuell, 317–322, (2015)

• M. Meike, D. Fortmeier, A. Mastmeyer, H. Handels, "Real-Time Resampling of Medical

Images Based on Deformed Tetrahedral Structures for Needle Insertion VR-Simulation,"

in Bildverarbeitung für die Medizin, BVM 2015, Informatik aktuell, 443–448, (2015)

• P. Behringer A, A. Mastmeyer, D. Fortmeier, C. Biermann, H. Handels "Segmentierung

intrahepatischer Gefäße mit Vesselness-Verfahren," in Bildverarbeitung für die Medizin

2014, Informatik aktuell, 150–155, (2014)

• J. Beuke, A. Mastmeyer, D. Fortmeier, H. Handels "Entwicklung und Vergleich von Se-

lektionsstrategien zur atlasbasierten Segmentierung," in Bildverarbeitung für die Medi-

zin 2014, Informatik aktuell, 400–402, (2014)

• Schröder, J., A. Mastmeyer, D. Fortmeier, H. Handels "Ultraschallsimulation für das

Training von Gallengangspunktionen," in Bildverarbeitung für die Medizin 2014, In-

formatik aktuell, 222–227, (2014)

• A. Mastmeyer, D. Fortmeier, E. Maghsoudi, M. Simon, H. Handels "Patch-Based Label

Fusion Using Local Confidence-Measures and Weak Segmentations," in SPIE Medical

Imaging 2013, Image Processing, 86691N-1– 86691N-11, (2013)

• T. Hecht, A. Mastmeyer, D. Fortmeier, H. Handels "4D-Planung von Leberpunktio-

nen unter Berücksichtigung der Atembewegung," in 58. Jahrestagung der Deutschen

Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Ab-

stractband GMDS 2013, ID 193: 336–337, (2013)

• A. Mastmeyer, T. Hecht, D. Fortmeier, H. Handels "Ray-Casting-Based Evaluation Frame-

work for Needle Insertion Force Feedback Algorithms," in Bildverarbeitung für die

Medizin 2013, 3–8, (2013)

130

• A. Mastmeyer, D. Fortmeier, H. Handels "Anisotropic Diffusion for Direct Haptic Vol-

ume Rendering in Lumbar Puncture Simulation," in Bildverarbeitung in der Medizin

2012, Informatik aktuell, 286–291, (2012)

• C. Schröder, A. Mastmeyer, D. Fortmeier, C. Bohn, A. Nabavi, H. Handels "Optimierung

von Schädelöffnungen mittels genetischer Algorithmen für die Behandlung subdu-

raler Hämatome," in 11. Jahrestagung der Deutschen Gesellschaft für Computer- und

Roboterassistierte Chirurgie, CURAC 2012, (2012)

• A. Mastmeyer, D. Fortmeier, and H. Handels, “Direct Haptic Volume Ren- dering in

Lumbar Puncture Simulation,” in Medicine Meets Virtual Reality 19, MMVR 2012, ser.

Studies in Health Technology and Informatics, vol. 173. IOS Press, pp. 280. (2012)

131

	1 Introduction
	1.1 Surgery Simulation - State of the Art
	1.2 Motivation and Objectives
	1.3 Scientific Contributions
	1.4 Overview

	2 Background
	2.1 Medical Background: Percutaneous Transhepatic Cholangiodrainage
	2.2 Nvidia CUDA: Using the General Purpose Graphics Processing Unit

	3 Direct Visuo-haptic Volume Rendering Algorithms
	3.1 Input Data and Notations
	3.2 Ray Casting based Volume Rendering Methods
	3.2.1 Ray Casting
	3.2.2 Clipping and Tagging
	3.2.3 Shadow Rendering
	3.2.4 Combined Volume Rendering and Rasterization

	3.3 X-Ray Rendering and Contrast Agent Diffusion
	3.4 Simulated Ultrasound Imaging
	3.5 A Bendable Needle
	3.5.1 Updating the Insertion Path
	3.5.2 Simulation of Needle and Tissue Coupling
	3.5.3 Force Computation

	3.6 Palpation and Ultrasound Probing
	3.7 Experiments & Results
	3.7.1 Ray Casting
	3.7.2 X-Ray and Ultrasound Simulation
	3.7.3 Needle Algorithm
	3.7.4 Palpation & US-probing Algorithm

	3.8 Discussion

	4 Visuo-haptic Rendering with Local Deformations
	4.1 Background/Related Work
	4.1.1 Finite Element Method
	4.1.2 ChainMail
	4.1.3 Other Methods
	4.1.4 Image Registration

	4.2 Real-time Image-based Deformations
	4.2.1 A Priori Known Deformations
	4.2.2 Variational Formulation
	4.2.3 Regularization Terms
	4.2.4 Discretization using Finite-Differences
	4.2.5 Finding a Minimal Solution

	4.3 Implementation
	4.3.1 Algorithm Overview
	4.3.2 Blocks and Threads
	4.3.3 The Kernel

	4.4 Optimizations
	4.4.1 Region-of-Interest Pyramid Approach
	4.4.2 Multigrid Approach
	4.4.3 ChainMail
	4.4.4 Fast Explicit Diffusion

	4.5 Evaluation Framework with In-silico Ground Truth
	4.6 Experiments & Results
	4.7 Discussion

	5 Visuo-haptic Rendering using Respiratory Motion Models
	5.1 Related work
	5.2 Respiratory Motion as a Transformation
	5.3 Respiratory Motion Models
	5.3.1 Key Frame Approach with a Single Respiratory Cycle
	5.3.2 Key Frame Approach using a Half Cycle
	5.3.3 Model using Surrogate Signals

	5.4 Direct Visuo-haptic Rendering using Motion Fields
	5.4.1 On-the-fly Inversion of the Displacement Field
	5.4.2 Surface based Rendering
	5.4.3 Haptic Rendering
	5.4.4 Modifications to Haptic Rendering of Needle Insertion

	5.5 Implementation
	5.5.1 Remarks on Visualization Implementation on the GPU
	5.5.2 Remarks on CPU Implementation for Haptics

	5.6 Input data and Preparation of the Virtual Patient Model
	5.7 Experiments & Results
	5.8 Discussion

	6 A Framework for Image-based Puncture Simulation
	6.1 Puncture Atlases with Partially Segmented Data
	6.1.1 Creation of Partially Segmented Data
	6.1.2 Label Estimation Heuristic
	6.1.3 Property Tree
	6.1.4 Parameter Evaluation

	6.2 Haptic Workbench Hardware-Setup
	6.2.1 Workbench Constraints
	6.2.2 User Interface

	6.3 Software Architecture
	6.4 Discussion

	7 Summary & Discussion
	8 Outlook & Conclusion
	8.1 Future Work
	8.2 Conclusion

	List of Symbols
	A Appendix
	A.1 Deflection Measurements for Two Needles
	A.2 List of Tissue and Organ Structures Needed for PTCD

	Bibliography
	List of Publications by the Author

