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Abstract

Cells of every organism undergo somatic mutations. Many mutations
do not significantly affect the gene’s function, while other mutations impair
the gene’s function. Often, this impairment leads to decreased survival
chance of the cell, such that the cell dies. If necessary, this cell can be
unproblematically be replaced. Sometimes, however, that impairment
disturbs the cell’s life cycle in a way that decreases its chance of cell death, or
apoptosis, or increases its rate of cell division. Uncontrolled cell proliferation
can then lead to the formation of cancer, and ultimately to a tumor. Usually
not only one, but a handful of mutations are necessary to affect different
safety mechanisms of the cell.

Often, genes influence each other, which is called epistasis. Also some
oncogenes underlie epistatic interactions. In the Burkitt Lymphoma the hall-
mark mutation – an IG/MYC translocation – is believed to actually lower the
cell’s chance of survival. In concert with other mutations, however, it forms a
lymphoma. Basic knowledge about the initiation of cancers where the genes
of the cancerous mutations underlie epistatic interactions is rare and difficult
to acquire in experimental system.

The work described in this thesis is a theoretical analysis of systems with
epistatic interactions in cancer initiation. The population dynamics of an ab-
stract system with two different types of mutations between which epistatic
interactions exist is analyzed. One type is deleterious by itself, the other one
is (nearly) neutral. If the deleterious mutation is accompanied by enough mu-
tations of the other types, the cell has a fitness advantage. We find, amongst
others, that the cancer deploying cell lineage has most likely acquired that
specific mutation only subsequently to the other, non-deleterious mutations,
which inhibit the negative effect of that particular mutation. It is conceiv-
able that epistatic effects could change the order of mutations not only in
the survival and proliferation rates of the cell, but also in the mutation rates.
Hence, we further pursue the question: “If the deleterious mutation increases
the mutation rate for acquiring the necessary, additional mutations, how does
this change the probability for the order of mutations?”. We develop a recur-
sive algorithm for the computation of the probability density functions of the
different mutational pathways over time. Finally, we develop a model aiming
at describing the initiation of Burkitt Lymphoma. Lastly, an outlook is given
explaining future research directions based on epistasis in cancer initiation.
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Kurzfassung
In den Zellen eines jeden Organismus häufen sich Mutationen an. Viele
dieser Mutationen üben keinen signifikanten Effekt auf die Funktionalität des
entsprechenden Genes aus, andere wiederum können die Funktionalität beein-
trächtigen. Häufig führt diese Beeinträchtigung zu einer verringerten Lebens-
dauer der Zelle, sodass diese stirbt. Falls nötig wird die Zelle wird daraufhin
ersetzt. In seltenen Fällen kommt es jedoch vor, dass die Beeinträchtigung den
Lebenszyklus der Zelle so ändert, dass die Sterberate verringert wird oder die
Teilungsrate erhöht. Unkontrollierte Zellvermehrung kann so zu Krebs und
letztendlich zu einem Tumor führen. In der Regel braucht es dafür nicht nur
eine, sondern mehrere Mutationen, die verschiedene Sicherheitsmechanismen
der Zelle beeinflussen.

Häufig beeinflussen sich die Gene gegenseitig; dies wird Epistase genannt.
Auch einige Onkogene unterliegen epistatischen Effekten. Beim Burkitt Lym-
phoma ist die gängige Meinung, dass die Hauptmutation – eine IG/MYC
translocation – die Lebensdauer der Zelle herabsetzt. Zusammen mit weiteren
Mutationen bilden sich jedoch Lymphomzellen. Ein grundlegendes Verständ-
nis über die Initiierung von Krebs, bei welchem die Gene der krebserregen-
den Mutationen epistatischen Effekten unterliegen, ist unvollständig und nur
schwierig über Experimente zu erlangen.

Diese Arbeit beschäftigt sich mit der theoretischen Untersuchung eines
Systems mit epistatischen Interaktionen in der Initiierung von Krebs. Wir
analysieren die Populationsdynamik eines abstrakten Systems mit zwei ver-
schiedenen Mutationstypen, welche epistatisch miteinander interagieren. Der
eine Mutationstyp ist alleine nachteilig, der andere (annähernd) neutral.
Wenn die nachteilige Mutation von genügend Mutationen des anderen Typs
zusammen trifft in einer Zelle, erhält diese einen Fitnessvorteil. Laut unseren
Ergebnissen muss die krebserzeugende Zelllinie sehr wahrscheinlich die neu-
tralen Mutationen, die den Fitnessnachteil der anderen Mutation aufheben, er-
langen. Erst anschließend kann die eigentlich nachteilige Mutation sich in der
Zelle halten, da diese in dem jetzigen Mutationshintergrund vorteilig ist. Es
ist jedoch auch möglich, dass epistatische Effekte nicht nur auf die Zellteilung
und ihre Lebensdauer wirken, sondern auch auf die Mutationsrate. Daher
gehen wir weiter der Frage nach “Falls die nachteilige Mutation die Mutation-
srate für die zusätzlichen, notwendigen Mutationen erhöht, inwiefern ändert
dies die Reihenfolge der Mutationen?”. Wir entwickeln einen rekursiven Algo-
rithmus, der die Wahrscheinlichkeitsdichte der verschiedenen Mutationspfade
über die Zeit numerisch berechnet. Anschließend erarbeiten wir ein Model,
welches die Initiierung von Burkitt Lymphoma beschreibt. Schlussendlich
wird ein Ausblick gegeben für zukünftige Forschungsrichtungen basierend auf
Epistase in der Krebsentstehung.
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Chapter 1

Introduction

1.1 Motivation

Cancer is older than mankind. The earliest written recordings of cancer in
humans dates back to approximately 3000 BC [Hajdu, 2011]. Despite be-
ing known for such a long time, cancer is still the leading cause of death in
the industrialized world and the second leading cause of death in developing
countries [Jemal et al., 2011]. Cancer research in the past decades has led
to a much better understanding of this disease. Especially improvements in
early diagnostic techniques have greatly improved the chances of getting cured
[Hochberg et al., 2013]. At the same time, the aging of the world population
and adoption of cancer-causing behaviors, above all smoking and poor dietary
choices, increases the global burden of cancer [Jemal et al., 2011].

Furthermore, knowledge about the dynamics of cancer tissue is still young.
It was not until Charles Darwin has formulated the theory of evolution [Dar-
win, 1859] that one could think of cancer as an evolving disease, which origi-
nates from the organism’s own body cells.

Nowadays, it is somewhat more common to think of cancer as an evolu-
tionary process, where different alterations have to be acquired in one cell that
affect the cell’s ability to produce daughter cells or die [Armitage and Doll,
1954; Attolini and Michor, 2009; Gerstung and Beerenwinkel, 2010; Green-
man et al., 2007; Hanahan and Weinberg, 2000; Jones et al., 2008; Lengauer
et al., 1998; Michor et al., 2004; Parmigiani et al., 2009; Sjöblom et al., 2006;
Traulsen et al., 2010; Wodarz and Komarova, 2005; Wood et al., 2007]. If the
cells divide too often, the population grows very fast. Throughout this thesis,
this can be thought of as the formation of a tumor.

Cancer is undoubtedly a major health risk and consequently an important
field of research. The attentive reader, who might not be familiar with math-
ematical biology, might ask himself at this point: How can mathematics help
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in cancer research? It is true that the investigation of biological questions tra-
ditionally requires experiments in biology. To a large extent, this is still the
case. The questions, however, become more and more complex and doing ex-
periments often takes a long time and is very expensive. In vivo experiments,
especially in humans, are often even impossible to perform. Moreover, instead
of analyzing the actual system using biological experiments, one can simplify
it into a more abstract, theoretical model. Using this theoretical model allows
one to perform investigations that are not possible with a with a biological
system. Figure 1.1 shows how biological investigations, which might be too
expensive or not possible at all to perform, can be supplemented by using
mathematical modeling.

Biological
Question

Insights about
the Biological

System

Real Life
Experiments

Model
Mathematical Analysis/

Simulations

Insight about
the Model

Transform into
Mathematical

Model

Reinterpretation
of Experimental

Results

Figure 1.1: A biological question is traditionally investigated using experi-
ments in biology (solid arrow). If performing those experiments is not possible,
developing an abstract, theoretical model representing the biological system
can introduce further tools to analyze the system (dashed arrows).

While in modeling there is always a system that is supposed to be rep-
resented by the model, pure theory deals with abstract theoretical systems.
The difference is that there is not necessarily a specific real life system that is
linked to the theory. Evolution, for instance, is in itself a theoretical concept.
It holds true for any conceivable species or population. Often, pure theoretical
results help with the modeling process which is why the two subfields usually
go hand in hand and are not easily disentangled.

In physics, for example, mathematical modeling is extremely common. We
only need to think of models for the description of gravity [Newton, 1872]. Also
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in chemistry, theoretical modeling takes up an inherent part. Amongst others,
the research field of Molecular Dynamics helps to understand the movement
and nature of proteins and other molecules, cf., e.g., [Levitt, 1976]. Modeling
is not as prevalent in biology as in the other life sciences, partly due to the
enormous complexity of biological systems. The explanation of the commonly
observed sex ratio of 1:1 in most species was one of the earliest stepping stones
in biological modeling [Fisher, 1930]. Nowadays, theoretical cancer models
help to understand the initiation and progression of cancerous cells [Antal
and Krapivsky, 2011; Beerenwinkel et al., 2007; Bozic et al., 2010; Gerstung
and Beerenwinkel, 2010; Michor et al., 2004; Reiter et al., 2013] as well as
improving treatment strategies [Leder et al., 2014].

Of course, theoretical models cannot capture reality at its fullest, but they
can reflect specific aspects of the underlying biology reasonably well. The art
of modeling is to create a model that captures all the biology necessary and
that is, at the same time, simple enough to be understood and handled. One
can compare modeling to the creation of a map. If we want to gain knowledge
about the subway system of a city, a map showing all the streets might be
more complete, but at the same time, it is more confusing to analyze. At
the same time, street information might be of interest to see how to get to
a subway system. It is barely ever clear what to include in a model, and
depending on the question we ask about a specific system, we might even
need to use different models for the same system. Having a complete subway
system without street connection and one where we only see the stations but
therefore also streets, is an example where it makes sense to have two models
for one system. Combined, we know how to get to a subway station and where
we can go by subway. Merging both maps in one would possibly make the map
too confusing, though. Therefore, additionally one needs to make sure that
models, which seem similar on a microscopic level, also gives similar results
on the macroscopic level. In [Wu et al., 2015], the macroscopic feature of the
probability of fixation of a subpopulation is investigated for two processes,
which seem very similar on a microscopic level. Interestingly, we find that the
fixation probability is only the same for very strict constraints. To avoid these
issues, a collaboration of people with expertise in different fields is therefore
often inevitable. Biologists and physicians know the biological processes, what
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is important, what can be left out, or what can be regarded as constant, while
people with a background in mathematics or physics know how to phrase a
biological process in a theoretical model. Moreover, modeling is a dynamical
process; often some macroscopic properties, which result from the model,
can be checked against the corresponding properties of the biological system.
Depending on the comparison, the microscopic assumptions of the model can
be refined. This way, a compatible model can be developed and at the same
time the refinement process already contributes to the understanding of the
system.

Cancer is a complex disease, and while many aspects of cancer can be
examined by experiments in mice or similar model organisms, there are still a
lot of things that cannot be tested experimentally. Experiments in humans are
not possible at all, and only a few things can be tested. Theoretical biology,
therefore, adds a powerful tool for the investigation and understanding of
cancer. The work described in this thesis aims at helping understand cancer
initiation especially in cancers where the effect of mutations depends on other
mutations in that particular cell.

In the following sections of the introduction, a brief overview is given over
the biological background and the mathematical tools used throughout this
thesis.

1.2 Biological Background

For the modeling of cancer, we first need to introduce the necessary biolog-
ical terminology as well as the basic biological background knowledge used
throughout this thesis. The explanations here are supposed to give only a
short overview. For a more detailed description, see for example [Watson
et al., 2014; Wodarz and Komarova, 2014].

First, we need to know that the cell’s information is stored in deoxyribonu-
cleic acid (DNA). The DNA’s building blocks are nucleic acids. The sequence
of these building blocks represents (most of the) information a cell needs to
function. For the purpose of this thesis, we do not need other mechanisms of
information storage. Whenever the cell needs to produce or repair something,
it is reading the information from the DNA to build the necessary proteins.
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We call a consecutive segment of the DNA, which is read off for a specific pro-
tein, a gene. Note, that this is only a simplified definition for gene. Upon cell
division, some errors might happen. Errors in the DNA are called mutation.

The DNA is not just stored as a single strand, but in different packages,
so called chromosomes. In humans we have 23 different chromosomes. Upon
cell division, parts of the chromosomes might break and are transferred onto
a different chromosome. These kinds of mutations are called translocations.
When a part of chromosome a is transferred onto chromosome b, this is written
as t(a;b). In Chapters 2 and 4, the translocation of the MYC gene from
chromosome 8 onto an IG gene, e.g., on chromosome 14, is of importance.
We will write t(8;14) for this translocation. Also, just single nucleic acids
can be deleted, inserted, or substituted. Those mutations are called point
mutations.

Healthy cells divide in a controlled manner. Immune cells, for example, di-
vide upon an infection to increase the number of immune cells and strengthen
the immune response. If cells die, they are over the long term replaced by
descendants of other cells. Cells might die because of mutations that disturb
the cell’s functioning. An abnormally behaving cell often realizes itself that it
does not function regularly and hence induces a mechanism that ultimately
leads to cell death. This process is called intrinsic apoptosis. Cells that be-
have abnormally and do not die by themselves are artificially taken out of the
body’s system by immune cells. This is called extrinsic apoptosis. Lost cells
are being replaced by descendants of neighboring cells. Some mutations do not
affect the cell’s ability to survive or proliferate. The cell then simply continues
to live. A few mutations, however, disturb the cell’s reproductive cycle, so
that it either cannot be killed in a regulated way or it divides uncontrollably.
This can lead to the formation of a tumor.

The ratio between a cell’s chance of undergoing apoptosis and its rate
of proliferation is called fitness throughout this thesis, following e.g., [Bozic
et al., 2010]. We view fitness always from the cell’s point of view. A delete-
rious mutation therefore is a mutation that lowers the cell’s fitness and thus
increases its chance of undergoing apoptosis compared to its proliferation rate.
Analogously, an advantageous mutation increases the cell’s fitness, and the ra-
tio between proliferation and apoptosis rate is increased. This increased rate
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Figure 1.2: Different examples for a minimal system with two genes and
without any epistatic interactions are given. Left: The positive fitness effects
of the single A and single B mutations are simply added for an individual
with both the A and B mutation. Middle: The gene type A can be seen as a
neutral mutation. Right: For an AB individual the fitness advantage of the
A mutation is reversed by the deleterious effects of the B mutation.

in proliferation compared to apoptosis can lead to the formation of a tumor.
The higher fitness of cells is consequently unfavorable for the organism.

Usually, more than one mutation is necessary for the development of can-
cer. Mutations that seems to be deleterious might lead to an advantage in
combination with other mutations. The dependence between genes is gener-
ally referred to as epistasis, which is explained in greater detail in the following
section.

1.3 Epistasis

Epistasis means that the effect of one gene depends on the genetic background.
For example, the gene for the hair color and the gene causing albinism are
subject to epistatic effects, since the gene for the hair color does not play a
role when the person is albinotic anyway.

In a non-epistatic fitness landscape, the change in fitness induced by a
mutation is independent on other mutations possibly present in the cell. Fig-
ure 1.2 shows different fitness landscapes for systems without epistasis. In an
epistatic fitness landscape however, the change in fitness induced by a muta-
tion does depend on the genetic background. Hereby, so called sign epistasis
refers to a system in which one mutation alone is deleterious, but in concert
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Figure 1.3: Two examples for a system with two genes and epistatic interac-
tions are shown. Left: The single A and B mutations can be seen as recessive
mutations in a diploid organism, where the mutation of only one copy does
not have an effect on the individual’s phenotype. Only when both genes are
mutated the phenotype is affected. Right: A presumably neutral mutation
and a deleterious one ultimately increase the individual’s fitness when both
genes are mutated.

with another mutation it is advantageous or the other way around, i.e., the
sign of the effect on fitness changes. Figure 1.3 shows two examples for sys-
tems with epistatic effects, where the right example refers to sign epistasis.
Biologically, the left example could denote a gene in a diploid individual. A
mutation of one of the alleles (Ab or aB) has no effect at all, and only a
mutation of both alleles (AB) affects the individual’s fitness.

Epistatic effects in cancer initiation seem to be relevant for a wide range of
cancers. For example, we can think of the inactivation of a tumor suppressor
gene discussed by Knudson in the context of retinoblastoma [Knudson, 1971].
This inactivation is neutral for the first mutation but highly advantageous
for the second mutation, and can hence be viewed as an interaction of genes
[Iwasa et al., 2005; Nowak et al., 2002, 2004; Vogelstein and Kinzler, 2004].
Another case is found in lung carcinomas, where activation of each of two
oncogenes (SOX2 and PRKCI) alone is insufficient, but in concert they ini-
tiate cancer [Justilien et al., 2014]. In other cases, there is clear evidence for
sign epistasis: The ras family of proto-oncogenes is also discussed to underlie
epistatic effects. Amplification of ras leads to senescence in the cell. Never-
theless, ras is a well known oncogenic driver gene. Hence, the ras mutation
needs to be accompanied by other mutations [Elgendy et al., 2011; Serrano
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et al., 1997].
Often, both fitness and mutation rates underlie epistatic interactions. This

is of particular interest when a deleterious mutation increases the mutation
rate for other advantageous mutations. For the system depicted in Figure 1.3
on the right side, this would mean that the mutation rate from aB to AB is
increased. Such a system is analyzed in more detail in Chapter 3.

1.4 Branching Process and Probability Gener-

ating Function

A branching process is an individual based process. In a classical branch-
ing process (also known as Galton-Watson Process), each individual lives for
one time unit and then reproduces independently according to some proba-
bility density and dies. There is, in general, no restriction on the number
of offspring. In biological processes it is common to assume two offspring or
no offspring, representing cell division and apoptosis, respectively. Also one
offspring is possible, because not all cells divide at the same time and one
offspring would represent simply living on. For other organisms, a distribu-
tion for a larger number of a large number of offspring makes sense. Trees,
for example, are able to produce many offsprings at once. The individuals
can be of different types. Mutation or adaptation can be represented as the
production of offspring of a different type.

The independence between individuals makes it easy to calculate extinc-
tion probabilities, more specifically the probability for different types to be
present in the system or not to be present. In a branching process, this
probability can be recursively obtained using probability generating functions
(PGFs). Since the relation between PGFs and the probability for a type to
be present is the main tool we are using, we devote this subsection to giving a
short overview about this connection, although it is rather technical and well
studied [e.g., Haccou et al., 2005; Kimmel and Axelrod, 2002].

The PGF for a time discrete, one-type process is in general defined as

f(z) =
∞∑
k=0

pkz
k, (1.1)
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where k denotes the number of offspring and pk represents the probability of
having k offspring (the focal individual dies in this context) [Haccou et al.,
2005]. For many biological processes, for example cell multiplication, it makes
sense to only consider offspring numbers of 0 (death), 1 (nothing happens),
and 2 (cell division). But in other biological systems, it makes sense to con-
sider many offspring at once. Our analysis is not restricted to any particular
offspring distribution. However, for the sake of simplicity, we restrict our
example to the so called binary splitting, i.e., either two descendants (p2) or
death of the focal individual (p0). The use of the argument z is not obvious
at this point. If we set z equal to 0, the probability generating function re-
duces to f(0) = p0, which is the extinction probability for a population of
one individual in one time step. Since all individuals behave independently,
f(0)N = pN0 is the extinction probability for a population of size N in one
time step. Now looking at the extinction probability within two time steps,
we note that with probability p2, we would have two individuals in the next
time step originating from one individual. Hence, the extinction probability
for a single individual within two time steps is

p0 + p2p
2
0 = f(f(0)) = f ◦(2)(0), (1.2)

and that of population with N individuals is

(
p0 + p2p

2
0

)N
= (f(f(0)))N =

(
f ◦(2)(0)

)N
. (1.3)

Continuing for further time steps, we see that f ◦(t)(0) is the extinction prob-
ability for a single individual and

(
f ◦(t)(0)

)N is the extinction probability for
the system within t time steps.

As of now we assumed that individuals reproduce clonally, i.e., giving rise
to the same type. Now we continue investigating the extinction probability
for a two-type process. Let us think of the two types A and B, where an A
individual can produce any number of A or B individuals, and respectively
for B. Then the general PGFs, if the process starts with one type A or one
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type B individual, are defined as

fA(zA, zB) =
∞∑

kA=0

∞∑
kB=0

pAkA,kBz
kA
A zkBB , (1.4)

fB(zA, zB) =
∞∑

kA=0

∞∑
kB=0

pBkA,kBz
kA
A zkBB , (1.5)

where pAkA,kB (pBkA,kB) denotes the probability of one A (B) individual pro-
ducing kA A and kB B individuals in the next time step. Let us recover the
extinction probability as for the one-type process. If we set both zA and zB
equal to zero and assume that we start with one A individual, we obtain a
similar result as above for the total extinction probability

fA(0, 0) = pA0,0. (1.6)

Oftentimes, one is rather interested in the extinction or non-presence of just
one particular type. Let us assume we are only interested in the presence
of B individuals. The probability of having no B individuals in time step
1 is the sum over all probabilities where no B offspring is being produced∑∞

kA=0 p
A(B)
kA,0

= fA(B)(1, 0), starting with one A (B) individual. Now looking
at the probability of having no B individuals in time step 2, we need to account
for the probability of having kA A and kB B individuals being produced in
the first time step. This leads to

∞∑
kA=0

∞∑
kB=0

pAkA,kBfA(1, 0)kAfB(1, 0)kB = fA(fA(1, 0), fB(1, 0)) =: f
◦(2)
A (1, 0).

(1.7)

Continuing this procedure and analogous to the one-type process, the proba-
bility of having no B individual in time t is f ◦(t)A (1, 0).

This procedure can be extended to a multi-type process with an arbitrary
number of types in a similar fashion. For further information and detailed in-
sights into extinction of branching processes, we refer to [Kimmel and Axelrod,
2002] and [Haccou et al., 2005].

We have seen above that the independence between individuals is beneficial
to formulate the PGF of the process, and that we can compute the extinction
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probability from the PGF. The independence has hence an advantage when it
comes to analyzing the system. At the same time, it can be a huge drawback
on the realism of the system. It is therefore important to address this concern.
This thesis mostly focuses on modeling the initiation of cancer, i.e., until the
first successful cancer lineage has been established. Up to this point, the
number of cancer cells is still very small, allowing for all cells – cancer and
healthy cells – to harbor enough nutritions as well as having enough space.
Since resource limitation does not play a great role in this scenario, we neglect
competition among cells. Therefore, we can safely assume all cells to act
independently.

Another concern is the lack in consideration of spatial structure. For the
population dynamics of solid tumors, spatial structure might be an important
factor to be taken into account. Non-solid tumors, however, are usually struc-
tureless, particularly in the initiation process. This thesis is motivated by
Burkitt Lymphoma which forms a structure in the later stage of the disease.
The presumed cell of origin for Burkitt Lymphoma is a germinal center dark
zone cell [Basso and Dalla-Favera, 2015; Klein and Dalla-Favera, 2008]. Cells
in the germinal center are not structurally organized. Hence, there is no need
to assume spatial structure for the initation of Burkitt Lymphoma.

At the same time, we want to model a growing population size to capture a
more biologically realistic environment. For these reasons, a classical branch-
ing process captures enough realism whereas at the same time it allows for
some analytical exploration due to its simplicity. One such analytical investi-
gation possible is the calculation of the extinction probability for a branching
process [Athreya and Ney, 1972]. This allows for developing interesting prop-
erties of a multi-type system, such as the time distribution and mutational
path probabilities as explained in Chapter 3 in detail.

Branching processes are a common choice for cancer modeling [Jagers,
1970]. For example, Bozic et al. [2010] use a time-discrete branching process
to model the progression of glioblastoma multiforme and pancreatic cancer.
The authors provide a correlation between the number of driver mutations
and the total number of mutations (driver and neutral passenger mutations)
in the tumor. Moreover, they are able to calculate the selective advantage for
the cell’s fitness provided by the driver mutations. They find a surprisingly
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small fitness advantage of only 0.4% (±0.04%).

Further, in [Durrett and Moseley, 2010], a branching process is used mod-
eling the “evolution of resistance and progression to disease during clonal ex-
pansion of cancer”. The authors consider a process with an arbitrary number
of mutations. Those mutations are being acquired in a sequential order. The
different types can have arbitrary cell division and apoptosis rates, where the
division rate has to be greater than the death rate. In the paper an approx-
imative closed form solution for the waiting time of obtaining a cell lineage
with an arbitrary number of mutations is developed.

These are just two well-known examples of the application of branching
processes in cancer modeling; cf., [Antal and Krapivsky, 2011; Bozic et al.,
2013; Durrett et al., 2010; Kimmel and Axelrod, 1991; Kimmel et al., 1992;
Reiter et al., 2013] for further references.

While for the purpose of this thesis a classical branching process is a good
choice, a more general branching process extends the range of realism. Al-
lowing arbitrary life spans, dependence on resources, and population size or
density [Haccou et al., 2005], would make it possible to analyze the population
dynamics also after the initiation of the cancer. The calculation of the extinc-
tion probability is, however, considerably more complicated when individuals
do not behave independently. In Chapter 5 we derive the probability gen-
erating function for a frequency dependent branching process. In particular,
we use a time-continuous two-type branching process where the division rates
depend on the number of individuals of both subpopulations.

1.5 Structure of the Thesis

The following Chapter 2 describes a theoretical (cancer) model motivated by
Burkitt Lymphoma. We investigate the dynamics of a system with epistatic
interactions between one driver and several passenger mutations. We also
introduce the term secondary driver mutation for a mutation that has no
direct effect on the cell’s fitness, but an indirect one due to interactions with
the (primary) driver mutation.

Knowing the order of mutations, i.e., which mutation happens first, which
one second and so on, can be of particular interest in biology since it gives
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indication on possible subpopulations. Those subpopulations present a risk
for potential relapses in cancer. Chapter 3 deals with this question. First, the
simpler issue of calculating the time distribution until a certain mutant type
is reached is being studied. Modifying the resulting approach, we are able to
describe a framework with which it is possible to directly investigate the order
of mutations needed.

In Chapter 4 we complete the picture of epistatic interactions in cancer
initiation by developing a simple, yet meaningful model about Burkitt Lym-
phoma. To ensure biological correctness, we worked with Prof. Dr. Siebert
and Dr. Aukema from the Institute for Human Genetics of the University of
Kiel. Despite the apparent simplicity of the model, it is already very hard to
handle and henceforth an analytic investigation is not feasible. We therefore
analyze this system numerically by running simulations.

While this thesis gives a complete picture about epistatic interactions in
cancer initiation, it can only serve as a starting point. In research one can
always dig deeper, extend models, and understand a scientific question in more
detail. In Chapter 5 we collect ideas on questions arising from this work, which
could have a strong impact on our understanding of cancer initiation.





Chapter 2

Cancer Initiation with Epistatic
Interactions Between Driver and

Passenger Mutations

In Chapter 1.3 we have briefly discussed epistasis. Apart from modeling the
inactivation of two copies of one tumor suppressor gene in a diploid organism
[Iwasa et al., 2005; Komarova et al., 2003], epistasis in modeling cancer has to
our knowledge not been discussed in detail in the literature so far. However,
epistatic interactions are for many cancers evidentially part of the initiation
process of cancer. In this chapter, we therefore analyze the effect of epistasis
in a theoretical framework. This chapter is based on the publication [Bauer
et al., 2014], coauthored by Reiner Siebert and Arne Traulsen. A detailed
summary of the authors contributions to this publication can be found at the
end of this thesis. While the model presented here is not designed as a specific
model for a particular cancer, the underlying idea is motivated by clinical and
experimental observations in Burkitt Lymphoma. Our analysis is based on
a multi type branching process. Using simulations allows us to investigate
single realizations. We further give analytical results for the average number
of cells with different mutations. Lastly, we discuss the time distribution for
cancer cells to occur, i.e., the incidence curve. We find that this model shows
a very interesting dynamical behavior, which is distinct from the dynamics of
cancer initiation in the absence of epistasis.

2.1 Introduction

We were motivated by genetic studies in Burkitt Lymphoma, a highly aggres-
sive tumor, where a single genetic alteration has an impact on a wide range
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of other genes, some of them affect cell growth while others induce apoptosis.
More specifically, a chromosomal translocation between the MYC protoonco-
gene on chromosome 8 and one of three immunoglobulin (IG) genes is found in
almost every case of Burkitt Lymphoma [Allday, 2009; Hummel et al., 2006;
Richter et al., 2012; Sander et al., 2012]. This leads to deregulated expression
of the MYC RNA and in consequence, to deregulated MYC protein expres-
sion. The MYC protein acts as a transcription factor and has recently been
shown to be a general amplifier of gene expression [Lin et al., 2012; Nie et al.,
2012], targeting a wide range of different genes. Most importantly, MYC ex-
pression induces cell proliferation. In Burkitt Lymphoma, the IG-MYC fusion
is evidently the key mutation for tumorigenesis [Campo, 2012; Salaverria and
Siebert, 2011; Schmitz et al., 2014; Zech et al., 1976]. However, MYC plays
also a key role in inducing apoptosis [Hoffman and Liebermann, 2008; Pe-
lengaris et al., 2002; Wang et al., 2011]. Thus, the IG-MYC translocation
alone would lead to cell death. Therefore, the IG-MYC translocation has
to be accompanied by additional mutations, which deregulate the apoptosis
pathways, such as mutations affecting for example the tumor suppressor gene
TP53 or ARF [Allday, 2009; Richter et al., 2012; Sander et al., 2012]. These
additional mutations have probably only little direct impact on the cell’s fit-
ness, since apoptosis is rare. Hence, these mutations cannot be considered
as primary driver mutations in the context of Burkitt Lymphoma. However,
in combination with the MYC mutation these additional mutations decrease
the apoptosis rate. Consequently, the cells proliferate fast and the population
grows accordingly, leading to tumorigenesis. Because all cells carry the MYC
mutation in Burkitt Lymphoma, but fast growth does not start immediately
with that mutation, it seems to confer its large fitness advantage only in a
certain genetical context. Thus, interactions between different mutations may
crucially affect the dynamics of cancer progression. Due to the fact that those
additional mutations do not confer a direct fitness advantage, they cannot
be considered as driver mutations. Nevertheless, at least some of them are
necessary in order for the MYC mutation to become advantageous for the
cell. Therefore, they cannot be regarded as true passenger mutations, either.
Throughout this chapter, we therefore call these additional mutations “sec-
ondary driver mutations”. Note that a system with neutral tumor suppressor
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Here, we are interested in the dynamics of such an epistatic model, which
we illustrate by stochastic, individual based simulations. In addition, we
derive analytical results for the average number of cells with different combi-
nations of mutations and find a good agreement with the average dynamics in
individual based computer simulations. Furthermore, we discuss the compu-
tation of the waiting time until cancer initiation. Our results show that the
dynamics in such systems of epistatic interactions are distinct from previous
models of cancer initiation [Antal and Krapivsky, 2011; Beerenwinkel et al.,
2007; Bozic et al., 2010; Gerstung and Beerenwinkel, 2010; Michor et al., 2004;
Reiter et al., 2013], which may have important consequences for the treatment
of such cancers. While in previous models there is a steady increase in growth
with every new mutation, in our model there is a period of stasis followed by
a rapid tumor growth.

Of course, the biology of Burkitt Lymphoma is much more complex than
modeled herein. To make the model more realistic one would have to distin-
guish between the different secondary driver mutations, since different genes
contribute differently to the cells fitness, especially in a cell where the IG-
MYC fusion is present. Our model is not aimed to realistically describe such
a situation in detail. Instead, we focus on the extreme case of the so called
all-or-nothing epistasis [see, e.g., Barrick and Lenski, 2013; Meyer et al., 2012,
from experimental evolution] to illustrate its effect on the dynamics of can-
cer initiation. As there is no theoretical analysis of epistatic effects in cancer
initiation so far, a well understood minimalistic model seems to be necessary
in order to illustrate the potential impact of epistasis on cancer progression.
Our minimalistic model clearly shows that epistasis can lead to a qualitatively
different dynamics of cancer initiation.

2.2 Mathematical Model

We analyze cancer initiation in a homogenous population of initially N cells
with discrete generations. In every generation, each of the N cells can either
die or divide. If a cell divides, its two daughter cells can mutate with mu-
tation probabilities µD for the driver mutation and µP for secondary driver
mutations (where the P indicates that these would be called passenger muta-
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Figure 2.1: Mutational pathways of the model. Top: The entries xi,j denote
the number of cells with or without the primary driver mutation (i = 1,
or i = 0 respectively), and j secondary driver mutations. Bottom: Cells
with only secondary driver mutations have neutral or nearly neutral fitness.
The fitness of cells with the primary driver mutation depends on the number
of secondary driver mutations within the cell, leading to an epistatic fitness
landscape.

tions in closely related models). In principle, we could drop the assumption
that these two mutation probabilities are independent on the cell of origin,
but this would lead to inconvenient notation. We neglect back mutations and
multiple mutations within one time step, because their probabilities are typi-
cally very small. Figure 2.1 summarizes the possible mutational pathways of
the model. The variables xi,j denote the number of cells with or without the
primary driver mutation (i = 1 or i = 0 respectively), and j secondary driver
mutations.

A cell’s probability for apoptosis and proliferation depends on the pres-
ence of the primary driver mutation and on the number of secondary driver
mutations it has accumulated. For cells with no mutations, the division and
apoptosis probabilities are both equal to 1

2
. This implies that the number of
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cells is constant on average as long as no further mutations occur. We assume
that the initial number of cells is high and thus we can neglect that the pop-
ulation would go extinct [Haccou et al., 2005]. For our parameter values, the
expected extinction time of our critical branching process exceeds the aver-
age life time of the organism by far. The average time until extinction is for
a critical branching process infinity [Haccou et al., 2005; Kimmel and Axel-
rod, 2002]. From Figure 2.5 we see that the simulations did not need longer
than 70000 time steps. The probability to have gone extinct until 70000 for a
critical, binary splitting branching process is of the order of 10−6.

For cells without the primary driver mutation, each secondary driver mu-
tation leads to a change in the cell’s fitness by sP, where fitness is modeled
in terms of division probability. For cells with the primary driver mutation,
the fitness advantage obtained with each secondary driver mutation is sDP.
The driver mutation increases both the apoptosis rate and the proliferation
rate. The increase in the apoptosis rate is sD− and the increase in the division
rate is sD+ . With these parameters, the proliferation rate b0,j for cells with j
secondary driver mutations but without the primary driver mutation is

b0,j =
1

2
(1 + sP)j, (2.1)

whereas the proliferation rate b1,j for such cells with the primary driver mu-
tation is

b1,j =
1

2
· 1 + s+D

1 + s−D
(1 + sDP)j, (2.2)

where s+D < s−D. The apoptosis rates, denoted as d0,j and d1,j are simply one
minus the proliferation rate

d0,j = 1− 1

2
(1 + sP)j,

d1,j = 1− 1

2
· 1 + s+D

1 + s−D
(1 + sDP)j.

(2.3)

Note, that we could also incorporate the driver fitness effect in terms of
the product (1+s+D)(1−s−D). However, we then need to take care that s−D < 1.
Using the fraction as in (2.2) and (2.3), we can freely choose s+D and s−D.
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For small values of s+D and s−D the term for the driver fitness effect can be
approximated by the product

1 + s+D
1 + s−D

≈
(
1 + s+D

) (
1− s−D

)
. (2.4)

2.3 Results

2.3.1 Simulations

Mutations occur at fixed rates µD and µP for primary and secondary drivers,
respectively. For a long time, the overall fitness does not increase noticeably.
For sP = 0, it stays on average constant. Hence, the total number of cells
stays approximately constant. Only when a cell with enough secondary driver
mutations and also the primary driver mutation arises, the cell’s fitness is
increased substantially beyond the fitness of other cells and its chance of
proliferation is significantly increased. At that point, the total number of cells
starts to increase rapidly, see Figure 2.2. In models presented in literature so
far, the cell’s fitness is increased independently with every (driver) mutation
(see e.g., [Beerenwinkel et al., 2007; Bozic et al., 2010]). Although the total
number of cells increases exponentially, these models do not find a sudden
burst in the number of cells. Instead, the number of cells starts growing
slowly with the first (driver) mutation, where the average growth of population
increases with every (driver) mutation.

In Figure 2.3, the total number of cells is subdivided into the number of
cells with different numbers of mutations. The left panel presents the cells
that have not acquired the primary driver mutation, the right one shows cells
with the primary driver mutation. Cells with the primary driver mutation,
but not enough secondary driver mutations, arise occasionally, but those cells
die out quickly again – thus, their average abundance is small. Cells without
the primary driver mutation do not die out, they also do not induce fast
growth, cf. Figure 2.3. Only cells that have obtained enough secondary driver
mutations and in addition acquire the primary driver mutation, divide so
quickly that the population size increases rapidly.

The parameters in Figure 2.2 and 2.3 have been chosen such that a cells
acquires a substantial growth advantage once the primary driver mutation
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Figure 2.2: The dynamics of the total number of cells. Initially, the to-
tal cell count increases only marginally but at some point, a combination of
primary and secondary driver mutations within one cell with a large fitness
benefit arises and leads to rapid exponential proliferation (parameters: Initial
number of cells N = 500000, secondary driver fitness advantage sP = 10−5,
the primary driver fitness advantage sD+ = 0.05, primary driver disadvan-
tage sD− = 0.1, advantage of a secondary driver mutation in the presence
of the primary driver mutation sDP = 0.015, mutation rates for secondary
driver mutations µP = 2 ·10−5, mutation rate for the primary driver mutation
µD = 5 · 10−6).

co-occurs with 4 secondary driver mutations. This event can occur at any
time and hence, in some simulation the number of cells can increase very
early, whereas in other simulations the number of cells does not undergo fast
proliferation for many generations. Consequently, the rate of progression has
an enormous variation. For the parameters from our figures, the time at which
rapid proliferation occurs varied between ≈ 9300 and ≈ 63000 generations in
500 simulations. The average number is therefore not particularly meaningful.
The distribution of these times is discussed in more detail below.
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Figure 2.3: The dynamics of the number of cells with different numbers
of mutations in a single simulation. Top: The number of cells without any
mutation decreases slightly, whereas the number of cells with secondary driver
mutations, but no primary driver mutation, slowly increases. Bottom: While
a small number cells with the primary driver mutation is present from the
beginning, at first these primary driver mutations are not accompanied by
sufficiently many secondary driver mutations to compensate the disadvantage
arising from the primary driver. Only when a primary driver mutation is
co-occurring with enough secondary driver mutations (in this case four), the
number of cells with the primary driver starts to increase rapidly. (parameters:
N = 500000, sP = 10−5, sD+ = 0.05, sD− = 0.1, sDP = 0.015, µP = 2 · 10−5,
µD = 5 · 10−6)

2.3.2 Analytical Results

2.3.2.1 Average Number of Cells

We can calculate the average number of cells with a certain number of muta-
tions at a given generation t. The number of cells which do not have the pri-
mary driver mutation and k secondary driver mutations (i.e., x0,k(t)) changes
on average by means of the cell’s fitness and it decreases by the mutation rate

x0,k(t) = (1− (µP + µD))(1 + sP)kx0,k(t− 1) + µP(1 + sP)k−1x0,k−1(t− 1),

(2.5)
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where x0,−1(t) ≡ 0. The solution of Equation (2.5) for sP 6= 0, i.e., if the
secondary driver mutations are not neutral, is

x0,k(t) = NµkP(1− (µD + µP))t−k(1 + sP)k(k−1)/2
k−1∏
i=0

1− (1 + sP)t−i

1− (1 + sP)i+1
, (2.6)

where N denotes the initial number of cells. The mathematical proof of Equa-
tion (2.6) is given in 7.1. Note, that the product can be written in terms of a
q-binomial coefficient [Koekoek et al., 2010],

k−1∏
i=0

1− (1 + sP)t−i

1− (1 + sP)i+1
=

[
t

k

]
1+sP

. (2.7)

For the case sP = 0, we take the limit of the q-binomial coefficient [e.g., Kac
and Cheung, 2002]

lim
sP→0

[
t

k

]
1+sP

=

(
t

k

)
(2.8)

and obtain

x0,k(t) = NµkP(1− (µD + µP))t−k
(
t

k

)
, (2.9)

which is the result that is also expected if the secondary driver mutations are
neutral and accumulated independently of each other.

Intuitively, the term µkP(1 − (µD + µP))t−k describes the probability of
obtaining exactly k mutations in t generations. There are different possibilities
when the mutations happen, these possibilities are captured by the binomial
coefficient

(
t
k

)
. Thus, we have a growing polynomial term in t and a declining

exponential term in t, since (1− (µD + µP)) < 1.
In the case of sP 6= 0, the interpretation is similar. Here, additionally the

fitness advantage for secondary driver mutations has to be taken into account.
Since the number of cells with j secondary driver mutations grows with (1 +

sP)j, also the number of cells that can mutate grows. Hence, the factor (1 +

sP)k(k−1)/2 is multiplied to the expression and the binomial coefficient turns
into the q-binomial coefficient.

For cells that have obtained the primary driver mutation and k secondary
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µP Mutation rate for secondary driver mutations
µD Mutation rate for the primary driver mutation
νP = 1− µD − µP Probability for a cell without the primary driver

mutation to not mutate
νD = 1− µP Probability for a cell with the primary driver

mutation to not mutate
sP Fitness change of a secondary driver mutation

(see (2.1), (2.2))
sD+ Fitness advantage of the primary driver mutation

(see (2.1), (2.2))
sD− Fitness disadvantage of the primary driver mutation

(see (2.1), (2.2))
sDP Fitness advantage of combination of a secondary

driver and the primary driver mutation
ςP = 1 + sP Fitness according to a secondary driver without

the primary driver mutation
ςDP = 1 + sDP Fitness according to the combination of primary

and secondary driver mutation
ςD =

1+s+D
1+s−D

≈ 1 + s+D − s−D Fitness according to a primary driver mutation
with no secondary driver

Table 2.1: Summary of our abbreviations

driver mutations, the situation is slightly more complex. There are k + 1

different possibilities on how to obtain k secondary driver and the primary
driver mutation, since some of the secondary driver mutations may have oc-
curred before the primary driver mutation has been acquired, whereas others
may have occurred afterwards. Let x(p)1,k(t) denote the number of cells with the
primary driver mutation and k secondary driver mutations, when the primary
driver mutation has happened in a cell with p secondary driver mutations.
Note that 0 ≤ p ≤ k. The change in the number of cells now depends on p.
Using the abbreviations from Table 2.3.2.1 to simplify our notation, we have

x
(p)
1,k(t) =

νDςDςkDPx
(p)
1,k(t− 1) + µPςDς

k−1
DP x

(p)
1,k−1(t− 1), if p < k

νDςDς
k
DPx

(p)
1,k(t− 1) + µDς

k
Px0,k(t− 1), if p = k.

(2.10)

To express the average number of cells in total we need to sum over all
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possible pathways,

x1,k(t) =
k∑
p=0

x
(p)
1,k(t). (2.11)

In 7.2 in the Appendix, we show that the analytical solution of Equation
(2.11) is

x1,k(t) =N
k∑
p=0

µDµ
k
P ς

k−p
D ς

(k(k−1)−p(p−1))/2
DP

ς
p(p+1)/2
P∏p−1

n=0(1− ςn+1
P )

×

νt−pP

 p∑
r=0

(
−ς t−p+1

P

)r
ς

r(r−1)
2

P∏k
n=p(νPς

r
P − νDςDςnDP)

[
p

r

]
ςP


−

k∑
j=p

νj−pP (νDςDς
j
DP)t−k

k−1∏
m=j

1− ς t−m−1DP

1− ςk−mDP

×

 p∑
r=0

(
−ςj−p+1

P

)r
ς

r(r−1)
2

P∏j
n=p(νPς

r
P − νDςDςnDP)

[
p

r

]
ςP

 ,

(2.12)

if sP 6= 0. The summation over p indicates the different mutational pathways.
An intuitive explanation of this somewhat lengthy equation is given in 7.3 in
the Appendix.

Interestingly, the case for sP = 0 is much more challenging. The underlying
problem is that the normal binomial coefficient cannot be expressed in a sum
in the way the q-binomial coefficient can be expressed [Koekoek et al., 2010],

[
t

p

]
ςP

=

p−1∏
j=0

1− ς t−jP

1− ςj+1
P

=

∑p
r=0 (−ς tP)

r
(1/ςP)

r(r−1)
2
[
p
r

]
1/ςP∏p−1

j=0(1− ςj+1
P )

. (2.13)

When summing over all generations of the population with p secondary driver
mutations to derive the expression for the population of cells with p + 1 sec-
ondary driver mutations, we have to calculate the sum

t−p−1∑
i=0

(ςDς
p
DP)i

(
t− i− 1

p

)
. (2.14)

When we go further and calculate the expression for the population with k
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secondary driver mutations, we need to apply this sum (k−p)-times and hence
we obtain a multi sum,

t−k−1∑
i0=0

(
ςDς

k
DP

)i0 t−k−i0−2∑
i1=0

(
ςDς

k−1
DP

)i1 · · · t−2k+p−i0−i1−···−ik−p−1−1∑
ik−p=0

(ςDς
p
DP)ik−p

(2.15)

×
(
t− 2k + p− i0 − i1 − · · · − ik−p−1 − 1

p

)
.

Only an analytical expression for this multi sum would allow a closed solution
of the problem with sP = 0. Also, taking the limit sP → 0 of our expression
for sP 6= 0 is a substantial mathematical challenge. However, we can use our
solution for sP 6= 0 for arbitrarily small values of sP. Moreover, numerical
considerations show that the result for sP = 0 is very close to the case of
sP � 1.

In Figure 2.4, the dynamics of the average number of cells with a certain
number of mutations, is shown, both without and with the primary driver
mutation. Simulation results for sP = 0 agree very well with the analytical
result obtained for sP 6= 0.

2.3.2.2 Distribution of time until cancer initiation

Next, let us take a look at the distribution of the time it takes until rapid
proliferation occurs. We are able to give a recursive algorithm by using the
probability generating functions for the calculation of the time distribution.
The derivation of the algorithm is given in following Chapter 3. Figure 2.5
shows the good agreement between simulations and the recursive calculation.
The time distribution for low t can be approximated by a power law, as shown
in the inset of Figure 2.5. The exponent of the power law is approximately
3.4. If all mutations were neutral, one would expect a lead coefficient of
approximately 4 to accumulate five mutations, as derived by [Armitage and
Doll, 1954]. In our case, the curve increases slower. Numerical considerations
show that the main reason for this is that, in contrast to [Armitage and Doll,
1954], we allow extinction: Many lineages that have accumulated mutations
go extinct before the final, cancer causing mutation arises.
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Figure 2.4: Dynamics of the number of cells with different number of sec-
ondary driver mutations, without (left) and with (right) the primary driver
mutation. Simulation results averaged over 500 independent realizations for
sP = 0 (circles) agree almost perfectly with the analytical result obtained for
sP = 10−5. The bars represent the standard deviation. Cells with no muta-
tion have a very small relative standard deviation and cells with one mutation
(i.e., one passenger only or the driver only) have a relatively small standard
deviation. In contrast, cells with two passenger mutations for instance have
a very broad standard deviation in the beginning that is approximately four
times the average number. Only in few realizations, a primary driver muta-
tions co-occurs with several secondary drivers, hence the simulations for these
cases shows a large spread (parameters: N = 500000, sP = 10−5, sD+ = 0.05,
sD− = 0.1, sDP = 0.015, µP = 2 · 10−5, µD = 5 · 10−6).
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Figure 2.5: Comparison between the analytical calculation and simulations
of the distribution until cancer initiation (main panel). Solid lines represents
analytic solution. The analytical calculation and simulations of the model
agree very well. This inset illustrates that the time distribution initially follows
a power law with an exponent of ≈ 3.4 shown as a dashed line (parameters:
N = 500000, sP = 10−5, sD+ = 0.05, sD− = 0.1, sDP = 0.015, µP = 2 · 10−5,
µD = 5 · 10−6, distribution over 20000 independent realizations).

2.4 Discussion

Most models in literature assume that each mutation leads to an independent
and steady increase in the cells’ fitness [Beerenwinkel et al., 2007; Bozic et al.,
2010; Gerstung and Beerenwinkel, 2010; Michor et al., 2004; Reiter et al.,
2013]. In this context, neutral passenger mutations have no causal impact
on cancer progression. Only recently, some authors have considered passenger
mutations not only as neutral byproducts of the clonal expansion of mutagenic
cells, but as having a deleterious impact on the cells’ fitness [McFarland et al.,
2013].

Here, we have described a model in which the fitness of the driver mu-
tation strongly depends on the number of passenger mutations the cell has
acquired. These passenger mutations, which we have termed secondary driver
mutations, lead only to a small change in fitness or no change in fitness at all.
As illustrated in Figures 2.2, 2.3, and 2.4, the number of cells stays roughly
constant for a long time before it rapidly increases, despite the fact that muta-
tions occur in the process permanently. This effect of the population dynamics
of cancer initiation is very different from models in which mutations do not
interact with each other. We speculate that this kind of dynamics can have
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important implications for diagnosis and treatment. In principle, the dynam-
ics presented in Figure 2.2 can also be the result of one highly advantageous,
but very unlikely driver mutation. But in such a case, cells with the driver
mutation should not be present in the population before tumorigenesis. This
contradicts with current knowledge about the MYC translocation which has
also been detected in humans without lymphoma [Müller et al., 1995]. This
effect is well captured by our model, as shown in Figure 2.3.

In some tumors, such as Burkitt Lymphoma, the neoplasms is only diag-
nosed after fast tumor growth has started. In this case, sequencing studies
have shown that several mutations are present at the time of examination
[Alexandrov et al., 2013; Love et al., 2012; Richter et al., 2012; Schmitz et al.,
2012]. Since the patients typically do not have any symptoms before diagno-
sis of the cancer, it is possible that some mutations have virtually no direct
impact on the cells fitness. Nevertheless, they are necessary for the initiation
of the cancer, as they indirectly allow the driver mutation to initiate rapid
cell growth. This agrees well with our epistatic model, where (nearly) neutral
secondary driver mutations occur at a fixed rate before the cancer can be
diagnosed.

Of course, not all mutations have such an epistatic effect on primary driver
mutations, some might even be considered deleterious [McFarland et al., 2013].
Nevertheless, our work shows that mutations that appear to be neutral in one
context should not only be regarded as a neutral byproduct of the clonal
expansion of mutagenic cells. Instead, in some cases passenger mutations
can have a serious impact in cancer initiation, in particular when there are
non-trivial interactions between different mutations. In this case the term
“passenger” may not be the most appropriate one. To understand the im-
pact of those interactions can be essential for a deeper understanding of the
initiation of cancer.





Chapter 3

Calculation of Time Distribution
and Path Probabilities

In many biological systems it is interesting to know how long it takes for a
mutational process to happen. For example, to be able to predict how long
it takes for the bird flu to accumulate the necessary mutations to cross the
interspecies barrier. In the previous chapter we were interested in the time it
takes for self cells to harvest the mutations necessary to turn into cancer cells.

This chapter is based on the publication [Bauer and Gokhale, 2015], coau-
thored by Chaitanya Gokhale. We present an algorithm on how to recursively
compute the time distribution for processes in which the individuals prolif-
erate independently of other individuals. By having the time distribution,
it is possible to say up to which time the mutational process happens with
a probability above a certain threshold. We go even a step further in our
manuscript and develop a procedure computing the time distribution for the
single mutational pathways. This allows us to derive probabilities for the order
in which the mutations are accumulated. Ultimately, this gives information
about the subpopulations present in the system. In cancer, for example, sub-
populations pose a high threat for a relapse after treatment: A subpopulation
might not be targeted by normal chemotherapy and in the worst case only
one additional mutation for cells of that subpopulation is needed to become
cancerous. Therefore, by knowing which subpopulations are present, it might
be possible to develop therapies targeted specifically to those subpopulations.

While there is no closed form solution for the time distributions, a direct
computation of the mutational path probabilities would make it possible to
interactively analyze the parameter space, even when not all required input
parameters, such as mutation, birth, and death rates, are known. Our recur-
sive approach allows to avoid time consuming simulations.

This the issue itself is not only cancer related, but also appears in exper-
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imental evolution [Cooper et al., 2003; de Visser et al., 1997; Lenski et al.,
1991]. For this reason, this chapter is mostly free of cancer specific terminol-
ogy, and we rather approach the more general question “How repeatable is
evolution?” [Beatty, 2006].

3.1 Introduction

As the metaphor by Stephen J Gould goes ‘if we run the tape of life back
from the start how likely is it that we will get the same outcome that we
see around us today?’ [Beatty, 2006]. The pioneering work of Lenski et al.
tackled this question experimentally with E. coli. In their system, it is now
possible to literally play back evolution from a certain starting point and see
where it leads [Blount et al., 2012; Cooper et al., 2003; Lenski et al., 1991;
Meyer et al., 2012].

Such empirical explorations made the until then theoretical concept of
fitness landscapes tangible. The concept of a fitness landscape is a mapping
between the genotype and the phenotype of an organism. Since selection
acts on the phenotype, the genotype of each phenotype can be attributed
a certain fitness. Connecting the genotypes which are one mutational step
away from each other leads to the concept of fitness landscapes [Fisher, 1930;
Haldane, 1927]. Such empirical studies do make it clear that predictions will
not be based on simple rules but complicated phenomena such as epistasis
and epigenetics which play a major role in the process of evolution [Travisano
et al., 1995; Travisano and Shaw, 2013; Weinreich et al., 2005].

Epistasis is any deviation from the additive effects of alleles at different
loci [Fisher, 1918]. Epistasis gives rise to rugged fitness landscapes which have
been found to be quite common in experimental observations in a variety of
model systems [de Visser et al., 1997; Jain and Krug, 2007; Szendro et al.,
2013; Weinreich et al., 2006]. In particular, reciprocal sign epistasis is a
necessary condition for having a rugged fitness landscape [Poelwijk et al.,
2007]. While in magnitude epistasis the fitness always increases (or decreases)
with every additional mutation in a non-additive manner, in sign epistasis,
however, valleys appear in the fitness landscape. A certain mutation might
have a lower fitness than the previous state although it eventually leads to
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higher fitness. In such a case not all paths in the fitness landscape might be
accessible by the population [Weinreich et al., 2006]. Comparing experimental
systems to theoretical predictions made on the basis of the underlying fitness
landscape helps elucidate the role of microscopic properties of the system
in determining the macroscopic evolutionary trajectory. The details of the
process such as the mutation rate, fitnesses of individual states and the global
population size act as constraints on the accessibility of paths [Szendro et al.,
2013]. Using the assumption of strong selection and weak mutation rates
(SSWM), the system advances on the fitness landscape in a stepwise fashion.
This automatically limits the possible number of adaptive paths [Weinreich
et al., 2005].

Evolutionary predictability and the speed of the dynamics is not only de-
termined by the molecular constraints of fitness and mutation rate, but also
by population dynamics [Poelwijk et al., 2007]. Theoretical explorations often
assume a fixed population size starting at one node of the fitness landscape
and its movement is tracked over the course of time [Gokhale et al., 2009].
Increasing the population size, or the mutation rate, we observe the phe-
nomenon of clonal interference [Park and Krug, 2007; Weinreich et al., 2006].
This occurs when a second step mutant arises in a population even when the
first step mutation is not fixed. In other words, the SSWM assumption is no
longer valid. Clonal interference has been extensively explored experimentally
[Elena and Lenski, 2003; Hegreness et al., 2006; Imhof and Schlotterer, 2001]
as well as theoretically [Desai et al., 2007; Gerrish and Lenski, 1998; Gokhale
et al., 2009; Iwasa et al., 2004; Park and Krug, 2007; Weinreich and Chao,
2005; Weissman et al., 2009]. This phenomenon removes the limit on the
accessibility of non-adaptive trajectories. If the fitnesses and mutation rates
follow particular conditions, i.e. the mutation rates also underlie epistatic
interactions, then such valley crossings might be faster than adaptive trajec-
tories [Gokhale et al., 2009; Lynch and Abegg, 2010].

Populations in real systems are finite and their size can undergo fluctu-
ations which can lead to possible extinction events. Together with the phe-
nomena of clonal interference and epistatic interactions between mutations
(correlated rugged fitness landscapes), predicting evolution through a given
fitness landscape seems like an impossible task. Herein, we develop a gen-
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eral methodology for predicting the most probable path in a fitness landscape
with epistatic interactions in a multi-dimensional fitness landscape. To reflect
a realistic scenario we use a multi-type branching process (e.g., [Haccou et al.,
2005]) to drop the assumption of a constant population size. For presentation
purposes we limit ourselves to systems without back mutations. The model
in its full generality is free of this assumption, although it is unclear how to
define pathways when back mutations are allowed (see Section 7.4 in the Ap-
pendix for a detailed explanation). To introduce the framework we begin with
a simple model in which the wild type can have two independent mutations
leading to the fittest type. Then we increase the number of mutational events
it takes to get to the corresponding type leading to a generalization of the
methodology. We briefly mention an application of this approach by linking
it to a cancer initiation model [Bauer et al., 2014] showing how mutational
epistasis changes the path probabilities. Finally we provide an outline on how
to extend the model to a general system where different mutations need to be
acquired to reach the final mutant.

3.2 Model and Results

3.2.1 Two Dimensional Fitness Landscape

We begin with a minimal fitness landscape. Envision a wildtype ab which can
mutate at the two loci to A and B, respectively. With both mutations, the
system is in the final state of AB. In such a system there are two different
paths as illustrated in Figure 3.1. Traditionally, epistatic models are discussed
in terms of different fitness values, whereas the mutation rates stay the same
[Poelwijk et al., 2007; Szendro et al., 2013]. A fitness landscape for a system
with sign epistasis is shown in Figure 3.1. In such a system where the mutation
rates stay the same, i.e. µA = µBA and µB = µAB, it is clear that the path via
Ab is the most probable one. However, if the mutation rates change, e.g.,
µBA � µA, also the path via aB can become accessible. Changing mutation
rates amounts to including epistasis in the mutational landscape in addition
to epistasis in the fitness landscape [Sasaki and Nowak, 2003].

For the four types of the above model, we need to consider four different
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Figure 3.1: Mutational pathways for a system with two loci. There
are two different pathways to reach the final mutant. Fitness is represented by
the size of the circles denoting the types. Thus the wildtype ab and Ab have a
similar fitness whereas AB has a significantly greater fitness compared to the
wildtype while aB is much less fit than the wildtype. When all mutation rates
are the same, the pathway via aB would be not adaptive, since this type has
a low fitness. If the mutation rate µBA is large enough, especially if µBA � µA
(indicated by the thick arrow), this pathway becomes accessible.

PGFs, one for each type

fab(zab, zAb, zaB, zAB) = dab + bab((1− µA − µB)zab + µAzAb + µBzaB)2,

fAb(zab, zAb, zaB, zAB) = dAb + bAb((1− µAB)zAb + µABzAB)2,

faB(zab, zAb, zaB, zAB) = daB + baB((1− µBA)zaB + µBAzAB)2,

fAB(zab, zAb, zaB, zAB) = dAB + bABz
2
AB, (3.1)

where bi and di are the birth and death probabilities of type i. The exponent
of 2 arises from a branching process with binary splitting. The arguments
zab, . . . , zAB correspond to extinction probabilities of the respective type as
discussed above. The functions fi correspond to the extinction probability
of the whole process given that the process starts with a single individual of
type i. The PGF fi at time t is recursively calculated as [Haccou et al., 2005;
Kimmel and Axelrod, 2002]

f
(t)
i (zab, zAb, zaB, zAB) = fi(f

(t−1)
ab , f

(t−1)
Ab , f

(t−1)
aB , f

(t−1)
AB ). (3.2)
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3.2.2 Time Distribution

Using the generating functions we now approach the extinction time distri-
bution of the binary branching process. Particularly starting with 1 wild
type individual, the probability of having no AB-individual at time t is
f
(t)
ab (1, 1, 1, 0) =: f(t). Thus the probability of having at least 1 AB-individual
at time t is 1 − f(t). The probability, that at least 1 AB-individual appears
exactly at time t is the probability, that there is an AB-individual at t minus
the probability that there was already one at time t− 1:

τ(t) = (1− f(t))− (1− f(t− 1)) = f(t− 1)− f(t) (3.3)

Starting with N wild type individuals the probability that there are no AB-
individual at time t is then f(t)N . This leads to the time distribution,

τ(t) = fN(t− 1)− fN(t). (3.4)

However, the arising AB should start a lineage that does not die out.
Hence we are interested in the probability of having a successful AB-
individual. To calculate this we use the known extinction probability of an
AB-individual in place of zAB. The probability of an AB-individual going ex-
tinct is its death probability divided by its birth probability eAB := dAB/bAB

[Athreya and Ney, 1972]. The modified PGFs for this purpose then read as

fab(zab, zAb, zaB) = dab + bab((1− µA − µB)zab + µAzAb + µBzaB)2,

fAb(zab, zAb, zaB) = dAb + bAb((1− µAB)zAb + µABeAB)2,

faB(zab, zAb, zaB) = daB + baB((1− µBA)zaB + µBAeAB)2. (3.5)

Note, that the PGF for the final mutant type is not necessary anymore. We
can now calculate the time distribution until the first successful mutant ap-
pears the same way as described above. Figure 3.2 shows the perfect agree-
ment between the recursive solution and 5000 simulations. The parameters,
specified in the Figure 3.2’s caption, are entirely arbitrarily chosen to reflect
an epistatic fitness landscape as sketched in Figure 3.1. The reason we chose
a very slightly advantageous fitness for the type Ab-individuals is solely to
stress the fact, that this method holds for any fitness values, not only if some
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Figure 3.2: Time distribution of reaching the final mutant for a four
type fitness landscape as in Fig. 3.1. Solid line represents the recursive
solution and the bars represent 5000 simulations. The parameters are:
Death probabilities: dab = 0.5, dAb = 0.49995, daB = 2/3, dAB = 0.25. Birth
probabilities are 1 minus the corresponding death probability. Mutation prob-
abilities are µB = µAB = 2 · 10−6, µA = 2 · 10−5, µBA = 0.005. Initial population
size: N = 30000.

are restricted, for example to being neutral.

For a three-type continuous time branching process, as in A µB−→ B
µC−→ C,

the time distribution was computed in [Bozic et al., 2013]. This was done
using the analytical solution of the probability generating function for the
two-type process A µB−→ B [Antal and Krapivsky, 2011] and the fact that in
continuous time mutations follow a Poisson distribution. Adding a second
intermediate type, e.g., B2, would also give such a process but immediately
results in unwieldy analytical calculations.

3.2.3 Path Probabilities

In the current example there are two possible paths by which the wildtype
can reach the final mutant AB, either ab → Ab → AB or ab → aB → AB.
Experimental evidence shows that not all paths are equally probable [Lee
et al., 1997; Weinreich et al., 2006]. Beginning with ab then what is the
probability of the first AB mutant arising via either path and how long does
it take for the different pathways?

The probability, that the first mutant arises exactly at time t via pathway
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Figure 3.3: Probability distribution for the different pathways. Or-
ange represents the pathway via aB and blue the pathway via Ab. The bars
are the results of simulations, the solid lines depict the computed results.
In the pie charts the distribution of the pathways are illustrated up to 500
time steps (shaded area, left pie chart) and up to 5000 time steps (right pie
chart). Stopping after a few lineages have reached the final mutant might
lead to a false distribution: The other pathway might just need longer, but
have a smaller extinction probability. The parameters are: Death probabil-
ities: dab = 0.5, daB = 2/3, dAb = 0.49995, dAB = 0.25. Birth probabilities
are 1 minus the corresponding death probability. Mutation probabilities are
µB = µAB = 2 · 10−6, µA = 2 · 10−5, µBA = 0.005. Initial Population size is
N = 30000.

Ab is (derived in the Appendix),

ρAb(t) = fN(t− 1)− (f̄ (Ab)(t))N , (3.6)

where f̄ (Ab)(t) is defined in Section 7.6 in the Appendix and is being computed
in a similar fashion as f(t). The total probability for this path %Ab is then the
summation of ρAb(t)

%Ab =
∞∑
t=1

ρAb(t). (3.7)

Computationally the sum would go up to a tmax, where f (Ab)(tmax − 1)−
f (Ab)(tmax) < ε (where usually machine epsilon is chosen as ε). The total
extinction probability of a multi-type branching process is determined by the
smallest fixed point z∗ = (z∗ab, z

∗
Ab, z

∗
aB, z

∗
AB) of the probability generating func-

tions f(z∗) = z∗, where z∗ab is the extinction probability, if the process starts
with one ab-individual [Haccou et al., 2005]. Nevertheless those total extinc-
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tion probabilities are not suitable for the question, via which path the first
successful AB-mutant arises. The problem lies in the time; the pathway via
Ab for example could have a very low extinction probability whereas the path-
way via aB might have an extinction probability of 1/2. Intuitively one would
expect the path via Ab to be more frequent. However, if the path via aB is
much faster (e.g., due to µBA � µAB), one would actually find that each path
happens with a probability that approaches 1/2. Therefore, it is important to
do the recursive analysis to include the probability that a successful mutant
did not arise through any other path beforehand.

Figure 3.3 shows the probability densities for the different pathways of the
minimal model. Interestingly, the pathway via aB is predominantly prominent
in the beginning but overall less likely. Hence if experiments are stopped
after a short time interval then they might provide conclusions which can be
upended by looking at the experiments at a later time point.

3.2.4 Multiple Mutations in two Dimensions

In the earlier model the wildtype had two possible mutations a → A and
b→ B. It is possible, that a to A and b to B are a multi-step process. Hence
we can assume that it takes m mutations to go from a to A and n to go from
b to B. Hence for m = n = 1 we recover the simple model as discussed above.
The calculation of the time distribution can be directly transferred from the
simple model by including all necessary probability generating functions for
all available types. Increasing the length of the dimensions has a direct im-
pact on the number of paths leading from the wildtype to the final mutant. In
particular there are N =

(
m+n
m

)
possible paths. Assuming in general m muta-

tions in the A dimension and n in the B dimension we enumerate the paths
as follows. Path 1 is the path where at first all A mutations and subsequently
all B mutations happen. Path 2 is the path where all but one A mutations
happen first, then one B, then the last A, and finally all other B mutations.
Figure 3.4 shows the different paths for a system with three type A and three
type B mutations (left), and for a system with four mutations for type A and
one mutation for type B (right). Thus calculating the path probability for
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any particular path p now takes the form,

ρp(t) = fN(t− 1)−
(
f̄ (p)(t)

)N
, (3.8)

where f(t) is the probability generating function as in Eq. A.2 and f̄ (p) is
defined analogously to Eq. A.9 in the Appendix

f̄ (p)(t) := f̄ ◦(t)p0

1, 1, . . . , 1︸ ︷︷ ︸
m+n

,
dm,n
bm,n

, 1, . . . , 1


= f̄p0

(
f̄ ◦(t−1)p0

, f̄ ◦(t−1)p1
, . . . ,

dm,n
bm,n

, f̄ ◦(t−2)q1
, . . . , f̄ ◦(t−2)qmn

)
. (3.9)

Here, the probability generating functions with a p index belong to types
along the regarded path (which in total are m+n+1 without back mutations,
beginning at 0, with which we always label the subindex for the wild type).
Accordingly, probability generating functions with a q index are associated
with types, that do not belong to the respective path (which are in total
m×n). The probability generating function for the final mutant type is again
replaced by the extinction probability of this type. We use our framework
with this extension on the cancer initiation model proposed in [Bauer et al.,
2014]. Therein a model with several mutational steps to reach state A and
one mutational step for state B is analyzed (cf. Fig. 3.4). The direct change
in fitness for the A mutations is (nearly) zero, and the B mutation alone
is even deleterious. However, if an individual obtains all A mutations and
the B mutation, the fitness is enhanced which in the model leads to rapid
proliferation. Here, we provide an example on how the path probabilities
change, when epistasis is not just in the fitness landscape but in the mutational
landscape as well. Figure 3.5 compares the path probability distributions
with and without epistasis in the mutational landscape. The fitness values,
the birth and death probabilities respectively, as well as the “nonepistatic”
mutation probabilities, are the same as in chapter 2.

3.2.5 Multi Dimensional Fitness Landscapes

The cancer landscape discussed above is a two dimensional system. In prin-
ciple it is possible to extend this approach to higher dimensions. For fitness
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Figure 3.4: Exemplary numbering of the different mutational path-
ways for a system with m = n = 3 mutations for type A and type B
mutations (left), and for a system with m = 4 mutations for type A
and n = 1 mutation for B (right).

landscapes of higher orders [Khan et al., 2011; Weinreich et al., 2006] it is still
possible to write down the system of probability generating functions and ap-
ply the approach explained here. The concept remains the same. For each type
the probability generating functions are needed except for the final mutant
type, here only the extinction probability is necessary (Appendix). Finally
the probability generating function for the wild type needs to be recursively
calculated for the time distribution. For the path probabilities the probabil-
ity generating functions related to types not along the considered path again
are one time step behind, similar as in Eq. 3.9. However, while we can get
accurate experimental data elucidating the fitness landscape, the mutational
landscape is usually hard to determine.

3.3 Discussion

A theoretical framework to study mutational pathways in epistatic systems
has been presented in this chapter. The crucial part is that in our analysis
epistasis affects not only fitness (i.e. proliferation and death rates) but also
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Figure 3.5: Comparison between the path probability distributions
of a minimal Burkitt Lymphoma model. Top: Time distributions for
the model (a) without epistatic effects on mutation probabilities and (b) with
mutational epistasis. The probability to obtain an A mutation is 100 times
higher, if the B mutation is present in that individual. Bottom: In (c) the
path probabilities for the model without epistatic effects on mutations are
illustrated, whereas in (d) the mutation probability is again increased by 100
for an A mutation if the B mutation is present. Pathway 1 corresponds the
the mutational pathway, where first all necessary extra mutations have to be
acquired, and the B mutates last. Pathway 2 denotes the pathway, where 3 of
4 extra mutations have been obtained, then the B mutation happens, and at
last the final extra mutation is acquired. Respectively for the other pathways
(cf. Figure 3.4). The parameters are the same as in the previous chapter: The
birth probability for an individual with j passenger mutations and without the
B mutation is b0,j = 0.5(1+10−5)j, and with the B mutation b1,j = 1.05

2.2
·1.015j.

The mutation probability for the B mutation is µD = 5 · 10−6, for an A
mutation without the B mutation being present µP = 2 · 10−5, and with the
B mutation being present (only necessary for (b) and (d)) µPD = 2 · 10−5. The
population size in the beginning is N = 500000.
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mutation rates. Hereby we could show, that pathways become accessible,
that without mutational epistatic effects are mostly unlikely to happen (cf.
e.g., Figure 3.5). Our analysis is based on multi-type branching processes and
hence it does not rely on the assumption of a constant population size.

While we have focused on a fairly simple system with a fitness landscape
with a single peak, the approach can be extended to a rugged fitness landscape.
Moreover, if back mutations are involved, one can still calculate the time
distribution, although pathways are not clearly defined in a system with back
mutations anymore (see Appendix). Furthermore in the current scenario in
each time step the individuals could replicate or die. In addition we could
have a resting probability where the individuals remain in the same state
with a certain probability. Such complicated scenarios can be incorporated
in our framework as well (Appendix). The computations can be precisely
represented in analytic terms and need to be solved recursively.

We apply our framework to a cancer model including mutational epistasis
[Bauer et al., 2014] and show how the path probabilities are altered by it.
Mutational epistasis can thus lead to heterogeneity in the density of different
mutant types between different age groups, as reaching the final mutant early
is only possible by certain mutational pathways.

As shown here the mutational landscape can undermine the current pre-
dictions based solely on fitness landscapes. Just like in long term evolution,
experimental as well as theoretical approaches ought to be balanced between
studying effects of selection and the strengths of mutations. The theoreti-
cal analysis based on the approach explained here helps in understanding the
importance of mutational epistasis, even though the computations have to be
solved recursively. In particular, it makes analyzing the fitness and mutational
landscapes more interactive, since long-lasting simulations are not necessary
any more.





Chapter 4

Model for the Initiation of Burkitt
Lymphoma

In Chapters 2 and 3 we have investigated abstract, general models and meth-
ods. In this chapter we approach a model particularly designed for the initia-
tion of Burkitt Lymphoma. Of particular interest is the sequence of initiation
mutations, as well as the nature of relapses that occur after successful treat-
ment.

4.1 A Model for the Sequence of Cancer Initi-

ating Events in Burkitt Lymphoma

Burkitt Lymphoma is a highly aggressive B-cell lymphoma. It is, with a dou-
bling time of 24-48 hours, presumably the most rapidly dividing tumor in men
[Abe et al., 1992; Burmeister et al., 2006; Matsuo et al., 1997]. In childhood
it is the most frequent lymphoma, especially in equatorial Africa. Studies
using conventional cytogenetics/karyotyping, array-CGH and gene expression
profiling (GEP) have not shown (gross) differences between adult and pedi-
atric Burkitt lymphoma suggesting a similar lymphoma genesis [Boerma et al.,
2009; Klapper et al., 2008; Onciu et al., 2006; Salaverria et al., 2008]. How-
ever, a recent study using high-resolution SNP-arrays found a higher number
of single nucleotide variants (SNVs) in adult compared to pediatric tumors
[Lundin et al., 2013], and in addition the mutational landscape might reveal
differences. The MYC translocation, characterized by a chromosomal translo-
cation between theMYC protooncogene on chromosome 8 and one of the three
Immunoglobulin genes, is evidently the hallmark mutation of Burkitt Lym-
phoma. It is likely found in every known case of this malignancy [Salaverria
et al., 2014]. This mutation leads to an increased level of MYC protein pro-
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duction [Johnson et al., 2012; Kluk et al., 2012; Tapia et al., 2011]. However,
MYC affects a wide range of genes [Dang et al., 2006; Dave et al., 2006].
Hence, higher levels of MYC protein not only increases the rate of prolifer-
ation of a cell, it also increases its chance of undergoing apoptosis. Other
mutations inhibiting the effect on apoptosis need to also be present in the
same cell in order for the MYC mutation to gain a proliferative advantage.
Indeed, the sole presence of the MYC translocation is insufficient to drive
lymphoma genesis [Müller et al., 1995], suggesting an important etiologic role
for additional genetic events, including mutations [Lundin et al., 2013]. Never-
theless, this seems to contradict the assumption that the MYC translocation
is a primary event in cancer initiation, since cells with this mutation have a
higher chance of dying than dividing. However, an increased level of MYC
protein presumably leads to higher mutation rate of the cell, such that the
chance of getting the necessary additional mutations rises drastically in a cell
with the MYC mutation. The goal of our study is to infer how the prominent
role of the IG/MYC translocation in cancer initiation is compatible with the
idea that this mutation alone is insufficient to drive the cancer.

Presumably, there is a set of core mutations of which two mutations (ad-
ditional to the IG/MYC translocation) are sufficient to drive the cancer in a
patient [Drost et al., 2015; Tomasetti et al., 2015]. Our hypothesis is that the
MYC mutation increases the probability of at least this set of core mutations.
Based on these assumptions we develop a theoretical model. By means of
simulations, we show that we can recapitulate a qualitatively similar modeled
incidence curve compared to an empirically observed incidence curve. Af-
terwards, we investigate the conditions necessary in order for the IG/MYC
translocation to be the initiating event.

4.1.1 Materials and Methods

We assume a time discrete model, where time is measured in generations. In
each generation, a cell either divides, undergoes apoptosis, or nothing changes
(cf. Figure 4.1). For cells with no mutation, the division and apoptosis prob-
abilities (bW and dW ) are both the same. The probability that the cell neither
divides nor dies is consequently 1−bW −dW . Upon an infection, B-cells divide
in the dark zone of a germinal center with a rate of approximately six hours
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Figure 4.1: In each time step a cell either divides, dies, or there is no change.

[Liu et al., 1991; Radmacher et al., 1998]. Otherwise, B-cells divide rarely. We
assume an average division rate of 2 days, corresponding to approximately 15
infection days per year, assuming that B-cells divide only every 3 days during
non infection periods. During the early time steps of each realization, which
correspond to the age of children, the number of B-cells grows to a higher level,
stays at this level for a while, and decreases again to the baseline level (cf.
Figure 4.2). The implementation is described in detail in 7.7 in the Appendix.
We assumed this temporary increase to reflect the typical, exponential growth
of B-cells in children by which new antigens are being produced [Kliegman,
2012].

When a cell divides, its two daughter cells can mutate. In our model, we
consider the MYC translocation as the hallmark mutation of Burkitt Lym-
phoma, additional core mutations, and finally minor mutations without phe-
notypic effects. Of the core mutations we assume that at least two need to be
present.

Minor mutations (see Table 4.1) are much less specific and, in the con-
text of Burkitt Lymphoma, are most likely rather neutral mutations. Figure
4.4 shows the possible mutational pathways of the model. The front of the
hypercube illustrates the types with (right) or without (left) the IG/MYC
translocation and 0, 1, 2, . . . core mutations and no minor mutation. The
types represented in the next layer have one minor mutation and so on.

The different mutations have different effects on the cell’s fitness. Core
mutations are assumed to have a small direct impact on the cell’s fitness.
With each core mutation the probability for apoptosis is reduced by the fitness
parameter sC ≈ 0. The probability for apoptosis thus changes from dW for
a cell with no mutations, to dW (1 − sC)jC , where jC denotes the number of
core mutations present. The minor mutations are assumed to be completely
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Figure 4.2: The number of B-cells rises quickly at a young age and drops again
to a base line level (here 104).

Core mutations Passenger mutations
CCND3 ABCC5
TP53 ADAMTS5
ID3 CHD4
TCF3 E2F2
FBXO11 PHF6
SMARCA4 TBL1XR1

Table 4.1: Exemplary list of possible core and passenger mutations.

neutral (without the MYC translocation being present). Consequently, the
probability that nothing happens in a particular time step increases slightly,
from 1− dW − bW to 1− dW (1− sC)jC − bW .

We assume the IG/MYC translocation to have both an advantageous and a
disadvantageous effect on the cell’s fitness. However, as potential cancer cells,
we assume cells with the MYC translocation to have an individual division
and apoptosis rate, irrespective of potential infection time. For a full-blown
Burkitt cell, i.e., a cell with the MYC translocation and four core mutations,
to have a doubling rate between 30 and 35 hours [Woo et al., 1980]. The
average number of Burkitt lymphoma cells N(t) with four core mutations in
our model can be computed as

N(t) = (1 + bM − dM(1− sMC)4)tN0, (4.1)
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Figure 4.3: The rates for cells with different mutations. Core mutations de-
crease the apoptosis probability by a factor of sC . Minor mutations alone are
assumed to be neutral. The IG/MYC translocation increases both prolifer-
ation and apoptosis probability, where the proliferation probability in com-
parison with the apoptosis probability is smaller by a factor of sM . With the
IG/MYC translocation present, core and minor mutations affect the cell’s di-
vision and apoptosis probability differently. The proliferation probability in
this case is increased by factors sMC for core and sMP for minor mutations.
The apoptosis probability is decreased accordingly.

where N0 is the initial number of cells. The doubling time can be approxi-
mated by setting the left side to 2N0 and solving for t

tdoubling ≈
log (2)

log (1 + bM − dM(1− sMC)4)
. (4.2)

Further, from [Woo et al., 1980] we assume a ratio between the death and
division rates of a full-blown Burkitt lymphoma cell of approximately 0.5, i.e.,
dM (1−sMC)4)

bM
= 0.5. Combining this condition with (4.2) and the fact that

tdoubling is between 30 and 35 hours, we obtain a death rate of dM = 0.06, a
proliferation rate of bM = 0.04, and a fitness advantage for a core mutation
of sMC = 0.25. In the genetic background with the MYC translocation,
passenger mutations have a small fitness advantage of sMP = 0.01. The
apoptosis and proliferation rates as well as the mutational fitness effects are
listed in Figure 4.3.
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Figure 4.4: Mutational Pathways of the Model. Initially, the cells start with
no mutation at all (shaded in yellow). Upon cell division, the daughter cells
can acquire a core mutation (arrow pointing down) a minor mutation (arrow
pointing to the back) or the IG/MYC translocation (arrow pointing right).
The different types are indicated by a tuple X,Y, where X denotes the number
of core mutation and Y the number of minor mutation. Further, a green
colored tuple indicates no IG/MYC translocation in contrast to red colored
tuples.

Mutations cannot only affect the cell’s fitness, they can also influence cer-
tain mutation rates. In order for the IG/MYC translocation to be the first,
initiating event, our simulations show that it needs to increase mutation rates,
i.e., µMC > µC and µMP > µP . Otherwise, it is far more likely that non-
disadvantageous core and minor mutations happen first to pave the way for
the advantageous effect of the MYC translocation, whereas a disadvantageous
IG/MYC translocation first would die out too quickly, if mutation rates were
not increased.
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Figure 4.5: Age incidence curves from simulations (a) and in comparison to
[Boerma et al., 2004] (b). The simulations recapitulate a peak for individuals
at a young age, corresponding to the peak seen in the age of children. The
subsequent raise in incidences occurs at a higher rate. Since we do not account
for any other death possibilities in our model, this makes sense to some extend.
(Parameters: Mutation probabilities: MYC translocation: µM = 2 × 10−7,
Core mutations: µC = 2× 10−6, Minor mutations: µP = 10−7, Core mutation
with MYC present: µMC = 5 × 10−4, Minor mutation with MYC present:
µMP = 10−3.
Change in fitness for a cell with: Core mutation: sC = 10−5, Core mutation
with MYC present: sMC = 0.25, Minor mutation with MYC present: sMP =
0.01. Baseline level for number of cells: 104, High level: 106, increase by 0.1%,
decrease by 0.003%.)

4.1.2 Results and Discussion

4.1.2.1 Time Distribution

Simulations of the model described above show a time distribution of the
disease incidence qualitatively similar to the age incidence curve of Burkitt
Lymphoma as seen in real life [Boerma et al., 2004]. The similarity is illus-
trated in Figure 4.5. Due to the temporary rise in B-cells at early age, there
is a small hump in the beginning and then a very subtle increase. This latter
increase eventually vanishes again to a decrease in incidents, but this occurs
beyond the normal life expectancy, such that what we see in the age incidence
is only the subtle increase. Figure 4.5 shows the time distribution of 26000
realizations of the model with a specific set of parameters, specified in the
figure caption, which lead to a disease case at a certain age.

Note, that the overall incidence is much higher than expected in real life
(here 250 out of 4500). This is due to the fact, that computing enough simula-
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tions of the model with quantitatively realistic parameters is computationally
extremely expensive. The incidence of Burkitt Lymphoma is about 1 in 1
Million per year. Thus, we would need to do on average 1 Million simulations
to get one case within the life expectancy. To be able to get a time distri-
bution fine enough to be able to recover the first hump of the incidence in
children, one would need billions of simulations. However, despite this lack in
quantitative realism, our qualitative arguments still hold.

If we would assume a roughly constant population size of cells at risk, such
an early peak in the incidence would not be possible. Therefore, we postulate
that the increased number of B centroblasts in children [Kliegman, 2012] is
driving the higher incidence in children.

4.1.2.2 Sequence of Mutational Events

Of particular interest is the order of mutations during the initiation of the
disease. Not only is knowledge over the order of mutations crucial for the
basic understanding of the initiation of this cancer, it also holds important
information for therapeutic applications. The cell lineage that initiates the
cancer originates from a cell lineage that lacks (at least) one mutation for
the formation of a tumor. We call cells from this cell lineage precursor cells.
These precursor cells pose a high risk for a potential relapse, in case the orig-
inal cancer is being successfully treated. Therefore, knowing which mutations
are commonly present in possible Burkitt precursor cells, one might be able to
specifically target those cells in order to reduce the risk for a potential relapse.
It is commonly assumed, that the MYC translocation is the initial mutation
in the cell lineage initiating Burkitt Lymphoma. Empirical evidence is how-
ever hard to obtain. Further, since the MYC translocation itself presumably
increases the apoptosis rate more than the proliferation rate, the accumulation
of subsequent core mutations is only possible if the mutation rate for those
core mutations is increased substantially by the MYC translocation. By fur-
ther analyzing our presented theoretical model, we aim to acquire an idea on
the change in mutation rate.

We have kept track of the order of mutations in 20000 realizations. To
see how often the MYC translocation has happened first, or second, or even
later, Figure 4.6 shows the frequencies of the initiating cancer cell lineage
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Figure 4.6: In our model for the initiation of the cancer an MYC translocation
and two core mutations are necessary. Shown here are the Frequencies for the
initiating cancer cell lineages to have accumulated different numbers of core
mutations prior to the MYC translocation. The frequencies are distinguished
between three different age groups (see legend). The parameters are the same
as in Figure 4.5.

to have accumulated no, one, or up to 4 core mutations prior to the MYC
translocation.

Interestingly, although the mutation probability for core mutations is in-
creased by 250 it seems rather unlikely for the MYC translocation to be the
initiating event. Further, it is important to note that the number of core
mutations prior to the MYC translocation increases in probability with age.
The simulations suggest that for very young patients the MYC translocation
was very likely the initiating event, or only one core mutation has happened
beforehand. In contrast, for older patients the probability that more than one
core mutation is acquired prior to the MYC translocation increases according
to our model.

Let us investigate now which parameters can be altered in order to get
more cases where the MYC translocation really is the first event.

First, we can increase the mutation probability of core mutations for
MYC+ cells even further. This leads to even more incidences in the young
age group and respectively less incidences in the older age group. In Figure
4.7, left subfigure, we have used similar parameters as before, but the MYC
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Figure 4.7: The probability for the cancer initiating cell lineage to have ac-
quired different numbers of core mutations prior to the MYC translocation
(compare Figure 4.6) with different parameters is shown here. Again the
IG/MYC translocation and two core mutations are assumed to be necessary
for the initiation of the cancer. Most of the parameters are the same as in
Figure 4.5. In the left figure the effect of the mutation rate on the core mu-
tation is analyzed. The increase in mutation rate that comes along with the
IG/MYC translocation is set to be even greater. Instead of µC = 2×10−6 for
the mutation rate of core mutations and µMC = 5× 10−4 for the mutation rate
of core mutations in presence of the IG/MYC translocation, we have used
here µC = 10−6 and µMC = 10−3. In the right figure the mutation rate of the
IG/MYC translocation is µM = 5× 10−7 instead of µM = 2× 10−7.

translocation enhances the mutation rate for core mutations by 1,000 instead
of 250. We find that this increase in core mutation rate has a great effect on
the number of mutation events prior to the MYC translocation. It also shifts
the simulated incidence curve towards early incidences.

Second, the mutation probability µM affects the population dynamics. A
higher mutation probability means once again a higher probability for the
IG/MYC translocation to be the initiating event, but only up until a certain
point. The reason is that also for cells with core mutations, the mutation
probability for the IG/MYC translocation, and hence the probability for this
mutational pathway, is enhanced. In Figure 4.7, right subfigure, the order of
mutations is shown for similar parameters as in Figure 4.5, but the mutation
rate for the MYC translocation is 5× 10−7 here.

Further, we can change the ratio of birth and death for MYC+ cells, which
is defined here as the cell’s fitness. Increasing this ratio would result in more
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division events compared to apoptosis events, and thus increasing the chance
of getting (additional) core mutations. However, one has to make sure to use
values in the range found by [Woo et al., 1980]. With the parameters used for
bM , dM , and sMC we cannot increase the ratio substantially.

Increasing the fitness advantage for the core mutations sC gives a further
advantage for cells with this mutation. Therefore, the chance for core muta-
tions to have happened in the cancer cell lineage first increases. Consequently,
decreasing that parameter would make it less likely for core mutations to have
been acquired prior to the IG/MYC translocation. The parameter we are us-
ing is sC = 2 × 10−6, which is already very small. A negative value for this
parameter is biologically not reasonable.

We conclude that the fitness of a MYC+ cell cannot be too disadvanta-
geous, and the mutation probability has to be increased a lot in order for
the MYC translocation to be the initiation event. The observation that older
patients have an increased probability for the MYC translocation not to be
the initiating event in our simulations questions the hypothesis that this par-
ticular event is always the initiating one. This would have direct implications
particularly for preventive screening. Patients, for whom the MYC translo-
cation was not the initiating event, must have cell lineages with only core
mutations. Those lineages grow only slowly and could in principle be de-
tected by screening. Contrary, a cell with the MYC translocation alone (no
core mutations) has to acquire further core mutations very quickly in order to
survive, and then initiate the cancer (cf. Figure 4.8). This might be too fast
to allow detection of Burkitt precursor cells in preventive screening.

4.2 Timing and Nature of Relapses

We assess the timing and nature of relapses of Burkitt Lymphoma in this
section. The analysis presented here is based on the publication [Aukema
et al., 2015]. Our model is based on a time-continuous branching process
[Antal and Krapivsky, 2011; Bozic et al., 2010, 2013; Durrett et al., 2010;
Haccou et al., 2005; Kimmel and Axelrod, 2002]. We assume two different
types of cells, MYC+ precursor cells, which are not affected by therapy, and
Burkitt lymphoma cells, which survived cancer therapy. Both types of cells
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Figure 4.8: Number of cells with the MYC translocation (blue) and only core
and minor mutations (green). Top: Cancer is developed by a cell lineage with
two core mutations prior to the MYC translocation. Cells with a core muta-
tion are present in the organism for a long time before explosive proliferation
happens. Bottom: Cancer happens early and starting from a lineage with the
IG/MYC translocation first. There is a low number of cells with core muta-
tions (due to exponential growth after birth). Otherwise, there is no increased
level in the number of cells with core mutations.

can lead to a relapse, but precursor cells need an additional mutation. For
each of the two types, we assume different proliferation and apoptosis rates.
As the presumed cell of origin for Burkitt lymphoma is a germinal center
dark zone cell [Basso and Dalla-Favera, 2015; Klein and Dalla-Favera, 2008;
Victora et al., 2012] and cell cycle rates of 6 – 12 hours have been reported
for centroblasts [Klein and Dalla-Favera, 2008; Meyer-Hermann et al., 2012;
Radmacher et al., 1998; Victora and Nussenzweig, 2012] we assume that the
MYC+-precursor cells divide at most every 6 hours, i.e., 4 times per day. In
contrast to the t(14;18)/IGH-BCL2, (virtually) no benign neoplasms or lymph
nodes with the t(8;14)/MYC-IGH have been described [Kluin, 2014; Limpens
et al., 1991; Mamessier et al., 2014; Nagy et al., 2009; Tellier et al., 2014].
Moreover, precursor cells do not lead to a tumor. Therefore, the apoptosis
rate for precursor cells has to be (at least) equal to the division rate, i.e. 4
per day.

The division and apoptosis rates for full-blown Burkitt Lymphoma cells are
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obtained using the empirically deduced doubling time of Burkitt Lymphoma
and fraction between proliferation and apoptosis of Burkitt Lymphoma cells.
For a time-continuous one-type branching process, the average number of
cells N(t) grows over time as N(t) = N0e

(b−d)t, where b and d denote the
proliferation and death rates, and N0 states the initial number of cells. To
acquire the difference of proliferation and apoptosis rates b − d for a known
doubling time, we set the left hand side equal to 2N0 and solve for b− d

2N0 = N0e
(b−d)td ⇔ b− d = ln(2)/td, (4.3)

where td, denotes the time it takes for a population to double its size. For
our model we have considered three different doubling times, 24 hours, ≈
33.3 hours, and 48 hours [Woo et al., 1980]. This leads to differences of
approximately b− d = 0.7, 0.5, and 0.35. Additionally, from Woo et al., [Woo
et al., 1980] we have used three different values for the fractions d/b = 0.25,
0.5, and 0.667. The ratio and difference of the proliferation and apoptosis rate
allows us to determine both the division rate and the apoptosis rate. Initially,
there is presumably enough space and nutrition for all cells, which allows us to
assume constant proliferation and apoptosis rates. If a precursor cell divides,
the daughter cells can mutate, leading to a new lineage of full-blown Burkitt
lymphoma cells. The various possible events are illustrated in Figure 4.9.

The value for the mutation rate is varied across simulations. As the upper
limit we consider a very high mutation rate, 0.1. As the lower limit, we use
the biological estimate of 10−10 [Tomasetti et al., 2013].

Finally, we need to assume an initial number of cells. Before therapy, there
are more Burkitt Lymphoma cells than precursor cells. Chemotherapy is most
harmful for fast proliferating cells. Since the Burkitt lymphoma cells divide
on average more often than precursor cells (unless they are in a centroblast
stage), we assume that the Burkitt lymphoma cells are targeted more effec-
tively than the precursor cells. As a conservative estimate we use an initial
number of cells for both populations of 10. For illustration purposes, Figure
4.10 shows a single realization of a simulation of this process. The simulation
in continuous-time is based on a Gillespie Algorithm [Gillespie, 1977]. The
remaining lymphoma cell quickly produces a lineage that grows exponentially
fast. After less than one month, the population of Burkitt lymphoma cells
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Figure 4.9: The rates of division of precursor cells (red) and Burkitt lymphoma
cells (green) are depicted here. A precursor cell divides with rate bp and
undergoes apoptosis with rate dp = bp. If it divides, one of the daughter
cells mutates with probability µ and becomes a full-blown lymphoma cell.
This Burkitt lymphoma cell originates from a new lineage and is therefore
illustrated in a different coloring. A Burkitt lymphoma cell divides with rate
bc, and it undergoes apoptosis with rate dc, where dc < bc.

already reaches about 1 Million cells.

Figure 4.11 shows the estimated probability for a relapse to occur via
a Burkitt lymphoma cell that has survived therapy compared to a relapse
via a mutated precursor cell. We notice that the mutation rate has to be
enormously high (far exceeding those reported in literature [Tomasetti et al.,
2013]) in order for a relapse to happen via a mutated precursor cell. Overall
the probability for a relapse to occur via a left-over Burkitt lymphoma cell is
greater than about 80%. Even for a rather slow doubling time of 48 hours,
a high cell loss factor of 0.667 (red line in (c)), and an enormously high
mutation rate of 0.1 the probability for a Burkitt lymphoma relapse is still
approximately 75%. Already for a mutation rate of 10−5 the probability for a
relapse via a precursor cell is virtually 0%. Therefore, testing for even lower
mutation rates is not necessary here.

To stress the robustness of the probability of a relapse via a left-over
Burkitt lymphoma cell, we have run additional simulations with parameters
that reflect an even greater advantage for precursor cells compared to the
already conservative set of parameters described above. In particular we have
used a proliferation and apoptosis rate of 2 hours for precursor cells and have
assumed 100 precursor cells initially. The initial number of left-over Burkitt
lymphoma cells has been kept at 10. Figure 4.11 (d)-(f) show the resulting
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BL/leukemia
Cells

Precursor Cells

Figure 4.10: A single realization of the model. The population of precursor
cells fluctuates around the initial number of cells until it goes extinct. The
Burkitt lymphoma cell population grows exponentially. After less than one
month, the number of cells reaches 106.

estimated probabilities for a relapse via a left-over Burkitt lymphoma cell.
These simulations show that a relapse via precursor cells remains extremely
unlikely for biologically meaningful mutation rates.

Additionally, in Figure 4.12 the time distributions of relapses after the ter-
mination of therapy are shown for two parameter sets. We here define a relapse
in our model when 108 Burkitt lymphoma cells are present again (a number of
Burkitt lymphoma cells which could, at least by sensitive breakpoint-specific
PCR, be detected in the bone marrow of, as reference, a seven year old boy of
approximately 25 kg) [Bianconi et al., 2013; Boerma et al., 2004; Busch et al.,
2004; Harrison, 1962; Kuczmarski et al., 2002].

Figure 4.12 shows, that according to our model relapses from left-over
Burkitt lymphoma cells need a little over a month to occur with the parameters
stated in the caption. Also relapses from a precursor cell seem to occur very
quickly. However, the mutation rate of 10−3 is chosen to be very high. With a
lower mutation rate we would see even less relapses occurring via a precursor
cell, because relapses via a left-over Burkitt lymphoma cell are much faster.
To check the timing of relapses occurring via a mutated precursor cell, we
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Figure 4.11: The estimated probability that a relapse happens via a Burkitt
lymphoma cell that has survived therapy and not via precursor cells.
In (a)-(c) the initial numbers of cells for precursor and left-over Burkitt lym-
phoma cells are 10. For a relapse to happen via a precursor cell, the mutation
rate needs to be very high. Even for a mutation rate of 0.1 the probability is
approximately 80% for a relapse to happen via a left-over Burkitt lymphoma
cell. With a high doubling time td and a high cell loss factor (d/b) (red line
in (c)) that probability drops to approximately 75%.
In (d)-(f) the initial number of cells for precursor cells is increased to 100.
Further, the rate for proliferation and apoptosis is increased to 2 hours. Also
for these extreme parameters for Burkitt lymphoma cell, our model suggests
a probability of a relapse via a Burkitt lymphoma cell of 100% for a mutation
rate of 10−5 or slower.

therefore set the number of left-over BL/Burkitt lymphoma cells to one and
use a more realistic mutation rate. Setting the number of left-over Burkitt
lymphoma cells to one leads to a higher of probability for this lineage to die
out by stochastic effects, which leaves time for the precursor lineage to produce
a relapse. The timing for these parameters is shown in Figure 4.13.
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Relapse via
BL/Leukemia cell

Relapse via
BL/Leukemia cell

Relapse via Mutated
Precursor cell

Figure 4.12: The distributions of relapse times after therapy. In both his-
tograms we have a doubling time of 33.27 (i.e., bc− dc = 0.5) hours and a cell
loss factor dc/bc of 0.5. The mutation rate is 10−3.
Left: The precursor cells divide and die with rate 6 hours and initially there
are 10 left-over Burkitt lymphoma cells and 10 precursor cells. There are no
relapses happening via a mutated precursor cell.
Right: The precursor cells proliferate and die with rate 2 hours and there are
100 precursor cells present initially. There are some relapses occurring via a
newly founded Burkitt lymphoma lineage (red bars). Relapses via mutated
precursor cells tend to take slightly more time on average to happen compared
relapses via a left-over Burkitt lymphoma cell.
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Figure 4.13: The distributions of relapse times after therapy for a different set
of parameters. As in Figure 4.12, a doubling time of 33.27 (i.e., bc− dc = 0.5)
hours and a cell loss factor dc/bc of 0.5 are assumed. The initial number of
cells for left over Burkitt lymphoma cells is only one and for precursor cells it
is 1000. The mutation rate is set to 10−7. Precursor cells divide and die every
6 hours. While the relapses occurring from a left over Burkitt lymphoma cell
need on average approximately 38 days, the relapses occurring via a mutated
precursor cell need much longer, approximately 200 days on average. A slower
turnover rate and a smaller mutation rate would lead to an even later timing
of the relapses via precursor cell.



Chapter 5

Further Research

5.1 Branching Process with Frequency Depen-

dent Fitness

As already mentioned in Section 5.1, the independence of individuals in a
Branching Process is on the one hand convenient for the calculation of extinc-
tion probabilities. On the other hand, however, it reduces the applicability.
Even though for cancer initiation the assumption of independence is largely
valid, taking into account population size dependent interactions is important
for certain investigations. One very prominent example is immunosurveillance.
At some point of cancer progression the cancer cells are usually being recog-
nized by immune cells as being harmful. At the same time, the cancer cells
try to escape immunosurveillance and acquire further mutations [Schreiber
et al., 2011]. This interplay between immune cells and cancer cells leads to
interactions between cells, such that proliferation and apoptosis of cancer cells
cannot be assumed independent anymore. For this reason, a short overview
on how to introduce such dependencies in a Branching Process and how one
could “in principle” calculate extinction probabilities is given in the following.

For the sake of simplicity we first start by examining the principles in a
one-type process. We are using a time-continuous process here [Haccou et al.,
2005]. The individuals live for a while and then produce a certain number
of offspring (zero offspring is also valid) and die. The time they live is ex-
ponentially distributed, where the parameter depends on the birth and death
rates. Let bm and dm be the birth and death rates in a population of size
m. The process is completely characterized by the probabilities of having m
individuals at a certain point of time pm(t). The change of those probabilities
obeys the Kolmogorov forward or backward equations. For density indepen-
dent processes, it is easier to calculate the probability generating function of
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the process using the Kolmogorov backward equations. However, since we
are ultimately interested in density dependent processes, we need to use Kol-
mogorov forward equations. Let us therefore derive the Kolmogorov forward
equations for the one-type process we are discussing here. The probability
pm(t) changes forward in time with the birth and death rates, resulting in
m+ 1 and m− 1 individuals respectively

ṗm(t) = (m− 1)bm−1pm−1(t) + (m+ 1)dm+1pm+1(t)−m(bm + dm)pm(t).

(5.1)

The probability generating function (over time) is defined as

f(z, t) =
∞∑
m=0

pm(t)zm. (5.2)

Hence, the derivate with respect to t of the PGF is calculated as

ḟ(z, t) =
∞∑
m=0

ṗm(t)zm. (5.3)

Inserting Equation 5.1 and rearranging the terms leads to the following

ḟ(z, t) =
∞∑
m

mpmz
m−1(z − 1) (zbm − dm) . (5.4)

If the birth and death rates would be density independent (bm = b, dm = d),
we can use the fact that mzm−1 = ∂

∂z
zm and thus obtain

ḟ(z, t) = (z − 1) (zb− d)
∂

∂z

∞∑
m

pmz
m = (s− 1) (zb− d) ∂zf(z, t). (5.5)

The solution of this partial differential equation (PDE) is [Antal and
Krapivsky, 2011; Athreya and Ney, 1972]

f(z, t) = 1− b− d
b
(

1−
(

1− b−d
b(1−z)

)
exp (−(b− d)t)

) . (5.6)

For density dependent processes, the resulting PDE is only seldom analytically
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solvable. Let us for now assume that both the birth and death rate for one
individual depend linearly on the number of other individuals bm = (m− 1)b,
dm = (m− 1)d. The resulting PDE for the PGF is

ḟ(z, t) =
∞∑
m

m(m− 1)pmz
m−2z(z − 1) (zb− d) = z(z − 1) (zb− d) ∂zzf(z, t),

(5.7)

which resembles a generalized heat equation.

The solution of (5.7) allows us to analytically calculate the extinction
probability and numerically also the extinction time. The total extinction
probability would be given by pextinction = limt→∞ f(0, t). The probability
for extinction until a certain time point τ is f(0, τ). Extending 5.7 to multi-
type processes would make it possible to include interactions between cell
types. The integration of competition between cells would make it potentially
possible to not only analyze the population dynamics during cancer initiation,
but also at a later stage.

5.2 Epistasis in Spatially Structured Popula-

tions

Generalizing the analysis of epistatic interaction with respect to density de-
pendent populations is a very interesting subject for future research. As stated
above, integrating competition between cells allows to analyze the population
dynamics of cancer also at a later stage. Cancer cells are not always well-
mixed. In a solid tumor, the cancer cells might be structurally organized.
Another exciting research direction is therefore the investigation of the effect
of population structure. The idea is to place individuals on the nodes of a
graph and let them interact only with their neighbors. The neighbor is rep-
resented by the links between nodes. In particular, we are using the Moran
Process on a graph. In the following section, the Moran Process is described
in general. Afterwards an algorithm is presented, with which the average time
of fixation for a certain type in a population with fixed size, can be computed.
One is also able to compute the average path probabilities by modifying this
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Figure 5.1: Illustration of the Moran Process. First one individual is chosen
according to its fitness for reproduction (highlighted by a blue shadow). Af-
terwards an individual is chosen for death, which is replaced by the offspring
the reproducing individual.

algorithm. In Chapter 2 we have seen that the secondary driver mutations
have a much higher probability to happen first, because the driver mutation
is deleterious. Komarova et al. [2014] have shown that in a structured pop-
ulation deleterious intermediate types reach the beneficial type faster than
advantageous intermediate ones. We therefore envision, that the population
dynamics and the path probabilities look differently in a structured population
compared to the well-mixed case as in 2.

Moran Process

Let us start with a brief overview of the time-discrete Moran Process. The
Moran Process involves a population of constant size N , where the individuals
can be of different types. For a type k individual the interaction with other
individuals in the population is described by its payoff function πk. In a well-
mixed system all individuals of a specific type have the same payoff, because
all individuals interact with each other. If the individuals are placed on a
network, they interact only with its neighbors. In each time step one indi-
vidual is chosen for reproduction proportional to its fitness, where the fitness
is a function f(βπk) of the payoff and the selection intensity β. Afterwards
another individual is chosen randomly for death. Thus, the offspring of the
first chosen individual replaces the second chosen individual. Figure 5.1 illus-
trates the procedure for one time step. This is the basic set up, upon which
different properties have been analyzed in literature. Fitness can for instance
depend on the frequencies of the different types. Further, one could introduce
mutations between a fixed number of types, or give even the possibility to
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create new types with a stochastic fitness, cf. [Huang et al., 2012].
Let us first consider a system with only two types. We call the wild type

individuals A, and the mutant type individuals B. Let i denote the number
of B individuals, the number of A individuals is hence N − i. The interaction
between A and B individuals is often described by a payoff matrix, where the
four single payoffs for the interactions for an A with another A or B individual,
and respectively for B individuals. With the payoff matrix

A B
A a b
B c d

an A individual would receive a payoff of a from every other A individual and
b from every B individual. The total payoff is then πiA = (N − i− 1) · a+ i · b.
Analogously we can calculate the total payoff for a B individual πiB = (N−i) ·
c+ (i− 1) · d. Since in each time step only one individual reproduces and one
dies, the number of mutants can increase or decrease only by one in each time
step. The probability for an increase (T+

i ) and decrease (T−i ) is calculated as

T+
i =

if(βπB)

N 〈f〉
N − i
N − 1

,

T−i =
(N − i)f(βπA)

N 〈f〉
i

N − 1
,

(5.8)

where 〈f〉 = if(βπiB) + (N − i)f(βπiA) is the average fitness. The probability
that the number of mutants does not change is consequently T 0

i = 1−T+
i −T−i .

We impose that the derivative of f(βπiB) be always greater than zero, such
that the fitness increases with payoff.

Here, we are interested in the fixation probability of a single mutant (B)
in an otherwise homogenous population of wild type individuals (A). We
will analyze the fixation probabilities for the different states of the system,
ρi, i ∈ {0, . . . , N}. These fixation probabilities can be derived by recursive
calculations of the so called Master Equation. In the Master Equation we
represent the fixation probability in terms of transition probabilities and the
corresponding fixation probabilities for the resulting states of the system

ρi = T+
i ρi+1 + T−i ρi−1 + (1− T+

i − T−i )ρi, (5.9)
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where the transition probabilities T+
i and T−i are defined in Equation (5.8)

and ρ0 = 0, ρN = 1. Let us collect all transition probabilities in a matrix of
dimension R(N+1)×(N+1)

T =



T 0
0 T+

0 0 0 0 · · · · · · · · · 0

T−1 T 0
1 T+

1 0 0 · · · · · · · · · 0

0 T−2 T 0
2 T+

2 0 · · · · · · · · · 0
... . . . . . . . . . . . . ...
... . . . . . . . . . . . . ...
... . . . . . . . . . . . . ...
... . . . . . . . . . . . . ...
0 · · · · · · · · · · · · 0 T−N−1 T 0

N−1 T+
N−1

0 · · · · · · · · · · · · · · · 0 T−N T 0
N



. (5.10)

The master equations can now be written in terms of an Eigenvector problem

Tρ = ρ, (5.11)

where ρ = (ρ0, ρ1, . . . , ρN)T .

We now transform this Eigenvector problem into a linear system of equa-
tions. The states 0 and N are absorbing states and thus T 0

0 = T 0
N = 1 and

T+
0 = T−N = 0 irrespective of fitness and selection values. Let us formulate

the transition matrix as a block matrix, distinguishing between absorbing and
transient states

T =

 1 0 0

t1 T t2

0 0 1

 , (5.12)

where t1 = (T−1 , 0, . . . , 0)T , t2 = (0, . . . , 0, T+
N−1), and T represent the transi-

tion probabilities between transient states. Further, ρ0 = 0 and ρN = 1 are
also independent of fitness and selection values. Due to the fact that ρ0 = 0,
the transition value into this state T−1 does not hold information which is
directly necessary for the computation of the fixation probability, because it
enters in the Master Equation as T−1 ρ0 = 0. Using this block notation, we can
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write Equation (5.11) as

1ρ0 + 0T%+ 0ρN = ρ0 = 0,

0ρ0 + 0T%+ 1ρN = ρN = 1, (5.13)

T %+ t2 = %,

where % = (ρ1, . . . , ρN−1)
T .

As discussed above, the first two rows are always true irrespective of fitness
and selection values. Hence, we only need to consider the last row. By bringing
% onto the left side and subtracting both sides by t2, we obtain the system of
linear equations

T % =
(
0, . . . , 0,−T+

N−1
)T
. (5.14)

The fixation probabilities can now be computed as the solution of this system
of linear equations.

For this simple system, the fixation probabilities have an analytically
closed form solution [Karlin and Taylor, 1975; Nowak, 2006; Traulsen and
Hauert, 2009]

ρi =
1∑N−1

k=0

∏k
i=1

T−
i

T+
i

. (5.15)

For a structured population, however, a closed form solution is not know.
Approximative solutions have been obtained for certain network structure, cf.
eg., [Hindersin and Traulsen, 2014; Kaveh et al., 2015]. The approach using
the master equations and rewriting them into the system of linear equations as
in Equation 5.14 is always possible. Note, that in a structured population the
number of states is much larger, because not only the number of B individuals
matters, but also the position on the structure. While the ultimate transition
matrix T in Equation 5.14 is of size (N − 1)× (N − 1), the matrix for the
same system but on a network would scale with (2N − 2)× (2N − 2). To
analyze epistatic interactions we need at least a system with four different
types, wild type, final type and two intermediate types, where the fitness
difference for the final type compared to the wild type is not just the sum of
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the fitness differences of the two intermediate types (cf. Figure 3.1). This leads
to a transition matrix Tepistasis that scales with (4N−2)×(4N−2). Note, that
the transition probabilities in such a system consists of two parts now, because
mutations are introduced. One part is similar to the transition probabilities
used beforehand in case of no mutation. Additionally, the offspring of the
proliferating individual can mutate, which adds an additional term to the
transition probabilities.

Most entries of the ultimate transition matrices are zero, which is very
convenient for memory purposes. And for more than two types, some theo-
retical states are not possible, see for example the state as depicted in Figure
5.2 Nevertheless, the size of the matrix increases exponentially. As a starting

ab AB

abAB

Figure 5.2: In a regular grid with four individuals and four types, this state
is not accessible. Since we neglect double mutations, one of the neighbors of
an AB individuals would have to have already one mutation.

point, we have therefore looked at a minimal grid of size 2x2 with four types,
similar to the system depicted in Figure 3.1, where initially all cells are of
type ab.

Comparing the fixation times between the well-mixed and spatially struc-
tured populations for different mutation rates, we find the interesting effect
that the grid can accelerate or slow down the time of fixation, depending on
the mutation rates. In Figure 5.3 the ratio between the time necessary for
fixation of the final AB mutant with a population on a grid (tgrid) and a well-
mixed one (twell−mixed) is shown. The parameters are stated in the caption.

Another possibility to compute the fixation times would be averaging over
simulations. However, for the parameters we are using here, the differences in
the mean fixation times between the distinct populations (well-mixed and on
a grid) are very close. Additionally, the variance in fixation time is high. To
be able to correctly classify differences in mean fixation times, a very large
number of realizations is necessary.

Pursuing research in this field will allow us to further understand the role
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µB = 10�3

µB = 10�5

µB = 10�4

Figure 5.3: Ratio between the time necessary for fixation of the final AB
mutant with a population on a grid (tgrid) and a well-mixed one (twell−mixed).
Interestingly, the grid structure accelerates or slows down fixation depending
on the mutation rates. The mutation rate for the A mutation is µA = 10−4.
The mutation rates for the B mutation (irrespective of the mutational back-
ground, i.e., µB = µAB ) are stated in the figure. The fitness for ab type
individuals is 1, for aB individuals it is 1.00004, Ab individuals have a fitness
of 0.9545, and AB individuals 1.0614.

of spatial structures for epistatic systems in cancer initiation.





Chapter 6

Summary

Throughout this thesis a framework has been presented to theoretically and
mathematically study epistatic effects in cancer initiation.

In Chapter 2 it has been shown that the common distinction between
driver and passenger mutations is often not enough. In some cancers, appar-
ent neutral mutations have a fitness effect in a different genetic background.
Hence, especially in systems in which epistatic interactions play a key role
(cf. Chapter 2, 4) one might need to introduce terms such as secondary driver
mutations. We have seen that in epistatic systems the order of mutations is
not straight forward to reconstruct, even more so when there are also epistatic
effects regarding mutation rates.

In Chapter 3 an algorithm for the likelihood of different mutational path-
ways has therefore been derived. Even though a closed form solution cannot
be acquired, the procedure introduced makes exploring the parameter space
much more interactive. Long lasting simulations are not necessary anymore to
compute the probability density over time for the different mutational path-
ways. Moreover, our approach presented here does not use the usual assump-
tion of strong selection and weak mutation. Rather any parameter set can
be used. This helps investigating and understanding systems with epistatic
fitness and mutation landscapes.

In the following chapter, we have looked at a realistic model for the ini-
tiation of Burkitt Lymphoma. The model used there exceeds the necessary
conditions for the previously developed algorithm. The qualitative dynamics
in dependence of mutation rates and fitness values has therefore been analyzed
by means of simulations. We have investigated the sequence in which the dif-
ferent mutations occur. Interestingly, in order for the IG/MYC translocation
to be the initiating event, our model suggests that the mutation rate for addi-
tional (core) mutations needs to be increased by the IG/MYC translocation
greatly.
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Further in that chapter, a model describing the formation of a relapse after
therapy in Burkitt Lymphoma is analyzed. The cell lineage that originates
the relapse can either be the original Burkitt Lymphoma lineage, which has
not been completely eradicated by the therapy, or a precursor lineage. Cells
from that precursor lineage lack at least one mutation. It has been shown that
a relapse most likely originates from a Burkitt lymphoma cell, which survived
therapy, unless the mutation rate for the lacking mutation for the precursor
cell lineage is enormously high.

In January 1971, Richard Nixon has declared the “War on Cancer” and has
increased the efforts to find a cure for cancer. More than four decades later,
the war is still far from being won. Theoretical biology provides a promising
tool and new hope to advance in this war. The theoretical models worked out
in this thesis present a small part in this huge venture and help understanding
fundamental questions in cancer initiation.
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Appendix

7.1 Analytic Expression for the Average Num-

ber of Cells without the Primary Driver

Mutation at Generation t

7.1.1 Secondary Driver Fitness Advantage is unequal to

Zero - k Secondary Driver Mutations

We first consider the case without the primary driver mutation. We assume
sP 6= 0 (and consequently (1 + sP) = ςP 6= 1), as discussed in the main text.
The rate change of cells with k secondary driver mutations is

x0,k(t) = νPς
k
Px0,k(t− 1) + µPς

k−1
P x0,k−1(t− 1), (7.1)

where x0,−1(t) ≡ 0. The solution of (7.1) is formulated in the following theo-
rem:

Theorem 1 For any integer k ≥ 0, the number of cells with k secondary
driver mutations and no primary driver mutation is

x0,k(t) = NµkPν
t−k
P ς

k(k−1)/2
P

k−1∏
n=0

1− ς t−nP

1− ςn+1
P

. (7.2)

Proof 1 Since solutions for recursive functions are unique, (7.2) would be the
only solution if it fulfills (7.1). Hence, we proof (7.2) by inserting the equation
on the right hand side of (7.1).
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νPς
k
Px0,k(t− 1) + µPς

k−1
P x0,k−1(t− 1)

= νPς
k
PNµ

k
Pν

t−k−1
P ς

k(k−1)/2
P

k−1∏
n=0

1− ς t−n−1P

1− ςn+1
P

+ µPς
k−1
P Nµk−1P νt−kP ς

(k−1)(k−2)/2
P

k−2∏
n=0

1− ς t−n−1P

1− ςn+1
P

= NµkPν
t−k
P ς

k(k−1)/2
P

(
ςkP

k−1∏
n=0

1− ς t−n−1P

1− ςn+1
P

+
k−2∏
n=0

1− ς t−n−1P

1− ςn+1
P

)
.

(7.3)

We can write each of the two products as a q-binomial coefficient,∏k−1
n=0

1−ςt−n
P

1−ςn+1
P

=
[
t
k

]
ςP
. Thus, with the q-Pascal rule [Kac and Cheung, 2002]

ςkP

[
t− 1

k

]
ςP

+

[
t− 1

k − 1

]
ςP

=

[
t

k

]
ςP

(7.4)

Equation (7.3) simplifies to

νPς
k
Px0,k(t− 1) + µPς

k−1
P x0,k−1(t− 1) = NµkPν

t−k
P ς

k(k−1)/2
P

k−1∏
n=0

1− ς t−nP

1− ςn+1
P

=x0,k(t), (7.5)

which concludes the proof.

7.2 Analytic Expression for the Average Num-

ber of Cells with the Primary Driver Muta-

tion at Generation t

We now turn to the cells which have obtained the primary driver mutation.
As discussed in the main text, we only look at the case where the fitness
change of the secondary driver mutation is not equal to zero, sP 6= 0. Cells
without the primary driver mutation can only arise through cells that lack one
secondary driver mutation. Hence, there is only one mutational pathway to
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cells without the primary driver mutation. Conversely, cells with the primary
driver mutation can be reached via different mutational pathways, because
cells that get the primary driver mutation might have different amounts of
secondary driver mutations. Hence, we need to sum over all those possible
pathways. Let p be the number of secondary drivers that are present in the cell
which acquires the primary driver mutation. Then x(p)1,k(t) denotes the number
of cells with the primary driver mutation and k secondary driver mutations,
when the primary driver mutation has happened in a cell with p secondary
driver mutations (0 ≤ p ≤ k). With this, the total number of cells with the
primary driver mutation is

x1,k(t) =
k∑
p=0

x
(p)
1,k(t). (7.6)

The change in the number of cells now depends on p. We have

x
(p)
1,k(t) =

νDςDςkDPx
(p)
1,k(t− 1) + µPςDς

k−1
DP x

(p)
1,k−1(t− 1), if p < k

νDςDς
k
DPx

(p)
1,k(t− 1) + µDς

k
Px0,k(t− 1), if p = k.

(7.7)

The solution of (7.7) is given by the following theorem:

Theorem 2 The average number of cells with the primary driver mutation
and k secondary driver mutations, given that the primary driver mutation
happens in a cell with p secondary driver mutations, is given by

x
(p)
1,k(t) =NµDµ

k
P ς

k−p
D ς

(k(k−1)−p(p−1))/2
DP

ς
p(p+1)/2
P∏p−1

n=0

(
1− ςn+1

P

)
×
[
νt−pP Ψp,k(t)−

k∑
j=p

νj−pP

(
νDς

j
DPςD

)t−k
Ψp,j(j)

k−1∏
n=j

1− ς t−n−1DP

1− ςk−nDP

]
,

(7.8)

where the function Ψ is defined as

Ψp,k(t) =

p∑
r=0

(
−ς t−p+1

P

)r
ς

r(r−1)
2

P

[
p
r

]
ςP∏k

j=p(νPς
r
P − νDςDςjDP)

. (7.9)
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Proof 2 Again we proof the theorem by inserting (7.8) in (7.7) and showing
that the equality holds true. We need to distinguish between the two cases as
in (7.7). First, we proof the theorem for the case p < k.

x
(p)
1,k(t) = νDςDς

k
DPx

(p)
1,k(t− 1) + µPςDς

k−1
DP x

(p)
1,k−1(t− 1) (7.10)

= νDςDς
k
DPNµDµ

k
P ς

k−p
D ς

(k(k−1)−p(p−1))/2
DP

ς
p(p+1)/2
P∏p−1

n=0

(
1− ςn+1

P

)
×
[
νt−p−1P Ψp,k(t− 1)−

k∑
j=p

νj−pP

(
νDς

j
DPςD

)t−k−1
Ψp,j(j)

k−1∏
n=j

1− ς t−n−2DP

1− ςk−nDP

]

+ µPςDς
k−1
DP NµDµ

k−1
P ςk−p−1D ς

((k−1)(k−2)−p(p−1))/2
DP

ς
p(p+1)/2
P∏p−1

n=0

(
1− ςn+1

P

)
×
[
νt−p−1P Ψp,k−1(t− 1)−

k−1∑
j=p

νj−pP

(
νDς

j
DPςD

)t−k
Ψp,j(j)

k−2∏
n=j

1− ς t−n−2DP

1− ςk−n−1DP

]

By factoring out NµDµkP ς
k−p
D ς

(k(k−1)−p(p−1))/2
DP

ς
p(p+1)/2
P∏p−1

n=0(1−ς
n+1
P )

and simplifying the
second factor, we obtain

x
(p)
1,k(t) = NµDµ

k
P ς

k−p
D ς

(k(k−1)−p(p−1))/2
DP

ς
p(p+1)/2
P∏p−1

n=0

(
1− ςn+1

P

) (7.11)

×
[
νt−p−1P

(
νDςDς

k
DPΨp,k(t− 1) + Ψp,k−1(t− 1)

)
− νk−pP (νDςDς

k
DP)t−kΨp,k(k)

−
k−1∑
j=p

νj−pP Ψp,j(j)
(
νDςDς

j
DP

)t−k(
ςk−jDP

k−1∏
n=j

1− ς t−n−2DP

1− ςk−nDP

+
k−2∏
n=j

1− ς t−n−2DP

1− ςk−n−1DP

)]
.

When we compare (7.8) and (7.10), we see that the two equations are equal if

νDςDς
k
DPΨp,k(t− 1) + Ψp,k−1(t− 1) = νPΨp,k(t) (7.12)

and

ςk−jDP

k−1∏
n=j

1− ς t−n−2DP

1− ςk−nDP

+
k−2∏
n=j

1− ς t−n−2DP

1− ςk−n−1DP

=
k−1∏
n=j

1− ς t−n−1DP

1− ςk−nDP

. (7.13)

Multiplying both sides of Equation (7.13) by
∏k−1

n=j

(
1− ςk−nDP

)
and factoring
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out
(
1− ς t−n−2DP

)
, we obtain

⇔ ςk−jDP

k−1∏
n=j

(
1− ς t−n−2DP

)
+
(

1− ςk−jDP

) k−2∏
n=j

(
1− ς t−n−2DP

)
=

k−1∏
n=j

(
1− ς t−n−1DP

)
⇔

(
1− ςk−jDP + ςk−jDP

(
1− ς t−k−1DP

)) k−2∏
n=j

(
1− ς t−n−2DP

)
=

k−1∏
n=j

(
1− ς t−n−1DP

)
(7.14)

⇔
k−1∏
n=j

(
1− ς t−n−1DP

)
=

k−1∏
n=j

(
1− ς t−n−1DP

)
.

For Equation (7.12), we need to insert the definition of Ψ

νDςDς
k
DPΨp,k(t− 1) + Ψp,k−1(t− 1)

=

p∑
r=0

(
−ς t−pP

)r
ς
r(r−1)/2
P

[
p

r

]
ςP

(7.15)

×
(

νDςDς
k
DP∏k

j=p

(
νPςrP − νDςDςjDP

) +
1∏k−1

j=p

(
νPςrP − νDςDςjDP

)) .
Using the common denominator for the summands in the parentheses leads to

νDςDς
k
DPΨp,k(t− 1) + Ψp,k−1(t− 1)

=

p∑
r=0

(
−ς t−pP

)r
ς
r(r−1)/2
P

[
p

r

]
ςP

(
νDςDς

k
DP + νPς

r
P − νDςDςkDP∏k

j=p

(
νPςrP − νDςDςjDP

) )
. (7.16)

Using
(
−ς t−pP

)r
ςrP =

(
−ς t−p+1

P

)r
we finally obtain

νDςDς
k
DPΨp,k(t− 1) + Ψp,k−1(t− 1)

=νP

p∑
r=0

(
−ς t−p+1

P

)r
ς
r(r−1)/2
P

[
p

r

]
ςP

(7.17)

=νPΨp,k(t).

This concludes the proof for the case p < k. Now we look at the case p = k.
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We have

νDςDς
k
DPx

(k)
1,k(t− 1) + µDς

k
Px0,k(t− 1)

=νDςDς
k
DPNµDµ

k
P
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k(k+1)/2
P∏k−1

n=0(1− ςn+1
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νDςDς
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=NµDµ
k
P

ς
k(k+1)/2
P∏k−1

n=0(1− ςn+1
P )

×
[
νDςDς

k
DPν

t−k−1
P Ψk,k(t− 1)− (νDςDς

k
DP)t−kΨk,k(k) + νt−k−1P

k−1∏
n=0

(
1− ςt−n−1P

)]
.

In order for this to be equal to x(k)1,k, we need

νDςDς
k
DPΨk,k(t− 1) +

k−1∏
n=0

(
1− ς t−n−1P

)
= νPΨk,k(t). (7.19)

Analogue to (7.12) this equation holds true if

k−1∏
n=0

(
1− ς t−n−1P

)
= Ψk−1,k(t− 1) =

k∑
r=0

(
−ς t−kP

)r
ς
r(r−1)/2
P

[
p

r

]
ςP

. (7.20)

By writing the summation as a q-Pochhammer symbol, we have

k∑
r=0

(
−ςt−kP

)r
ς
r(r−1)/2
P

[
p

r

]
ςP

=
(
ςt−kP ; ςP

)
k

=
k−1∏
n=0

(
1− ςt−k+nP

)
=

k−1∏
n=0

(
1− ςt−n−1P

)
.

(7.21)

This concludes the proof also for p = k.

7.3 Intuitive Description of Equation (11)

Here, we describe this equation in a more intuitive way. For each generation
t, the number of possibilities to distribute the p secondary driver mutations
over t time steps is given by the q-binomial coefficient

[
t
p

]
ςP
. But the growth

of the cells depends on the time when the secondary driver mutations are
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first acquired. Due to fitness advantage, the earlier the mutations have been
acquired, the faster the population grows, and also the sooner the primary
driver mutation can be obtained. As in Equation (5), the effect of the fitness
advantage on the cells without the primary driver mutation itself is captured
by multiplying ςp(p+1)/2

P . The effect on the primary driver mutation is more
intricate. To capture this effect, we start from a q-binomial coefficient and
rewrite the q-Pochhammer symbol in the numerator

∏p−1
j=0 1− ς t−jP in terms of

a sum [Koekoek et al., 2010],

[
t

p

]
ςP

=

p−1∏
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r=0 (−ς tP)

r
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r(r−1)
2
[
p
r

]
1/ςP∏p−1

j=0(1− ςj+1
P )

. (7.22)

To make this resemble the term in the parentheses in the second line of Equa-
tion (11), we divide the numerator by

∏k
j=p(νPς

r
P − νDςDςjDP) and we obtain

∑p
r=0

1∏k
j=p(νPς
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. (7.23)

With [
p

r

]
ςP

=
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=
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(7.25)

Equation (7.23) can be written as
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. (7.26)

For the numerator of this modified q-binomial coefficient, we introduce the
abbreviation

Ψp,k(t) =

p∑
r=0

(
−ς t−p+1

P

)r
ς

r(r−1)
2

P

[
p
r

]
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. (7.27)
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In terms of this Ψ-function Equation (11) can be written in a more compact
form as

x1,k(t) =N
k∑
p=0

µDµ
k
P ς

k−p
D ς

(k(k−1)−p(p−1))/2
DP

ς
p(p+1)/2
P∏p−1

j=0(1− ςj+1
P )

(7.28)

×
[
νt−pP Ψp,k(t)−
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j=p

νj−pP (νDςDς
j
DP)t−kΨp,j(j)

k−1∏
m=j

1− ς t−m−1DP

1− ςk−mDP

]
.

7.4 General Probability Generating Functions

In Chapter 3, we considered only the case where each individual has to die
or divide in every time step. Here we relax this assumption and consider a
more realistic scenario where only some individuals proliferate or die, whereas
others do not take any action at all (Fig. 7.1). Then, the probability gener-
ating functions for the four types: wild type, individuals with mutation A,
individuals with mutation B, and individuals with both mutations are defined
as

fab(zab, zAb, zaB, zAB) = dab + (1− bab − dab)zab
+ bab((1− µA − µB)zab + µAzAb + µBzaB)2,

fAb(zab, zAb, zaB, zAB) = dAb + (1− bAb − dAb)zAb
+ bAb((1− µAB)zAb + µABzAB)2,

faB(zab, zAb, zaB, zAB) = daB + (1− baB − daB)zaB

+ baB((1− µA)zaB + µAzAB)2,

fAB(zab, zAb, zaB, zAB) = dAB + (1− bAB − dAB)zAB + bABz
2
AB. (7.29)

The functions are similar to the scenario of binary splitting (cf. Eq. 1 in the
main text). There is only one term added: (1−bi−di)zi, i ∈ {ab, Ab, aB,AB}
which denotes the case of the individual neither dividing nor dying. To make
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d

1 − b − d

b(1 − µA − µB)2

b(1 − µA − µB)µB

b(1 − µA − µB)µA

bµ2
A

bµAµB

bµ2
B

Figure 7.1: Process described by the general pgf. An individual can
either die, proliferate, or neither and just live. If it proliferates the offspring
can mutate. In case of including back mutations additional mutation terms
appear leading as in Eq. (7.31).

increase the applicability of the model, one could also include back mutations,

fab(zab, zAb, zaB, zAB) = dab + (1− bab − dab)zab
+ bab((1− µA − µB)zab + µAzAb + µBzaB)2

fAb(zab, zAb, zaB, zAB) = dAb + (1− bAb − dAb)zAb
+ bAb((1− µAB)zAb + µAabzab + µABzAB)2 (7.30)

faB(zab, zAb, zaB, zAB) = daB + (1− baB − daB)zaB

+ baB((1− µBA)zaB + µBabzab + µBAzAB)2

fAB(zab, zAb, zaB, zAB) = dAB + (1− bAB − dAB)zAB

+ bAB
(
(1− µABA − µABB )zAB + µABA zAb + µABB zaB

)2
If the fitness landscape is rugged, i.e., if it has multiple local optima, they
would be inaccessible from certain “downstream" directions if back mutations
are not allowed. Hence allowing back mutations, allows to have a rugged
fitness landscape with local optima accessible from multiple directions. The
probability generating functions seem more complex, but the principle of the
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computation as discussed in the main text does not change at all.

7.5 Time Distribution

Here, we give a more detailed description on how to calculate the time distri-
bution for the minimal model with four types, and two paths, but with back
mutations.

1. Calculate the extinction probability of the final mutant type AB as in
[Athreya and Ney, 1972]

eAB =
dAB + bAB

(
µABA + µABB

)2
bAB(1− µABA − µABB )2

. (7.31)

Note, that without back mutations, i.e., µABA = µABB = 0, the extinction
probability reduces to eAB = dAB

bAB
as in the main text.

2. Until some tmax calculate recursively

f
◦(t)
AB = dAB + (1− bAB − dAB)f

◦(t−1)
AB

+ bAB

(
(1− µABA − µABB )f

◦(t−1)
AB + µABA f

◦(t−1)
Ab + µABB f

◦(t−1)
aB

)2
,

f
◦(t)
aB = daB + (1− baB − daB)f

◦(t−1)
aB

+ baB

(
(1− µA − µBaB)f

◦(t−1)
aB + µBaBf

◦(t−1)
ab + µAf

◦(t−1)
AB

)2
,

f
◦(t)
Ab = dAb + (1− bAb − dAb)f ◦(t−1)Ab +

bAb

(
(1− µB − µAaB)f

◦(t−1)
Ab + µAaBf

◦(t−1)
ab + µBf

◦(t−1)
AB

)2
, (7.32)

f(t) := f
◦(t)
ab = dab + (1− bab − dab)f ◦(t−1)ab

+ bab

(
(1− µA − µB)f

◦(t−1)
ab + µAf

◦(t−1)
Ab + µBf

◦(t−1)
aB

)2
where f ◦(0)aB = f

◦(0)
Ab = f

◦(0)
ab = 1 and f

◦(0)
AB = eAB. Note, that without

back mutations these functions would not be coupled anymore and one
can first calculate f tAb and f taB for all t, since those functions would not
depend on fab. Moreover, f ◦(t)AB would be equal to eAB ∀ t. Hence, one
would not need to recursively calculate f ◦(t)AB . However, the complexity
does not change.
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3. The probability to get the final, successful AB mutant, i.e., an individual
that produces a lineage that does not die out again, exactly at time t is

τ(t) = fN(t− 1)− fN(t). (7.33)

where N is the number of individuals in the beginning. Calculating this
for all t ∈ {0, . . . , tmax} we obtain the time distribution.

7.6 Single-Path Time Distribution

Here, we explain the computation of the probability distribution of the path-
way via type Ab exemplarily. Allowing back mutations it is unclear how
to specify different mutational pathways. For instance, for the pathway
ab → aB → ab → Ab → AB, it is unclear via which type the final mu-
tant has been reached. Obviously the final mutant has been reached via type
Ab, but it might be necessary for the population to first reach type aB. Hence,
aB might play a vital role for reaching AB, too. For this reason, we neglect
back mutations in the computation of the path probabilities, obtaining clear
distinguishable pathways.

Let Ab(t) (aB(t)) denote the random variable that there is an AB mutant
until time t via pathway Ab (aB). Thus, ¬Ab(t) corresponds to the random
variable, that there is no AB mutant until time t vial pathway Ab. Then the
probability, that the first mutant arises exactly at time t via pathway Ab (i.e.,
not via pathway aB beforehand) is

ρAb(t) =P (Ab(t) ∩ ¬Ab(t− 1) ∩ ¬aB(t− 1))

=P (¬Ab(t− 1) ∩ ¬aB(t− 1))− P (¬Ab(t) ∩ ¬aB(t− 1)). (7.34)

The first term is calculated by the pgf as in Eq. (7.29). For the second term
however, the time points for the different pathways are different. Let us
derive a recursive function for this second term at this point. To do so, let
us first consider the extinction probability for the subprocess of Ab → AB,
where the process starts with one Ab individual. As discussed previously, this
extinction probability within t− 1 time steps can be recursively calculated by
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its probability generating function

f
◦(t−1)
Ab = dAb + (1− bAb − dAb)f ◦(t−2)Ab + bAb

(
(1− µB)f

◦(t−2)
Ab + µBeAB

)2
,

(7.35)

with f ◦(0)Ab = 1. Similarly, the extinction probability for the subprocess aB →
AB within t−2 time steps can be calculated recursively using the probability
generating function for aB

f
◦(t−2)
aB = daB + (1− baB − daB)f

◦(t−3)
aB + baB

(
(1− µA)f

◦(t−3)
aB + µAeAB

)2
,

(7.36)

with f ◦(0)aB = 1. When we now consider the extinction probability of the whole
process starting with an individual of type ab, it can either go extinct right
away, or if it divides we can refer to the individual extinction probabilities
for the different types (in case of mutation), i.e., their probability generating
functions

f̄
◦(t)
ab := dab + (1− bab − dab)f̄ ◦(t−1)ab

+ bab

(
(1− µA − µB)f

◦(t−1)
ab + µAf

◦(t−1)
Ab + µBf

◦(t−2)
aB

)2
= f̄ab(f̄

◦(t−1)
ab , f

◦(t−1)
Ab , f

◦(t−2)
aB ), (7.37)

with f̄ ◦(0)ab = 1, f ◦(0)Ab = 1, and f ◦(0)aB = 1. Note, that in contrast to the normal
probability generating function, here the probability generating function for
type aB has one time step less, which agrees with the second term in (7.34). To
not confuse this modified probability generating function with the common
one, we use function names with a bar. Again, no probability generating
function for the AB-type is necessary, since the actual extinction probability
for this type is used.

We define this recursive function as

f̄
◦(t)
ab (zab, zAb, zaB, zAB) := f̄ (Ab)(t). (7.38)

The index Ab denotes, that this is the modified probability generating function
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for the pathway via Ab.

With this we now describe the algorithm for the path probability.

1. Calculate the extinction probability of the final mutant type AB as
above.

2. Until some tmax calculate recursively f(t) as explained above in Eq.
(7.32).

3. Until some tmax calculate recursively

f
◦(t)
aB =daB + (1− baB − daB)f

◦(t−1)
aB + baB

(
(1− µA)f

◦(t−1)
aB + µAeAB

)2
,

f
◦(t)
Ab =dAb + (1− bAb − dAb)f◦(t−1)Ab + bAb

(
(1− µB)f

◦(t−1)
Ab + µBeAB

)2
,

(7.39)

f̄ (Ab)(t) :=f̄
◦(t)
ab = dab + (1− bab − dab)f̄◦(t−1)ab

+ bab

(
(1− µA − µB)f̄

◦(t−1)
ab + µAf

◦(t−1)
Ab + µBf

◦(t−2)
aB

)2
,

where f 0
aB = f−1aB = f 0

Ab = f 0
ab = 1. Note, that the only difference is

that the probability generating function of types not along the pathway
considered is one time step behind (marked in red). This is also the
reason, why there are two initial conditions needed for type aB.

4. The probability to get the final, successful AB mutant exactly at time t
via path Ab and not getting a successful AB mutant beforehand is then
computed by

ρAb = fN(t− 1)−
(
f̄ (Ab)(t)

)N
. (7.40)

Analogously, one can calculate the path probability for reaching the final
mutant via aB. Note, that while this computation gives the correct path
probabilities, the sum over all paths can be slightly greater than the overall
time distribution. This is due to the fact that in time discrete systems the
final mutant can be reached by different pathways at the same time. In the
description here, such cases count for all pathways that succeed at the time.
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7.7 Implementation of Burkitt Lymphoma

Model

In this section the details for the implementation of the Burkitt Lymphoma
Model as developed Section 4.1 are given.

At first the initial numbers of different cell types are set. The number of
wild type cells is set to N0 = 104, while for all other types the number of
cells is initially zero. Now, for each cell a random number is drawn. This
random number is then compared to the division and death probability of the
respective cell type as defined in Section 4.1.1. As long as the upper limit of
Nmax = 106 has not been reached, the division probability for cells without
the MYC translocation is increased by a parameter c1, here c1 = 0.001. As
soon as the number of wild type cells reaches Nmax, the division probabilities
are not being increased anymore.

If a cell divides, its daughter cells can mutate. Hence, another random
number is drawn and is compared to the mutation probabilities.

When all cells have been looked at, the number of cells is updated according
to proliferation, apoptosis, and mutation events.

From a certain age on, e.g., 4000 hours ≈ 4.5 years, the division probability
of cells without the MYC translocation is decreased by a parameter c2, here
c2 = 0.00003, until the number of wild type cells reaches the baseline level
again, N0 = 104.

After the baseline level has been reached, the probabilities for division and
apoptosis stay in general as defined in Section 4.1. If the number of wild type
cells is larger (smaller) than N0 + (−)0.1N0, the proliferation probability is
decreased (increased) by C1. This way, the number of wild type cells stays
within a 10% area of the baseline level. Note, that cells with mutations are not
affected by this 10% constraint. The population of cells with a core mutation
can therefore grow beyond 1.1N0.
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