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Abstract

Phylogenetic markers are widely used in DNA barcoding, DNA taxonomy,
and amplicon based metagenomics. In this thesis, we address problems with
phylogenetic marker analysis by developing novel models and algorithms.
We present the Poisson Tree Processes (PTP) model for species delimitation
using single-locus phylogenetic markers. We develop and test algorithms for
maximum likelihood inference under the PTP model, and extend the PTP
model using a Bayesian framework. Further, employing the species delimita-
tion method, we develop a new algorithm - PhyloMap, for visualizing large
phylogenetic marker data sets. We also describe and make available an ac-
curate and robust paired-end reads merger for the [llumina Next-Generation
Sequencing (NGS) platform. Finally, we integrate PTP with the Evolutionary
Placement Algorithm (EPA) to delimit species in amplicon based metageno-
mic data.






Zusammenfassung

Phylogenetische Marker finden breite Anwendung in DNA barcoding, in der
DNA Taxanomie und in der amplicon-basierten Metagenomik. In dieser Ar-
beit identifizieren und 16sen wir aktuelle Probleme bei der Analyse phylogene-
tischer Marker, indem wir neue Algorithmen und Modelle hierfiir entwickeln.
Wir fithren das Poisson Tree Process (PTP) Modell zur Eingrenzung von
Spezies ein. PTP verwendet phylogenetische Marker, die aus einem einzigen
Lokus bestehen. Wir entwickeln und evaluieren Algorithmen zur Maximum
Likelihood Berechnung mit Hilfe des PTP Modells und erweitern das PTP
Modell um bayesianische Statistik. Anhand der Ergebnisse der Speziesein-
grenzung entwickeln wir einen neuen Algorithmus (PhyloMap) fiir die Visua-
lisierung grofler Datensétze, die aus phylogenetischen Markern bestehen. Des
Weiteren beschreiben wir einen exakten und robusten paired-end read mer-
ger fiir die Next-Generation Sequenzierungsplatform von Illumina. Auflerdem
integrieren wir PTP in den evolutiondren Platzierungsalgorithmus (evolu-
tionary placement algorithm), um Spezies anhand von amplikon-basierten
metagenomischen Daten voneinander abzugrenzen.
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CHAPTER 1

Introduction

1.1 Motivation

Computational molecular phylogenetics is the study of evolutionary relation-
ships among groups of organisms through mathematical models of molecular
sequences [I87]. The molecular sequences used in such studies usually come
from phylogenetic markers. Phylogenetic markers are molecular sequences
ubiquitous in all organisms under study and carry strong phylogenetic sig-
nal [17, [75, 89, 135, 141]. Several commonly used phylogenetic markers in
phylogenetic studies include the 16S ribosomal RNA (16S) from prokary-
otes [I83], the cytochrome ¢ ozidase I gene (COI) and the cytochrome b
gene (cyt-b) from animals [I72], the RuBisCO large subunit (rbcL) from
plants [147], and the internal transcribed spacer (ITS) from fungi [83]. Other
phylogenetic markers, which are often house keeping genes, have also been
identified and used in phylogenetic studies [4, 24, [76], 138 176, 196].

Besides inferring phylogenies, phylogenetic markers have a plethora of ad-
ditional applications, including DNA barcoding, DNA taxonomy, and meta-
genetics (amplicon based metagenomics).

DNA barcoding is a technique for species identification based on short
DNA sequences [148]. Phylogenetic marker sequences from unknown indi-
viduals are compared to databases of voucher sequences with given taxo-
nomic units or species classification. The main goal of DNA barcoding is
not to discover or define new species, but to label the query sequence [168].
Thus, it requires a most comprehensive database. A large database, BOLD:
The Barcode of Life Data System [I31], has been constructed in an inter-
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national effort to aid the acquisition, storage, analysis and publication of
DNA barcode records. BOLD currently contains more than 3.2 million spec-
imens (as of June 2014) with phylogenetic marker sequences for eukaryotes
(http://www.barcodinglife.org).

DNA taxonomy, as its name suggests, uses phylogenetic marker sequences
as taxonomic references [I75]. DNA taxonomy differs from DNA barcod-
ing because the central analytical task is to classify phylogenetic marker se-
quences into entities that correspond to species, rather than (re-)identifying
known species [67, [167, [I75]. Once species boundaries have been established,
those phylogenetic markers can also be used to supplement and refine the
existing DNA barcode databases [175].

With the advances in the Next-Generation Sequencing (NGS) technolo-
gies [I18], phylogenetic markers are being used in metagenetic studies for pro-
filing microbial communities [19]. NGS technologies combined with universal
PCR primers [88], provide an efficient and cost-effective way for sequencing
the hypervariable regions of phylogenetic markers (typically 16S rRNA), in
a culture-independent way. Those marker sequences serve as a surrogate
that allows us to investigate the composition and diversity of microbial com-
munities. Using this technique, recent studies have linked the dysfunction
of the human microbiota with diseases such as diabetes [129], obesity [93],
vaginosis [132], and inflammatory bowl diseases (IBD) [59]. Similar metage-
netic approaches have also been employed in studying microscopic eukaryotic
biodiversity [12], and in DNA metabarcoding of plants and animals [26].

Metagenetic studies can yield a large amout of short reads (DNA se-
quences), a typical lllumina MiSeq run produces over 25 million reads (as of
2014, http://www.illumina.com/systems/sequencing.ilmn). Such large
data sets pose new challenges for bioinformatics. Dedicated pipelines and
tools for analyzing metagenetic data, such as QIIME [I8], mothur [I50] and
UPARSE [45], are under active development. These approaches share three
important steps. In the first step, the raw reads are preprocessed, for in-
stance by merging paired-end reads, applying quality filters and removing
adapters [12, 14]. In the second step, the reads are grouped into entities
that are intended to correspond to species. However, this represents a sig-
nificant challenge for metagenetic data analysis, due to the difficulties with
the species concept in bacteria and the lack of robust methods. Thus, the
reads are clustered into so-called Molecular Operational Taxonomic Units
(MOTUs) based on a predefined, mostly arbitrary, sequence similarity cut-
off. Here, MOTUs are considered as a proxy for species [20, 88]. In the
third step, MOTUs are classified taxonomically [I8, [179] by comparison to
references sequences with known taxonomic classifications [28] [105, 130].

In this thesis, we address several problems relating to the analysis of phy-
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logenetic marker data sets. Firstly, we introduce new statistical models for
species delimitation. As already mentioned, species delimitation is key to
most studies involving phylogenetic markers. Secondly, we develop a novel
algorithm for visualizing large samples of phylogenetic markers. It also pro-
vides a means for visual inspection of species delimitation results. Thirdly,
we introduce a software for merging the paired-end reads, which may increase
the reads length. Longer reads carry more information and enable us to use
phylogeny-aware methods for analyzing metagenetic data. Finally, we de-
velop a phylogeny-aware analysis pipeline to delimit species on metagenetic
data.

1.2 Scientific Contribution

One central analytical task in phylogenetic marker analysis is to delimit
species using molecular sequences. Despite its importance, currently the
only widely used species delimitation method for single locus data that de-
ploys a species concept, and does not require a prior: definition of group
memberships (such as BP&P [188]), is the Generalized Mixed Yule Coales-
cent model (GMYC) [61, [62], 92]. We have developed a new approach called
Poisson Tree Processes (PTP) model for species delimitation using single lo-
cus phylogenetic marker data. We show that, our PTP model outperforms
the GMYC in terms of delimitation accuracy, and it also greatly simplifies
species delimitation process by only requiring phylogenetic input trees, in-
stead of ultrametric trees. We have also extended the PTP model using a
Bayesian framework. The Bayesian PTP model can use a single, fixed phy-
logenetic tree, as well as sets of phylogenetic trees derived from Bayesian
phylogenetic tree inferences. PTP has already been used to delimit species
for many organisms (e.g., [13, 108, 157, 169, 173]), and PTP has also been
applied to study virus lineages of hantaviruses [21].

Data sets used in DNA taxonomy sometimes involve a large number of
sequences. A phylogenetic tree with up to a few hundreds sequences can be
displayed on a computer screen, or be printed on an A4 sheet of paper. It
becomes increasingly difficult to visualize larger phylogenetic trees. Thus,
alternative visualization methods are needed to display large phylogenetic
marker sets, and to inspect species delimitation results. In this thesis, we
present a novel method called PhyloMap, for visualizing large phylogenetic
marker data sets. It combines phylogenetic tree inference, species delim-
itation and principal coordinates analysis to generate an easy-to-interpret
visualization of a large sequence data sets.

In early metagenetic studies, the Roche 454 platform was often considered
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superior to the Illumina platform [65], because the Roche 454 produces reads
of 350 to 450 bp, while the Illumina reads only range from 75 to 100 bp [19].
Recently, the Illumina MiSeq platform acquired the ability to produce 2 %300
bp paired-end reads. With a careful experimental design [65], the reads can
span over 550 bp of target DNA fragments. The Illumina MiSeq platform
can generate over 25 million reads per run, compared with 1 million reads
per run on a 454 plate [I82]. In order to leverage these advantages of the
[Nlumina platform, the paired-end reads first must be merged. In this thesis,
we describe an [llumina paired-end read merging software - PEAR. We show
that, PEAR outperforms all competing mergers in terms of accuracy, false-
positive rate, and run times.

As explained above, the specie concept, although biologically more mean-
ingful, has rarely been deployed in metagenetic studies. We introduce an
open reference species delimitation approach by integrating PTP with the
Evolutionary Placement Algorithm [10] (EPA-PTP). The EPA-PTP pipeline
is the first integrated approach for analyzing metagenetic data that combines
the phylogenetic placement approach with an explicit statistical criterion
for species delimitation. EPA-PTP represents the first step towards a full
phylogeny-aware analysis pipeline for metagenetic data.

The scientific work presented in this thesis has been published in 3 jour-
nal articles ([191, 192, 193]). Research on other topics related to bioinfor-
matics not covered by this thesis was published in 2 journal articles and 1
peer-reviewed conference paper. These articles covered work on Influenza
virus database design and sequence analysis [22], human DNA methylation
and cancer data collection and database construction [72], and the multi-
processor scheduling problem in phylogenetics [194].

1.3 Structure of The Thesis

The rest of this thesis is divided in three parts. Part 1 includes chapters 2 and
3; it gives the mathematical background, and provides a brief introduction to
evolutionary models and phylogenetic tree inference. Part 2 includes chapters
4 to 6. This part covers the PTP model for species delimitation, the Bayesian
extension of PTP, and the PhyloMap visualization approach. Part 3 focuses
on NGS data analysis and includes chapters 7 and 8. Finally, we conclude
and discuss future work in chapter 9.



CHAPTER 2

An Introduction to Stochastic
Processes

This chapter introduces the basic concepts of stochastic processes, the math-
ematical basis of this thesis.
The probabilistic models for phylogenetic tree inference described in [chap

are Markov processes, the PTP model (chapter 4)) for species delimi-

tation is closely related to Poisson processes, and the Bayesian extension of
the PTP model in uses Markov Chain Monte Carlo techniques
to sample posterior distributions. Stochastic processes are also fundamental
to many other applications in biological sequence analysis such as hidden
Markov models for sequence similarity search and alignment [80], 136], and
coalescent theory [I78].

In the following, I introduce the basic concepts and main theories used
in this thesis without proofs. More details are provided in text books on
stochastic processes [40, [91]. Part of the notation and terminology in this
chapter follows [52].

2.1 Important Probability Distributions

In this Section, I review important probability distributions and their rela-
tionships, namely the Bernoulli, Binomial, Geometric, Poisson, Exponential,
and Gamma distributions. Throughout the text, we use Prob(a) to denote
the probability of a.
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First, we review a few terms for probability and statistics.

Definition 1 A random variable is a function that assigns a real number to
each possible outcome in the sample space.

Definition 2 The cumulative distribution function F' for a random variable
X is defined as:
F(z) = Prob{X <z} . (2.1)

Definition 3 For a discrete random wvariable X, a function f is called its
probability mass function if

f(z) = Prob{X =z} (2.2)
for all x in the range of X.

Definition 4 For a continuous random variable X, a function g is called its
probability density function if

/bg(u)du = Prob{a < X < b} (2.3)

for all a,b in the range of X.

Definition 5 The mean, or the expected value of a random variable X is

BX) =3 wf(z) (2.4)
for a discrete random variable, or

B(X) = / vg(x)da (2.5)
for a continuous random variable.

If p(X) is a function of X, then the expected value of p(X) is

Elp(X)] = Y @(X)f(x) (2.6)

for a discrete random variable, or

EW@M=/¢MM@M% (2.7)

for a continuous random variable.
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Definition 6 The variance of a random variable X is:
V(X) = E[(X - E(X))’] = E[X?] - (BE(X))*. (2.8)
Next, I introduce four discrete probability distributions.

Definition 7 The random wvariable X follows a Bernoulli distribution if
there exists p, where 0 < p < 1 and the probability mass function of X
can be written as:

fl@)=p"(1—p)'""" for x € {0,1} . (2.9)
The number p is often thought of as the probability of a success.
EX)=pand V(X)=p(1l—p). (2.10)

Definition 8 If a Binomial random variable X is the sum of n independent
Bernoulli distributed random variables with the same probability p of success,
the probability mass function can be written as

n!

f(z) = —)'pw(l —p)" " forx=0,1,2,..,n . (2.11)

xl(n—x

Thus, a binomial distribution explains the number of successes in repeated
experiments. Note that n is given and forms part of a particular instance of
a Binomial distribution. Thus, n is not a parameter. The name “binomial”
comes from the binomial theorem: let Q =pand P=1—p

(Q@+P)"=Q"+nQ" 'P+..+nQP" '+ P"

= fO)+f(D) 4+ ...+ f(n—1)+ f(n) . (2.12)

E(X)=mnpand V(X) =np(l —p) . (2.13)

Definition 9 A random variable X has a geometric distribution if there ex-
ists p, 0 < p < 1, and its probability mass function can be written as:

fl)=Q0=p)p. (2.14)

The geometric distribution describes the probabilities of repeated experiments
until first success, i.e., x failures followed by a success.
_1=p

BX)=— £ V(X)= =" (2.15)
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Definition 10 A random wvariable X has a Poisson distribution if there is a
real number A > 0 such that the probability mass function of X can be written
as Ao
fl@) =5 forz=0,1,.. (2.16)
x!

Here X 1s the rate of occurrence of a specific event, that is, the average number
of its occurrence per unit time.

E(X) =\ V(X) =2\ (2.17)

The Poisson distribution is the limiting form of the Binomial distribution
when n is large and p is small. If we let A := np and substitute p in

by \/n:

n!

f(x) = x!(n—_x)!Px(l —p)""
n! A* D
- m!(n—x)!ﬁ(l_ﬁ) (2.18)

As n — oo, the expression in the first square bracket will tend to 1 and the
expression in the last square bracket will tend to e=*, because (1 — %)" — e
and (1 —2)™" — 1.

In the following, I introduce two continuous probability distributions.

Definition 11 A random variable X has an exponential distribution if there
1s @ number X > 0 such that the probability density function of X s

f(z)=Xe™ forx>0. (2.19)

The cumulative probability function is:

F(z) = Prob(X < zx) = / e Mdr=1—e forz>0. (2.20)
0
E(X)—1 V(X)—i (2.21)
X A '

The exponential distribution is the continuous analogue of the geometric
distribution, it is often used to model waiting times between events. To see
the connection between the Exponential distribution and the Poisson distri-
bution, consider a certain event occurring with rate A\. Then, the average



2.2. MARKOV CHAINS 9

number of events that occur in time t is At. Hence, the number of events in
time t follows a Poisson distribution with mean At. The probability of no
event taking place within ¢ is e, that is

Prob[X >t] = e

2.22
Prob[X <t]=1—e, (2.22)

The exponential distribution has the so-called “lack of memory” property:

Prob{X >t+ s|X >t} = Prob{X > s} . (2.23)

Given two sets A and B, we use the fact that if B C A, then Prob(B|A) =
Prob(B)/Prob(A):

Prob{X >t+s} e

Prob{X >t} e (2.24)
= Prob{X > s} .

Prob{X > t+s|X >t} =

Finally, we introduce the Gamma distribution:

Definition 12 A random variable X has a Gamma distribution if its prob-
ability density function can be written as

xa—le—x/ﬂ

f(il?) - pe f()oo yaflefydy

forx,a,8>0. (2.25)

Then
E(X) = Ba,V(X) = fa, (2.26)

where « is called the shape parameter, and [ is called the scale parame-
ter. Varying values of the shape parameter a result in different shapes of
the probability density function, while varying the scale parameter tends to
“stretch” or “compress” the probability density function along the x-axis. If
« is an integer, then the distribution represents an Erlang distribution, that
is, the sum of a independent exponentially distributed random variables,
each of which has a rate parameter of 1/0.

2.2 Markov Chains

First we give some basic definitions of stochastic processes:

Definition 13 A stochastic process {X,;n > 0} is a sequence of random
variables indexed by time n.
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If n is a subset of the nonnegative integers {0, 1,2, ...}, we call the process a
discrete time process; if n is a subset of the nonnegative real numbers [0, 0o},
we call the process a continuous time process.

Definition 14 The states of a stochastic process are the possible values of
X, the set of all states is called the state space.

The state space can be discrete, for instance, the four nucleotides A, T, G
and C; or continuous, for instance, all the real numbers.

2.2.1 Basic Concepts

In this section we discuss a special class of stochastic processes that satisfy
the Markov property. The Markov property states that, to predict the future
state, it suffices to consider only the current state and not the history of
states.

Definition 15 Consider a discrete-time stochastic process and let X,, be the
states. We say that {X,} is a discrete time Markov chain with a transition
probability matriz P(i,j), if for any j,i,in_1,...5l0, Prob(X,.1 = jlX, =
’l.,Xn,I — ’infl, ---;XO - Zo) - P(Z,j)
The transition probability matrix P(i,j) = Prob(X,+1 = j|X, = i) has the
following properties:

1. P(i,5) > 0.

2. >, P(i,j) = 1, that is, the rows of the matrix P(4, j) sum to 1, because
the transition probability from state i to other states (including state
i) must sum to 1.

P(i,7) gives the probability of going from state 7 to state j in one step, and
let P (i,5) = Prob(X,4m = j|X, = i) be the probability of going from
state i to state j in m steps. Before we show how to calculate P(m)(i,j), we
first need to introduce the Chapman-Kolmogorov equation:

PM(i, j) = ZPS)zk =) (K, 5),0 < s < n. (2.27)
Using the Chapman—Kolmogorov equation:

pm+i( ZP(’” i, k)P(k,j) (2.28)

thus, we have

Theorem 2.2.1 P™(i, j) = [P(l)(i,j)]m, i.e., the m steps transition prob-
ability matrixz is the my, power of the one step transition probability matriz.
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2.2.2 Classification of States

In order to explain the main theorem of Markov chains in [subsection 2.2.3|
we first need to introduce some notation.

Definition 16 Consider a state j in the state space of a Markov chain. We
define a random variable T? as the time it takes to reach state j from any
other states for the first time. This random wvariable is called first passage
times, mathematically,

TV =min{n>1:X, =7} . (2.29)

The first passage time is used when we are interested in whether we can reach
certain states.

Definition 17 The probability of reaching a state j at least once, given that
the initial state was 1, is called the first passage probability, denoted by F (i, j),
where:

F(i,j) = Prob(T’ < co| Xy = 1) . (2.30)

Definition 18 We define a random variable denoted by N7, which is equal
to the total number of visits to state j in n steps of the Markov chain, where
n — 0.

For N7, we are interested in its expected value.

Definition 19 The expected number of visits to state 7 given an initial state
i is denoted by R(i,7):

R(i,j) = E[N’| Xy =1] . (2.31)

Using the above notation, we can now define two types of states in Markov
chains:

Definition 20 A state j is called transient if F'(j,j) < 1, or equivalently,
R(j,7) < oo. A state j is called recurrent if F(j,j) = 1, or equivalently,
R(j,7) = cc.

A state j is transient if starting in state j, the Markov chain will eventually

leave state 7 and never return; and a state j is recurrent if starting in state
J, the Markov chain will continuously revisit state j.

Definition 21 Let P be the transition probability matrix of a Markov chain,
and C be a set of states contained in its state space. C' is said to be closed if:

> P(i,j)=1, foralicC . (2.32)

jeC
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Definition 22 A closed set of states that does not contain a subset which
is also closed is called an irreducible set. A single state forms an irreducible
set by itself and is called an absorbing state. If a Markov chain reaches an
absorbing state, the chain will never leave that state.

Next we introduce two theorems that can help us to determine the class of
the states and to identify irreducible sets.

Theorem 2.2.2 All states within an irreducible set are of the same state
type, that is, transient or recurrent.

Definition 23 State j can be reached from state i if there exists a positive
integer n, such that p™ (i,7) > 0, this relationship is denoted as i — j. If
1 — J and j — 1 both hold, we say i and j communicate, denoted as i <> j.

Using the notion of communication, we have the following theory:

Theorem 2.2.3 The closed set of states C' is irreducible if and only if all
states in C' communicate with each other.

Finally, we define the period of a state:

Definition 24 The period of a state is the greatest common divisor of {n >
0: P™(x,2) > 0}, if state j has a period of 1, then state j is called aperiodic.
If all states of the Markov chain are aperiodic, then the Markov chain is
aperiodic.

There is a simple way to check if a state is aperiodic:

Lemma 2.2.4 If P(x,x) > 0, then state x has period 1.

2.2.3 Steady-State Behavior

In this section we discuss the long-term behavior of Markov chains.

Theorem 2.2.5 Let {X,} be a Markov chain with finite state space and
a transition probability matriz P(i,j). If the entire state space forms an
wrreducible, recurrent set, and all states are aperiodic, then

?(]) = lim Prob(X, = j|Xo =1), for any states i (2.33)

n—o0

7 is the solution to:
TP, j)=T,and Y T(i)=1. (2.34)
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Indeed, if we let a matrix

1= lim P™(i, 7). (2.35)
n—oo

The rows of 1I are identical and each row equals 7. If we let 7 be a vector
whose elements sum to 1, then

lim P, ) =7, (2.36)

7 is called a stationary, equilibrium, or steady-state probability distribution
of the Markov chain.

2.3 Markov Processes

2.3.1 Basic Definitions

Definition 25 The continuous stochastic process {Y;} with a finite state
space E is a Markov process if for all j € E and t,s <0

Prob(Yiys = j|Yu;u < t) = Prob(Yiss|Y:) - (2.37)

The definition of Markov processes requires that the Markov property holds
for all future times. If we think of time ¢ as the present time, the left-hand
side of [Equation 2.37| predicts future time s from the present given all the
past up to and including the current time ¢. The right-hand side of the
equation tells us that the prediction only depends on the current time t.

There are two important elements in the Markov process: the times be-
tween events and the probabilities of switching to a certain state; so we have
the following definitions:

Definition 26 Let {Y;} be a Markov process with finite state space E and
Jump times denoted by Ty, Ty, ... and the embedded Markov chain at jump time
as {Xx}. The time between jumps, that is, T, 1 — T, is called the sojourn
time, and it follows the exponential distribution for state i € E with rate A(i).
The quantity A(i) is called the mean sojourn rate for state i. The embedded
Markov chain has a transition probability matriz P(i,j) with P(i,i) =0 and
satisfies:

Prob(Tpy — T, < t|X, =14) =1 AW

J— 67
2.38
Prob(Xn41 = j|X,, = i) = P(i,j) . 239
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Here, we set P(i,i) = 0 because for the embedded Markov chain, we assume
the chain will always jump to a different state in the next step. The transition
probability matrix of the embedded Markov chain and the mean sojourn rates
can be combined into the so called generator matrix of the Markov process.

Definition 27 The generator matrix QQ for the Markov process is given by:

A fori=j
Q“’j)‘{ NOP(,j)  forist]

where Q(i,j) is the rate of the process going from state i to state j. Assume
the transition probabilities Prob® (i, j) are continuous and differentiable for
t>0and att =0

Prob©® (i, §) =0 fori# j; Prob®(i,i) =1 . (2.39)
Mathematically, Q) is defined as follows:

Prob®9 (i, j) — Prob® (i, j)

Prob®9 (i, 5)
m —

Q3 = fimy Ai Tamh T A A
(2.40)
. . Prob®9(i,i) — Prob®(i,i) . Prob®9(i i) —1
Q0= I, Ai “ah T A
(2.41)
Since the row sum of Prob® (i, ;) must be 1 ,
Prob®(ii) =1— Y Prob™(i,j) =1— Y [Q(i,j)At + o(At)] |
J=0,i#j J=0,i#j
(2.42)
thus
. . _E;.io,i¢j[Q(iaj)At+0(At)] .
Q(i.i) = lim ~ —— > QGj) . (243

=0,

2.3.2 Steady-State Behavior

In discussing the steady-state behavior of the Markov chains(section 2.2)),
we had to classify states. Fortunately, the states of a Markov process can
be easily classified using its embedded Markov chain. A state in a Markov
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process is recurrent if it is recurrent in the embedded Markov chain; a state
in a Markov process is transient if it is transient in the embedded Markov
chain; a set of states is irreducible if it is irreducible for the embedded chain.

We use 7(j) to denote the steady-state probability of state j in the em-
bedded Markov chain, then we have the steady state of probability for state
J in a Markov process if all the states form an irreducible, recurrent set:

p(j) = lim Prob(¥; = jlYy = i) = Z#g;/(?)(/j/)\(i) . (2.44)

Using the generator matrix, we can derive the steady-state probabilities
p directly, p is the solution to

pQ =10
Sor =1, (2.45)

jJEE

2.3.3 Time-dependent Transition Probabilities

In this section, we introduce how to calculate the transition probability of a
Markov process over time t. We first review matrix exponentiation. Recall

that for a real value a:
00 n

a a
e _ZH’ (2.46)

n=0

analogously, we define the exponentiation of a matrix A as:

oo A,n
A _
et = §_0 - (2.47)

Let {X;} be a Markov process with a generator matrix ), then

Prob(X;sar = j|Xo = 9)
= Prob(X; = j|Xo = i) Prob(Xa: = j|X; = j)
+3  Prob(X, = k| Xo = i)Prob(Xas = j|X; = k)
o (2.48)
— Prob(X; = j|Xo = i)[1 4+ Q(j, ) At + o(At))]
+ > Prob(X, = k| Xo = ))[Q(k, j)At + o(At)]
k]
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subtracting Prob(X; = j| Xy = ¢) from both sides, dividing by At and letting
At — 0:

Prob (X, = j|Xo =) = Y  Prob(X, = k| Xy = i)Q(k, j) - (2.49)
k

[Equation 2.49|is called the forward Kolmogorov differential equation. There
is also another Equation called the backward Kolmogorov differential equa-
tion:

Prob/ (X, = j|Xo =) = > Qi, k) Prob(X, = j|Xo = k) . (2.50)
k

The solution to both the forward and the backward Kolmogorov differ-
ential equation with Prob®(i,i) = 1 and Prob®(i,j) = 0 for i # j is

Prob®W (i, j) = e'9(i, ) . (2.51)
An alternative way to understand [Equation 2.51] is to consider

Prob®9(i, j) = I + QAt, where I is the identity matrix. If we let n = t/At,
then

ProbW (i, j) = [Prob™Y (i, /)] = (I + Qt/n)" = €'%(i, 5) . (2.52)

For computational purposes, we try to write the () matrix in the form
Q = ADA™! where D is a diagonal matrix. The diagonal elements of D
are the eigenvalues of ), and the columns of A are the corresponding eigen-
vectors of (). This is also known as the spectral decomposition of (). Then
computing [Equation 2.51| can be simplified to:

Prob (i, j) = e'@(i,j) = Ae'P AL (2.53)

We will end this section by briefly discussing the detailed balance condi-
tion and reversibility.

Definition 28 A Markov process is said to satisfy the detailed balance con-
dition if
m()Q(i, j) = m(7)Q, 1) , (2.54)

where 7(i), w(j) are the steady-state probabilities of states i and j.

A Markov process that satisfies this condition is also denoted as reversible.
In other words, when we observe a reversible Markov process, we cannot tell
if it is going forward or backward. Similar conditions hold for Markov chains,
a Markov chain is said to satisfy the detailed balance condition if

m(1)P(i,j) = =(5) P, ) - (2.55)
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2.3.4 Birth-and-Death Processes

Birth-and-death processes (BDP) are a class of infinite space Markov pro-
cesses. In the following, we present the basic BDP terms and a few essential
conclusions that will be used in the remainder of this thesis.

Definition 29 Let {X,} be a Markov process with state space {0,1,2,...}
(all non-negative integers). We use A\,,n = 0,1,2, ... to denote the birth rates
and pin,,m = 0,1,2,... to denote the death rates. {X,} is a birth-and-death
process if its generator matrixz Q) has the following form:

[— o Ao
pr —( 4+ M) A

Q= 42 —(p2 +A2) Ao (2.56)

In BDP, the state changes will always be from n ton + 1, or n ton — 1.
Next, we consider the Yule process.

Definition 30 A BDP with ju, =0, and \, = n\, where X > 0, is called a
Yule process.

We let Prob®(n) = Prob(X, = n), then, for a Yule process:
Prob®(n) = e M1 — e M n > 1. (2.57)

E(X,) =eM. (2.58)

If we use T; to denote the time between state ¢ and state 41 in a Yule process,

then T; is exponentially distributed with parameter A¢ (Definition 11J).

2.3.5 Poisson Processes

In this Section, we introduce another infinite space Markov process called
the Poisson process.

Definition 31 LetT;, ©+ = 1...n be independent exponential random variables
with rate A, T,, = >.¢ 7 and Ty = 0, we define the Poisson process as
{Xi} =max{n:T, <t}
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The Poisson process is a birth-and-death process with u, = 0, and A\, = \.
The state space of a Poisson process consists of nonnegative integers.
Here 7; can be considered as the arrival times between events, so T, is the
arrival time of the ny, event, and X; is the number of arrivals by time ¢t.
To explain why {X;} is called a Poisson process rather than an exponential
process, we note that X; follows a Poisson distribution with rate At. If we
let x = X4, — X, then x also follows a Poisson distribution with rate A\u.
We can also show an alternative way of deriving the Poisson distribution
using the Poisson process. If X; . a; =, then Xy =7 0or i —1 (i > 1 and the
probability that X; was in some other state is o(At)). Then Prob(Xyia; =
i| Xy =1) =1 —=AAt+ o(At), Prob(X;ar = 1| Xy =i — 1) = AAt + o(At), so
we have

Prob(Xiiar = i) = Prob(X; =1i)[1 — AAt + o(At)]
+Prob(X; =i — 1)[AAt + o(At)] + o(At) ,

subtracting Prob(X; = i) from both sides and dividing by At:
_ Prob(X,yas = 1) — Prob(X, = 1)

At (2.60)

At
— —AProb(X, = i) + AProb(X, =i — 1) + O(At) .

(2.59)

Prob/ (X; = 1)

Let At — 0, then
Prob/(X; = i)+ AProb(X; = i) = AProb(X; =i—1), i > 1. (2.61)
For ¢ =0,

Prob(Xiiar = 0) = Prob(X; = 0)Prob(Xa; =0) , (2.62)
therefore
Prob(Xiyar = 0) = Prob(X; = 0)[1 — AAt + o(At)] . (2.63)
Similar to [Equation 2.59| and [Equation 2.60)|
Prob' (X, = 0) = =AProb(X, =0) , (2.64)
solving [Equation 2.61| and [Equation 2.64, we get
Prob(X, =0) = e (2.65)
Prob(X; =1i) = M : (2.66)

7!

As a final remark for this section, we have been using ¢ to represent time,
but “time” should be considered as an abstract concept, it can also be, for
instance a “kilometer” or a “mutation”. Thereby we obtain the interpretation
of the Poisson distribution, as events “per km” or “per mutation”.
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2.4 Markov Chain Monte Carlo Method

2.4.1 Monte Carlo Simulation

The idea of a Monte Carlo simulation is to repeatedly draw random samples
from a given target probability distribution. These samples can be used to
approximate the target density and obtain numerical results. For instance,
suppose that we want to calculate the expectation of h(#) over the probability
density p(6)

E(h(0)) = / h(0)p(0)d6 . (2.67)

We can draw N independent samples 6; from p(#), and then approximate
E(h(9)) as:

E(h(6)) ~ % Z h(6;) . (2.68)

For some simple probability distributions (e.g., the Bernoulli distribu-
tion [Definition 7)), we can use the so-called inverse mapping method for
drawing samples. Let F' be the cumulative distribution function of p, and
let U be a random variable with a continuous uniform distribution between
0 and 1. If we denote the inverse of F' by F'~!, then the random variable ©
defined by

0 =F1U) (2.69)

has a a cumulative distribution function given by F'. However, it is not always
possible to analytically calculate F~!'. There are other sampling techniques
such as rejection sampling and importance sampling, but they usually scale
badly with dimensionality [5]. In the next Section, we will introduce a sam-
pling algorithm that can generate samples from p(f) by exploring the state
space of a Markov chain.

2.4.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm constructs a Markov chain that satisfies
the detailed balance condition, such that the steady-state probability distri-
bution 7(0), is the same as the probability density p(f) from which we want
to sample. The state space of the Markov chain consists of all possible values
of #, and the Metropolis-Hastings algorithm actually defines the transition
probabilities between states.
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First we need to define the so-called acceptance ratio, which is used to
determine whether or not a proposal (see below) is accepted:

i (1 TGa(1)
o) = (1. S 210

where ¢(j|i) is the proposal distribution of the next sampling value j given

the current value ¢; j is thus the proposal given 1.
The Metropolis-Hastings algorithm works as follows:

Input: Maximal number of iteration m

Set t =0 ;

Initialize 6; with random values;

repeat

Sample 6" from q(¢'|6;) ;

Draw a random number u between 0 and 1 ;
if u<a(6,0') then

| Set 01 = 0" ;
else

| Set 0,11 =0 ;
end
t=t+1;

until t > m;
Algorithm 1: The Metropolis-Hastings Algorithm

If q(i]j) = q(j]7), that is, the probability of proposal (next sampling value)
from 7 to j is equal to the probability of proposal from j to i, then the above
algorithm is called the Metropolis algorithm [184]. if ¢(¢|j) # q(j|i), then the
so-called Hastings ratio h = q(i|j)/q(j|i) is used to correct the acceptance
ratio in [Equation 2.70| (see [I84] for a more detailed introduction).

In Bayesian statistics, we are interested in computing the posterior dis-

tribution f( ) (XW)

0| X 2.71
where f(6) is the prior distribution of the parameter 0, f (X |0) is the proba-
bility of obtaining the data X given parameter 6 and f f(O)f(X]0)do is the
normalizing constant. The normalizing constant is often Very hard to com-
pute because it involves integrating over #. However, using the Metropolis-
Hastings algorithm, we can avoid the integration. Note that, if we plug[Equa-]
tion 2.71|into [Equation 2.70[ we obtain:

F(0;)f(X16;)q(6;10;)
f(9i)f(X\9i)q(9j\9i)) ) (2.72)

a(6;,0;) = min (1,
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and the normalizing constant cancels out.

If we initialize 0; at random, then the Markov chain will have to run
for a number of iterations before it converges to the stationary distribution.
Those initial iterations are called the burn-in period and should be discarded
when analyzing the samples generated by the Markov chain. The Metropolis-
Hastings algorithm generates dependent samples from the target distribution,
so often we thin the chain by sub-sampling every ny, iteration to reduce
autocorrelations.

2.5 Summary

This chapter introduced several important stochastic processes and their re-
lationships. They form the basis for the novel models and algorithms pre-
sented later on. They are also the prerequisites for the mathematical models
of molecular evolution we introduce in [chapter 3, We focused on the deriva-
tion of the basic models and illustrated how they are connected. For some
models, we also provided multiple interpretations, to better explain how these
models can be applied to biological problems.
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CHAPTER 3

Phylogenetic Tree Inference

This Chapter introduces statistical models of evolution and phylogenetic in-
ference. We will see how Markov processes can be used to model DNA se-
quence changes and how phylogenetic trees can be reconstructed using prob-
abilistic models. At the end of this chapter, we will describe an algorithm
that uses a likelihood model to classify unannotated DNA sequences.

3.1 Introduction

DNA is a long polymer consisting of four distinct nucleotides or bases called
Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). This long poly-
mer can be represented abstractly as a string from the alphabet {A, T, G,
C}. We call such a string a DNA sequence. Mathematically, we can consider
{A, T, G, C} to be the sate space (see of a stochastic process.
Throughout the thesis, we only discuss DNA sequences, but the models and
methods introduced can be used analogously for RNA sequences with {A, U,
G, C} as state space, and for protein sequences with 20 amino acids (AA) as
state space.

Stochastic process models can be applied to model a single DNA sequence,
for instance, using a hidden Markov model [80]. Here the nucleotide at the
ty, position of the DNA sequence is the state of the Markov chain at time t.
But in our application, we assume that each position in the DNA sequence
evolves according to an independent stochastic process. That is, if the DNA
sequence has a length of n nucleotides, then we model the sequence using n
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independent stochastic processes. A single DNA sequence is a snapshot of n
independent stochastic processes at time .

To model n independent stochastic processes through time, we need more
than one sequence. DNA sequences frequently undergo substitutions, in-
sertions and deletions in the course of evolution. Therefore, homologous
positions of distinct, but related sequences need to be aligned before we
can model them with stochastic processes. This naturally gives rise to the
sequence alignment problem. Given a scoring matrix, two sequences can
be aligned globally with the Needleman—Wunsch algorithm [116], or locally
with the Smith-Waterman algorithm [I55]. The time and space complexity
of these two algorithms is O(mn), where m and n are the lengths of the two
sequences. The dynamic programming approaches of these two algorithms
yield optimal solutions.

However, multiple sequence alignment is a more difficulty problem. The
goal of multiple sequence alignment is to arrange m sequences into a m by n
matrix, where each column of the matrix (or site) is derived from a position
in an ancestral sequence [43]. Ideally, we would like to use a probabilistic
model for the unaligned sequences, the sequence substitution models, the
phylogeny and the alignment [133]. The alignment and phylogeny can be
estimated simultaneously by searching for solutions that maximize a likeli-
hood function [55, 133]. Such approaches are computationally intractable,
except when using simulated annealing and heuristic search algorithms [55],
or the Markov Chain Monte Carlo (MCMC) method to sample from the pos-
terior of the model [I33]. Due to the complexity of the model and the heavy
computational demand, it can only be applied to small data sets [95].

In practice, we often treat multiple sequence alignment and phylogenetic
inference as separate problems. For the multiple sequence alignment prob-
lem, the most common heuristic algorithm is to construct an alignment that
yields an MSA with a “good” sum of pairwise sequence alignment scores
(SP) [46]. Optimizing the SP score has been shown to be NP-hard [49)].
Thus common heuristics in popular tools use guide trees and progressive
alignment techniques [43, 120, I71]. They reduce the MSA problem to a
sequence of pairwise alignments. Those approaches take only unaligned se-
quences as input and try to optimize the alignment with respect to a target
function. They are generally referred as de novo multiple sequence alignment
methods [I1].

Although several heuristics are employed to compute the alignment, de
novo multiple sequence alignment methods can still be computationally pro-
hibitive when dealing with millions of reads obtained from next-generation
sequencing (NGS) experiments. Alternatively, we can use information from
existing alignments and align new sequences to such a reference alignment.
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Several tools were developed for this purpose such as HMMALIGN [41],
NAST [37], SINA [127], PaPaRa [I1], and PAGAN [98]. These tools are
computationally efficient and scale well with NGS data, because new se-
quences are only compared and aligned to the reference alignment and not
aligned with each other.

In the following, we only consider the phylogenetic inference problem and
always assume that the multiple sequence alignment is given.

3.2 Nucleotide Substitution Models

3.2.1 The GTR Model

Assume that we have a DNA sequence of length n, and that each position
(or site) of the sequence evolves through time and is independent as well
as identically distributed. We model each site with a Markov process. To
define a Markov process, we need the state space, which is {A, C, G, T} for
DNA sequences; and a generator matrix (), which describes the transition
rates among the four nucleotides. One of the most commonly used nucleotide
substitution model is the GTR (General Time Reversible) model [I85]. The
() matrix has the following form:

qac 9aGc qAT - amc bmg cmp
~l9ca - g qr| _ |awma - dng emr
Q= = prs d : (3.1)
de,A 9ac qar w4 dme - fmp
qr.a 9rc qra - cra eme  frg

and the diagonal elements of () are determined by each row of () that needs
to sums to 0. The GTR model, as its name suggests, satisfies the detailed
balance condition (Definition 28). Let 7; be the steady-state probability of
nucleotide .

To see the symmetrical relationships of parameters a,b,c,d, e, f in Q,
note that can be decomposed into the product of a symmetric

matrix and a diagonal matrix:

a b ¢ s 0 0 O

_la - d e 0O n¢ 0 0
=1y a0 . fllo 0 = o (3.2)

c e f - 0 0 0 mp

The three steady-state probabilities (because the four steady-state proba-
bilities must sum to 1, thus only three of them are free parameters) and
a,b,c,d, e, f are free parameters.
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Usually the time unit is unknown, so we use () to represent the relative
transition rates. We can therefore let f always be 1, and multiply the whole
matrix by 1/ — > . mQ(i,4), such that the average rate

A=) mQ(i,j) =1 fori#j. (3.3)

The GTR model has therefore eight free parameters. Many other popular
nucleotide substitution models are special cases of GTR with restrictions on
the steady-state probabilities and/or a, b, ¢, d, e, f. These derived models are
nested within GTR and have a lower number of free parameters. Table
provides a list of those models and how their parameters are restricted with
respect to GTR.

Table 3.1: GTR family of nucleotide substitution models

Model e a,b,c,d,e, f Free parameters
JC69 [82] Ta=Tg=nmg=nr a=b=c=d=e=f 0
K80 [86] Ta=Tnc=ng=7nr a=b=c=d#e=f 1
F81 [53] TaZTnc#ng#* 1 a=b=c=d=e=f 3
HKY85 [T1] wa#mc#nag#mr a=b=c=d#e=f 4
GTR [I85] wa#mc#nc#mr a#b#c#d#e#f 8

The most general none time-reversible model of nucleotide substitution is
called UNREST [I85], and does not impose any constrains on the () matrix.
It has 11 free parameters. However, this model is not frequently used in
practice because of computational difficulties.

3.2.2 Sequence Distance and Likelihood Function

Since the ) matrix only models the relative rates of nucleotide substitu-
tion, we cannot estimate the divergence time between two sequences without
further information. However, we can estimate the distance between two
sequences:

Definition 32 The distance between two sequences is the expected number
of nucleotide substitutions per site. If we let \ be the mean substitution rate
per site, and t be the divergence time between two sequences, then

d= Mt . (3.4)
In the GTR model, because we always set A := 1 (Equation 3.3)), d equals t.

We can use the maximum likelihood method to estimate sequence distances.
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Maximum likelihood methods find the parameter values that maximize
the likelihood function.

Definition 33 The likelthood of a model is the probability of the data D
given the model with a parameter set 0. If we then define

L(0) = Prob(D|0) (3.5)
as a function of 0. L is the likelihood function.

The log likelihood of the GTR model for two sequences is

L(t7 a, b7 C, d7 €, fa A, T, TC, 7TG) = Z ni,jlog{’]rip’r()b(t) <Z7j)}
irj (3.6)
where i,j € {A,T,G,C} ,

where n; ; is the number of site patterns. The nucleotide in the first sequence
is indexed by ¢ and in the second sequence by j. For some simple models such
as JC69 and K80, the maximal likelihood solution can be found analytically,
but under more complex models, numerical optimization is usually needed.

3.2.3 Rate Heterogeneity

The GTR model discussed so far assumes that different sites in the sequence
evolve under the same Markov process and at the same rate. This is generally
unrealistic for real data, because functionally important sites usually change
slowly while other sites might accumulate substitutions more rapidly.

A common approach is to assume that the rate follows a I' distribution
(Definition 12)) [I86]. We set o := 1/, such that the mean of the I" distri-

bution is 1. Then becomes:

L(t,a,b,c,d,e,ma, mp, mc) = Zni,jlog{/ T Prob™) (i, j)g(r)dr}
irj (3.7)

i,j € {AT G,C} ,

where g(r) is the probability density function defined in [Equation 2.25)

3.3 Phylogenetic Trees

3.3.1 Basic Tree Concepts

In the previous Section we introduced nucleotide substitution models and
how they can be used to estimate the distance between two sequences. If
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we have more than two sequences, we can represent their relationships using
a phylogenetic tree. In mathematical terms, a tree is an undirected graph
where any two vertices are connected by exactly one edge. A phylogenetic
tree is a model of the genealogical relationships among species or genes. In
this thesis, we always consider a phylogenetic tree to be a gene tree. We
use the term nodes for vertices and branches for edges. What we observe
are the present-day genes and their DNA sequences, which are called tips,
external nodes, or taxa. The inner nodes of the tree represent the ancestral
genes whose DNA sequence is unknown. The branch lengths are defined as
in [Definition 32| The degree of a node is defined as the number of branches
connected to it. If an inner node has a degree of more than three or the
root has a degree of more than two, then the node is called a polytomy or
multifurcation. A tree with no polytomies is called a binary or bifurcating
tree.

The common ancestor of all taxa is the root of the tree. If a root is spec-
ified, then the substitution process is considered to start from the root and
the tree is called a rooted tree. However, the GTR model assumes that time
is reversible, that means the substitution processes are the same looking from
any directions. So, when using a GTR model without further information,
one can only infer an unrooted tree. We can, however, use outgroup sequences
to root the tree. The outgroups are sequences known to be relatively dis-
tantly related to other sequences in the tree. In other words, we know that
they share a common ancestor with the other neighboring taxa in the tree.
Thus we can root the tree on the branch connecting the outgroups to the
neighboring taxa (Figure 3.1)).

Sometimes the molecular clock assumption can be made, meaning that
the nucleotide substitution rate is constant over time. Then, the () ma-
trix represents the absolute rate of nucleotide substitution in unit time, and
branch lengths represent how many units of time have passed. A tree con-
structed under the molecular clock assumption is ultrametric, which means
that the distances from the root to any tip are identical. Note that the GTR
model we discussed in [subsection 3.2.1l does not assume constant nucleotide
substitution rate over time, because we do not know the time unit. We will
call the trees constructed under the molecular clock assumption ultrametric
trees, and use phylogenetic trees to denote trees not assuming a molecular
clock.
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Figure 3.1: The root can be placed on the branch connecting the outgroups
to the neighboring taxa.

t3

3.3.2 Phylogenetic Tree Inference Methods and Problem
Complexity

There are two main classes of phylogenetic tree inference methods, namely
distance-based methods and character-based methods.

Distance methods comprise two steps: calculation of pair-wise distances
between all sequences and reconstruction of a phylogenetic tree from this dis-
tance matrix. In the first step, we can use the substitution models described
in to infer pair-wise distances between sequences. However, it is
generally believed that distances estimated with only two sequences are too
inaccurate for phylogenetic inference (see [I87] Section 1.6.2). In the second
step, a clustering algorithm is employed to reconstruct the tree. The cluster-
ing algorithm is nonparametric, hence it does not incorporate a substitution
model. Two popular clustering algorithms are UPGMA [I56] and Neighbor
Joining [142].

The idea of character-based methods for phylogenetic tree inference is to
fit the characters (nucleotides) to the tree for every alignment site, using an
optimality criterion. Common approaches include the maximum parsimony
method that uses the parsimony score to evaluate the fit of the tree to the
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data, the maximum likelihood method that uses the likelihood score, and the
Bayesian method which computes the posterior probability of the tree. In
theory, we can evaluate every possible tree in the tree space and find the
tree that maximizes the target function. However, the number of possible
tree topologies is large, even for small numbers of taxa. We can compute
the number of possible rooted and unrooted bifurcating tree topologies as
follows:

(2n — 5)!
Nyvoted = ——————— >3 3.8
ted 2n=3(np — 3)! " (38)
(2n — 3)!
N L G .
unrooted 2"72(77, — 2)' n = ’ (3 9)

where n is the number of tips. Table |3.2] shows the number of rooted and
unrooted trees with up to 100 tips:

’ Taxa H Rooted trees \ Unrooted trees ‘

3 3 1

4 15 3

5 105 15

6 945 105

7 10,395 945

8 135,135 10,395

9 2,027,025 135,135
10 34,459,425 2,027,025
15 || 2.13*10™ 7.90 * 10"
20 || 8.20 * 10* 2.21 * 10%
25 || 1.19 * 10% 2.53 * 10
50 || 2.75 * 107 2.83 * 10™
100 || 3.34 *10™* | 1.70 * 10'*?

Table 3.2: Number of possible rooted and unrooted trees with 3—100 taxa.

Thus, in practice, heuristic algorithms must be used for tree searches.
These heuristic algorithms can be grouped into two categories. The first
category is useful for generating a “good” starting tree. Methods in this
category are usually greedy clustering algorithms that add one sequence at a
time until all sequences are in the tree. Other methods resolve a star-like tree
including all sequences step by step. The second category involves branch
swapping, which conducts local or global topological rearrangements of the
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comprehensive starting tree. These methods use hill climbing to explore
the tree space. Commonly used topological alteration mechanisms include
nearest-neighbor interchange (NNI), subtree pruning and regrafting (SPR)
and tree bisection and reconnection (TBR). Z.Yang provides a good review
of these algorithms in Section 3.2 of his book [187].

3.3.3 Computing the Likelihood of a Tree

In this Section, we look into the details of how Markov process models can
be applied to calculate the likelihood of a tree. The likelihood score of the
tree is used as an optimality criterion for maximum likelihood tree searches.
First we will make some assumptions:

1. A multiple sequence alignment is given, the alignment has s sequences
and n alignment sites.

2. A rooted bifurcating tree T relating the s sequences in the alignment,
including all branch lengths is given.

3. Different sites evolve independently and follow a Markov process with
a rate matrix .

4. The () matrix follows the GTR model.

Under these assumptions, we can calculate the likelihood of the tree in
Figure [3.2] for one alignment site [ as:

LH(l) = mgq Prob® (s1, s2) Prob® (s2, T) Prob®(s2, s3) Prob®¥ (s3, C)

x Prob®™ (s3, A) Prob®™ (s1, s4) Prob®™ (s4, C') Prob®® (s4, G) .

(3.10)

Here, 7, is the steady-state probability of nucleotide s1 (see [subsec]

, and Prob(i, j) can be calculated using [Equation 2.51| [Equa-

is a direct application of the Markov process model given that the

ancestral states s;, ¢ = 1...4 are known. However, as mentioned before,

s;, © = 1...4 are hypothetical ancestral states that cannot be observed. To
resolve this problem, we sum over all possible states at the inner nodes:

LH(l) = Z Z Z Z T1 Prob®)(s1, s2)

s1E{A,T,G,C} s26{A,T,G,C} s3€{A,T,G,C} s4€{AT,G,C}
x Prob® (52, T)Prob®® (s2, s3) Prob® (s3, C') Prob®® (s3, A)
x Prob®(s1, s4) Prob® (s4, C)Prob®™ (s4, Q) .

(3.11)
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sl

1 c X G

Figure 3.2: A five taxa tree to demonstrate the calculation of the liklihood
function.

Calculating [Equation 3.11|is very expensive, because there are 457! pos-
sible combinations of ancestral states for s — 1 inner nodes. Fortunately, a
dynamic programming algorithm, also known as the pruning algorithm by
J.Felsenstein [53] can be used to calculate the likelihood efficiently by a post-
order traversal of the tree. Let L;(z;) be the likelihood of the subtree below
node 7, given that the nucleotide at node i is x;. Suppose further that the
two descendant nodes of node ¢ are node j and node k, then the likelihood
function for inner node ¢ can be rewritten as following:

Li(z;) = Z Prob® (x;, x;)Li(x;) | x Z Prob®) (., x;) Ly ()

T T

(3.12)

If node i is an external node, then L;(z;) = 1 if x; is the observed nu-

cleotide and 0 otherwise. Therefore, the likelihood of the tree for one site is
given by the likelihood at the root node r

LH() =) 7y, Ly(z,) . (3.13)

Note that, the likelihood calculation described above requires a rooted
tree. With the GTR model, a root can be placed at an arbitrary location
on any branch of an unrooted tree without changing the likelihood. This is
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known as the pulley principle in [53] and is guaranteed by the reversibility
of the GTR model.

Until now, we have not considered missing data or gaps in the alignment.
Using the probabilistic models, we can treat them as unknown data by sum-
ming over all possible states. The sum can be simply conducted by letting
Li(z;) = 1 for all z; if the tip is a gap [54].

We can now also incorporate rate heterogeneity models into the likeli-
hood calculation. In analogy to the two-sequence case described in
we assume that the rate follows a Gamma distribution with
probability density function g(r):

LH / Z To, Ly (2, 7)dr . (3.14)

In practice, the continuous Gamma distribution needs to be discretized
to avoid the integration, and to be able to compute it numerically.

then becomes

LH(l) Z (k) szr (Tr, %) (3.15)

Jj=

where k is the number of rate classes, and ry is calculated as a function of
the T" shape parameter « for k equal percentiles, and p(ry) := 1/k.

Finally, because we assume that different sites evolve independently, the
likelihood of the tree given the alignment is

LH =[] LH() . (3.16)
=1
The likelihood LH is usually very small, and may cause numerical issues
during computation. Thus, we use its logarithm instead:

log(LH) Zlog LH(1 (3.17)

As the logarithm is a monotonically increasing function, the maximum value
will be achieved at the same points for both LH and log(LH).

3.4 Phylogenetic Placements

In this section, we introduce the FEvolutionary Placement Algorithm
(EPA) [10] that uses a likelihood approach to identify unknown sequences.
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The EPA assumes that a reference alignment and a fully resolved reference
phylogeny based on the reference alignment are given. Initially, all query se-
quences need to be aligned to the reference alignment. Then, for each query
sequence ¢;, we execute the placement algorithm described in Algorithm 2]

Input: A bifurcating reference tree T' with n tips; full alignment
including the reference sequences and the query sequence g;.
Result: Likelihood scores of g; being placed into the 2n — 3 branches
of T.
foreach Branch B of T do
Insert ¢; into B ;
Optimize the branch lengths of the new tree 17" with n + 1 tips ;
Calculate the likelihood score of T”;
Remove ¢; from T" ;
end

Algorithm 2: The Evolutionary Placement Algorithm

We can sort the likelihood scores of the 2n — 3 placement branches. Then,
the best-scoring insertion branches for g; on the reference tree can be used
to annotate the query sequence g;.

As a method for sequence identification, EPA has several advantages over
sequence-similarity based methods such as BLAST [3]. First, the closest hit
found by sequence similarity based methods is often not the closest relative
phylogenetically [87]. EPA is phylogeny-aware and is based on the same prob-
abilistic models used for phylogenetic tree inference. It has been shown to
perform significantly better than sequence similarity based approaches [10].
Second, EPA provides a higher resolution for the unknown sequences, in the
sense that, it can return n — 3 additional labels, than sequence similarity
based methods, which can assign queries to at most n labels.

3.5 Summary

This chapter introduced statistical models of molecular evolution and the
basics of phylogenetic tree inference. We showed that, the Markov process
models introduced in [chapter 2] can directly be applied to calculate the likeli-
hood of a tree. However, searching for the best tree is difficult because of the
large tree space. Nonetheless, thanks to the continuous developments of phy-
logenetic tree inference programs such as RAxML [161] and MrBayes [139],
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inferring phylogenetic trees has become a routine procedure in molecular
sequence analysis. In the remainder of this thesis, we assume that the phy-
logenetic trees are given and develop models and algorithms that take phy-

logenetic trees as input (chapter 4| [chapter 5 and [chapter 6). Finally, the
Evolutionary Placement Algorithm introduced in the last section motivated

the development of the pipeline we introduce in [chapter 8|
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CHAPTER 4

The Poisson Tree Processes
Model for Species Delimitation

The content of this Chapter has been partly derived from the following
peer-reviewed publication:

J. Zhang, P. Kapli, P. Pavlidis, and A. Stamatakis. A general species
delimitation method with applications to phylogenetic placements.
Bioinformatics (Ozford, England), 29(22):2869-76, Nov. 2013

Pavlos Pavlidis generated the simulated data sets described in

[tion 4.4] and Paschalia Kapli collected the real data sets described
in lon 4.9.1

Delimiting species is of central importance to many areas of evolutionary
biology [152] (see also in [chapter 8). Phylogenetic markers can provide im-
portant information for species delimitation. This Chapter introduces a new
model, called the Poisson Tree Processes (PTP) model, which is designed
to propose putative species boundaries on single-locus phylogenetic marker
data sets.

4.1 Introduction

To delimit species using molecular sequences, we initially need to define our
species concept. However, this turns out to be difficult. Mayden [104] listed
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24 different species concepts, and De Queiroz [35] further categorized them
into 10 classes. To complicate matters, many species concepts are incompat-
ible with each other and require different types of data (Interbreeding pat-
terns, morphological characters, molecular sequences, etc). Thus, species de-
limitation should ideally be conducted using an integrative taxonomic frame-
work [121) [146] (see also the discussion in [section 4.6). However, for the
purposes of this thesis, we will only consider molecular sequence data.

Mathematically, sequence-based species delimitation methods operate on
a set of molecular sequences X = {1, 2, ...,2,}, which are derived from
sequencing certain phylogenetic markers of n individuals. The output of a
species delimitation method is a partition P of X, which groups X into k
species. The partition can be represented as a set of k sets of sequences, such
that P = {p1,p2,..,px}- P satisfies the following properties:

1. 0 ¢ P;

2. Up=X,;
piEP

3. if p;,p; € P i # j, then p; Np; = 0.

The above description is identical to sequence clustering. Sequence clus-
tering algorithms, such as UCLUST [44] and CROP [70], rely on prede-
fined sequence similarity thresholds. UCLUST is a fixed threshold clus-
tering approach, while CROP is a soft threshold method that attempts to
detect sequence clusters using a Gaussian mixture model. They can clus-
ter sequences into so-called Molecular Operational Taxonomic Units (MO-
TUs) [57, 67, [I75], and therefore they are often called OTU-picking methods.
However, such approaches do not deploy any species concept, and it is cur-
rently unclear how MOTUs correspond to species [175].

Here, we adopt the Phylogenetic Species Concept (PSC). PSC was ini-
tially introduced by [48] and subsequently refined by [8, 32] 34, 119]. For a
review of PSC, please refer to [9]. In general, phylogenetic species are the
smallest units for which phylogenetic relationships can be reliably inferred.
The PSC, in particular, from the genealogical point of view [9], states that
species reside at the transition point between evolutionary relationships that
are best represented phylogenetically and relationships that are best reflected
by reticulating genealogical connections [66].

There already exist several PSC-based species delimitation approaches
(e.g., see reviews in [62, 152, 153]). Most of them require multiple gene
trees as input except for the General Mixed Yule Coalescent (GMYC)
model [61, 124]. However, the GMYC model needs a time-calibrated ul-
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trametric input tree, which may represent a major obstacle for applying the
method (see [section 4.2)).

Inspired by the PSC, we introduce the PTP model that can delimit species
using non-ultrametric phylogenies. Ultrametricity is not required because we
model the speciation rate by directly using the number of substitutions. The
PSC implies that phylogenetic reconstruction within a species is inappropri-
ate. A hierarchical relationship can nonetheless be inferred for intra-species
sequences using phylogenetic methods. However, we expect to observe sig-
nificant (in the statistical sense) differences between the relationships recon-
structed among and within species. These differences are reflected by branch
lengths that represent the mean expected number of substitutions per site
between two branching events. Thus, our fundamental assumption is that
the number of substitutions between species is significantly higher than the
number of substitutions within species. Because it does not require an ultra-
metric tree, PTP is easier to use than GMYC. As we will show in[section 4.5
PTP also outperforms GMYC on simulated data and yields comparable re-
sults to GMYC on empirical data.

The remainder of this chapter is organized as follows: First, we review the
GMYC model insection 4.2 Then, we describe the PTP model insection 4.3
Subsequently, in [section 4.4] and [section 4.5 we assess the performance of the
GMYC and PTP approach using real and simulated data. We also compare
PTP and GMYC to two representative OTU-picking methods UCLUST and

CROP. Finally, we conclude in

4.2 The GMYC model

The General Mixed Yule Coalescent (GMYC) model for delimiting species
on single-locus phylogenetic markers is frequently used in empirical stud-
ies [20), 58, 109, 125, 177]. Several implementations of GMYC are avail-
able, including the original R code by T.Fujisawa [6I], 124] (available at
http://r-forge.r-project.org/projects/splits)), the Bayesian imple-
mentation in R by N.Reid [I34] (available at https://sites.google.com/
site/noahmreid/home/software), and a Python version implemented by
myself (available at https://github.com/zhangjiajie/pGMYC).

The GMYC method models speciation (among-species branching events)
via a pure birth process (subsection 2.3.4) and within-species branching
events as neutral coalescent processes. GMYC identifies the transition points
between inter- and intra-species branching rates on a time-calibrated ultra-
metric tree by maximizing the likelihood score of the model. Based on the
ultrametric tree, GMYC assumes that all taxa are observed at the present
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time and that branch lengths represent waiting times between branching
events. The likelihood is computed on n waiting intervals x;, ¢« = 1..n be-
tween successive branching events. Assume under the species delimitation
assumption 7, there are k species, then the likelihood function for one waiting
interval x; is defined as:

L(x;) = be | (4.1)
where
k
b= )\specni,spec + Z()\jni,j (n’i,j - 1)) . (42>
j=1

The first term in comes from the pure birth process with a
constant birth rate Agpe. and n; gpec lineages in time interval ¢ belongs to
the pure birth process. The second term comes from the neutral coalescent

model, where
1

2N; 7
where Nj is the effective population size of the coalescent process that belongs

to species j, and n; ; is the number of lineages in waiting interval ¢ belonging
to coalescent process j. Usually, N, is assumed to be constant over all species.

and make strict assumptions on constant

branching rates. This can be relaxed by introducing two scaling parame-
ters, such that b can be replaced by

A\ = (4.3)

* pP1
b = )\Specni,spec +

(Aj(nij(nig —1))7) . (4.4)

k
=1

J

Finally, the likelihood of species delimitation assumption 7, given the
ultrametric tree is given by

LH(r) =[] L(z:) . (4.5)
i=1
As mentioned above, NN is usually considered to be constant, therefore,
the GMYC model has four free parameters, that is, Agpec, Aj, p1, and ps.
Aspec can be estimated using its maximum likelihood estimator (the Moran

estimator by Nee [115])
— N
)\spec — § 5 (46)

where N is the number of speciation events (nodes) and S is the sum over
all branch lengths belonging to the speciation process. To accommodate the
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scaling parameter pq, [Equation 4.6[ becomes:
— N
Aspec = =
Zi:l T specti
where x;,7 = 1..[ are the waiting intervals for the speciation process. Simi-
larly,

, (4.7)

~ N
)\] = k s ’
D ie 2aimr (Mg (i — 1))P2m;

where z;,7 = 1..s are the waiting intervals between coalescent events.

The remaining two parameters, p; and po, are not independent from each
other. Thus, they need to be jointly estimated during model fitting. Fujisawa
uses the Nelder-Mead method [I17] to optimize the two parameters in his
R code [61], while I used the L-BFGS-B algorithm [15, 110] from the SciPy
package.

There are two general strategies to explore the species delimitation as-
sumptions 7; under the GMYC model. The first one is to infer a single cutoff
time C' where all nodes above C represent speciation events. The search al-
gorithm therefore only needs to evaluate the likelihood of putting C' to each
of the internal nodes of the ultrametric tree. We call this the single-threshold
GMYC model. The second GMYC model allows for multiple-thresholds C;,
but at the cost of a much larger search space [109]. The single-threshold
GMYC is usually more accurate than the multi-threshold version (see [62]
for details).

GMYC has been shown to work well for small population sizes and low
birth rates [5I]. One drawback of GMYC is that, it depends on the ac-
curacy of the ultrametric input tree. Obtaining an ultrametric tree from
a given phylogeny is a compute-intensive and potentially error-prone pro-
cess. Most state-of-the-art likelihood-based tree calibration methods such
as BEAST [39] or DPPDIV [73] rely on Bayesian sampling using MCMC
(Markov Chain Monte Carlo) methods. The trees from MCMC samples
usually contain multifurcations which violate the GMYC model assump-
tions. One idea is to randomly resolve the multifurcations using zero branch
lengths, but the Moran estimator cannot be properly evaluated with zero
branch lengths. Another idea is to use a small branch length when resolving
multifurcations. However, short branches lead to numerical problems and
long branches destroy ultrametricity.

Furthermore, when delimiting species in phylogenetic placements
(see [chapter §)), which would require calibrating (making ultrametric) thou-
sands of trees, it becomes almost impossible to deploy GMYC in an auto-
mated pipeline. For instance, consider the problem to assess MCMC chain
convergence in a relaxed molecular clock analysis.

(4.8)
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4.3 The Poisson Tree Processes Model

Classic speciation models such as the birth-and-death process assume that
new species will emerge and current species will become extinct at certain
rates that are measured in unit time [6]. Usually, a time-calibrated tree
is required as input. Thus, for molecular sequence data, a molecular clock
model must be applied to calibrate the tree. Coalescent theory also relies on
unit time to describe the relationships among ancestors and descendants in
a population.

Instead, we may consider the number of substitutions between branch-
ing and/or speciation events, by modeling speciations using the number of
substitutions instead of the time. The underlying assumption is that, each
substitution has a small probability of generating a speciation. Note that,
the substitutions are independent of each other. If we consider one substitu-
tion at a time in discrete steps, the probability of observing 7 speciations for
k substitutions is given by a binomial distribution . Because we
assume that, each substitution has a very small probability p of generating
a speciation, and the number of substitutions in a population of size 7 is
large, the process follows a Poisson distribution (Definition 10)) in continuous
time with rate p x 1. Therefore, the number of substitutions until the next

speciation event follows an exponential distribution (Definition 11)).

Comparing this to the assumptions of a Birth-and-Death Processes (BDP)
(|subsection 2.3.4)) we observe that, each generation (e.g., with a generation
time of 20 years) on a time-calibrated ultrametric tree has a small probability
of speciation. The BDP does not model substitutions, thus, substitutions are
superimposed onto the BDP, whereas PTP explicitly models substitutions.
Substitution information can easily be obtained by using the branch lengths
of the phylogenetic input tree. Thus, in our model, the underlying assump-
tions for observing a branching event are consistent with the assumptions
made for phylogenetic tree inference.

We can now consider two independent classes of Poisson processes
. One process class describes speciation such that, the average
number of substitutions until the next speciation event follows an exponential
distribution. Given the species tree, we can estimate the rate of speciations
per substitution in a straight-forward way. The second Poisson process class
describes within-species branching events that are analogous to coalescent
events. We assume that, the number of substitutions until the next within-
species branching event also follows an exponential distribution. Thus, our
model assumes that, the branch lengths of the input tree have been generated
by two independent Poisson process classes.
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In the following step, we assign/fit the Poisson processes to the tree. Let
T be a rooted tree, and PATH; be a path from the root to leaf i, where
¢ = 1...l and [ is the number of leaves. Let b;;, 7 = 1--- 2 be the edge lengths
of PAT H;, representing the number of substitutions. We further assume that
bij, j = 1---z are independent exponentially distributed random variables
with parameter A. Let B := b;; + ... + b be the sum over the edge lengths
for £ > 1. We further define N;(s) := max{k : By < s,s > 0}. By is
the number of substitutions of the kth branching event, and N;(s) is the
number of branching events below B;;. Note that, {N;(s); s > 0} constitutes
a Poisson process. Thereby, T" and {N;(s);s > 0}, i = 1---[ together form a
tree of Poisson processes which we denote as Poisson Tree Processes (PTP).
To a rooted phylogeny with m species, we apply/fit one among-species PTP
and at most m within-species PTPs. An example is shown in Figure

Figure 4.1: Ilustration of the Poisson Tree Processes. The example tree
contains 6 speciation events: R, A, B, D, E, F, and 4 species: C, D,
E, F. Species C consists of one individual; species D, E, F have 2 indi-
viduals each. The thick lines represent among-species PTP, and the thin
lines represent within-species PTPs. The Newick representation of this
tree is ((C:0.14, (d1:0.01, d2:0.02)D:0.1)A:0.15, ((e1:0.015, e2:0.014)E:0.1,
(f1:0.08, f2:0.02)F:0.12)B:0.11)R;. The tree has a total of 16 different pos-
sible species delimitations. The maximum likelihood search returned the
depicted species delimitation with a log-likelihood score of 24.77, and A\, =
8.33, A\e = 55.05.

In analogy to BP&P [I88] and GMYC [124], we conduct a search for the
transition points where the branching pattern changes from an among-species
to a within-species branching pattern. The total number of possible delimita-
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tions on a rooted binary tree with m tips ranges between m (caterpillar tree)
and 1.502™, depending on the actual tree shape [61]. Since the search space
is generally too large for an exhaustive search, we need to devise heuristic
search strategies. Given a fixed species delimitation, we fit two exponen-
tial distributions to the respective two branch length classes (among- and
within-species branching events). We calculate the log-likelihood as follows:

k n
L=> log(Ae ™)+ > log(Aee ") (4.9)
=1

i=k+1

where x1 to x are the branch lengths generated by among-species PTPs, x4
to x, are the branch lengths of within-species PTPs, A is the speciation rate
per substitution, and A. is the rate of within-species branching events per
substitution. The rates A\; and A, can be obtained via the inverse of the
average branch lengths that belong to the respective processes. Based on
Equation [4.9] we search for the species delimitation that maximizes L. A
standard likelihood-ratio test with one degree of freedom can be used to test
if there are indeed two classes of branch lengths. Large p-values indicate
that either all sequences belongs to the same species or that every sequence
represents a single species.

We developed and assessed three heuristic search strategies for finding
species delimitations with 'good’ likelihood scores. For the experimental
results presented here, we used the heuristic that performed best, based on
our preliminary experiments.

Heuristic I: We order and store the branch lengths in descending order.
We start with the longest branch and add one branch at a time to build
consecutive sets that contain branches of among-species branching events.
To each set, we add those missing branches that are required to obtain a
valid species delimitation configuration, that is, span a tree starting at the
root. We then evaluate the likelihood for each extended set. This approach
requires O(n) time, where n is the number of branches in the tree. The
rationale for this approach is that longer branches are more likely to form
part of speciation events, rather than within-species branching events. An
example is shown in |Figure 4.2]

Heuristic II: We implement a greedy strategy that starts from the root
and includes one child node at a time as speciation event via a breadth-first
tree traversal. We then apply this procedure recursively by extending the
child node that yielded the higher log likelihood score and re-considering the
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other child node. This heuristic has time complexity O(n?). The rationale
for this approach is that it explicitly uses the tree data structure to explore
a larger number of possible delimitations.

Heuristic ITI: This hybrid approach combines the ideas of the two previous
heuristics. First we order the branches as in Heuristic I. Then, we determine
the best bisection of this list into a within-species branch set C'and among-
species branch set S with respect to the likelihood score. This approach
ignores the tree structure, but returns an upper bound for the likelihood
score. Thereafter, we start with the longest branch again and add one branch
at a time to the set S’ of speciation event branches. In contrast to Heuristic I,
the next branch we add to the set can be any branch in the original set S that
is connected to a branch in S’ via the tree. When no branch in S'is connected
to a branch of S’ via the tree, we deploy the greedy strategy of Heuristic 11
to select the next branch we want to add. This approach combines the speed
of Heuristic I with the more exhaustive search of Heuristic II.

PTP is implemented in Python and is freely available at https://
github.com/zhangjiajie/ptp


https://github.com/zhangjiajie/ptp
https://github.com/zhangjiajie/ptp

46 CHAPTER 4. THE POISSON TREE PROCESSES MODEL

Figure 4.2: Instep 1, branch RA (the longest branch) is added to the among-
species branches set S; in step 2, RB is added to the same set to make it a
valid species delimitation configuration; in step 3, the longest branch AC
(from the remaining within-species branches) is added to the among-species
branches set S; in step 4, AD is added to the same set to make it a valid
species delimitation configuration. The Newick representation of the rooted
tree is ((C:0.14, (d1:0.01, d2:0.02)D:0.1)A:0.15, ((e1:0.015, e2:0.014)E:0.1,
(f1:0.08, f2:0.02)F:0.12)B:0.11)R;. The thick lines represent among-species
PTP, and the thin lines represent within-species PTPs.
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4.4 Experimental Settings

We tested PTP and compared it to the single-threshold GMYC model on
both simulated and real data sets. For simulated data, we used RAxML [160]
to infer phylogenetic trees, and then used them as input to PTP. Subse-
quently, these phylogenies were made ultrametric by r8s [144] to test GMYC.
For UCLUST and CROP, only molecular sequences are needed as input. In
both programs we initially set the sequence dissimilarity threshold to 97%,
a widely accepted threshold for bacterial sequences [I58]. We also set the
sequence dissimilarity threshold for UCLUST to 95% to analyze the effects of
changing the dissimilarity threshold. For real data sets, we used the phyloge-
netic and ultrametric trees from the original publications whenever possible,
otherwise we used the same procedures as described above.

4.4.1 Empirical Data Sets

4.4.1.1 Arthropod Datasets

The Rivancidella dataset comprises three phylogenetic markers (cyt b, COI,
16S) and was originally used in [I124]. The total number of sequences is 472.
They represent 24 morphological species and 4 outgroup taxa. The estimated
number of putative species for the genus as inferred by GMYC was 48 (with
confidence limits ranging between 46 and 52 species). Alternative methods
(see 124! for details) used in this study yielded 46 and 47 putative species,
respectively.

We also used COI marker datasets [122] of the genera Dendarus, Pimellia,
and Tentyria. The datasets comprise 51, 56, and 59 sequences, respectively.
The number of species that were attributed to each taxon using morphological
criteria was seven, one, and one.

4.4.1.2 Gallotia Dataset

The lizard genus Gallotia comprises seven species (based on genetic and mor-
phological markers) that are endemic to the Canary islands. The taxonomic
species tree and the molecular phylogeny for this data set are fully congru-
ent. The data [31] comprises four mitochondrial phylogenetic markers (cyt
b, COI, 12S, 16S) and a total of 90 sequences (76 representing Gallotia and
14 outgroup sequences).
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4.4.2 Simulations

We generated simulated datasets using a Yule-coalescent model. We used
ms [78] and BioPerl [I59] in combination with INDELible [56] to simulate
sequences. Using a modified version of the BioPerl module Bio: :Phylo that
allows to vary the birth rate value in the simulations, we initially generated
a set of random species trees T = 14,15, ..., Tig90. The leaves of each tree
T; (1 <=1 <= 100) represent extant species. All 600 simulated datasets
we generated contain 30 species. In the next step, we used ms to generate
a structured coalescent gene tree. The node ages of the phylogenetic tree
T; are interpreted as divergence times between populations. In other words,
we treat species as diverged populations that were completely isolated from
each other after they diverged from their common ancestor. Thus, using
ms we simulated a multi-species coalescent gene tree with 30 species and 100
individuals per species. For each species, we randomly selected 10 individuals
to generate evenly sampled (in terms of the number of individuals per species)
data sets. We also generated unevenly sampled data sets containing 2 species
with 100 individuals, 4 with 50 individuals, 8 with 10 individuals, and 16 with
2 individuals. Finally, we employed INDELible to simulate DNA alignments
of 250-bp, 500-bp, and 1000-bp on the above multi-species coalescent trees.

Note that, INDELible, ms, and BioPerl use different units for representing
branch lengths. INDELible uses the expected number of substitutions (the
standard unit in phylogenetics), whereas ms uses the coalescent time unit of
4N generations where N is the effective population size. BioPerl only uses
the birth rate to generate trees (small birth rates generate longer trees, large
birth rates generate shorter trees). We therefore converted all branch length
units to the expected number of substitutions. In our simulations, we set
i = 107", where y is the mutation rate per base pair, per individual, and
per year. This value for p is situated approximately in the middle of the
empirical value range. For instance, human genomic DNA has a rate of 1078
[113], human mitochondria have a rate of 10~° [I51], and viruses have a rate
that ranges between 10™* and 107° [38].

For the birth rate b, we used a value range around 0.5 speciation events
per one million years. The value of 0.5 is realistic for several distinct types of
species [106]. To convert b into units of speciations per substitution we apply
b = ﬁ, where 0’ is the scaled birth rate per substitution event. Thus,
values of b’ around 5 can be considered realistic.

With respect to coalescent units, let [ be a branch length in coalescent
units. For an effective population size of N and a mutation rate p, the
expected number of mutations on a branch is ﬁ. Thus, to convert the co-
alescent units into the expected number of substitutions, we need to divide
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the branch length by 4N u. Thereby, we implicitly assume that the expected
number of mutations is approximately equal to the expected number of sub-
stitutions.

The key parameters for delimiting species are the birth rate and the ef-
fective population size. High birth rates decrease the evolutionary distance
between species. High effective population sizes have a similar effect. This is
because the coalescent rate is inversely proportional to the effective popula-
tion size. When the population size is sufficiently large, coalescent events can
occur prior to speciation and lead to incomplete lineage sorting. Thus, the
effect of the birth rate on species delimitation accuracy also depends on the
effective population size. Hence, the birth rate and the effective population
size are not independent from each other. Therefore, we keep the effective
population size constant at N := 50,000 and investigate the effect of varying
the scaled birth rate (b’ := 5, 10, 20, 40, 80, 160). Intuitively, small ¥’ generate
large evolutionary distances between species and vice versa, see Figure
and Figure [4.4] for two examples.
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Figure 4.3: Histogram of pairwise sequence distances within and among
species (0’ = 5). A clear gap exists between two types of pairwise distances,
sequence similarity based species delimitation approaches will work well for
this case.

We used NMI, the normalized mutual information criterion [174] to asses
to what degree the delimitation results of the different algorithms agree with
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Figure 4.4: Histogram of pairwise sequence distances within and among
species (' = 160). The two types of pairwise distances overlap, sequence
similarity based species delimitation approaches will not work for this case.

the ground truth. The NMI of two random variables U and V is defined as:

21(U,V)

NMI(U,V) = O+ HV

(4.10)

H(U) and H(V) are the entropies of U and V. The entropy is a measure of
uncertainty in a random variable. Given a discrete random variable X with
n possible values {z1, ...z, }, the entropy is defined as:

H(X)=- i Prob(z;)logProb(x;) . (4.11)

CEZ'ZI

I(U,V) is the mutual information (MI) of U and V:

(U, V)= Z Z Prob(u,v)log (Priﬁi@%ﬁ&iv)) : (4.12)

uelU veV

I(U, V) measures the information shared by U and V. MI is nonnegative
and symmetric (i.e. I(U,V) = I(V,U)). It is easy to see that if U and V are
independent, then Prob(u,v) = Prob(u)Prob(v), and therefore I(U,V) = 0.

NMI scales MI to a value between 0.0 and 1.0. In our case, the random
variable is the partition p; of taxa, and Prob(p;) = |pi|/D>_,pi- NMI =1
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means that the delimitation is identical to the ground truth, while NMI = 0
means that the delimited species are randomly partitioned compared to the
ground truth.

4.5 Results

4.5.1 Results for Empirical Data Sets

The number of putative species delimited for Dendarus, Pimelia, Tentyria,
and Gallotia are comparable for all four methods (Table[d.1]). For the Gallotia
data set, GMYC and PTP yield identical results. Three of the Gallotia
species were split into two separate groups according to the geographical
isolation of the corresponding populations on different islands.

On the Rivacindela dataset PTP yields a similar, but more conserva-
tive delimitation than GMYC. CROP and UCLUST yield dissimilar results,
CROP only detects 6 clusters whereas UCLUST detects 82 clusters. It is
worth noting that the PTP result presented here for the Rivacindela dataset
is different from [I91]. This is because I used the phylogenetic tree from [124]
for the sake of a fair comparison. I also removed the outgroup taxa and
upgraded the PTP code to ignore close to zero branch lengths (see the dis-

cussions in [section 4.6|).

4.5.2 Results for Simulated Data Sets

The results on evenly sampled simulated data are summarized in [Table 4.2]
[Table 4.3 and [Table 4.4l On average, PTP shows the best performance and
outperforms GMYC in all test scenarios. OTU-picking methods work well
on data sets with small &’ values, that is when the evolutionary distances
between species are large. For b’ < 20, UCLUST generally outperforms PTP

‘ Taxon Morphological GMYC PTP CROP UCLUST ‘
Rivacindela 24 48 43 6 82
Dendarus 7 10 9 7 11
Pimelia 1 10 9 7 10
Tentyria 1 2 2 1 3
Gallotia 7 10 10 9 15

Table 4.1: Number of species delimitated on real data.
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and yields the best overall results. However, with increasing b’ the accuracy
of OTU-picking methods decreases steeply. As expected, for shorter sequence
lengths (250-bp and 500-bp), accuracy deteriorates for all methods and in a
more pronounced way for PTP and GMYC. However, even with sequence
lengths of 250-bp, PTP still yields the best results on data sets with &' > 20.

On the unevenly sampled simulated data sets (Table 4.5, [Table 4.6]
and [Table 4.7)), the delimitation accuracy decreases for UCLUST and PTP.
CROP and GMYC yield higher NMI scores than on evenly sampled datasets.
On average, PTP yields the best results over all (evenly and unevenly sam-
pled) simulated data-sets.

v | 5 10 20 40 80 160 | Mean |

UCLUST (0.03) | 0.969 0.959 0.938 0.892 0.782 0.575 | 0.852
UCLUST (0.05) | 0.971 0.947 0.904 0.798 0.576 0.249 | 0.741

CROP 0.964 0.930 0.848 0.646 0.232 0.038 | 0.609
GMYC 0.924 0914 0.907 0.886 0.834 0.697 | 0.860
PTP 0944 0.935 0.922 0.905 0.882 0.857 | 0.907

Table 4.2: Species delimitation accuracy (measured in NMI) on simulated
evenly sampled data with a sequence length of 1000-bp

I | 5 10 20 40 80 160 [ Mean |

UCLUST (0.03) | 0.967 0.958 0.935 0.884 0.771 0.554 | 0.844
UCLUST (0.05) | 0.969 0.945 0.897 0.787 0.555 0.269 | 0.737

CROP 0.964 0.927 0.836 0.613 0.187 0.027 | 0.592
GMYC 0.918 0.878 0.766 0.583 0.626 0.551 | 0.720
PTP 0.952 0.938 0.920 0.898 0.864 0.828 | 0.900

Table 4.3: Species delimitation accuracy (measured in NMI) on simulated
evenly sampled data with a sequence length of 500-bp

We simulate the data in accordance with the GMYC model, that es-
sentially adopts the PSC. To demonstrate the impact of the & parameter
on clustering-based delimitation accuracy, we plotted the pairwise sequence

distances within species and between directly adjacent species in the simu-
lated tree, for ¥’ := 5 and b := 160 in Figure [£.3] and Figure 4.4 Lower v/
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K | 5 10 20 40 80 160 | Mean |
UCLUST (0.03) [ 0.967 0.954 0.930 0.871 0.735 0.522 [ 0.829
UCLUST (0.05) | 0.966 0.939 0.836 0.765 0.514 0.249 | 0.720
CROP 0.961 0.917 0.800 0.545 0.152 0.024 | 0.566
GMYC 0.892 0.620 0.484 0.464 0.550 0.503 | 0.585
PTP 0.946 0.927 0.907 0.881 0.833 0.780 | 0.879

Table 4.4: Species delimitation accuracy (measured in NMI) on simulated
evenly sampled data with a sequence length of 250-bp

v | 5 10 20 40 80 160 | Mean |
UCLUST (0.03) [ 0.937 0.936 0.923 0.886 0.789 0.582 | 0.842
UCLUST (0.05) | 0.968 0.957 0.922 0.829 0.607 0.264 | 0.758
CROP 0.971 0.946 0.892 0.723 0.303 0.047 | 0.647
GMYC 0.937 0.894 0.849 0.834 0.791 0.725 | 0.838
PTP 0.921 0.912 0.889 0.866 0.830 0.800 | 0.892

Table 4.5: Species delimitation accuracy (measured in NMI) on simulated

unevenly sampled data with a sequence length of 1000-bp

values lead to larger evolutionary distances between species, that is, the so-
called barcoding gap [128] is present. Increasing b’ reduces the evolutionary
distances between species and the barcoding gap disappears (see [128] for
examples of this phenomenon on real data). Therefore, our simulations show
that clustering algorithms work on data sets containing a barcoding gap,
because phylogenetic species are mostly consistent with sequence clusters in
this case. However, clustering methods are prone to fail when the barcod-
ing gap is not present because sequences cannot be told apart any more via
sequence similarity alone.
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K | 5 10 20 40 80 160 [ Mean |

UCLUST (0.03) | 0.936 0.936 0.920 0.882 0.775 0.563 | 0.835
UCLUST (0.05) | 0.966 0.956 0.914 0.824 0.586 0.266 | 0.752

CROP 0971 0945 0.875 0.682 0.232 0.031 | 0.622
GMYC 0.941 0.901 0.870 0.792 0.658 0.610 | 0.795
PTP 0.943 0.927 0.904 0.878 0.835 0.784 | 0.878

Table 4.6: Species delimitation accuracy (measured in NMI) on simulated
unevenly sampled data with a sequence length of 500-bp

I | 5 10 20 40 80 160 [ Mean |

UCLUST (0.03) | 0.935 0.933 0.913 0.866 0.742 0.514 | 0.817
UCLUST (0.05) | 0.962 0.948 0.902 0.791 0.545 0.269 | 0.736

CROP 0.970 0.937 0.852 0.616 0.192 0.021 | 0.598
GMYC 0.925 0.867 0.814 0.732 0.586 0.523 | 0.741
PTP 0.948 0.924 0.901 0.863 0.812 0.753 | 0.866

Table 4.7: Species delimitation accuracy (measured in NMI) on simulated
unevenly sampled data with a sequence length of 250-bp

4.6 Summary

We introduced, implemented, and made available a new model (PTP) for
species-delimitation that is mainly intended for delimiting species in single-
locus molecular phylogenies. PTP can propose species boundaries that are
consistent with the PSC. An important advantage of our method is that
it models speciation in terms of the number of substitutions. Thereby, it
circumvents the potentially error-prone and compute-intensive process of
generating time-calibrated ultrametric trees which are required as input for
GMYC.

Using real data sets, we show that delimitations inferred with PTP are
comparable to delimitations obtained via GMYC. Simulations suggest PTP
outperforms GMYC.

In addition, it is more straight-forward to use because it only requires a
standard phylogenetic tree as input and because it is also substantially faster.
On the 673-taxon meta-barcoding dataset (using a modern Intel desktop
processor) for instance, r8s requires 3 days to complete while RAXML in
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combination with PTP only requires a total of about 20 minutes to return a
species delimitation.

Furthermore, the maximum likelihood estimators of A; and A, for PTP
can easily accommodate multifurcations, while GMYC requires strictly bi-
furcating input trees.

We also compared GMYC and PTP to two clustering algorithms: CROP
and UCLUST. From our point of view, the problem of species delimitation
needs to incoporate data from various sources (e.g., sequences and trees)
and also depends heavily on the species definition used. Thus, GMYC and
PTP yield comparable results on real data because they are based on the
phylogenetic species concept. In contrast, by their very definition, CROP
and UCLUST simply identify sequence clusters. They are suited for data
sets with the barcoding gap. The fact that there is a difference between
sequence clusters and PSC-based species delimitation is underpinned by our
simulations.

As we show, GMYC and PTP delimitation performance is more robust
to the absence of the barcoding gap. Thus, when no prior information (bar-
coding gap presence) about the data set is available and the goal is to delimit
phylogenetic species, GMYC and PTP should be preferred.

In the following, we discuss the current limitations of our approach.

Readers should keep in mind that, entities delimited by PTP are puta-
tive species only. The phylogenetic trees inferred on single-locus phylogenetic
marker sequences are gene trees rather than species trees, albeit the hierar-
chical relationships above the species boundaries are expected to be mostly
consistent with the species tree. However, the boundaries inferred by PTP are
only approximate. Additional data needs to be integrated to further validate
the delimitations, such as morphological characters and multi-locus sequence
data [50] within an integrative taxonomy framework [121], [146]. The puta-
tive species delimited by PTP, can, for instance, be used as initial hypothesis
that can be further scrutinized with multi-locus coalescent-based methods
such as BP&P [188]. BP&P requires prior knowledge of species boundaries,
and it represents a validation method, rather than a delimitation method.
Due to its computational complexity, BP&P can currently only handle up to
20 species.

Since PTP initiates the search for the maximum likelihood delimitation at
the root of the input phylogeny, the tree has to be correctly rooted to obtain
accurate estimates. Also, PTP should be used with caution on datasets where
the number of individuals sampled per species is unbalanced and where the
over-sampled species exhibit small within-species variation.

In such cases, the inferred phylogeny will comprise both, subtrees (com-
prising one species and many individuals) with a large number of extremely
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short branches, and subtrees (comprising one species but only few individu-
als) with short, but not extremely short branches. Such unbalanced samples
may require the introduction of a third A parameter class of branches to
accommodate (i) over-sampled within-species branches, (ii) within-species
branches, and (iii) among-species branches. Otherwise, the species that are
not over-sampled can not be delimited properly, that is, each individual is
likely to be identified as a separate species. Hence, we either need a criterion
for removing over-sampled sequences, or a criterion to decide when and how
many additional classes of Poisson tree processes (X parameters) need to be
introduced.

However, a major drawback of introducing additional Poisson tree pro-
cesses classes is that, the delimitation search space becomes significantly
larger. Hence, finding the maximum likelihood delimitation or a best-known
delimitation represents a challenging task. Thus, before extending the num-
ber of classes, we feel that more work on the design and performance of
heuristic search strategies for species delimitation is required to better char-
acterize and understand the problem. This also applies to the heuristics
used in multiple-threshold GMYC, given that the underlying optimization
problems are very similar.



CHAPTER 5

A Bayesian Extension of the
Poisson Tree Processes Model

UNPUBLISHED

This Chapter introduces the Bayesian extension of the PTP model and the
PTP web server. We will first develop the Bayesian PTP model on a single,
fixed phylogenetic tree. We illustrate the idea with a simple example that the
posterior probabilities can be calculated explicitly. We also show that, the
posterior probability of delimitations is strongly correlated with species de-
limitation accuracy using simulated data. We then extend the Bayesian PTP
model to sets of phylogenetic trees as obtained from Bayesian phylogenetic
analysis. Finally, we briefly introduce the PTP web server.

5.1 Introduction

In [chapter 4] we introduced the PTP model for species delimitation and
three heuristic algorithms to search for the best-known maximum likelihood
solution. However, the maximum likelihood solution is a point estimate,
and it is hard to derive a confidence interval due to the discrete nature of
the model. Furthermore, the search is only conducted on a single, fixed
phylogenetic tree, which might contain a high degree of uncertainty.
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One solution is to use bootstrap trees, where we search for best-known
maximum likelihood solutions of the PTP model on multiple phylogenetic
trees obtained from the bootstrap replications [162]. These results can be
combined or superimposed onto one phylogeny to derive confidence measures
for species delimitations (see [subsection 5.2.2)).

Another solution, which is the main topic of this chapter, is to extend the
PTP model using a Bayesian framework.

First, the uncertainty regarding the topologies can be accounted for, by
using tree sets obtained via Bayesian phylogenetic inference. We can obtain
the posterior distributions of model parameters, tree topology and branch
lengths from Bayesian phylogenetic tree inference programs such as Mr-
Bayes [139] and ExaBayes [I]. Second, we apply the Bayesian framework
to sample the marginal posterior distribution of species delimitations under
the PTP model, independent of phylogenetic uncertainties (tree topologies
and branch lengths). Finally, via Markov Chain Monte Carlo simulation
(MCMC), we can potentially search a substantially larger species delimita-
tion space than the three heuristic algorithms presented before. This may
also yield delimitations with better likelihood scores than the heuristic search,
if a maximum likelihood solution is desired.

I have implemented both the bootstrap and Bayesian extensions of PTP.
They are freely available from https://github.com/zhangjiajie/ptp. [
have also designed a web interface for the PTP software and the GMYC
model. The web server is available at http://species.h-its.org/, and the
code is available at https://github.com/zhangjiajie/PTP-web-server.

5.2 Bayesian Extension

5.2.1 Using a Single Phylogenetic Tree

We first consider a Bayesian PTP model for a single, fixed phylogenetic tree.
Let T be a phylogenetic tree with m tips. Let #; be the species delimitation
hypothesis, i = 1,2, ..., &, where £ is the total number of possible delimitations
on T, which ranges between m and 1.502™ depending on the shape of T'. Let
As and A, be the rate parameters for a between-species PTP and within-
species PTP model respectively. Usually, we do not have prior information
on how taxa should be clustered, so a flat prior f(#) is assumed, that is,
we consider all species delimitations to be equally likely. We further assume
that A\s and A. have a joint prior f(As, A.) and that it is independent of
the delimitation prior f(f). Then, the posterior probability of a species
delimitation hypothesis 6; is


https://github.com/zhangjiajie/ptp
http://species.h-its.org/
https://github.com/zhangjiajie/PTP-web-server
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_ ff f()\sa Ac)f(ez)f(TWZa )\sa Ac)dAsd)\c
Prob(6;|T) = Zej ff FOu A FO) FT185, hos Ao ddadhy (5.1)

The likelihood of the model f(T'|6;, As, Ac) is given by [Equation 4.9, For

simplicity, As and \. are estimated by their maximum likelihood estimators,
following [134]. The normalization constant in is generally not
possible to compute, because it involves summing over all possible species
delimitations. Therefore, we adopt the Metropolis-Hastings algorithm
to sample from the posterior distribution.

Note that, because Ay and A, are estimated using their maximum likeli-
hood estimators, the acceptance ratio simplifies to:

b, 6;) = min (1’ 70 F (7160, X A@)q(ej\en) |

If we assume a flat prior for 6, then f(6;)/f(6;) = 1.

Following the approach used in the BP&P software [188], we design the
proposal to either join or split a node based on the current delimitation in
each step with equal probabilities. Once the join or split decision is made,
each node that is eligible for a join or split will be chosen randomly with
equal probabilities. A node is eligible for a split if it is the root of the tree,
or its parent node has already been split and it is not a leaf node. After
a split, the node being split represents a speciation event on the tree. A
node is eligible for a join if both of its descendant nodes are either leaf nodes
or joined nodes. If a node is joined, then all of its descendant (leaf) nodes
belong to one species. An example for a join and split operation on a node
is shown in [Figure 5.1, We use x to denote the number of eligible nodes
for a split and ¢’ is the number of eligible nodes for a join after the split.
Analogously, y is the number of eligible nodes for a join and 2’ denotes the
number of eligible nodes for a split after the join operation. The Hastings
ratio for a split is thus z/y/, and for a join is y/x’.

We summarize the Metropolis-Hastings algorithm for sampling from the

posterior distribution of the PTP model in

Let b be the burn-in iterations, ¢ be the sampling interval, and n be the
number of MCMC iterations. The output of is N=(n-»0)/i
species delimitation results P;, that is, /N partitions of all taxa. We can
compute the posterior probability S; of a certain group of taxa forming one
species, by simply dividing the number of occurrence of those taxa delimited
as one species by N. We illustrate the idea with a simple example shown
in[Figure 5.2 where the the posterior probability can be calculated explicitly.

(5.2)
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Data: A rooted phylogenetic tree T'; burn-in iterations b; sampling
interval ¢; number of MCMC iterations n
Result: A list of species delimitations sampled from the posterior
distribution.
Set t = 0 and initialize delimitation configuration P with one of the
three Heuristics or at random,;

repeat
Draw a random number u uniformly between 0 and 1;
if v < 0.5 then /* Decide to join */

/* Compute PTP log likelihood with |Equation 4.9| */
L <~ ComputePTPLogLikelihood (P);

X < FindNodesCanJoin(P);

Randomly choose one node n from X;

Join node 7 and store the new delimitation configuration in P’;
L’ <— ComputePTPLogLikelihood (P’);

Y < FindNodesCanSplit (P’);

/* Log-likelihood needs to be converted back */
/* to likelihood */
a < min (1, % X eL/_L>

else /* Decide to split =*/

L < ComputePTPLogLikelihood(P);

X < FindNodesCanSplit(P);

Randomly choose one node n from X;

Split node 1 and store the new delimitation configuration to P’;
L' + ComputePTPLogLikelihood (P’);

Y < FindNodesCanJoin(P’);

. X I_
oz<—mm<1,% x el L)

end
Draw a uniform random number u between 0 and 1;

if u < a then
| P+ P

end

if t > b and t%i == 0 then
| Save P

end
t=t+1;
until ¢t > n;

Algorithm 3: The Metropolis-Hastings Algorithm for Bayesian PTP
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Join Split

Figure 5.1: Illustration of join and split: join and split Node A. y/2’ = 2/3,
and y/2’ = 3/2. The thick lines represent among-species PTP, and the thin
lines represent within-species PTPs.

There are five possible species delimitations for this example: Py, P, Pj,
Py and Ps (Figure 5.3). We use LH(X) to denote the likelihood of delim-
itation X, then LH(P,) = 161850, LH(P,) = 567913, LH(P;) = 264116,
LH(P,) = 1346416 and LH(P5) = 161850. The normalization constant can
be computed as

C=> fO)f(T|0) = LH(P) = 2502146 . (5.3)

To compute the posterior probability of a set of taxa A form one species,
we consider every case where all taxa in A are grouped together, for example,
A = {el,e2} appears in P, and Py, so the posterior probability of el and
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1
0.06: B

0.17
el 0.30

f17 f2

Figure 5.2: A simple example to illustrate the posterior probability cal-
culation. The number on the branch is the posteriori probability that all
its decedent taxa form one species. The posteriori probabilities are approxi-
mated by MCMC simulations, and they are superimposed onto the maximum
likelihood delimitation. Number of MCMC iterations = 500,000, sampling
interval = 100, burn-in = 50,000. The Newick representation of the example
tree is ((e1:0.015, €2:0.014)E:0.1, (f1:0.03, f2:0.02)F:0.12)B;.

e2 form one species is p = LH(P,) + LH(P;)/C. We assign p to node E,
in order to denote the posterior probability of all descendant taxa of node
E forming one species. We compare the posterior probabilities computed
analytically and with the MCMC approximation in [Table 5.1]

The posterior probabilities can be considered as support values to reflect
our confidence on the species delimited. To determine the relationships be-
tween posterior probability and species delimitation accuracy, we compare
the mean Bayesian support value (see below) and the NMI values
tion 4.10]) using the simulated data from [subsection 4.4.2]

Similar to [section 4.4] we infer the phylogenetic tree using RAXML [160],
and search for the maximum likelihood delimitations. Then, the posterior
probabilities are superimposed onto the maximum likelihood species delimi-
tations. We define the mean Bayesian support value as:

Z?il S;

m

(5.4)

where S; is the posterior probability of the i-th species delimited in the max-
imum likelihood solution, and m is the number of species. The NMI values
are calculated between the maximum likelihood solution and the ground
truth. Finally, we plot the mean Bayesian support values and the NMI val-
ues in [Figure 5.4 The mean Bayesian support values and the NMI values
are highly correlated (r = 0.91), suggesting that species delimitations with
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el e2

Figure 5.3: Five possible species delimitations of the tree in [Figure 5.2
The thick lines represent among-species PTP, and the thin lines represent
within-species PTPs.

higher posteriori probabilities are more likely to be correct.

5.2.2 Using Multiple Phylogenetic Trees

In this section, we extend the Bayesian PTP model for analyzing sets of
phylogenetic trees as sampled from the posterior distribution of trees that
are obtained by Bayesian phylogenetic inference methods.

Let D be the sequence alignment. Let 6; be the species delimitation
hypothesis, and A, A. be the two rate parameters. Let t be phylogenetic
trees with branch lengths. We can now define the posterior probability as:

£(6:|D) = /]/fe&AmmmwdAa

ST FO)F ey A L) F(E165, Asy Ae) £ (D)) dAgdNdt
0, JITFO)F O A F(0) F (116, A, Ae) F (D) dNsdNcdE

(5.5)
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Node | Species members | Posterior Probability MCMC approxmas
tion (No. itera-
tions)

50000 | 500000
B el, €2, f1, f2 LHIP) — 0.064 0.058 0.060
E el, e2 LHUIEHURY) — 0,765 | 0.758 0.771
F f1, £2 LHIBMLHWI) — 0,644 | 0.661 0.640
el el LIBILIWS) — 0.170 | 0.184 0.169
e2 e2 LHIBMLHWS) — 0.170 | 0.184 0.169
f1 f1 LHEIELI) — (.292 | 0.282 0.300
£2 £2 LI LIWS) — 0.292 | 0.282 0.300

Table 5.1: Comparison of analytic solution and MCMC approximation.
Number of MCMC iterations = 50000 and 500000, sampling interval = 100,
burn-in = 10%.

Because
@O f(D]t) (D|t)
01D) = 10T (5.6
[Equation 5.5 becomes

S F(0; As,Ac)f(tlez-,xs,Ac)f@lD)dAsdAcdt
f&ID) = >, fff f FOw A W0, e A U D)t~ )

f(t|D) is the posterior distribution of the phylogenetic trees and can be
approximated with samples from the MCMC simulations. Assume we have
k trees sampled from the posterior distribution, then we can replace the

integration over ¢ in with summation over the & trees:

S LT £ F Moy A f (Eil6i, Ay o) f (1] DY AN A
SF LT F8) F s Ae) F(t:165, Moy Ao) f (83 D)o,
S ST FO)F s A F(E:1603, A, A dAdA,
SO ST 0 F s, M) (1105, A, Ae)dAsd.

f(0:|D) =

indicates that we can run k£ independent MCMC simulations

on the k trees obtained from Bayesian phylogenetic analysis programs. If
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Figure 5.4: Correlation between mean Bayesian support values and delimi-
tation accuracies. Pearson’s correlation coefficient r = 0.91.

we keep N samples from each MCMC simulation, there will be kN species
delimitations, or partitions P;, where i = 1...kN (see that are
sampled from the posterior distribution.

The goal of species delimitation is to propose one single “best” partition.
Thus, we need to summarize these kN partitions via a single partition. This
is often called the clustering ensemble problem [163]. Suppose we are given
r partitions of the same data set, denoted as Py, P, ..., P., where r := kN.
The cluster ensemble problem defines a consensus function

r:{pP,i=1.r} - P. (5.9)

I' can be, for instance, a function to maximize the average NMI, then

P =argmax » NMI(P,P,) . (5.10)

P i=1

Solving the objective function in |[Equation 5.10|is a difficult combinatorial
optimization problem. Because there are % Zle (’;) (—1)*4" possible parti-
tions for n objects and k given partitions, conducting an exhaustive search
for even on small data sets is not feasible.

A greedy heuristic algorithm was proposed by [163], however, evaluating
the NMI function between two partitions requires O(mn) time, where m
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and n are the number of clusters in the two partitions. Thus, computing
the average NMI has a time complexity of O(mnr). Therefore, even the
greedy heuristic algorithm is disappointingly slow. There exists a number of
alternative consensus functions, a review is provided in [I12].

Here, for practical reasons, we use a simple approach by choosing one of
the kN partitions sampled with the objective function:

kN
f(P)=> pij i=1...kN, (5.11)
j=1

where p; ; is the posteriori probability of the j, species in partition F;. Al-
though this approach does not really combine partitions, it only has a time
complexity of O(kN) and has the added benefit that the species delimita-
tion is monophyletic, at least with respect to one phylogeny. Therefore, the
delimitation results can be easily plotted onto one phylogenetic tree.

5.3 PTP Web Server

A web server that provides a user-friendly graphical interface for both the
maximum likelihood and Bayesian (single, fixed phylogenetic tree) versions
of the PTP model is freely available at http://species.h-its.org/. The
server has been developed with the standard Django Python web framework
(https://www.djangoproject.com/).

The web server accepts a single phylogenetic tree in Newick or NEXUS
format as input. The input tree can be rooted or unrooted. If it is unrooted,
the tree is rooted with the outgroup taxa specified by the user. If the input
tree is unrooted and no outgroup taxa has been specified, the server roots the
tree on the longest branch. I use this rooting heuristic because if outgroup
taxa exist in the tree, they are usually associated with long branches. The
user can specify all MCMC parameters, and the server allows up to 500,000
MCMC iterations.

The results can be retrieved via the job id and user e-mail address. Users
can download the output files in the results page including

e Samples of species delimitations from MCMC simulations.
e Likelihood trace for samples from MCMC simulations.
e Posterior probabilities of all delimited species.

e Maximum likelihood species delimitation.


http://species.h-its.org/
https://www.djangoproject.com/
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e Species delimitation with highest Bayesian support (see[Equation 5.11]).

The maximum likelihood species delimitation can also be visualized via Phy-

loMap (chapter 6).

In addition to the PTP web server, I also created a web interface for
the original R implementation of the GMYC model (see , which
was implemented by Tomochika Fujisawa and Tim Barraclough [61] [124].
The R code requires a strictly bifurcating ultrametric tree as input. Users
can choose to use the single- or multi-threshold version of GMYC, and the
output is summarized graphically. All of the above services are running on
a dedicated machine with 48 AMD cores and 256GB of memory. The server
has received over 5000 submissions at the time when this thesis was written.

5.4 Summary

This Chapter introduced the Bayesian extension of the PTP model, and
the MCMC method to draw species delimitation samples from the poste-
rior distribution. One important result from the Bayesian PTP analysis is
the posterior probability of the species delimitation. We have shown that
the posterior probability is highly correlated with species delimitation accu-
racy. The Bayesian PTP model can also account for phylogenetic uncertainty
when applied to multiple trees sampled by Bayesian phylogenetic analysis.
However, summarizing multiple species delimitations is a difficult task and
requires further research. Finally, we presented a web server for both, the
PTP and the GMYC model.
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CHAPTER 6

Visualizing Large Sequence Data
Sets

The content of this Chapter has been partly derived from the following
peer-reviewed publication:

J. Zhang, A. M. Mamlouk, T. Martinetz, S. Chang, J. Wang, and
R. Hilgenfeld. PhyloMap: an algorithm for visualizing relationships of
large sequence data sets and its application to the influenza A virus
genome. BMC Bioinformatics, 12:248, Jan. 2011

The content of this Chapter represents a substantial improvement
to the original PhyloMap version, and other co-authors’ contribution to
the above publication is not included in this Chapter.

This Chapter introduces a new algorithm, PhyloMap, for visualizing large
sequence data sets. PhyloMap combines ordination, species delimitation,
and phylogenetic tree inference to generate a visual representation of a large
sequence data sets.

6.1 Introduction

Phylogenetic trees are commonly used to visualize the evolutionary relation-
ships among homologous sequences [126]. When the number of sequences is
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small, the relationships can be easily extracted from the tree. However, when
a large number of sequences are analyzed, it becomes increasingly difficult to
study the trees and detect patterns [123]. A common approach is to build a
reduced tree by sub-sampling a small amount of data rather than construct-
ing a comprehensive tree using the entire dataset [23], 63], 96|, 154]. However,
the sub-sampling is usually performed according to the intuition of the re-
searcher and is thus not objective nor reproducible. Hence, the conclusions
drawn from such trees may be biased.

According to the phylogenetic species concept (see [section 4.1)), phylo-
genetic relationships can only be reliably inferred among species. Thus, the

sub-sampling should ideally include one and only one representative sequence
from each species in the data set. If species memberships are unknown,
species delimitation methods, such as PTP and GMYC (see can
be applied to identify the putative species boundaries, and thereby reduce
the number of sequences. However, there exist uncertainties in the species
delimitation processes (see discussion in , and this sub-sampling

method may lead to loss of information.

Higgins used Principal Coordinate Analysis (PCoA) [74] to visualize large
sequence data sets, which are difficult to visualize using phylogenetic trees.
He showed that, PCoA can be considered complementary to phylogenetic
tree analysis as it does not assume an underlying hierarchical structure in
the data. PCoA has also been widely used to aid delimiting species [64]
81, [85), 165, 166]. Ordination (i.e., displaying a set of data points in two or
three dimensions so as to make the relationships among the points in higher
dimensional space visible) is a powerful tool to visualize large datasets with
high dimensionalities. Nevertheless, it only preserves the main trends in the
data and detailed information gets lost. When the intrinsic dimensions of
the data set are high, the results can sometimes be misleading.

Here, we present a new method - Phylogenetic Map (PhyloMap) - that
combines PCoA, species delimitation, and phylogenetic tree inference to gen-
erate an easy-to-interpret visualization of a large sequence data sets using all
the data. At the same time, it tries to capture detailed relationships. Phy-
loMap first applies PCoA to identify the main trends. Then, PhyloMap
uses PTP to delimit putative species and extract a species-level phylogeny.
Finally, PhyloMap maps the phylogenetic tree onto the PCoA result by pre-
serving the tree topology and the branch lengths. As the two different data
sources are superimposed, the resulting plot can help to reduce the risk of
misinterpretation.
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6.2 The PhyloMap Algorithm

The input to PhyloMap is a comprehensive phylogenetic tree 7' comprising
all sequences S. First, a patristic distance matrix D of the distances between
all pairs of sequence is computed from 7". The distance d;; between sequence
s; and s; is the sum of all branch lengths along the path connecting s; and s;
in T. D serves as the input to PCoA to compute the principal coordinates
of each sequence. Then, we use PTP to delimit species on T'. The species
delimitation result is a partition of S, which clusters S into ¢ disjoint, and
mutually exclusive clusters (see [section 4.1]). Then, we choose one sequence
r; randomly from each delimited species as a representative. Subsequently,
we prune T down to 17" by only preserving r;, i = 1...q. Finally, we adopt
a multidimensional scaling technique similar to “Sammon’s mapping” [143]
to map 7" onto the first two axes of the principal coordinates. The results
can then be plotted for inspection. The steps of the PhyloMap algorithm are
summarized in [Figure 6.1}

PTP is implemented in Python, and an interactive GUI (Graphical User
Interface) for visualization is implemented in Processing. The Processing
programming language is based on JAVA, thus the PhyloMap Processing
GUI can be used under most operating systems. It is freely available at
https://github.com/zhangjiajie/PhyloMap. PhyloMap is also integrated
with the PTP web server to visualize species delimitation results.

The three most important steps in the PhyloMap algorithm are (i) species
delimitation, (ii) Principal Coordinate Analysis, and (iii) mapping the species
level phylogenetic tree onto PCoA results. Species delimitation has been
described in [chapter 4] and [chapter 5 In the following, we will describe the
Principal Coordinate Analysis, and the mapping algorithm.

6.2.1 Principal Coordinate Analysis
PCoA was first described by Gower [68]. It begins by converting the n % n

distance matrix D, with elements d;;, to a similarity matrix £ with elements:
1

2d§j : (6.1)

eij =
FE' is then centralized to obtain a matrix F with elements:

fij=ej—&—-¢+e, (6.2)

where €; is the mean of row ¢, €; is the mean of column j, and € is the grand
mean of matrix F.


https://github.com/zhangjiajie/PhyloMap
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Comprehensive

Phylogenetic Tree
Extract Patristic PTP Species
Distance Matrix Delimitation

CZgng_lpat' Extract Species
rdinate Level Tree
Analysis

Mapping Species
Level Tree onto
PCoA Result

Figure 6.1: Flow chart of the PhyloMap algorithm.

Then, the eigenvectors and eigenvalues of matrix F' are calculated. Each
eigenvector is normalized so that its sum of squares is equal to the corre-
sponding eigenvalue. Thereafter, the eigenvectors are ranked according to
the eigenvalues in decreasing order. The first two eigenvectors are used as
two-dimensional coordinates for each sequence. The information (variation)
preserved by the first two eigenvectors is the ratio of the sum of the first two
eigenvalues and the sum of all eigenvalues.

6.2.2 The Mapping Algorithm

The core algorithm of PhyloMap consists in mapping of the induced species
level phylogenetic tree 7" onto the two-dimensional coordinates calculated
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by PCoA. We adopted a multidimensional scaling method (MDS) similar to
“Sammon’s mapping” [143], but a few changes have been made to adapt it
to our specific problem.

A rooted phylogenetic tree has two types of nodes:

e Leaf nodes: nodes that do not have any children.

e Inner nodes: nodes that have child nodes and a parent node. The root
node of the tree can be considered as a special inner node that does
not have a parent node.

Each leaf node corresponds to one point in the two-dimensional PCoA result.
The positions of these points are fixed, which means that, the coordinates
of the leaf nodes are predefined and cannot be changed when drawing the
tree. To preserve the branch lengths between nodes, we only need to move
the inner nodes.

We first define an error function E:

N
1 (05 = 0y)°

E=_— E o W )
C 07 ’ (6:3)

1<j

where C'is the sum over all branch lengths of 7", and 4;; is the branch length
of branch;j between two connecting nodes ¢ and j in the tree, and ¢;; is the
straight line distance between node i and node j in the 2D PCoA plot. If we
denote y;i k=12 as the coordinates of node ¢, then

2

0iy = o | D (Wit — yix)? - (6.4)

k=1

The algorithm employs a gradient descent method on the inner node
coordinates to minimize £. We denote E™ and yz(;n) as the mapping error
and inner node i’ coordinates after my, iteration of the gradient descent

procedure, respectively. The coordinate of inner node 7 in step m+1 is given
by:

- m OE(m) 92 E(m)
yi(k = yi(k )~ (MF) / ’ (6.5)

m m)?2
ayi(k : ayz(k :

where M F' is the “magic factor” which was determined empirically to be
0.3 [143]. The partial derivatives of coordinate k for inner node i are given
by
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L 5*
5ka = F ; yzk; - ypk) (6‘6>
and
PE -2 1 { (yie — Yin)? 55 — 5,
= 0f — Oip) — I (14 2Py (6.7
ayZQk C ; 5@'}7 5:;) ( D p) 5ip ( 57jp ) ( )

where L := 3 for an internal node and L := 2 for the root node. Note that,
an inner node ¢ is only constrained by three other nodes: one parent node
and two child nodes. Thus, in [Equation 6.6| and [Equation 6.7] the partial
derivatives only need to be computed for the three connecting nodes (two
nodes for the root node).

Two types of errors can occur during the mapping:

L. 87 > 0452 the length of branchy; is longer in 7" than in the 2D PCoA
plot

2. 0f; < di;: the length of branch;; is shorter in T’ than in the 2D PCoA
plot

It is straightforward to display error type 1 in the 2D plot using a thicker
stroke (line). We use the Gauss error function:

erf(x \/_/ (6.8)

to scale the width w;; of branch;; between 1.0 to 5.0:

N 05 = 0 (6.9)
ij — 1+46Tf(ﬁ—1) if&fj>5ij . '

Thus, in the gradient descent procedure, we use a strategy which tries to
minimize error type 2 by updating the branches which contain error type 2
more frequently than those contain error type 1.

The algorithm is summarized in Algorithm [4]
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Input: The induced species level tree T” with ¢ leaf nodes; Leaf-node
coordinates x;, where ¢+ = 1...q and k& = 1,2; Number of
iterations n.

Result: Internal-node coordinates y,;,, where ¢ = 1...(¢ — 1) and

k = 1,2; Branch width w;; for each branch in 7.

Randomly initialize all y; ;

Compute d;; from T ;

Compute 6;; using z;, and vy, ;

repeat

foreach inner node i of T" do

if m % 5==0 then

‘ update the y;; with [Equation 6.5(;

else

update the y;;, with only if there exists at

least one branch connected to this node with d;; > 6;; ;
end
update ¢;; using z;; and v, ;
end
m=m-+1;

until m > n;

Compute w;; for each branch in 7" with [Equation 6.9|;
Algorithm 4: The PhyloMap Mapping Algorithm

6.3 Results and Discussion



&
/.'é"
.
- (.)r‘)“ e, @O
(.)))))J

o @ oL
:&"w 74.1 117.5
744 117.6 %,
74.3 114.1 o
e | ™2
114.3 O@
117.4 114.5 .
117.3 114.4 %
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We have computed a PhyloMap for the Rivancidella dataset (for details of
this dataset, please see [subsubsection 4.4.1.1)), the result is displayed in
lure 6.3 [Figure 6.3|is a screen shot of the PhyloMap GUI. The GUI allows
users to view sequence names, all sequence names belonging to one species,
change sequence name positions, and export publication quality figures. Fur-
thermore, we make the GUI available via a web service using the Process-
ingjs JavaScript translator (http://processingjs.org/)). The PhyloMap
web service is an integrate part of the PTP web server .

From the Rivancidella PhyloMap, we can clearly identify two main sister
groups, which need to be shown as two separate subtrees on two printed pages
in the original publication [124]. However, without the information from the
mapping tree (7”), the plain PCoA result fails to portray the distances be-
tween some species. For instance, the species composed of sequences 117.1
- 117.6, and the species composed of sequences 114.1 - 114.6 are indistin-
guishable in the 2D PCoA plot. But if we take into account the mapped
species-level tree, the distances are substantially larger. The real distance
may require more dimensions in the PCoA to be properly displayed. There-
fore, the tree can be considered as a means to add more dimensions to the
2D PCoA plot.

While phylogenetic tree inference methods have come of age, their inter-
pretation still relies heavily on visual inspection [33, IT1]. The difficulties
of analyzing huge trees have mostly been addressed by developing sophisti-
cated tree visualization software. Visual data exploration usually follows a
three-step process [84]: overview, zoom and filter, and details-on-demand.
Despite advances in visualization software [I45] [190], it remains difficult to
comprehend the entire tree in the overview stage. PhyloMap was developed
specifically for improving the overview stage by summarizing the main phylo-
genetic information. Both PCoA and PTP can be considered data compres-
sion techniques that are suited to preserve the most important information
in the data. Once the main trends in the data set have been identified, one
can zoom into areas of interest, thus reducing the data set to a size that can
be more easily visualized.

Other means of adding information to ordination such as superimposing a
minimal spanning tree and a relative neighborhood graph have been proposed
by Guiller [69]. However, these methods require using all data, and hence
generate difficult-to-interpret results when the data set is large. Our method
also serves as a generic way to add one more layer of information to a data
ordination analysis that can alternatively be described via a tree.

The PCoA used here is a linear dimensionality-reduction technique [140),
170]. Despite the recent advances in nonlinear dimensionality reduction,
we believe that PCoA is appropriate for PhyloMap. First, PCoA finds the
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greatest variance in the data set. In other words, it preserves the global
patterns and this is one of the main goals of PhyloMap. Other methods such
as Isomap [I70] that uses geodesic distances might not be well-suited for
phylogenetic analyses. Methods such as LLE [140] are designed to preserve
local properties which is obviously not the goal of PhyloMap. Second, PCoA
is robust in the sense that it does not depend on the initialization conditions
and is parameters-free.

It is worth noting that the method presented in this Chapter represents
a substantial improvement with respect to the original PhyloMap version
described in [I93]. First, we replaced the “Neural-Gas” [101] sequence clus-
tering method with the PTP species delimitation approach. Neural-Gas re-
quires the number of clusters as input parameter, and lacks a clear biological
interpretation of the clusters. PTP, however, can determine the number of
sequence clusters automatically by searching for the maximum likelihood so-
lution. The sequence clusters found by PTP can be considered as putative
species according to the PSC. Second, we implemented an interactive GUI
for displaying the PhyloMap plot. The GUI is essential for a visualization
tool, but it was not available in the original PhyloMap.

6.4 Summary

PhyloMap is a robust algorithm for analyzing and displaying phylogenetic
relationships in large sequence data sets. It uses the entire input data set
(the comprehensive full tree) and avoids the bias introduced by empirical
sub-sampling. PhyloMap introduces two data compression techniques (di-
mensionality reduction and species delimitation) to reduce the size of the
data without losing important information. The visualization summarizes
the main phylogenetic information and overcomes the shortcomings of stand-
alone phylogenetic tree and ordination analyses.



CHAPTER 7

Paired-End Reads Merger

The content of this Chapter has been derived from the following
peer-reviewed publication:

J. Zhang, K. Kobert, T. Flouri, and A. Stamatakis. PEAR: a fast and
accurate Illumina Paired-End reAd mergeR. Bioinformatics (Ozford,
England), pages 1-7, Nov. 2013

Kassian Kobert and I designed the statistical test described in
tion 7.2.2| together, Tomas Flouris implemented the largest part of the C
code and developed the memory manager described in [subsection 7.2.4]

[llumina paired-end sequencing technology can generate reads from both ends
of target DNA fragments, which can subsequently be merged to increase the
overall read length . There already exist tools for merging these
paired-end reads when the target fragments are equally long. However, when
fragment lengths vary and, in particular, when either the fragment size is
shorter than a single-end read, or longer than twice the size of a single-end
read, most state-of-the-art mergers fail to generate reliable results.

We present the PEAR software for merging raw Illumina paired-end reads
from target fragments of variable length. The program evaluates all possi-
ble paired-end read overlaps and does not require the target fragment size
as input. It also implements a statistical test for minimizing the number
of false-positive results. Tests on simulated and empirical data show that,
PEAR consistently generates highly accurate merged paired-end reads. A
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highly optimized implementation allows for merging millions of paired-end
reads within a few minutes on a standard desktop computer. On multi-core
architectures, the parallel version of PEAR shows linear speedups compared
to the sequential version of PEAR.

PEAR is implemented in C and uses POSIX threads. It is freely available
at http://www.exelixis-lab.org/pear

A

C

Figure 7.1: Three possible scenarios for paired-end read lengths and target
DNA fragment lengths. A: short overlap between the paired-end reads; B:
no overlap between the paired-end reads; C: single end read length is larger
than the target DNA fragment length.

7.1 Introduction

The Hlumina sequencing platform can produce millions of short reads in a
single run. The deep sequencing capability and low cost of the sequencing-
by-synthesis technology is useful for a plethora of applications ranging from
whole-genome sequencing [94) [I81] to profiling microbial communities by se-
quencing the hypervariable regions of the 16S rRNA gene [7,, 19, [36] (137, [195].
However, single-end reads produced by the Illumina platform typically have
a length that ranges from 75 to 300-bp. Furthermore, there is an exponential
increase in error rates along the reads [30] (Figure 7.2]).

The Illumina platform can also generate paired-end reads by sequencing
the forward and reverse strands of each target DNA fragment. If the target
DNA fragment size is smaller than twice the length of the single-end reads,
that is, if there exists an overlap, the corresponding paired-end reads can be
merged into a fragment. By merging paired-end reads, the overlapping region
between them can also be deployed for correcting sequencing errors, and
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Figure 7.2: Quality score plot of simulated 100-bp paired-end reads before
merging.

potentially yield sequences of higher quality (Figure 7.3]). Merging paired-end
reads is the first processing step in a plethora of sequence analysis pipelines.

Hence, its accuracy is crucial for all downstream analyses.

There exist several proof-of-concept mergers such as iTag [30],
BIPES [195], and Shera [I37]. Some production-level mergers FLASH [100],
PANDAseq [102], and COPE [94] have also been recently introduced.

Shera merges the reads by maximizing the number of matches between the
paired-end reads. Both, Shera and FLASH (see below), ignore the quality
scores of the base calls. Shera merges all reads and leaves it to the user
to decide which merged reads are correct. Since it is a proof-of-concept
implementation, it is up to 100 times slower than competing mergers.

FLASH constructs merged reads that maximize the overlap length-to-
matches ratio. FLASH requires the mean DNA fragment size and standard
deviation of the fragment size as input parameters. It can therefore only
merge paired-end reads into fragments of “almost” identical size. Further-
more, our tests show that FLASH performs poorly when the overlaps between
reads are short.

COPE deploys an analogous approach as FLASH for finding the best
overlap, but also takes into account the quality scores of mismatches. COPE
is designed to handle deep genome sequencing datasets. Thus, it considers
that k-mers that occur infrequently are likely to be sequencing errors. COPE
exhibits high memory requirements and also relatively long execution times.

PANDAseq merges fragments by maximizing the probability of true se-
quence matches, given the observed sequences. It combines quality scores
with sequence matches and thereby improves merging quality. In contrast to
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Figure 7.3: Quality score plot of simulated 100-bp paired-end reads after
merging (mean overlap = 35-bp).

FLASH, PANDAseq works well with short overlap regions and does not re-
quire prior knowledge of the target DNA fragment size. However, it assumes
that all paired-end reads can be merged. Thus, if the sample contains DNA
fragments that are at least twice as long as the single-end reads, PANDAseq
exhibits a high false-positive rate.

Finally, most current paired-end mergers assume that the DNA fragments
are longer than the individual single-end reads. When this does not hold,
for example when sequencing the V6 region of 16S rRNA genes of bacterial
samples (fragment sizes range between 110 and 130-bp [65]) with read lengths

of 150-bp (see case A in [Figure 7.1)), current mergers will generate erroneous
results.

Here we present PEAR, a fast and accurate paired-end read merger.
PEAR merges reads by maximizing the assembly score (AS) of the read
overlap via a scoring matrix that penalizes mismatches with a negative value
[ and rewards matches with a positive value a. Our approach takes quality
scores and sequence matches into account. It does not require pre-processing
of the raw data or specifying the fragment size. Furthermore, PEAR neither
requires prior information on read length nor target fragment size. It can
reliably identify reads that can either be merged or need to be discarded.
The program is accurate on datasets with (i) short overlaps and (ii) DNA
target fragment sizes that are smaller than single-end read lengths.

To identify false-positive merged reads, we propose a statistical test that
is based on the observed expected alignment scores. On simulated paired-
end reads with a mean overlap of 20-bp, PEAR correctly merges 90.44% of
the fragments with a false-positive rate of 2.78% when our statistical test is
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disabled. It correctly merges 70.06% of the fragments with a false-positive
rate of only 0.48% when the significance level of the test is set to 1%. The best
competing merger (PANDAseq) correctly merges 83.51% of the fragments,
but with a false-positive rate of 6.65%.

We implemented PEAR in C. It includes an optimized memory manage-
ment scheme that allows the user to specify the amount of RAM available for
executing the program. Therefore, it can be deployed on off-the-shelf desktop
and laptop computers as well as on high-end multi-core servers. In
we outline why PEAR becomes faster when using less memory.
Finally, the run time of the parallel version of PEAR scales linearly with the
number of cores.

7.2 The Merging Algorithm

7.2.1 Overlap Algorithm

In paired-end sequencing mode, the Illumina Consensus Assessment of Se-
quence and Variation (CASAVA) software generates two FASTQ files [25],
one for each reading direction of the fragment. The files contain exactly the
same number of reads. Corresponding paired-end reads can be identified by
their coordinates in the flow cell. The Illumina flow cell is a planar opti-
cally transparent surface similar to a microscope slide. It contains a lawn of
oligonucleotide anchors bound to its surface.

PEAR scores all possible overlaps for each pair of corresponding paired-
end reads to determine the overlap with the highest AS (Assembly Score).
Subsequently, PEAR conducts a statistical test to assess the statistical sig-
nificance of the merged reads. If the merged reads do not pass this test or
if the overlap length is smaller than a user-defined threshold (based on the
expected approximate sequence length in the experiment) the pair of reads
will not be merged. Otherwise, PEAR returns the merged fragment and will
also correct errors using the Illumina quality scores.

For each base, CASAVA (v1.8) yields an ASCII-encoded quality score,
that represents an integer value (), which can be converted into the probabil-
. . . 33-Q 64-Q .
ity e of a sequencing error at the base via e = 10710 (e = 10 10 in earlier
CASAVA versions). The base frequency of a nucleotide is the number of oc-
currences of that nucleotide in the FASTQ files divided by the total number
of bases. The probability q of a random base match is: ¢ = P35+ P2+ P2+ P2.
Given an overlapping region C':= (X,Y), where X and Y are the overlap-
ping segments of the two reads, we denote the observed (resp. true) base at
position i of the overlap by X, Y; (resp. X!, Y/). We denote the length of the

1 g
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overlap region by |C|. The probability that base X; (resp. Y;) is erroneous
is ex, (resp. ey;). Assuming that errors are independent events, we can cal-
culate the probability of a true base match, given the observed base match
as

ACGT
§:b#X’ By
ACGT p
(ST R)

The probability of a true base match, given the observed base mismatch is

PriX; =Y/|X; =Y] = (1 —ex)(l —ey) texey,—

Py
Pr(X = Y/IX; £ Vi = (1= ev)ex, =amoe
Zb;éX B,
Py,
+ (1 —ex,)ey; ATGC

SO R

ATGC
+ex.ey; Zb;ﬁX Y; By 3
ATGC ATGC by
(Zb;&X Pb)(Zb;éY )

and the probability of a true base mismatch, given the observed base mis-
match (or match) is
PHX] £ /| X, £ V] = 1~ Pr{X] = ¥/ | X, V]
PIX! £ /| X, = Vi = 1= PrX/ = ¥/] X = ]

If any of the bases is undetermined (denoted by N),
PriX;=Y/|X;,=NorY,=N]=¢q
PrX/£Y/|[X,=NorY;=N]=1—gq.

PEAR calculates the AS for each possible overlap (assuming no gaps, since

they are infrequent on Illumina platforms [I14]) with a scoring matrix that

rewards matches by a positive value o and penalizes mismatches with a

negative value . Scoring matrices for evaluating sequence alignments are

routinely used, for instance, in BLAST [2] and Bowtie2 [90]. Elaborate tests

using simulated data showed that setting a := 1.0 and § := —1.0 yields the
best results. Given the overlap C' := (X,Y), we define AS as

ST (PrX] = V/IX, = Vi) (el £ VI £ Y
i=1...|C|

where

5 — 1 : A match is observed (X; =Y)
1 0 : A mismatch is observed (X; #Y;)

For the merged reads, PEAR computes the overlap that maximizes the AS.
We denote the overlap that maximizes the AS by C*.
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7.2.2 Statistical Test to Control False Positive Rate

To test the significance of the merged reads and to identify reads that shall
not be merged, we calculate a p-value for the null hypothesis that the two
corresponding reads are independent from each other. By independent we
mean that, any overlap between the two reads occurs purely by chance. For
an overlap C' = (X, Y') between two reads « and y, we define OES(C) to be
the observed expected alignment score (OES)

OES(C) = Y Pr[X{=VY/|X; Y]] a+Pr[X] #Y/|X;,Vi] - B
i=1...|C]

and - R
OES(z,y,w) = max OES(C),
CeD(z,y,w)
where D(z,y,w) is the set of all possible overlaps between sequences x and
y with a size of at least w.

Let ¥ and § be two independent random sequences and let us further
assume that there are no sequencing errors. Then, the p-value, that is, the
probability of a random sequence producing an OES that is at least as high
as the OES obtained from the merged reads, is defined as the probability of

6E\S(f, 7, w) being greater or equal to the observed OES(C*). We obtain

Pr(OES(%, §,w) > OES(C™)) = 1 — Pr(OES(C*) > OES(#, j,w))
<1- J] Pr(OES(C") > OES(C))

CeD(&,jw)
(len

C] -

- TS ()
CceD(z,5,w) k=0

max(l1,l2) £(i

<1 HZ() (1 - gy
<1 ﬁ() (1 - gy

1=

=: p-value ,
where
l(c) = [(OES(C") = B-¢)/(a=B)] — 1.

By default, PEAR uses an OES with a p-value < 0.01 as cutoff. If the OES of
the best merged read is smaller than this value, the reads will not be merged.
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Choosing a smaller p-value will reduce the false-positive rate of the merged
sequences, but a lower number of reads will be merged.

If the underlying overlap size is unknown, w can be set to 1.0. If, however,
the overlap is known to be short (< 35-bp in our simulations), our statistical
test will reject up to 4% (based on our simulations, [Table 7.2|- [Table 7.4) of
correctly merged sequences because of low quality scores. To recover more
merged reads, we provide the possibility to set w to the computed overlap size
after the merging step, instead of using a predefined fixed value. However,
when using this work-around, the p-value of the statistical test is not valid
anymore, since w depends on the output of our algorithm. This implies
that, the random sequences are more restricted when choosing overlaps than
the original input sequences. We will refer to the aforementioned, valid p-
value as the mazimal accepted probability (MAP). Our tests show that PEAR
can produce 4% more merged sequences using MAP at the cost of a slight
(approximately 0.1%) increase in false-positive rates.

7.2.3 Output

PEAR generates four FASTQ output files. One contains the successfully
merged reads, two files contain the forward and reverse unmerged reads, and
one the discarded reads. Discarded reads are reads that fail to pass one of the
following quality filters, which are applied after the merging process. These
filters require the user to set some program parameters, which are outlined
below. By default, PEAR does not apply these quality filters.

Minimum quality score for trimming It is common to trim the reads
and use their high quality part, due to the low quality of base calls
toward the end of [llumina reads [19]. Consequently, PEAR includes
the option to trim unmerged reads that contain at least two consecutive
bases with quality scores lower than a user-specified minimum quality
score value.

Minimum length of output sequences PEAR discards merged se-

quences or trimmed, unmerged reads that are shorter than this
threshold.

Maximum length of the output sequences PEAR discards sequences
that are longer than the specified maximum length.

Maximum proportion of uncalled bases This parameter allows for dis-
carding reads that contain more than the specified proportion of un-
called bases N. When the value is set to 0, it will discard all reads
containing one or more uncalled bases N.
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Now, assume two reads x and y can be merged and have an overlapping
region C'. PEAR will correct errors in the overlapping region and compute
updated quality scores for the overlap. For every pair of corresponding ob-
served bases X and Y in C' and their quality scores ex and ey, respectively,
we distinguish four cases — X and Y are identical, different, one of them is
uncalled, or both of them are uncalled. When the two bases are identical,
PEAR simply inserts this base into the corresponding position in the merged
sequence and assigns the product of the quality scores: exey because errors
are independent of each other (see . However, many other pro-
grams assumes a maximum quality score of 40. Quality scores over 40 can
easily crash many downstream analysis programs. Thus, PEAR by default
caps any quality scores greater than 40 to 40.

When the base pairs are different, PEAR inserts the base with the highest
quality score and the corresponding quality score. If (only) one of the two
bases is uncalled (N), PEAR uses the called base and its quality score. Finally,
if both bases are uncalled we arbitrarily use the lower of the two quality
scores, since a quality score is required to generate a valid FASTQ output
file.

7.2.4 Parallelization and Memory Management

PEAR runs on standard laptop and desktop computers. We implemented a
memory allocator and manager that allows PEAR to only use a predefined
amount of memory that the user can specify via a command-line switch.
PEAR can use several gigabytes, but also just a few kilobytes of RAM.

Current off-the-shelf laptops and servers consist of multi-core processors
with a minimum number of two cores per processor, thus increasing the
total processing power of the system. However, RAM clock rates are still
slower than CPU clock rates (also known as “memory-gap”). Thus, the
time required for loading data from RAM into cache memories and registers
can lead to performance deterioration. Currently, most tools process sets
of paired-end reads iteratively. They load a set of reads and merge them
until all reads in this set have been merged. Because disk accesses are serial,
most tools suffer from waiting times induced by loading reads into RAM and
the caches. To alleviate this performance bottleneck, PEAR uses a standard
double-buffering technique.

The main idea of double buffering techniques is to split-up the available
RAM (specified by the user) into two buffers of equal size, which we denote
as active and passive buffer. At program start-up there is an initial latency
until the active buffer has been filled with reads for the very first time. Then,
a dedicated thread (which we denote as reader thread) loads a second set of
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reads into the passive buffer while the remaining threads process the reads in
the active buffer. If the reader thread has already loaded the next set while
the remaining threads are still processing the reads in the active buffer, the
reader thread will also start merging reads. Thereby, we can parallelize the
process of reading from disk and merging reads. By using this technique, we
hide the latency of disk accesses and can use the majority of threads/cores
for merging short reads and thus reduce overall run time. The optimal RAM
setting is machine- and data-set specific. Based on our observations on merg-
ing 150-bp paired-end reads data sets on a 48 core Magny-Cours system, we
set the default memory buffering to 200MB.

7.3 Experimental Settings

To evaluate PEAR and compare it to the three state-of-the-art mergers
(FLASH v1.2.6, PANDAseq v2.4, COPE v1.1.2), we used simulated data
sets with varying overlap and DNA fragment sizes as well as the following
two empirical data sets:

1. Deep sequencing data of the Staphylococcus aureus genome by [99],

2. Reads generated from paired-end sequencing of a known single sequence
(template) used by [102] to test PANDAseq.

7.3.1 Simulated Data

To mimic the sequencing of multiple hypervariable regions of 16S rRNA,
we extracted a reference sequence data set of 1000 full-length bacterial 16S
rRNA gene sequences from the RDP classifier training data set [I79]. We
then used ART (v1.5.0) [77] to simulate 100-bp paired-end reads, with mean
target DNA fragment sizes of 101, 150, 165, 180, 190, and 250-bp, and a
standard deviation of 10-bp. We set the parameters of ART to generate
target DNA fragments by randomly sampling the reference sequences until
a ten-fold coverage of the reference data set was attained. To obtain a more
realistic test dataset, we used two read quality profiles for simulating either
end of the respective pairs. The target DNA fragments produced by ART
provide the ground truth for the merged paired-end reads.

We also generated an additional set of 150-bp long reads with a mean
fragment size of 101-bp, by extending all single reads in the above 101-bp
fragment size set to a length of 150-bp. We extended the reads by complete
random sequences with the lowest possible quality scores. This setup emu-



7.3. EXPERIMENTAL SETTINGS 89

lates case C (see. where the DNA fragment size is smaller than
the length of a single-end read.

We executed PEAR, COPE, FLASH, and PANDAseq on the above data
sets and compared the lengths of the merged reads with the true fragment
lengths. We only consider merged sequences whose length is equal to the
true fragments size as correctly merged sequences. When the fragment size
is at least twice as long as the single read length, we consider that a result
returning unmerged reads is correct. We executed PEAR with three different
settings: a) statistical test disabled, b) p = 0.01, and ¢) MAP = 0.01. In
all tests the minimum overlap size is 1; for all other parameters we use the
default values. We ran PANDAseq with default parameters as well as with a
minimal overlap setting of 10-bp. FLASH requires the mean fragment length
and a proper minimal overlap value in order to work correctly. Therefore,
we ran it with the known/true mean fragment lengths. COPE includes four
different modes of execution. Mode 0 is similar to the FLASH approach,
but with more stringent alignment score parameters. Modes 1 and 2 further
utilize k-mer frequencies, and full-mode runs all three modes sequentially
and concatenates the results. COPE generated a segmentation fault on our
simulated data under COPE modes 1 and 2. Therefore, we only report results
obtained under COPE mode 0.

7.3.2 Staphylococcus Aureus Genome Data

This data set was initially generated by [99] (available for download at http:
//gage.cbcb.umd.edu/data) to assess short read-based genome assembly
quality. We used the raw data set which contains 647 052 pairs of 101-bp long
reads with a mean DNA fragment size of 180-bp and 45-fold coverage of the
Staphylococcus aureus genome. To determine the true target DNA fragment
sizes, we used Bowtie2 [90] to map the merged reads to the reference genome.
We use the corresponding end-to-end mode in Bowtie2 and do not allow for
opening gaps in either sequence (the reads and the reference genome). This
guarantees that all merged reads that can be mapped to the reference genome
are correctly merged. This is because there are two possible scenarios for
incorrectly merged reads: (i) they can be longer than the correct one, in
which case the sequences can be aligned by opening gaps in the reference
sequence or (ii) they are shorter than the correct one, and the sequences can
be aligned by opening gaps in the merged sequences. Therefore, we consider
that a merged paired-end read is correct only if Bowtie2 finds a hit on the
reference genome. Note that, the results are conservative because some of
the correctly merged reads might be missed by Bowtie2 due to sequencing
errors.
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7.3.3 Single Known Sequence Data

We used a data set that was deployed by [102] to assess PANDAseq. The data
set contains paired-end reads from a single template sequence. The template
sequence is the V3 region of the Methylococcus capsulatus (ATCC 33009)
16S rRNA gene. It has a length of 198-bp, including the primers. The
FASTQ files contain 673845 pairs of 108-bp long paired-end reads. Each
pair overlaps by exactly 18-bp. We calculate the “true” merged reads by
computing a global pair-wise sequence alignment between the merged reads
and the template sequence. Subsequently, we check if the overlapping region
contains gap. We consider a merged read to be correct if there is no gap.
We also calculate the error rate (ER) of the merged reads to evaluate error
correction performance. The ER is the average number of errors per merged
read (excluding gaps) with respect to the template sequence. We ran PEAR
with default parameters. We executed PANDAseq with default parameters
and with a minimum overlap setting of 10-bp. We applied FLASH with a
template sequence length of 198-bp and a read length of 108-bp.

7.4 Resuls

7.4.1 Simulation

[Table 7.1] - [Table 7.6] shows experimental results. With the exception of the
first test case (no overlaps), PEAR consistently generates a larger number
of correctly merged sequences when the statistical test is disabled. PEAR
merges fewer correct fragments when the statistical test is enabled. When
setting the p-value or MAP to 0.01, PEAR shows lower false-positive rates
(FPR) than all three competing mergers except for data sets with on overlaps.
When we use MAP to evaluate the merged reads, PEAR produces more
merged reads with a FPR that is analogous to the FPR generated by PEAR
with the statistical test. PEAR is robust with respect to short overlaps
because it can still merge approximately 40% of the reads when the mean
overlap is only 10-bp. The FPR of 0.64% (MAP = 0.01) under this setting is
ten times lower than for FLASH and PANDAseq. When reads do not overlap,
PEAR classifies them as unmerged with a FPR of 0.03%. Here, the FPR is
defined as the fraction of merged reads that should not have been merged.
Overall, PEAR shows low FPRs across all test scenarios (overlap lengths). In
addition, it does not require any prior knowledge regarding overlap lengths.
Therefore, PEAR can be used for merging sequences with varying fragment
sizes.
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| Merged Correct [-]  Correct [%] FPR [%] |

COPE (mode0) 31 23065 99.87 0.13
FLASH 0 23096 100 0
PANDAseq (default) 12796 10300 44.59 55.4
PANDAseq (-0 = 10) 10562 12534 54.27 45.7
PEAR (test disabled) 8184 14912 64.57 35.4
PEAR (p-value=0.01) 8 23088 99.96 0.03
PEAR (MAP=0.01) 33 23063 99.86 0.14

Table 7.1: Simulated data set of 100-bp paired-end reads with no overlaps
(23096 pairs).

| Merged Correct [-] Correct [%] FPR [%] |

COPE(mode0) 5755 5709 22.86 0.80
FLASH 8968 8309 33.27 7.34
PANDAseq (default) 19616 14690 58.83 25.11
PANDAseq (-o = 10) 17783 12053 48.27 32.22
PEAR(test disabled) 19691 17112 68.53 13.10
PEAR(p-value=0.01) 9365 9315 37.31 0.53
PEAR(MAP=0.01) 10080 10015 40.11 0.64

Table 7.2: Simulated data set of 100-bp paired-end reads with 10-bp mean
overlaps (24 969 pairs).

PANDAseq performs equally well as PEAR for the majority of cases where
the overlaps exceed 20-bp. However, its FPR increases with decreasing over-
lap size, regardless of the minimal overlap size setting. Furthermore, PAN-
DAseq incorrectly merges 55.4% of the reads that do not overlap and 25.11%
of the reads when the mean overlap is set to 10-bp. We will discuss the
reasons for this behavior in lsubsection 7.4.5]

FLASH failed to merge the majority of reads for small overlap sizes, but
exhibits low FPRs for merged sequences. FLASH merges reads by maximiz-
ing the fraction f (number of matches to overlap size ratio). The default
threshold of f in FLASH is 0.75 and the default minimal overlap size (w) is
10. This setting can be shown to have a p-value of 0.00156 for merged reads
by using the statistical test introduced in [subsection 7.2.2]and replacing OES
with f. However, overlaps that exclusively maximize f might not yield cor-
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| Merged Correct [-]  Correct [%] FPR [%] |

COPE (mode0) 9819 9750 3771 0.70
FLASH 10917 10843 41.93 0.67
PANDAseq (default) 23136 21596 83.51 6.65
PANDAseq (-o = 10) 22736 20722 80.14 8.85
PEAR (test disabled) 24153 23386 90.44 3.16
PEAR(p-value=0.01) 18202 18115 70.06 0.48
PEAR(MAP=0.01) 19265 19165 74.12 0.52

Table 7.3: Simulated data set of 100-bp paired-end reads with 20-bp mean
overlaps (25858 pairs).

| Merged Correct [-] Correct [%] FPR [%] |

COPE(mode0) 11771 11693 43.27 0.66
FLASH 15603 15507 57.37 0.61
PANDAseq (default) 26 068 25849 95.64 0.84
PANDAseq (-o = 10) 26267 26 026 96.29 0.92
PEAR (test disabled) 26866 26712 98.84 0.57
PEAR(p-value=0.01) 25939 25833 95.59 0.41
PEAR(MAP=0.01) 26380 26273 97.21 0.41

Table 7.4: Simulated data set of 100-bp paired-end reads with 35-bp mean
overlaps (27026 pairs).

rectly merged sequences. Let us consider two possible overlap sizes w; and
wy for paired-end reads x and y, where w; < wy. As an example, we assume
wy := 10 with 1 mismatch, wy := 50 with 6 mismatches, and a true overlap
size of wy. Then f,, = 0.9 > f,, = 0.88 and FLASH will choose the overlap
of size w; as merged read. Because OES,,, =9 < OES,, = 38, PEAR will
return the correct result. FLASH also requires the mean fragment length
as input, which limits its applicability to datasets with uniform fragment
length.

COPE, PANDAseq, and FLASH were unable to merge reads under ap-
plication scenario C (see where the DNA fragment size is smaller
than a single-end read . PANDASseq incorrectly merges over one
third of the reads in this scenario.
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| Merged Correct [-] Correct [%] FPR [%] |

COPE(mode0) 7915 7858 27.73 0.72
FLASH 20025 19940 70.36 0.42
PANDAseq (default) 27939 27834 98.21 0.37
PANDAseq (-0 = 10) 28049 27944 98.61 0.37
PEAR (test disabled) 28335 28234 99.63 0.36
PEAR (p-value=0.01) 28288 28190 99.47 0.35
PEAR(MAP=0.01) 28329 28229 99.61 0.35

Table 7.5: Simulated data set of 100-bp paired-end reads with 50-bp mean
overlaps (28 339 pairs).

[

| Merged Correct [-] Correct [%] FPR [%] |

COPE(mode0) 13 0 0 100
FLASH 44 0 0 100
PANDAseq (default) 11417 0 0 100
PANDAseq (-o = 10) 14146 0 0 100
PEAR(test disabled) 33187 33071 99.56 0.35
PEAR(p-value=0.01) 33136 33022 99.41 0.34
PEAR(MAP=0.01) 33185 33071 99.56 0.34

Table 7.6: Simulated data set of 150-bp paired-end reads with 100-bp mean
overlaps (33217 pairs).

7.4.2 Staphylococcus aureus genome data

We summarize the results in[Table 7.7, All mergers work well in this setting.
PANDAseq correctly merges the highest number of reads; PEAR about 2%
fewer (stat. test disabled). Nonetheless, a quarter of the reads merged by
PANDAseq were not mapped to the reference genome using Bowtie2. In
contrast only 4.9% of the merged reads from PEAR could not be mapped.
COPE merges fewer reads than PEAR and shows a lower FPR when the
statistical test in PEAR is disabled. This is probably because COPE was
specifically designed for such deep sequencing datasets.
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| Merged Correct [-]  Correct [%] FPR [%] |

COPE(full mode) 373543 369 683 07.13 1.03
FLASH 369276 361663 55.89 2.06
PANDAseq(default) 534839 418747 64.72 2171
PANDAseq(-o = 10) 533618 407477 62.97 23.64
PEAR(test disabled) 411321 391 157 60.45 4.90
PEAR(p-value=0.01) 202221 199764 30.87 1.22
PEAR(MAP=0.01) 257409 251714 38.90 2.21

Table 7.7: 647052 Paired-end reads with mean fragment size 180-bp and
read length 101-bp (Staphylococcus aureus genome).

| Merged Correct [] FPR [%] ER|

COPE(full mode) 0 0 - -
FLASH 660984 660030 0.14 0.459
PANDAseq(default) 660593 657602 0.45 0.433
PANDAseq(-o = 10) 660522 657609 0.44 0.430
PEAR(test disabled) 663025 661717 0.20 0.475
PEAR(p-value=0.01) 576225 576035 0.03 0.147
PEAR(MAP=0.01) D78887 278679 0.04 0.149

Table 7.8: Single template 198-bp sequence data set of 673 845 108-bp paired-
end reads.

7.4.3 Single known sequence data

For this data set, PEAR merges the highest number of reads when the statis-
tical test is disabled (Table 7.8). When setting p = 0.01 and using the test,
fewer reads are merged, but only 0.03% of the merged reads are false posi-
tives. Both, PANDAseq and FLASH, produce comparable results but with a
slightly higher FPR. We executed COPE in full-mode (see [subsection 7.3.1))
on this data set. COPE did not merge any reads, however. The ER of the
raw reads is 0.51. While the overlap size is only 18-bp, all mergers decrease
the ER. Merged reads produced by FLASH and PANDAseq show ERs that
are slightly lower than PEAR (statistical test disabled). However, PEAR
yields 3 times lower ERs when the statistical test is enabled.
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7.4.4 Run-time and Memory Requirement

To compare run times and speedups between PEAR and competing mergers
we used the data set from [subsection 7.3.3] We conducted experiments on
an Intel Xeon X7560 4-processor machine with 8 cores each and a total of 32
cores. We excluded COPE from most experiments because it does not merge
any reads for this dataset and because it has only been partially parallelized
(only the k-mer computation is parallelized).

For the sake of fairness, we updated the three mergers to their latest
versions at the time when this thesis was finalized. We used PEAR version
0.9.6 and disabled the empirical frequency option, PANDAseq version 2.8
with default parameters and FLASH version 1.2.11 with default parameters.
We first tested the three mergers on the single template sequence data set.
PEAR is much slower than PANDAseq and FLASH when a small number
of cores were used (The sequential runtimes for the three mergers are: 147s,
14s, and 28s, respectively). However, while PEAR yields close to linear
speedups, PANDAseq and FLASH perform poorly on speedups beyond 4
cores (see . The runtime of PEAR is comparable to PANDAseq
and FLASH when using 24 cores (13.5s, 10s, and 7s, respectively).

We then also tested PEAR, PANDAseq, and FLASH on a substantially
larger data set of 36,504,800 101-bp long paired-end reads from the Human
Chromosome 14 (data available at http://gage.cbcb.umd.edu/data)). Us-
ing 24 cores, PEAR requires 165 seconds to finish, while PANDAseq and
FLASH need 180 and 95 seconds, respectively.

7.4.5 Reasons for high false-positive rates in PANDASeq

PANDAseq merges reads by choosing the overlap C, such that |C]
[1, min(|F|, |R|)) that maximizes

PriF,R|C]= [ Pr[F,;=R] (1/49"", (7.1)
i=1...C|

where F' is the forward read sequence and R is the reverse read sequence.
When the DNA fragment size exceeds the sum of the lengths of the reads

(see |[Figure 7.1] case B), a merger should not merge the reads. According to
Equation [7.1, PANDAseq will merge reads with an overlap C, when:

[ PrlE,, =R]> (1/9%. (7.2)
i=1...|C]

Assuming that the merged sequences are generated randomly with all base
frequencies being equally likely with probability 0.25 and that all bases have


http://gage.cbcb.umd.edu/data

96 CHAPTER 7. PAIRED-END READS MERGER
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Figure 7.4: Parallel speedups of PEAR, FLASH and PANDAseq on the single
template sequence data set.

an equal error probability e, we can simplify to

Pr(X] = Y/|X; = Y] Prlx] = ¥/| X, # Vi

e2 ICl/4 2 2 31C|/4 1

=((1—-e)*+ — (51— ~e? > (=
(T =e)"+ ) (31 —e)etgeT) (7)
Solving the above inequality we obtain e > 0.039. In other words, when the
bases have an average error probability that is larger than 0.039, PANDAseq
will favor merging randomly generated sequences. Since the quality of Illu-

mina reads decreases toward the end of the reads (Figure 7.2|), PANDAseq

will therefore incorrectly merge reads that do not overlap.

2/C]
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7.5 Summary

We introduced PEAR, a new tool that produces highly accurate merged Illu-
mina paired-end reads with low false-positive rates. It can merge paired-end
read data sets under settings where most competing mergers fail. Further-
more, PEAR does neither require preprocessing nor quality control prior to
merging. One main application is the merging of paired-end reads from data
sets with varying DNA fragment sizes. We have also introduced a statistical
test to evaluate the merged reads. Finally, PEAR scales well on most server
and desktop architectures.
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CHAPTER 8

Application of the PTP model to
Phylogenetic Placements

The content of this Chapter has been partly derived from the following
peer-reviewed publication:

J. Zhang, P. Kapli, P. Pavlidis, and A. Stamatakis. A general species
delimitation method with applications to phylogenetic placements.
Bioinformatics (Ozxford, England), 29(22):2869-76, Nov. 2013

Pavlos Pavlidis generated the simulated data sets used in [section 8.3| and
Paschalia Kapli’ contribution to the above publication is not included in
this Chapter.

This Chapter further extends the PTP model to delimit species on NGS data.
We introduce an open reference species delimitation approach that combines
PTP with the EPA (EPA-PTP). We show that EPA-PTP not only yields
more accurate results than de novo species delimitation methods, but also
scales on large datasets because it relies on the parallel implementations of
the EPA and RAxML, thereby allowing to delimit species on next generation
sequencing (NGS) data in reasonable times.
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8.1 Motivation

DNA barcoding studies mostly rely on a single marker gene and are widely
used for DNA tazxonomy [67, I75]. More recently, amplicon based metage-
nomic (metagenetic) studies that use next generation sequencing (NGS) tech-
nologies to perform mass parallel sequencing of barcoding genes, have been
deployed to disentangle the structure of microbial communities [19] and in
metabarcoding biodiversity [20] studies. A central analytical task in such
studies is to classify molecular sequences into entities that correspond to
species; this is commonly denoted as OTU-picking in metagenomic stud-
ies [164]. The main goals of such methods are to identify known species and
delimit new species [175].

Numerous approaches exist for associating anonymous reads/query se-
quences with known species, for instance, nearest-neighbor BLAST [97] or
the Naive Bayesian Classifier [I80]. These methods use sequence similarity to
associate reads with taxonomic ranks. Phylogeny-aware methods for identi-
fying reads were introduced independently and simultaneously with the evo-
lutionary placement algorithm (EPA [I0]) and pplacer [103] (see
for details). Instead of sequence similarity, they use the phylogenetic signal
in the reference and query sequences to attain higher classification accuracy.
Note that, obtaining a taxonomic classification from phylogenetic placements
represents a difficult task, because phylogenies and taxonomies are frequently
incongruent [27]. Placement methods are similar to closed-reference OTU-
picking [12] or tazonomy-dependent methods [149]. Their ability to associate
query sequences with species depends on the completeness of the taxon sam-
pling in the reference data [I07]. Closed-reference or taxonomy-dependent
methods generally lack the ability to delimit new species, consequently they
may underestimate the number of species and hence the diversity in the query

sequences (see an example in [Figure 8.1)).

In order to identify new species, tazonomy-independent methods or de
novo OTU-picking approaches are used to initially cluster sequences into so-
called Molecular Operational Taxonomic Units (MOTUs) (see [section 4.1)).
Then, one can use a representative sequence from each MOTU cluster and as-
sign a taxonomic rank via taxonomy-dependent methods. While taxonomic
assignments may still be inaccurate due to incomplete reference data, coarse-
grain biodiversity estimates can be accurate when MOTUs are assigned to
higher taxonomic ranks. De novo OTU-picking usually relies on unsuper-
vised machine learning methods [16, 44, [60] that cluster sequences based
on, mostly arbitrary, sequence similarity thresholds [128] 149]. As we have
shown in [section 4.5, MOTUs may correspond to species only when the so-
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A B C

Figure 8.1: EPA may underestimate the number of species in an incomplete
reference phylogeny. A, B, and C are closely-related species. If they are
all present in the reference tree, the EPA will place the corresponding query
sequences onto the three respective branches leading to A, B, and C. However,
when B is missing, the EPA will place query sequences belonging to B into
the branch leading to A. This will incorrectly classify the query sequences
belonging to B and thus, underestimate the number of species. One can set
a distance threshold for classifing the query sequences to the known species,
however, such a distance threshold is hard to determine.

called barcoding gap is present and the sequence similarity thresholds were
correctly set for the clustering algorithms.

The PTP model for species delimitation introduced in can
delimit species that are consistent with the Phylogenetic Species Concept
(PSC) [48]. However, high-throughput sequencing of barcoding genes can
usually produce millions of sequences. Current phylogenetic tree inference
software using a stand-alone server only scales to a few thousand sequences.
In addition, it becomes increasing difficulty for PTP to find the maximum
likelihood solution on large trees because the huge search space (see
tion 4.3). Thus directly apply PTP to NGS data is not feasible.

8.2 Species Delimitation using Phylogenetic
Placements

We introduce an open reference species delimitation approach by integrating
PTP with EPA (EPA-PTP). The EPA initially places a large number of query
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sequences (short reads) into the branches of a given reference phylogeny.
Thereafter, we execute PTP separately and independently for the query se-
quences assigned to each branch. This allows to annotate the branches of the
reference tree by the number of species induced by the query sequences that
were placed into each branch. The input of our pipeline is a reference align-
ment where each sequence represents one species and a reference phylogeny
for that alignment.

The EPA-PTP pipeline is implemented in Python and relies on the ETE
(python Environment for Tree Exploration) package [79] for tree manip-
ulation and visualization. It is freely available at https://github.com/
zhangjiajie/EPA-classifier.

Our pipeline executes the following steps:

1. Run UCHIME [47] against the reference alignment to remove chimeric
query sequences.

2. Use EPA to place the query sequences onto the reference tree. Se-
quences that have a maximum placement likelihood weight of less than
0.5 (i.e., an uncertain placement, see [I0 for details) are discarded.

3. For each branch in the reference tree, we extract the set of query se-
quences that have been placed into that branch and infer a tree on
them using RAXML [160]. Because the PTP method requires a cor-
rectly rooted tree, we employ the following rooting strategy: If the
branch leads to a tip, we extend the alignment of the query sequences
to include the reference tree tip sequence and the reference sequence
that is furthest away from the current tip. This most distant sequence
is used as outgroup. Thereby, the tree will be rooted at the longest
branch (see the discussion below). To analyze query sequence place-
ments at internal branches we use the RAxML -g constraint tree option
to obtain a rooted tree of the query sequences. The constraint tree con-
sists of the bifurcating reference tree and a polytomy comprising the
query sequences attached to the reference tree branch under consider-
ation. The result of this constrained ML tree search is a resolved tree
of query sequences that is attached to the reference tree branch. The
attachment point is used as root.

4. Since we assume that the reference phylogeny is a species tree that re-
flects our knowledge about the speciation process and rate, we initially
estimate A; only once on the reference phylogeny. Thereafter, we ap-
ply PTP to each query sequence (one for each branch of the reference


https://github.com/zhangjiajie/EPA-classifier
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phylogeny) tree to delimit species. Note that, in this scenario we will
only need to estimate A, since A, is fixed.

5. When PTP is applied to a placement of query sequences on a terminal
branch, those queries that are delimited as one species with the refer-
ence sequence at the tip will be taxonomically assigned to the species
represented by this reference sequence. Otherwise, they are identified
as new species in the reference tree.

For the sake of comparison, we have also developed another pipeline that
integrates a soft threshold clustering method CROP [70] with EPA (EPA-
CROP). The method works analogously as EPA-PTP, with the only differ-
ence that CROP is used instead of PTP to calculate the number of MOTUs
for each placement.

8.3 Experimental settings

8.3.1 Simulated Datasets

We used the same simulated data sets as described in [subsection 4.4.2] in
order to compare our open reference approaches to the de novo OTU-picking
methods. In each simulated alignment, we randomly selected one individ-
ual sequence per species as reference sequence and treated the remaining
sequences (of that species) as query sequences. To assess the impact of in-
complete reference trees on species delimitations, we randomly removed up
to 50% of the reference sequences. We deployed the same metrics (NMI) as
in subsection 4.4.2| to quantify delimitation accuracy.

8.3.2 Arthropod Meta-barcoding Dataset

This data set contains 673 full-length COI arthropod sequences with a length
of 658 bp. The sequences were obtained via PCR-amplification and Sanger-
sequencing. Subsequently, these 673 sequences were re-sequenced with a 454-
sequencer to generate a total of 133,057 short reads [I89]. Using the Sanger
data as reference, Yu et al. [I89] developed meta-barcoding protocols that
use the 454-reads to unravel the diversity in the reference data. The authors
use a multi-step OTU-picking procedure with different similarity thresholds
for clustering the 454 reads and the full-length reference sequences. The
method clustered the 673 sequences into 547 MOTUs. The OTU-picking
results for the 454 data are summarized in Our PTP model finds
545 putative species in the 673 full-length sequences when directly applied
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to the phylogenetic reference tree. To ensure comparability of results, we
used the 547 MOTUs identified in the original study to build a reference tree
and reference alignment for testing the EPA-PTP and EPA-CROP pipelines.
Initially, we aligned 454 sequences with a length exceeding 100bp to these
547 reference sequences with HMMER [42]. Yu et al. [I89] initially blasted
the 454-MOTU (obtained via three alternative clustering methods) to the
Sanger-MOTUs using a threshold of 107 and 97% minimum similarity.
The Sanger-MOTUs that did not match any of the 454-MOTUs are called
"dropouts’ by the authors. Inversely, 454-MOTUs that did not match Sanger-
MOTUs are called 'no-matches’.

Analogously, in our pipelines, when the delimited species from 454 se-
quence placements contain one of the full-length reference sequences (see
step 4 in , we consider this as a 'match’. Further, we denote a
full-length reference sequence that is not included in any short read place-
ment delimitation as 'dropout’. Finally, we call a short read placement that
is delimited as a new species (i.e., does not contain a reference sequence) as
‘no-match’.

8.4 Results

8.4.1 Results for Simulated Datasets

By combining EPA with PTP (or CROP) and applying it to simulated data as
described in [subsection 4.4.2, we can substantially improve the delimitation
accuracy on simulated data ((Table 8.1|-[Table 8.3 and [Table 8.7|-[Table 8.9).

When the reference phylogeny includes more than 70% of the reference
data, EPA-PTP outperforms all competing approaches, including stand-
alone PTP. EPA-PTP outperforms PTP even when the reference phylogeny
contains only 50% of the simulated reference data for ¥ < 20 (b’ is the scaled
birth rate per substitution event, see [subsection 4.4.2). With increasing ¥,
the reference data needs to be more complete for EPA-PTP to outperform
PTP. This is because with increasing &', internal branch lengths tend to
get shorter and the EPA placement accuracy decreases. Hence, more data
is needed to obtain accurate placements. Note that, under extremely high
speciation rates, EPA-PTP performs worse than PTP. The estimation er-
rors may be due to (i) discarding sequences with low likelihood weights, (ii)
errors in phylogenetic inferences, or (iii) PTP heuristics failing to find the
maximum likelihood species delimitation.

The results for the EPA-CROP pipeline are shown in Tables [8.4] - [8.6]
and Tables -[B.12l EPA-CROP outperforms the stand-alone version of
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CROP, but the results are worse than for EPA-PTP.

K | 5 10 20 40 80 160 [ Mean |

Full ref. | 0.989 0.978 0.962 0.933 0.884 0.836 | 0.930
90% ref. | 0.984 0.972 0.955 0.925 0.876 0.830 | 0.923
80% ref. | 0.976 0.966 0.949 0.921 0.872 0.823 | 0.917
70% ref. | 0.971 0.959 0.943 0.912 0.868 0.816 | 0.911
60% ref. | 0.966 0.956 0.939 0.908 0.860 0.805 | 0.905
50% ref. | 0.962 0.950 0.934 0.904 0.853 0.787 | 0.898

Table 8.1: Species delimitation accuracy (measured in NMI) on simulated,
evenly sampled data using the EPA-PTP pipeline with a sequence length
1000-bp

I | 5 10 20 40 80 160 [ Mean |

Full ref. | 0.986 0.973 0.956 0.927 0.873 0.822 | 0.922
90% ref. | 0.976 0.962 0.947 0.918 0.865 0.812 | 0.913
80% ref. | 0.967 0.954 0.935 0.908 0.858 0.805 | 0.904
70% ref. | 0.957 0.942 0.925 0.896 0.843 0.784 | 0.891
60% ref. | 0.951 0.935 0.916 0.881 0.829 0.780 | 0.882
50% ref. | 0.941 0.928 0.900 0.865 0.812 0.752 | 0.866

Table 8.2: Species delimitation accuracy (measured in NMI) on simulated,
evenly sampled data using the EPA-PTP pipeline with a sequence length
500-bp

8.4.2 Results for Arthropod Meta-barcoding Dataset

On the Arthropod meta-barcoding data, the EPA-PTP pipeline yields sub-
stantially better results than the multi-step OTU-picking pipeline used in
the original publication (Table 8.13). When the complete full-length refer-
ence sequence tree is used, the EPA-PTP pipeline shows substantially lower
"dropout’ and 'mo-match’ rates. It recovers 12.5% more species with respect
to the reference data which represents an improvement of over 50%. Here,
we apply an analogous criterion as in the original study where at least 2
reads need to be contained in an OTU cluster for it to be considered. In our
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K | 5 10 20 40 80 160 | Mean |

Full ref. | 0.978 0.968 0.949 0.918 0.863 0.811 | 0.914
90% ref. | 0.967 0.955 0.935 0.907 0.854 0.800 | 0.903
80% ref. | 0.956 0.944 0.926 0.895 0.846 0.786 | 0.892
70% ref. | 0.942 0.926 0.912 0.880 0.830 0.773 | 0.877
60% ref. | 0.927 0.911 0.893 0.861 0.813 0.755 | 0.860
50% ref. | 0.909 0.891 0.871 0.838 0.784 0.732 | 0.837

Table 8.3: Species delimitation accuracy (measured in NMI) on simulated,
evenly sampled data using the EPA-PTP pipeline with a sequence length
250-bp

K | 5 10 20 40 80 160 | Mean |

Full ref. | 0.986 0.971 0.950 0.907 0.839 0.759 | 0.902
90% ref. | 0.974 0.959 0.940 0.896 0.831 0.750 | 0.891
80% ref. | 0.963 0.949 0.929 0.890 0.825 0.735 | 0.881
70% ref. | 0.951 0.938 0.916 0.870 0.811 0.728 | 0.869
60% ref. | 0.947 0.929 0.904 0.859 0.791 0.712 | 0.857
50% ref. | 0.941 0.917 0.887 0.839 0.770 0.694 | 0.841

Table 8.4: Species delimitation accuracy (measured in NMI) on simulated,
evenly sampled data using the EPA-CROP pipeline with a sequence length
1000-bp

case >= 2 reads need to be contained in a species delimitation. If an OTU
cluster or species delimitation only contains one read, it is highly likely that
it represents a sequencing error. However, the availability of the complete
reference data set is not granted for most meta-barcoding analyses. Thus,
as for the simulated data, we randomly removed up to 50% of the reference
sequences, and re-ran our pipelines. We then calculated the ratios between
the number of species estimated on the reduced reference data relative to the
number of species estimated on the complete reference data. The results are
shown in [Figure 8.2l When species are delimited with taxonomy-dependent
approaches such as the EPA, the number of estimated species is expected to
decrease with the number of species in the reference data. When combined
with PTP (using >= 5 reads per delimitation as cutoff), EPA-PTP yields
stable diversity estimates, irrespective of the completeness of the reference
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I

|

5

10

20

40

80

160 \ Mean ‘

Full ref.
90% ref.
80% ref.
70% ref.
60% ref.
50% ref.

0.978
0.968
0.955
0.942
0.933
0.918

0.957
0.948
0.932
0.923
0.909
0.899

0.924
0.916
0.903
0.894
0.873
0.856

0.874
0.856
0.854
0.835
0.820
0.799

0.777
0.770
0.764
0.749
0.733
0.721

0.686
0.681
0.670
0.648
0.649
0.628

0.866
0.856
0.846
0.831
0.819
0.803
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Table 8.5: Species delimitation accuracy (measured in NMI) on simulated,
evenly sampled data using the EPA-CROP pipeline with a sequence length

500-bp

I

|

5

10

20

40

30

160 \ Mean ‘

Full ref.
90% ref.
80% ref.
70% ref.
60% ref.
50% ref.

0.957
0.945
0.934
0.921
0.907
0.886

0.934
0.923
0.904
0.901
0.876
0.869

0.877
0.872
0.859
0.839
0.834
0.812

0.798
0.788
0.784
0.768
0.758
0.735

0.683
0.674
0.660
0.653
0.647
0.643

0.564
0.565
0.554
0.563
0.543
0.549

0.802
0.794
0.782
0.774
0.760
0.749

Table 8.6: Species delimitation accuracy (measured in NMI) on simulated,
evenly sampled data using the EPA-CROP pipeline with a sequence length

250-bp

phylogeny. EPA-CROP also yields better results than the multi-step OTU-
picking pipeline and stand-alone CROP. The results are slightly worse than

for EPA-PTP (Table 8.14J).
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L

5

10

20

40

80

160 | Mean

Full ref.

90% ref.
80% ref.
70% ref.
60% ref.
50% ref.

0.962
0.958
0.951
0.948
0.940
0.936

0.948
0.945
0.940
0.935
0.925
0.925

0.923
0.920
0.917
0.913
0.908
0.899

0.893
0.889
0.884
0.882
0.880
0.878

0.836
0.835
0.830
0.829
0.824
0.820

0.791
0.789
0.778
0.775
0.773
0.762

0.892
0.889
0.883
0.880
0.875
0.870

Table 8.7: Species delimitation accuracy (measured in NMI) on simulated,
unevenly sampled data using the EPA-PTP pipeline with a sequence length

1000-bp

L

5

10

20

40

80

160 | Mean

Full ref.

90% ref.
80% ref.
70% ref.
60% ref.
50% ref.

0.969
0.966
0.957
0.951
0.940
0.934

0.956
0.953
0.943
0.938
0.930
0.920

0.931
0.925
0.920
0.918
0.950
0.897

0.899
0.894
0.891
0.883
0.868
0.856

0.832
0.829
0.822
0.814
0.815
0.801

0.776
0.768
0.762
0.750
0.741
0.724

0.893
0.889
0.882
0.875
0.874
0.855

Table 8.8: Species delimitation accuracy (measured in NMI) on simulated,
unevenly sampled data using the EPA-PTP pipeline with a sequence length

500-bp

L

5

10

20

40

80

160 | Mean

Full ref.

90% ref.
80% ref.
70% ref.
60% ref.
50% ref.

0.968
0.960
0.950
0.942
0.927
0.922

0.954
0.946
0.935
0.925
0.917
0.890

0.924
0.917
0.911
0.902
0.888
0.873

0.890
0.881
0.867
0.861
0.843
0.833

0.819
0.813
0.805
0.796
0.785
0.765

0.758
0.750
0.739
0.724
0.706
0.685

0.885
0.877
0.867
0.858
0.844
0.828

Table 8.9: Species delimitation accuracy (measured in NMI) on simulated,
unevenly sampled data using the EPA-PTP pipeline with a sequence length

250-bp
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I |

5

10

20

40

80

160 \ Mean ‘

Full ref.
90% ref.
80% ref.
70% ref.
60% ref.
50% ref.

0.967
0.966
0.959
0.951
0.948
0.949

0.953
0.950
0.942
0.937
0.934
0.922

0.923
0.923
0.915
0.910
0.902
0.891

0.876
0.874
0.868
0.861
0.850
0.826

0.796
0.792
0.783
0.779
0.774
0.767

0.716
0.710
0.705
0.693
0.690
0.679

0.871
0.869
0.862
0.855
0.849
0.839
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Table 8.10: Species delimitation accuracy (measured in NMI) on simulated,
unevenly sampled data using the EPA-CROP pipeline with a sequence length

1000-bp

I |

5

10

20

40

80

160 [ Mean |

Full ref.
90% ref.
80% ref.
70% ref.
60% ref.
50% ref.

0.962
0.957
0.950
0.942
0.930
0.919

0.941
0.937
0.930
0.925
0.917
0.901

0.899
0.897
0.885
0.884
0.871
0.854

0.843
0.836
0.826
0.824
0.815
0.781

0.742
0.732
0.733
0.714
0.713
0.692

0.651
0.635
0.639
0.619
0.615
0.591

0.839
0.832
0.827
0.818
0.810
0.789

Table 8.11: Species delimitation accuracy (measured in NMI) on simulated,
unevenly sampled data using the EPA-CROP pipeline with a sequence length

500-bp

I |

5

10

20

40

80

160 [ Mean |

Full ref.
90% ref.
80% ref.
70% ref.
60% ref.
50% ref.

0.945
0.935
0.925
0.914
0.901
0.891

0.922
0.905
0.897
0.887
0.870
0.859

0.855
0.850
0.829
0.833
0.809
0.799

0.770
0.766
0.740
0.746
0.743
0.704

0.647
0.640
0.631
0.640
0.610
0.610

0.539
0.537
0.524
0.522
0.532
0.508

0.779
0.772
0.757
0.757
0.744
0.728

Table 8.12: Species delimitation accuracy (measured in NMI) on simulated,
unevenly sampled data using the EPA-CROP pipeline with a sequence length

250-bp
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OTU-picking EPA-PTP
No. drop-  no- No. drop-  no-
cluster out match cluster out match

>=1reads 973 19% 42.8%  H8T 7.3% 13.6%
>= 2 reads 602 24% 25.4% 516 11.5%  6.2%
>=5reads - 36% - 441 21.9% 3.2%

Table 8.13: Arthropod data set: Number of estimated MOTUs and species
for the complete reference data and tree. Sanger data (the reference data
set) has a total of 547 MOTUs. The -’ indicates that the number is not
available in the original publication.

CROP stand alone EPA-CROP
No. drop-  no- No. drop-  no-
cluster out match cluster out match

>=1reads 671 33.6% 45.9% 652 7.5% 22.4%
>= 2 reads 465 37.7%  26.7% 538 11.9% 10.4%
>= 5 reads 349 44.6% 13.2% 442 22.5%  4.1%

Table 8.14: Arthropod data set: Number of estimated OTUs and species for
the complete reference data and tree using CROP. Sanger data (the reference
data set) has a total of 547 OTUs.
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Figure 8.2: Number of estimated species on incomplete reference trees.
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8.5 Summary

The EPA-PTP pipeline represents the first integrated approach for analyzing
metagenetic data that combines the phylogenetic placement algorithm with
an explicit statistical criterion for species delimitation. On a representative
empirical dataset, our pipeline yields a substantially more accurate diver-
sity estimate than traditional OTU-picking methods. Using simulated data,
we show that, open-reference based approaches can improve delimitation ac-
curacy compared to de novo approaches. More importantly, the EPA-PTP
pipeline allows for applying a widely accepted species concept to metagenetic
data, where millions of sequences need to be processed.



CHAPTER 9

Conclusion and Future Work

This final chapter provides the conclusion of the thesis and lists potential
directions for future research.

9.1 Conclusion

This thesis introduced several novel models and algorithms for phylogenetic
marker analysis. Our methods cover species delimitation (PTP, chapter 4/and

chapter 5|), data visualization (PhyloMap, |chapter 6, NGS data processing
(PEAR, [chapter 7)) and metagenetic data analysis (EPA-PTP, chapter §)).

The PTP model conducts species delimitations on single-locus data. Our
simulations show that PTP generally outperforms other methods for species
delimitation. It is also easier to use than a popular alternative method - the
GMYC model. The Bayesian PTP extension further improves the likelihood
search and provides reliable delimitation confidence measures. We also make
the PTP available through a web server.

The PTP model models nucleotide substitution directly, in contrast to
classical models such as Birth-Death Process (BDP), that model time. This
gives PTP a few advantages over BDP. First, chronological data is usually
difficulty to acquire while nucleotide substitutions are directly observable.
Second, PTP greatly simplifies the models based on BDP, in the sense that,
it does not depend on molecular clock assumptions. And finally, substitution
models are well established and many related tools have been optimized, so
there is a good foundation for applying PTP.
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By combing ordination with PTP, we developed a new method, Phy-
loMap, for visualizing large phylogenetic marker data sets. The key contri-
bution of PhyloMap is its mapping algorithm that overlaps two types of data
representation.

PEAR is currently one of the most accurate paired-end read mergers,
it utilizes all the information available from Illumina raw reads data and
works well under all overlap scenarios. PEAR also implemented a statisti-
cal test that greatly reduces false-positive merges. We showed that, PEAR
consistently produces higher quality and more reliable results than all other
state-of-the-art mergers.

Finally, The EPA-PTP is the first phylogeny-aware pipeline for analyz-
ing metagenetic data that offers an explicit statistical criterion for species
delimitation. It allows PTP be applied to massive NGS data and improves
species delimitation accuracy where “good” reference data sets are available.

9.2 Future Work

9.2.1 PTP

From a theoretical point of view, there are at least three directions that can
be explored in the future. The first one is to study how PTP correspond to
BDP and further extend the PTP model to better fit the data. Additional
classes of Poisson tree processes (\ parameters) may be added to the model.
However, this will be a challenge for the maximum likelihood search because
of the huge search space. We can also allow the number of A\ parameters to
vary, thus the reversible-jump MCMC need to be introduced for the Bayesian
version [I88]. The second one is to integrate PTP with existing nucleotide
substitution models to create a new family of models, because currently it is
implicitly conditioned on the nucleotide substitution model for the maximum
likelihood version, and marginalized over for the Bayesian version. The last
one is to extend PTP to work on multi-locus data.

For the maximum likelihood version of PTP, the three heuristic algo-
rithms should be more thoroughly tested with respect to their abilities to
explore the likelihood landscape. One may consider to develop some more
efficient heuristic algorithms based on the tree shape, because the search
space is determined by the tree shape. Furthermore, the current PTP model
is based on rooted trees, but it is possible to adapt it to unrooted trees if
there exist more sophisticated search algorithms.

For the Bayesian PTP, it is important to evaluate other consensus func-
tions [I12] that can combine multiple partitions. Some consensus functions
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can accommodate missing data, which will be important to extend PTP to
multi-locus data. The Bayesian PTP is also lacking an automated conver-
gence assessment procedure, which should ideally be developed by consider-
ing the tree shape as well.

It is unclear how species can be defined on viruses, however, we noticed
that Castel et al. have applied GMYC and PTP to Hantaviruses [21]. Thus,
it is tempting to apply species delimitation methods to other viruses, such as
Influenza A viruses where massive amounts of data are available, and lineages
are less well defined [193].

Finally, PTP is currently implemented in Python. In the future, it should
be re-implemented in C or C++ to scale on larger trees and be able to
compute more MCMC iterations.

9.2.2 PhyloMap

PhyloMap currently has a GUI that can display the results in two dimensions.
It is straight-forward to extend PhyloMap to 3D, which could add more
information to the plot. The GUI should also provide functions to zoom in
and zoom out to certain regions of the plot and re-compute the PhyloMap
on demand. PhyloMap can also be applied to other types of data, such as
the beta-diversity calculated by QIIME [I§].

9.2.3 PEAR

PEAR is already well optimized, so there is little room for improvement.
However, the memory buffer has to be set manually by the user, thus we
intend to implement an automatic buffer size tuning routine in PEAR to
maximize performance without user intervention.

Currently, PEAR can only perform very limited post-processing after
merging. The post processing steps such as collapsing identical reads, fast
clustering of similar reads, removing adapter sequences and splitting accord-
ing to barcode tags are algorithmically trivial, but are essential steps for
further analysis. Therefore, we are also planning to add post processing
routines to PEAR.

9.2.4 EPA-PTP Pipeline

The EPA-PTP pipeline can only identify known species and delimit new
species. It lacks the ability to assign new species to a higher taxonomic
rank. Thus, future work should focus on an integrated approach for species
delimitation and taxonomic assignment under the EPA framework. However,
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this can be quite challenging. To start with, compiling a good reference data
set is not trivial and well-studied references are rare. More importantly, the
current taxonomy is not aways consistent with the phylogeny. This situation
is unlikely to change because some of the taxonomic ranks were not defined
based on molecular sequences. However, there exist some approaches that
try to correct the taxonomy based on phylogenetic markers [29, 105].
Compared to OTU-picking methods, EPA-PTP requires substantially
more CPU time. While most OTU-picking methods can run on an off-the-
shelf desktop computer, the EPA-PTP pipeline requires a multi-core server
for analyzing large metagenetic datasets. There are several ways to improve
EPA-PTP performance. First, the input reads can be pre-clustered to re-
move or combine very similar reads which might be due to sequencing errors.
Second, the full reference tree may be divided into several smaller subtrees
for a divide and conquer approach. Finally, as we have described in
tion 9.2.1, PTP can be further improved and re-implemented in C/C++.
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