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Zusammenfassung

Diese Arbeit ist der Zeitreihenanalyse gewidmet, insbesondere der Segmentierung von

Zeitreihen und der Diskriminierung von Zeitreihensegmenten. Außerdem wird das

Problem der Messung der Komplexität von Zeitreihen angesprochen. Als theoretische

Modelle für Zeitreihen betrachten wir zeitdiskrete dynamische Systeme und stochastische

Prozesse. Um die oben erwähnten Fragestellungen zu behandeln, verwenden wir die

ordinale Musteranalyse (oMA). Der Grundgedanke der oMA besteht darin, nicht die

Werte einer Zeitreihe, sondern die Ordnungsrelation zwischen ihren Zeitpunkten zu

betrachten. Zentraler Gegenstand der oMA sind ordinale Muster einer Ordnung d,

die die Relationen zwischen (d+ 1) aufeinanderfolgenden Zeitpunkten einer Zeitreihe

beschreiben.

Die wichtigsten Ergebnisse dieser Arbeit sind die folgenden.

• Wir führen ein neues ordinale-Muster-basiertes Komplexitätsmaß, die bedingte

Entropie ordinaler Muster, ein und untersuchen die Eigenschaften dieser Charak-

teristik.

• Wir schlagen eine neue Methode zur Segmentierung von Zeitreihen auf der Grund-

lage der bedingten Entropie ordinaler Muster vor.

• Wir entwickeln eine Clustering-basierte Methode zur Diskriminierung von Zeitrei-

hensegmenten und wenden diese Methode auf EEG-Zeitreihen erfolgreich an.

Kapitel 1 gibt eine kurze Einführung in die Probleme, die in dieser Dissertation

besprochen werden.

In Kapitel 2 wiederholen wir grundlegende Fakten über maßerhaltende dynami-

sche Systeme und stochastische Prozesse. Besonderes Augenmerk wird dabei auf die

Kolmogorov-Sinai-Entropie gelegt, die ein traditionelles Komplexitätsmaß für dynami-

sche Systeme darstellt. Wir gehen auch auf die wichtigsten Begriffe der oMA ein und

fassen die wichtigsten bekannten Beziehungen zwischen den ordinale-Muster-basierten

Komplexitätsmaßen und der Kolmogorov-Sinai-Entropie zusammen.

In Kapitel 3 führen wir die bedingte Entropie ordinaler Muster ein. Diese Charakter-

istik beschreibt die durchschnittliche Vielfalt ordinaler Muster, die einem bestimmten

ordinalen Muster nachfolgen. Wie wir zeigen, liefert die bedingte Entropie ordinaler
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Muster in vielen Fällen eine gute Schätzung der Kolmogorov-Sinai-Entropie. Außerdem

beweisen wir, dass für Markovshifts über einem binären Alphabet die bedingte Entropie

ordinaler Muster einer endlichen Ordnung d und die Kolmogorov-Sinai-Entropie gleich

sind. Wir leiten auch das empirische Gegenstück der bedingten Entropie ordinaler

Muster her, das ein Maß für die Komplexität von Zeitreihen bietet.

In Kapitel 4 führen wir ordinale-Muster-basierte Methoden zur Aufdeckung von

Change-Points in Zeitreihen ein. Wenn man diese Methoden verwendet, erhält man

eine Segmentation der Zeitreihe in quasistationäre Segmente. Eine der vorgestellten

Methoden basiert auf einer Statistik, die von der bedingten Entropie ordinaler Muster

abgeleitet wird. Wie die Ergebnisse der empirischen Untersuchungen zeigen, ist diese

Methode besser als andere ordinale-Muster-basierte Methoden und ihre Qualität vergle-

ichbar mit der von klassischen Methoden. Außerdem erfordert die neue Methode im

Gegensatz zu den klassischen Methoden keine a-priori-Kenntnis von den Charakteristiken

der Zeitreihe, die sich verändern.

Schließlich schlagen wir in Kapitel 5 vor, eine Kombination eines ordinale-Muster-

basierte Clusterings und einer Segmentierung von Zeitreihen zu Diskriminierung von

Zeitreihensegmenten zu verwenden. Wir untersuchen verschiedene Clustering-Algorith-

men empirisch, wählen die, die für das ordinale-Muster-basierte Clustering am besten

geeignet sind, aus und wenden sie auf epileptische EEG’s und Schlaf-EEG’s an.
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Abstract

This thesis is devoted to time series analysis, in particular, to segmentation of time

series and to discrimination of time series segments. The problem of measuring time

series complexity is also addressed. As theoretical models for time series we consider

discrete-time dynamical systems and stochastic processes. To solve the above-mentioned

problems we use ordinal pattern analysis, a novel approach based on considering order

relations between values of time series instead of the values themselves. The central

objects of ordinal pattern analysis are ordinal patterns of order d that describe order

relations between (d+ 1) successive points of a time series.

The main results of this thesis are the following.

• We establish a new ordinal-patterns-based complexity measure, the conditional

entropy of ordinal patterns, and investigate the properties of this quantity.

• We suggest a new method for segmentation of time series on the basis of the

conditional entropy of ordinal patterns.

• We develop a method for discrimination of time series segments based on clustering

and successfully apply this method to EEG time series.

Chapter 1 gives a brief introduction to the problems addressed in this thesis.

In Chapter 2 we recall basic facts about measure-preserving dynamical systems and

stochastic processes. Special attention is paid to the Kolmogorov-Sinai entropy, which

is a traditional measure of systems complexity. We also recall the main notions from

ordinal pattern analysis and review the relationship between ordinal-patterns-based

complexity measures and the Kolmogorov-Sinai entropy.

In Chapter 3 we introduce the conditional entropy of ordinal patterns that describes

the average diversity of the ordinal patterns succeeding a given ordinal pattern. We

demonstrate that the conditional entropy of ordinal patterns provides a good estimation

of the Kolmogorov-Sinai entropy in many cases. Besides, we prove that for Markov

shifts over a binary alphabet the conditional entropy of ordinal patterns for a finite

order d coincides with the Kolmogorov-Sinai entropy. We also discuss the empirical

counterpart of the conditional entropy of ordinal patterns, which provides a complexity

measure for time series.
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In Chapter 4 we introduce several ordinal-patterns-based methods for detecting

change-points in time series, which provides a segmentation of time series into pseudo-

stationary pieces. One of the introduced methods is based on a statistic strongly related

to the conditional entropy of ordinal patterns. Results of the empirical studies show

that this method has a better performance than other ordinal-patterns-based methods

and a comparable performance to classical methods. Moreover, in contrast to classical

methods, this new method does not require a priori knowledge of what characteristic of

the time series changes in time.

Finally, in Chapter 5 we suggest to use ordinal-pattern-distributions clustering

in combination with ordinal-patterns-based segmentation for discrimination of time

series segments. We empirically investigate different clustering algorithms, choose the

most suitable for ordinal-pattern-distributions clustering and apply them to sleep and

epileptic EEG.
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Nomenclature

Throughout the thesis we use the following conventions and notation:

• N0 := N ∪ 0.

•
(
n
k

)
:= n!

(n−k)! k! for n, k ∈ N0 with n ≥ k, 0! = 1.

• bxc is the largest integer not exceeding x.

• x mod 1 := x− bxc.

• a1a2 . . . an := (a1, a2, . . . , an, a1, a2, . . . , an, . . .) for a1, a2, . . . , an ∈ N0, n ∈ N.

• |x| is the absolute value of a number x ∈ R; |A| is the cardinality of a set A.

• Ω is a non-empty topological space, usually – the state space of a dynamical

system.

• B(Ω) is the Borel sigma-algebra on the space Ω.

• µ : B(Ω)→ [0, 1] is a probability measure.

• λ is the Lebesgue measure.

• AN is the set of all one-sided sequences over a finite set (alphabet) A = {0, 1, . . . , l}
for l ∈ N.

• BΠ(AN) is the Borel sigma-algebra on AN generated by the topology given by the

cylinder sets.

• id : Ω←↩ is the identity map on Ω: for all ω ∈ Ω it holds id(ω) = ω.

• The set T describes “time” for stochastic processes and time series and is either

finite (T = {0, 1, . . . , L} for some L ∈ N0) or infinite (T = N0).
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Chapter 1

Introduction

The present thesis is devoted to time series analysis. In particular, we are interested in

the segmentation of time series and discrimination of their segments, the question of

measuring complexity of time series is also addressed. In this chapter we fix the aims

and the object of study (Sections 1.1 and 1.2, respectively), and briefly describe the

techniques used to achieve these aims (Section 1.3). Finally, we outline the structure of

the thesis in Section 1.4.

1.1 Segmentation, discrimination and measuring complexity
of time series

In many fields of research information about the system of interest is provided by

sequences of observations, such as stock indices in economics and measurements of brain

electrical activity (electroencephalogram) in medicine. These sequences of observations

are in general called time series; analysis of time series allows to extract information

about the underlying system, to model the system, and to predict its future evolution.

Three problems of time series analysis are addressed in this thesis, namely

• segmentation of time series,

• discrimination of time series segments,

• measuring complexity of a system, possibly underlying the time series.

Segmentation means splitting time series into segments in a meaningful way, such

that certain characteristics of the time series are constant inside the segments, while

the boundaries of the segments correspond to changes in these characteristics. By

discrimination we understand partitioning segments of time series into classes; segments

of one class should correspond to the same state of the system of interest, while segments

from different classes should correspond to different states. Segmentation of time series

and discrimination of time series segments are problems of general interest and have

many applications in medicine, biology, physics, economics, engineering, etc.
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The question how one can quantify the complexity of a system arises in different

contexts. When little is known about the system and it is problematic to construct a

reliable model of it, one can study the system by assessing its complexity and tracking

changes of complexity in time. Though measuring complexity is not directly related to

the issues of segmentation and discrimination, in this thesis we introduce a measure of

complexity, which is also useful for solving these two problems.

There exists a certain gap between theoretical and empirical measures of complexity.

On the one hand, theoretical measures of complexity like the Kolmogorov-Sinai (KS)

entropy [Wal00, Cho05] or the Lyapunov exponent [Cho05] are not easy to estimate from

data (see, for instance, [ER92, Par98, CE07]). On the other hand, empirical measures of

complexity often lack of a theoretical foundation and are not well interpretable. Moreover,

most of complexity measures are reliable only for stationary time series, that is in case

when characteristics of a time series are constant. This fact links the problem of measuring

complexity with segmentation of time series, we provide an example to illustrate it.

Example 1.1. Consider a time series generated by a logistic map:

x(t+ 1) = rx(t)
(
1− x(t)

)
.

with t = 0, 1, . . . , L − 1 for some positive integer L, for x(0) ∈ [0, 1] being a random

point, and r ∈ [1, 4]. Figure 1.1 shows logistic time series for r = 3.95 and r = 3.98.

The question is: which of them is more complex?

0 50 100 150

0

0.2

0.4

0.6

0.8

1

 time  

(a)

0 50 100 150

0

0.2

0.4

0.6

0.8

1

 time  

(b)

Figure 1.1: Logistic time series for r = 3.95 (a) and r = 3.98 (b)

A theoretical answer to this question is provided by the KS entropy, it shows that

the second time series is more complex [Spr03, Subsection 5.1.3]. The values of several

empirical measures suggested by different authors agree with this answer (see Table 1.1).

Suppose now that the parameter r of the logistic time series varies with time, and

consider a time series xv given by

xv(t+ 1) = r(t)xv(t)
(
1− xv(t)

)
with r(t) = 3.95 for t < L/2 and r(t) = 3.98 for t ≥ L/2. Is this time series more

complex or less complex than the former two?
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Intuitively, two different answers are possible. On the one hand, xv represents two

“glued” time series, therefore its complexity should be approximately equal to the mean

of the segments complexity. On the other hand, xv may be regarded as more complex

than the first two time series since it has a variable parameter. In this case it is not

clear how to define theoretical measures of complexity; the first two empirical measures

of complexity support the first answer, the other two – the second one (see Table 1.1).

Complexity measure r = 3.95 r = 3.98 variable r

KS entropy 0.581 0.602 —

estimate of Lyapunov exponent [Par98, MPW+09] 0.487 0.575 0.556
permutation entropy [BP02, UK13] 0.773 0.808 0.802
conditional entropy of ordinal patterns [UK14, Una15] 0.545 0.598 0.604
approximate entropy [Pin91, Lee12] 0.565 0.592 0.604

Table 1.1: Values of complexity measures for logistic time series. For empirical complex-
ity measures we refer first to the definition and then to the MATLAB realization. The
empirical complexity measures are calculated for the length of time series L = 2000.
Parameters of the Lyapunov exponent estimator are calculated according to the guide-
lines in [Par98]. Permutation entropy and conditional entropy of ordinal patterns are
computed for order 4 and delay 1. Approximate entropy is computed for the embedded
dimension estimated by Cao’s method [Cao97], and for the tolerance calculated as 20%
of the time series standard deviation.

At this point we just apply complexity measures without giving definitions. For

a discussion of the KS entropy and the Lyapunov exponent see Subsection 2.1.4,

permutation entropy is considered in Subsection 2.3.2, and conditional entropy of

ordinal patterns is introduced in Chapter 3.

Example 1.1 motivates us to consider measuring complexity together with segmen-

tation of time series.

1.2 Time series, stochastic processes and dynamical systems

An investigation of a time series requires a reliable model of it. A model can be

either deterministic or stochastic (having some random component). In order to support

prediction, it is good to have a deterministic model of time series provided by a dynamical

system. It consists of a space of possible states of the system and of an evolution rule

describing dynamics of the system in time. This evolution rule can be given by a

differential equation (then the system is a continuous-time dynamical system) or by

an evolution map that determines the next state for the given current state. The last

case is called discrete-time dynamical system; there the notion of time is provided by

applications of the evolution map: a single time slice corresponds to one application.
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Example 1.2. Consider the interval Ω = [0, 1) and the dyadic map T2 : Ω←↩ given by

T2(ω) =

{
2ω, 0 ≤ ω < 1

2 ,

2ω − 1, 1
2 ≤ ω < 1.

Then the couple (Ω, T2) provides a simple example of a discrete-time dynamical system.

A sequence of states generated by repeated application of an evolution rule is

called an orbit. For an initial state ω and an evolution rule T , an orbit is given by(
ω, T (ω), T 2(ω), . . .

)
and is completely determined by ω. For instance, an orbit of

the dynamical system from Example 1.2 starting with 1
3 is given by

(
1
3 ,

2
3 ,

1
3 ,

2
3 , . . .

)
.

Dynamical systems provide deterministic models for time series: given a function X that

associates a real number with each state from the space of dynamical system, one gets

an artificial time series, the sequence of real numbers
(
X(ω), X

(
T (ω)

)
, X
(
T 2(ω)

)
, . . .

)
.

However, the construction of purely deterministic models for time series is possible

only if there is enough information about the system of interest. This is sometimes

not the case due to measurement errors and noises. For this reason models for time

series are in many cases provided by stochastic processes, that is sequences of random

variables. In contrast to dynamical systems, stochastic processes are unpredictable

by nature, therefore one cannot expect from such models an accurate prediction of a

time series evolution. Despite of this obvious difference, stochastic processes are closely

related to dynamical systems. If dynamical system possesses certain properties and its

initial state is known only approximately, with some finite precision, then after several

applications of T the state of the dynamical system becomes unpredictable (that is,

random from the viewpoint of an external observer).

Example 1.3. A sequence of independent random variables taking values from the set

{0, 1} is, perhaps, the most simple stochastic process. It is called a Bernoulli process and

can be thought of as a mathematical description of successive tossing a coin. Consider

an orbit of a dynamical system from Example 1.2 for some initial state ω ∈ [0, 1) and

suppose that only the first n binary digits of ω are determined:

ω = 0.a0a1 . . . an−1an . . . ,

where a0, a1, . . . , an−1 are given and an, an+1, . . . are unknown. Then for the k-th iterate

T k2 (ω) of the dyadic map it holds

T k2 (ω) = 0.akak+1ak+2 . . . ,

which means that already for Tn2 (ω) all digits describing the current state are unknown.

Then for X(ω) given by

X(ω) =

{
0, 0 ≤ ω < 1

2 ,

1, 1
2 ≤ ω < 1,

16



the sequence
(
X
(
Tn2 (ω)

)
, X
(
T

(n+1)
2 (ω)

)
, . . .

)
models a Bernoulli process equivalent to

the successive tossing a fair coin.

So dynamical systems provide both deterministic and stochastic models for time

series. For this reason they are the main object of our interest, though sometimes it

will be more convenient for us to speak about stochastic processes.

1.3 Ordinal-patterns-based methods for time series analysis

Ordinal pattern analysis [BP02, KSE07, Ami10] is a promising and effective approach

to time series analysis. The idea behind ordinal pattern analysis is to consider order

relations between values of time series instead of the values themselves. The interest to

order relations between values of a time series is not new, see [SSH99] for the general

discussion of rank tests and order statistics. This interest is motivated by the fact that

order relations between values are invariant under translation and scaling [KSE07] and are

usually more robust to noise than the values themselves [BP02], [Ami10, Subsection 3.4.3].

Ordinal-patterns-based methods are also computationally simple [UK13].

An ordinal pattern of an order d describes order relations between (d+ 1) successive

points of a time series [KL03]. The original time series is converted to a sequence of

ordinal patterns, as demonstrated in Figure 1.2 for order d = 3.

Figure 1.2: Ordinal patterns of order d = 3 for a periodic time series, four different patterns
(π17, π10, π3 and π0) occur with period 4. An ordinal pattern π(t) characterizes order
relations between

(
x(t− d), x(t− d+ 1), . . . , x(t)

)
. See Example 1.4 for further details

In the current thesis we use ordinal pattern analysis to solve the three above-

mentioned problems: segmentation, discrimination and measuring complexity of time

series. The idea of using ordinal pattern analysis for time series discrimination is not

new. For instance, Keller and Lauffer provide examples demonstrating that frequencies

of ordinal patterns significantly differs for EEG in normal state and during an epileptic

seizure [KL03]. However, most of the existing contributions concentrate on showing
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that ordinal-patterns-based quantities reflect changes in complexity of a time series and

there are only few works suggesting ordinal-patterns-based approaches for segmentation

of time series and discrimination of their segments [Bra11, SGK12, SKC13].

Meanwhile, ordinal-patterns-based methods for measuring complexity have been

developing starting from the seminal paper of Bandt and Pompe [BP02]. There are sev-

eral ordinal-patterns-based measures of complexity (see, for instance, [HN11, MAAB13,

Pom13]), the most renowned is the permutation entropy.

The more complex a time series is, the more diverse ordinal patterns occur in it, and

this diversity is just what the permutation entropy measures. This concept provides

a theoretically justified and simple approach to measuring complexity. Permutation

entropy for order d tending to infinity is connected to the KS entropy, the central

theoretical measure of complexity for dynamical systems; permutation entropy for finite

d is often used as a practical complexity measure; we refer to [Ami10, AK13] for a

review of applications. However, the value of permutation entropy strongly depends on

the order d, and permutation entropy for finite d can be either much higher or much

lower than the limit of permutation entropy as order d tends to infinity [UK14]. Let us

provide an example.

Example 1.4. Consider the interval Ω = [0, 1) with an interval map T (ω) = (ω + 0.25)

mod 1. Figure 1.2 shows a part of an orbit of this dynamical system and corresponding

ordinal patterns of order d = 3.

Map T is periodic with period 4 (that is all points of T are periodic with this period),

so dynamics provided by this map is very simple, and the KS entropy for this dynamical

system is equal to zero [KAH+06]. Meanwhile, the permutation entropy of order d = 3

is equal to 1
3 ln 4 > 0 since there are four different ordinal patterns occurring with the

same frequency (see Subsection 2.3.2 for the general formula of permutation entropy).

We propose to consider the conditional entropy of ordinal patterns of order d: it

characterizes the average diversity of ordinal patterns succeeding a given one and, as we

demonstrate in Chapter 3, in many cases it provides a much better practical estimation

of the KS entropy than the permutation entropy. For instance for the dynamical system

in Example 1.4, the conditional entropy of ordinal patterns of order d = 3 is equal to

zero that is coincides with the KS entropy. Indeed, consider the orbit in Figure 1.2:

for each ordinal pattern only one successive ordinal pattern occurs (π10 is the only

successive ordinal pattern for π17, π3 is the only successive ordinal pattern for π10 and

so on).

Moreover, conditional entropy of ordinal patterns appears to be rather useful for

time series segmentation (see Chapter 4).

The conditional entropy of ordinal patterns is the cornerstone of this thesis; we
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illustrate application of this quantity to segmentation, discrimination and measuring

complexity of real-world time series by the following example.

Example 1.5. The automatic scoring of sleep stages is a relevant problem in biomedical

research. According to the classification in [RK68], there are 6 sleep stages:

• the waking state (W);

• two stages of light sleep (S1, S2);

• two stages of deep sleep (S3, S4);

• rapid eye movement (REM), also called paradoxical sleep since activity of neurons

at this stage is similar to that during wakefulness [Lib12, p. 20].

To investigate sleep stages one measures electrical activity of the brain by means of

electroencephalogram (EEG). Today discrimination of sleep EEG is mainly carried out

manually by experts: they assign a sleep stage (W, REM, S1–S4) to every 30-s. epoch

of the EEG recording [SAIB+07]; the result is often visualized by a hypnogram (see

Figure 1.3).

We suggest to apply ordinal-patterns-based methods to discrimination of sleep EEG.

Here we consider EEG recording 14 from the dataset kindly provided by Vasil Kolev

(details and other results for this dataset are provided in Experiment 5.4, p. 126). First of

all, we employ the ordinal-patterns-based segmentation procedure (see Subsection 5.3.3).

Then we calculate the conditional entropy of ordinal patterns for every obtained segment

of the EEG recording, results are shown in Figure 1.3 in comparison with the manually

scored hypnogram. Though the conditional entropy of ordinal patterns does not

discriminate between sleep stages, it reflects dynamics of the EEG signal complexity,

which decreases with increase of sleep deepness and vice versa.

Figure 1.4 illustrates the outcome of the ordinal-patterns-based discrimination

of sleep EEG in comparison with the manual scoring by an expert; the automated

identification of a sleep type (waking, REM, light sleep, deep sleep) is correct for 79.6%

of 30-second epochs.

Note that ordinal-patterns-based segmentation and discrimination are completely

data-driven procedures: we do not use any expert knowledge about the data to obtain

the above results. This fact emphasizes potential of ordinal-patterns-based methods.

1.4 Outline of the thesis

In this thesis we discuss segmentation of time series and discrimination of time series

segments, we also address the problem of measuring time series complexity. The main

results of this thesis are the following:
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Figure 1.3: Manually scored hypnogram (lower plot) and the conditional entropy of
ordinal patterns (upper plot) for an EEG recording (channel C4)
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Figure 1.4: Hypnogram (bold curve) and the results of ordinal-patterns-based discrimi-
nation of sleep EEG (white color indicates epochs classified as waking state, light gray –
as light sleep, gray – as deep sleep, dark gray – as REM, red color indicates unclassified
segments)

• a new ordinal-patterns-based complexity measure with interesting theoretical and

practical properties, the conditional entropy of ordinal patterns, is established;

• a new ordinal-patterns-based method for detection of change-points and for

segmentation of time series on the basis of conditional entropy of ordinal patterns

is suggested;

• a method for discrimination of time series segments on the basis of clustering is

described and successfully applied to real-world (EEG) data.

The thesis is organized as follows. Chapter 2 introduces the main concepts used in

the thesis. We start from a brief introduction to the theory of measure-preserving
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dynamical systems, which are used as theoretical models for time series throughout

Chapters 2-3. Special attention is paid to symbolic dynamics and, in particular, to

Markov shifts, since further in Chapter 3 some theoretical results are established for

them. We consider the Kolmogorov-Sinai (KS) entropy as a traditional measure of

complexity for dynamical systems and discuss some properties of it. Then we recall basic

facts about stochastic processes, which are used as models for time series throughout

the thesis. The rest of Chapter 2 is devoted to ordinal pattern analysis, which is applied

further to theoretical objects such as dynamical systems and stochastic processes, and

to real-world data. We define ordinal patterns and ordinal partitions, consider ordinal-

patterns-based complexity measures (permutation entropy and sorting entropy), review

relationship between ordinal-patterns-based quantities and the KS entropy.

In Chapter 3 we introduce a new ordinal-patterns-based complexity measure, the

conditional entropy of ordinal patterns. We demonstrate that under certain assumptions

it estimates the KS entropy better than the permutation entropy (Theorem 3.4); this

fact can be useful for various applications. Besides, we prove that for periodic dynamics

and for Markov shifts over a binary alphabet the conditional entropy of ordinal patterns

for a finite order d coincides with the KS entropy (Theorems 3.6, 3.10), while the

permutation entropy only asymptotically approaches the KS entropy. We also discuss

the empirical counterpart of the conditional entropy of ordinal patterns, which can be

applied to real-world time series either directly as a complexity measure or, as one will

see from Chapter 4, as an ingredient of a statistic for detecting changes in time series.

Chapter 4 is devoted to segmentation of time series using ordinal-patterns-based

methods. We consider there stochastic processes as models for time series and aim

to find changes in dynamics (change-points) in order to segment the process into

pseudo-stationary pieces. We propose a modification of an existing method for ordinal

change-point detection introduced in [SGK12, SKC13] and suggest two new methods

based on similar ideas. We also introduce a new method strongly related to the

conditional entropy of ordinal patterns; according to the results of empirical studies,

this method has better performance than other ordinal-patterns-based methods and

comparable performance to classical methods. Moreover, in contrast to them, this new

method does not require a priori knowledge of what characteristic of the time series

changes in time.

Finally, in Chapter 5 we suggest to use ordinal-pattern-distributions clustering

in combination with ordinal-patterns-based segmentation for discrimination of time

series segments. We empirically investigate different clustering algorithms, choose the

most suitable for ordinal-pattern-distributions clustering and apply them to sleep and

epileptic EEG.
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Chapter 2

Preliminaries

In this chapter we introduce the main concepts and notions used further in the thesis in

order to make it self-containing. Most of results here are either known or trivial, so we

go into details only when we believe that our result or interpretation of a concept can

be interesting to the reader. Section 2.1 introduces basic notions from ergodic theory

related to measure-preserving dynamical systems, in particular, to symbolic dynamics.

We define the Kolmogorov-Sinai (KS) entropy, which is used further as a reference

measure of theoretical complexity, and discuss some possible approaches to computing

this quantity. In Section 2.2 we recall the definition of stochastic processes and their

relationship with dynamical systems. In Section 2.3 we discuss ordinal pattern analysis

of dynamical systems, stochastic processes and time series. In particular, we discuss

an ordinal-patterns-based characterization of the KS entropy, which is of interest since

direct computation of the KS entropy is in the general case problematic. In Section 2.4

we provide some technical proofs.

The reader who is familiar with these topics may proceed to Chapter 3.

2.1 Symbolic dynamics and Kolmogorov-Sinai entropy

2.1.1 Basic facts from ergodic theory

In this subsection we summarize relevant material from ergodic theory, for a general

reference see [LM95, Cho05, ELW11]. We are mainly interested in measure-preserving

dynamical systems.

Definition 2.1. Here a measure-preserving dynamical system is a quadruple
(
Ω,B(Ω), µ, T

)
,

where Ω is a non-empty topological space, B(Ω) is the Borel sigma-algebra on it,

µ : B(Ω) → [0, 1] is a probability measure, and T : Ω ←↩ is a B(Ω)-B(Ω)-measurable

µ-preserving map, i.e. µ
(
T−1(B)

)
= µ(B) for all B ∈ B(Ω) (we also say that µ is an

invariant measure).

A topological dynamical system is a couple (Ω, T ), where Ω is a non-empty topological

space and T : Ω←↩ is a continuous map.
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From now on, we write that some property holds for µ-almost all ω ∈ Ω if it holds

for all ω ∈ Ω0, where Ω0 ∈ B(Ω) is a set with µ(Ω0) = 1.

Definition 2.2. The map T is said to be ergodic with respect to µ (and µ is said to

be ergodic with respect to T ) if for every B ∈ B(Ω) with T−1(B) = B it holds either

µ(B) = 0 or µ(B) = 1. We also say that the system
(
Ω,B(Ω), µ, T

)
is ergodic.

The importance of the ergodic property becomes clear from Birkhoff’s Ergodic

Theorem [Cho05, Theorem 3.8]: If a measure µ is ergodic then for every µ-integrable

R-valued random variable X on
(
Ω,B(Ω), µ

)
it holds

lim
n→∞

1

n

n−1∑
i=0

X
(
T i(ω)

)
=

∫
Ω
X dµ for µ-almost all ω ∈ Ω. (2.1)

This means that for an ergodic dynamical system space averaging can be replaced by

averaging over an orbit of µ-almost every point. In particular, the measure µ(B) of

some set B coincides with the relative frequency of visiting B by points from the orbit

of µ-almost every point ω ∈ Ω.

However, an ergodic measure µ is not necessary informative from the practical

point of view. For instance, let the whole measure µ be concentrated in a fixed point

ω0 ∈ Ω, that is µ{ω0} = 1, T (ω0) = ω0. Then µ is ergodic, though it is not possible

to extract any information about the system behavior from the points of measure 1.

The following property guarantees that the measure µ is related to the dynamics of the

system [ER85, You02]. There are different definitions of SRB measure and we use the

definition from [MN00] for the case Ω ⊆ RN .

Definition 2.3. The measure µ is said to be Sinai-Ruelle-Bowen (SRB) on
(
Ω,B(Ω)

)
with respect to T if for Lebesgue-almost all ω ∈ Ω it holds

µ(B) = lim
n→∞

1

n

n−1∑
i=0

1B
(
T i(ω)

)
, (2.2)

where 1B is the characteristic function of the set B.

From Definition 2.3 it follows that for every µ-integrable R-valued random variable

X on
(
Ω,B(Ω), µ

)
it holds [Mis10]

lim
n→∞

1

n

n−1∑
i=0

X
(
T i(ω)

)
=

∫
Ω
X dµ for Lebesgue-almost all ω ∈ Ω

(cf. (2.1)). The SRB measure is the most natural measure for the system. If µ is

absolutely continuous with respect to Lebesgue measure then the SRB property is

equivalent to ergodicity, however, in general an ergodic measure is not always SRB

(for more information we refer to [You02]). Note that the SRB measure can still be
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supported on a set of Lebesgue measure zero (for instance, if Lebesgue-almost all orbits

are attracted by a finite periodic cycle, see [MN00, Section 1]).

From Birkhoff’s Ergodic Theorem it follows that a measure-preserving map T is

ergodic if and only if for every A,B ∈ B(Ω) it holds [Cho05, Theorem 3.12]

lim
n→∞

1

n

n−1∑
i=0

µ
(
T−i(A) ∩B

)
= µ(A)µ(B).

A map T is said to be strong mixing if for every A,B ∈ B(Ω)

lim
n→∞

µ
(
T−n(A) ∩B

)
= µ(A)µ(B).

Example 2.1. Throughout the thesis for illustrating various notions and results we

consider the golden mean map having many nice properties. It is a particular case of

the beta-transformation [Par60], and it is defined on the unit interval [0, 1] by

Tgm(ω) =

{
ϕω, 0 ≤ ω ≤ 1

ϕ ,

ϕω − 1, 1
ϕ < ω ≤ 1,

where ϕ = 1
2(
√

5 + 1) is the golden ratio. Figure 2.1 shows a graph of the map Tgm.
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Figure 2.1: The golden mean map

The map Tgm preserves the measure µgm [Cho05] given by µgm(U) =
∫
U p(ω)dω for

all U ∈ B
(
[0, 1]

)
and for

p(ω) =

{
ϕ3

1+ϕ2 , 0 ≤ ω ≤ 1
ϕ ,

ϕ2

1+ϕ2 ,
1
ϕ < ω ≤ 1.

The measure-preserving golden mean dynamical system
(

[0, 1],B
(
[0, 1]

)
, µgm, Tgm

)
is

ergodic, moreover, it is strong-mixing [Cho05]. Since the measure µgm is absolutely

continuous with respect to the Lebesgue measure, µgm is also the SRB measure.
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2.1.2 Symbolic dynamics, Markov shifts

The idea of symbolic dynamics is to provide a coarse-grained description of the original

dynamical system in order to understand its behavior. Here we only sketch the concept

and consider some important particular cases; for a general discussion and details we

refer to [LM95, Kit98, Cho05, ELW11].

First of all, define a symbolic space. Let AN be the set of all one-sided sequences

over a finite alphabet A = {0, 1, . . . , l}. For n ∈ N an n-letter word a0a1 . . . an−1 over A

defines the cylinder set Ca0a1...an−1 as

Ca0a1...an−1 = {(s0, s1, . . .) ∈ AN | s0 = a0, s1 = a1, . . . , sn−1 = an−1};

we distinguish the case n = 1 and for all a ∈ A call the set Ca a cylinder. The cylinder

sets generate a product topology on AN and are both open and closed in this topology

[Kit98, Chapter 1]. Therefore the sigma-algebra BΠ(AN) generated by the cylinder sets

is the corresponding Borel sigma-algebra [Kit98, Chapter 6]. Dynamics in the symbolic

space is given by the shift map σ : AN ←↩ such that

(σs)j = sj+1 for all j ∈ N0, s = (s0, s1, . . .) ∈ AN.

Now we construct the symbolic dynamics corresponding to a measure-preserving

dynamical system
(
Ω,B(Ω), µ, T

)
. Given a finite partition P = {P0, P1, . . . , Pl} ⊂ B(Ω)

of Ω, one assigns to each set Pa ∈ P the symbol a from the alphabet A = {0, 1, . . . , l}.
The n-letter word a0a1 . . . an−1 is associated with the set Pa0a1...an−1 defined by

Pa0a1...an−1 = Pa0 ∩ T−1(Pa1) ∩ . . . ∩ T−(n−1)(Pan−1). (2.3)

We define a coding via the partition P as a map φP : Ω→ AN such that

φP(ω) = (a0, a1, . . .) with T i(ω) ∈ Pai .

In particular, φP maps any set Pa0a1...an−1 ∈ B(Ω) to the corresponding cylinder set

Ca0a1...an−1 ∈ BΠ(AN). It holds σ ◦φP = φP ◦T , i.e. the dynamics in the symbolic space

corresponds to the original dynamics. A measure-preserving symbolic dynamical system(
AN,BΠ(AN),mP , σ

)
arises when the measure mP is transported by the coding via P

(below we consider only partitions P ⊂ B(Ω) without mentioning this explicitly):

mP(Ca0a1...an−1) = µ(Pa0a1...an−1) for all a0, a1, . . . , an−1 ∈ A, and n ∈ N.

Definition 2.4. Let AN be the space of one-sided sequences over A = {0, 1, . . . , l} for

l ∈ N, and BΠ(AN) be the Borel sigma-algebra generated by the cylinder sets. Given

an (l + 1) × (l + 1) stochastic matrix Q = (qij) and a stationary probability vector

p = (p0, p1, . . . , pl) of Q with p0, p1, . . . , pl > 0, the measure m defined on the cylinder

sets Ca0a1...an−1 by

m(Ca0a1...an−1) = pa0qa0a1qa1a2 · · · qan−2an−1 ,
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is said to be a Markov measure on AN. The dynamical system
(
AN,BΠ(AN),m, σ

)
,

where σ : AN ←↩ is the shift map, is called a (one-sided) Markov shift.

In the particular case when q0a = q1a = . . . = qla = pa for all a ∈ A, the measure

mB defined as follows is said to be a Bernoulli measure:

mB(Ca0a1...an−1) = pa0pa1 · · · pan−1 .

The system (AN,BΠ(AN),mB, σ) is then called a Bernoulli shift. We use this concept

below for illustration purposes.

Example 2.2. Given the golden mean dynamical system
(

[0, 1],B
(
[0, 1]

)
, µgm, Tgm

)
defined in Example 2.1, consider the coding of it via the following partition

Mgm = {M0,M1}, with M0 =

[
0,

1

ϕ

]
, M1 =

(
1

ϕ
, 1

]
, (2.4)

where ϕ = 1
2(
√

5 + 1). Since ϕ − 1 = 1/ϕ, for the measure mgm transported by the

coding via the Mgm it holds:

mgm(C0) = µgm(M0) =

∫
M0

ϕ3

1 + ϕ2
dx =

1

ϕ

ϕ3

1 + ϕ2
=

ϕ2

1 + ϕ2
,

mgm(C1) = µgm(M1) =

∫
M1

ϕ2

1 + ϕ2
dx =

ϕ− 1

ϕ

ϕ2

1 + ϕ2
=

1

1 + ϕ2
,

mgm(C00) = µgm(M00) =

∫
M00

ϕ3

1 + ϕ2
dx =

1

ϕ2

ϕ3

1 + ϕ2
=

ϕ

1 + ϕ2
,

mgm(C01) = µgm(M01) =

∫
M01

ϕ3

1 + ϕ2
dx =

ϕ− 1

ϕ2

ϕ3

1 + ϕ2
=

1

1 + ϕ2
,

mgm(C10) = mgm(C1) =
1

1 + ϕ2
,

mgm(C11) = 0.

One can show, that mgm is a Markov measure given by

Qgm =

(
mgm(C00)/mgm(C0) mgm(C01)/mgm(C0)
mgm(C10)/mgm(C1) mgm(C11)/mgm(C1)

)
=

(
1/ϕ 1/ϕ2

1 0

)
,

pgm =
(
mgm(C0),mgm(C1)

)
=

(
ϕ2

1 + ϕ2
,

1

1 + ϕ2

)
.

Therefore we obtain a Markov shift
(
{0, 1}N,BΠ

(
{0, 1}N

)
,mgm, σ

)
known as a golden

mean shift.

2.1.3 Markov property of a partition

The concept of Markov shifts is rather convenient for studying the dynamical systems

behavior in special cases. The following property of a partition M guarantees that the

symbolic dynamics induced via M forms a Markov shift.
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Definition 2.5. A finite partition M = {M0,M1, . . . ,Ml} ⊂ B(Ω) of Ω has the

(measure-theoretic) Markov property with respect to T and µ if for all i0, i1, . . . , in ∈
{0, 1, . . . , l} with n ∈ N and µ

(
Mi0 ∩ T−1(Mi1) ∩ . . . ∩ T−(n−1)(Min−1)

)
> 0 it holds

µ
(
Mi0 ∩ T−1(Mi1) ∩ . . . ∩ T−n(Min)

)
µ
(
Mi0 ∩ T−1(Mi1) ∩ . . . ∩ T−(n−1)(Min−1)

) =
µ
(
Min−1 ∩ T−1(Min)

)
µ(Min−1)

. (2.5)

For instance, the partition (2.4) has the Markov property for the golden mean

dynamical system (see Example 2.2). Originally in [PW77] a partition with property

(2.5) was called Markov partition, but we use another term to avoid confusion with

the topological Markov partition. To our knowledge the difference between these two

notions is seldom discussed, so it seems worth mentioning here. However, this problem

is not essential for the thesis and the reader may omit the rest of this subsection.

Here we follow the definition of Markov partition given in [AKS92] for expanding

maps (for other dynamical systems see the definitions in [Adl98, BS02]). Let (Ω, ρ) be

a metric space, compact with respect to the induced topology. The map T : Ω ←↩ is

expanding if there exists some c > 0 such that for all ω1, ω2 ∈ Ω with ω1 6= ω2 there

exists some n ∈ N with ρ
(
Tn(ω1), Tn(ω2)

)
> c.

Definition 2.6. For a topological dynamical system (Ω, T ) with expanding map T

a finite cover R = {R0, R1, . . . , Rl} of Ω is said to be Markov if it has the following

properties:

(i) each Ri is a closure of its interior intRi;

(ii) intRi ∩ intRj = ∅ for i 6= j;

(iii) if T (intRi) ∩ intRj 6= ∅ then every point in intRj has one preimage in Ri.

(Note that Ashley, Kitchens and Stafford in [AKS92] used for the cover defined

as above the term “Markov partition”). To get a partition instead of a cover, it is

sufficient to assign boundaries of the sets R ∈ R to certain sets. We call the partition

M = {M0,M1, . . . ,Ml} Markov, if there exist a Markov cover R = {R0, R1, . . . , Rl}
with Mi ⊂ Ri for i = 0, 1, . . . , l. For instance, the golden mean map Tgm is obviously

expanding and the partition (2.4) is Markov for Tgm.

A Markov partition does not necessarily possess the Markov property and vice versa,

as is illustrated by the following example. On the one hand, the Markov property

describes measure on Ω. On the other hand, the definition of the Markov partition

implies that the map T is one-to-one on every element of partition.

Example 2.3. Consider two expanding maps on the interval [0, 1] equipped with the

Lebesgue measure λ: the tent map T̂2 (see Figure 2.2a) defined by

T̂2(ω) =

{
2ω, 0 ≤ ω ≤ 1

2 ,

2− 2ω, 1
2 < ω ≤ 1,
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and the map T∗(ω) (see Figure 2.2b) given by

T∗(ω) =


4ω, 0 ≤ ω ≤ 1

12 ,
1
5(8ω + 1), 1

12 < ω ≤ 1
2 ,

1
3(7− 8ω), 1

2 < ω ≤ 3
4 ,

1
3(4− 4ω), 3

4 < ω ≤ 1.

(2.6)

Both maps preserve the Lebesgue measure λ.
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Figure 2.2: The tent map T̂2(ω) (a) and the map T∗(ω) given by (2.6) (b)

The partition M =
{[

0, 1
2

]
,
(

1
2 , 1
]}

is Markov for both maps, as is easy to check.

Though M possesses the Markov property with respect to T̂2, M does not possess the

Markov property with respect to T∗. To see this, let us take Mi0 = Mi1 = Mi2 =
[
0, 1

2

]
and show that

λ
(
Mi0 ∩ T−1

∗ (Mi1) ∩ T−2
∗ (Mi2)

)
λ
(
Mi0 ∩ T−1

∗ (Mi1)
) 6=

λ
(
Mi1 ∩ T−1

∗ (Mi2)
)

λ(Mi1)
.

Indeed,

λ

([
0,

1

2

]
∩ T−1
∗

([
0,

1

2

])
∩ T−2
∗

([
0,

1

2

]))
=

3

64
,

λ

([
0,

1

2

]
∩ T−1
∗

([
0,

1

2

]))
=

3

16
,

λ

([
0,

1

2

])
=

1

2
,

hence
λ
([

0, 1
2

]
∩ T−1
∗
([

0, 1
2

])
∩ T−2
∗
([

0, 1
2

]))
λ
([

0, 1
2

]
∩ T−1
∗
([

0, 1
2

])) =
1

4
6= 3

8
=
λ
([

0, 1
2

]
∩ T−1
∗
([

0, 1
2

]))
λ
([

0, 1
2

]) .

Finally, consider a partition M′ =
{[

0, 2
3

]
,
(

2
3 , 1
]}

. It is clearly not Markov for the

tent map T̂2 since every point from
(

2
3 , 1
]

has two preimages from
[
0, 2

3

]
. However, M′

possesses the Markov property with respect to T̂2, as one can easily check.
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2.1.4 Kolmogorov-Sinai entropy

2.1.4.1 The concept of Kolmogorov-Sinai entropy

In this subsection we discuss the concept of entropy, which allows to study the

complexity of a system by means of symbolic dynamics. Given a finite partition

P = {P0, P1, . . . , Pl} ⊂ B(Ω) of Ω, the Shannon entropy of P is defined by

H(P) = −
∑
Pa∈P

µ(Pa) lnµ(Pa)

(with 0 ln 0 := 0).

Remark. A concrete base of the logarithm is not essential for the concept of entropy,

commonly employed values are 2 and e. We use throughout the natural logarithm.

Consider a partition of Ω generated by the sets Pa0a1...an−1 defined by (2.3):

Pn = {Pa0a1...an−1 | a0, a1, . . . , an−1 ∈ A}. (2.7)

The partition P1 coincides with P and the larger n is the finer is the partition Pn, i.e.

each element of Pn+1 is a subset of some element of Pn.

The entropy rate of T with respect to µ and P is defined by

hµ(T,P) = lim
n→∞

H(Pn)

n
= lim

n→∞

(
H(Pn+1)−H(Pn)

)
. (2.8)

Since the partition Pn+1 is finer than Pn, the difference H(Pn+1) − H(Pn) is the

conditional entropy of Pn+1 given Pn. The conditional entropy monotonically decreases

with increasing n (for details see [CT06, Section 4.2]).

Finally, the Kolmogorov-Sinai (KS) entropy of T with respect to µ is given by

hµ(T ) = sup
P finite partition

hµ(T,P).

The KS entropy is an important characteristic of a dynamical system. However,

computation of it involves taking a supremum over all finite partitions of Ω and is

unfeasible in the general case. By this reason, the problem of computation and estimation

of the KS entropy is of interest. In the rest of this section we review some possible

solutions that allow computation of the KS entropy in particular cases. We will come

back to this problem in Subsection 2.3.2, where we consider an ordinal-patterns-based

approach to the computation of the KS entropy. In Section 3.3 we introduce a novel

ordinal-patterns-based method for the estimation of the KS entropy.

2.1.4.2 Kolmogorov-Sinai entropy and generating partitions

One method for computing the KS entropy is provided by the Kolmogorov-Sinai theorem

(for details we refer to [Wal00]): it holds hµ(T ) = hµ(T,G) if G is a generating partition

in the sense of the following definition.
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Definition 2.7. A finite partition G = {G0, G1, . . . , Gl} ⊂ B(Ω) of Ω is said to be

generating (under T ) if, given the sigma-algebra A generated by the sets T−n(Gi) with

i = 0, 1, . . . , l and n ∈ N0, for every B ∈ B(Ω) there exists a set A ∈ A such that

µ(A4B) = 0.

Generating partitions are in general unknown or even do not exist. By Krieger’s

theorem [Kri70] a generating partition exists if the map T is invertible, ergodic and has

finite KS entropy (the standardized procedure for constructing the generating partition

under these conditions is suggested in [Den74]). In the case of non-invertible maps there

is no general method for constructing generating partitions (a comprehensive review of

the generating partition problems can be found in [Sch01]).

Let us consider a special case, where Kolmogorov-Sinai entropy can be represented

in a particular simple form. For ergodic Markov shifts it holds the following [Kit98,

Observation 6.2.10]:

hm(σ) = −
l∑

i=0

l∑
j=0

m(Cij) ln
m(Cij)

m(Ci)
= H(C2)−H(C) (2.9)

(with 0/0 := 0 and 0 ln 0 := 0), where Cij are cylinder sets, Ci – cylinders and

C = {C0, C1, . . . , Cl} is the partition consisting of all cylinders. It follows immediately

that the KS entropy of a Bernoulli shift is given by

hmB (σ) =

l∑
i=0

pi ln pi =

l∑
i=0

mB(Ci) lnmB(Ci) = H(C). (2.10)

Example 2.4. Since the golden mean shift
(
{0, 1}N,BΠ

(
{0, 1}N

)
,mgm, σ

)
is a Markov

shift (see Example 2.2), from (2.9) it follows:

hmgm(σ) = − ϕ2

1 + ϕ2

1

ϕ
ln

1

ϕ
− ϕ2

1 + ϕ2

1

ϕ2
ln

1

ϕ2
=

ϕ+ 2

1 + ϕ2
lnϕ = lnϕ.

The representation (2.9) of the KS entropy can be extended to a more general case.

Theorem 2.1. If the partition G = {G0, G1, . . . , Gl} is generating and has the Markov

property, then

hµ(T ) = H(G2)−H(G) =
l∑

i=0

l∑
j=0

µ
(
Gi ∩ T−1(Gj)

)
ln
µ
(
Gi ∩ T−1(Gj)

)
µ(Gi)

, (2.11)

where G2 is the partition of the sets corresponding to the two-letter words induced via G
in the sense of (2.7).

For a Markov shift over the alphabet {0, 1, . . . , l} the partition C = {C0, C1, . . . , Cl}
is generating and has the Markov property. Therefore Theorem 2.1 is formally an

extension of Observation 6.2.10 from [Kit98], but the idea of the proof does not differ

significantly from the original one. However, we provide it in Subsection 2.4.1 for the

sake of completeness.
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2.1.4.3 Kolmogorov-Sinai entropy and Lyapunov exponent

Another approach to computing the KS entropy is provided by Pesin’s formula [You13,

Theorem 1], which in certain cases links together KS entropy and Lyapunov exponents.

Roughly speaking, Lyapunov exponents characterize the speed of divergence for orbits

of the nearby points in the space Ω. For a detailed discussion of Pesin theory we refer

to [Pes97, Chapter 8] and [You03], in this thesis we use only a particular case of Pesin’s

formula for differentiable maps on the space
(

[0, 1],B
(
[0, 1]

)
, µ
)

.

Definition 2.8 ([Cho05]). For a map T : [0, 1]←↩, ergodic with respect to the measure

µ and having a piecewise continuous derivative T ′, the Lyapunov exponent is defined by

LE(T ) =

∫ 1

0
ln |T ′(ω)|dµ.

The following result allows to compute or at least to estimate the KS entropy in

certain cases.

Theorem 2.2. If µ is the SRB measure on
(

[0, 1],B
(
[0, 1]

))
, then for every µ-preserving

map T with LE(T ) > 0 it holds

hµ(T ) = LE(T ) =

∫ 1

0
ln |T ′(ω)|dµ. (2.12)

Moreover, in this case the KS entropy can be estimated from the orbit of λ-almost every

point ω:

hµ(T ) = lim
n→∞

1

n

n−1∑
i=0

ln
∣∣T ′(T i(ω)

)∣∣. (2.13)

Proof. Equality (2.12) is a direct consequence of Pesin’s formula [You13, Theorems 1],

and equation (2.13) follows from (2.12) by Birkhoff’s Ergodic Theorem [Cho05].

Example 2.5. For the golden mean dynamical system
(

[0, 1],B
(
[0, 1]

)
, µgm, Tgm

)
the

Lyapunov exponent is given by

LE(T ) =

∫ 1

0
ln |T ′gm(ω)| dµgm =

∫ 1

0
ln(ϕ) p(ω) dω =

(
ϕ2

1 + ϕ2
+
ϕ2 − ϕ
1 + ϕ2

)
lnϕ = lnϕ.

2.2 Stochastic processes

While measure-preserving dynamical systems provide a mathematical foundation for

investigating real-world data, stochastic processes are used to link together theory and

practice. In this section we briefly recall some basic definitions related to stochastic

processes, for a more substantial introduction we refer to [TK98, GKK+10].

Definition 2.9. Let
(
Ω,B(Ω), µ

)
be a probability space. Then a sequence

(
Y(t)

)
t∈T

of random vectors with Y(t) =
(
Y1(t), Y2(t), . . . , YN (t)

)
: Ω→ RN for N ∈ N is called a
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stochastic process on
(
Ω,B(Ω), µ

)
. Moreover, a stochastic process

(
Y(t)

)
t∈T is said to

be stationary if the distributions of
(
Y(t1),Y(t2), . . . ,Y(tn)

)
and

(
Y(t1 + t),Y(t2 + t),

. . . ,Y(tn + t)
)

coincide for all t1, t2, . . . , tn, t1 + t, t2 + t, . . . , tn + t ∈ T.

By fixing a point ω ∈ Ω one obtains a realization
(
y(t)

)
t∈T of a stochastic process:

y(t) =
(
Y(t)(ω)

)
.

Stochastic processes are directly linked to measure-preserving dynamical systems.

Indeed, given a dynamical system
(
Ω,B(Ω), µ, T

)
and a random vector X : Ω → RN

called observable, the sequence
(
Y(t)

)
t∈N0

with

Y(t) = X ◦ T ◦t (2.14)

forms an RN -valued stationary stochastic process on
(
Ω,B(Ω), µ

)
.

To construct a dynamical system corresponding to a stationary stochastic process(
Y(t)

)
on
(
Ω,B(Ω), µ

)
, let A ⊂ RN be the set of all possible values of

(
Y(t)

)
. Then

the process
(
Y(t)

)
corresponds to the dynamical system

(
AN,BΠ(AN),mY, σ

)
, where

BΠ(AN) is the sigma-algebra generated by the cylinder sets, mY is the measure defined

on the cylinder sets Ca0a1...an−1 for a0, a1, . . . , an−1 ∈ A and n ∈ N by

mY(Ca0a1...an−1) = µ({ω ∈ Ω | Y(0)(ω) = a0,Y(1)(ω) = a1, . . . ,Y(n− 1)(ω) = an−1}),

where σ is the shift map. See [CFS82, Chapter 8], [Gra09] for details.

Definition 2.10. A stationary stochastic process is said to be ergodic if the dynamical

system corresponding to this process is also ergodic.

Two particular types of stochastic processes are used throughout this thesis: se-

quences of independent and identically distributed random variables (IID processes)

and Markov chains. An example of IID process is the standard additive white Gaussian

noise
(
ε(t)
)
t∈T with ε(t) ∼ N (0, 1) for all t ∈ T.

Definition 2.11. We understand a Markov chain as a stochastic process
(
Y (t)

)
with

values in A = {0, 1, . . . , l} for some l ∈ N such that for all a0, a1, . . . , at+1 ∈ A, t ∈ T it

holds

Pr
(
Y (t+ 1) = at+1 | Y (0) = a0, Y (1) = a1, . . . , Y (t) = at

)
= Pr

(
Y (t+ 1) = at+1 | Y (t) = at

)
.

Remark. The concept of a Markov chain is linked to the concept of a Markov shift

and one gets a Markov chain
(
Y (t)

)
from a Markov shift by taking an observable

X : AN → A (for instance, X
(
(s0, s1, . . .)

)
= s0 for all (s0, s1, . . .) ∈ AN).

A Markov chain is determined by an (l+1)× (l+1) stochastic matrix Q of transition

probabilities and a stationary probability vector p such that for all i, j ∈ A it holds

qi,j = Pr
(
Y (1) = j | Y (0) = i

)
, pi = Pr

(
Y (0) = i

)
.
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2.3 Ordinal pattern analysis

In this section we provide an introduction to ordinal pattern analysis. We begin with

the definitions of ordinal patterns and ordinal partition in Subsection 2.3.1. Then we

introduce ordinal-patterns-based complexity measures, permutation and sorting en-

tropies, in Subsection 2.3.2. We also discuss there the relationship between permutation

entropy and KS entropy, and the ordinal characterization of KS entropy in general. In

Subsection 2.3.3 we consider the empirical counterparts of permutation and sorting

entropy that provide practical measures of complexity. In Subsection 2.3.4 we mention

topological permutation and sorting entropy and touch the problem of calculation the

number of ordinal patterns realized by a map. There we present some minor new results,

since this question is not addressed in the rest of the thesis. An order isomorphism,

which is important for discussion of results in Chapter 3 is defined in Subsection 2.3.5.

2.3.1 Basic notions

2.3.1.1 Ordinal patterns

Let us first recall the definition of ordinal pattern. For d ∈ N denote the set of

permutations of {0, 1, . . . , d} by Πd.

Definition 2.12. We say that a finite sequence of real numbers (x0, x1, . . . , xd) has an

ordinal pattern π = (r0, r1, . . . , rd) ∈ Πd of order d ∈ N if

xr0 ≥ xr1 ≥ . . . ≥ xrd

and

rl−1 > rl for xrl−1
= xrl .

According to this definition, there are (d+ 1)! different ordinal patterns of order d.

Remark. The representation of ordinal patterns used in Definition 2.12 (permutation repre-

sentation) is convenient for theoretical considerations, but cumbersome and disadvantageous

from the computational viewpoint [KSE07]. Throughout this thesis we use a number

representation of ordinal patterns when it is convenient: an ordinal pattern of order d is

given by a unique number from the set {0, 1, . . . , (d+ 1)!− 1} (see [UK13] for details, note

that various enumerations are possible and here it is not important which one to use).

Consider a sequence
(
x(0),x(1), . . . ,x(d)

)
of vectors x(k) = (x1(k), x2(k), . . . , xN (k)),

x(k) ∈ RN for k = 0, 1, . . . , d. We say that this sequence has an N-dimensional

ordinal pattern (π1, π2, . . . , πN ) ∈ ΠN
d , where πj is the ordinal pattern of the sequence(

xj(0), xj(1), . . . , xj(d)
)

for j ∈ 1, 2, . . . , N . There are
(
(d+1)!

)N
possibleN -dimensional

ordinal patterns, thus one can associate with every π ∈ ΠN
d in some fixed way a number
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i ∈ {0, 1, . . . ,
(
(d + 1)!

)N − 1}. We call i an ordinal pattern, as well, and use either

this number representation or the representation (π1, π2, . . . , πN ), whichever is more

convenient at the moment.

2.3.1.2 Ordinal partitions

The idea of ordinal partition can be considered as a special case of symbolic dynamics,

where the set of ordinal patterns is used as an alphabet. We define first an ordinal

partition of a probability space
(
Ω,B(Ω), µ

)
for a stochastic process.

Definition 2.13. An ordinal partition of order d ∈ N of the space
(
Ω,B(Ω), µ

)
induced

by a stochastic process Y =
(
Y(t)

)
t∈T with Y(t) =

(
Y1(t), Y2(t), . . . , YN (t)

)
and N ∈ N

is defined by

PY(d) = {P(π1,π2,...,πN ) | πj ∈ Πd for j = 1, 2, . . . , N}

with

P(π1,π2,...,πN ) =
{
ω ∈ Ω |

((
Yj(d)(ω)

)
,
(
Yj(d− 1)(ω)

)
, . . . ,

(
Yj(1)(ω)

)
,
(
Yj(0)(ω)

))
has an ordinal pattern πj for j = 1, 2, . . . , N

}
.

We use further probabilities of ordinal patterns defined as follows.

Definition 2.14. The probability of an ordinal pattern (π1, π2, . . . , πN ) ∈ ΠN
d of order

d ∈ N is defined as

p(π1,π2,...,πN ) = µ(P(π1,π2,...,πN )).

Correspondingly, the probability vector p = (pπ)π∈ΠNd
is said to be a distribution of

ordinal patterns.

Remark. Distributions of ordinal patterns are known only for some special cases of

stochastic processes [BS07, SK11]. In general one can estimate probabilities of ordinal

patterns by their empirical probabilities, see Subsection 2.3.1.4.

Ordinal partitions for measure-preserving dynamical systems are defined in equivalent

way. Given a real-valued “observable” X = (X1, X2, . . . , XN ), ordinal partition for a

measure-preserving dynamical system
(
Ω,B(Ω), µ, T

)
is defined as follows:

PX(d) := P(X◦T t)(d)

(see Section 2.2 for the discussion of the relationship between stochastic processes and

dynamical systems). We consider ordinal partitions for dynamical systems to state

theoretical results, while ordinal partitions for stochastic processes are more convenient

for discussing applications.

Using of observables allows to define ordinal partition for a set Ω different from RN .

To exemplify, let us discuss an observable, which is intensively used further.
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Example 2.6. Consider a Markov shift over an alphabet A = {0, 1, . . . , l}. For the

sequences r = (r0, r1, . . .), s = (s0, s1, . . .) ∈ AN the natural order relation is the

lexicographic order: the inequality r ≺ s holds if and only if either r0 < s0 or there

exists some k ∈ N with ri = si for i = 0, 1, . . . , k − 1 and rk < sk.

Definition 2.15. Let us say that the observable X : AN → R for a Markov shift(
AN,BΠ

(
AN),m, σ) is lexicographic-like if

• for almost all s ∈ AN it is injective;

• for all s ∈ AN and k, n ∈ N0 the inequality X(σks) ≤ X(σns) holds if and only if

σks � σns.

In other words, a lexicographic-like observable X induces a natural order relation

on AN. A simple example of a lexicographic-like X is provided by considering s ∈ AN

as (l + 1)-expansions of a number in [0, 1]:

Xexp

(
(s0, s1, . . .)

)
=

∞∑
j=0

(
1

l + 1

)j+1

sj . (2.15)

2.3.1.3 Examples of ordinal partitions

In order to give the reader a feeling of what the ordinal partitions are, we consider here

two examples for dynamical systems that are used in Chapter 3. Those familiar with

the concept of ordinal partition may skip this subsection.

Example 2.7. Consider ordinal partitions for the system
(

[0, 1],B
(
[0, 1]

)
, µgm, Tgm

)
introduced in Example 2.1 with the observable X = id. According to Definition 2.13,

P id(1) = {P(01), P(10)}, where

P(01) =
{
ω ∈ [0, 1] | ω < Tgm(ω)

}
=

(
0,

1

ϕ

]
,

P(10) =
{
ω ∈ [0, 1] | ω ≥ Tgm(ω)

}
= {0} ∪

(
1

ϕ
, 1

]
,

since it holds (
Tgm(ω), ω

)
=

{
(ϕω, ω), 0 ≤ ω ≤ 1

ϕ ,

(ϕω − 1, ω), 1
ϕ < ω ≤ 1.

Ordinal partition P id(2) consists of 3! = 6 sets given by

P(012) =
{
ω ∈ [0, 1] | ω < Tgm(ω) < T 2

gm(ω)
}

=

(
0,

1

ϕ2

]
,

P(021) = P(102) = ∅,

P(120) =
{
ω ∈ [0, 1] | T 2

gm(ω) ≤ ω < Tgm(ω)
}

=

(
1

ϕ2
,

1

ϕ

]
,

P(201) =
{
ω ∈ [0, 1] | Tgm(ω) < T 2

gm(ω) ≤ ω
}

=

(
1

ϕ
, 1

)
,
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P(210) =
{
ω ∈ [0, 1] | T 2

gm(ω) ≤ Tgm(ω) ≤ ω
}

= {0} ∪ {1}.

In the same manner, one constructs ordinal partitions for higher orders d, the structure

of P id(3) is shown on Figure 2.3.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

 ω 

P
(0123)

P
(1230)

P
(1203)

P
(2301)

P
(2031)

P
(3012)

P
(0312)

P
(3120)

Figure 2.3: Ordinal partition for the golden mean map Tgm for d = 3, the set P(3210)

consisting of single points is not shown

Example 2.8. Consider a Markov shift over two symbols
(
{0, 1}N,BΠ

(
{0, 1}N

)
,m, σ

)
and the lexicographic-like observable Xexp given by (2.15), which interprets s ∈ {0, 1}N as

a binary expansion of a number from [0, 1]. Observe, that for s ∈ AN given x = Xexp(s),

for all k ∈ N0 it holds:

Xexp(σks) =

∞∑
j=0

sj+k

(
1

2

)j+1

= 2k
∞∑
j=0

sj

(
1

2

)j+1

− 2k
k−1∑
j=0

sj

(
1

2

)j+1

= 2kx− b2kxc.

Let T2(x) = 2x− b2xc = (2x) mod 1 for x ∈ [0, 1], then for all d ∈ N it holds(
X(σds), X(σ(d−1)s), . . . , X(σs), X(s)

)
=
(
T d2 (x), T

(d−1)
2 (x), . . . , T2(x), x

)
for x = Xexp(s). Now the structure of the ordinal partition for the Markov shift over
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two symbols becomes clear. For instance, for orders d = 1, 2 it holds

PXexp(1) = {P(01), P(10)} with P(01) = C0 \ {0}, P(10) = C1 ∪ {0};

PXexp(2) = {P(012), P(021), P(102), P(120), P(201), P(210)} with

P(012) = C00 \ {0},

P(021) = C1011 ∪ C101011 ∪ . . . ∪ C10 11,

P(120) = C0100 ∪ C010100 ∪ . . . ∪ C01 00,

P(102) = C011 ∪ C01011 ∪ . . . ∪ C01 1,

P(201) = C100 ∪ C10100 ∪ . . . ∪ C10 0,

P(210) = C11 ∪ {0},

where Ca0a1...an is a cylinder set. Note that the ordinal partition does not depend on

the choice of the measure and is the same for all Markov shifts over the given alphabet.

2.3.1.4 Sequence and empirical distribution of ordinal patterns

In applications one does not deal with a stochastic process as is, but only with realizations

of it for single points ω ∈ Ω. Therefore we define an estimate of ordinal pattern probability

from a realization of a stochastic process. First we give the following definition.

Definition 2.16. A realization
(
y(t)

)
t∈T =

(
Y(t)(ω)

)
t∈T of an RN -valued stochastic

process Y is said to have the sequence of ordinal patterns π(y) =
(
π(t; y)

)
t∈T′ of

order d for T′ = T \ {0, 1, . . . , d− 1} if π(t; y) =
(
π1(t), π2(t), . . . , πN (t)

)
and the vector(

yj(t), yj(t−1), . . . , yj(t−d)
)

has the ordinal pattern πj(t) for all j = 1, 2, . . . , N , t ∈ T′.

Let us denote ΠN
d = {(π1, π2, . . . , πN ) | π1, π2, . . . , πN ∈ Πd}. Consider a sequence

of ordinal patterns π(y). For any t ∈ T′ the frequency of occurrence of an ordinal

pattern i ∈ ΠN
d among the first (t− d+ 1) ordinal patterns of the sequence is given by

ni(t; y) = #{r ∈ {d, 1 + d, . . . , t} | π(r; y) = i}. (2.16)

Definition 2.17. The empirical probability of an ordinal pattern i at the moment of

time t ∈ T′ for the sequence π(y) is defined as

p̂i(t; y) =
ni(t; y)

t− d+ 1

for all i ∈ ΠN
d . Correspondingly, a probability vector

p̂(t; y) =
(
p̂i(t; y)

)
i∈ΠNd

is said to be an empirical distribution of ordinal patterns.

Birkhoff’s Ergodic Theorem links empirical probabilities of ordinal patterns to the

theoretical probabilities, namely we have:
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Lemma 2.3. Let
(
Ω,B(Ω), µ, T

)
be an ergodic dynamical system, X be a real-valued

observable. Then for all d ∈ N and for all i ∈ ΠN
d there exists a set Ω0 ⊂ B(Ω) with

µ(Ω0) = 1 such that for Pi ∈ PX(d) it holds:

pi = µ(Pi) = lim
L→∞

p̂i(L; y)

for the realization y(t) = X
(
T t(ω)

)
of an arbitrary ω ∈ Ω0.

Note that Birkhoff’s ergodic theorem does not provide any information about the

rate of convergence. This does not allow to specify what length of the sample L is

sufficient for accurate estimation of ordinal patterns probabilities. Usually it is supposed

that for rather large L it holds

pi ≈ p̂i(L; y).

2.3.2 Permutation entropy and sorting entropy

In this subsection we discuss two ordinal-patterns-based measures of complexity for

dynamical systems defined as follows.

Definition 2.18. For a measure-preserving dynamical system
(
Ω,B(Ω), µ, T

)
given

a real-valued “observable” X = (X1, X2, . . . , XN ) the permutation entropy of order d

(with respect to X) and the sorting entropy of order d are respectively defined by

hXµ (T, d) =
1

d
H
(
PX(d)

)
,

hXµ,4(T, d) = H
(
PX(d+ 1)

)
−H

(
PX(d)

)
.

Note that the original definitions in [BP02] were given for the case Ω ⊆ R and

X = id. To see the physical meaning of the permutation entropy let us rewrite it in the

explicit form:

hXµ (T, d) = −1

d

∑
i∈ΠNd

µ(Pi) lnµ(Pi). (2.17)

That is the permutation entropy characterizes the diversity of N -dimensional ordinal

patterns i ∈ ΠN
d . The sorting entropy represents the increase of diversity of ordinal

patterns as the order d increases by one.

The interest to the permutation entropy was initiated by the close relationship

between this quantity and the KS entropy. Bandt et al. proved in [BKP02] for the case

Ω ⊆ R, T being a piecewise strictly-monotone interval map and X = id, that it holds:

hµ(T ) = lim
d→∞

1

d
H
(
P id(d)

)
. (2.18)

This result gave rise to the development of ordinal pattern analysis. Later Keller and Sinn

[KS09, KS10, Kel12] showed that in many cases the following ordinal-patterns-based

representation of KS entropy is possible:

hµ(T ) = lim
d→∞

hµ
(
T,PX(d)

)
= lim

d→∞
lim
n→∞

(
H
(
PX(d)n+1

)
−H

(
PX(d)n

))
. (2.19)
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Note that if (2.19) holds then the permutation entropy and the sorting entropy for d

tending to infinity provide upper bounds for the KS entropy [Kel12]:

lim
d→∞

hXµ (T, d) ≥ hµ(T ), lim
d→∞

hXµ,4(T, d) ≥ hµ(T ).

This inequalities remain correct if one replaces upper limits by lower limits.

Remark. Note that Amigo et al. [AKK05, Ami12] have shown equality of KS entropy

and permutation entropy for a concept of permutation entropy that is qualitatively

different from the originally given one [BP02]. For a discussion of the relationships

between both concepts see [Ami12, AK13].

For a stochastic process Y the permutation entropy hµ(Y, d) and the sorting entropy

hµ,4(Y, d) are defined in the same way as for dynamical systems.

2.3.3 Empirical permutation entropy and sorting entropy

To measure systems complexity in applications, one may want to compute the permu-

tation entropy or the sorting entropy from time series. Simple and natural estimators

are the empirical permutation entropy and the empirical sorting entropy, based on

estimating µ(Pi) by the empirical probabilities of observing N -dimensional ordinal

pattern i ∈ ΠN
d in the time series [BP02, KSE07] (for a review of applications see also

[Ami10, AK13]).

Consider a realization of an ergodic stochastic process as a model of time series.

Let us fix some d ∈ N and consider a finite realization y =
(
y(0),y(1), . . . ,y(L)

)
of

the stochastic process Y for L ∈ N. Given the absolute frequencies ni(L; y) of ordinal

patterns defined by (2.16), the naive estimator of the entropy of ordinal partition

H
(
PY(d)

)
is defined by

Ĥ
(
L;PY(d)

)
= −

((d+1)!)N−1∑
i=0

ni(L; y)

L− d+ 1
ln

ni(L; y)

L− d+ 1

= ln(L− d+ 1)− 1

L− d+ 1

((d+1)!)N−1∑
i=0

ni(L; y) lnni(L; y). (2.20)

Then the empirical permutation entropy and empirical sorting entropy are respectively

given by

ĥµ(L; y, d) =
Ĥ
(
L;PY(d)

)
d

=
1

d
ln(L− d+ 1)− 1

d(L− d+ 1)

((d+1)!)N−1∑
i=0

ni(L; y) lnni(L; y),

ĥµ,4(L; y, d) = Ĥ
(
L;PY(d+ 1)

)
− Ĥ

(
L;PY(d)

)
.
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Performance of these estimators of permutation and sorting entropies is investigated

empirically in Subsection 3.4.1.

Remark. Note that in general the naive estimator is negatively biased and, by this

reason, rather unreliable [Gra03]. A possible solution is to use Grassberger’s estimator

of entropy [Gra88, Gra03] given by

ĤG

(
L;PY(d)

)
= ln(L− d+ 1)− 1

L− d+ 1

((d+1)!)N−1∑
i=0

ni(L; y)G
(
ni(L; y)

)
,

where G(0) = 0, G(1) = −γ − ln 2 with Euler’s constant γ = 0.577215 . . ., and

G(2k + 2) = G(2k + 3) = G(2k) +
2

2k + 1
for k ∈ N0

(see [PR11] for a discussion of using Grassberger’s estimators for ordinal-patterns-based

quantities). However, empirical permutation entropy is usually not very sensitive to

the size of the sample L (see, for instance, [BP02]). This is due to the fact that usually

only few ordinal patterns are realized rather frequently; probabilities of these ‘typical’

patterns can be estimated from the finite orbit more or less reliably, whereas the rare

ordinal patterns have low impact on permutation entropy. By this reason, the naive

estimator of permutation entropy is traditionally used.

2.3.4 Topological permutation entropy and sorting entropy

In this subsection we discuss the number of ordinal patterns occurring in dynamics.

In particular, we define topological permutation and sorting entropies. A detailed

discussion of these quantities is beyond the scope of this thesis and they are used only

in this subsection. However, we provide here a couple of own results related to these

quantities that could be interesting by themselves.

As we have mentioned in Subsection 2.3.1, there are (d + 1)! different ordinal

patterns of order d. Therefore, the ordinal partition PX(d) for an observable X =

(X1, X2, . . . , XN ) contains at most
(
(d+ 1)!

)N
elements. However, in most cases, some

of ordinal patterns from ΠN
d do not occur in the dynamics and by this reason some

of the elements of PX(d) has zero measure. These ordinal patterns i ∈ ΠN
d are said

to be forbidden [Ami10], while the occurring ordinal patterns are called allowed. The

numbers of forbidden and allowed ordinal patterns of order d for the dynamical system(
Ω,B(Ω), µ, T

)
(with respect to X) are defined by, respectively

ForbX
µ (T, d) = #{i ∈ ΠN

d | µ(Pi) = 0},

AllowX
µ (T, d) = #{i ∈ ΠN

d | µ(Pi) > 0}.
(2.21)

Clearly,

AllowX
µ (T, d) + ForbX

µ (T, d) =
(
(d+ 1)!

)N
.
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Remark. Originally the number of forbidden ordinal patterns was defined in a bit

different way [AEK08, AK08]:

ForbX
0 (T, d) = #{i ∈ ΠN

d | Pi \ Fd(T ) = ∅},

where Fd(T ) =
{
ω ∈ Ω | T i(ω) = T d(ω) for some i ∈ {0, 1, . . . , d}

}
, that is elements of

ordinal partition containing only periodic and eventually periodic points of the map

T are not taken into account. Our definition can be considered as an adaptation of

the traditional one to measure-preserving dynamical systems; in most cases it holds

Forbid
0 (T, d) = Forbid

µ (T, d). For instance, the ordinal partition P id(2) in Example 2.7

contains four non-empty elements, however one of them, P(210), consists of only two

periodic points and has zero measure, therefore Forbid
0 (Tgm, 2) = Forbid

µgm(Tgm, 2) = 3.

The numbers of forbidden/allowed ordinal patterns have many interesting properties

(see [Ami10, Chapters 3-5]), but determining these numbers turns out to be a difficult

combinatorial problem [Eli11]. To our knowledge, the only dynamical systems for

which the number of allowed patterns is known are the one-sided Bernoulli shifts. For

the system
(
{0, 1, . . . , l}N,BΠ

(
{0, 1, . . . , l}N

)
,mB, σ

)
and for lexicographic-like random

variable X it holds [Eli09]:

AllowX
mB

(σ, d) =
l+1∑
k=2

ad,k, (2.22)

where ad,k is given by

ad,k =

k−2∑
i=0

(−1)i
(
d+ 1

i

)(k − i− 2)(k − i)d−1 +

d∑
j=1

(k − i)d−jψk−i(j)


with

ψn(j) =
∑
r|j

Möb

(
j

r

)
nr, (2.23)

where Möb() is the Möbius function, see Subsection 2.4.2 for details. In the following

proposition we suggest a shorter representation of AllowX
mB

(σ, d).

Proposition 2.4. Given
(
AN,BΠ(AN),mB, σ

)
a Bernoulli shift over A = {0, 1, . . . , l},

then for a lexicographic-like random variable X it holds

AllowX
mB

(σ, d) =

l+1∑
k=2

(−1)(l+1−k)

(
d

l + 1− k

)(k − 2)kd−1 +

d∑
j=1

kd−jψk(j)

, (2.24)

with ψn(j) given by (2.23). Moreover,

lim
d→∞

AllowX
mB

(σ, d)

(d+ 1)(l + 1)d
= 1.
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The proof is given in Subsection 2.4.2. Note that in contrast to representation

(2.22), formula (2.24) does not emphasize the structure of allowed ordinal patterns. The

asymptotic behavior of the number of allowed patterns for Bernoulli shifts was first

characterized by Elizalde in [Eli09] without providing a proof.

The topological permutation entropy of order d (with respect to X) is defined by

hX0 (T, d) =
1

d
ln
(
AllowX

µ (T, d)
)
.

The topological permutation entropy was introduced in [BKP02] for the case Ω ⊆ R
and X = id (for further development see [Mis03]). Similar to the permutation entropy,

hX0 (T, d) characterizes diversity of ordinal patterns, but it does not take into account

the measures of elements of the ordinal partition. For all d ∈ N it holds

hXµ (T, d) ≤ hX0 (T, d),

where equality holds if and only if all sets Pi ∈ PX(d) with Pi 6= ∅ have equal measures.

A topological counterpart of the sorting entropy, the topological sorting entropy of

order d is defined by:

hX0,4(T, d) = ln
(
AllowX

µ (T, d+ 1)
)
− ln

(
AllowX

µ (T, d)
)

= ln
AllowX

µ (T, d+ 1)

AllowX
µ (T, d)

.

It is not as useful as the topological permutation entropy; in particular there is no general

relationship between sorting and topological sorting entropy. However we mention the

following result, which we prove in Subsection 2.4.3.

Proposition 2.5. Given
(
AN,BΠ(AN),mB, σ

)
a Bernoulli shift over A = {0, 1, . . . , l}.

Then for a lexicographic-like X it holds

lim
d→∞

hX0,4(σ, d) = lim
d→∞

hX0 (σ, d) = ln(l + 1).

Remark. Note that the equality lim
d→∞

hX0 (σ, d) = ln(l + 1) for a Bernoulli shift over

A = {0, 1, . . . , l} follows from the more general result of C. Bandt, G. Keller and

B. Pompe [BKP02, Theorem 1]. However, our proof provided in Subsection 2.4.3 is

different from the proof of the general result and therefore may be interesting.

Note that the practical estimation of the topological permutation and sorting

entropies from finite orbit is complicated since elements of the ordinal partition of

small but finite measure are visited rather rare (see [Ami10, Section 7.7] for possible

solutions).

2.3.5 Order isomorphisms

In this subsection we discuss equivalence of dynamical systems, which allows to extend

results obtained for a system to all equivalent systems.
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Definition 2.19. The system
(
Ω,B(Ω), µ, T

)
is said to be isomorphic to the system(

Υ,B(Υ), ν, S
)
, if there are Ω0 ∈ B(Ω) and Υ0 ∈ B(Υ) with µ(Ω0) = 1, ν(Υ0) = 1,

T (Ω0) ⊆ Ω0, S(Υ0) ⊆ Υ0, and an invertible measure-preserving map φ : Ω0 → Υ0 such

that φ ◦ T (ω) = S ◦ φ(ω) for all ω ∈ Ω0. Then the map φ is called an isomorphism.

Moreover, isomorphic dynamical systems
(
Ω,B(Ω), µ, T

)
and

(
Υ,B(Υ), ν, S

)
are said

to be order isomorphic with respect to the observables X : Ω→ RN and Y : Υ→ RN ,

if for all ω1, ω2 ∈ Ω′ and j = 1, 2, . . . , N it holds

Xj(ω1) ≤ Xj(ω2)⇔ Yj ◦ φ(ω1) ≤ Yj ◦ φ(ω2).

Our definition of order isomorphism is equivalent to the original one in [Ami10], but

we use different notation. Note that the KS entropy is an invariant of isomorphism,

i.e. isomorphic dynamical systems have the same KS entropy [ELW11] (this accounts

for the special significance of the KS entropy). Analogously, ordinal patterns and,

in particular, the entropy of the ordinal partition H
(
PX(d)

)
, the permutation and

the sorting entropies, as well as their topological counterparts, are invariants of order

isomorphism. In particular, this fact allows to extend the result of Bandt, Keller and

Pompe [BKP02] linking permutation entropy to the KS entropy, to the class of Markov

shifts over a finite alphabet.

Example 2.9. The golden mean dynamical system
(

[0, 1],B
(
[0, 1]

)
, µgm, Tgm

)
and the

golden mean shift
(
{0, 1}N,BΠ

(
{0, 1}N

)
,mgm, σ

)
, (see Examples 2.1 and 2.2) are order

isomorphic with respect to the observables id and X given by

X
(
(s0, s1, . . .)

)
=

∞∑
j=0

(
1

2

)j+1

sj .

Indeed, consider a map φMgm : [0, 1)→ {0, 1}N providing coding via the partitionMgm

defined by (2.4):

φMgm(ω) = (s0, s1, . . .) with T igm(ω) ∈Msi .

One can rewrite φMgm in an explicit form:

φMgm(ω) = (s0, s1, . . .), where si = ϕT igm(ω)− T (i+1)
gm (ω) for all i ∈ N0.

The map φMgm is invertible, the inverse map is given by

φ−1
Mgm

((s0, s1, . . .)) =
∞∑
j=0

(
1

ϕ

)j+1

sj .

It is easy to see that φMgm is not only an isomorphism, but also an order isomorphism.
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2.4 Proofs

2.4.1 Proof of Theorem 2.1

Proof. Since the partition G = {G0, G1, . . . , Gl} is generating and by (2.8), it holds

hµ(T ) = hµ(T,G) = lim
n→∞

(
H(Gn+1)−H(Gn)

)
.

It remains to show that
(
H(Gn+1)−H(Gn)

)
=
(
H(G2)−H(G)

)
for all n ∈ N.

Let g(a0, a1, . . . , an) = µ
(
Ga0 ∩ T−1(Ga1) ∩ . . . ∩ T−n(Gan)

)
to simplify the notation

for any a0, a1, . . . , an−1 ∈ {0, 1, . . . , l} and n ∈ N. Note that for all a ∈ {0, 1, . . . , l} it

holds g(a) = µ(Ga) > 0. Since G has the Markov property, it follows that

H(Gn+1) =
∑

a0,a1,...,an

g(a0, a1, . . . , an) ln g(a0, a1, . . . , an)

=
∑

a0,a1,...,an

g(a0, a1, . . . , an−1)
g(an−1, an)

g(an−1)
ln

(
g(a0, a1, . . . , an−1)

g(an−1, an)

g(an−1)

)
=

∑
a0,a1,...,an−1

g(a0, a1, . . . , an−1) ln
(
g(a0, a1, . . . , an−1)

)∑
an

g(an−1, an)

g(an−1)

+
∑

an−1,an

g(an−1, an)

g(an−1)
ln

(
g(an−1, an)

g(an−1)

) ∑
a0,a1,...,an−2

g(a0, a1, . . . , an−1). (2.25)

Since ∑
an

g(an−1, an)

g(an−1)
=

1

µ(Gan−1)

∑
an

µ
(
Gan−1 ∩ T−1(Gan)

)
= 1,

∑
a0,a1,...,an−1

g(a0, a1, . . . , an−1) ln
(
g(a0, a1, . . . , an−1)

)
= H(Gn),

and∑
a0,a1,...,an−2

g(a0, a1, . . ., an−1) =
∑

a0,a1,...,an−2

µ
(
Ga0 ∩ T−1(Ga1)∩ . . . ∩ T−(n−1)(Gan−1)

)
= µ(Gan−1),

we can rewrite (2.25) as

H(Gn+1) = H(Gn) +
∑

an−1,an

µ
(
Gan−1 ∩ T−1(Gan)

)
ln
µ
(
Gan−1 ∩ T−1(Gan)

)
µ(Gan−1)

.

Hence for all n ∈ N it holds

H(Gn+1)−H(Gn) =

l∑
i=0

l∑
j=0

µ
(
Gi ∩ T−1(Gj)

)
ln
µ
(
Gi ∩ T−1(Gj)

)
µ(Gi)

= H(G2)−H(G),

and we are done.
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2.4.2 Proof of Proposition 2.4

Here we prove the formula for the number of allowed ordinal patterns for Bernoulli

shifts and we start from an auxiliary statement.

Lemma 2.6. For ψn(j) defined by (2.23) for n, j ∈ N with n > 1, it holds

lim
d→∞

1

d+ 1

d∑
j=1

ψn(j)

nj
= 1.

Proof. Recall that the Möbius function is defined for i ∈ N as follows [NB99, Appendix 2a]

Möb(i) =


1, i = 1,

0, i is not square-free (is divisible by a square of an integer),

1, i is square-free and has an even number of prime factors,

−1, i is square-free and has an odd number of prime factors.

It is easily seen that for all n, j ∈ N with n > 1 it holds

nj ≥ ψn(j) =
∑
r|j

Möb

(
j

r

)
nr ≥ nj −

∑
r|j,r<j

(−1)nr ≥ nj −
bj/2c∑
r=1

nr.

This implies that

1 ≥ ψn(j)

nj
≥ 1−

j−1∑
r=b(j+1)/2c

1

nr
,

and hence for all d ∈ N it holds

d

d+ 1
≥ 1

d+ 1

d∑
j=1

ψn(j)

nj
≥ d

d+ 1
− 1

d+ 1

d∑
j=1

j−1∑
r=b(j+1)/2c

1

nr
.

Finally, from the obvious inequality

d∑
j=1

j−1∑
r=b(j+1)/2c

1

nr
≤

d∑
j=1

j

nj

and from the fact that for all n > 1 it holds

lim
d→∞

1

d+ 1

d∑
j=1

j

nj
= 0

we conclude that

1 = lim
d→∞

d

d+ 1
≥ lim

d→∞

1

d+ 1

d∑
j=1

ψn(j)

nj
≥ lim

d→∞

d

d+ 1
+ 0 = 1.

This completes the proof.

Now we come to the proof of Proposition 2.4.
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Proof. Let us first prove that representation (2.24) of the number of allowed patterns

holds. Under assumptions of the present proposition holds equality (2.22):

AllowX
mB

(σ, d) =
l+1∑
k=2

k−2∑
i=0

(−1)i
(
d+ 1

i

)(k − i− 2)(k − i)d−1 +
d∑
j=1

(k − i)d−jψk−i(j)

.
For fixed d, given bi = (−1)i

(
d+1
i

)
and cn =

(
(n− 2)nd−1 +

d∑
j=1

nd−jψn(j)

)
, we have

AllowX
mB

(σ, d) =
l+1∑
k=2

k−2∑
i=0

bick−i

= (b0c2) + (b0c3 + b1c2) + . . .+ (b0cl+1 + b1cl + . . .+ bl−1c2)

= c2(b0 + b1 + . . .+ bl−1) + c3(b0 + b1 + . . .+ bl−2) + . . .+ cl+1b0

=
l+1∑
k=2

ck

l+1−k∑
i=0

bi

=

l+1∑
k=2

(k − 2)kd−1 +

d∑
j=1

kd−jψk(j)

 l+1−k∑
i=0

(−1)i
(
d+ 1

i

)
.

One can easily show by induction that for all n ∈ N it holds

n∑
i=0

(−1)i
(
d+ 1

i

)
= (−1)n

(
d

n

)
.

Therefore we obtain

AllowX
mB

(σ, d) =
l+1∑
k=2

(−1)l+1−k
(

d

l + 1− k

)(k − 2)kd−1 +
d∑
j=1

kd−jψk(j)

.
This finishes the first part of the proof. It remains to show that for all l ∈ N it holds

lim
d→∞

AllowX
mB

(σ, d)

(d+ 1)(l + 1)d
= 1.

It follows immediately that

AllowX
mB

(σ, d)

(d+ 1)(l + 1)d
=

l+1∑
k=2

(−1)l+1−k
(

d

l + 1− k

)
(k − 2)kd−1

(d+ 1)(l + 1)d

+
l+1∑
k=2

(−1)l+1−k
(

d

l + 1− k

) d∑
j=1

kd−jψk(j)

(d+ 1)(l + 1)d
.

Now observe that the following limits exists.

1. For all k, l ∈ N with k ≤ l it holds

lim
d→∞

(−1)l+1−k
(

d

l + 1− k

)
(k − 2)kd−1

(d+ 1)(l + 1)d
= lim

d→∞
(−1)l+1−kdl−k

(
k

l + 1

)d
= 0.
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2. For all l ∈ N with k = l + 1 it holds

lim
d→∞

(−1)l+1−k
(

d

l + 1− k

)
(k − 2)kd−1

(d+ 1)(l + 1)d
= lim

d→∞

(
1

d+ 1

)
= 0.

3. As one can easily see for all k, j ∈ N it holds |ψk(j)| ≤ kj , therefore for all k, l ∈ N
with k ≤ l it holds

lim
d→∞

(
d

l + 1− k

) d∑
j=1

kd−jψk(j)

(d+ 1)(l + 1)d
≤ lim

d→∞

dl+1−k

(d+ 1)(l + 1)d

d∑
j=1

kd

= lim
d→∞

dl+1−k
(

k

l + 1

)d
= 0.

4. For all l ∈ N and k = l + 1 by applying Lemma 2.6 we obtain

lim
d→∞

(−1)l+1−k
(

d

l + 1− k

) d∑
j=1

kd−jψk(j)

(d+ 1)(l + 1)d
= lim

d→∞

1

d+ 1

d∑
j=1

ψl+1(j)

(l + 1)j
= 1.

Summarizing these four statements we obtain

1 =
l+1∑
k=2

lim
d→∞

(−1)l+1−k
(

d

l + 1− k

)
(k − 2)kd−1

(d+ 1)(l + 1)d

+
l+1∑
k=2

lim
d→∞

(−1)l+1−k
(

d

l + 1− k

) d∑
j=1

kd−jψk(j)

(d+ 1)(l + 1)d

= lim
d→∞

l+1∑
k=2

(−1)l+1−k
(

d

l + 1− k

) (k − 2)kd−1

(d+ 1)(l + 1)d
+

d∑
j=1

kd−jψk(j)

(d+ 1)(l + 1)d


= lim

d→∞

AllowX
mB

(σ, d)

(d+ 1)(l + 1)d
,

which finishes the proof.

2.4.3 Proof of Proposition 2.5

Here we prove that for a lexicographic-like X the topological permutation entropy

lim
d→∞

hX0 (σ, d) as well as the topological sorting entropy lim
d→∞

hX0,4(σ, d) of Bernoulli shifts

over (l + 1) symbols are given by ln(l + 1) for all l ∈ N.

Proof. Let us first show the equality for the topological permutation entropy. It holds

lim
d→∞

hX0 (σ, d) = lim
d→∞

1

d
ln
(
AllowX

mB
(σ, d)

)
= lim

d→∞

1

d
ln

(
AllowX

mB
(σ, d)

(d+ 1)(l + 1)d
(d+ 1)(l + 1)d

)

= lim
d→∞

1

d

(
ln

AllowX
mB

(σ, d)

(d+ 1)(l + 1)d
+ ln(d+ 1) + d ln(l + 1)

)

= lim
d→∞

1

d
ln

AllowX
mB

(σ, d)

(d+ 1)(l + 1)d
+ lim
d→∞

ln(d+ 1)

d
+ lim
d→∞

ln(l + 1) = ln(l + 1).
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The latter equality is a consequence of Lemma 2.4: recall that for a lexicographic-like

X it holds

lim
d→∞

AllowX
mB

(σ, d)

(d+ 1)(l + 1)d
= 1. (2.26)

It remains to show that for lexicographic-like X the topological sorting entropy is given

by ln(l + 1). Indeed, by the definition of topological sorting entropy and (2.26) it holds

lim
d→∞

hX0,4(σ, d) = lim
d→∞

ln
AllowX

mB
(σ, d+ 1)

AllowX
mB

(σ, d)

= lim
d→∞

ln

(
(l + 1)

(d+ 1)(l + 1)d

(d+ 2)(l + 1)d+1

AllowX
mB

(σ, d+ 1)

AllowX
mB

(σ, d)

)

= ln(l + 1) + lim
d→∞

(
ln

AllowX
mB

(σ, d+ 1)

(d+ 2)(l + 1)d+1
− ln

AllowX
mB

(σ, d)

(d+ 1)(l + 1)d

)
= ln(l + 1).
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Chapter 3

Conditional entropy of ordinal
patterns

In this chapter we introduce the conditional entropy of ordinal patterns.

Definition 3.1. Let
(
Ω,B(Ω), µ, T

)
be a measure-preserving dynamical system. For

a real-valued observable X = (X1, X2, . . . , XN ) we define the conditional entropy of

ordinal patterns of order d ∈ N as

hXµ,cond(T, d) = H(PX(d)2)−H(PX(d)). (3.1)

Conditional entropy of ordinal patterns can be used as a measure of time series

complexity. It has some nice properties and, as we demonstrate, it often provides a much

better practical estimation of the KS entropy than the permutation entropy. For brevity,

we refer to hXµ,cond(T, d) as the “conditional entropy of order d” when no confusion can

arise.

This chapter is organized as follows. We start from clarifying the physical meaning

of conditional entropy and provide an example motivating the discussion of the condi-

tional entropy in Section 3.1. In Section 3.2 we consider the interrelation between the

conditional entropy of ordinal patterns, the permutation entropy and the sorting entropy.

Section 3.3 is devoted to the relationship between the conditional entropy of ordinal

patterns and the KS entropy. In particular, we show that in some cases conditional

entropy approaches the KS entropy faster than the permutation entropy as order d

tends to infinity (Theorem 3.4); that the conditional entropy for finite d coincides with

the KS entropy for systems with periodic dynamics (Theorem 3.6) and for Markov shifts

over two symbols (Theorem 3.10). In Section 3.4 we discuss properties of the empirical

conditional entropy, namely robustness with respect to noise and sensitivity to the size

of the sample. In Section 3.5 we summarize the results and discuss some open questions.

Finally, in Section 3.6 we provide those proofs that are mainly technical.

Some of results presented in this chapter were published in article [UK14].
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3.1 Physical meaning of conditional entropy and a mo-
tivating example: measuring complexity of logistic
maps

Conditional entropy of ordinal patterns represents the first element of the sequence((
H(PX(d)n+1)−H(PX(d)n)

))
n∈N

,

which provides the ordinal representation (2.19) of the KS entropy as both n and d

tend to infinity. To see the physical meaning of the conditional entropy recall (see

Subsection 2.3.2) that the entropies of the ordinal partitions PX(d) and PX(d)2 are

given by

H(PX(d)) = −
∑

π∈ΠNd

µ(Pπ) lnµ(Pπ),

H(PX(d)2) = −
∑

π∈ΠNd

∑
ξ∈ΠNd

µ
(
Pπ ∩ T−1(Pξ)

)
lnµ

(
Pπ ∩ T−1(Pξ)

)
,

where ΠN
d = {π = (π1, π2, . . . , πN ) | π1, π2, . . . , πN ∈ Πd} is the set of all N -dimensional

ordinal patterns. Then we can rewrite the conditional entropy (3.1) as

hXµ,cond(T, d) = −
∑

π∈ΠNd

∑
ξ∈ΠNd

µ
(
Pπ ∩ T−1(Pξ)

)
ln
µ
(
Pπ ∩ T−1(Pξ)

)
µ(Pπ)

(3.2)

(with 0/0 := 0 and 0 ln 0 := 0), cf. with representation (2.17) of the permutation entropy.

Let ω be a point from Pπ ∩T−1(Pξ) for some Pπ, Pξ ∈ PX(d) with π = (π1, π2, . . . , πN )

and ξ = (ξ1, ξ2, . . . , ξN ). Then we say that in ω the ordinal pattern ξ is a successor of

the ordinal pattern π. The conditional entropy characterizes the diversity of successors

of given ordinal patterns π, whereas the permutation entropy characterizes the diversity

of ordinal patterns π themselves (see Subsection 2.3.2).

Example 3.1. Consider the family of logistic maps fr : [0, 1] ←↩ defined by fr(ω) =

rω(1 − ω) for r ∈ [3.5, 4] (we have already mentioned this family in Example 1.1).

The complexity of the dynamical system
(
[0, 1],B

(
[0, 1]

)
, fr, µr

)
, where µr is the SRB

measure, is measured by the KS entropy hµr(fr). For almost all r ∈ [3.5, 4] by Pesin’s

formula it holds hµr(fr) = max{LE(fr), 0} (see Subsection 2.1.4.3 and Remark after

the example for details). Since the Lyapunov exponent for the logistic maps can

be estimated rather accurately [Spr03], this family provides a convenient object for

comparing practical measures of complexity with the KS entropy.

For the logistic maps the permutation entropy of order d converges to the KS entropy

as d tends to infinity [BKP02]. However, Figure 3.1 shows that the permutation entropy

of order d = 9 is relatively far from the Lyapunov exponent in comparison with the

conditional entropy of the same order (values of both entropies are numerically estimated
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from orbits of length L = 4 · 106 of a “random point” in [0, 1]). For other values of d

the behavior of entropies is rather similar.

3.5 3.6 3.7 3.8 3.9 4

−0.2

0

0.2

0.4

0.6

0.8

 r 

 

 

cond. entropy

perm. entropy

Lyap. exponent

Figure 3.1: Empirical conditional entropy and permutation entropy in comparison with
the Lyapunov exponent for logistic maps

Throughout this chapter we will return to the Example 3.1. Some general theoretical

underpinnings for the fact that the conditional entropy estimates the KS entropy better

than the permutation entropy are provided in Subsection 3.3.1.

Remark. For the family of logistic maps it has been shown that for almost all r ∈ [1, 4]

there exists the SRB measure µr, and the map fr belongs to one of following types

[Thu01, Lyu12] (see also [MN00, Lyu02] for original results):

(i) Regular maps providing relatively simple dynamics: Lebesgue-almost all orbits

are attracted by a periodic cycle of Lebesgue measure zero. The invariant SRB

measure for fr is supported on this periodic cycle [MN00]. The Lyapunov exponent

LE(fr) is non-positive for regular maps and the KS entropy is equal to 0, thus it

holds hµr(fr) = 0 ≥ LE(fr).

(ii) Stochastic maps with more complex behavior. The invariant SRB measure for fr

is supported on a set of positive Lebesgue measure. In this case the Lyapunov

exponent is positive, then by Theorem 2.2 the KS entropy coincides with the

Lyapunov exponent: hµr(fr) = LE(fr) > 0.

In the Example 3.1 we consider only r ∈ [3.5, 4] since for almost all r ∈ [1, 3.5] the map

fr is regular and represents rather simple behavior [Spr03], which is out of interest.
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3.2 Interrelationship between conditional entropy of ordi-
nal patterns, permutation and sorting entropy

In this section we consider the relationship between the conditional entropy of order d,

the permutation entropy hXµ (T, d) and the sorting entropy hXµ,4(T, d).

Lemma 3.1. Let (Ω,B(Ω), µ, T ) be a measure-preserving dynamical system. Then for

all d ∈ N it holds

hXµ,cond(T, d) ≤ hXµ,4(T, d). (3.3)

Moreover, if for some d0 ∈ N it holds hXµ (T, d0 + 1) ≤ hXµ (T, d0), then we get

hXµ,cond(T, d0) ≤ hXµ,4(T, d0) ≤ hXµ (T, d0). (3.4)

Proof. It can easily be shown (for details see [KS10]) that for all d ∈ N it holds

H(PX(d)2) ≤ H(PX(d+ 1)),

which implies

hXµ,cond(T, d) = H(PX(d)2)−H(PX(d)) ≤ H(PX(d+ 1))−H(PX(d)) = hXµ,4(T, d),

and the proof of (3.3) is complete.

If hXµ (T, d0 + 1) ≤ hXµ (T, d0) for some d0 ∈ N then we have

d0H(PX(d0 + 1)) ≤ (d0 + 1)H(PX(d0)).

Consequently, it holds

d0

(
H(PX(d0 + 1))−H(PX(d0))

)
≤ H(PX(d0)),

which establishes (3.4).

By Lemma 3.1 we have that the conditional entropy under certain assumption is not

greater than the permutation entropy and that in the general case the conditional entropy

is not greater than the sorting entropy. Moreover, one can show that in the strong-mixing

case the conditional entropy and the sorting entropy asymptotically approach each other.

According to [UUK13], if Ω is an interval in R and T is strong-mixing then it holds

lim
d→∞

(
H(P id(d+ 1))−H(P id(d)2)

)
= 0.

Together with Lemma 3.1 this implies the following statement.

Corollary 3.2. Let (Ω,B(Ω), µ, T ) be a measure-preserving dynamical system, where

Ω is an interval in R and T is strong-mixing. Then

lim
d→∞

(
hid
µ,4(T, d)− hid

µ,cond(T, d)
)

= 0.
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3.3 Conditional entropy of ordinal patterns and Kolmo-
gorov-Sinai entropy

In this section we discuss the relationship between the conditional entropy of ordinal

patterns and the KS entropy. We demonstrate that under certain assumptions the

conditional entropy of ordinal patterns estimates the KS entropy better than the

permutation entropy (Subsection 3.3.1). Besides, we prove that for some dynamical

systems the conditional entropy of ordinal patterns for a finite order d coincides with

the KS entropy (Subsections 3.3.2 and 3.3.3), while the permutation entropy only

asymptotically approaches the KS entropy. Finally we summarize some results related

to the properties of ordinal partitions for unimodal maps (Subsection 3.3.4).

3.3.1 Relationship in the general case

We start from a direct consequence of representation (2.19).

Proposition 3.3. Let
(
Ω,B(Ω), µ, T

)
be a measure-preserving dynamical system, X be

a random vector on
(
Ω,B(Ω), µ

)
such that (2.19) is satisfied. Then the equality

hµ(T ) = lim
d→∞

hXµ,cond(T, d)

holds if and only if for every n ∈ N it holds

lim
d→∞

hXµ,cond(T, d) = lim
d→∞

H(PX(d)n+1)−H(PX(d)n).

Though being intriguing, this condition does not seem to provide a deep insight

into the problem. Below we formulate another result linking conditional entropy and

KS entropy, which appears to be more useful. Statements (i) and (ii) of the following

theorem imply that under the given assumptions the conditional entropy of ordinal

patterns bounds the KS entropy better than the sorting entropy and the permutation

entropy, respectively.

Theorem 3.4. Let
(
Ω,B(Ω), µ, T

)
be a measure-preserving dynamical system, X be a

random vector on
(
Ω,B(Ω), µ

)
such that (2.19) is satisfied. Then it holds

(i) hµ(T ) ≤ lim
d→∞

hXµ,cond(T, d) ≤ lim
d→∞

hXµ,4(T, d).

(ii) Moreover, if for some d0 ∈ N it holds

hXµ (T, d) ≥ hXµ (T, d+ 1) for all d ≥ d0, (3.5)

or the limit of the sorting entropy

lim
d→∞

hXµ,4(T, d) exists, (3.6)

then it holds:

hµ(T ) ≤ lim
d→∞

hXµ,cond(T, d) ≤ lim
d→∞

hXµ,4(T, d) ≤ lim
d→∞

hXµ (T, d). (3.7)
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Proof. For any given partition P, the difference H(Pn+1)−H(Pn) decreases monoton-

ically with increasing n [CT06, Section 4.2]. In particular, for the ordinal partition

PX(d) it holds

hµ(T,PX(d)) = lim
n→∞

(
H(PX(d)n+1)−H(PX(d)n)

)
≤ H(PX(d)2)−H(PX(d))

= hXµ,cond(T, d)

and consequently

lim
d→∞

hµ(T,PX(d)) ≤ lim
d→∞

hXµ,cond(T, d).

The last inequality together with (3.3) implies (i).

Statement (ii) will be proved once we prove the inequality below:

lim
d→∞

hXµ,4(T, d) ≤ lim
d→∞

hXµ (T, d). (3.8)

If (3.5) is satisfied, we get (3.8) immediately from Lemma 3.1. If (3.6) is satisfied, by

Cesaro’s mean theorem [CT06, Theorem 4.2.3] it follows that

lim
d→∞

1

d
H
(
PX(d)

)
= lim

d→∞

(
H
(
PX(d+ 1)

)
−H

(
PX(d)

))
,

which is a particular case of (3.8), and we are done.

Note that both statements of Theorem 3.4 remain correct if one replaces the upper

limits by the lower limits.

As a consequence of Theorem 3.4 we get the following result.

Corollary 3.5. If assumption (2.19) and either of assumptions (3.5) or (3.6) are

satisfied, then hµ(T ) = lim
d→∞

hXµ (T, d) yields

hµ(T ) = lim
d→∞

hXµ,cond(T, d).

This sheds some light on the behavior of the conditional entropy of the logistic maps,

described in Section 3.1 (recall that due to [BKP02] the permutation entropy of the

logistic maps converges to the KS entropy for d tending to infinity). Nevertheless, it is

not clear whether the statements (3.5) or (3.6) hold, neither in the general case nor for

the logistic maps. Note that a sufficient condition for (3.6) is the monotone decrease of

the sorting entropy hXµ,4(T, d) with increasing d. However, the sorting entropy and the

permutation entropy do not necessarily decrease for all d, which is illustrated by the

following example.

Example 3.2. Consider the golden mean dynamical system
(

[0, 1],B
(
[0, 1]

)
, µgm, Tgm

)
.

The values of permutation, sorting and conditional entropies for this dynamical system1

1As we have seen in Example 2.7, p. 35, for the golden mean dynamical system the ordinal partition
P id(d) has a quite simple structure. This allows to compute permutation, sorting and conditional
entropies theoretically, in contrast to Example 3.1, where we have to estimate them.
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are shown in Figure 3.2. Note that neither sorting nor permutation entropy is monoton-

ically decreasing with increasing d. (The interesting fact that for all d = 1, 2, . . . , 9 the

conditional entropy coincides with the KS entropy is explained in Subsection 3.3.3.)
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Figure 3.2: Conditional entropy, permutation entropy and sorting entropy in comparison
with the KS entropy of the golden mean map

The questions when hXµ,4(T, d) or hXµ (T, d) decrease starting from some d0 ∈ N is

still open. For instance, for the logistic map with r = 4 estimated values of permutation

entropy and sorting entropy decrease starting from d = 7 and d = 4, respectively (see

Figure 3.3). However, at this point we do not have theoretical results in this direction,

see Subsection 3.3.4 for some discussion.
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Figure 3.3: Empirical conditional entropy, permutation entropy and sorting entropy in
comparison with the KS entropy of the logistic map with r = 4

3.3.2 Periodic case

Here we relate the conditional entropy to the KS entropy in the case of periodic dynamics.

By a periodic dynamical system we mean a system such that the set of periodic points

55



has measure 1. Though it is well-known that the KS entropy of a periodic dynamical

system is equal to zero [KAH+06], the permutation entropy of order d can be arbitrarily

large in this case (see [UK14, Section 3.5] for a discussion and examples) and thus does

not provide a reliable estimate for the KS entropy. In Theorem 3.6 we show that the

conditional entropy of a periodic dynamical system is equal to the KS entropy starting

from some finite order d, which advantages the conditional entropy over the permutation

entropy.

Theorem 3.6. Let
(
Ω,B(Ω), µ, T

)
be a measure-preserving dynamical system. Suppose

that the set of periodic points of Ω with period not exceeding k ∈ N has measure 1, then

for all d ∈ N with d ≥ k it holds

hXµ,cond(T, d) = 0 = hµ(T ). (3.9)

Proof. One has to prove only the equality on the left-hand side of (3.9); for this it is

sufficient to show that h
Xj
µ,cond(T, d) = 0 for every component Xj of the random vector X,

so consider X = Xj for j ∈ {1, 2, . . . , N}. By assumption there exists a set Ω0 ⊂ B(Ω)

such that µ(Ω0) = 1 and for all ω ∈ Ω0 it holds T l(ω) = ω for some l ∈ {1, 2, . . . , k}. Let

us fix an order d ≥ k and take ordinal patterns π, ξ ∈ Πd such that µ(Pπ ∩T−1(Pξ)) > 0.

We show now that it holds

µ(Pπ ∩ T−1(Pξ)) = µ(Pπ),

which together with (3.2) provides (3.9). Consider some ω1 ∈ Ω0 ∩Pπ ∩ T−1(Pξ), which

is periodic with a (minimal) period l ∈ {1, 2, . . . , k}, that is X(ω1) = X(T l(ω1)). By

Definition 2.12 of an ordinal pattern, π = (. . . , d, d − l, . . .). All points ω ∈ Ω0 ∩ Pπ
have the same period; indeed, for any point with period l2 ≤ k such that l2 6= l, the

ordinal pattern is (. . . , d, d − l2, . . .) 6= π. Therefore, for all ω ∈ Ω0 ∩ Pπ it holds

X(T (d+1)(ω)) = X(T (d+1−l)(ω)) and the ordinal pattern for T (ω) is obtained from the

ordinal pattern π in a well-defined way [KSE07]: by deleting the entry d, adding 1 to all

remaining entries and inserting the entry 0 to the left of the entry l. Since T (ω1) ∈ Pξ,
for every other ω ∈ Ω0 ∩ Pπ it also holds T (ω) ∈ Pξ. Hence for all π, ξ ∈ Πd with

µ(Pπ ∩ T−1(Pξ)) > 0 it holds

µ(Pπ ∩ T−1(Pξ)) = µ(Ω0 ∩ Pπ ∩ T−1(Pξ)) = µ(Ω0 ∩ Pπ) = µ(Pπ),

which yields (3.9) and we are done.

Example 3.3. In order to illustrate the behavior of permutation and conditional entropies

of periodic dynamical systems, consider the rotation maps gα(ω) = (ω + α) mod 1 on

the interval [0, 1] with the Lebesgue measure λ. Let α be rational, then gα(ω) provides

a periodic behavior and it holds hid
λ (gα) = 0. Figure 3.4 illustrates conditional and
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permutation entropy of the rotation maps for d = 4 and d = 8 for α varying with

step 0.001. For both values of d the conditional entropy is more close to zero than

the permutation entropy since periodic orbits provide various ordinal patterns, but

most of these patterns have only one successor. Note that for those values of α forcing

periods shorter than d (for instance for α = 0.25 all ω ∈ [0, 1] have period 4) it holds

hid
λ,cond(gα, d) = 0 = hλ(gα) as provided by Theorem 3.6.
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Figure 3.4: Conditional and permutation entropy of rotation maps for d = 4 (a) and d = 8 (b)

Since for a logistic map fr with regular behavior the fr-invariant SRB measure

µr is supported on a finite periodic cycle (see Section 3.1), we have immediately the

following result, giving a partial explanation for the behavior of the conditional entropy

in Figure 3.1.

Corollary 3.7. For a measure-preserving dynamical system
(

[0, 1],B
(
[0, 1]

)
, µr, fr

)
,

where fr = rω(1− ω) is a regular logistic map and µr is the fr-invariant SRB measure,

let k be length of the attractive periodic cycle supporting the measure µr. Then for all

d ∈ N with d ≥ k it holds

hid
µr,cond(fr, d) = 0 = hµr(fr).

3.3.3 Markov property of ordinal partition

Recall (see Subsection 2.1.4) that for the entropy rate of the partition M with the

Markov property it holds

hµ(T,M) = H(M2)−H(M).

Moreover by Theorem 2.1 if a partition M is both generating and has the Markov

property, then it holds

hµ(T ) = H(M2)−H(M).

From the last two statements follows a sufficient condition for the coincidence between

the conditional entropy and the KS entropy.
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Lemma 3.8. Let (Ω,B(Ω), µ, T ) be a measure-preserving dynamical system, X be an

R-valued random vector on
(
Ω,B(Ω), µ

)
such that (2.19) is satisfied. Then the following

two statements hold:

(i) If PX(d) has the Markov property for all d ≥ d0, then

hµ(T ) = lim
d→∞

hXµ,cond(T, d).

(ii) If PX(d) is generating and has the Markov property for some d ∈ N then

hµ(T ) = hXµ,cond(T, d). (3.10)

In general, it is complicated to verify whether ordinal partitions are generating or

have the Markov property; however below this is done for Markov shifts over two symbols.

In Subsection 3.6.2 we prove the following statement.

Lemma 3.9. Let
(
{0, 1}N,BΠ({0, 1}N),m, σ

)
be an ergodic Markov shift over two

symbols. If the random variable X is lexicographic-like (see Definition 2.15, p. 35), then

the ordinal partition PX(d) is generating and has the Markov property for all d ∈ N.

Note that for any alphabet A a lexicographic-like X is injective for almost all s ∈ AN,

thus X provides the ordinal representation (2.19) of the KS entropy (see [Kel12]). Hence

as a direct consequence of Lemmas 3.8 and 3.9 we obtain the following.

Theorem 3.10. Under the assumptions of Lemma 3.9 for all d ∈ N it holds

hm(σ) = hXm,cond(σ, d).

Example 3.4. Figure 3.5 illustrates Theorem 3.10 for the Bernoulli shift over two symbols

with mB(C0) = 0.663, mB(C1) = 0.337. For all d = 1, 2, . . . , 9 the empirical conditional

entropy computed from an orbit of length L = 3.6 · 106 nearly coincides with the

theoretical KS entropy hmB (σ). Meanwhile, the empirical permutation entropy differs

from the KS entropy significantly.
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Figure 3.5: Empirical conditional entropy and permutation entropy in comparison with
the KS entropy of the Bernoulli shift over two symbols
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The result established in Theorem 3.10 naturally extends to the class of maps that

are order-isomorphic to an ergodic Markov shift over two symbols (see Subsection 2.3.5

for details). For instance, the golden mean Markov shift and the golden mean dynamical

system are order-isomorphic (see Example 2.9), which explains the coincidence of the

conditional entropy and the KS entropy in Figure 3.2. Note that the logistic map for

r = 4 is isomorphic, but not order-isomorphic to an ergodic Markov shift over two

symbols [Ami10, Subsection 3.4.1]. Therefore in the case of the logistic map with r = 4

the conditional entropy for finite d does not coincide with the KS entropy (see Figure 3.3).

Remark. We consider in this thesis one-sided (i.e. non-invertible) Markov shifts, however

using the same reasoning, one can show that Corollary 3.10 also holds for two-sided

Markov shifts over two symbols (with the state space {0, 1}Z instead of {0, 1}N). In

particular, this provides that given Ω = [0, 1]× [0, 1] with the two-dimensional Lebesgue

measure λ2 and the baker’s map Tbaker defined by

Tbaker(ω, υ) =

{
(2ω, υ2 ), 0 ≤ ω ≤ 1

2 ,

(2ω − 1, υ+1
2 ), 1

2 < ω ≤ 1,

the KS entropy and the conditional entropy of
(
Ω,B(Ω), λ2, Tbaker

)
coincide.

Remark. Note that Theorem 3.10 can be reformulated in a statistical way: the order

statistic from a Markov chain with two states forms a Markov chain. This generalizes

the result for binary IID process obtained in [Nag82].

Theorem 3.10 cannot be extended to Markov shifts over a general alphabet since for

them the conditions of Lemma 3.8 are not satisfied. (This is similar to the fact that the order

statistic does not form a Markov chain for IID processes with more than two states [Nag82].)

Example 3.5. Figure 3.6 represents estimated values of the empirical conditional and

permutation entropies of various orders d for the Bernoulli shifts over alphabets consisting

of three and four symbols. Although these shifts have the same KS entropy as the shift

in Figure 3.5, their conditional entropies differ significantly.

In order to explain the result in Example 3.5, we show in Proposition 3.11 that for

the Bernoulli shifts over more than two symbols the ordinal partition PX(d) does not

refine the known generating partition C = {C0, C1, . . . , Cl}, consisting of all cylinders

Ca. Moreover, for the shifts over more than two symbols, PX(d) does not necessarily

have the Markov property (Proposition 3.12).

Proposition 3.11. Let
(
AN,BΠ(AN),mB, σ

)
be a Bernoulli shift over A = {0, 1, . . . , l}

with l ≥ 2 and mB(Ca) > 0 for all a ∈ A. Then the partition PX(d) does not refine

C = {C0, C1, . . . , Cl}.
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Figure 3.6: Empirical conditional entropy and permutation entropy in comparison with
the KS entropy of Bernoulli shifts over three and four symbols

Proof. Consider the element of the ordinal partition corresponding to the “increasing”

ordinal pattern:

P(0,1,...,d) =
{
s ∈ AN | X(s) < X(σs) < . . . < X(σds)

}
.

For all a0, a1, . . . , ad+1 ∈ A with a0 ≤ a1 ≤ a2 ≤ . . . ≤ ad < ad+1 it holds

Ca0a1...ad+1
⊂ P(0,1,...,d).

Since the Bernoulli measure of the set Ca0a1...ad+1
is strictly positive, for all a0 ∈ A \ {l}

it holds

mB(Ca0 ∩ P(0,1,...,d)) ≥ mB(Ca0a1...ad+1
∩ P(0,1,...,d)) > 0.

Therefore, for l ≥ 2 for all d ∈ N, the set P(0,1,...,d) ∈ PX(d) is not a subset of any

cylinder set.

Proposition 3.12. Given
(
AN,BΠ(AN),mB, σ

)
a Bernoulli shift over A = {0, 1, . . . , l}

with l ∈ N and mB(Ci) = 1
l+1 for all i ∈ A. Then the ordinal partition PX(d) with

d ∈ N and X being lexicographic-like, has the Markov property if and only if l = 1, that

is for the two-symbol alphabet.

The proof is provided in Subsection 3.6.2.

3.3.4 Ordinal partitions for unimodal maps

In this subsection we return to Example 3.1 and discuss the striking similarity between

the conditional entropy of finite order d and the KS entropy in case of logistic maps.

We would like to emphasize that this is not a single instance: consider the families of

tent maps T̂α and of skew tent maps
8

Tα defined on the interval [0, 1] as

T̂α(ω) =

{
αω, 0 ≤ ω ≤ 1

2 ,

α(1− ω), 1
2 < ω ≤ 1,

for α ∈ (1, 2],

8

Tα(ω) =

{
ω
α , 0 ≤ ω ≤ α,
1−ω
1−α , α < ω ≤ 1,

for α ∈ (0, 1).
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In these cases the estimated conditional entropy of ordinal patterns is also rather similar

to the KS entropy (see Figure 3.7).
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Figure 3.7: Empirical conditional entropy and permutation entropy for d = 9 in
comparison with the Lyapunov exponent of tent maps (a) and with the KS entropy of
skew tent maps (b)

The families of logistic, tent and skew tent maps belong to a broader class of unimodal

maps. They are defined on an interval I and map it into itself; they have a single critical

point c ∈ I, are monotone increasing on the left of c and decreasing on the right of c.

Figure 3.8 shows that the conditional entropy seemingly converges to the KS entropy

with increasing order d for two more examples of unimodal maps.
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Figure 3.8: Empirical conditional entropy and permutation entropy for various order d
in comparison with the KS entropy of the cusp map T (ω) = 1 − 2

√
ω (a) and of the

sine map T (ω) = sin(πω) (b)

At this point we cannot provide a theoretical explanation for this behavior of the

conditional entropy neither for logistic maps nor for the whole class of unimodal maps.

By Lemma 3.8, the conditional entropy converges to the KS entropy if the ordinal
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partition P id(d) has the Markov property for all d ≥ d0 for some d0 ∈ N. Below we

check whether this is the case for logistic maps and find out that P id(d) does not have

the Markov property, at least for relatively small d.

Consider the dynamical system
(

[0, 1],B
(
[0, 1]

)
, µr, fr

)
, where fr(ω) = rω(1− ω) is

a logistic map and µr is the fr-invariant SRB measure. By Definition 2.5 if P id(d) has

the Markov property then for Pi0 , Pi1 , . . . , Pin ∈ P id(d) all sets in the form

Pi0i1...in = Pi0 ∩ f−1
r (Pi1) ∩ . . . ∩ f−nr (Pin)

satisfy the equality:

µr(Pi0i1...in) = µr(Pi0)
n−1∏
k=0

µr(Pikik+1
)

µr(Pik)
. (3.11)

Let us say that a set Pi0i1...in is Markov if it satisfies (3.11). To check the Markov

property for the partition P id(d), one has to verify whether all sets Pi0i1...in are Markov

for all n ∈ N. Since the analytical representation for the measure µr is in general

unknown, we carry out the following numerical experiment to provide at least an

approximate solution to this problem.

Experiment 3.1: For what r ∈ [3.5, 4] all sets Pi0i1...in are Markov at least for small

n ∈ N?

Objects: orbits with length L = 106 of logistic maps fr for randomly chosen points

ω0 ∈ [0, 1], r ∈ {3.5000, 3.5005, . . . , 4.0000}.

Technique. Recall (see Subsection 2.1.1) that the SRB measure of a set B can be

estimated as a relative frequency of visiting B by orbits of Lebesgue-almost every ω0:

µ̃r(B,L) =
1

L
#
{
i ∈ {0, 1, . . . , L− 1} | f ir(ω0) ∈ B

}
,

with lim
L→∞

µ̃r(B,L) = µr(B). We deduce from (3.11) that for every Markov set Pi0i1...in

and for every ε > 0 there exists L ∈ N such that it holds∣∣∣∣∣µ̃r(Pi0i1...in , L)− µ̃r(Pi0 , L)

n−1∏
k=0

µ̃r(Pikik+1
, L)

µ̃r(Pik , L)

∣∣∣∣∣ < ε µ̃r(Pi0i1...in , L). (3.12)

There is no method for choosing such L, so we can only take it rather large and say

that if a set Pi0i1...in satisfies (3.12) then it is nearly Markov, and otherwise – that it is

nearly non-Markov (nnM). Existence of nnM sets indicates that the ordinal partition

P id(d) does not have the Markov property for fr.

Here we check whether equality (3.12) holds for all Pi0i1...in ∈ P id(d)n for given r, d

and n. To this end we estimate measures in (3.12) for an orbit of a randomly chosen

initial point, and calculate the total measure S(r, d, n) of nnM sets for ε = 0.01:

S(r, d, n) =
∑

nnM Pi0i1...in∈P id(d)n

µ̃r(Pi0i1...in , L).
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If S(r, d, n) > 0 then the partition P id(d) most likely does not have the Markov property

for fr. Note that S(r, d, n) = 0 for a fixed n does not imply that P id(d) has the Markov

property since one needs to check all n ≥ 2.

Results for various r, n = 3 and d = 1, 2 are presented in Figure 3.9 (we do not

consider larger n and d due to the high computational cost). Additionally we present

the results for r = 3.58, 4, n = 2 and d = 1, 2, . . . , 6 in Figure 3.10.
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Figure 3.9: Total measure S(r, d, n) of nnM sets for n = 3, d = 1, 2
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Figure 3.10: Total measure S(r, d, n) of nnM sets for n = 2, r = 3.58 and r = 4

Discussion and conclusions. Figure 3.9 shows that S(r, d, n) = 0 holds for regular

logistic maps (see Section 3.1 for the description of this type of maps), which is out of

interest since this case is described by Corollary 3.7. On the contrary, S(r, d, n) > 0

holds for most of the values of r ∈ [3.5, 4] corresponding to the stochastic behavior of

logistic map with the following two exceptions.

For r ∈ [r0, r1), where r0 ≈ 3.57 is the so-called accumulation point [Spr03], and

r1 ≈ 3.59, all sets of P id(d) are nearly Markov for d = 1, 2. One can rigorously show

that the ordinal partition P id(d) has the Markov property for d = 1, but it is not clear,

whether this remains true for higher d. Some hope in this direction gives the fact that
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for r = 3.58 all sets of P id(d) are nearly Markov for d ≤ 6 and n = 2 (Figure 3.10).

The second exception is the point r = 4. In this case the invariant measure µ4 can

be obtained analytically; though the ordinal partition has the Markov property for

d = 1, 2, already for d = 3 this is not the case. As d increases the ordinal partition

“loses” the Markov property (Figure 3.10).

Therefore the experiment demonstrates that the ordinal partition P id(d) in general

does not have the Markov property for logistic maps, at least for small d. The same

holds for tent and skew tent maps, thus the study of the conditional entropy of unimodal

maps seems to be an interesting subject of further investigation.

3.4 Empirical conditional entropy of ordinal patterns

In this section we focus on practical aspects of the conditional entropy of ordinal patterns.

It can be used for measuring complexity of time series modeled by realization of a

stationary stochastic process. Therefore we define first the conditional entropy of ordinal

patterns for a stochastic process Y on a probability space
(
Ω,B(Ω), µ

)
:

hµ,cond(Y, d) = H(PY(d)2)−H(PY(d)). (3.13)

Consider a realization of a stochastic process
(
y(t)

)
t∈T =

((
Y(t)

)
(ω)
)
t∈T

and the

corresponding sequence of ordinal patterns π(t; y)t∈T′ for T′ = T \ {0, 1, . . . , d − 1}.
Recall that the frequency of occurrence of an ordinal pattern i ∈ ΠN

d of order d among the

first (t−d+1) ordinal patterns of the sequence π(t; y) is given by (see Subsection 2.3.1.4):

ni(t; y) = #
{
r ∈ {d, 1 + d, . . . , t} | π(r; y) = i

}
.

for t ∈ T′. In the same manner we determine the frequency of an ordinal pattern pair

i, j for i, j ∈ ΠN
d :

ni,j(t; y) = #
{
r ∈ {d, 1 + d, . . . , t} | π(r; y) = i,π(r + 1; y) = j

}
for t ∈ T′. The empirical conditional entropy of ordinal patterns of order d ∈ N for y is

given by

ĥcond(t; y, d) =− 1

t− d

((d+1)!)N−1∑
i=0

((d+1)!)N−1∑
j=0

ni,j(t− 1; y) ln
ni,j(t− 1; y)

ni(t− 1; y)
(3.14)

=
1

t− d

((d+1)!)N−1∑
i=0

ni(t− 1; y) lnni(t− 1; y)

− 1

t− d

((d+1)!)N−1∑
i=0

((d+1)!)N−1∑
j=0

ni,j(t− 1; y) lnni,j(t− 1; y).

(cf. with the naive estimator of entropy of ordinal partition (2.20), p. 39).
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As a direct consequence of Birkhoff’s Ergodic Theorem we have that under certain

assumptions the empirical conditional entropy approaches to the conditional entropy.

Namely it holds the following.

Theorem 3.13. Given a realization y of an ergodic stationary stochastic process

Y =
(
Y(t)

)
t∈T with T = {0, 1, . . . , L} on a probability space

(
Ω,B(Ω), µ

)
, for any d ∈ N

it holds almost sure that

lim
L→∞

ĥcond(L; y, d) = hµ,cond(Y, d). (3.15)

In particular, given an ergodic measure-preserving map T on
(
Ω,B(Ω), µ

)
, for any

real-valued observable X : Ω→ RN and for almost all ω ∈ Ω it holds

lim
L→∞

ĥcond

(
L;
(
X
(
ω
)
,X
(
T (ω)

)
, . . . ,X

(
TL(ω)

))
, d
)

= hXµ,cond(T, d). (3.16)

Proof. Statement (3.16) follows from Lemma 2.3, and equality (3.15) follows from the

fact that every ergodic stationary stochastic process can be represented in form (2.14) on

the basis of an observable of some ergodic dynamical system (see Section 2.2, p. 31).

In practice it is problematic to apply the empirical conditional entropy (as well as

the empirical permutation entropy) to data with dimension higher than one (for more

discussion see Subsection 3.4.1). Therefore we consider below only one-dimensional

processes Y = Y . In this case we have

ĥcond(t+ 1; y, d) =
1

t− d+ 1

(d+1)!−1∑
i=0

(
ni(t; y) lnni(t; y)−

(d+1)!−1∑
j=0

ni,j(t; y) lnni,j(t; y)

)
.

3.4.1 Sensitivity to the size of a sample

Since in applications a complete orbit or an infinite realization of a stochastic process is

not accessible, we estimate the conditional entropy by the empirical conditional entropy

ĥcond(L; y, d) for a finite sample length L.

For estimation of the permutation entropy using the naive estimator, Amigó et

al. recommend to take L ≥ 5(d+ 1)! [AZS08]. Empirical conditional entropy is more

sensitive to the size of a sample than empirical permutation entropy since rare ordinal

patterns being successors of frequent ones have considerable impact on the value of

ĥcond(t; y, d). Moreover, to calculate the conditional entropy one takes into account

pairs of successive ordinal patterns. As one can easily check, there are (d+ 1)(d+ 1)!

possible pairs, thus reliable estimation of the conditional entropy requires larger sample

than estimation of the permutation entropy. For this reason we consider Grassberger’s

estimator of conditional entropy:

ĥGcond(t+ 1; y, d) = ĤG

(
PY (d)2

)
− ĤG

(
PY (d)

)
=

1

t− d+ 1

(d+1)!−1∑
i=0

(
ni(t; y)G

(
ni(t; y)

)
−

(d+1)!−1∑
j=0

ni,j(t; y)G
(
ni,j(t; y)

))
.
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Grassberger’s estimator has very small systematic errors unless the number of possible

outcomes (d + 1)(d + 1)! is much larger than L [Gra03]. Therefore, to get a reliable

estimation of the empirical conditional entropy, we propose to take L ∼ (d + 1)(d + 1)!.

The following example shows how sensitive estimators of empirical conditional entropy are

to the size of a sample, in comparison with estimators of permutation and sorting entropies.

Example 3.6. Consider an orbit generated by the 3-adic sawtooth map2 T3 = (3ω)

mod 1. Figure 3.11 illustrates, how the estimated values of empirical conditional,

permutation and sorting entropies of order d = 8 depend on the size of a sample (in

fractions of (d+ 1)(d+ 1)!). The empirical permutation entropy converges to the true

value rather quickly, whereas the empirical sorting entropy and empirical conditional

entropy are far from the true values for relatively short orbits. Implementation of

Grassberger’s estimator for the conditional entropy provides a significant improvement,

however, the estimation of the conditional entropy remains unreliable for a sample

smaller than 1
16(d+ 1)(d+ 1)!.
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Figure 3.11: Empirical conditional, permutation and sorting entropies of order d = 8 for the
3-adic sawtooth map T3 = (3ω) mod 1 for various sizes of the sample (in fractions of 9 · 9!)

Remark. Example 3.6 shows that for a reliable computation of the empirical conditional

entropy for a univariate realization y, one has to take a sample of size L ∼ (d+1)(d+1)!,

which corresponds to the number of all possible pairs of (one-dimensional) ordinal

patterns. Since there are
(
(d + 1)(d + 1)!

)N
N -dimensional ordinal patterns (for a

description of N -dimensional ordinal patterns see Subsubsection 2.3.1.1, p. 33), it is

necessary to take L ∼
(
(d+ 1)(d+ 1)!

)N
to compute the empirical conditional entropy

of order d for an N -dimensional stochastic process. (This provides L ∼ 5832 already for

d = 2, N = 3 and L ∼ 9604 for d = 3, N = 2.) Therefore we consider the empirical

conditional entropy of ordinal patterns only for univariate stochastic processes.

2We choose this map since it has higher entropy than the golden mean map and logistic maps
(hλ(T3) = ln 3 for the Lebesgue measure λ), which makes estimation of entropies for T3 more challenging.
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The estimation of the permutation and the sorting entropy from a finite orbit is

especially problematic when the entropy is large. This fact can be easily seen for the

permutation entropy: indeed, the larger the entropy, the more uniform the distribution of

ordinal patterns is. In turn, this means that a larger number of ordinal patterns influences

the entropy and the size of the sample should be sufficient to estimate frequencies of all

these ordinal patterns. The same reasonings explain problems with the estimation of

the conditional entropy of ordinal patterns. We provide Example 3.7 to illustrate the

problems with measuring large complexity using the empirical conditional entropy.

Example 3.7. Consider a sawtooth map Tβ(ω) = βω mod 1 on the unit interval [0, 1]

for β = 3, 5, . . . , 15. This is a particular case of the beta-transformation, thus it

holds hλ(Tβ) = lnβ for the Lebesgue measure λ [Par60]. Figure 3.12 presents the

empirical conditional entropy of order d = 8 computed from orbits of these maps

for different lengths L. One can see that the length L = (d + 1)(d + 1)! = 9 · 9!

is insufficient for estimating conditional entropy of Tβ with β ≥ 5. The result for

L = 5(d + 1) · (d + 1)! = 45 · 9! is much better; note that taking larger length does

not provide further improvement. As we have already mentioned in Example 3.6,

Grassberger’s estimator provides a much better estimation of conditional entropy.
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Figure 3.12: Empirical conditional entropies of order d = 8 computed for various lengths of
an orbit of the sawtooth map Tβ(ω) = βω mod 1 with various values of β

Remark. From (3.13) it follows that the conditional entropy of order d is bounded from
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above:

hµ,cond(Y, d) ≤ ln(d+ 1) (3.17)

for all d ∈ N and for every stationary stochastic process Y . Due to the upper bound

(3.17), the conditional entropy of order d = 8 does not provide a somehow reliable

estimate of the KS entropy of Tβ for β > 9. Note that the permutation entropy of order

d is also bounded from above and the bound is even lower than for the conditional

entropy, see [KUU14] for details.

3.4.2 Robustness with respect to noise

Real-world data are usually corrupted with some noise. Generally speaking, all ordinal-

patterns-based quantities are rather robust to observational noise since it distorts ordinal

structure less then values. However, the extent of this robustness may differ. Relatively

small observational noise creates some new ordinal patterns, that are not observed in

the noiseless dynamics [AZS08, Ami10]. Since these new patterns are relatively rare,

the empirical permutation entropy is rather robust to noise. By contrast, the empirical

conditional entropy of ordinal patterns is quite sensitive to noise since even rare new

patterns can significantly change the “transition probabilities”
ni,j(t−1;y)
ni(t−1;y) (see (3.14))

of ordinal patterns. Let us consider an example to illustrate the effect of noise on the

permutation, sorting and conditional entropies.

Example 3.8. Consider the noisy logistic stochastic process NL(t; r, σ) for t ∈ T given by

NL(t; r, σ) = f tr + σε(t),

where fr : [0, 1]←↩ is the logistic map with control parameter r ∈ [1, 4], ε is the standard

additive white Gaussian noise (see p. 32) with the level σ > 0. Figure 3.13 illustrates the

increase of empirical entropies computed from a realization of NL(t; 4, σ) for various σ

relative to values of entropies for NL(t; 4, 0). The size of sample L = 4 · 105 is taken.
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Figure 3.13: Relative increase of empirical conditional, permutation and sorting entropies
of order d = 6 for the level σ of observational noise for a noisy logistic stochastic process
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One can see that the empirical permutation entropy is much more robust to noise

than the empirical conditional entropy of ordinal patterns. Note that the estimated value

of the conditional entropy has almost the same sensitivity to noise for both estimators.

So when applying the empirical conditional entropy one has to take in mind that

it is less robust to noise than the permutation entropy. A method for correcting the

overestimation of the conditional entropy caused by noise is of interest.

3.5 Conclusions

Let us briefly summarize the results of this chapter. As we have discussed, the conditional

entropy of ordinal patterns has rather good properties, namely:

1. The conditional entropy for finite order d coincides with the KS entropy for systems

with periodic dynamics (Theorem 3.6) and for Markov shifts over two symbols

(Theorem 3.10). The latter result can be extended to dynamical systems that are

order-isomorphic to Markov shifts over two symbols, such as the golden mean

dynamical system, the dyadic map on the unit interval and the baker’s map on

the unit square (all with the Lebesgue measure).

2. The conditional entropy converges to the KS entropy as d tends to infinity in the

following cases:

(a) If the ordinal partition has the Markov property for all d ≥ d0 (statement (i)

of Lemma 3.8).

(b) If the permutation entropy hXµ (T, d) converges to the KS entropy as d tends

to infinity and it holds hXµ (T, d) ≥ hXµ (T, d+ 1) for all d ≥ d0 (Corollary 3.5).

(c) If the permutation entropy converges to the KS entropy as d tends to

infinity and there exits a limit of the sorting entropy as d tends to infinity

(Corollary 3.5).

3. According to experiments, the conditional entropy provides a good practical

estimation of the KS entropy (see Theorem 3.4 for some theoretical underpinnings),

for instance, for unimodal maps (Subsection 3.3.4) and for Markov shifts (see

Figure 3.6).

The empirical conditional entropy of ordinal patterns can be used as a practical

measure of complexity for time series. Moreover, in Chapter 4 we successfully apply this

quantity to the problem of time series segmentation. In this regard it is important to note

that the conditional entropy is computationally simple: it has the same computational

complexity as the permutation entropy (The algorithm for fast computing the conditional
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entropy of ordinal patterns, on the basis of the ideas suggested in [UK13], is presented

in [Una15]).

Meanwhile, some questions concerning the conditional entropy of ordinal patterns

remain open. Possible directions of a future work are.

1. Find dynamical systems different from the considered here for that the conditional

entropy coincides with the KS entropy starting from some finite d. In this regard

statement (ii) of Lemma 3.8 may be helpful.

2. Show for some concrete systems that the conditional entropy converges to the KS

entropy as d tends to infinity (the first candidates for this are unimodal maps).

3. Find an improved estimator of conditional entropy, being more robust with respect

to noise than naive and Grassberger’s estimators.

3.6 Proofs

In Subsection 3.6.2 we prove Lemma 3.9, to do this we use an auxiliary result established

in Subsection 3.6.1. In Subsection 3.6.3 we provide a proof of Proposition 3.12.

3.6.1 Markov property of a partition for Markov shifts

Hereafter we call the partition C = {C0, C1, . . . , Cl}, where C0, C1, . . . , Cl are cylinders, a

cylinder partition. By the definition of Markov shifts, the cylinder partition is generating

and has the Markov property.

To prove Lemma 3.9 we need the following result.

Lemma 3.14. Let (AN,BΠ(AN),m, σ) be a Markov shift over A = {0, 1, . . . , l}. Suppose

that P = {P0, P1, . . . , Pn} is a partition of AN with the following properties:

(i) any set Pi is either a subset of some cylinder Ca (Pi ⊆ Ca) or an invariant set of

zero measure (σ−1(Pi) = Pi and m (Pi) = 0);

(ii) for any Pi, Pj ∈ P it holds either Pi ∩ σ−1(Pj) = Ca ∩ σ−1(Pj) for some a ∈ A or

m
(
Pi ∩ σ−1(Pj)

)
= 0.

Then the partition P is generating and has the Markov property.

Let us first prove the following lemma.

Lemma 3.15. Suppose that the assumptions of Lemma 3.14 hold and that Pi, Pj are

sets from P with m(Pi ∩ σ−1(Pj)) 6= 0, Pi ⊆ Ca0 , and Pj ⊆ Ca1 , where Ca0 and Ca1 are

cylinders. Then for any P ⊆ Pj, P ∈ BΠ(AN) it holds

m(Pi ∩ σ−1(P )) =
m(Ca0 ∩ σ−1(Ca1))

m(Ca1)
m(P ). (3.18)
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Proof. Given m(P ) = 0, equality (3.18) holds automatically; thus assume that m(P ) > 0.

As a consequence of assumption (ii) of Lemma 3.14, for any P ⊆ Pj we have

Pi ∩ σ−1(P ) = Pi ∩
(
σ−1(Pj) ∩ σ−1(P )

)
=
(
Ca0 ∩ σ−1(Pj)

)
∩ σ−1(P )

= Ca0 ∩ σ−1(P ).

Since P ⊆ Pj ⊆ Ca1 , for all s ∈ P the first symbol is fixed. One can also decompose the

set P into a union of sets with two fixed elements:

P =
⋃

a2∈A0

(
Ca1 ∩ σ−1(Ba2)

)
,

where it holds Ba2 ⊆ Ca2 for all a2 ∈ A0 ⊆ A. Then it follows

m(Pi ∩ σ−1(P )) = m(Ca0 ∩ σ−1(P )) = m(Ca0 ∩ σ−1(Ca1) ∩ σ−2(
⋃

a2∈A0

Ba2)).

Finally, since m is a Markov measure, we get

m(Ca0 ∩ σ−1(Ca1) ∩ σ−2(
⋃

a2∈A0

Ba2)) =
m(Ca0 ∩ σ−1(Ca1))

m(Ca1)
m(Ca1 ∩ σ−1(

⋃
a2∈I

Ba2))

=
m(Ca0 ∩ σ−1(Ca1))

m(Ca1)
m(P ).

This completes the proof.

Now we come to the proof of Lemma 3.14.

Proof. By assumption (i), the partition P is finer than the generating partition C except

for an invariant set of measure zero; hence P is generating as well. To show that P has

the Markov property let us fix some n ∈ N and consider Pi0 , Pi1 , . . . , Pin ∈ P with

m
(
Pi0 ∩ σ−1(Pi1) ∩ . . . ∩ σ−n(Pin−1)

)
> 0.

We need to show that the following equality holds:

m
(
Pi0 ∩ σ−1(Pi1) ∩ . . . ∩ σ−n(Pin)

)
m
(
Pi0 ∩ σ−1(Pi1) ∩ . . . ∩ σ−(n−1)(Pin−1)

) =
m
(
Pin−1 ∩ σ−1(Pin)

)
m(Pin−1)

.

According to assumption (i), there exist a0, a1, . . . , an ∈ A with Pik ⊂ Cak for all

k = 0, 1, . . . , n. Therefore by successive application of (3.18) we have:

m
(
Pi0 ∩ σ−1(Pi1) ∩ . . . ∩ σ−n(Pin)

)
=

= m
(
Pi1 ∩ σ−1(Pi2) ∩ . . . ∩ σ−(n−1)(Pin)

) m(Ca0 ∩ σ−1(Ca1))

m(Ca1)
= . . .

= m(Pin−1 ∩ σ−1(Pin))

n−2∏
k=0

m
(
Cak ∩ σ−1(Cak+1

)
)

m(Cak+1
)

.
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Analogously,

m
(
Pi0 ∩ σ−1(Pi1) ∩ . . . ∩ σ−(n−1)(Pin−1)

)
=

= m
(
Pi1 ∩ σ−1(Pi2) ∩ . . . ∩ σ−(n−2)(Pin−1)

) m(Ca0 ∩ σ−1(Ca1))

m(Ca1)
= . . .

= m(Pin−2 ∩ σ−1(Pin−1))

n−3∏
k=0

m
(
Cak ∩ σ−1(Cak+1

)
)

m(Cak+1
)

= m(Pin−1)
n−2∏
k=0

m
(
Cak ∩ σ−1(Cak+1

)
)

m(Cak+1
)

,

and we are done.

Corollary 3.16. Let P = {P0, P1, . . . , Pn} and P̃ = {P \ O | P ∈ P} ∪ {O}, where

m(O) = 0 and σ−1(O) = O, be partitions of AN. If P̃ satisfies the assumptions of

Lemma 3.14, then P is generating and has the Markov property.

3.6.2 Proof of Lemma 3.9

Now we show that for ergodic Markov shifts over two symbols the ordinal partitions are

generating and have the Markov property. The idea of the proof is to construct for an

ordinal partition PX(d) a partition P̃X(d) as in Corollary 3.16 and to show that P̃X(d)

satisfies the assumptions of Lemma 3.14. Then the partition PX(d) is generating and

has the Markov property by Corollary 3.16.

The proof is divided into a sequence of three lemmas. First, Lemma 3.17 relates the

partition PX(1) with the cylinder partition C. Then we construct the partition P̃X(d)

and show in Lemma 3.18 that it satisfies assumption (i) of Lemma 3.14. Finally, in

Lemma 3.19 we prove that P̃X(d) satisfies assumption (ii) of Lemma 3.14.

Given 0 = (0, 0, . . . , 0, . . .), 1 = (1, 1, . . . , 1, . . .), the following holds.

Lemma 3.17. Let P(0,1), P(1,0) ∈ PX(1) be elements of the ordinal partition correspond-

ing to the increasing and decreasing ordinal pattern of order d = 1, respectively:

P(0,1) = {s ∈ {0, 1}N | X(s) < X(σs)}, P(1,0) = {s ∈ {0, 1}N | X(s) ≥ X(σs)},

where X is lexicographic-like. Then it holds

P(0,1) = C0 \ {0} and P(1,0) = C1 ∪ {0}.

Proof. We show first that for all s ∈ C0 \ {0} it holds X(s) < X(σs). Indeed, assume

s = (s0, s1, . . .) ∈ C0 \ {0}. Then for the smallest k ∈ N with sk = 1 it holds sj = (σs)j

for j = 0, . . . , k−1 and sk−1 < (σs)k−1 = sk, that is s ≺ σs. Since X is lexicographic-like,

this implies X(s) < X(σs).

By the same reason, for all s ∈ C1 \ {1} it holds X(s) > X(σs). Finally, as one

can easily see, s ∈ {0} ∪ {1} implies X(s) = X(σs). According to Definition 2.12 of an

ordinal pattern, in this case s ∈ P(1,0) and we are done.
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In order to apply Corollary 3.16, consider the set

O =
∞⋃
n=0

σ−n({0}).

By Definition 2.4 of a Markov shift m(C0),m(C1) > 0, hence no fixed point has full

measure. Together with the assumption of ergodicity of the shift, this implies that the

measure of a fixed point is zero, thus m(O) = 0. As is easy to check, σ−1(O) = O.

Therefore, to prove that the partition PX(d) is generating and has the Markov property,

it is sufficient to show that the partition

P̃X(d) = {P \O | P ∈ PX(d)} ∪ {O} (3.19)

satisfies the assumptions of Lemma 3.14.

Lemma 3.18. Let d ∈ N and P̃X(d) be the partition defined by (3.19) for an ergodic

Markov shift over two symbols. For every P ∈ P̃X(d) \ {O} it holds

P ⊂ Ca0a1...ad−1
,

where Ca0a1...ad−1
is a cylinder set.

Proof. Consider the partition consisting of the cylinder sets:

Cd = {Ca0a1...ad−1
| a0, a1, . . . , ad−1 ∈ {0, 1}},

for d ∈ N. According to Lemma 3.17, PX(1) coincides with the partition C = {C0, C1}
except for the only point 0, consequently for all d ∈ N, partition PX(1)d coincides with

Cd except for the points from the set σ−(d−1)({0}) ⊂ O. Since P̃X(d) \ {O} is finer than

PX(1)d, we are done.

Lemma 3.19. Let d ∈ N and P̃X(d) be the partition defined by (3.19) for an ergodic

Markov shift over two symbols. Given Pi, Pj ∈ P̃X(d) with Pi ⊂ Ca0 for a0 ∈ {0, 1}, it

holds either

Pi ∩ σ−1(Pj) = Ca0 ∩ σ−1(Pj)

or

m(Pi ∩ σ−1(Pj)) = 0.

Proof. Fix some d ∈ N and let Pi, Pj ∈ P̃X(d). If Pi = O or Pj = O, then it follows

immediately that m(Pi ∩ σ−1(Pj)) = 0; thus we put Pi 6= O, Pj 6= O. Further, let us

define the set P as follows:

P = Ca0 ∩ σ−1(Pj) = {s = (s0, s1, . . .) | s0 = a0, (s1, s2, . . .) ∈ Pj}.

It is sufficient to prove that it holds either P ⊂ Pi or P ∩ Pi = ∅. To do this we

show that the ordering of
(
X(s), X(σs), . . . , X(σds)

)
is the same for all s ∈ P . Since
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(s1, s2, . . .) ∈ Pj , the ordering of
(
X(σs), X(σ2s), . . . , X(σds)

)
is the same for all s ∈ P .

It remains to show that the relation between X(s) and X(σ(k)s) for k = 1, 2, . . . , d is

the same for all s ∈ P .

Note that the order relations between X(σs) and X(σ(k+1)s) for k = 1, 2, . . . , d

is given by the fact that σs = (s1, s2, . . .) ∈ Pj . Next, by Lemma 3.18 for every Pj

there exists a cylinder set Ca1a2...ad , such that if (s1, s2, . . .) ∈ Pj then sk = ak for

k = 1, 2, . . . , d. Now it remains to consider two cases:

First case: assume that s0 = a0 = 0 and consider k = 1, 2, . . . , d. If sk = 1 then

X(s) < X(σks). Further, if sk = 0, then X(σs) < X(σ(k+1)s) implies X(s) < X(σks),

and X(σs) ≥ X(σ(k+1)s) implies X(s) ≥ X(σks).

Second case: analogously, assume that s0 = a0 = 1 and consider k = 1, 2, . . . , d.

If sk = 0 then X(s) ≥ X(σks). If sk = 1, then X(σs) < X(σ(k+1)s) implies X(s) <

X(σks), and X(σs) ≥ X(σ(k+1)s) implies X(s) ≥ X(σks).

Therefore all s ∈ P are in the same set of the ordinal partition, and consequently it

holds either P ⊂ Pi or P ∩ Pi = ∅. This finishes the proof.

3.6.3 Proof of Proposition 3.12

The proof comprises two lemmas.

Lemma 3.20. Given
(
AN,BΠ(AN),mB, σ

)
a Bernoulli shift over A = {0, 1, . . . , l} with

l ≥ 2 and mB(Ci) = pi = 1
l+1 for all i ∈ A. Then for all d ∈ N it holds

mB(P(0,1,...,d)) =
1

l(l + 1)d

l−1∑
i=0

(l − i)
(
i+ d− 1

d− 1

)
, (3.20)

where P(0,1,...,d) ∈ PX(d) with lexicographic-like X.

Proof. Let us discuss the structure of the set P(0,1,...,d). Deduce that s = (s0, s1, . . .) ∈
P(0,1,...,d) holds if and only if X(σ(d−1)s) < X(σds) and s0 ≤ s1 ≤ . . . ≤ sd−1. Consider

first the former condition: the inequality X(σ(d−1)s) < X(σds) holds if

(i) either sd−1 < sd;

(ii) or there exists some k ∈ N such that sd−1 = sd = . . . = sd+k−1 < sd+k.

Case (i) can be written in form (ii) for k = 0. By taking sd−1 = i, sd+k = j we have

mB

({
s | X(σ(d−1)s) < X(σds)

})
=

l−1∑
i=0

pi

l∑
j=i+1

pj +
l−1∑
i=0

pi

∞∑
k=1

pi
k

l∑
j=i+1

pj

=

l−1∑
i=0

( ∞∑
k=1

pi
k

)
l∑

j=i+1

pj =
l−1∑
i=0

pi
1− pi

l∑
j=i+1

pj .
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Consider now the latter condition for (s0, s1, . . .) ∈ P(0,1,...,d), namely s0 ≤ s1 ≤
. . . ≤ sd−1 = i. It holds

mB

({
s | s0 ≤ s1 ≤ . . . ≤ sd−1 = i

})
=

i∑
sd−2=0

psd−2

sd−2∑
sd−3=0

psd−3
. . .

s1∑
s0=0

ps0 .

Combining both conditions yields:

mB(P(0,1,...,d)) =
l−1∑
i=0

pi
1− pi

l∑
j=i+1

pj

 i∑
sd−2=0

psd−2

sd−2∑
sd−3=0

psd−3
. . .

s1∑
s0=0

ps0

. (3.21)

By assumption p0 = p1 = . . . = pl = 1
l+1 , and (3.21) can be rewritten as

mB(P(0,1,...,d)) =
l−1∑
i=0

1

l

(l − i)
(l + 1)

1

(l + 1)d−1

 i∑
sd−2=0

sd−2∑
sd−3=0

. . .

s1∑
s0=0

1

. (3.22)

In (3.22) the expression in brackets is nothing else but the number of combinations of

(d− 1) numbers from the set {0, 1, . . . , i} with repetitions, thus

mB(P(0,1,...,d)) =
1

l(l + 1)d

l−1∑
i=0

(l − i)
(
i+ d− 1

d− 1

)
,

which completes the proof.

Note that for l = 1 Lemma 3.20 remains true, though equality (3.20) degenerates to

mB(P(0,1,...,d)) =
1

2d
.

Lemma 3.21. Given
(
AN,BΠ(AN),mB, σ

)
and P(0,1,...,d) as in Lemma 3.20, the se-

quence
mB(P(0,1,2))

mB(P(0,1))
,
mB(P(0,1,2,3))

mB(P(0,1,2))
, . . . ,

mB(P(0,1,...,d+1))

mB(P(0,1,...,d))
, . . .

is decreasing for the alphabet A = {0, 1, . . . , l} with l ≥ 2.

Proof. According to Lemma 3.20, for all d ∈ N it holds

mB(P(0,1,...,d+1))

mB(P(0,1,...,d))
=

1
l(l+1)d+1

l−1∑
i=0

(l − i)
(
i+d
d

)
1

l(l+1)d

l−1∑
j=0

(l − j)
(
j+d−1
d−1

) =

l−1∑
i=0

(l − i) (i+d)!
i! d!

(l + 1)
l−1∑
j=0

(l − j) (j+d−1)!
j! (d−1)!

=

l−1∑
i=0

(l − i) (i+d−1)!
i! (i+ d)

(l + 1)d
l−1∑
j=0

(l − j) (j+d−1)!
j!

=
1

l + 1

1 +

l−1∑
i=0

i (l−i)
i! (i+ d− 1)!

d
l−1∑
j=0

(l−j)
j! (j + d− 1)!

.
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Therefore, it remains to show that for all d ∈ N

l−1∑
i=0

i (l−i)
i! (i+ d− 1)!

d
l−1∑
j=0

(l−j)
j! (j + d− 1)!

>

l−1∑
i=0

i (l−i)
i! (i+ d)!

(d+ 1)
l−1∑
j=0

(l−j)
j! (j + d)!

. (3.23)

Consider an obvious inequality

(d+ 1)

l−1∑
i=0

l−1∑
j=0

ibibjcicj+1 > d

l−1∑
i=0

l−1∑
j=0

ibibjci+1cj , (3.24)

where bi, ci > 0 for all i = 0, 1, . . . , l − 1. Inequality (3.24) is equivalent to

l−1∑
i=0

ibici

d
l−1∑
j=0

bjcj

>

l−1∑
i=0

ibici+1

(d+ 1)
l−1∑
j=0

bjcj+1

.

By taking bi = (l−i)
i! , ci = (i+ d− 1)! one obtains inequality (3.23).

Finally we come to the proof of Proposition 3.12.

Proof. For l = 1 the considered Bernoulli shift is a particular case of a Markov shift

over two symbols. Therefore, according to Lemma 3.9, the partition PX(d) has the

Markov property for all d ∈ N. It remains to show that for l ≥ 2, for all d ∈ N, n ≥ 2

there exist Pa0 , Pa1 , . . . , Pan ∈ PX(d) such that

m
(
Pa0 ∩ σ−1(Pa1) ∩ . . . ∩ σ−n(Pan)

)
m
(
Pa0 ∩ σ−1(Pa1) ∩ . . . ∩ σ−(n−1)(Pan−1)

) 6= m
(
Pan−1 ∩ σ−1(Pan)

)
m(Pan−1)

. (3.25)

Let us take Pa0 = Pa1 = . . . = Pan = P(0,1,...,d). For all d, n ∈ N

mB

(
P(0,1,...,d) ∩ σ−1(P(0,1,...,d)) ∩ . . . ∩ σ−n(P(0,1,...,d))

)
= mB(P(0,1,...,d+n));

thus by Lemma 3.20,

mB

(
P(0,1,...,d) ∩ σ−1(P(0,1,...,d)) ∩ . . . ∩ σ−n(P(0,1,...,d))

)
> 0

and we can rewrite (3.25) as follows:

mB(P(0,1,...,d+n))

mB(P(0,1,...,d+n−1))
6=
mB(P(0,1,...,d+1))

mB(P(0,1,...,d))
.

Indeed, by Lemma 3.21, for d ∈ N, n ≥ 2 it holds

mB(P(0,1,...,d+n))

mB(P(0,1,...,d+n−1))
<
mB(P(0,1,...,d+1))

mB(P(0,1,...,d))
,

and we are done.
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Chapter 4

Ordinal change-point detection

In Chapter 3 we have considered models for stationary time series; however, most of

real-world time series are non-stationary, that is some of their characteristics change over

time [BN93]. Moments of time when a characteristic of a time series changes are called

change-points; methods for change-point detection are intensively developed [CMS94,

BD00, LT07, BHM+13] and have many applications [HS95, KRDF01, LT07, KMPS09].

In particular, detection of change-points provides a segmentation of time series into

pseudo-stationary segments, parts of time series between the detected change-points.

Such segmentation is of interest since many practical complexity measures require

stationarity of time series [GR84, BP02, BD09] and may be unreliable when stationarity

condition fails.

This chapter is devoted to the detection of change-points in a time series using

a novel approach, ordinal change-point detection, first considered in [SGK12]. We

suggest here new methods for detecting change-points that can be especially helpful as

a preprocessing for ordinal-patterns-based methods since most of them are well-defined

only for stationary time series [BP02].

We provide a general description of change-points detection problems in Section 4.1.

In Section 4.2 we consider the first ordinal-patterns-based method introduced in [SGK12]

and suggest several new ordinal-patterns-based methods:

• two methods on the basis of the well-known likelihood ratio and χ2 statistics;

• a method on the basis of a new statistic CEofOP, which is strongly related to the

conditional entropy of ordinal patterns (see Chapter 3).

In Section 4.3 we compare the considered methods for change-points detection by

performing experiments on artificially generated time series. Since the results show

that the method on the basis of the CEofOP statistic is more effective than other

ordinal-patterns-based methods, we investigate its theoretical properties in Section 4.4.

In Section 4.5 we provide technical details that are important for the implementation of

the ordinal-patterns-based methods for change-point detection.
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4.1 General framework and problem statement

For detecting change-points, time series are usually considered as realizations of stochas-

tic processes, which allows to utilize powerful statistical methods [BN93, BD93]. In this

chapter we consider stochastic processes with the set of times given by T = {0, 1, . . . , L}
for L ∈ N and put L = ∞, when T is supposed to be countable. We consider only

one-dimensional stochastic processes to keep notation simple, though there are no

principal restrictions on the dimension of a process. A convenient model for studying

changes in time series is provided by the following class of processes.

Definition 4.1. A stochastic process
(
Y (t)

)
t∈T is said to be piecewise stationary if

there exist t∗0, t
∗
1, . . . , t

∗
Nst
∈ T with 0 = t∗0 < t∗1 < . . . < t∗Nst

= L, Nst ∈ N such that

for every i ∈ {0, 1, . . . , Nst − 1} the sub-process
(
Y (t∗i + 1), Y (t∗i + 2), . . . , Y (t∗i+1)

)
is

stationary (and a prolongation of this sub-process is not stationary any more). The

boundaries t∗i of stationary segments for i ∈ {1, 2, . . . , Nst − 1} are called change-points.

(See [Sto12, Section 3.1] for an alternative, though equivalent, definition of piecewise

stationarity.) Simply speaking, a piecewise stationary stochastic process is obtained by

gluing Nst stationary stochastic processes. Definition 4.1 is important for the entire

chapter so we illustrate it by the following example.

Example 4.1. A simple piecewise stationary stochastic process is given by

Ynorm(t) = Ynorm

(
t; (m1,m2, . . . ,mNst), (t

∗
1, t
∗
2, . . . , t

∗
Nst−1)

)

=


ε(t) +m1, t ∈ {0, 1, . . . , t∗1}
ε(t) +m2, t ∈ {t∗1 + 1, t∗1 + 2, . . . , t∗2}
. . .

ε(t) +mNst , t ∈ {t∗Nst−1 + 1, t∗Nst−1 + 2, . . . , L},

where m1,m2, . . . ,mNst ∈ R are the expected values of the process in corresponding

intervals, t∗1, t
∗
2, . . . , t

∗
Nst−1 ∈ T are change-points, ε is the standard additive white

Gaussian noise (see p. 32). Figure 4.1 shows a realization of these process with a single

change-point at t∗ = 150, note the change in mean of the realization at t∗.

50 100 150 200 250

−2

0

2

4

 t  

 y
(t

) 

Figure 4.1: A realization of a stochastic process Ynorm

(
t; (2, 0), 150

)
, the change-point is

marked by a vertical line

78



Detection of changes in mean is a simple task, it can be done by various methods

(see [BN93, Chapter 2]), but in the general case, change-point detection is much more

complicated. If a time series can be modeled by a certain stochastic process, one uses

parametric methods of change-point detection. As appears from its name, a parametric

method detects the changes of certain parameters of the stochastic process. When

too little is known about the time series to consider it as a realization of a particular

stochastic process, one still may expect that certain characteristics (mean, standard

deviation, etc.) of the time series reflect the change. In this case one applies non-

parametric methods for change-point detection (see [BD00, Chapter 2] for details).

Non-parametric methods are generally preferred [BD00, Section 7.3] since they require

less a priori information than parametric methods. For an overview of methods for

change-point detection we refer to [BN93, BD93, CMS94, BD00].

In Subsection 4.1.1 we consider three basic problems of change-point detection

and illustrate them by simple examples. In Subsection 4.1.2 we define a special type

of change-points (structural change-points), for detection of those it is reasonable to

apply ordinal-patterns-based methods. In Subsection 4.1.3 we explain the idea of

ordinal change-point detection and suggest ordinal-patterns-based solutions for the three

problems of change-point detection. In Subsection 4.1.4 we introduce notations that

will be used throughout the chapter.

4.1.1 Three problems of change-point detection

We are interested in detection of change-points in a realization y of a piecewise stationary

stochastic process Y . To fix the framework of change-point detection, we consider three

problems on the basis of different assumptions about the number of change-points in Y .

Problem 1. Given a single change-point t∗ ∈ T in the process Y , one needs to find an

estimate t̂∗ ∈ T of the change-point by studying the realization y.

Problem 2. Given at most one change-point t∗ in the process Y , one needs to find an

estimate t̂∗ ∈ T from y (solve Problem 1) or conclude that no change has occurred.

Problem 3. Given Nst ∈ N stationary segments bounded by the change-points

t∗1, t
∗
2, . . . , t

∗
Nst−1 ∈ T, one calculates an estimate N̂st ∈ N of Nst and estimates

t̂∗1, t̂
∗
2, . . . , t̂

∗
N̂st−1

∈ T of the change-points.

These problems are nested in the sense that to solve Problem 3 one needs to solve

Problem 2, and to solve Problem 2 one has to solve Problem 1. Problem 3 represents the

most general setting of the change-point detection problem and is known as a “multiple

change-points detection” [Lav99, LT07]. Problem 2 coincides with the classical “at most

one change” problem and is rather often addressed either as a separate task or as a

part of the multiple change-points detection [CMS94, BHM+13]. Problem 1 is seldom
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considered (see [BN93, Subsection 1.1.2.3]); however, we distinguish this problem for

technical reasons.

The solution of Problem 1 is provided by a statistic3 S(t; y) for t ∈ T that tends

to reach its maximum in t = t∗. Then an estimate of the change-point t∗ is given by

t̂∗(y) = arg max
t∈T

S(t; y).

To provide the reader an impression of how a statistic detects a change-point, we consider

in Example 4.2 a classical statistic that will be used throughout this chapter.

Example 4.2. One of the classical non-parametric methods for detecting changes in

mean of a realization y was suggested by Brodsky and Darkhovsky in [BD93] on the

basis of the statistic given by

BD(t; y, δ) =

(
t(L− t)
L2

)δ ∣∣∣∣∣1t
t∑
l=1

y(l)− 1

L− t

L∑
l=t+1

y(l)

∣∣∣∣∣, (4.1)

where t ∈ T \ {L} = {0, 1, . . . , L− 1} for L ∈ N, and the parameter δ ∈ [0, 1] regulates

properties of the statistic (see [BDKS99] for details). Figure 4.2 shows BD(t; y, 0) for a

realization of the process Ynorm

(
t; (2, 0), 150

)
from Example 4.1, note that the maximum

of the statistic indicates the change-point.
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Figure 4.2: Statistic BD(t; y, 0) for a realization y of the process Ynorm

(
t; (2, 0), 150

)
;

the change-point is marked by a vertical line

Remark. Let us briefly explain why the maximum of the statistic (4.1) allows to

estimate changes in mean. Given y a realization of the process Ynorm

(
t; (m1,m2), t∗

)
for m1,m2 ∈ R, t∗ ∈ T, as L tends to infinity for θ ∈ (0, 1) it holds

BD(bθLc; y, 0) =

{
|m1 −m2| L−t

∗

L−bθLc , bθLc ≤ t
∗,

|m1 −m2| t
∗

bθLc , bθLc > t∗.

It follows that

BD(t∗; y, 0) = lim
L→∞

max
θ∈(0,1)

BD(bθLc; y, 0) = |m1 −m2|.

3Here we follow the terminology and notation of [BD00].
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If a stationary segment between two change-points is too short, estimation of its

boundaries can be difficult. Besides, S(t; y) can be rather high for t ∈ T = {0, 1, . . . , L}
near to 0 or to L even if it is not a change-point (see Figure 4.2). To overcome these

difficulties we introduce for a statistic S the minimal length τmin(S) of a (detectable)

stationary segment and estimate change-points by

t̂∗(y) = arg max
t∈T0

S(t; y)

with T0 =

{
τmin(S)

2
,
τmin(S)

2
+ 1, . . . , L− τmin(S)

2

}
. (4.2)

For instance, looking on Figure 4.2 one may suggest to take τmin(BD) ≥ 50. The choice

of τmin(S) for the statistics used in this chapter will be discussed in Section 4.5.

To solve Problem 2 one finds an estimate t̂∗ of a change-point (solves Problem 1)

and then checks, whether the parameters of the stochastic process Y before and after t̂∗

are the same, by testing between the two following hypotheses [BN93, Subsection 1.1.2.2]:

H0: parts y(1), y(2), . . . , y(t̂∗) and y(t̂∗ + 1), . . . , y(L) of a realization come from the

same distribution;

HA: parts y(1), y(2), . . . , y(t̂∗) and y(t̂∗+1), . . . , y(L) of a realization come from different

distributions.

To perform the test one equips the statistic S with a threshold thS such that if

S
(
t̂∗; y

)
≥ thS then one accepts HA, otherwise H0 is chosen. The choice of the threshold

is ambiguous: the empirical distributions of y before and after t̂∗ usually do not coincide

even if y is stationary, and they can still differ not that much when t̂∗ is a change-point.

The following example illustrates the ambiguity of the threshold selection for the statistic

BD(t; y, 0) from Example 4.2.

Example 4.3. Consider a realization y1 =
(
y1(t)

)
t∈T of the process Ynorm

(
t; (1.5, 0), 150

)
with change in mean (Figure 4.3a) and a realization y2 =

(
y2(t)

)
t∈T of a stationary

stochastic process Y (t) = ε(t) (Figure 4.3b). Values of the BD statistic given by (4.1)

for y1 and y2 are shown in Figure 4.3c and 4.3d, respectively. In this case it holds

max
t∈T0

BD(t; y1, 0) < max
t∈T0

BD(t; y2, 0)

for T0 given by (4.2) with τmin(BD) = 50. That is any choice of a threshold leads either

to the detection of a false change-point in the realization y2 or to the non-detection of a

change-point in the realization y1. Even though changes in mean are generally easy to

detect, one cannot choose a “perfect” threshold to distinguish realizations of processes

with change-points and of stationary processes.

The higher thS , the higher the possibility of false acceptance of the hypothesis

H0 (false positive error, [Faw06]) is; on the contrary, the lower thS , the higher the
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Figure 4.3: Realizations y1 of a process Ynorm

(
t; (1.5, 0), 150

)
with change-point marked

by a vertical line (a) and y2 of the standard additive white Gaussian noise ε(t) (b);
statistics BD(t; y1, 0) (c) and BD(t; y2, 0) (d)

possibility of false acceptance of the hypothesis HA. As it is usually done, consider

the threshold thS as a function of the desired probability α of false positive errors.

Given N realizations υj =
(
υj(1), υj(2), . . . , υj(L)

)
of a stationary stochastic process

for j = 1, 2, . . . , N , thS(α) is determined by

#
{
j = 1, 2, . . . , N | max

t∈T0

S(t; υj) ≥ thS(α)
}

= bαNc (4.3)

for T0 given by (4.2) and for sufficiently large N . A commonly-used approach for

computing the threshold thS(α) is bootstrapping (see [DH97] for an overview). The

most simple bootstrapping technique is resampling without replacement (see [ST01]

for a theoretical discussion of this technique and [Pol07, KMPS09] for its applications

with detailed and clear explanations). To solve Problem 2 for the realization y one

generates pseudo-stationary sequences υ1, υ2, . . . , υN by shuffling elements of y, then

one can compute thS(α) directly by (4.3):

thS(α) = ck for k : #{j = 1, 2, . . . , N | cj ≥ ck} = bαNc, (4.4)

where cj = max
t∈T0

S(t; υj) for all j = 1, 2, . . . , N .

A simple and effective technique for solving Problem 3 is the binary segmentation

procedure introduced in [Vos81] (see [Lav99, LT07] for an alternative approach, which

has more difficult implementation and is not considered here). The idea of binary

segmentation is simple: one applies a single change-point detection procedure to the

realization y; if a change-point is detected then it splits y into two segments. This
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procedure is repeated iteratively for the obtained segments until all of them either do

not contain change-points or are shorter than τmin(S).

4.1.2 Structural change-points

The methods suggested in this chapter require less information than most of non-

parametric methods. Roughly speaking, we restrict ourselves to the time series for those

the future values depend on the past values, and changes occur in the evolution rule that

links the past of the time series with its future. Such changes affect ordinal patterns,

therefore we consider further the change-points described by the following definition.

Definition 4.2. Let
(
Y (t)

)
t∈T be a piecewise stationary stochastic process with a

change-point t∗ ∈ T. We say that t∗ is a structural change-point if for the sub-processes(
Y (t)

)
t∈{0,1,...,t∗} and

(
Y (t)

)
t∈{t∗,t∗+1,...,L} the distributions of ordinal patterns do not

coincide.

This assumption is realistic for many time series, though not all change-points are

structural. For instance, a change-point, where only the mean of a time series changes

(Example 4.1), is not structural since mean is irrelevant for the distribution of ordinal

patterns [Ami10, Subsection 3.4.3]. We illustrate Definition 4.2 by Examples 4.4

and 4.5; the processes, introduced there, are used throughout the chapter for empirical

investigation of change-point detection methods.

Example 4.4. A piecewise stationary noisy logistic (NL) process for a given number of

stationary segments Nst ∈ N and for change-points t∗1, t
∗
2, . . . , t

∗
Nst−1 ∈ T is defined by

NL(t) := NL
(
t; (r1, r2, . . . , rNst), (σ1, σ2, . . . , σNst), (t

∗
1, t
∗
2, . . . , t

∗
Nst−1)

)

=


f tr1 + σ1ε(t), t ∈ {0, 1, . . . , t∗1}
f
t−t∗1
r2 ◦ f t

∗
1
r1 + σ2ε(t), t ∈ {t∗1 + 1, . . . , t∗2}

. . .

f
(t−t∗Nst−1)
rNst

◦ f
(t∗Nst−1−t

∗
Nst−2)

rNst−1 ◦ · · ·◦ f t
∗
1
r1 + σNstε(t), t ∈ {t∗Nst−1 + 1, . . . , L}

where fr : [0, 1] ←↩ is a logistic map, r1, r2, . . . , rNst ∈ [1, 4] are the values of control

parameter, σ1, σ2, . . . , σNst > 0 are the levels of noise. A realization of NL is, in fact,

an orbit generated by a logistic map with a piecewise-constant control parameter and

observed with a noise of piecewise-constant level.

Figure 4.4a shows a realization of an NL process; as one can see in Figure 4.4c, the

empirical distributions of ordinal patterns of order d = 2 before the change-point and

after the change-point do not coincide. In general, as one can check, change-points in

NL processes are reflected by distributions of ordinal patterns of order d ≥ 1.
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Example 4.5. The first order piecewise stationary autoregressive (AR) process is given by:

AR(t) := AR
(
t; (φ1, φ2, . . . , φNst), (t

∗
1, t
∗
2, . . . , t

∗
Nst−1)

)
,

AR(t) =


φ1AR(t− 1) + ε(t), t ∈ {1, 2, . . . , t∗1}
φ2AR(t− 1) + ε(t), t ∈ {t∗1 + 1, t∗1 + 2, . . . , t∗2}
. . .

φNstAR(t− 1) + ε(t), t ∈ {t∗Nst−1 + 1, t∗Nst−1 + 2, . . . , L},

where φ1, φ2, . . . , φNst ∈ [0, 1) are parameters of an autoregressive model, AR(0) = ε(0).

Figure 4.4b illustrates a realization of an AR process. Note that a change-point in an

AR process is not change in mean since the expected value of an AR process is always

zero (the simplest characteristic that reflects changes in AR process is the correlation

function corr(AR(t),AR(t+ 1))). From the results in [BS07, Section 5] it follows that

the distributions of ordinal patterns of order d ≥ 2 reflect change-points for the AR

processes. Figure 4.4d illustrates this for the realization from Figure 4.4b: empirical

distributions of ordinal patterns of order d = 2 before and after the change-point differ

significantly.
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Figure 4.4: Upper row: parts of realizations of an NL (a) and of an AR (b) process with
change-points marked by vertical lines. Lower row: empirical distributions of ordinal
patterns of order d = 2 before and after the change-point for the realizations of NL (c) and
AR (d) process

The NL and AR processes have rather different ordinal patterns distributions. For

this reason we use these processes for empirical investigation of methods for ordinal

change-point detection in Sections 4.2, 4.3. When the positions of the change-points
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are given, we use a shorten notation: “AR, φ1 → φ2 → . . .→ φNst” for an AR process

and “NL, r1 → r2 → . . .→ rNst , σ = σ1” for an NL process when the level σ of noise is

constant.

4.1.3 Ordinal change-point detection

The idea of ordinal change-point detection is to find structural change-points in a

realization of a stochastic process
(
Y (t)

)
t∈T by detecting changes in the sequence

π =
(
π(t)

)
t∈T′ of ordinal patterns with T′ = {d, 1 + d, . . . , L}. We suggest ordinal-

patterns-based solutions for the three problems of change-point detection formulated in

Subsection 4.1.1.

To solve Problem 1 we need to define an ordinal-patterns-based statistic S(t;π)

for t ∈ T′ of the sequence π of ordinal patterns. If t∗ is a change-point for Y , then

• π(d), π(1 + d), . . . , π(t∗) characterize the process before the change;

• π(t∗ + 1), π(t∗ + 2), . . . , π(t∗ + d− 1) correspond to the transitional state;

• π(t∗ + d), π(t∗ + 1 + d), . . . , π(L) characterize the process after the change.

Therefore, S(t;π) should measure dissimilarity between the distributions of ordinal

patterns for π(d), π(1+d), . . . , π(t) and for π(t+d), π(t+d), . . . , π(L). Then an estimate

of the change-point is given by

t̂∗ = arg max
t∈T′0

S(t;π) (4.5)

with T′0 =
{
τmin(S)

2 + d, τmin(S)
2 + d+ 1, . . . , L− τmin(S)

2

}
, where τmin(S) is the minimal

length of a stationary segment for the statistic S. Ordinal-patterns-based statistics are

considered in Section 4.2, the choice of τmin(S) is discussed in Section 4.5.

To solve Problem 2 we estimate t̂∗ by (4.5) and then test between the hypotheses:

H0: parts π(d), π(1 + d), . . . , π(t̂∗) and π(t̂∗ + d), . . . , π(L) of sequence π come from the

same distribution;

HA: parts π(d), π(1 + d), . . . , π(t̂∗) and π(t̂∗ + d), . . . , π(L) of sequence π come from

different distributions.

As well as in the general case (Subsection 4.1.1), we perform this test by comparing

S
(
t̂∗;π

)
with a threshold thS . We formulate the solution of Problem 2 in Algorithm 1;

there we use bootstrapping from the sequence of ordinal patterns π for computing the

threshold thS (details are provided in Section 4.5).

We solve Problem 3 by using the binary segmentation procedure [Vos81], our

algorithm for solving Problem 3 consists of two steps:
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Algorithm 1 Solution of Problem 2

Input: sequence π =
(
π(tstart), . . . , π(tend)

)
of ordinal patterns, nominal probability α

of false positive errors, statistic S, minimal length τmin(S) of a stationary segment

1: function Problem2(π, α, S, τmin(S))
2: if tend − tstart < τmin(S) then
3: return 0; . sequence is too short, no change-point can be detected
4: end if
5: t̂∗ ← arg max

t∈{tstart+ 1
2
τmin(S),...,tend− 1

2
τmin(S)}

S(t;π); . solve Problem 1 for π

6: thS ← Bootstrapping(α, π);
7: if S(t̂∗;π) < thS then
8: return 0;
9: else

10: return t̂∗;
11: end if
12: end function

Step 1: preliminary estimation of boundaries of the stationary segments with doubled

nominal probability of false positive errors (that is with a higher risk of detecting

false change-points).

Step 2: verification of the boundaries and rejection of false change-points: Problem 2

is solved for every two adjacent intervals.

Details of these two steps are displayed in Algorithm 2. Note that Step 1 is the usual

binary segmentation procedure as suggested in [Vos81], while Step 2 is added to improve

the obtained solution (the idea of such an improvement was suggested in [BDKS99]).

Definition 4.3. We call the segments of y pseudo-stationary4 if they are bounded by

the estimates t̂∗0, t̂
∗
1, . . . , t̂

∗
N̂st

of change-points obtained by Algorithm 2.

4.1.4 Notation for change-point detection

Throughout this chapter we use the following notation.

• Y is a piecewise stationary stochastic process; all change-points of Y are supposed

to be structural.

• y :=
(
y(t)

)
t∈T is a realization of Y for T = {0, 1, . . . , L} with L ∈ N.

• π(y) :=
(
π(t; y)

)
t∈T′ for T′ = {d, 1 + d, . . . , L} is the sequence of ordinal patterns

of order d ∈ N corresponding to y. For brevity, we denote the sequence simply by

π when the origin of the sequence π of ordinal patterns is clear or unimportant.

4At least some of these segments may be non-stationary since there is no guaranty that Algorithm 2
provides detection of all change-points.
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Algorithm 2 Solution of Problem 3

Input: sequence π =
(
π(d), π(d+ 1), . . . , π(L)

)
of ordinal patterns of order d, nominal

probability α of false positive errors, statistic S, minimal length τmin(S) of a
stationary segment.

1: function Problem3(π, α, S, τmin(S))
2: N̂st ← 1; t̂∗0 ← 0; t̂∗1 ← L; i← 0 . Step 1
3: repeat

4: t̂∗ ← Problem2
((
π(t̂∗i + d), π(t̂∗i + d+ 1), . . . , π(t̂∗i+1)

)
, 2α, S, τmin(S)

)
;

5: if t̂∗ > 0 then
6: Insert t̂∗ to the list of change-points after t̂∗i ;

7: N̂st ← N̂st + 1;
8: else
9: i ← i+ 1;

10: end if
11: until i < N̂st;
12: i ← 0; . Step 2
13: repeat

14: t̂∗ ← Problem2
((
π(t̂∗i + d), π(t̂∗i + d+ 1), . . . , π(t̂∗i+2)

)
, α, S, τmin(S)

)
;

15: if t̂∗ > 0 then
16: t̂∗i+1 ← t̂∗;
17: i ← i+ 1;
18: else
19: Delete t̂∗i+1 from the change-points list;

20: N̂st ← N̂st − 1;
21: end if
22: until i < N̂st − 1;
23: return N̂st,

(
t̂∗0, t̂

∗
1, . . . , t̂

∗
N̂st

)
;

24: end function

• S(t; y) stands for the statistic of a realization y as a function of time t. Ordinal-

patterns-based statistics may be also denoted by S(t;π).

• t∗ ∈ T′ stands for the change-point and t̂∗ ∈ T′ – for its estimate. In particular,

t̂∗(S; y) is an estimate of the change-point by the statistic S from the realization

y. We omit S when it is clear from the context what statistic we use.

• Nst ∈ N stands for the number of stationary segments in a process Y , that it the

number of change-points is Nst − 1. N̂st(S; y) ∈ N is an estimate of Nst by the

statistic S from the realization y.

• τmin(S) is the minimal length of a stationary segment for the statistic S.

• thS(α, y) is the threshold for the statistic S computed by bootstrapping from y

for the given probability α of false positive errors. We omit y when it is clear from

the context or unimportant.
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• ε =
(
ε(t)
)
t∈T is the standard additive white Gaussian noise (see p. 32).

Some additional notation is required for the detection of changes in distributions of

ordinal patterns (Subsection 4.2.1).

• w0, w1, . . . , wM ∈ N are adjacent boundaries of non-overlapping windows for

computing distributions of ordinal patterns, M is the number of windows.

• W stands for the length of the sliding windows (if constant).

• zi(m) := zi(m; y) is the relative frequency of an ordinal pattern i in m-th window

for the realization y.

• z(m) :=
(
z0(m), z1(m), . . . , z(d+1)!−1(m)

)
.

• z :=
(
z(1), z(2), . . . , z(M)

)
.

• Zi(m) := Zi(m; y) is the absolute frequency of an ordinal pattern i in the m-th

window for the realization y.

• Z(m) :=
(
Z0(m), Z1(m), . . . , Z(d+1)!−1(m)

)
.

• Z :=
(
Z(1),Z(2), . . . ,Z(M)

)
.

4.2 Methods for ordinal change-point detection

In this section we consider an existing ordinal-patterns-based method for change-point

detection and introduce three new methods. We discuss the solution of Problem 1, since

for solving Problems 2 and 3 one uses Algorithms 1 and 2 described in Subsection 4.1.3.

In Subsection 4.2.1 we consider statistics for detecting changes in the distributions of

ordinal patterns. In particular, we consider the corrected maximum mean discrepancy

introduced in [SKC13], and we suggest to use for ordinal change-point detection two

classical statistics, the likelihood ratio and the χ2 statistics. In Subsection 4.2.2 we

introduce a new statistic CEofOP for ordinal change-point detection.

4.2.1 Detection of changes in distributions of ordinal patterns

In this subsection we consider the approach to ordinal change-point detection suggested

in [SGK12]. The idea of this approach is to split the sequence π(y) of ordinal pat-

terns of order d into M ∈ N adjacent non-overlapping windows with the boundaries

w0, w1, . . . , wM ∈ N, such that d = w0 < w1 < . . . < wM = L+ 1:

m-th window :
(
π(wm−1; y), π(wm−1 + 1; y), . . . , π(wm − 1; y)

)
, (4.6)
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and to consider the relative frequency of each ordinal pattern i ∈ {0, 1, . . . , (d+ 1)!− 1}
in the m-th window:

zi(m) = zi(m; y) =
#
{
t ∈ {wm−1, wm−1 + 1, . . . , wm − 1} | π(t; y) = i

}
wm − wm−1

(4.7)

for m ∈ {1, 2, . . . ,M}. When the lengths of windows are sufficiently large, frequencies of

ordinal patterns zi(m; y) for stationary y vary only slightly. Meanwhile, zi(m; y) usually

changes drastically once there is a structural change in y (see Example 4.6). Sinn et al.

[SGK12] suggested to use this fact for detecting structural5 change-points, namely – for

the estimation of the number of the window where the change-point occurs.

Example 4.6. Given a realization nl(t) of the process NL
(
t; (3.95, 4), (0.2, 0.2), 2 · 104

)
(Figure 4.5a), consider the relative frequencies zi(m; nl) of ordinal patterns of order d = 3

in windows with the boundaries wm = d+ 256m for m = 1, 2, . . . ,M . To visualize the

frequencies we draw in Figure 4.5c curves ηj(m) =
j∑
i=0

zi(m; nl) for j = 1, 2, . . . , (d+1)!−1.

For any window number m the space between the bottom line and the first curve

represents the relative frequency z0(m; nl) of 0-th ordinal pattern, the space between the

first and the second curve represents z1(m; nl), and so on, the space between the upper

curve and the top line represents z(d+1)!−1(m; nl). In the same manner, Figure 4.5d

illustrates the frequencies of ordinal patterns (d = 3, W = 256) for a realization

(Figure 4.5b) of AR
(
t; (0.1, 0.5), t∗

)
. For both realizations, the frequencies before and

after the change-point differ significantly, while they vary only slightly on stationary

segments.

4.2.1.1 Ordinal change-point detection via maximum mean discrepancy

Here we provide a detailed description of the method for ordinal change-point detection

introduced in [SGK12, SKC13] in order to simplify its comparison with the methods for

change-point detection suggested in this chapter; in Subsection 4.5.1 we propose some

improvements of this method.

Let a structural change-point occur inside the m∗-th window for m∗ ∈ {1, 2, . . . ,M}.
Then for m1,m2 ∈ {1, 2, . . . ,M} the distributions of ordinal patterns z(m1) and z(m2)

are similar if either m1 < m2 < m∗ or m∗ < m1 < m2, and differ if m1 < m∗ < m2.

Estimation of m∗ on the basis of this property is provided by a statistic called maximum

mean discrepancy (MMD) introduced in [GBR+07] (for theoretical details see also

[GBR+12]):

MMD(m; z) =

(
K1(m; z)

m2
− 2K2(m; z)

m(M −m)
+

K3(m; z)

(M −m)2

) 1
2

,

for m = 1, 2, . . . ,M − 1, where K1(m; z) and K3(m; z) characterize dissimilarities

within the sets of vectors
{
z(1), z(2), . . . , z(m)

}
and

{
z(m+ 1), z(m+ 2), . . . , z(M)

}
,

5In fact, in [SGK12] it is assumed that change-points are structural, though a different terminology is used.
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Figure 4.5: Upper row: parts of realizations of NL process (a) and AR process (b)
with change-points marked by vertical lines. Lower row: relative frequencies of ordinal
patterns for the realization of NL process (c) and of AR process (d)

respectively, while K2(m; z) represents dissimilarity between these two sets [SKC13].

These dissimilarities for m = 1, 2, . . . ,M − 1 are given by

K1(m; z) =
m∑

m1=1

m∑
m2=1

k
(
z(m1), z(m2)

)
,

K2(m; z) =
m∑

m1=1

M∑
m2=m+1

k
(
z(m1), z(m2)

)
,

K3(m; z) =
M∑

m1=m+1

M∑
m2=m+1

k
(
z(m1), z(m2)

)
,

where k
(
z(m1), z(m2)

)
is a measure of dissimilarity between z(m1) and z(m2) (for

details see [GBR+12]). Various choices of k are possible [GFHS09], in [SGK12] the

Radial Basis Function kernel [VTS04] is used:

k
(
z(m1), z(m2)

)
= exp

− (d+1)!−1∑
i=0

(
zi(m1)− zi(m2)

)2.
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The MMD statistic is undefined for m = M , thus for technical reasons we set

MMD(M ; z) = min
m∈{1,...,M−1}

MMD(m; z).

The number m∗ of the window containing the structural change-point is estimated by

m̂∗(z) = arg max
m∈{1,2,...,M}

MMD(m; z).

However, MMD(m; z) is overestimated for the values of m near to 1 and to M − 1

[SGK12]. In order to overcome this difficulty, Sinn et al. introduced the corrected

maximum mean discrepancy CMMD [SKC13]:

CMMD(m; z) = MMD(m; z)−
(

M − 1

m(M −m)
max

j=1,2,...,M
MMD(j; z)

) 1
2

. (4.8)

Remark. Note that a modified version of the CMMD statistic (mCMMD) is introduced

in [SGK12]:

mCMMD(m; z) = MMD(m; z)−
(

M − 1

m(M −m)
max

j=1,2,...,M
MMD(j; z)

)
. (4.9)

This statistic has no clear theoretical justification, so we do not discuss it here. However,

in certain cases mCMMD provides a better estimation of the window containing a

structural change-point than the CMMD statistic6; therefore we present some empirical

results related to mCMMD in Subsection 4.5.1.1.

Figure 4.6 shows the CMMD statistic for NL and AR processes, order d = 3 of

ordinal patterns is used. Windows are defined by wm = d+ 256m for m = 0, 1, . . . ,M ;

change-points are marked by vertical lines. One can see that the CMMD statistic has

two noticeable drawbacks:

• maximums of CMMD do not always coincide with locations of change-points (see,

for instance, Figure 4.6b), which is disadvantageous in view of Problem 1.

• the CMMD statistic does not provide a clear distinction between the processes with

several changes and without changes (see Figure 4.6c), which is disadvantageous

in view of Problem 3.

In the original papers [SGK12, SKC13] authors do not estimate a change-point, but

only a number of the window containing it:

m̂∗ = m̂∗(z) = arg max
m∈{1,2,...,M}

CMMD(m; z).

Estimating the number of the window containing the change-point is only a part of

Problem 1. In order to have a complete method for the change-points detection via

CMMD for a comparison with other methods, we provide solutions of Problems 1–2

using MMD and CMMD statistics in Subsection 4.5.1.

6In particular, the results of the experiments described in [SGK12, Section 4.1] as the empirical
justification of the CMMD statistic, are obtained for the mCMMD statistic. In those conditions the
CMMD statistic provides much worse results, see Subsection 4.5.1.1 for details.
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Figure 4.6: CMMD for AR processes with one change-point (a), for NL processes with
one change-point (b), and with two change-points (c) for different values of control
parameters. For NL processes the constant level of noise σ = 0.2 is used

4.2.1.2 Ordinal change-point detection via likelihood ratio statistic and χ2-statistic

Here we suggest to use two classical statistics for detecting changes in distributions of ordinal

patterns for the non-overlapping windows (4.6) with the boundaries w0, w1, . . . , wM ∈ N.

Both statistics are computed from the absolute frequencies of ordinal patterns in the

m-th window given by

Zi(m) = #
{
t ∈ {wm−1, wm−1 + 1, . . . , wm − 1} | π(t) = i

}
for m ∈ {1, 2, . . . ,M}. Denote the vector of absolute frequencies in the m-th window by

Z(m) =
(
Zi(m)

)(d+1)!−1

i=0
and the sequence of these vectors by Z =

(
Z(1),Z(2), . . . ,Z(M)

)
.

Detection of a single change-point in Z can be considered as testing between the following

hypotheses:

H0: vectors Z(1),Z(2), . . . ,Z(M) come from the same distribution;

Hm: vectors Z(1),Z(2), . . . ,Z(m) and Z(m+ 1), . . . ,Z(M) come from different distri-

butions.
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A basic statistic for testing between these hypotheses is the likelihood ratio statistic

[BN93, Subsection 2.2.3]:

LR0(m; Z) = −2 ln
Lkl
(
H0 | Z

)
Lkl
(
Hm | Z

) = −2 ln Lkl
(
H0 | Z

)
+ 2 ln Lkl

(
Hm | Z

)
,

where Lkl
(
H | Z

)
is the likelihood of the hypothesis H given a sequence Z. Assume that

the absolute frequencies of ordinal patterns in windows are multinomial independent

random variables (we have no theoretical justification for this). Then LR0(m; Z) is

given by (see [HS95])

LR0(m; Z) = 2

(d+1)!−1∑
i=0

(
Pi(m) ln

Pi(m)

wm
+Qi(m) ln

Qi(m)

vm
− Pi(M) ln

Pi(M)

wM

)
,

where vm = wM − wm, Pi(m) =
m∑
j=1

Zi(j) represents frequency of the ordinal pattern i

before the m-th window and Qi(m) =
M∑

j=m+1
Zi(j) – after it.

Another statistic for testing between H0 and Hm is the χ2-statistic. For a sequence

of multinomial independent random variables it was introduced in [HS95] (for theoretical

details see also [BHM+13]):

Chi0(m; Z) = wm

(d+1)!−1∑
i=0

(
Pi(M)
wM

− Pi(m)
wm

)2

Pi(m)
wm

+ vm

(d+1)!−1∑
i=0

(
Pi(M)
wM

− Qi(m)
vm

)2

Qi(m)
vm

=

(d+1)!−1∑
i=0

(
Pi(M)

wM

)2((wm)2

Pi(m)
+

(vm)2

Qi(m)

)
− wM

=

(d+1)!−1∑
i=0

(
Pi(m)wM − Pi(M)wm

)2
Pi(M)wmvm

.

On the basis of the results in [BHM+13], we suggest to use for detecting structural

change-points the following modified versions of the likelihood ratio (LR) and χ2 (Chi)

statistics:

LR(m; Z) =
wmvm
w2
M

LR0(m; Z)

= 2
wmvm
w2
M

(d+1)!−1∑
i=0

(
Pi(m) ln

Pi(m)

wm
+Qi(m) ln

Qi(m)

vm
− Pi(M) ln

Pi(M)

wM

)
,

Chi(m; Z) =
wmvm
w2
M

Chi0(m; Z) =

(d+1)!−1∑
i=0

(Pi(m)wM − Pi(M)wm)2

Pi(M)w2
M

.

Figure 4.7 shows the values of LR(m; Z) for various processes (the behavior of Chi(m; Z)

is similar). Note that change-points are indicated more clearly than by the CMMD

statistic (cf. Figure 4.6). Details related to the solution of Problems 1 and 2 for LR

and Chi statistics are addressed in Subsection 4.5.1.
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Figure 4.7: LR statistic for AR processes with one change-point (a), for NL processes
with one change-point (b), and with two change-points (c) for different values of control
parameters. For NL processes the constant level of noise σ = 0.2 is used

4.2.2 Change-point detection via the CEofOP statistic

Here we introduce a new method for ordinal change-point detection on the basis of the

empirical conditional entropy of ordinal patterns defined in Section 3.4. For a given

order d ∈ N, let us consider the empirical conditional entropy as a function of the

sequence π of ordinal patterns:

ĥcond(π(d), . . . , π(t)
)

=
1

t− d

(d+1)!−1∑
i=0

(d+1)!−1∑
j=0

ni,j(t)
(

lnni(t)− lnni,j(t)
)
,

where ni(t) = #{r ∈ {d, 1 + d, . . . , t− 1} | π(r) = i},

ni,j(t) = #{r ∈ {d, 1 + d, . . . , t− 1} | π(r) = i, π(r + 1) = j}.

We suggest to use the following statistic for detecting structural change-points

CEofOP(t;π) = (L− 2d) ĥcond

(
π(d), . . . , π(L)

)
− (t− d) ĥcond

(
π(d), . . . , π(t)

)
−
(
L− (t+ d)

)
ĥcond

(
π(t+ d), . . . , π(L)

)
. (4.10)
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Indeed, the conditional entropy is concave (not only for ordinal patterns but in general,

see [HK02, Subsection 2.1.3]), thus for all t ∈ T′ it holds

ĥcond

(
π(d), π(1 + d), . . . , π(L)

)
≥ t− d
L− 2d

ĥcond

(
π(d), π(1 + d), . . . , π(t)

)
+
L− (t+ d)

L− 2d
ĥcond

(
π(t+ d), . . . , π(L)

)
. (4.11)

Therefore if probabilities of ordinal patterns change at some point t∗, then CEofOP
(
t;π
)

tends to attain its maximum at t = t∗. If the sequence π is stationary, then for L being

sufficiently large, (4.11) holds with equality (see p. 106, Theorem 4.3).

In contrast to the statistics considered in Subsection 4.2.1, CEofOP does not estimate

the window, where the change-point is located, but provides an immediate estimate

of the change-point t∗. Figure 4.8 shows that for the NL processes CEofOP indicates

change-points as clear as the LR statistic, but provides a better distinction between the

cases with change and without change (cf. Figures 4.7c and 4.8c).

5000 10000 15000

20

40

60

80

100

120

 t  

C
E

o
fO

P
(t

)

 

 

AR,0.1→0.1

AR,0.1→0.3

AR,0.1→0.4

(a)

5000 10000 15000

50

100

150

200

250

 t  

C
E

o
fO

P
(t

)

 

 

NL,3.95→3.95

NL,3.95→3.98

NL,3.95→4

(b)

5000 10000 15000
20

40

60

80

100

 t  

C
E

o
fO

P
(t

)

 

 

NL,3.95→3.95→3.95

NL,3.95→3.98→3.95

NL,3.95→4→3.95

(c)

Figure 4.8: CEofOP for AR processes with one change-point (a), for NL processes with
one change-point (b), and with two change-points (c) for different values of control
parameters. For NL processes the constant level of noise σ = 0.2 is used

Properties of the CEofOP statistic are discussed in Section 4.4, details related to the

application of CEofOP for solving Problems 1 and 2 are provided in Subsection 4.5.2.
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4.3 Change-point detection for the noisy logistic and au-
toregressive processes: simulation studies

In this section we investigate effectiveness of the methods for change-point detection

that were considered in Section 4.2:

• three ordinal-patterns-based methods for detecting changes in distributions of

ordinal patterns (via MMD7, LR and Chi statistics);

• the ordinal-patterns-based method for change-point detection via the CEofOP

statistic;

• two versions of the classical Brodsky-Darkhovsky method [BDKS99] on the basis

of statistic (4.1). The first version is intended to detect changes in mean and uses

statistic (4.1) directly (see Example 4.3):

BDexp(t; y, δ) = BD(t; y, δ).

The second version of the Brodsky-Darkhovsky method detects changes in the

correlation function corr(y(t), y(t+ 1)):

BDcorr(t; y, δ) = BD(t; υ, δ) with υ(t) = y(t)y(t+ 1) for all t ∈ T \ {L}.

The mean is just the basic characteristic, while the correlation function reflects

relations between the future and the past of a time series and seems to be a natural

choice for detecting structural change-points.

We carry out experiments on realizations of the NL and AR piecewise stationary

stochastic processes (see Subsection 4.1.3) for order d = 3 and window size W = 2568.

Methods for ordinal change-point detection are implemented according to the general

algorithms presented in Subsection 4.1.3, technical details are discussed in Section 4.5.

The Brodsky-Darkhovsky method is implemented according to [BDKS99] with the

only exception: to compute a threshold thBD we use bootstrapping, which in our case

provided better results than the technique described in [BDKS99].

4.3.1 Performance for Problem 1

In this subsection we study how well the methods for change-point detection estimate

the position of a single change-point (Problem 1). First we consider Problem 1 for

realizations of the processes with fixed length (Experiment 4.1). Second, since we expect

that the performance of ordinal-patterns-based methods for change-point detection may

strongly depend on the length of realization, we check this in Experiment 4.2.

7In fact we use the MMD statistic in combination with CMMD, see Subsection 4.5.1 for details
8We use W = 256 just because it is convenient from the computational viewpoint; this length of the

window is also sufficient for estimating frequencies of ordinal patterns of order d = 3 inside the windows,
since 256 > 120 = 5(d+ 1)! [Ami10, Section 9.3]. Results of the experiments remain almost the same for
200 ≤W ≤ 1000.

96



Experiment 4.1: comparing performance of methods for change-point detection with

respect to Problem 1.

Objects: NT = 10000 realizations yj =
(
yj(t)

)
t∈{0,1,...,L} for j = 1, 2, . . . , NT of processes

listed in Table 4.1. A single change occurs at a random time t∗ uniformly distributed in{
L
4 −W,

L
4 −W + 1, . . . , L4 +W

}
. For all processes, length L = 80W is taken.

Short name Complete designation

NL, 3.95→ 3.98, σ = 0.2 NL
(
t; (3.95, 3.98), (0.2, 0.2), t∗

)
NL, 3.95→ 3.80, σ = 0.3 NL

(
t; (3.95, 3.80), (0.3, 0.3), t∗

)
NL, 3.95→ 4.00, σ = 0.2 NL

(
t; (3.95, 4.00), (0.2, 0.2), t∗

)
AR, 0.1→ 0.3 AR

(
t; (0.1, 0.3), t∗

)
AR, 0.1→ 0.4 AR

(
t; (0.1, 0.4), t∗

)
AR, 0.1→ 0.5 AR

(
t; (0.1, 0.5), t∗

)
Table 4.1: Processes used in Experiment 4.1

Technique. Problem 1 consists in estimation of the position of a change-point t∗, so

performance of a change-point detection for Problem 1 is characterized by the accuracy

of this estimation. The error of the change-point estimation provided by method S for

the j-th realization of process Y is given by

errj(S, Y ) =
(
t̂∗(S; yj)− t∗

)
,

where t∗ is the actual position of the change-point and t̂∗(S; yj) is its estimate by S. To

measure the overall accuracy of a method for change-point detection via statistic S as

applied to the process Y we use three quantities:

• the fraction of satisfactory estimated change-points sE:

sE(S, Y ) =
#
{
j ∈ {1, 2, . . . , NT } : |errj(S, Y )| ≤ MaxErr

}
NT

,

where MaxErr is the maximal satisfactory error, we take MaxErr = W = 256;

• the bias B(S, Y ) =
1

NT

NT∑
j=1

errj(S, Y ).

• the root mean squared error RMSE(S, Y ) =

√
1

NT

NT∑
j=1

(
errj(S, Y )

)2
.

The larger sE is and the more near to zero the bias and the RMSE are, the better the

solution of Problem 1.

Results are presented in Tables 4.2, 4.3 for NL and AR processes, respectively. For

every process the values of performance measures that are the best among the ordinal-

patterns-based statistics are shown in bold. If the value obtained for a version of the

Brodsky-Darkhovsky method is better, it is also shown in bold.
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NL, 3.95→ 3.98 NL, 3.95→ 3.80 NL, 3.95→ 4.00
Statistic σ = 0.2 σ = 0.3 σ = 0.2

sE B RMSE sE B RMSE sE B RMSE

MMD 0.34 698 1653 0.50 -51 306 0.68 -13 206
LR 0.40 468 1262 0.62 53 353 0.77 61 238
Chi 0.41 391 1174 0.62 52 351 0.78 22 179
CEofOP 0.61 53 397 0.65 1 256 0.88 20 99

BDexp 0.62 78 351 0.78 -6 145 0.89 43 96
BDcorr 0.44 85 656 0.71 13 202 0.77 43 189

Table 4.2: Performance of different statistics for Problem 1, NL processes

Statistic AR, 0.1→ 0.3 AR, 0.1→ 0.4 AR, 0.1→ 0.5

sE B RMSE sE B RMSE sE B RMSE

MMD 0.32 616 1626 0.54 -14 368 0.68 -48 184
LR 0.37 447 1342 0.62 62 389 0.78 17 166
Chi 0.37 448 1354 0.62 56 386 0.78 12 164
CEofOP 0.39 126 1838 0.68 0 234 0.86 0 110

BDexp 0.00 8942 11757 0.00 10535 12372 0.00 11686 12791
BDcorr 0.79 31 151 0.92 21 73 0.97 21 50

Table 4.3: Performance of different statistics for Problem 1, AR processes

Discussion and conclusions:

1. For the considered processes the change-point detection via the CEofOP statistic

shows better performance than other ordinal-patterns-based methods. For the NL

processes the CEofOP statistic has almost the same performance as the classical

Brodsky-Darkhovsky method; for the AR processes performance of the classical

method is better, though CEofOP has lower bias.

2. In contrast to the ordinal-patterns-based methods, the Brodsky-Darkhovsky method

is unreliable when there is lack of a priori information about the time series. For

instance, changes in NL processes only slightly influence the correlation function and

BDcorr indicated the changes not very well (cf. performance of BDcorr and CEofOP

in Table 4.2). Meanwhile, changes in the AR processes do not influence the expected

value (see Example 4.5), which does not allow to detect them using BDexp (see

Table 4.3). Therefore we do not consider the BDexp statistic in further experiments.

Experiment 4.2: studying the dependence of the change-point detection performance

with respect to Problem 1 on the length L of a time series.

Objects: NT = 10000 realizations of NL, 3.95→ 3.80, σ = 0.3 and AR, 0.1→ 0.4 for

realization lengths L = 12W, 16W, . . . , 120W . Again, we consider a single change at a

random time t∗ ∈
{
L
4 −W,

L
4 −W + 1, . . . , L4 +W

}
.
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Results are presented in Figure 4.9.
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Figure 4.9: Measures of change-point detection performance for NL (a, b) and AR (c, d)
processes with different lengths

Discussion and conclusions:

1. Performance of the CEofOP statistic strongly depends on the length of time series.

For sufficiently long stationary segments, CEofOP has better performance than

other ordinal-patterns-based methods. In comparison with the classical method,

CEofOP has almost the same performance for NL processes (see Figures 4.9a,b),

and lower bias for AR processes (see Figure 4.9d).

2. For short stationary segments, LR and Chi statistics have better performance

than CEofOP, but much worse than the Brodsky-Darkhovsky method.

4.3.2 Performance for Problem 2

Recall (Algorithm 1) that the solution of Problem 2 via statistic S is provided by

performing the following test

S
(
t̂∗(S; y); y

)
≥ thS(α, y), (4.12)
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where α is the (nominal) probability of false positive errors, thS(α) is the threshold for

the statistic S. To assess performance of such tests the receiver operating characteristic

(ROC) curve analysis is often used [KMPS09], [ZLB+11, Section 1.4]. In our case the

ROC curve represents the probability to detect a change-point in a process with a single

change (true positive rate, TPR), plotted as a function of the frequency of false positive

errors (false positive rate, FPR).

Recall (see Section 4.1) that we use bootstrapping to compute thS(α, y) (details are

provided in Section 4.5). Bootstrapping does not guarantee that FPR coincides with

the nominal probability α, so we compare them empirically in Experiment 4.3. Then

we construct the ROC curves for NL and AR processes in Experiment 4.4.

Experiment 4.3: comparing values of FPR for various statistics with the nominal

probability α of false positive errors.

Objects: NT = 10000 realizations yj for j = 1, 2, . . . , NT of the stationary noisy logistic

stochastic process with r = 3.98 and σ = 0.2. (Results for stationary autoregressive

processes are similar, so we omit them).

Technique. As soon as (4.12) is satisfied for yj , one gets the false positive error. Hence,

the empirical value of the FPR for a statistic S and given probability α is computed by

FPR(S, α) =
#
{
j ∈ {1, 2, . . . , NT } | S

(
t̂∗(S; yj); yj

)
≥ thS(α, yj)

}
NT

.

Results: the obtained values of FPR are presented in Table 4.4.

H
HHH

HHS
α

0.001 0.005 0.015 0.025 0.050 0.075 0.125 0.20 0.40 0.75

MMD 0.066 0.168 0.326 0.454 0.669 0.788 0.890 0.97 1.00 1.00
LR 0.004 0.022 0.058 0.092 0.166 0.236 0.378 0.53 0.77 0.97
Chi 0.006 0.026 0.076 0.108 0.184 0.220 0.328 0.47 0.75 0.97
CEofOP 0.002 0.006 0.012 0.020 0.042 0.067 0.113 0.19 0.37 0.71

BDcorr 0.002 0.005 0.017 0.020 0.036 0.052 0.096 0.16 0.35 0.70

Table 4.4: Empirically estimated values of frequency FPR(S, α) of false positive errors.
Values satisfying FPR(S, α) ∈ [0.8α, 1.1α] are shown in bold

Discussion and conclusions: for the CEofOP and BDcorr statistics the values of FPR

are close to the values of α. For other statistics the empirical values of FPR are notably

higher than the nominal values of α, hence one has to set α much lower than the desired

FPR when applying these statistics. For instance, in order to get false positive errors with

probability not exceeding 0.1, one has to take α ≈ 0.025 for the methods on the basis of

LR and Chi statistics, and α ≈ 0.002 for the method on the basis of MMD statistic.
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Experiment 4.4: comparing ROC curves for various statistics in order to evaluate

performance for Problem 2.

Objects: NT = 10000 realizations of the processes NL, 3.95 → 3.98, σ = 0.2 and AR,

0.1→ 0.3 from Experiment 4.1. For every statistic S we have chosen only realizations yj, for

those Problem 1 was solved satisfactory, that is it holds errj(S, Y ) ≤ MaxErr = W = 256.

Results. For the given process Y , statistic S and probability α, TPR is estimated by

TPR(S, Y, α) =
#
{
j ∈ {1, 2, . . . , NT } | S

(
t̂∗(S; yj); yj

)
≥ thS(α, yj)

}
NT

.

Figure 4.10 shows the values of TPR(S, Y, α) plotted against values of FPR(S, α).
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Figure 4.10: ROC curves for detection of a single change-point in realizations of
stochastic processes: NL

(
t; (3.95, 3.98), (0.2, 0.2), t∗

)
(a) and AR

(
t; (0.1, 0.3), t∗

)
(b)

Discussion and conclusions: for the considered processes all methods for change-

points detection provide almost perfect solutions of Problem 2. Indeed, already for small

values of FPR (that is for low risk of detecting a change-point in case of no-change),

the values of TPR are near to 1 (that is if there is a change-point in a process and the

position of this change-point was correctly estimated, then this change-point will be

detected with probability near to 1).

4.3.3 Performance for Problem 3

Experiment 4.5: comparing performance of methods for change-point detection with

respect to Problem 3 (multiple change-points detection).

Objects: NT = 10000 realizations yj of the processes AR
(
t; (0.3, 0.5, 0.1, 0.4), (t∗1, t

∗
2, t
∗
3)
)

and NL
(
t; (3.98, 4, 3.95, 3.8), (0.2, 0.2, 0.2, 0.3), (t∗1, t

∗
2, t
∗
3)
)

with three independent change-

points t∗k uniformly distributed in
{
t∗k −W, t∗k −W + 1, . . . , t∗k +W

}
for k = 1, 2, 3 with

t∗1 = 0.3L, t∗2 = 0.7L, t∗3 = 0.9L, Nst = 4 and L = 100W (we consider unequal lengths of
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stationary intervals to study methods for change-point detection in realistic conditions).

Technique. As we apply Algorithm 2 with a statistic S to yj , we obtain estimates of

number N̂st(S; yj) of stationary segments and of change-points positions t̂∗l (S; yj) for

l = 1, 2, . . . , N̂st(S; yj)−1. Since the number of estimated change-points may be different

from the actual number of changes, we suppose that the estimate for t∗k is provided

by the nearest t̂∗l (S; yj). Therefore the error of estimation of the k-th change-point

provided by S is given by

errjk(S, Y ) = min
l∈{1,2,...,N̂st(S;yj)−1}

∣∣∣t̂∗l (S; yj)− t∗k
∣∣∣.

To assess the overall accuracy of change-point detection, we compute two following

quantities

• the fraction sEk of satisfactory estimates of a change-point t∗k, k = 1, 2, 3:

sEk(S, Y ) =
#
{
j ∈ {1, 2, . . . , NT } | errjk(S, Y ) ≤ MaxErr

}
NT

,

where MaxErr is the maximal satisfactory error; we take MaxErr = W = 256.

• average number of false change-points:

fCP(S, Y ) =

NT∑
j=1

(
N̂st(S; yj)− 1−#

{
k ∈ {1, 2, 3} | errjk(S, Y ) ≤ MaxErr

})
NT

.

Note that we count as false change-points both false alarms (that is detecting a

change-point in a stationary segment) and inaccurately estimated change-points.

Values of probability α of false positive errors have been taken as minimal values providing

TPR near to 1 according to the results of Experiments 4.3, 4.4 (see Tables 4.5 and 4.6).

Results are presented in Tables 4.5 and 4.6. Best overall results and best results among

ordinal-patterns-based methods are shown in bold.

Statistic α fCP Fraction sEk of satisfactory estimates
1st change 2nd change 3rd change average

MMD 0.001 1.17 0.465 0.642 0.747 0.618
LR 0.001 0.98 0.470 0.749 0.850 0.690
Chi 0.001 1.70 0.470 0.740 0.771 0.660
CEofOP 0.05 0.62 0.753 0.882 0.930 0.855

BDcorr 0.05 1.34 0.296 0.737 0.751 0.595

Table 4.5: Problem 3: performance of change-point detection methods for NL process
with three change-points
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Statistic α fCP Fraction sEk of satisfactory estimates
1st change 2nd change 3rd change average

MMD 0.001 1.17 0.340 0.640 0.334 0.438
LR 0.001 0.98 0.345 0.764 0.350 0.486
Chi 0.001 1.72 0.354 0.748 0.466 0.523
CEofOP 0.05 1.12 0.368 0.834 0.517 0.573

BDcorr 0.05 0.53 0.783 0.970 0.931 0.895

Table 4.6: Problem 3: performance of change-point detection methods for AR process
with three change-points

Discussion and conclusions:

1. Since distributions of ordinal patterns for NL and AR processes have different

properties (see Subsection 4.1.2), results for them differ significantly. For the NL

processes performance of the ordinal-patterns-based methods is better, while for

the AR processes the Brodsky-Darkhovsky method surpasses them.

2. The CEofOP statistic provides good results for the NL processes. However, for

the AR processes performance is much worse: only the most prominent change

is detected rather well. Weak results for two other change-points are caused by

insufficient lengths of stationary segments: as we have seen in Experiment 4.2,

the CEofOP statistic is rather sensitive to these lengths.

Our general conclusion is that the suggested method for ordinal change-point

detection via the CEofOP statistic shows better performance than other ordinal-patterns-

based methods. It also has comparable performance to the classical Brodsky-Darkhovsky

method. Therefore we consider properties of the method for ordinal change-point

detection via CEofOP in Section 4.4 and apply this method to real-world time series in

Subsection 5.3.2.

4.4 Properties of the CEofOP statistic

We start with a simple example that shows how the CEofOP statistic estimates a change-

point (Subsection 4.4.1). Then we provide a theoretical justification of the CEofOP

statistic: in Subsection 4.4.2 we show its relation to the likelihood ratio statistic for

a piecewise stationary Markov chain [AG57], and in Subsection 4.4.3 we consider the

asymptotic properties of CEofOP.

4.4.1 CEofOP statistic: a toy example

We provide the following example to demonstrate convexity of conditional entropy and

to illustrate detection of changes via the CEofOP statistic.
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Example 4.7. Consider a realization y of a process with a single change-point t∗ ∈ T.

Let the sequence π =
(
π(t; y)

)
t∈T′ of ordinal patterns of order d = 1 be a realization of

a piecewise stationary Markov chain, such that the probabilities of ordinal patterns are

equal to 1
2 both before and after the change, while the transition probabilities are given

by the matrices (
1
2

1
2

1
2

1
2

)
and

(
0 1

1 0

)
.

Let γ = t∗

L and let t = θL ∈ T for θ ∈ (0, 1). Then from the general representation

(4.10) of CEofOP it follows that

CEofOP(θL;π) =

{
L
(γ

2 ln 2−γ
γ − ln(2− γ) + 2−θ−γ

2 ln 2−θ−γ
1−θ + γ−θ

2 ln γ−θ
1−θ
)
, θ < γ

L
(γ

2 ln 2−γ
θ − ln(2− γ) + 2θ−γ

2 ln 2θ−γ
θ + (1− θ) ln 2

)
, θ ≥ γ

.

When one sets to zero the derivative of CEofOP(θL;π) with respect to θ, it becomes

clear that CEofOP(θL;π) has a unique maximum at θ = γ, which provides a detection

of the change-point. In particular, for γ = 1
2 we obtain:

CEofOP(θL;π) =

L
(

ln 2− 3
4 ln 3 + 3−2θ

4 ln 3−2θ
2−2θ + 1−2θ

4 ln 1−2θ
2−2θ

)
, θ < 1

2

L
(

(2− 2θ) ln 2− 3
4 ln 3− θ ln θ + 4θ−1

4 ln(4θ − 1)
)
, θ ≥ 1

2

.

Figure 4.11 illustrates that when γ = 1
2 , CEofOP(θL;π) attains a distinct maximum at

θ = 1
2 (shown by the vertical line).
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Figure 4.11: CEofOP(θL;π) when sequence π of ordinal patterns of order 1 is a Markov
chain with a single change-point at L/2

4.4.2 Relation between the CEofOP and the likelihood ratio statistic

In this subsection we show that there is a connection between the CEofOP statistic and

the classical likelihood ratio statistic. Though taking place only in a particular case,

this connection reveals the nature of the CEofOP statistic. Before stating the result,

we set up necessary notation.
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Consider a realization y of a piecewise stationary process
(
Y (t)

)
t∈T with at most

one structural change-point. The basic statistic for testing whether there is a change in

the transition probabilities of ordinal patterns at time t, is the likelihood ratio statistic

[BN93, Subsection 2.2.3]:

LRM
(
t;π
)

= −2 ln
Lkl
(
H0 | π

)
Lkl
(
Ht | π

) = −2 ln Lkl
(
H0 | π

)
+ 2 ln Lkl

(
Ht | π

)
, (4.13)

where Lkl
(
H | π

)
is the likelihood of the hypothesis H given a sequence π =

(
π(t; y)

)
t∈T′

of ordinal patterns, and the hypotheses are given by

H0 :
(
pi,j(t)

)(d+1)!−1

i,j=0
=
(
qi,j(t)

)(d+1)!−1

i,j=0
,

Ht :
(
pi,j(t)

)(d+1)!−1

i,j=0
6=
(
qi,j(t)

)(d+1)!−1

i,j=0
,

where pi,j(t), qi,j(t) are transition probabilities of ordinal patterns before and after t,

respectively.

Proposition 4.1. If a sequence π of ordinal patterns of order d ∈ N is a realization of

a Markov chain with at most one change-point, then it holds

LRM(t;π) = 2 CEofOP(t;π) + 2d · ĥcond
(
π(d), π(1 + d), . . . , π(L)

)
.

Proof. First we estimate the probabilities and the transition probabilities before and

after the change [AG57, Section 2]:

p̂i(t) =
ni(t)

t− d
, p̂i,j(t) =

ni,j(t)

ni(t)
,

q̂i(t) =
mi(t)

L− (t+ d)
, q̂i,j(t) =

mi,j(t)

mi(t)
,

where ni(t) = #{r ∈ {d, 1 + d, . . . , t− 1} | π(r) = i},

mi(t) = ni(L)− ni(t+ d),

ni,j(t) = #{r ∈ {d, 1 + d, . . . , t− 1} | π(r) = i, π(r + 1) = j},

mi,j(t) = ni,j(L)− ni,j(t+ d).

Then, as one can see from [AG57, Section 3.2], we have

Lkl(H0 | π) = p̂π(d)(L)
L−1∏
l=d

p̂π(l),π(l+1)(L) = p̂π(d)(L)

(d+1)!−1∏
i=0

(d+1)!−1∏
j=0

(
p̂i,j(L)

)ni,j(L)
,

Lkl(Ht | π) = p̂π(d)(t)

t∏
l=d

p̂π(l),π(l+1)(t)

L−1∏
l=t+d

q̂π(l),π(l+1)(t)

= p̂π(d)(t)

(d+1)!−1∏
i=0

(d+1)!−1∏
j=0

(
p̂i,j(t)

)ni,j(t−1)
(d+1)!−1∏
i=0

(d+1)!−1∏
j=0

(
q̂i,j(t)

)mi,j(t−1)
.
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Assume that the first ordinal pattern π(d) is fixed (non-random) in order to simplify

the computations. Then p̂π(d)(L) = p̂π(d)(t) and it holds:

LRM(t;π) = −2

(d+1)!−1∑
i=0

(d+1)!−1∑
j=0

ni,j(L)
(

lnni,j(L)− lnni(L)
)

+2

(d+1)!−1∑
i=0

(d+1)!−1∑
j=0

ni,j(t)
(

lnni,j(t)− lnni(t)
)

+2

(d+1)!−1∑
i=0

(d+1)!−1∑
j=0

mi,j(t)
(

lnmi,j(t)− lnmi(t)
)
.

Since
(d+1)!−1∑
j=0

ni,j(t) = ni(t), one finally obtains:

LRM(t;π) = 2(L− d) · ĥcond

(
π(d), π(1 + d), . . . , π(L)

)
− 2(t− d) · ĥcond

(
π(d), π(1 + d), . . . , π(t)

)
− 2
(
L− (t+ d)

)
· ĥcond

(
π(t+ d), π(t+ 1 + d), . . . , π(L)

)
= 2 CEofOP(t;π) + 2d · ĥcond

(
π(d), π(1 + d), . . . , π(L)

)
.

Note that given y a realization of a process Y , π(y) forms a Markov chain if and

only if the ordinal partition for Y has the Markov property (see Subsection 3.3.3). An

example of a stochastic process for that π forms a Markov chain is provided by the

following consequence of Lemma 3.9 (p. 58).

Corollary 4.2. Let
(
Y (t)

)
t∈T be a Markov chain with Y (t) ∈ {0, 1} for all t ∈ T. Then

for every realization y of Y and for all d ∈ N, the sequence π =
(
π(t; y)

)
t∈T′ of ordinal

patterns of order d is a realization of a Markov chain.

4.4.3 Asymptotic properties of the CEofOP statistic

In this subsection we consider asymptotic properties of the CEofOP statistic. Exam-

ple 4.7 shows that a rigorous description of CEofOP for the processes with structural

change-points is rather complicated, so we provide a theoretical result only for the

stationary stochastic processes (without changes).

Theorem 4.3. Let
(
π(d), π(1 + d), . . . , π(L)

)
be a sequence of ordinal patterns of order

d ∈ N corresponding to a realization y of an ergodic9 stochastic process Y =
(
Y (t)

)
t∈T

with T = {0, 1, . . . , L}. Then for any θ ∈ (0, 1) it holds almost sure that

lim
L→∞

CEofOP
(
bθLc;

(
π(d), π(1 + d), . . . , π(L)

))
= 0. (4.14)

9See p. 32, Definition 2.10.
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Proof. The basis of the proof is provided by Theorem 3.13 (p. 65). Indeed, from (3.16)

it follows that for almost all realizations y of Y it holds

lim
L→∞

ĥcond

(
π(d), . . . , π(L)

)
= lim

L→∞
ĥcond

(
π(d), . . . , π

(
bθLc

))
= lim

L→∞
ĥcond

(
π
(
bθLc+ d

)
, . . . , π(L)

)
= hµ,cond(Y, d).

Then

lim
L→∞

CEofOP
(
bθLc;

(
π(d), π(1 + d), . . . , π(L)

))
= (L− 2d)hµ,cond(Y, d)

− (bθLc − d)hµ,cond(Y, d)− (L− bθLc − d)hµ,cond(Y, d) = 0.

4.5 Implementation details

In this section we consider technical details of solving Problem 1 by different ordinal-

patterns-based methods and describe application of bootstrapping for Problem 2 (for

Problem 3, detection of multiple change-points, we use the general scheme exhaustively

described by Algorithm 2). These details are not important for understanding the idea

of ordinal change-point detection, but are useful for its practical implementation. In

Subsection 4.5.1 we suggest an implementation of the methods for detecting changes in

distributions of ordinal patterns; we consider the change-point detection via the CMMD,

MMD, LR and Chi statistics. In Subsection 4.5.2 we provide an implementation of the

CEofOP statistics.

4.5.1 Implementation of detecting changes in distributions of ordinal
patterns

Consider a sequence π of ordinal patterns of order d corresponding to a realization of a

stochastic process with a single structural change-point t∗ ∈ T′ = {d, 1 + d, . . . , L}. We

split π into M non-overlapping windows (4.6) of equal size W (that is we assume that

L− d+ 1 = MW ), where M,W ∈ N. Then the left border of the m-th window is given

by wm−1 = d+ (m− 1)W for m = 1, 2, . . . ,M . Let us say that if wm∗−1 ≤ t∗ < wm∗ ,

then the m∗-th window is a change-window.

Recall (Subsection 4.2.1) that the MMD, CMMD, LR and Chi statistics estimate

only the change-window, which does not provide a solution of Problem 1 since the

exact position of the change-point remains unknown. Experiments show that in the

general case the CMMD statistic estimates the change-window with a considerable

bias, so we suggest a procedure to correct it in Subsection 4.5.1.1 (the same procedure

is applicable to LR and Chi statistics). Then in Subsection 4.5.1.2 we specify the

position of a change-point inside the change-window. In Subsection 4.5.1.3 we describe

an implementation of the bootstrapping, which is necessary for the solution of Problem 2.
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4.5.1.1 Correcting bias of the CMMD statistic

Recall that the distribution z(m) =
(
z0(m), . . . , z(d+1)!−1(m)

)
of relative frequencies of

ordinal patterns in the m-th window is given by (4.7), and let z =
(
z(1), z(2), . . . , z(M)

)
.

The estimate of the change-window by the CMMD statistic is computed by [SKC13]:

m̂∗0 = arg max
m∈{1,2,...,M}

CMMD(m; z). (4.15)

Results of experiments (see Figure 4.12a) demonstrate that if m∗ 6= M
2 then the estimate

m̂∗0 has a bias towards M
2 . Here we suggest Algorithm 3 to correct this bias: we estimate

the change-window by (4.15) and set the m̂∗0-th window to the center by omitting several

windows. The new sequence zc of distributions of ordinal patterns frequencies is called

centered, from it we compute an improved estimate of the change-window.

Algorithm 3 Estimation of a change-window by CMMD with corrected bias

Input: sequence π =
(
π(d), . . . , π(L)

)
of ordinal patterns of order d, window size W

Output: centered sequence zc of distributions of ordinal patterns frequencies; estimate
m̂∗ of the change-window, offset Ofs of this estimate

1: function ChangeWindowCMMD(z)
2: M ← (L− d+ 1)/W ;
3: w0 ← d;
4: for m = 1, 2, . . . ,M do . Compute z
5: wm ← d+mW ;
6: for i = 0, 1, . . . , (d+ 1)!− 1 do . Calculate frequencies of ordinal patterns

7: zi(m) ←
#
{
l ∈ {wjm−1, w

j
m−1 + 1, . . . , wjm − 1} | π(l) = i

}
wjm − wjm−1

8: end for
9: end for

10: m̂∗0 ← arg max
m∈{1,2,...,M}

CMMD(m; z); . Compute a preliminary estimate of m∗

11: if m̂∗0 ≤ M
2 then . Center m∗

12: Ofs ← 0;
13: Mc ← 2m̂∗0;
14: else
15: Ofs ← 2m̂∗0 −M ;
16: Mc ← 2(M − m̂∗0);
17: end if
18: for m = 1, 2, . . . ,Mc do . Obtain a centered sequence of distributions
19: zc(m) ← z(m+ Ofs);
20: end for
21: m̂∗ ← arg max

m∈{1,2,...,Mc}
CMMD(m; zc); . and compute an improved estimate of m∗

22: return zc, m̂
∗,Ofs;

23: end function
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Experiment 4.6: assessing the effect of correcting bias on the estimate of the change-

window by the CMMD statistic.

Objects: NT = 20000 realizations of the process AR
(
t; (0.1, 0.4), t∗

)
of length L =

20W + d for W = 500 and d = 3. The change-point is uniformly distributed inside the

5th window: t∗ ∈ {4W + d, 4W + 1 + d, . . . , 5W + d− 1}.

Technique. For every realization we compute estimates of the change-window: m̂∗0

(without centering) and m̂∗ (with centering); thus we obtain distributions of two change-

window estimates.

Results are presented in Figure 4.12a.
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Figure 4.12: Distributions of estimates of the change-window for the process AR, 0.1→ 0.4
of length L = 20W + d: with a random change-point in the 5-th window (a, c), with
a fixed change-point t∗ = 5W + d− 1 (b), and for the process AR, 0.1→ 0.4 of length
L = 40W + d with a change-point uniformly distributed in the 10-th window (d)

Discussion and conclusions: Correcting bias improves the detection of the change-

window considerably. Note that the share of correct estimates of the change-window

without centering obtained in our experiment significantly differs from that obtained

in [SGK12, Section 4.1] for the same process: there it reaches 85% [SGK12, Figure 3],

while in our experiment it is below 25% (Figure 4.12a). There are two reasons for this.
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1. In our experiments the change-point is located randomly, while in [SGK12] it has

a fixed position on the boundary between windows, which maximizes the CMMD

statistic. The effect of centering for the fixed change-point t∗ = 5W + d − 1 is

even more prominent (see Figure 4.12b).

2. Results in [SGK12, Section 4.1] are obtained not for the CMMD statistic, but

for its modified version mCMMD defined by (4.9) on p. 91. This statistic has no

clear theoretical justification, but in the given settings it provides results that

are better than for the CMMD statistic without centering, and comparable to

the results for CMMD with centering (Figure 4.12c). However, this is not the

case when the number of windows M is sufficiently large; we illustrate this fact in

Figure 4.12d (there we consider NT = 20000 realizations of the same process of

length L = 40W + d with the change-point uniformly distributed inside the 10th

window: t∗ ∈ {9W + d, 9W + 1 + d, . . . , 10W + d− 1}), one can see the CMMD

statistic with centering provides better results than mCMMD.

We also use Algorithm 3 for correcting bias of the LR and Chi statistics; the only

difference is that the absolute frequencies Z of ordinal patterns are considered instead

of the relative frequencies z.

4.5.1.2 Estimation of a change-point

Here we estimate a change-point for the given estimate m̂∗ of the change-window. We

suggest Algorithm 4 for the estimation of a change-point via the CMMD statistic,

algorithms for the LR and Chi statistics are almost the same.

Let us sketch the idea behind the algorithm. We start from applying Algorithm 3

(see Figure 4.13a) and assume that the estimate m̂∗ of the change-window is correct.

The left boundary of the m̂∗-th window is initially given by wm̂∗−1 = d+ (m̂∗− 1)W

(see Figure 4.13b), therefore it holds

t∗ ∈ {d+ (Ofs + m̂∗ − 1)W,d+ (Ofs + m̂∗ − 1)W + 1, . . . , d+ (Ofs + m̂∗)W − 1},

where Ofs is the offset of the estimate m̂∗ of the change-window, see Algorithm 3. The

dissimilarity between the samples(
zc(1), zc(2), . . . , zc(m̂

∗ − 1)
)

and
(
zc(m̂

∗), zc(m̂
∗ + 1), . . . , zc(Mc)

)
. (4.16)

should be maximal if wm̂∗−1 = t∗ since in this case z(m̂∗) characterizes frequencies of

ordinal patterns after the change10. So we search for the position of the left boundary

of the m̂∗-th window that maximizes the MMD statistic11, see Figure 4.13c.

10Note that in the general case m̂∗-th contains ordinal patterns both before and after the change.
11We use here MMD statistic instead of CMMD for several reasons. First, the MMD statistic should

not have significant bias since samples (4.16) have comparable sizes due to the centering procedure.
Second, the MMD statistic is more effective for solving Problem 2 than CMMD (it is problematic
to calculate the threshold for the latter statistic). Finally, using MMD is advantageous from the
computational viewpoint.
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Figure 4.13: Estimation of a change-point in process AR
(
t; (0.1, 0.9), 3.75W

)
of length

L = 7W +d by the CMMD and MMD statistics: estimation of a change-window by CMMD
(a), reorganizing windows (b) and estimation of a change-point by MMD shifting the left
boundary of the m̂∗-th window (c). The value of the control parameter of the AR process
is shown by the blue line, the change-point – by the red vertical line, window boundaries -
by the black vertical lines, values of CMMD (a) and MMD (c) statistics - by the magenta
curves.

The described above procedure determines the choice of the minimal length τmin(S)

of a stationary segment: in order to detect a change-point using the MMD, LR or Chi

statistics it is necessary to have M ≥ 5 windows, thus one has to take τmin(MMD) =

τmin(LR) = τmin(Chi) = 5W , where W is window size.

4.5.1.3 Bootstrapping

Here we describe application of a bootstrapping to Problem 2. For the MMD statistic

it consists in testing whether it holds

max
m∈{1,2,...,M}

MMD(m; z′) ≥ thMMD(α)

for the probability vectors z′(1), . . . , z′(M) obtained by Algorithm 4 and for the given

probability α of false positive errors. The problem is to compute the threshold

thMMD(α), we use for this bootstrapping, namely, a resampling without replacement

[ST01, Pol07, KMPS09]. The general idea of resampling without replacement is dis-

cussed in Subsection 4.1.1. Here we generate N ∈ N sequences ζj =
(
ζj(m)

)M
m=1

with

j = 1, 2, . . . , N , by shuffling (randomly permuting) elements of z′. Though z′ is not

necessary stationary, ζj becomes “quasi-independent” and “quasi-stationary” after a

proper shuffling. For sufficiently large N it holds

#
{
j = 1, 2, . . . , N | cj ≥ thMMD(α)

}
= bαNc,

for cj = max
m∈{1,2,...,M}

MMD(m; ζj) (cf. with (4.3)). Then the threshold can be computed

by (4.4) on p.82 for S = MMD.

However, the values of MMD(m; ζ) and CMMD(m; ζ) depend strongly on m even
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Algorithm 4 Estimation of a change-point by CMMD and MMD

Input: sequence π =
(
π(d), . . . , π(L)

)
of ordinal patterns of order d, window size W

Output: estimate t̂∗ of the change-point, centered sequence z′ of distributions of ordinal
patterns frequencies; offset Ofs of this sequence in regard to the original one

1: function ChangePointMMD(z)
. First we estimate the change-window m̂∗ by means of Algorithm 3:

2:
(
z(1), . . . , z(M)), m̂∗,Ofs ← ChangeWindowCMMD(π)
. Next we shift the left boundary of the m̂∗-th window to maximize the MMD.

3: M ← M − 1;
4: for j = 0, 1, . . . ,W − 1 do
5: for m = 1, . . . , m̂∗ − 2 do . windows with m < m̂∗ − 1 remain the same
6: wjm ← d+mW ;
7: zj(m) ← z(m);
8: end for
9: m ← m̂∗ − 1

10: wjm← d+mW + j; . m̂∗-th window: stepwise offset the left boundary
11: wjm+1 ← d+ (m+ 2)W ; . merge the m̂∗-th and (m̂∗ + 1)-th windows
12: for i = 0, 1, . . . , (d+ 1)!− 1 do

13: zji (m) ←
#
{
l ∈ {wjm−1, w

j
m−1 + 1, . . . , wjm − 1} | π(l) = i

}
wjm − wjm−1

14: zji (m+ 1) ←
#
{
l ∈ {wjm, wjm + 1, . . . , wjm+1 − 1} | π(l) = i

}
wjm+1 − w

j
m

15: end for
16: for m = m̂∗ + 1, . . . ,M do . windows with m > m̂∗ change their numbers
17: wjm ← d+ (m+ 1)W ;
18: zj(m) ← z(m+ 1);
19: end for
20: end for

. Now the change-point is on the boundary of the (m̂∗−1)-th and m̂∗-th windows
21: k ← arg max

j∈{0,1,...,W−1}
MMD(m̂∗ − 1; zj);

22: z′ ←
(
zk(1), zk(2), . . . , zk(M)

)
;

23: t̂∗ ← d+ (Ofs + m̂∗ − 1)W + k;
24: return t̂∗, z′, Ofs;
25: end function

for stationary ζ12. By this reason in (4.4) we take13

cj = MMD(m̂∗ − 1; ζj), (4.17)

where m̂∗ is the estimate of the change-window. This leads to an increased frequency of

false positive errors in comparison with the nominal value α (see Experiment 4.3).

For the LR and Chi statistics the threshold is computed by (4.4) for ζj obtained

12One can see this in Figure 4.6 for the CMMD statistic: it has maximum near m = M/2 even for
the stationary processes.

13Recall that max
m∈{1,2,...,M}

MMD(m; z′) = MMD(m̂∗ − 1; z′).
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by shuffling the vectors Z(m) of absolute frequencies of ordinal patterns. We take here

cj = max
m∈{1,2,...,M}

S(m; ζj) since LR(m; ζ) and Chi(m; ζ) almost do not dependent on m

for stationary ζ (see Figure 4.7 on p. 94).

4.5.2 Implementation of change-point detection via the CEofOP statistic

Recall that calculation of the CEofOP statistic by (4.10) for the given order d requires

a reliable estimation of empirical conditional entropy for the ordinal patterns of order d

before and after the assumed change-point (see (4.11) on p. 95). For this the length of

a time series should be not smaller than Lmin = (d+ 1)!(d+ 1) (see Subsection 3.4.1,

p. 65). Therefore we recommend to consider CEofOP(t;π) only for

L > τmin = 2(d+ 1)!(d+ 1) (4.18)

and for t ∈ T′0 =
{
τmin(S)

2 + d, τmin(S)
2 + d+ 1, . . . , L− τmin(S)

2

}
, d ∈ N. Hence we

estimate the position of the change-point by

t̂∗(π) = arg max
t∈T′0

CEofOP(t;π).

For the solution of Problem 2 by means of the CEofOP statistic we compute the

threshold by

thCEofOP(α) = ck for k : #{j = 1, 2, . . . , N | cj ≥ ck} = bαNc,

where cj = max
t∈T′0

CEofOP(t; ζj) and ζj is obtained from the sequence π by the block

bootstrapping [Lah03, Pol07, KMPS09]: in contrast to the usual bootstrapping, we

shuffle not single entries of π, but blocks of certain length since the subsequent ordinal

patterns are clearly dependent. To preserve the dependencies between subsequent

ordinal patterns, we take the length of block equal to (d+ 1).
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Chapter 5

Ordinal-pattern-distributions
clustering of time series

This chapter is devoted to the discrimination of time series segments by ordinal-patterns-

based methods (see Chapter 4 for the discussion of time series segmentation). By

discrimination we understand partitioning the set of time series segments into classes

in such a way that segments of one class correspond to the same state of the system

underlying the time series, while different classes correspond to different states. This is

a typical task with many practical applications [FRMS96, TTF09, GRS05].

First methods for ordinal-patterns-based discrimination were introduced in [Sin10,

Bra11, SKC13], where authors split time series into segments of equal length, sufficiently

short to assume that the state of the underlying system does not change inside a segment

(that is the obtained segments are supposed to be stationary), and then group the

segments with similar empirical distributions of ordinal patterns (see Definition 2.17,

p. 37) into classes using ordinal-pattern-distributions (OPD) clustering14 (see p. 115 for

the formal definition).

We suggest to segment a time series by using detection of change-points via the

CEofOP statistic (see Chapter 4) and then cluster the obtained segments. Note that

these segments are pseudo-stationary in the sense of having no structural change-points

(see Definition 4.2, p. 83 and Definition 4.3, p. 86). Our approach is motivated by the

criticism of segmenting time series without taking into account their structure (see,

for instance, [BD00, Subsection 7.3.1]). Using OPD clustering together with ordinal-

patterns-based segmentation seems to be a promising approach to discrimination of

time series segments, therefore in this chapter we empirically investigate algorithms of

OPD clustering.

The chapter is organized as follows. In Section 5.1 we provide basic information

about cluster analysis and explain the main ideas of OPD clustering. In Section 5.2, in

order to choose a clustering algorithm providing the best discrimination of OPDs, we

14Brandmaier used for this an expression “Permutation distribution clustering” referring to the
permutation representation of ordinal patterns (see Remark on p. 33).
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apply OPD clustering with several classical clustering algorithms to artificial time series.

In Section 5.3 we apply OPD clustering to discrimination between EEG recordings

from healthy individuals and from patients with epilepsy (Subsection 5.3.1) and to

discrimination of sleep stages on the basis of EEG recordings (Subsection 5.3.2). In

Section 5.4 we discuss possible directions of future work.

Remark. We would like to point out that in this chapter we discuss only discrimination,

not a classification of time series segments. Roughly speaking, discrimination implies

partitioning of a set of objects into several meaningful classes, while for classification

one has also to associate every new object with one of these classes. Results obtained

in this chapter (especially for the real-world data in Subsection 5.3.2) demonstrate the

perspectives of using ordinal-patterns-based methods for classification of time series,

however the classification itself lies beyond the scope of this thesis.

5.1 Ordinal-pattern-distributions clustering and basic
facts from cluster analysis

The general formulation of the clustering problem is to partition a set of objects called

a dataset into groups called clusters so that each object belongs to exactly one cluster15,

and objects from the same cluster are in a certain sense more similar than objects from

different clusters. We call the obtained grouping (set of clusters) a clustering result. For

clustering, objects are usually represented by vectors of certain features; the quantity

used to measure dissimilarity between these vectors is called a dissimilarity measure, it

is common [AF07, Section 1.3] to understand it as a distance since this simplifies the

interpretation of clustering results.

Definition 5.1. Consider a dataset consisting of n time series
(
yk(0), yk(1), . . . , yk(Lk)

)
of length (Lk + 1) for k = 1, 2, . . . , n. A clustering of this dataset such that every time

series is represented by the empirical distribution uk =
(
uki
)(d+1)!−1

i=0
of ordinal patterns

of order d ∈ N, where

uki =
#{t = d, 1 + d . . . , Lk |

(
yk(t), yk(t− 1), . . . , yk(t− d)

)
has ordinal pattern i}

Lk − d+ 1

is called ordinal-pattern-distributions (OPD) clustering.

Given a dataset of n multivariate time series
(
yk(0),yk(1), . . . ,yk(Lk)

)
of length

(Lk + 1) for k = 1, 2, . . . , n with yk(t) =
(
yk1(t), yk2(t), . . . , ykN (t)

)
for dimension N ∈ N,

OPD clustering is a clustering of vectors uk =
(
uki
)N(d+1)!−1

i=0
formed from empirical

distributions of ordinal patterns in each component of a time series:

uki+(j−1)(d+1)! =
#{t=d,1+d, . . . ,Lk |

(
ykj (t), . . . , ykj (t−d)

)
has ordinal pattern i}

Lk − d+ 1
. (5.1)

15We consider here the so-called “hard” clustering; in the “soft” clustering an object can belong to
more than one cluster, see [MIH08] for details.
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Remark. According to (5.1) we characterize a multivariate time series by banking distri-

butions of ordinal patterns for each time series component one upon the other. We do

not consider the full OPD given by Definition 2.17 on p. 37 since a reliable estimation of

it requires very long time series, which is often impractical (see Remark on p. 66). To

keep notation simple we call uk an OPD both for univariate and multivariate time series.

In the rest of the section we recall techniques for evaluating clustering results

(Subsection 5.1.1) and describe clustering algorithms (Subsection 5.1.2) that are used

further in this chapter. The reader who is familiar with cluster analysis may proceed to

Section 5.2. In this section we use the following notation: groupings of a dataset (in

particular, clustering results) are denoted by bold capital letters U, V, etc., clusters –

by capital letters U , V , etc., and OPDs from the clusters – by bold letters u, v, etc.

5.1.1 Evaluation of clustering results

We describe here several commonly-used techniques for evaluation of clustering results

that are employed in this chapter (for a comprehensive overview see [AF07, Section 1.7,

Chapter 2] and [ELLS11, Section 9.4]).

Consider two groupings U = {U1, U2, . . . , UM} and V = {V1, V2, . . . , VK} of n objects,

where U is a true classification and V is a clustering result; we assume that the number

K ∈ N of clusters is greater than or equal to the number M ∈ N of true classes. The

relation between U and V is summarized in a contingency matrix
(
nij(U,V)

)
[HA85],

where an entry nij(U,V) denotes the number of common objects for the sets Ui and Vj,

and is given by

nij(U,V) = |Ui ∩ Vj |

for 1 ≤ i ≤M and 1 ≤ j ≤ K, where |Ui ∩ Vj | is number of elements in Ui ∩ Vj .
Since a clustering result V = {V1, V2, . . . , VK} is defined up to the order of clusters,

for a given U and a fixed V there are K! possible contingency matrices. To avoid this

uncertainty we fix the order of clusters in V. Given k0, k1, . . . , kM ∈ N0 such that

0 = k0 < k1 < . . . < kM = K, (k0, k1, . . . , kM ) = arg max
k0,k1,...,kM

M∑
i=1

ki∑
j=ki−1+1

nij(U,V). (5.2)

We order clusters in V in such a way that clusters V1, . . . , Vk1 mainly contain elements

from the true class U1, clusters Vk1+1, . . . , Vk2 mainly contain elements from the true

class U2, and so on. Formally, the ordering of clusters in V should maximize16

agreem(U,V) =
1

n

M∑
i=1

ki∑
j=ki−1+1

nij(U,V) (5.3)

for k0, k1, . . . , kM ∈ N0 given by (5.2).

16If several numberings provide the maximal value in (5.3), we choose one of them by random.
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The quantity defined by (5.3) is called agreement (sometimes it is also referred as

sensitivity). Agreement is often used in biomedical applications, it represents a share of

correctly grouped objects and provides a natural measure for evaluation of clustering

results. It holds 0 ≤ agreem(U,V) ≤ 1; if clustering result V coincides with the true

classification U, then agreem(U,V) = 1. When the number of clusters K coincides

with the number of true classes M , then agreement is simply given by
M∑
i=1

nii(U,V).

We say that the clustering result V is good, if agreement is close to 1.

Another often-used quantity describing a clustering result is the Fowlkes-Mallows

index (FMI) [HA85], defined by

FMI(U,V) =

M∑
i=1

K∑
j=1

(nij(U,V)
2

)
2

√
M∑
i=1

(
ni·
2

) K∑
j=1

(n·j
2

) ,

where ni· =
K∑
j=1

nij(U,V), n·j =
M∑
i=1

nij(U,V). It holds 0 ≤ FMI(U,V) ≤ 1, with

FMI(U,V) = 1 for the coincidence of U and V.

Let us illustrate the meaning of the agreement and FMI by the following example.

Example 5.1. Consider a dataset divided into classes U1 and U2 both containing 100

objects. In Table 5.1 we present contingency matrices, values of agreement and FMI for

three clustering results obtained for this dataset: V1 and V2 are rather good, while V3

is “bad”. Note that though agreem(U,V1) = agreem(U,V2), it holds FMI(U,V1) >

FMI(U,V2) since for V1 the number of clusters coincides with the number of true

classes, whereas in V2 one cluster corresponds to class U1 and two clusters – to U2.

clustering result V1 = {V 1
1 , V

1
2 } V2 = {V 2

1 , V
2

2 , V
2

3 } V3 = {V 3
1 , V

3
2 }

clusters V 1
1 V 1

2 V 2
1 V 2

2 V 3
3 V 3

1 V 3
2

class U1 90 10 40 40 20 70 30
class U2 20 80 0 10 90 50 50

agreem 0.85 0.85 0.60
FMI 0.74 0.65 0.52

Table 5.1: The agreement and the Fowlkes-Mallows index for three clustering results

Sometimes a visualization of the obtained clusters also indicates whether the cluster-

ing result is good or not. Since visualization of multidimensional vectors is complicated,

a common solution is to reduce dimensionality of the vectors using principal component

analysis (PCA) [AF07, Subsection 2.1.1]: one depicts only the 2d or 3d vectors of the
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first principal components17.

We use FMI and agreement to evaluate clustering results; we use contingency

matrices and PCA to visualize clustering results.

5.1.2 Dissimilarity measures and clustering algorithms

Three commonly used dissimilarity measures [ELLS11, Section 3.3] that were previously

applied to OPDs are listed in Table 5.2. We consider there dissimilarity between

the OPDs u =
(
ui
)N(d+1)!−1

i=0
and v =

(
vi
)N(d+1)!−1

i=0
for order d ∈ N and dimension

of original time series N ∈ N. To provide the reader an impression of the essential

differences of these dissimilarity measures, we show in Table 5.2 the sets of points

on a plane equidistant from a central point with respect to the given distances (this

two-dimensional case corresponds to the OPD of order d = 1, N = 1).

Dissimilarity Dissimilarity between OPDs Application Shape of
measure u and v to OPDs a “circle”

Euclidean
distance ρE(u,v) =

√
N(d+1)!−1∑

i=0
(ui − vi)2 [SKC13]

city block
distance

ρC(u,v) =
N(d+1)!−1∑

i=0
|ui − vi| [Sin10]

squared Hellinger
distance

ρH(u,v) = 1
2

N(d+1)!−1∑
i=0

(√
ui−
√
vi
)2 [Bra11,

PSL13]

Table 5.2: Dissimilarity measures used for comparing ordinal-pattern-distributions (OPDs)

We consider in this chapter five classical clustering algorithms that are briefly

described below (for details we refer to [ELLS11]).

• Three algorithms of agglomerative clustering: complete linkage, average linkage and

single linkage clustering, having the same scheme: initially every OPD is assigned to

a separate cluster, then at every step two nearest clusters are merged. To decide,

which clusters are the nearest, a distance dist(U, V ) between clusters U and V is

introduced. It is defined in different ways for these three algorithms, namely:

complete linkage: dist(U, V ) = max
u∈U

max
v∈V

ρ(u,v),

average linkage: dist(U, V ) =
1

|U ||V |
∑
u∈U

∑
v∈V

ρ(u,v),

single linkage: dist(U, V ) = min
u∈U

min
v∈V

ρ(u,v),

17We follow here [AF07] in using PCA; however, to visualize vectors of relative frequencies one could
also use correspondence analysis, see [Gre07] for details of this approach.
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where |U | is the number of elements in cluster U and ρ(u,v) is a dissimilarity

measure between OPDs u and v. Agglomerative clustering can be used with

any dissimilarity measure, see Table 5.2. Note that in both previously suggested

methods for OPD clustering [Bra11, SKC13], agglomerative clustering (namely,

the complete linkage algorithm) was used.

• Centroid-based clustering assigns each OPD to the cluster with the nearest center,

which is defined depending on the chosen clustering algorithm and dissimilarity

measure. We use the most common algorithm of centroid-based clustering called

k-means. For the given number K ∈ N of clusters k-means forms a grouping

U = {U1, U2, . . . , UK} that minimizes the sum for k = 1, 2, . . . ,K of distances

between all OPD u ∈ Uk and the center mk of the cluster Uk. The exact function

being minimized and the formula for computing the center of a cluster depend on

the used dissimilarity measure, see Table 5.3.

Dissimilarity measure Function being minimized Center of the cluster Uk

Euclidean distance arg min
U

K∑
k=1

∑
u∈Uk

(ρE(u,mk))
2 mk = 1

|U |
∑

u∈Uk
u

city block distance18 arg min
U

K∑
k=1

∑
u∈Uk

(ρC(u,mk))
mk is the component-wise

median of all u ∈ Uk

squared Hellinger
distance19 arg min

U

K∑
k=1

∑
u∈Uk

(ρH(u,mk)) mk =
(

1
|U |

∑
u∈Uk

√
u
)2

Table 5.3: The k-means algorithm for various dissimilarity measures

• Distribution-based clustering. Here OPD is considered as a random vector, and

similarity of OPD is interpreted as similarity of their distribution laws (that is no

external dissimilarity measure is used). Then each cluster contains vectors that

are distributed by the same or by a similar law. We use the classical expectation-

maximization algorithm (see [ELLS11, Chapter 6] for the description of the method

and [Che12] for a MATLAB realization) that considers OPD as a random vector

with Gaussian distribution20.

5.2 Investigation of algorithms for ordinal-pattern-distri-
butions clustering

To our knowledge, a comparison of different clustering algorithms and dissimilarity

measures for OPD clustering has been done only in [Bra11], where the Euclidean and the

18When the city block distance is used, the clustering algorithm is usually called k-medians [ELLS11].
19Using k-means with the squared Hellinger distance is based on the equality ρH(u,v) = 2(ρE(

√
u,
√
v))2.

20We do not really assume that vectors representing OPD have Gaussian distribution; this is just a
framework used by expectation-maximization algorithm for measuring dissimilarity between vectors.
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squared Hellinger distance were compared for the complete linkage clustering algorithm.

In this section we apply five clustering algorithms with three dissimilarity measures

defined in Subsection 5.1.2 for OPD clustering of artificial time series and compare the

obtained results.

5.2.1 Artificial time series for the experiments

Two types of artificial time series are used for the experiments in this section, namely

realizations of (stationary) noisy logistic and autoregressive processes. Recall (Subsec-

tion 3.4.2) that a noisy logistic stochastic process NL for t ∈ T is given by

NL(t; r, σ) = f tr + σε(t),

where fr : [0, 1] ←↩ is the logistic map with control parameter r ∈ [1, 4] (as in the

previous chapters, f tr = fr ◦ f t−1
r for t > 1, f1

r = fr), ε is the standard additive white

Gaussian noise (see p. 32), and σ > 0 is the level of noise. An autoregressive process for

t ∈ T is defined by

AR(t;φ) = φAR(t− 1;φ) + ε(t),

where φ ∈ [0, 1) is a control parameter of the autoregressive model.

In the experiments in Subsection 5.2.2 we cluster a noisy logistic (NL) and an

autoregressive (AR) dataset, both consisting of 1000 realizations of the corresponding

processes with ten different values of control parameters (100 realizations for each

value). In order to make distinguishing of realizations non-trivial, we consider the NL

process with r ∈ {3.57, 3.62, 3.67, 3.72, 3.77, 3.82, 3.88, 3.92, 3.96, 4.00}, σ = 0.2, and the

AR process with φ ∈ {0.0, 0.1, . . . , 0.9}. For this choice, OPDs for realizations of the

processes differ only slightly. Figure 5.1 demonstrates OPDs of order d = 4 for the time

series with length L = 2400 from the NL and AR datasets.

(a) (b)

Figure 5.1: Distributions of ordinal patterns of order d = 4 (two principal components)
for realizations of NL (a) and AR (b) stochastic processes; 80% (a) and 67% (b) of total
variance between the principal components is explained by the first two components
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5.2.2 Ordinal-pattern-distributions clustering of artificial time series

In this subsection we evaluate the results obtained by using clustering algorithms

and dissimilarity measures (defined in Subsection 5.1.2) for the NL and AR datasets.

OPDs are calculated for order d = 4, that is they are characterized by vectors of

length (d+ 1)! = 120. We follow the practical recommendations of [Ami10] (see also

Subsection 3.4.1) and consider the length of a time series L ≥ L0 = 5(d + 1)! = 600.

However, we expect that even in this case the value of L may strongly influence

clustering results, therefore we consider not only fixed L (Experiment 5.1) but also

compare clustering results for various values of L (Experiment 5.2).

Experiment 5.1: Which combination of a clustering algorithm and a dissimilarity

measure provides the best results of OPD clustering for the NL and AR datasets?

Objects: n = 1000 time series with length L = 2400 = 4L0 from the NL and AR

datasets (see Subsection 5.2.1 for details).

Technique. We apply to the two datasets four clustering algorithms (complete linkage,

single linkage, average linkage, k-means) with three dissimilarity measures listed in

Table 5.2, and the expectation-maximization algorithm with its internal dissimilarity

measure, altogether 13 combinations of a clustering algorithm with a dissimilarity

measure.

Results: the values of FMI are presented in Tables 5.4.

NL dataset AR dataset
hhhhhhhhhhhhhhhhhhAlgorithm

Dissimilarity measure ρE ρC ρH ρE ρC ρH

complete linkage 0.912 0.885 0.904 0.517 0.522 0.513
single linkage 0.740 0.553 0.556 0.312 0.312 0.312
average linkage 0.912 0.907 0.843 0.587 0.522 0.546

k-means 0.925 0.921 0.885 0.716 0.701 0.722

expectation-maximization 0.506 0.498

Table 5.4: Values of FMI characterizing the results of OPD clustering from the NL
dataset and from the AR dataset. The best value for each dataset is shown in bold

Conclusions: single linkage and expectation-maximization clustering provide much

worse results than k-means, complete and average linkage clustering. Based on the

results of this experiment we consider further only the three latter algorithms.

Experiment 5.2: How the results of OPD clustering depend on the length L of time

series?

Objects: n = 1000 time series from the NL dataset and from the AR dataset (see

Subsection 5.2.1 for details) with the lengths L = L0,
√

2L0, 2L0, . . . , 16L0, where
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L0 = 5(d+ 1)! = 600.

Results are presented in Figure 5.2.
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Figure 5.2: Values of FMI characterizing the results of OPD clustering of time series
from the NL dataset (a) and from the AR dataset (b) for various lengths of time series.
Results for ρE and ρC are very similar, so values for ρC are not shown

Discussion and conclusions:

1. The k-means clustering for the most values of L either outperforms other clustering

algorithms (the AR dataset) or provides comparable results (the NL dataset); the

clustering results are a bit better when using k-means with the squared Hellinger

distance ρH than with ρE or ρC .

2. Results of OPD clustering strongly depend on the length of time series: the longer

the time series is, the better the results of the clustering are. In order to get

reliable results of OPD clustering for order d ≤ 5, we recommend to take

L ≥ 4L0 = 20(d+ 1)!. (5.4)

Note that this is just an empirical finding and we do not have theoretical evidence

for this. Condition (5.4) is consistent with the findings in [Bra11], where OPD

clustering was efficient for L > 10(d+ 1)!.

Since the best clustering results in Experiments 5.1 and 5.2 are obtained for the

k-means algorithm with the squared Hellinger distance ρH , we use this combination of

an algorithm and a dissimilarity measure for OPD clustering in Section 5.3; however,

in Subsection 5.3.1 we also provide a comparison with results for other clustering

algorithms.
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5.3 Applications to biomedical time series

5.3.1 Applications to epileptic EEG recordings

Detection of epileptic seizures is an important problem in biomedical research, we refer

to [LE98, MWWM99, MAEL07] for an overview. We consider in Experiment 5.3 an

open access dataset described in [ALM+01] and accessible at [And03], further we refer

to it as “Bonn dataset”. It consists of 500 single-channel EEG recordings divided into

five groups, here we consider three of them, namely:

• Group A: surface EEG of healthy volunteers with eyes open.

• Group D: intracranial EEG during seizure-free intervals measured in the epilepto-

genic zones.

• Group E: intracranial EEG during seizures selected from recording sites exhibiting

ictal activity.

Experiment 5.3: We employ OPD clustering with complete linkage and k-means

clustering algorithms, and with several dissimilarity measures to group EEG recordings

into three clusters: HEALTHY, SEIZURE-FREE and ICTAL (ideally, they should

correspond to the groups A, D and E, respectively) and compare clustering results.

Objects: 300 EEG recordings from the groups A, D and E of the Bonn dataset. Every

recording represents 23.6 seconds of artifact-free EEG with a sampling rate 173.61 Hz

and has length L = 4097.

Technique. We consider two methods of OPD clustering, first of them represents

our approach (OPD clustering together with segmentation of time series into pseudo-

stationary segments), while the second method is the OPD clustering as it was suggested

in [Bra11, SKC13].

Method 1: clustering of pseudo-stationary time series. We take here the entire original

time series since they fulfill a weak stationarity criterion formulated in [ALM+01,

Section II B2].

Method 2: clustering short equi-sized time series that are supposed to be stationary.

We follow [SKC13] in using segments of length Lshort = 528, which in this case21

approximately corresponds to 3 s. Each recording is split into 8 segments.

Results are presented in Table 5.5. The best values of FMI are obtained by using

Method 1 (clustering of the stationary time series) with the k-means algorithm and the

squared Hellinger distance ρH for d = 4. For this case agreem = 0.87, that is 87% of

time series are discriminated correctly. Table 5.6 shows the contingency matrix for this

21Note that a rule of thumb is to consider EEG segments of 2 s [BD00, Section 7.3]. In particular, this
is done in [SKC13], where the sampling rate is 256 Hz. Here the sampling rate is 173.61 Hz, therefore
we take longer segments to obtain reliable estimates of ordinal pattern frequencies.
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method in comparison with the contingency matrix for k-means with city block distance

ρC for d = 4; Figure 5.3 illustrates the resulting clusters for these two methods.

Method Method 1 Method 2

Order d = 2 d = 3 d = 4 d = 5 d = 2 d = 3 d = 4

k-means, ρH 0.590 0.700 0.779 0.774 0.584 0.610 0.741
k-means, ρC 0.593 0.605 0.746 0.755 0.579 0.577 0.627
k-means, ρE 0.592 0.596 0.599 0.591 0.591 0.584 0.582

complete linkage, ρH 0.461 0.465 0.656 0.691 0.569 0.503 0.477
complete linkage, ρC 0.438 0.598 0.691 0.667 0.608 0.583 0.586
complete linkage, ρE 0.493 0.536 0.594 0.534 0.550 0.552 0.525

Table 5.5: Values of FMI characterizing the results of OPD clustering of the Bonn
dataset, the best values for every d are shown in bold

Method 1, k-means, ρH , d = 4 Method 1, k-means, ρC , d = 4

HEALTHY SEIZURE-FREE ICTAL HEALTHY SEIZURE-FREE ICTAL

Group A 100 0 0 100 0 0
Group D 25 75 0 26 71 3
Group E 1 13 86 1 16 83

Table 5.6: Contingency matrices for the Bonn dataset

(a) (b)

Figure 5.3: Distributions of ordinal patterns of order d = 4 (three principal components)
for the EEG recordings from groups A, D and E of the Bonn dataset [And03], discrimi-
nated using the OPD clustering with the k-means algorithm and the squared Hellinger
distance ρH (a) and the city block distance ρC (b). The first three components explain
99% of total variance between the principal components
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Discussion and conclusions:

1. Clustering results provided by the k-means algorithm with ρH are considerably

better (according to the values of FMI and of agreement) than for other clustering

algorithms and dissimilarity measures. This confirms superiority of the k-means

clustering with ρH for OPD clustering, which was observed in Section 5.2.

2. For most of the considered clustering algorithms, dissimilarity measures and values

of d, Method 1 (OPD clustering of pseudo-stationary segments) provides much

better results than Method 2 (OPD clustering of short equi-sized segments). We

suppose that this is due to the fact that lengths of the segments required to assume

their stationarity are too small to provide a reliable estimation of OPD.

3. In general, the higher order d, the better clustering results in this experiment are.

The only exception is d = 5 for that the results are worse than for d = 4, but in

this case the empirical condition (5.4) is not satisfied.

4. The obtained results show the potential of OPD clustering, however, some methods

provide a better classification for the Bonn dataset (see [TTF09] for the review).

5.3.2 Applications to sleep data

In this section we employ ordinal-patterns-based segmentation and OPD clustering to

sleep stage discrimination, which is a relevant problem in biomedical research [SAIB+07,

Lib12]. According to the classification in [RK68], there are six sleep stages:

1. the awake state;

2. two stages of light sleep (S1, S2);

3. two stages of deep sleep (S3, S4);

4. rapid eye movement (REM).

A classical approach to the automatic discrimination of sleep stages is based on

studying spectral characteristics of EEG [BDKS99, KRDF01], though some empiri-

cal studies show that non-linear measures yield better discrimination of sleep stages

[FRMS96]. Construction of a generally recognized automatic procedure of sleep stages

discrimination is problematic due to the complex nature of EEG signal; thus segmen-

tation and discrimination of sleep EEG are mainly carried out manually by experts

[SAIB+07]. The result of manual scoring is called hypnogram: it is a sequence of sleep

stages computed for 30-s epochs.

Can ordinal-patterns-based methods be helpful for the analysis of sleep

EEG? To answer this question we apply to EEG data ordinal-patterns-based discrimina-

tion. First we segment each recording of a dataset by using the method for change-point

detection via the CEofOP statistic (details of the segmentation of multivariate time
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series are described in Algorithm 5 in Subsection 5.3.3), then we cluster the obtained

segments of all EEG time series with the k-means algorithm and the squared Hellinger

distance ρH . In Experiments 5.4 and 5.5 we compare the discrimination of sleep stages

obtained by using this method with the manual scoring by experts.

Experiment 5.4: investigating efficiency of ordinal-patterns-based segmentation and

OPD clustering for discrimination between sleep stages.

Objects: 19 night EEG recordings with sampling rate 500 Hz from a dataset with

manually scored hypnograms, kindly provided by Vasil Kolev (Institute of Neurobiology

Bulgarian Academy of Sciences)22. For each recording we have selected a part that is not

shorter than 2 hours and does not contain too many artifacts according to the expert

scoring (see section “Discussion and conclusions” of this experiment). For the analysis

we use EEG time series from F4 and C4 locations.

Technique. The ordinal-patterns-based discrimination of sleep EEG consists of the

following steps:

1. The reference channel (nose) is subtracted from each EEG time series.

2. EEG time series are filtered to the band 1-45 Hz with the Butterworth filter of order 5.

3. The ordinal-patterns-based segmentation procedure described by Algorithm 5 in

Subsection 5.3.3 is employed for d = 4.

4. OPD clustering for order d = 4 using k-means with squared Hellinger distance

ρH is applied to the segments of all recordings. The number of clusters K = 6 is

chosen, which corresponds to the number of sleep stages.

5. The obtained clusters were assigned to the following classes:

• class AWAKE – one cluster;

• class LIGHT SLEEP – two clusters (one of the clusters may be associated

with stage S1, and the other one – with stage S2, but discrimination between

these two stages was poor, so we do not distinguish between S1 and S2);

• class DEEP SLEEP – two clusters (one of the clusters is associated with stage

S3, and the other – with stage S4. However, we do not distinguish between S3

and S4 in order to be consistent with the modern classification [SAIB+07].);

22The entire dataset consists of 55 EEG recordings, we have rejected 36 recordings after preliminary
inspection due to the following reasons:
• too short sleep and too many movement artifacts (recordings 15, 41, 43, 49, 55);

• recording problems, disconnection of relevant electrodes, etc (recordings 04, 11, 27, 45, 56);

• erroneous file of manual scoring (recording 03);

• too many artifacts (recordings 01, 02, 05, 07–10, 12, 13, 16–18, 21, 26, 28, 29, 33, 36, 40, 44, 47,
48, 50, 53, 57)

The selected recordings are listed in Table 5.8.
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• class REM – one cluster.

The transition-state segments (see Algorithm 5) are considered as unclassified.

Results: Table 5.7 presents the correspondence between the results of ordinal-patterns-

based discrimination vs. manual scoring. Amounts of correctly identified epochs are shown

in bold. The share of correctly identified epochs for every recording is shown in Table 5.8.

Results of ordinal-patterns-based discrimination

AWAKE LIGHT SLEEP DEEP SLEEP REM unclassified

M
an

u
al

sc
or

e W 833 69 0 347 3
S1, S2 84 5550 398 1222 18
S3, S4 1 807 3256 17 14
REM 2 896 23 1340 2
unclassified 8 90 19 41 5

Table 5.7: Contingency matrices between the manual score and the results of OPD
clustering (for all 19 recordings considered in Experiment 5.4)

Recording Amount of sleep-related epochs Agreement

06 243 0.765
14 863 0.796
19 841 0.774
20 1071 0.767
22 700 0.541
23 914 0.786
24 497 0.761
25 728 0.632
30 1067 0.725
31 893 0.779
32 932 0.806
34 1054 0.682
35 822 0.721
38 814 0.849
39 1055 0.694
42 705 0.765
46 886 0.594
52 373 0.756
54 587 0.675

Overall 15045 0.730

Table 5.8: Values of agreement between the manual scoring and the results of OPD
clustering for sleep EEG recordings considered in Experiment 5.4
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Discussion and conclusions:

1. The overall agreement between the manual scoring and the suggested ordinal-

patterns-based method for sleep EEG discrimination is 0.73 (see Table 5.8). This

means that the suggested method provides a correct discrimination for 73% epochs,

which is a rather good result.

2. Note that the ordinal-patterns-based discrimination is based on completely data-

driven procedures of ordinal-patterns-based segmentation and OPD clustering;

the only potential problem is the choice of the number K of clusters, which is

required for applying the k-means clustering algorithm. In the general case this

problem is non-trivial (see [ELLS11, Section 5.5] for a discussion), however here

we obtain a discrimination for the natural choice of the number of clusters K = 6.

3. We have observed that ordinal-patterns-based segmentation is quite sensitive

to EEG artifacts. Here we do not use any artifact removal procedures, but we

suppose that this may be useful for further studies.

4. We would like to emphasize that filtering of EEG recordings seems to be important

for the suggested method of ordinal-patterns-based discrimination since application

of our technique to the unfiltered EEG time series provides much worse results.

Experiment 5.5: investigating efficiency of ordinal-patterns-based segmentation and

OPD clustering for discrimination between sleep stages for a publicly available dataset.

Objects: eight EEG recordings with manually scored hypnograms from the dataset

described in [KZT+00] and provided by physionet.org [GAG+00]. We refer to the

recordings according to their names in the dataset, see Table 5.10. Each recording

contains two EEG time series recorded from the Fpz-Cz and Pz-Oz locations and

sampled at 100 Hz. Four recordings contain only night EEG and are considered entirely;

other recordings contain EEG monitored during 24 hours, for them only the night-related

part is investigated.

Technique. We apply the steps 2-4 of the procedure described in the section “Technique”

of Experiment 5.4 with the only difference: here we have not obtained a meaningful

discrimination of sleep stages for number of clusters K < 8 since OPDs for EEG in

the waking state and during the light sleep differ significantly for different persons.

Therefore, we take K = 8, analyze the obtained clusters and group them into larger

classes according to the manual scoring for the majority of the epochs in a cluster:

• class AWAKE – three clusters;

• class LIGHT SLEEP – three clusters;

• class DEEP SLEEP – one cluster;

• class REM – one cluster.
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The transition-state segments (see Algorithm 5 in Subsection 5.3.3) are considered as

unclassified.

Results: Table 5.9 presents the correspondence between the results of ordinal-patterns-

based discrimination vs. manual scoring. Amounts of correctly identified epochs are

shown in bold. The share of correctly identified epochs for every recording is shown in

Table 5.10.

Results of ordinal-patterns-based discrimination

AWAKE LIGHT SLEEP DEEP SLEEP REM unclassified

M
an

u
al

sc
or

e W 440 165 0 103 3
S1, S2 110 3234 227 635 19
S3, S4 0 404 880 10 5
REM 0 244 0 1365 0
unclassified 3 6 1 1 0

Table 5.9: Contingency matrices between the manual score and the results of OPD
clustering (for all eight recordings from the dataset [GAG+00])

Recording Amount of sleep-related epochs Agreement

sc4002 1050 0.736
sc4012 1150 0.737
sc4102 1050 0.838
sc4112 750 0.792
st7022 944 0.612
st7052 1032 0.813
st7121 1027 0.807
st7132 852 0.689

Overall 7855 0.754

Table 5.10: Agreement between the manual scoring and the results of OPD clustering
for sleep EEG recordings from the dataset [GAG+00]

Figure 5.4 illustrates the outcome of the ordinal-patterns-based discrimination of

sleep EEG in comparison with the hypnogram.

Discussion and conclusions.

1. The overall agreement between the manual scoring and the suggested ordinal-

patterns-based method for sleep EEG discrimination is 0.754 (see Table 5.10),

which is comparable with the results for the same dataset reported by researchers

that used different discrimination methods. In particular, in studies [BDHS+07]

and [RJK+12] authors obtain agreement with the manual scoring equal to 0.745

and 0.815, respectively.

2. We obtain here results, similar to Experiment 5.4, but we use for this K = 8

clusters and then manually assign them to classes. We suppose that the bad
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Figure 5.4: Hypnogram (bold curve) and the results of ordinal-patterns-based discrimi-
nation of sleep EEG (white color corresponds to class AWAKE, light gray – to LIGHT
SLEEP, gray – to DEEP SLEEP, dark gray – to REM, red – to unclassified segments)
for recording st7121 from the dataset [GAG+00]

clustering results for K < 8 are due to a small number of epochs used for clustering

in comparison with Experiment 5.4.

Remark. We have also tried to apply to the EEG recordings from Experiments 5.4 and 5.5

the OPD clustering of 2-s segments as suggested in [SKC13]. We have followed the original

paper in using the complete linkage clustering algorithm with the Euclidean distance

ρE; we have tried d = 2, 3 that satisfy condition (5.4). However, OPD clustering of 2-s

segments did not provide any sensible discrimination of sleep stages for the most of the

considered EEG recordings. In particular, we have encountered the two following problems.

• The method from [SKC13] has very high storage requirements (the discrimination

of k recordings requires using a matrix with more than k2 · 108 entries), which

makes clustering segments of several EEG recordings problematic.

• Considering distributions of ordinal patterns in relatively short 2-s segments

leads to a considerable number of outliers. Many clustering algorithms and,

especially, complete linkage clustering, are sensitive to outliers [MC02, p.392],

[BS12, Section 4.5]; in particular, we observe that when applying OPD clustering

to 2-s segments of sleep EEG recordings, clusters are often formed around outliers

and discrimination of sleep stages fails.

We obtain in Experiments 5.4 and 5.5 a rather high agreement with the manual

scoring by applying the ordinal-patterns-based discrimination to the two entirely different

datasets. Indeed, the considered EEG recordings were acquired by a different equipment

from different locations of scalp electrodes, and even the sampling rate for the recordings
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from the two datasets is notably different.

Our results show a potential of ordinal-patterns-based segmentation and OPD

clustering for discrimination of sleep stages in EEG data. Though we do not claim

that ordinal-patterns-based methods may provide a fully automatic sleep scoring, such

methods can be used as a preliminary step for the discrimination of sleep stages by an

expert or by more effective and complex automatized methods. Another possibility is to

construct a method for discrimination of sleep stages based on combined use of ordinal

and non-ordinal features. Finally, one could improve the results of ordinal-patterns-

based discrimination by using classification techniques different from clustering, for

instance, support vector machines [Bur98].

5.3.3 An algorithm for ordinal-patterns-based segmentation of a multi-
channel EEG recording

Here we present Algorithm 5, which is used in Subsection 5.3.2 for discrimination of

multi-channel sleep EEG time series. We set there the minimal length τvalid of a valid

stationary segment to 3000 time points (that is a valid stationary segment should be at

least 30-s., which corresponds to the length of an epoch used in a manual scoring).

5.4 Conclusions

Results of the experiments described in this chapter allow us to draw the following

conclusions:

1. Ordinal-pattern-distributions (OPD) clustering is a rather effective technique for

discrimination of stationary segments of time series (one can obtain such segments

using ordinal-patterns-based segmentation via CEofOP statistic described in

Chapter 4).

2. Effectiveness of OPD clustering of time series segments strongly depends on their

lengths. According to our findings, the length of a time series segment should

satisfy L > 20(d+ 1)! for d ≤ 5, however this boundary is completely empirical

and needs further investigation.

3. The best candidates for using in OPD clustering are the k-means and complete

linkage clustering algorithms with the squared Hellinger, city block or Euclidean

distances. Specifically, we obtained the best clustering results when using the

k-means clustering algorithms with the squared Hellinger distance.

4. The results obtained by applying ordinal-patterns-based segmentation and OPD

clustering to discrimination of sleep stages on the basis of EEG data demonstrate

the potential of ordinal-patterns-based methods for analysis of real-world data,

though further studies in this direction are required.
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Algorithm 5 Ordinal-patterns-based segmentation of a multi-channel EEG recording

Input: N -channel EEG recording yj =
(
yj(0), yj(1), . . . , yj(L)

)
of length L for j =

1, 2, . . . , N , order d of ordinal patterns, minimal length τvalid of a valid stationary
segment

1: function SegmentEEG(y1, y2, . . . , yN , d, τvalid)
2: α ← 0.08; . corresponds to probability of false alarms 0.07
3: τmin ← 2

(
(d+ 1)2d!

)
; . minimal time between change-points

. as it was suggested in Subsection 4.5.2
4: N̂st ← 0; t̂∗0 ← 0;
5: for j = 1, 2, . . . , N do . detect change-points for every EEG channel
6:

(
πj(d), . . . , πj(L)

)
← sequence of ordinal patterns of order d for yj

7: N̂ j
st,
(
t̂j0, t̂

j
1, . . . , t̂

j

N̂j
st

)
← Problem3

((
πj(d), . . . , πj(L)

)
, α, CEofOP, τvalid

)
;

8: . insert change-points for each EEG channel into the joint list:
9:

(
t̂∗
N̂st+1

, t̂∗
N̂st+2

, . . . , t̂∗
N̂st+N̂

j
st−1

)
←
(
t̂j1, t̂

j
2, . . . , t̂

j

N̂j
st−1

)
;

10: N̂st ← N̂st + N̂ j
st − 1;

11: end for
12: N̂st ← N̂st + 1; t̂∗

N̂st
← L;

13:
(
t̂∗0, t̂

∗
1, . . . , t̂

∗
N̂st

)
← Sort

(
t̂∗0, t̂

∗
1, . . . , t̂

∗
N̂st

)
; . sort change-points in increasing order

14: t← t̂∗1; k ← 2;
15: . If a change-point is too near to the previous, we suppose that these change-points
16: . correspond to the same change reflected by different channels not simultaneously.
17: . We mark the segment between such change-points as a transition state.
18: repeat
19: if t̂∗k − t ≥ τvalid then
20: t ← t̂∗k;
21: if TransSegmentk = −1 then
22: . If previous segment is transitional, then merge it with the current:
23: Delete t̂∗k−1 from the change-points list;

24: N̂st ← N̂st − 1;
25: else
26: TransSegmentk ← −1; . mark k-th segment as a transition state
27: end if
28: else
29: t ← t̂∗k;
30: TransSegmentk ← 0;
31: k ← k + 1;
32: end if
33: until k < N̂st;
34: return N̂st,

(
t̂∗0, . . . , t̂

∗
N̂st

)
,
(
TransSegment0, . . . ,TransSegment

N̂st−1

)
;

35: end function
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[SK11] M. Sinn, K. Keller. Estimation of ordinal pattern probabilities in gaussian

processes with stationary increments. Computational Statistics & Data

Analysis, 55(4): 1781–1790, 2011.

[SKC13] M. Sinn, K. Keller, B. Chen. Segmentation and classification of time series

using ordinal pattern distributions. European Physical Journal Special

Topics, 222(2): 587–598, 2013.

[Spr03] J.C. Sprott. Chaos and time-series analysis. Oxford: Oxford University

Press, 2003.

[SSH99] Z. Sidák, P.K. Sen, J. Hájek. Theory of rank tests. 2nd ed. New York:

Academic press, 1999.

[ST01] W.D. Smith, R.L. Taylor. Dependent bootstrap confidence intervals. In

I.V. Basawa, C.C. Heyde, R.L. Taylor, editors, Selected Proceedings of the

Symposium on Inference for Stochastic Processes, pages 91–108. Institute

of Mathematical Statistics, 2001.

[Sto12] D.S. Stoffer. Frequency Domain Techniques in the Analysis of DNA

Sequences. In T.S. Rao, S.S. Rao, C.R. Rao, editors, Handbook of Statistics:

Time Series Analysis: Methods and Applications, pages 261–296. Elsevier,

2012.

[Thu01] H. Thunberg. Periodicity versus chaos in one-dimensional dynamics. SIAM

Review, 43(1): 3–30, 2001.

[TK98] H.M. Taylor, S. Karlin. An introduction to stochastic modeling. 3rd ed.

Boston: Academic Press, 1998.

[TTF09] A.T. Tzallas, M.G. Tsipouras, D.I. Fotiadis. Epileptic seizure detection in

EEGs using time–frequency analysis. IEEE Transactions on information

Technology in Biomedicine, 13(5): 703–710, 2009.

141



[UK13] V.A. Unakafova, K. Keller. Efficiently measuring complexity on the basis

of real-world data. Entropy, 15(10): 4392–4415, 2013.

[UK14] A.M. Unakafov, K. Keller. Conditional entropy of ordinal patterns. Phys-

ica D, 269: 94–102, 2014.

[Una15] V.A. Unakafova. Investigating measures of complexity for dynamical

systems and for time series. PhD thesis, University of Lübeck, 2015.
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