
From the Institute of Computer Engineering

of the University of Lübeck

Direktor:

Prof. Dr.-Ing. Erik Maehle

Routing and Sensor Search
in the

Internet of Things

Dissertation for Fulfilment of Requirements

for the Doctoral Degree

of the University of Lübeck

– from the Department of Computer Sciences/Engineering –

Submitted by

M.Sc. Cuong Duc Truong

from Hanoi, Vietnam

Lübeck, January 2014

From the Institute of Computer Engineering

of the University of Lübeck

Direktor:

Prof. Dr.-Ing. Erik Maehle

Routing and Sensor Search
in the

Internet of Things

Dissertation for Fulfilment of Requirements

for the Doctoral Degree

of the University of Lübeck

– from the Department of Computer Sciences/Engineering –

Submitted by

M.Sc. Cuong Duc Truong

from Hanoi, Vietnam

Lübeck, January 2014

First referee: Prof. Dr. sc. Kay Uwe Römer

Second referee: Prof. Dr. rer. nat. Stefan Fischer

Date of oral examination: 13.01.2014

Approved for printing. Lübeck, den 13.01.2014

i

Abstract

by M. Sc. Cuong Duc Truong

Institute of Computer Engineering, University of Lübeck

We are witnessing the formation of an Internet of Things (IoT), where real-world entities

(e.g., people, plants, cars) augmented with computing devices (e.g., smartphones, tablets,

sensor nodes), sensors (e.g., humidity sensors, microphones, cameras), and actuators (e.g.,

motors, LED) are connected to the Internet, enabling them to publish their generated data

on the Web. By mashing up these “Smart Things” with the services and data available on

the Web, novel IoT applications can be created.

Two main characteristics of the IoT are its large scale interconnecting billions of Smart Things

in the next decade, and the resource limitations of Smart Things (i.e., of their embedded

computing devices). For many IoT applications, routing and sensor search are essential

services. The sensor search service allows for quickly finding Smart Things in the IoT based

on the real-world states perceived by their embedded sensors. To facilitate sensor search and

also other IoT applications, a routing service is required to enable efficient communication of

information among Smart Things and other Internet nodes. Due to the resource limitations

of Smart Things, the design of these two services is challenging.

Our thesis is that despite the large scale of the IoT and the resource limitations of Smart

Things, efficient solutions for the routing and sensor search services can actually be provided.

We support this thesis by proposing, implementing, and evaluating two routing algorithms

for large-scale wireless sensor networks (which are a building block of the IoT), and two

sensor search algorithms for the IoT.

The proposed routing algorithms are Recursive Multi-region Geocasting (RMG) and Stochas-

tic Forwarding-based Routing (SFR). The RMG algorithm is targeted to large-scale wireless

networks where information needs to be delivered from a source to multiple geographical

regions that are remotely located from the source, respectively to all Smart Things that are

located therein. RMG’s approach is to avoid making routing decisions at every intermediate

node. Instead, routing decisions and packet duplication are only performed at a few selected

nodes on the routing path of a data packet, thus saving processing and energy resources as

well as wireless bandwidth. The SFR algorithm aims to balance the energy consumption

ii

caused by the routing task across the network, therefore improving the operational lifetime

of the network. Our approach for SFR is to model the route of a data packet as a random

walk, such that different packets travel on different routing paths between a given source and

destination. The random walk is designed such that the ratio between the average length

of the routing paths taken by multiple packets and the length of the shortest routing path

(path length overhead) is small, thus saving energy. Evaluation results show the efficiency of

our routing algorithms. In particular, (i) RMG minimizes the total number of transmissions

needed for the successful delivery of a data packet, and incurs little computation overhead on

the network; and (ii) SFR fairly balances the routing load across the network while keeping

the path length overhead small. Furthermore, both algorithms are scalable, since routing

decisions are made using only local information.

The proposed search algorithms are sensor similarity search and content-based sensor search.

The first algorithm allows for finding sensors whose recent measurements (i.e., perceived

states of the real world) are similar to that of an example sensor. The second algorithm

allows for finding sensors whose latest measurements fall in a given value range. These two

search services are useful because they enable the users to search the real world for objects

and places with a given state in real time. Our approach for both algorithms is to encode

the properties of the real-world states perceived by sensors using a fuzzy set, and store

and index those fuzzy sets in a distributed database system in the Internet, such that they

can be used for query resolution. Since the size of a fuzzy set is small, its computation is

efficient, and the query resolution using those fuzzy sets is fast, our approach is scalable.

Moreover, our approach addresses the inherent imperfections of data generated by sensors

as it is based on fuzzy sets. Evaluating our search algorithms using sensor data from real-

world deployments, we show the high accuracy of the sensor similarity search algorithm,

and the low communication overhead of the content-based sensor search algorithm. We also

demonstrate the practical feasibility of our sensor search algorithms by developing an online

search engine that allows for finding sensors on the Web based on their published data, using

the above sensor search algorithms.

Zusammenfassung

von M. Sc. Cuong Duc Truong

Institut für Technische Informatik, Universität zu Lübeck

Es wird erwartet, dass das Internet der Dinge (IoT) im kommenden Jahrzehnt Milliar-

den von stark ressourcenbeschränkten smarten Dingen mit dem Internet verbindet. Für

viele IoT-Anwendungen sind Routing und Suche grundlegende Dienste. Sensorsuchdien-

ste erlauben das schnelle Finden von smarten Dingen im IoT basierend auf den von ihren

Sensoren gemessenen Zuständen der realen Welt. Um die Suche und auch andere IoT-

Anwendungen zu ermöglichen, wird ein Routingdienst benötigt der eine effiziente Weiter-

leitung von Nachrichten zwischen smarten Dingen und anderen Internetknoten erlaubt. Die

Ressourcenknappheit der smarten Dinge macht die Realisierung dieser Dienste zu einer wis-

senschaftlichen Herausforderung.

Unsere These ist, dass es trotz der Größe des IoT und den limitierten Ressourcen der

smarten Dinge möglich ist, effiziente Lösungen für das Routing und die Sensorsuche bere-

itzustellen. Wir unterstützen diese These durch Entwurf, Implementierung und Evaluation

zweier Routingalgorithmen für großflächige drahtlose Sensornetze (WSN) sowie zweier Sen-

sorsuchalgorithmen für das IoT.

Die vorgeschlagenen Routingalgorithmen sind Recursive Multi-region Geocasting (RMG)

und Stochastic Forwarding-based Routing (SFR). Der RMG-Algorithmus ist auf großflächige

WSN zugeschnitten, in denen Nachrichten von einer Quelle zu mehreren entfernten ge-

ografischen Regionen bzw. den darin befindlichen smarten Dingen weitergeleitet werden

sollen. RMG vermeidet es dabei, auf jedem Zwischenknoten aufwendige Routingberechnun-

gen treffen zu müssen. Stattdessen werden Routingentscheidungen und Paketduplizierungen

nur an einigen ausgesuchten Knoten entlang des Routingpfades eines Pakets durchgeführt.

Dies spart Rechenaufwand und Energie sowie Bandbreite. Der SFR Algorithmus zielt da-

rauf ab den Energieverbrauch gleichmäßig über die Netzwerkknoten zu verteilen um so die

Lebenszeit des Netzwerkes zu optimieren. Dafür wird der Routingpfad eines Pakets als

eine Zufallsbewegung modelliert, so dass verschiedene Pakete verschiede Pfade zwischen

Quelle und Senke verwenden. Die Zufallsbewegung ist so angelegt, dass das Verhältnis zwis-

chen der durchschnittlichen Länge des Routingpfades von mehreren Paketen und der Länge

iv

des kürzesten Pfades (Pfadlängenoverhead) klein ist. Evaluationen zeigen die Effizienz un-

serer Routingalgorithmen. Insbeesondere minimiert RMG die Gesamtzahl der benötigten

Nachrichtenübertragungen für die erfolgreiche Übermittlung eines Paketes und benötigt nur

geringen Rechenoverhead. SFR verteilt die Routinglast gleichmäßig über die Netzwerkknoten

während es den Pfadlängenoverhead klein hält. Weiterhin sind beide Algorithmen skalierbar,

da Routingentscheidungen nur anhand von lokalen Informationen getroffen werden.

Die vorgeschlagenen Algorithmen für die Sensorsuche sind Sensor Similarity Search (SSS)

und Content-based Sensor Search (CSS). Der erste Algorithmus findet Sensoren deren Aus-

gabezeitreihe ähnlich zu der Ausgabezeitreihe eines vorgegebenen Sensor sind. Der zweite

Algorithmus findet Sensoren, deren aktueller Ausgabewert in ein gegebenes Intervall fällt.

Diese Algorithmen erlauben es einem Nutzer die reale Welt in Echtzeit nach Objekten und

Plätzen mit einem gegebenen Zustand zu durchsuchen. Bei beiden Algorithmen werden die

Ausgaben der Sensoren durch Fuzzy-Sets kodiert. Diese Fuzzy-Sets werden in einer verteilten

Datenbank im Internet indiziert und verwendet um Suchanfragen effizient zu beantworten.

Fuzzy-Sets können effizient berechnet werden, haben einen geringen Speicherbedarf, bilden

die Eigenschaften von Sensordaten gut ab und sind damit gut für die Sensorsuche geeignet.

Die Evaluation der Sensorsuchalgorithmen auf Basis von realen Sensordatensätzen zeigt die

hohe Genauigkeit des SSS-Algorithmusund den geringen Kommunikationsaufwand des CSS-

Algorithmus. Wir demonstrieren außerdem die praktische Relevanz der Algorithmen durch

die Entwicklung einer Suchmaschine zum Auffinden von im Web publizierten Sensoren auf

Basis dieser Algorithmen.

Acknowledgements

Pursuing my PhD degree is perhaps the most challenging task that I have done in my life,

which I would have not completed without the support of many people, especially those who

have been member of the Institute of Computer Engineering at the University of Lübeck.

It has been a great experience to spend three years of my life in there working and sharing

many memorable moments of my doctoral journey with them.

First and foremost, I would like to express my sincere gratitude to my advisor, Prof. Dr. Kay

Uwe Römer, for his support and guidance throughout my research. From him, I have learnt

how to do research right in all of its stages, from contemplating the problem to developing

the approach to evaluating the solution and to presenting the result. I want to thank Kay

for being a supportive adviser to me during my PhD time as well as serving as a role model

to me as a junior member of academia. His continued guidance always kept me on the right

track and led me to the completion of my PhD degree today.

Special thanks to Dr. Long Le, Prof. Dr. Sahin Albayrak, and Dr. Nuri Kayaoglu of

the Distributed Artificial Intelligence Laboratory (DAI Labor) at the Technical University

of Berlin, who introduced me to the academic environment and supported me during my

first days in Germany. Also of DAI Labor, I would like to thank Dr. Fikret Sivrikaya, Dr.

Manzoor Ahmed Khan, and Thomas Geithner for their help during my time at DAI Labor.

I would like to thank Kris Erik Schwerdt for his valuable help with the implementation work.

I also want to thank Richard Mietz, Carlo Alberto Boano, Matteo Lasagni, Felix Jonathan

Oppermann, and Christian Renner for being my helpful colleagues at work as well as good

friends in life. Many valuable scientific discussions that we had during my PhD time really

helped me in completing my PhD thesis.

Last but above all, my deepest gratitude goes to my family members who have always been

there for me with love and encouragement. This dissertation is dedicated to them. Without

their support, I would never be able to pursue my PhD degree till its completion.

v

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Structure . 4

2 The Internet of Things 7

2.1 Definition . 8

2.1.1 Making Things Smart . 9

2.1.2 Networking Smart Things . 11

2.1.3 Managing Data from Smart Things . 12

2.2 Applications . 14

2.2.1 Comfort Living . 14

2.2.1.1 Home and Office . 14

2.2.1.2 Travelling . 15

2.2.1.3 Shopping . 15

2.2.1.4 Futuristic Applications . 16

2.2.2 Healthcare . 16

2.2.2.1 Smart Monitoring . 16

2.2.2.2 Smart Assistance . 17

2.2.2.3 Futuristic Applications . 18

2.2.3 Automotive . 18

2.2.4 Security . 19

2.2.4.1 Futuristic Applications . 19

2.2.5 Energy Saving . 19

2.2.5.1 Home, Office, and City . 20

2.2.5.2 Futuristic Applications . 20

2.2.6 Supply Chain . 20

2.2.6.1 Futuristic Applications . 21

vii

Contents viii

2.3 A Layered View on the IoT . 21

2.4 Driving Technologies . 23

2.4.1 Radio-Frequency Identification . 23

2.4.1.1 EPCGlobal UHF Gen 2 . 24

2.4.1.2 ISO14443/NFC . 25

2.4.1.3 ISO15693 . 25

2.4.2 Wireless Personal Area Networks . 25

2.4.2.1 IEEE 802.15.4 . 26

2.4.2.2 Bluetooth . 26

2.4.2.3 Bluetooth Low Energy . 26

2.4.2.4 Ultra Wide Band . 27

2.4.3 Wireless Sensor Networks . 27

2.4.3.1 Computing Subsystem . 28

2.4.3.2 Wireless Communication Subsystem 28

2.4.3.3 Input/Output (IO) Interfaces 29

2.4.3.4 Sensors and Actuators . 29

2.4.3.5 Power Source . 29

2.4.4 Routing . 29

2.4.5 The Web of Things . 31

2.5 Challenges . 33

2.5.1 Small Physical Size . 33

2.5.2 Limited Resources . 34

2.5.3 Interoperability . 34

2.5.4 Dynamic Topology . 35

2.5.5 Scalability . 35

2.5.6 Imperfect and Heterogenous Data . 36

2.5.7 Security and Privacy . 36

2.6 Summary . 37

3 Routing in the IoT 39

3.1 The Routing Problem . 39

3.1.1 Challenges . 40

3.1.1.1 Limited Resources . 41

3.1.1.2 Dynamic Routing Topology 41

3.1.1.3 Scalability . 41

3.1.1.4 Partitions and Voids . 42

3.1.2 Requirements and Properties . 42

3.1.3 Design Space . 43

3.1.3.1 Distributed vs. Centralized 43

3.1.3.2 Flat vs. Hierarchical . 44

3.1.3.3 Location-based vs. State-based 45

3.1.3.4 Data-centric vs. Address-centric 45

3.2 The Geographic Routing Approach . 46

3.2.1 Wireless Link Models . 47

3.2.2 Forwarding Techniques . 48

3.2.2.1 Greedy Techniques . 49

3.2.2.2 Recovery Techniques . 50

Contents ix

3.3 Multi-region Geocast Routing for the IoT . 51

3.3.1 Motivation . 52

3.3.2 Related Work . 53

3.3.2.1 Geocasting to a Set of Nodes 53

3.3.2.2 Geocasting to a Single Region 54

3.3.2.3 Geocasting to Multiple Regions 54

3.3.3 Assumptions and Approach . 55

3.3.3.1 Network Model . 55

3.3.3.2 Shape of Destination Regions 56

3.3.3.3 The Recursive Forwarding Approach 57

3.3.4 Recursive Multi-region Geocasting . 57

3.3.4.1 Forwarding Line & Division Point 58

3.3.4.2 Group Division . 59

3.3.4.3 The Recursive Multi-region Geocasting Algorithm 62

3.3.5 Evaluation . 63

3.3.5.1 Choice For δth . 64

3.3.5.2 Computation Time . 64

3.3.5.3 Relay Load . 66

3.3.5.4 Average Path Length Overhead 67

3.3.5.5 Flexibility . 68

3.3.5.6 Non-UDG Wireless Link Model 68

3.3.6 Conclusion . 70

3.4 Stochastic Routing in the IoT . 70

3.4.1 Motivation . 70

3.4.2 Related Work . 72

3.4.3 Assumptions and Approach . 73

3.4.3.1 Network Model . 73

3.4.3.2 The Stochastic Forwarding Approach 73

3.4.4 A Heuristic for the SF Approach . 74

3.4.5 The Stochastic Forwarding-based Routing (SFR) Algorithm 75

3.4.6 An Analytical Framework . 76

3.4.7 Guaranteed Packet Delivery . 77

3.4.8 Evaluation . 78

3.4.8.1 Near-Optimal Forwarding Probability Assignment 79

3.4.8.2 Near-Optimal Assignment vs. SFH1 80

3.4.8.3 Performance Evaluation of SFH1 81

3.4.9 Conclusion . 83

3.5 Summary . 83

4 Searching The Real World Via The IoT 85

4.1 The Sensor Search Problem . 86

4.1.1 Essential Components . 86

4.1.1.1 Sensor . 86

4.1.1.2 Sensor Property . 87

4.1.1.3 Search Space . 87

4.1.1.4 Search Query . 88

4.1.1.5 Search Approach . 88

Contents x

4.1.2 The Specific Sensor Search Problem 90

4.1.3 Challenges and Requirements . 90

4.1.4 Architecture and Approach . 92

4.1.4.1 A Fuzzy Set-based Approach 92

4.1.4.2 Sensor Search Architecture 93

4.2 Sensor Similarity Search in the WoT . 94

4.2.1 Motivation . 95

4.2.2 Related Work . 96

4.2.2.1 Search based on Metadata 96

4.2.2.2 Search based on Sensor Measurement 96

4.2.2.3 Search based on Similarity of Data Streams 97

Non-multimedia, general time-series data 97

Sensor data . 98

4.2.3 Problem Formulation . 99

4.2.4 Sensor Similarity Search Architecture 100

4.2.5 Similarity Score Computation . 101

4.2.6 Similarity Model Construction . 102

4.2.7 Injective Mapping Problem . 103

4.2.8 Similarity Model Approximation . 105

4.2.9 Evaluation . 106

4.2.9.1 Degree of Ranking Accuracy 107

4.2.9.2 Experiment Setup . 107

4.2.9.3 Numerical Results . 110

4.2.9.4 Performance and Scalability 112

4.2.10 Conclusion . 112

4.3 Content-based Sensor Search in the WoT . 113

4.3.1 Motivation . 113

4.3.2 Related Work . 115

4.3.2.1 Time-series Data Forecasting 115

4.3.2.2 Sensor Search in the IoT . 116

4.3.3 Problem Formulation . 117

4.3.4 Content-based Sensor Search Architecture 118

4.3.5 Content-based Sensor Search . 119

4.3.5.1 Sensor Measurement Density 120

4.3.5.2 Sensor Measurement Stability 121

4.3.5.3 Constructing TIPM . 122

4.3.5.4 Query Resolution . 123

4.3.5.5 TIPM Adaptation . 123

4.3.5.6 TIPM Size Reduction . 124

4.3.6 Evaluation . 124

4.3.6.1 Communication Overhead of a Rank List 125

4.3.6.2 Simulation Setup . 126

4.3.6.3 Tuning Parameters . 126

4.3.6.4 Numerical Results . 127

4.3.7 Conclusion . 131

4.4 Summary . 133

Contents xi

5 A Prototypical Sensor Search Engine 135

5.1 Software Architecture . 135

5.2 Software Implementation . 136

5.2.1 Xively . 139

5.2.2 Cayenne . 140

5.2.3 SIMON . 141

5.3 Graphical User Interface . 141

5.3.1 Sensor Similarity Search: GUI . 141

5.3.2 Content-based Sensor Search: GUI . 143

5.4 Demonstration . 143

5.4.1 Sensor Similarity Search . 143

5.4.2 Content-based Sensor Search (CSS) 143

5.5 Performance . 146

5.6 Conclusion . 150

6 Conclusion and Future Work 157

6.1 Contributions . 157

6.1.1 Routing . 157

6.1.2 Sensor Search . 158

6.2 Limitations and Future Work . 159

6.2.1 Recursive Multi-region Geocasting Algorithm 159

6.2.2 Stochastic Forwarding-based Routing Algorithm 160

6.2.3 Sensor Similarity Search Algorithm . 160

6.2.4 Content-based Sensor Search Algorithm 161

6.3 Final Conclusion . 161

List of Figures

2.1 A layered view on the Internet of Things . 22

3.1 The general routing problem . 40

3.2 The wireless link models . 47

3.3 The forwarding techniques . 49

3.4 Description of destination regions . 56

3.5 The recursive forwarding approach . 58

3.6 The GMGD algorithm . 60

3.7 GMGD: Optimality investigation . 62

3.8 Computation time evaluation with varying nregion 65

3.9 Computation time evaluation with varying gscale 65

3.10 Computation time evaluation with varying meanNB 65

3.11 Relay load evaluation with varying nregion 66

3.12 Relay load evaluation with varying gscale . 67

3.13 Average path length overhead evaluation with varying nregion 67

3.14 Average path length overhead evaluation with varying gscale 68

3.15 Relay load evaluation with varying nregion (using RIM model) 69

3.16 Relay load evaluation with varying gscale (using RIM model) 69

3.17 Average path length overhead evaluation with varying nregion (using RIM
model) . 69

3.18 Average path length overhead evaluation with varying gscale (using RIM model) 69

3.19 Load balancing vs. Shortest path usage. 71

3.20 The stochastic forwarding approach. 74

3.21 The SFH1 heuristic for assigning forwarding probabilities. 75

3.22 Packet delivery guaranteed. 77

3.23 Performance comparison between SFH1 and the genetic algorithm. 80

3.24 SFH1 vs. Increasing node density in a fixed network area. 82

3.25 SFH1 vs. Different network sizes and a fixed node density. 82

4.1 Fuzzy Set Illustration. 92

4.2 A generic architecture for the problem of sensor search in the WoT. 94

4.3 Sensor Similarity Search: Architecture. 100

4.4 The measurement range difference. 101

4.5 Construction of a similarity model. 102

4.6 ”Jump” reordering of sensor measurements. 103

4.7 Reordering by flipping the sensor measurement curve. 104

4.8 Approximation of a similarity model (sm). 106

4.9 Illustration of the doa metric. 107

xiii

List of Figures xiv

4.10 Grouping of sensors in the NOAA data set. 108

4.11 Grouping of sensors in the Intel Lab data set. 109

4.12 Grouping of sensors in the MavHome data set. 109

4.13 Average degree of accuracy (NOAA). 110

4.14 Average degree of accuracy (IntelLab). 110

4.15 Average degree of accuracy (MavHome). 110

4.16 IntelLab data set: Best case. 111

4.17 IntelLab data set: Worst case. 111

4.18 Direction measurements of a wind sensor. 113

4.19 Content-based Sensor Search: Architecture. 119

4.20 Histogram for temperature measurements. 120

4.21 Stability illustration. 121

4.22 TIPM Adaptation. 123

4.23 Communication overhead of a rank list. 125

4.24 IntelLab: Communication overhead with α = 0.3. 127

4.25 IntelLab: Communication overhead with α = 0.8. 128

4.26 NOAA: Communication overhead with α = 0.3. 128

4.27 NOAA: Communication overhead with α = 0.8. 129

4.28 MavPad: Communication overhead with α = 0.3. 129

4.29 MavPad: Communication overhead with α = 0.8. 130

4.30 Combined: Communication overhead with α = 0.3, h = 60, and pscmin = 0. . 130

4.31 Combined: Communication overhead with α = 0.8. 131

4.32 Heterogeneity VS. homogeneity in time series of sensors in different data sets. 131

4.33 Combined data set: h = 120. 132

4.34 Combined Data Set: pscmin = 0.2. 132

4.35 Combined Data Set: pscmin = 0.5. 133

5.1 Prototypical search engine: Software architecture. 136

5.2 Protypical sensor search engine: UML class diagram 137

5.3 Database schema for the search engine. 140

5.4 GUI: Sensor similarity search. 142

5.5 GUI: Content-based sensor search. 142

5.6 Demonstration of the sensor similarity search engine. 144

5.7 Demonstration of the sensor similarity search engine. 145

5.8 Demonstration of the sensor similarity search engine. 146

5.9 Demonstration of the sensor similarity search engine. 147

5.10 Demonstration of the sensor similarity search engine. 148

5.11 Evaluation of the content-based sensor search algorithm for b− a = 50 148

5.12 Evaluation of the content-based sensor search algorithm for b− a = 10 149

5.13 Evaluation of the content-based sensor search algorithm for b− a = 5 149

5.14 Evaluation of the content-based sensor search algorithm for b− a = 1 149

5.15 Average communication overhead for each search series 150

5.16 Memory consumption of the Crawler component 151

5.17 Memory consumption of the GSS component 152

5.18 Memory consumption of the Search Client component 153

5.19 Memory consumption of the LSS component while processing content-based
sensor search queries . 154

List of Figures xv

5.20 Memory consumption of the LSS component while processing sensor similarity
search queries . 155

Chapter 1

Introduction

Recent fast advancements in various technological fields including hardware miniaturization,

embedded computing, wireless networking, and sensing and actuating allow for augmenting

real-world things (e.g., a desk, a car, a plant) with an unique identification (ID) and the

capabilities to process information, to sense and respond to the environment, thus making

them smart, and for smart things to be able to wirelessly communicate with other smart

things. By connecting smart things to the Internet such that they can publish their ID

and status (i.e., the real-world states perceived by their embedded sensors) on the Web, an

Internet of Things (IoT) is formed. By mashing up smart things with the services and data

available on the Web, novel and valuable IoT applications for human users will be created.

This thesis is devoted to routing and sensor search in the IoT, which are two essential services

for many IoT applications.

In this inaugural chapter, we offer a brief introduction of the IoT, motivate the need for

routing and sensor search in the IoT, and give an overview of the main contributions of our

work. We conclude this chapter with the structure of this thesis.

1.1 Motivation

In 1999, Kevin Ashton, co-founder of the MIT Auto-ID Center, initially used the term “In-

ternet of Things” to describe a vision where objects and people in the physical world can be

managed and inventorized by computers via RFID (Radio-Frequency IDentification) technol-

ogy. Since then, this vision was broaden and consolidated over time by the advancements in

many different technological fields, among which the major ones are micro-controllers, sen-

sors and actuators, wireless networking, and Web technologies. Although a final definition

of the IoT is still subject to debate [1], there is a consensus on the vision of the IoT, which

is three-fold:

1

Chapter 1. Introduction 2

(i) To give the unanimated things of the physical world (e.g., a cup, a pair of shoes) the

ability to gather, process, and act on information, therefore making them “smart”.

(ii) To unite the cyber world of computers and information with the physical world we live

in by connecting all smart things to the current Internet.

(iii) To enable the intuitive interaction between humans and technology, such that human

users are unobstrusively assisted by technology in performing everyday activities.

In the last two decades, embedded computing and hardware miniaturization technologies

advanced to a stage where it became possible to pack processing, wireless communication,

sensing, and power supply capabilities into a volume size of a cubic centimeter [2] or even a few

cubic millimeters [3], creating a miniaturized computing device. Due to their tiny size, these

computing devices could be attached to objects (e.g., people, desks, food items), embedded

into places (e.g., homes, offices), and dispersed in large quantities into the environment (e.g.,

forests, farm fields), forming wireless networks of embedded computing devices that can be

used as tools for tracking, observing, and influencing the real world. RFID systems and

wireless sensor & actuator networks are typical examples of these tools, where objects that

are equipped with an RFID tag can be tracked and aspects of the real world can be observed

via sensors and controlled via actuators.

In parallel with these technological advancements, developments in the wireless networking

field have led to the creation of important wireless communication and identification tech-

nologies such as IEEE 802.15.4, BLE (Bluetooth Low Energy), UWB (Ultra-Wide Band-

width), IPv6, RFID, and NFC (Near-Field Communication). Embedded computing devices,

therefore, can be uniquely addressed as well as communicate among each other.

In the Web domain, the Web has undergone two major transformations, from Web 1.0 with

the focus on building static Web pages to Web 2.0 with the focus on the online collaboration

and sharing among users (e.g., facebook, youtube). The current Web is now moving to the

next generation, the Web 3.0 or Semantic Web with key technologies such as RDF (Resource

Description Framework), OWL (Web Ontology Language), LOD (Linked Open Data), and

SPARQL. The focus of this latest generation is making data and services available on the Web

understandable to machines, therefore allowing computer programs to automatically perform

certain tasks such as finding, sharing, and combining information on behalf of human users,

making information accessible to users more easily and intuitively.

The vision of the IoT emerged from the combination of all these technological advancements.

By connecting real-world objects, places, and environments (i.e., their embedded computing

devices) to the Internet and allowing them to publish and exchange information on the

Web, we will be able to browse as well as mash up the physical world with information and

services available on the Web, much like how we browse the current Web, to create novel

IoT applications.

Chapter 1. Introduction 3

The creation of these mashed-up IoT applications often requires the discovery of objects and

places with certain properties in the physical world. For example, a car driver wants to find in

his proximity a parking spot that is currently empty, or an ethologist wants to find individual

animals that have living habits similar to a particular one in study. The underlying service

in these applications is search for embedded sensors in the IoT whose sensor measurements

match the given properties. This is one of the two foci of our thesis.

The second focus of our thesis is routing, which is an essential service in the emerging IoT,

since it enables efficient communication of information among IoT entities, i.e., smart things,

Internet nodes, Web services and applications, thus facilitating IoT applications including

the sensor search service.

1.2 Contributions

This thesis is devoted to routing and sensor search in the IoT. The main challenges to the

provision of these services are the large scale of the IoT and the resource limitations of smart

things (i.e., of their embedded computing devices). The scale of the IoT is unprecedentedly

large both in terms of the number of computing devices that will be connected to it, which is

anticipated to be billions in the next decade, and the geographic area that it will cover, which

is expected to be the entire earth. The resource limitations of embedded computing devices

are due to their small physical size, which is required in order for them to be embedded into

smart things. Routing and sensor search algorithms designed for the IoT, therefore, should

be scalable and light-weight.

A main contribution of this thesis is two novel routing algorithms designed for large-scale

wireless sensor networks (a building block of the IoT). The novelty of our proposed routing

algorithms, namely resursive multi-region geocasting and stochastic forwarding-based routing,

is three-fold: (i) their simple design makes them suitable for resource-constrained embedded

computing devices; (ii) they require only local information for operation, thus scale with the

size of the IoT; and (iii) they are aimed at IoT-specific routing scenarios. We also implement

and evaluate our algorithms using simulation as well as discuss their strengths and weaknesses

based on evaluation results.

Another main contribution of this thesis is the proposal of two original sensor search services

for the IoT, namely sensor similarity search and content-based sensor search. State-of-the-

art search systems that allow for finding sensors available on the Web are based on either

the meta-information of the sensors (i.e., their deployment context, location, and type) or

the high-level states derived from raw sensor output (e.g., the state of an occupancy sensor

embedded in a room is “free” or “occupied” corresponds to the sensor measurements being

lower or higher than a certain threshold, respectively). The limitation of the former is

that meta-information of sensors is usually provided by human users who tend to make

mistakes when entering information or use different terms when describing the same concept,

Chapter 1. Introduction 4

thus might lower the reliability of the search results. The limitation of the latter is that it

requires proper domain expertise to derive high-level states from raw sensor output as well

as confines the search to specific applications. Our proposed sensor search services are aimed

at addressing these limitations by allowing for finding sensors in the IoT based on their

output. In particular, the sensor similarity search service finds sensors based on a time series

of measurements of a given example sensor, and the content-based sensor search service finds

sensors whose recent measurements fall in a given value range. For each search service,

we propose an algorithm, implement it, and evaluate it using sensor data sets from real

deployments.

We also built a sensor search engine for the IoT based on our proposed sensor search algo-

rithms, which allows users to search the current Web for sensors (i.e., smart things). We

use this sensor search engine to demonstrate the practical feasibility of the proposed sensor

search services.

The contributions of this thesis have also been published in various computer science confer-

ences, most notably in [4], [5], [6], [7]. In particular, Chapter 3 is based on [4] and [5]1, and

Chapter 4 is based on [6] and [7], respectively.

1.3 Structure

This thesis is divided into 6 chapters with Chapter 1 being this introductory chapter. Chap-

ter 2 serves as the background of this thesis as it gives a detailed introduction of the IoT

by discussing different aspects of the definition of the IoT and a review of its possible ap-

plications. In Chapter 2 we also present our view on the IoT as we study it, in which the

positions of the two services of routing and sensor search are identified and the relationship

between them is demonstrated. Finally, we present the underlying technologies that enable

the existence of the IoT, and identify a set of technological challenges that come along with

it.

The main contributions of this thesis are presented in Chapter 3 and 4. Chapter 3 is devoted

to the routing service in the IoT. We first discuss the general routing problem and identify

the main challenges introduced by the IoT to the routing service. We, then, present a design

space for designing routing protocols in the IoT. After that, we focus our discussion on the

geographic routing approach and its forwarding techniques, since this is the general approach

that our proposed routing algorithms follow. The main advantage of this approach is that it

requires only local information for making routing decisions thus it can scale with the size of

the IoT. Our two routing algorithms are presented thereafter in two separate sections. The

structure of these two sections is very similar. We first motivate the need for our routing

1Our contributions in [5] are the idea of modeling the routing process on an absorbing Markov chain, the
analytical framework, and the heuristic.

Chapter 1. Introduction 5

algorithms. We then discuss state-of-the-art algorithms and show the new contributions of

our algorithms. Finally, we present and evaluate our algorithms.

Chapter 4 is devoted to sensor search in the IoT. We first present a set of assumptions

for our new sensor search services and draw from it a set of requirements for the design of

our sensor search algorithms. Based on these assumptions and requirements, we lay out a

generic and scalable architecture for both the sensor search services, and outline a generic

approach for designing sensor search algorithms for them. After that, we present the proposed

sensor search algorithms in two separate sections. The general structure of the sections is

as follow. We motivate the need for our new sensor search services in the IoT, review the

literature, formulate the underlying problem, present and evaluate our solutions, and finally

give conclusions.

In Chapter 5, we show the practical feasibility of our sensor search algorithms by describing

in details an online sensor search engine that we implemented and that incorporates the

proposed sensor search algorithms for searching the current Web for available sensors.

We conclude this thesis in Chapter 6 by summarizing the results, discussing limitations, and

providing an outlook on future work.

Chapter 2

The Internet of Things

“Any sufficiently advanced technology is indistinguishable from magic.”. It was so formulated

in the 1973 book titled “Profile of the future” by Arthur C. Clarke, who is one of the world’s

most famous science fiction writers along with Isaac Asimov and Robert A. Heinlein. The

statement is well-known as Clarke’s third law, that expresses Clarke’s faith in the power of

technology to be able to blur the boundary between science fiction and reality and to create

what was in the past only considered as magic. Fourty years on, his vision has proved accurate

as we are witnessing today how profoundly technologies have been influencing our everyday

life. Handhelds and wearable computers (e.g, mobile phones, body sensor networks), human-

to-machine conversation (e.g., voice assistant), GPS-based navigation in our pockets, smart

technologies (e.g., smart phone, smart watch, smart home/office), and augmented reality

(e.g., Google Glass1) are few examples of technologies that were exotic or even science fiction

in 1970s, are now viable commercial products.

Having similar faith in the power of technology, contemporary visionaries envisioned a world

where technology is aware of human users and their activities, and uses this awareness to

assist them to accomplish the activities in an unobstrusive fashion, i.e., without the users

noticing its assistance. This vision has been described using different terms, among which the

most popular are Ubiquitous Computing by Xerox PARC, Pervasive Computing by IBM, Am-

bient Intelligence by Philips, Wireless Sensor Networks (WSN), and the Internet of Things

(IoT). While the first three terms and their underlying visions are focused on what to bring

to the users, the last two are focused on the means to realize the “what”. In particular, tech-

nology should be helpful to the users anywhere (e.g., at home, at work, or on the road), at

any time (e.g., day or night), for any purpose (e.g., business or leisure), and not distracting.

To realize that, technology should be based on networking, should be able to sense (e.g.,

via sensors) and respond (e.g., via actuators) to the environment, and should thus make the

environment smart.

1http://www.google.com/glass/start/

7

Chapter 2. The Internet of Things 8

The IoT is considered as the ultimate means to realize this vision. Through the incorporation

of the Internet, wireless networking (e.g., WSN, cellular), hardware miniaturization (e.g.,

embedded systems), sensors and actuators, and software technologies, the IoT provides a

technological foundation for enabling a smart environment at a global scale.

In this chapter, we study the IoT in detail since a comprehlensive understanding of the IoT

serves as the background for our thesis. We discuss the definition of the IoT and review its

applications in Sec. 2.1 and Sec. 2.2, respectively. In Sec. 2.3, we propose a layered view on

the IoT and point out where routing and searching services are placed in this view as well

as how the two services are related. In Sec. 2.4, the driving technologies of the IoT that are

relevant to this layered view are presented. In Sec. 2.5, we identify several challenges that

need to be addressed for a realization of the IoT. Finally, we conclude this chapter in Sec.

2.6.

2.1 Definition

The Internet of Things, as given syntactically by its name, is composed of two terms: “Inter-

net” and “Things”. The first term describes a networking-oriented aspect of the IoT where

the Internet serves as the central building block interconnecting every possible computing

device in the world. This aspect is explicitly reflected in the definition for IoT by DG-

CONNECT (formerly INFSO) as “a world-wide network of interconnected objects uniquely

addressable, based on standard communication protocols” [8].

In the above definition, DG-CONNECT does not refer to “computing devices” but “objects”

as the entities being interconnected. This brings us to the second term of the IoT, the

“Things” term that describes literally everything that is addressable and communicable, will

be connected. This thing-oriented aspect of the IoT is further elaborated in the IoT’s defini-

tion by IERC - the Cluster of European Research Projects on IoT: “a dynamic global network

infrastructure with self-configuring capabilities based on standard and inter-operable com-

munication protocols where physical and virtual ’things’ have identities, physical attributes,

and virtual personalities and use intelligent interfaces, and are seamlessly integrated into

the information network”. Thus, an object or a thing, according to this definition, can be

understood as an entity that is augmented with computing and communication capabilities,

thus is able to possess a certain degree of intelligence and interacts with other things that

are also connected to a global information network (i.e., the existing Internet).

Other definitions for the IoT such as by [9], or [10] also revolve around these two original

aspects of the IoT. However, to appreciate the true value of the IoT, understanding its

separate aspects is not enough. As philosopher Aristole once said: “The whole is more

than the sum of its parts”, there is a “hidden” aspect of the IoT. With every object in the

world being interconnected and exchanging information, there will be an enormous amount

of heterogeneous data generated by the IoT. How to efficiently manage and correctly extract

Chapter 2. The Internet of Things 9

valuable information and knowledge from this data to create valuable applications for human

users is challenging. Thus, the third aspect of the IoT is about managing and exploiting the

data generated by the IoT.

Although the definition for the IoT varies among organizations and authors, these three

aspects of the IoT are widely accepted in literature, e.g., [11], [12], or [9]. In the following,

we will discuss them in detail.

2.1.1 Making Things Smart

In order for a smart environment to be aware of the users and adapt to their activities, things

that constitute the environment should be “smart” to a certain extent. An example of a smart

environment is a “smart store” that can automatically regulate the room condition such as

air temperature, humidity level, and light level throughout the day, and that can adaptively

assist customers while they are engaging with the shopping, e.g., to show a customer the

features of a specific item as he is looking at it, to update an info-screen with information

about new discounts that fit the customer’s preferences as he walks near it, and to complete

the payment for the selected items as the customer walks through the exit door. In order for

such regulation and assistance to be possible, the store’s air-conditioner should be able to

measure the room temperature and humidity level, the window blind and the lighting system

should be able to adjust themselves to the current room luminance, an item should be able to

detect the presence of the customer, an info-screen should be able to recognize the customer

and know his preferences, and the exit door should be able to identify the customer’s selected

items. In brief, all these “Things”, i.e., air-conditioner, window blinds, items, info-screens,

and exit door, should be able to make a decision of some kind, therefore possessing a certain

degree of smartness.

One aspect of the smartness of a thing is that it can process information, which can be

realized by augmenting the thing with computation capability. The fast advancement of

microcontroller and hardware miniaturization technologies in recent years makes it possible

for a computing system to be fitted in a volume size of a match box (e.g., Motes2), a cubic

centimeter (e.g., Egrains3), or even a few cubic millimeter (e.g., SmartDust [3]). Due to their

small size, such computing systems can be embedded in things (e.g., air-conditioners, info-

screens) to perform dedicated functions (e.g., measuring and regulating room temperature).

Typically, the heart of these computing systems is a small computer on a single integrated

circuit, also called a microcontroller, that contains a processor core, memory units, and

programmable input and output peripherals. Examples of microcontrollers are Atmel AVR4,

MSP4305, or PIC6.

2http://gyro.xbow.com/Products/Wireless Sensor Networks.htm
3http://www.sopro-projekt.de/index.php?id=ueberblick
4http://www.atmel.com/products/microcontrollers/default.aspx
5http://www.ti.com/lsds/ti/microcontroller/16-bit msp430/overview.page?DCMP=MCU other&HQS=msp430
6http://www.microchip.com/pagehandler/en-us/products/picmicrocontrollers

Chapter 2. The Internet of Things 10

A thing can also be augmented with “remote” computation capability, i.e., the computation

capability is not directly embedded in the thing but is placed somewhere outside of it.

This is the case for most RFID tags, where a thing is equipped with an RFID tag that

uniquely labels the thing, such that a function dedicated for the thing is executed at a

remote computing system whenever the tag is detected. In the above example, an info-

screen knows the preferences of a customer because there is an entry about the customer

in the database of the store, with his RFID tag’s number as primary key. Thus, when the

customer walks near the info-screen, its RFID reader detects his RFID tag and triggers a

dedicated program for the customer. In fact, the very first vision of the IoT orgininated from

such usage of RFID technology, as Keven Ashton, co-founder of the MIT Auto-ID, initially

used the term “Internet of Things” to describe a vision where RFID-augmented real-world

objects are indentified, tracked, and managed via RFID systems.

However, RFID is not the only identification means for realizing remote computation ca-

pability of things. Alternative to the EPCGlobal7, a major driver of the RFID technology,

that promotes the use of the Electronic Product Code (EPC) as the unique identification

for RFID-augmented things, the uIDCenter8 proposes to uniquely identify things with an

uCode stored in the uCode tag that is attached to things. Another alternative is the NFC

(Near-Field Communication) technology that allows an NFC-enabled device to perform a

dedicated function for a thing when it detects the thing’s NFC tag. For example, a customer

can select an item in the store by hovering his NFC-enabled smart phone over the item,

which is equipped with an NFC tag.

Another aspect of the smartness of a thing is that it can sense and respond to the real

world, which can be realized via sensor and actuator technologies. Usually a sensor maps

a certain physical quantity (e.g., humidity level, temperature) to an analog signal such as

a variable voltage. This analog signal is, then, mapped by an ADC (Analog-to-Digital

Converter) to a digital number that can be stored and processed by a computing system (e.g.,

a microcontroller). Similarly, an actuator system (e.g., a LED) maps a digital/analog input

to a certain action (e.g., turn on/off). In the above example, an item can show a customer its

features, because it is augmented with an infrared sensor, that detects an abrupt change in

temperature at the customer’s standing location using infrared radiation level. This detection

triggers an info-screen connected to the item to display necessary information. To regulate

the room luminance, the embedded servo of the window blind accepts a steering angle from

the embedded microcontroller and steers the blinds accordingly. Thus, sensor and actuator

technologies enable things to gather information about a wide range of physical properties

(e.g., temperature, light, sound, etc), and to respond to this information accordingly, making

things smart.

In summary, a “Thing” in the IoT is defined as any real-world entity that is uniquely ad-

dressed and augmented with computation, sensing, and actuating capabilities, such that it

7http://www.epcglobalinc.org
8http://www.uidcenter.org

Chapter 2. The Internet of Things 11

can can process and generate information, and can sense and respond to the stimuli from

the environment. We refer to the augmented part of a thing, i.e., an RFID/NFC tag or a

sensor/actuator device, as an IoT device. We call a thing with its augmented part as a whole

a smart thing, or a Thing for short. In this thesis, we use the terms smart thing, Thing, and

IoT device interchangeably depending on the specific context to highlight the concept that

we want to discuss.

2.1.2 Networking Smart Things

The smartness of Things is just a necessary condition for realizing a smart environment.

In order to create valuable applications from the collaboration between Things, they need

to be interconnected so that they are able to communicate with each other for exchanging

information and behaving in harmony. Moreover, this interconnection between Things needs

to be at a global scale for the realization of a global smart environment. The second aspect

of the IoT, thus, is about connecting Things together as well as connecting Things to the

Internet. This aspect is reflected in the ITU’s vision of the IoT, that is “from anytime,

anyplace connectivity for anyone, we will now have connectivity for anything” [10]. The

aspect is also reflected at a more technical view in [8] by DG-CONNECT where the IoT means

“a world-wide network of interconnected objects uniquely addressable, based on standard

communication protocols”, and in [13] by the IPSO Alliance where the specific choice for

interconnecting Things is the existing Internet via the extension of the IP stack.

Interconnecting all Things together is challenging due to the huge number of heterogenous

Things involved in the process. According to [12], the number of interconnected devices on

the planet already overtook the actual number of people. There are currently 9 billion devices

and it is expected that 24 billion devices will be interconnected by 2020. A DG-CONNECT

report [14] states similarly that the traffic generated and received by humans will be dwarfed

by the networking traffic generated by everyday objects. To facilitate this huge number of

Things exchanging information, the underlying networking technology must be scalable.

The heterogeneity of Things comes from the fact that objects are equipped with different

communication technologies (e.g., RFID, Bluetooth, NFC, IEEE 802.15.4, WiFi), hardware

platforms (e.g., Motes, Egrain, WISP), and operating systems (e.g., TinyOS, Contiki). The

difference between hardware specifications and data formats prevents Things to easily “talk”

with each other for collaboration. The underlying networking technology, thus, must be

interoperable and should be standardized.

A major solution to address the above mentioned issues has been proposed by the IPSO Al-

liance, that is to wisely re-use the existing IP architecture for IEEE 802.15.4-based devices,

since most commercial wireless sensor solutions today are based on the IEEE 802.15.4 stan-

dard. According to the IPSO Alliance’s white paper [15], IP has proven to be a lightweight,

stable, highly scalable communication technology that runs on tiny, battery operated embed-

ded devices, and that already connects billions of devices. “IP therefore has all the qualities

Chapter 2. The Internet of Things 12

to make the IoT a reality”. This proposal is inspired from the work of the IETF’s 6LoW-

PAN working group which has been standardizing IP protocols for sending IPv6 packets

over IEEE 802.15.4 based networks, thus enabling seamless integration of sensor nodes or

IEEE 802.15.4-based devices into the Internet. A similar effort for seamlessly integrating

Things into the Internet is Internet-0 [16], which promotes routing of IP packets over any

media. The authors proposed a general-purpose physical layer that can operate on many

media. Their design is based on representing Internet-0 packets as Manchester codes that

can be directly sent over any media, for example as electrical pulses, optical flashs, acoustical

clicks, electromagnical waves, or even printed on paper. With this design, things can easily

communicate with each other in spite of the different physical media they are operating on,

as long as they understand the IP protocol. The common aspect of the IPSO and Internet-0

approaches is the use of a simplified IP stack for the deployment of the IoT, in which Things

are uniquely identified by an IPv6 address, and thus are reachable from anywhere, in an

end-to-end fashion.

Besides the fundamental approach of reusing the IP stack, the most common alternative

is based on gateways/proxies to connect proprietary networks of Things to the Internet.

An end-to-end communication session between an Internet node and a local, proprietary IoT

device behind a gateway is possible through the gateway intercepting traffic from the Internet

node, converting the data to the proprietary format, sending the formatted data to the

particular IoT device, receiving response from the IoT device, encapsulating the information

inside the response in IP packets, and sending the packets back to the Internet node. A

typical example of this approach is wireless sensor networks (WSN), which are deployed

into the environment to perform monitoring tasks via sensors sensing the environment and

reporting their sensed data through multihop communication among sensor nodes. This data

is accessible to an Internet node via a sensor gateway that acts as a communication bridge

between sensor nodes and the Internet node.

Regardless of what approach is used for interconnecting Things, the Internet serves as the

central building block of the IoT, which interconnects all Things. Much like how the Internet

has revolutionized our society with the interconnection of people, the next revolution will be

the interconnection of Things via the Internet, or the Internet of Things.

2.1.3 Managing Data from Smart Things

This aspect of the IoT refers to the management and exploition of the data generated by the

IoT, which is very challenging given the massive amounts of information being exchanged

in real time by the huge number of Things in the IoT, that are interconnected at a global

scale through the Internet. Furthermore, these data are usually heterogenous and imperfect

as they come from different sources, are sampled by low-cost hardware, and are transmitted

over unreliable communication links. In order to enable a seamless and effective integration

of this large-volume, dynamically changing, heterogenous, imperfect, and distributed data

Chapter 2. The Internet of Things 13

into valuable services and applications, frameworks are required to clean and preprocess the

data, to provide data analytics in real time and in a distributed fashion, to represent the data

in a standardized way so that it can be easily reused, to index and search the data based on

its description or content, and to provide scalable data storage as well as management.

A number of approaches for data cleaning are proposed in [17] and [18] for sensor data, based

on sensor recalibration or uncertainty modeling techniques, and in [19] for RFID data which

surveys an array of techniques for reducing redundant as well as preventing lost readings

by RFID readers. For distributed and real-time data analytic, Google’s MapReduce [20]

framework and its prime implementation, Hadoop [21], is a promising solution. Designed

for solving parallelizable problems across huge data sets using a large number of computers

from heterogenous hardware and distributed across geographical areas and/or administrative

organizations, the MapReduce framework is ideal for analyzing data generated by the IoT.

Building on top of the Hadoop implementation, systems such as HBase9 and Pig10 provide

database-like functionalities for scalable data storage and management.

Approaches for searching data in the IoT have been mainly based on the textual description

of the data sources (sensors), the similarity of streams of data, and the actual data content.

Representatives of the approach based on textual description are Snoogle [22], Microsearch

[23], MAX [24], GSN [25], and SenseWeb [26], that allow the user to find data sources by

posing a query that contains a list of keywords such as “room” or “book”. As the result, the

user is presented a rank list of data sources that match the query. The work in [27], [28],

[29], and [6] allows finding data sources that produce data streams similar to a given data

stream. The work in [30] allows searching for data based on its content.

Data generated by the IoT is large in volume and yet contains too little knowledge about

the data sources. Without a clear description of what is available for processing, it is hard

for data consumers to use this data effectively. The Sensor Web Enablement11 standards en-

able the interoperable usage of sensor resources by allowing “developers to make all types of

sensors, transducers and sensor data repositories discoverable, accessible and useable via the

Web”. Service interfaces such as sensor discovery, access, tasking, eventing, and alerting [31]

are standardized so that the heterogeneity of sensor data and sensor networks can be hidden

from the perspective of developers. Armed with semantic description of data, developers

can easily use and re-use data for building different applications and services. Furthermore,

the Semantic Web offers the Resource Description Framework12 (RDF) to describe seman-

tic information of data using knowledge graphs (e.g., sensor1 is-in room1), where so-called

ontologies define the meaning of the vertices (sensor1 and room1) and edges (is-in) of this

graph. With RDF, we are able to unambiguously describe a data resource, to specify how

data resources are related, and to infer knowledge from data. RDF, therefore, has the poten-

tial to effectively represent the huge volumes of data generated by the IoT. The integration

9http://hbase.apache.org/
10http://pig.apache.org/
11http://www.opengeospatial.org/ogc/markets-technologies/swe
12http://www.w3.org/RDF/

Chapter 2. The Internet of Things 14

of RDF-represented data into the linking open data project (LOD)13, and the use of the

SPARQL14 language, a query language for RDF-based documents, provide a promising set

of solutions for efficiently storing, manipulating, and reusing data generated by Things.

2.2 Applications

The technological infrastructure provided by the IoT allows for creating and deploying many

novel applications that will improve the quality of our life. In this section, we explore these

IoT-enabled applications, which can be grouped into the following application domains:

• Comfort living

• Healthcare

• Automotive

• Security

• Energy saving

• Supply chain

Note that, the IoT vision promises many more IoT-enabled applications across diverse do-

mains, of which only a few are currently available to the public. Thus, we only review here

domains and applications that are mostly mentioned in the literature, such that the readers

might get an idea about the potential benefits that the IoT may bring about. In the following,

we will discuss each application domain in a subsection, present representative applications

therein, and outline some possible futuristic applications at the end of the subsection.

2.2.1 Comfort Living

As envisioned by famous visionaries, we will live in smart environments where our living space

is filled with sensing, computing, communication, and actuating devices that collaborate with

each other in an unobstrusive manner to support our everyday activities. The IoT will be a

key to a comfortable life.

2.2.1.1 Home and Office

RFID tags, sensors, and actuators embedded in homes and offices, together with the Internet,

can make our life more comfortable in many ways: garage and house doors can automatically

open up based on RFID communication; rooms’ air condition is automatically regulated to

13http://linkeddata.org/
14http://www.w3.org/TR/sparql11-federated-query/

Chapter 2. The Internet of Things 15

our presence, preferences, and to the current weather forecast; home/office can be remotely

observed and controlled via smart phone; electronic furnitures (e.g., TV, stereo player) learn

our preferences to proactively search the Internet for content; room lighting changes according

to the time of the day; and many more. A survey on smart home/office applications can

be found in [32], [33], and [34]. There are research projects that already aim at realizing

some of these applications. For example, the MavHome [35] and iDorm [36] systems learn

and adapt to inhabitant behaviours based on sensor observation and power line control. The

Gator Tech Smart House [37] strives to be a so-called “programmable pervasive space” that

exposes sensors’ and actuators’ functionalites as an API for developers to build and deploy

powerful applications to users. And in [38], an experiment on real deployment of wireless

sensor networks for smart home/office environment is conducted and evaluated.

2.2.1.2 Travelling

The IoT technologies will also deliver a comfortable experience for people on the move.

Information about transportation services (e.g., costs, schedules) can be encoded in NFC tags

that are attached to markers, posters, and panels. The users can retrieve these information

by simply hovering their smartphone over, e.g., a marker, and decide to buy tickets with the

smartphone [39]. Touristic maps can also be equipped with NFC tags so that NFC-enabled

smartphones can browse them to display touristic information such as hotels, restaurants,

points of interest, comming events, etc, for the users [40]. Furthermore, interactive context

menu to assist the users in browsing more detailed information can be triggered using NFC

tags [41].

2.2.1.3 Shopping

During shopping, RFID and NFC will offer many comfortable applications for the customers.

By hovering their NFC-enabled smartphone over NFC-equipped items, customers are in-

formed about allergic information because the smartphone knows what substances its owner

is allgeric to. Customers are guided in the shop according to a preselected shopping list

(e.g., via interactive touch screens) [42]. Customers can purchase or rent items by simply

walking out of the store with them, or can return items without a store receipt as the items’

RFID tag and the customers’ smartphone contain all necessary information so that they

can collaborate to accomplish these tasks [43]. When a customer walks into the store, the

store’s RFID system recognizes her and will trigger automatic actions such as displaying tar-

geted suggestions, providing offers for products she typically purchases or suprise discounts

based on her loyalty level [44]. Such a system has already been realized to some extent by a

cooperation between ThingMagic15 and MIT MediaLab16 to create a presence-based, touch-

sensitive information display that senses the presence of a customer and presents products

15www.thingmagic.com
16http://www.media.mit.edu/

Chapter 2. The Internet of Things 16

that are likely appealing to her, and lets her browse further information and buy products

via touching the interactive context menu on the screen.

2.2.1.4 Futuristic Applications

Future applications will be based on sensory data, sophisticated actuators (e.g., domestic

robots), and advanced artificial intelligence software to further improve the quality of our

life. In future homes/offices, smart refrigerators will automatically do inventory of their

content, monitor and detect expired or recalled food items, and create shopping lists based

on RFID and sensory information [43]. A house or an office will be able to monitor and

adapt to its inhabitants’ emotions and habits to assist them accordingly, e.g., play emotional

musics or cook black coffee every morning at 8:00 AM. Movies, television, and meetings will

be more interactive than ever before as we will be meeting with our 3-D virtual friends in our

living room or office17. Domestic robots will collaborate with wireless smart devices (e.g.,

smart refrigerator) to effectively perform routine tasks such as cleaning or maintenance in

an autonomous fashion (e.g., clean and refill the refrigerator).

2.2.2 Healthcare

There will be many IoT applications in the healthcare domain, many of which can be further

grouped into the following sub-domains.

2.2.2.1 Smart Monitoring

The combination of sensor- and RFID-based technologies will allow accurate monitoring of

vital life functions such as blood pressure, heart rate, liver enzymes, cholesterol and glu-

cose levels in real time while also maintaining best convenience for patients. For example,

the US’s Food and Drug Administration (FDA) and Federal Communications Commission

(FCC) agencies organized a joint meeting on July 26-27, 2010, in Washington DC to discuss

how the convergence of the ubiquitous broadband cellular wireless technologies and the im-

plantable wireless sensors could be applied to real-time ambulatory patient monitoring. The

Internet and real-time monitored data, i.e., current patient conditions and health records

provided by worn sensors and implanted RFID tags, have the potential to remotely monitor

patient vital signs and alert physicians about possible emergency situations. A prototype

of such monitoring system is presented in [45], that involves dedicated sensors for patient

identification (e.g., unique ID number) and medical sensors such as electrocardiogram, oxy-

gen blood saturation, and non-invasive blood pressure. Another prototype is the “magic

carpet” developed by researchers at GE and Intel, which uses sensors to monitor and detect

erratic movements of ederly people at home thus can predict and detect falls. The mHealth

17http://www.futuretechnology500.com/index.php/future-homes/

Chapter 2. The Internet of Things 17

Alliance18 promotes using mobile devices such as cell phones, PDAs, and other wireless tech-

nologies to collect and transmit health-related data between medical personnels to improve

health throughout the world (e.g., via better monitoring of patients). A brief introduction of

several already-deployed monitoring systems based on the “The Internet of Medical Things”

is given in [46].

2.2.2.2 Smart Assistance

Through reliable broadband and high-speed communication, abundant sensory data, and

robotics, telemedecine activities such as telesurgery and telepresence will be significantly

improved. Discussions on how IoT technologies improve telemendecine can be found in [47]

and [48]. Telesurgery is a technique that allows a surgeon to remotely operate on a patient

via robotic and visual means while being at a considerable distance from the operating

table. In [49], a telesurgery system is enhanced with accelerometer sensors for measuring

acceleration in 3 axes of a moving space (e.g., a van, an elevator). The measurements are

used to compensate for any unintended master and slave manipulator motion resulting from

accelerations of the moving space within which the surgery is performed, thus enabling mobile

telesurgery. The Telelap Alf-x [50] prototype initiated by EU Comission and SOFAR S.p.A

focuses on providing haptic sensation feedback, adaptive 3D image processing and tracking,

and intelligent system setup and docking to realize next generation telesurgery systems.

Telepresence refers to providing physicians with the ability to easily navigate around in a

remote hospital as if they were physically at the hospital via a kind of surrogate, thus allowing

them to visit patients at bedside to provide medical care remotely. The RP-VITA medical

robot is such a surrogate, which has been recently approved by the US’s FDA for use in

hospitals. An RP-VITA medical robot is a combination of the iRobot’s AVA telepresence19,

and the InTouch Health’s remote presence20 technologies.

For further smart assistance applications, a common architecture for providing elderly people

with smart assistance at home is proposed in [51]. The “activity-aware computing” mecha-

nism proposed in [52] uses smart environment infrastructure (i.e., sensors, RFID, actuators,

wireless and mobile networks) to automatically recognize and inventorize hostpital activi-

ties (e.g., patient care, clinical case assessment), thus effectively helping hospital staff to

associate resources and services with activities via their smartphone. Another application is

the wearable, headband-like device called Muse21 developed by Interaxon, that can measure

human brainwaves in real-time and send the collected data to a smartphone or tablet to be

displayed so that users can monitor how well their brain is performing.

18http://www.mhealthalliance.org/
19http://www.irobot.com/ava/
20http://www.intouchhealth.com/products-and-services/products/
21http://interaxon.ca/muse/

Chapter 2. The Internet of Things 18

2.2.2.3 Futuristic Applications

According to [53] and [54], sensor- and actuator-based assistance systems will monitor elderly

people’s condition at their own home, raise alarms if necessary (e.g., likely to fall down, heart

rate exceeds certain threshold), and provide medical care if required (e.g., via robot doctor),

thus saving them from being moved into old people’s homes. Microchips will be developed

to be injected into human body, and use body fluid (e.g., blood) to continuously perform

many diagnosis (e.g., inflamation, early tumor cells).

2.2.3 Automotive

The automotive industry has long been using embedded systems to improve consumer ex-

perience during the move. The fast advancements of IoT technologies such as sensors and

actuators, micro-controllers, and wireless communications will further deepen this usage.

Wireless sensor nodes will be placed along roads and rails, and inside moving vehicles (e.g.,

cars, trains, buses). These embedded systems will exchange data via ad hoc (e.g., MANET,

VANET), overlaying (e.g., GSM, WiMAX) networks, and the Internet, to provide real-time

traffic information to drivers and passengers for better navigation and safety. Examples of

such infrastructures can be found in [55] and several research projects on the newly emerging

Car-to-X paradigm such as the PATH22 and simTD23. Furthermore, Apple is working with

General Motors, Honda, Toyota, and other car-makers to integrate its Eyes Free technology

onboard24. With this integration, a driver can talk to his car to e.g., send an SMS, enter an

address for navigation, as well as the car can talk back to the driver, e.g., reads out loud a

received SMS or a reminder. The Volvo’s V40 car25 can drive itself in busy traffic without

human intervention by automatically maintaining a safe distance to the surrounding vehi-

cles, keeping in lane, and braking when it senses an imminent collision. The teleservice26

feature developed by BMW allows a car to automatically monitor certain functions that

require maintenance such as oil and brakes, and contacts the dealer to schedule an appoint-

ment when required, so that the dealer will know the full health status of the car before the

consumer arrives. All these examples give an indication that vehicles will become a part of

the IoT, having their own intelligence, functioning automatically and even autonomously. In

[56], a prototype of a completely autonomous vehicle system is given, that, in addition to

sensory information provided by embedded sensors, is based on real-time data taken from

Internet clouds to plan efficient paths and to avoid obstacles.

22http://www.path.berkeley.edu/
23http://www.psychologie.uni-wuerzburg.de/izvw/forschung/projekte/fahrerinformation/simtd.php.en
24http://www.wired.com/autopia/2012/07/siri-eyes-free-competing/
25http://www.economist.com/node/21548992
26http://www.bmw.com/com/en/owners/service/bmw teleservices.html

Chapter 2. The Internet of Things 19

2.2.4 Security

In the security domain, the term “smart surveillance” refers to the high level of autonomy of

surveillance applications in accomplishing their tasks. The use of image processing mecha-

nisms in combination with dedicated video capturing and computation hardware have been

shifting the security paradigm from investigation of incidents to prevention of potentially

(catastrophic) incidents via automatic decision making of the surveillance systems [57]. The

IoT technologies will further contribute to this shift via smart cameras (i.e., cameras that

can partly process video streams), sensor networks, and RFID. A detailed review of smart

surveillance systems based on smart cameras and sensor networks is given in [58]. With the

integration of RFID into surveillance systems, RFID-enabled assets can be monitored by an

RFID reader despite that there is no line-of-sight between them and the reader, which is not

possible with a camera-based mechanism. Example systems based on this are [59], [60], and

SimplyRFID27.

2.2.4.1 Futuristic Applications

Future systems for the security purpose will be inspired from more sophisticated hardware

and intelligent software and their combination in a fast-evolving IoT. A research project

funded by DARPA and Carnegie Mellon University aims at developing an artificial intelli-

gence system that is close to human visual intelligence and can watch and predict what a

person will “likely” do in the future [61]. Scientists at the University of Illinois introduced

a prototype of a tattoo-like patch to be laminated onto human skin, that is able to mon-

itor human nerves and muscles via embedded EEG and EMG sensors [62]. Dispite of its

thinness, the patch contains a wide range of hardware components including LEDs, transis-

tors, wireless antennas, sensors, and conductive coils and solar cells for power. A number of

DARPA-funded projects such as HIMEM are developing bug-like machines that are equipped

with sophisticated sensors (e.g., camera, acoustic) for “hidden” surveillance systems. In the

long term, surveillance systems will even be able to read and analyze human brain waves to

proactively react to harmful deeds [63]. There may also be parabolic microphones that can

pick up conversations a mile away, cameras that learn what and who to photograph, radars

that “see through walls”28, and nano air vehicles (NAVs) resembling drones to fly in swarms

by 203029.

2.2.5 Energy Saving

Energy saving enabled by IoT technologies refers to systems that use sensory data provided

by the sensors embedded into power consuming devices to optimize energy usage.

27http://www.simplyrfid.com/nox-core-ata-server/
28http://topdocumentaryfilms.com/surveillance-technology/
29http://www.activistpost.com/2011/02/how-close-are-we-to-nano-based.html

Chapter 2. The Internet of Things 20

2.2.5.1 Home, Office, and City

In the home and office sub-domain, the smart metering technology is becoming more popular

for measuring energy consumption and transmitting this information to the energy provider

via the Internet. This allows energy providers to conveniently provide better services, such

as real-time pricing to promote better energy efficiency, instant reporting of detected faults,

and more accurate data for profiling usage within their network [64]. Within a house or office,

electrical equipment can be automatically switched off when not needed to save energy. This

is achieved by an Intelligent Building Automation System (IBAS) that processes sensory data

provided by sensors embedded inside the building (e.g., light sensors at windows, motion

sensors at doors, pressure sensors at chairs, temperature sensors in rooms), and other cloud

data (e.g., weather forecast) to, e.g., switch off lights if room luminance exceeds a certain

threshold, or turn off the heater when no person is detected in the room. The SPITFIRE

project30 develops several IBAS use-cases to illustrate such energy saving scenarios. Several

studies by KNX31 show appealing statistics on how much the IBAS technology can save

energy [65]. A further survey on research works on IBAS can be found in [66]. Commercial

IBASs are also available such as the Siemens’s Desigo system [67], and the solutions provided

by AVI-SPL32, and Intelligentibas33. Energy usage can also be optimized at city level via

sensor networks monitoring and controling light in public street lighting scenarios [68], or via

combining smart metering technology with future smart power grids to provide a real-time

balance between energy supply and enery demand [69].

2.2.5.2 Futuristic Applications

In an IoT-enhanced future, the status and performance of each urban structure (e.g., side-

walk, bridge, building, railway, bus corridor) of the entire city will be continously monitored

and selectively accessible via a series of APIs, thus enabling a live modeling of the entire

city, which changes in real time according the live sensory information streams, and is known

as City Information Model (CIM) [11]. Based on CIM, urban facility managers and ser-

vice providers can communicate and collaborate with each other to trade surplus energy,

and to calculate prices that match energy supply and demand in real time [70] [71]. Fur-

thermore, with the realization of future smart grids for efficient energy distribution, energy

usage optimization across countries will be possible [72].

2.2.6 Supply Chain

Globally identified RFID or NFC tags that contain both current and historical information

about the item they are attached to such as its production and expiration date, ownership,

30http://spitfire-project.eu/
31www.knx-gebaeudesysteme.de
32http://www.avispl.com/solutions/intelligent-buildings/
33http://www.intelligentbas.com/

Chapter 2. The Internet of Things 21

states and locations, or destination, make (semi-)automatic, near real-time tracking and man-

agement of every link of the supply chain possible, including conceptual design, raw material

purchasing, production, warehousing, transportation, distribution, retail, and customer care.

Through space and time, arising problems can be taken care of in a timely and economical

manner, therefore creating benefit as well as saving money for companies.

Sensor technology can also be combined with RFID to further improve tracking and man-

agement of products in the supply chain. Using sensory data we can ensure that a product

never was exposed to damaging environmental conditions (e.g., a milk carton has never been

stored at a temperature that exceeds 30◦C), or in an area that is not along the planned

transportation route (e.g., based on a GPS sensor), thus the integrity of the product is guar-

anteed for end customers. Example systems are [73] and [74] which use sensory information

to preserve the quality of perishable goods such as fruits, meat, and dairy products during

transportation.

2.2.6.1 Futuristic Applications

In an IoT-enhanced future, smart containers/pallets will automatically and continuously

monitor the condition of the goods (e.g., to ensure right temperature, to avoid toxic chemical

substances) during transportation, track the transportation route and their actual position

to ensure that they are arriving at their destination [42]. Supply chains will be capable of

learning and making decisions by themselves, without human involvement. For example,

they could reconfigure supply chain networks when disruptions occur, or could acquire rights

to use physical assets like production capacity, distribution facilities and transportation fleets

on demand through virtual exchanges [75].

2.3 A Layered View on the IoT

Based on the definition of the IoT and its applications, the vision of the IoT can be summa-

rized by the illustration given in Fig. 2.1, which shows four functional layers: the interaction

layer, the representation layer, the service layer, and the application layer.

The interaction layer consists of Things, i.e., IoT devices such as RFID tags and sensor nodes

that are attached to physical entities (e.g., cars, homes, people, animals) or deployed into

the environment (e.g., forests, farms, coastlines). Thanks to the wireless communication,

computing, sensing, and actuation capabilities of the IoT devices, this layer can directly

“interact” with the real world, i.e., monitor (via sensors) and manipulate (via actuators) the

state of the real world.

The representation layer resides on top of the interaction layer, and is responsible for en-

abling the access to the basic functionalities offerred and data generated by the vast numbers

of heterogenous IoT devices through a set of standardized methods (e.g., REST interfaces).

Chapter 2. The Internet of Things 22

InternetInteraction
Layer

Representation
Layer

Service
Layer

Application
Layer

M
a
n

a
g

e
m

e
n

t
o
f

P
ri

v
a
c
y
 a

n
d

 S
e
c
u

ri
ty

Figure 2.1: A layered view on the Internet of Things

Each Thing is given a logical representation that is addressed using a unique identification

(e.g., a URI/URL) and is accessible using the standardized methods. This way, generated

data and offered functionalities of Things can be directly accessed by human users, appli-

cations, and other Things (via their representations), without being hampered by possible

heterogeneity issues (e.g., heterogenous sensor data, diverse hardware architecture of IoT

devices, and different operating systems that run on them).

Using these data and functionalities, the service layer on top of the representation layer is

responsible for building and maintaining composite services that are used by applications

developed by programmers and end-users at the application layer.

In this layered view, the sensor search service is placed in the service layer and can be

considered as a composite service. This placement is because the search service finds Things

based on the real-world states perceived by their embedded sensors, thus it requires access to

the IoT devices via their representation. The routing service is placed in the interaction layer,

because communication between entities in the IoT (i.e., Things, services, and applications)

is eventually translated to communication between IoT devices, and routing enables this

communication. Thus, routing facilitates sensor search, and also other IoT applications.

More specifically, the sensor search service requires communication with IoT devices in order

to verify if they match a certain search query or to request their current status. This

Chapter 2. The Internet of Things 23

communication is eventually translated to the communication between the computer on

which the search service is running and the IoT devices. At this point, the routing service is

needed to reliably and efficiently deliver the search query to the destination IoT devices, as

well as the response from them to the computer hosting the search service. An illustration of

this relationship is given in Fig. 2.1, where the three communication links between a search

engine and three representations of three IoT devices are translated into three corresponding

routing sessions between the computers that host the search engine in the Internet and three

IoT devices. In the following section, we will discuss the most important and relevant IoT

technologies in this layered view.

2.4 Driving Technologies

In Sec. 2.2, we have reviewed a wide range of possible applications of the IoT. Among these

applications, some have already been put in practice, some are still existing as prototypes, and

some others are just speculations but are realizable given the assumption that the technologies

supporting them will mature (very quickly) over time. The realization and evolution of the

IoT-based applications will, thus, depend on what are the technologies that drive the IoT

and how fast they are maturing.

In the following, we will present a survey on the driving technologies that are either most

relevant to our thesis or the major building blocks of the IoT. In particular, technologies

that enable the operation of the interaction layer in Fig. 2.1 are presented in Sec. 2.4.1, Sec.

2.4.2, Sec. 2.4.3, and Sec. 2.4.4. Among these sections, Sec. 2.4.4 provides a brief discussion

of the routing service in the IoT. In Sec. 2.4.5, we present the technologies that enable the

operation of the representation and service layers in which the sensor search service for the

IoT takes place. To gain an in-depth understanding of a wider range of IoT technologies, we

refer the reader to documents such as [76] and the references therein.

2.4.1 Radio-Frequency Identification

Radio Frequency IDentification (RFID) systems consist of 3 parts: an RFID tag/transponder

that carries the data, an RFID reader/interrogator that sends a radio signal to an RFID tag

and reads the tag’s response (the tag’s carried data), and an RFID software/middleware

that receives and processes information sent from the RFID reader. The data carried by an

RFID tag is typically its unique identification (ID) such as EPC, and/or some product-related

information such as production date and batch number. In general, RFID tags are composed

of two basic components: (i) an integrated circuit for storing and processing information,

modulating and demodulating a radio frequency (RF) signal, and optionally for harvesting

power from a reader’s RF signal; and (ii) an antenna for receiving and transmitting RF

signals.

Chapter 2. The Internet of Things 24

RFID systems operate in the unlicensed radio frequency bands known as ISM (Industrial,

Scientific, and Medical), with the common frequency of 125 to 135 KHz in low frequency

(LF) band, 13.56 MHz in high frequency (HF) band, 868 to 928 MHz in ultra-high frequency

(UHF) band, and 2.45/5.8 GHz in microwave band.

The working principle of an RFID system is as follow. The RFID reader initiates the data

transfers by broadcasting a query signal. More than one RFID tags will respond to the reader

by sending their stored data (e.g., EPC code). To avoid collisions, two main approaches are

used. In a slotted ALOHA [77] based approach, a parameter is included in the query signal

that is used by RFID tags to randomly delay their response. In an adaptive binary tree

[78] based approach, the RFID reader sequentially broadcasts a string of bits 0 and 1, each

time appending one bit to the string. Only RFID tags whose ID match the bit sequence will

respond. This way, a reader can effectively discover all RFID tags within its transmission

range.

RFID systems are usually classified according to the type of the RFID tags in use, which are

either passive or active. A passive tag only transmits signals when triggered by a reader. The

transmission is powered by the RF signal generated by the reader. In addition to the basic

components, an active tag has an on-board battery to power the transmission of its signals

(either periodically or when triggered by a reader), and optionally embedded sensors and

actuators for data collection and react to the outside world. When compared with passive

tags, active tags are bigger in size, have higher production cost, can be read from greater

distance (up to 100 meters), and thus are reserved for costly products e.g., cars, containers.

Passive tags are read from much closer distance (up to 3 meters), and mostly reserved for

cheaper items such as clothes or wine bottles.

Besides being classified as active or passive, RFID tags can also be classified according to

how they store data. There are three storage types: read-write, read-only, and write once

read many (WORM). While new data can be added or overwritten on read-write tags, the

same is not possible with read-only tags and they only contain the data that is stored in

them when they were made. For WORM tags, new data can only be added once and cannot

be overwritten thereafter.

There is currently no universally accepted standard for use in RFID systems. However, most

RFID technical specifications conform to either the International Standard Organization’s

(ISO) or the EPCGlobal’s standards. In the following we will briefly mention the most

commonly used standards. For a detailed description of all standards, we refer the reader to

[79] and the ISO14443/15693/18000 sets of standards for RFIDs.

2.4.1.1 EPCGlobal UHF Gen 2

This is the current and mostly used air interface RFID standard of the EPCGlobal. The

UHF Gen 2 tag is of type passive WORM and contains an EPC of 96 bits long. An UHF

Chapter 2. The Internet of Things 25

Gen 2 system operates in the UHF band using a carrier frequency of 860 MHz to 960 MHz

depending on local regulations. For querying tags, the reader uses an amplitude-shift keying

(ASK) modulation technique (e.g., DSB-ASK, SSB-ASK) and pulse interval encoding (PIE)

architecture, and transmits data at rates of 26.7-128 kbit/s. For responding to queries, a tag

uses ASK or phase-shift keying (PSK) for modulation and transmits data at rates of 5-640

kbit/s. A slotted ALOHA based protocol is used for collision avoidance.

2.4.1.2 ISO14443/NFC

This standard is also called ISO standard for proximity cards, which the near-field commu-

nication (NFC) technology is based on. An ISO14443/NFC tag offers a maximum reading

range of only up to 10 cm, thus is promising for applications that require high level of secu-

rity such as electronic payment, building access, or banking activities. The system operates

in the HF band using a carrier frequency of 13.56 MHz. The tag uses ASK technique for

modulation. Its data transfer rate can be from 106 kbit/s to 847 kbit/s. For querying tags,

the reader uses ASK for modulation and the Miller sub-carrier coding algorithm for encod-

ing, and transmits data also at a rate of 106-847 kbit/s. For collision avoidance, an adaptive

binary tree protocol is used.

2.4.1.3 ISO15693

This standard is also known as the ISO standard for vicinity cards or smart tags, which also

operate in the HF band using 13.56 KHz carrier frequency as do ISO14443/NFC cards, but

offers a much better maximum reading distance (1.5 m VS. 10 cm). For communication to

cards, the reader uses ASK modulation and pulse-pause modulation (PPM) coding. The

data transmission rate can be either 1.65 kbit/s or 26.48 kbit/s. A card has two ways to

communicate with the reader: (i) based on ASK modulation on a 423.75 KHz subcarrier

with a data rate of 6.62 kbit/s or 26.48 kbit/s, or (ii) based on switching between a 423.75

KHz subcarrier and a 484.25 KHz subcarrier with a data rate of 6.67 kbit/s or 26.69 kbit/s.

Collision avoidance is based on a slotted ALOHA-like algorithm called the slotted terminal

adaptive collection (STAC) [80].

2.4.2 Wireless Personal Area Networks

Wireless Personal Area Networks (WPAN) are characterized by low cost, low bit rate, short

to medium communication range, and low power consumption [81], which in most cases

are networks of IoT devices such as sensor nodes and RFID/NFC tags. As IoT devices

are made of diverse hardware, standardized physical signal manipulation (e.g., modulation,

coding) and wireless medium access (e.g., scheduling) mechanisms are needed for effective

and efficient communication between Things. We summarize in the following a few widely

used physical and medium access standards/technologies.

Chapter 2. The Internet of Things 26

2.4.2.1 IEEE 802.15.4

The IEEE 802.15.4 [82] is a communication standard maintained by the IEEE 802.15 Task

Group 4. The standard specifies physical layer and medium access control protocols for use

in WPANs. Many industrialized standards such as ZigBee, WirelessHART, and MiWi take

IEEE 802.15.4 as the basis and extend it by introducing higher layers that are not specified

in IEEE 802.15.4.

The current specification of the 802.15.4 standard features 3 different data rates of 20 kbps,

40 kbps, and 250 kbps operating at the frequencies of 868 MHz, 915 MHz, and 2.4 GHz,

respectively. The standard supports power management at physical layer to put the radio

on duty cycle (can be inactive up to 99% of the time), thus ensuring low power consump-

tion. Furthermore, spread spectrum techniques are used prior to transmission to alleviate

environment noise, interference, and jamming. For medium access control, CSMA/CA based

protocols are used.

2.4.2.2 Bluetooth

The Bluetooth physical layer standard [83] was originally created by Ericsson in 1994 and

intended to replace RS-232 data cable. It is mainly used in WPANs and Body Area Net-

works (BANs) which are short range communication, require low power and low cost. The

Bluetooth physical layer operates in the unlicense ISM band at 2.4 GHz, using spread spec-

trum, adaptive frequency hopping, on a set of 79 channels each of which is 1 MHz wide, at

a nominal hopping rate of 1600 hops/seconds. Transmission range can be up to 10 meters

(e.g., smartphones) or 100 meters (e.g., industrial use cases) with a peek power consumption

smaller than 30 mW . For medium access control and data transmission, a TDMA-based

polling channel access scheme is used. A Bluetooth master device manages a number of

other Bluetooth slave devices to form a single-hop star topology network (also called Pi-

conet). During each time slot, only either the master or one of the slaves can transmit at

a particular frequency that is selected according to the adaptive frequency hopping (AFH)

technique. AFH reduces inteference between concurrent transmissions of different Piconets

that are in the same geographical area.

2.4.2.3 Bluetooth Low Energy

The Bluetooth Low Energy (BLE) [83] was originally named Wibree by Nokia in 2006, but

was merged with and renamed under the Bluetooth standard version 4.0 in 2010, thus it

can be seen as a simplified version of the classic Bluetooth standard. Compared to classic

Bluetooth, BLE has a similar transmission range (approx. 50 meters), a slower data transfer

rate (approx. 200 kbit/s), but provides further reduced power consumption and much faster

setup time (time for Bluetooth device discovery and connection). Due to these features,

Chapter 2. The Internet of Things 27

BLE has become an alternative to the NFC standard. Some manufacturers (e.g., Texas

Instruments, Nordic Semiconductor) are already developing BLE-complient devices.

2.4.2.4 Ultra Wide Band

The Ultra Wide Band (UWB) [84] wireless communication technology is finding its use

in applications requiring high data rate over a short transmission range (e.g., multimedia

traffic or wireless USB to replace the USB cable), and high precision ranging (e.g., WSN

location and tracking applications). According to the US FCC, UWB signals must occupy a

bandwidth greater than 500MHz or a bandwidth at least 20% of the carrier frequency, and

the physical layer operates in the frequency range of 3.1 GHz to 10.6 GHz with a limited

transmit power of -41dBm/MHz. UWB differs from other conventional narrow band and

spread spectrum systems (e.g., ZigBee, Bluetooth, 802.11a/b/g) in that it uses the so-called

Impulse Radio technique [85] to transmit baseband pulses of very short duration (less than 1

ns) in a discrete manner, thus enabling very low duty cycle transmission. The advantages are

that multipath fading and interference can be significantly reduced due to the very short pulse

duration, low power consumption due to low duty cycle, inexpensive production of the radio

device due to the pulses being baseband or “carrierless” (no additional carrier modulation

is required), and the very wide bandwidth allows very high data rate (e.g., Gigabit/s which

is well beyond that of 802.11a/b/g or WiMax) as well as high precision (few centimeters) of

ranging measurements (which is ideal for geolocation-related applications).

The Impulse Radio UWB technique is adopted as physical layer in the 802.15.4a standard

[86] to enable robust data communication and precision ranging of devices. In the market,

there are several UWB devices that have been certified by the WiMedia Alliance (the group

behind the UWB technology). They are UWB chipsets from 12 manufacturers including

Alereon, Intel, and Staccato.

2.4.3 Wireless Sensor Networks

Together with RFID/NFC, Wireless Sensor Networks (WSN) (which generally use WPAN

technologies) is the main building block of the IoT. A WSN typically consists of two compo-

nents: (i) a (large or very large) number of low-cost, small-size sensor nodes, that can sense

and react to the environment, process information, and communicate with each other wire-

lessly; and (ii) one or more information sinks that receive and process sensory information

reported by sensor nodes, as well as control the operation of the WSN. Each sensor node

typically consists of a hardware architecture (i.e., microcontroller), a software framework

(i.e., operating system), a wireless interface (i.e., radio chip), a sensor board that contains

several sensors (e.g., light, humidity), and possibly a set of actuators to react (e.g., to move,

to make sounds) to the outside stimuli. Equipped with these capabilities, a WSN can be

deployed into the environment to “interact with the physical world”, i.e., to provide us with

Chapter 2. The Internet of Things 28

the actual states of the physical world in (near) real-time via rich sensory information as

well as the ability to control the physical world via actuators. Low cost and small size allow

sensor nodes to be deployed in large quantity and allow WSNs to operate in an unobtrusive

fashion, which contributes greatly to the realization of the IoT. A comprehensive discussion

on various WSN technologies, deployments, and applications can be found in [87].

There are many sensor node platforms currently existing in the market34, which are com-

posed of different kinds of hardware including microcontrollers, wireless radio chips, sensors,

actuators, and batteries from various popular manufacturers such as Atmel35, Microchip36,

and Texsas Instruments37. Examples of the representative sensor node platforms are TelosB,

Imote2, MicaZ from Crossbow38, BTnode from Ethz39, Sun Spot40 from Oracle, and Smart-

Dust [3]. To help the readers get an idea of what enables the operation of these platforms,

we briefly present below the components that are commonly found on a typical sensor node

platform.

2.4.3.1 Computing Subsystem

The main function of this component is performing any required computations on the sensor

node such as controlling the operation of other components (e.g., sensing, actuating, wireless

communication) and processing information. The component usually consists of one or more

microcontrollers whose clock rate ranges from a few tens of KHz to hundreds of MHz, a

flash memory unit for storing program code, and a RAM memory unit for storing sensory

as well as run-time data. The size of the memory units ranges from a few KB to a few MB.

Popular microcontrollers that are used for sensor nodes are Atmel’s AVR, Texas Instruments’

MSP430, and Microchip’s PIC families.

2.4.3.2 Wireless Communication Subsystem

This component is responsible for the wireless communication among sensor nodes, and

between them and a sink. Recently, most wireless radio chips for sensor nodes are compliant

to the IEEE 802.15.4 standard and operate in license-free ISM bands (e.g., 868 MHz, 915

MHz, 2.4 GHz). However, other technologies could be used as well such as Bluetooth (e.g.,

BTnode), optical-based (laser) (e.g., SmartDust), and infrared. Examples of popular radio

chips include the Texas Instruments’ CC2xxxxx and Atmel’s AT86RF2xx families.

34http://en.wikipedia.org/wiki/List of wireless sensor nodes
35http://www.atmel.com/products/microcontrollers/default.aspx
36http://www.microchip.com/pagehandler/en-us/products/picmicrocontrollers
37http://www.ti.com/lsds/ti/microcontroller/16-bit msp430/overview.page
38http://bullseye.xbow.com:81/General info/companyoverview.aspx
39http://www.snm.ethz.ch/snmwiki/Projects/BTnodeRev3
40http://www.sunspotworld.com/

Chapter 2. The Internet of Things 29

2.4.3.3 Input/Output (IO) Interfaces

This component facilitates the communication among different components within a sensor

node as well as between the sensor node and external devices. Examples of these interfaces

are UART (Asynchronous Receiver/Transmitters), I2C (Inter-Integrated Circuit), SPI (Serial

Peripheral Interface), ADC (Analog-to-Digital Converter), which are directly supported by

many digital sensors, and USB (Universal Serial Bus) for connecting external devices to the

sensor node.

2.4.3.4 Sensors and Actuators

In order to sense and control the physical world, sensor nodes must be equipped with sensors

and actuators. Usually a sensor maps a certain physical quantity (e.g., humidity, tempera-

ture) to an analog signal such as voltage or current, and an ADC, which is typically integrated

into the microcontroller, converts this analog signal to a digital number. A sensor with a

built-in ADC is called digital sensor. Similarly, an actuator (e.g., a LED) can accept a digi-

tal or an analog input depending on whether it is supported by an ADC. Sensors/actuators

can either be directly integrated on-board or on so-called sensor boards. The latter is more

common as sensor boards provide modularity and flexibility (can be removed, replaced, and

upgraded), and dedicated functionalites for supporting sensors such as ADC, multiplexers, or

even an extra microcontroller. Some examples for sensors are light, humidity, gas, pressure

sensors; examples for actuators are LED, servo, speaker, and vibrator.

2.4.3.5 Power Source

Sensor nodes may be powered by batteries or may harvest energy from the environment, e.g.,

solar radiation, heat, motion, or vibration. The batteries are commonly classified according

to the electrochemical material used for the electrodes, including NiCd (nickel-cadmium),

NiZn (nickel-zinc), NiMH (nickel-metal hydride), and lithium-ion.

2.4.4 Routing

Routing refers to the process of selecting a path for information to travel on the network

from its source to its destination. From an application layer’s point of view, the main routing

goals for a piece of information are its successful arrival at the destination, its integrity, and

its travel time. From the lower layers’ point of view, there are many influencing factors

to be taken into consideration to achieve these routing goals, especially when information

is travelling on networks of IoT devices (e.g., IEEE 802.15.4-based), which are typically

characterized as low-cost, low-power, short-range, and lossy-link wireless networks. Energy

consumption, next hop selection, link quality, medium access control, physical layer noise

and interference are just a few of these factors to name.

Chapter 2. The Internet of Things 30

At an IoT scale, routing of information generated by Things takes place in two major do-

mains: the Internet and the networks of IoT devices. Routing inside the Internet is mainly

based on the IP stack which is mature, well-documented, and has been working well in prac-

tice. In the networks of IoT devices (i.e., devices that mostly are IEEE 802.15.4-compliant),

standardized protocols are based on the 6LoWPAN standard and can be divided into 2

schemes: mesh-under routing and route-over routing.

In the mesh-under scheme, the 6LoWPAN’s adaptation layer is responsible for forwarding

packets from a source to a destination over multiple radio hops (a radio interface is considered

a next hop of the current radio interface if it is within the transmission range of the current

radio interface). Nodes (i.e., radio interfaces) are uniquely identified using either IEEE 16-

bit short or IEEE 64-bit address. This way, a mesh network topology is created underneath

and unbeknownst to the IPv6 layer (layer 3 or network layer). The IPv6 sees the entire

6LoWPAN network as a single IP link. Thus, multiple link layer (layer 2) hops are used to

complete a single IP hop. Once the adaptation layer receives all fragments of an IPv6 packet,

it reassembles the packet and sends it to the IPv6 layer. Examples of this routing scheme

include the LOAD [88] and DYMO-low [89] protocols that are variants of the well-known

AODV [90] routing protocol, with appropriate modifications to operate on networks of IoT

devices. For example, they eliminate the use of destination sequence numbers and disable

the maintenance of a precursor list (a list of IP addresses of neighbor nodes that are the

candidate for the next hop forwarding) at intermediate nodes. Another example of mesh-

under routing is the HiLow [91] protocol, that adopts a hierarchical approach to reduce the

size of the routing table that each node has to maintain.

In the route-over scheme, the IPv6 layer takes care of the routing decisions. Each node acts

as an IP router and each link layer hop is an IP hop. Forwarding of packets, therefore, is

performed based on IP routing tables. In particular, the adaptation layer of a forwarding

node divides the IPv6 packet into fragments and forwards them to the next IP hop based on

the node’s IP routing table. Once the adaptation layer of the next IP hop has successfully

received these fragments, it reassembles the IPv6 packet from them and sends the packet to

the IPv6 layer. If the packet is destined for the node, the IPv6 layer sends the packet to

the upper layer, otherwise forwards the packet to the next IP hop in the same forwarding

fashion. An example of this routing scheme is the RPL [92] protocol, which is optimized

for the multipoint-to-point traffic pattern, i.e., data travels from multiple IoT devices to a

gateway (e.g., WSN).

Alternative to the standardized routing protocols, there is a vast number of non-standardized

routing protocols. Depending on the application scenarios, their design is focused on different

(but possibly overlapping) sets of goals. For example, traffic pattern (e.g., multipoint-to-

point, point-to-multipoint, point-to-point), packet delivery time, control overhead, location-

based, hierarchy-based, etc. Although varying, their design still shares two essential goals

of minimizing energy consumption and scaling to the large number of network nodes. A

comprehensive survey of these protocols can be found in [93].

Chapter 2. The Internet of Things 31

2.4.5 The Web of Things

The realization of the IoT is driven by the integration of huge numbers of Things (i.e., real-

world objects that are augmented with sensing, computing, communication, and actuating

capabilities) into the Internet. As such, sensor, actuator, and RFID devices will play a

key role in this integration. We have reviewed in the previous subsections the technologies

that enable the operation of and the communication among these types of devices. Effec-

tively exploiting this infrastructure to build novel and valuable IoT applications, however, is

challenging.

This is due to the heterogeneity of hardware platforms (i.e., made of different hardware

architectures and components although they can provide similar functionalities), software

platforms (i.e., different operating systems and programming languages), and ownership

(i.e., manufactured and/or owned by different organizations) of IoT devices, which requires

application developers to be an expert on heterogenous technological fields. Another reason

is that the open and dynamic nature of the IoT makes it difficult for application developers

to manually discover IoT devices and the functionalities that they offer, to mash them up

to create necessary services for use in developing applications, and to keep track of all IoT

devices, functionalities, and services. Obviously, application developers do not want to deal

with any of these problems. In fact, they should only care about problems that are directly

pertinent to their interest, that is the development of the specific application using IoT

infrastructures.

In today’s Internet, the Web has become the de facto platform for creating interoperable

and platform-independent applications. These applications can be further customized and

adapted to build new applications according to user needs, based on the easily reusable and

combinable Web services. The Web, therefore, has hidden the heterogeneity of the underlying

Internet technologies from the application developers, such that they can focus more on the

functionalities of the Web-based applications that they are developing. Given the success

of the current Web, it is logical to reuse and extend the existing Web technologies for the

IoT, resulting in a Web of Things (WoT). Much like with the current Web, where Internet

resources and entities are given a Web representation, the WoT aims at giving Things in the

IoT a Web representation that is accessible using Web technologies. For example, a chair

augmented with a pressure sensor can be accessed from a Web browser via a URL to query

if it is currently being sat on or not. The Web representations of Things, therefore, exist in

the representation layer (see Fig. 2.1).

The biggest advantage of the WoT is interoperability. Regardless of the hardware, software,

and communication technologies that IoT devices are made from, they can publish their

data and expose their functionalities on the Web, as well as consume the data and and use

functionalities that are pulished and offered by other Things on the Web, through their Web

representation. The data and functionalities published by Things (i.e., originated from the

physical world), then, can easily be mashed up with the existing Web data and services (i.e.,

Chapter 2. The Internet of Things 32

originated from the world of information and computers), to create novel IoT services and

applications which exist in the service and application layers (see Fig. 2.1). For example,

the sensor search service could be built based on the published output of sensors which is

accessible via their Web representation.

Given the IoT, there are two approaches to realize the WoT, i.e., integrating Things into

the Web. In the direct approach, a tiny Web server is embedded directly in the IoT de-

vices, which supports light-weight Web-level communication interfaces such as the POST

and GET methods of the RESTful framework. Functionalities offered by the IoT devices

can be wrapped in the payload of these methods so that they can be exposed on the Web.

Recent work shows that this approach is promising as tiny Web servers can be built within

a size of only a few kilobytes [94] [95] [96], thus can be fit in resource-constrained IoT de-

vices (e.g., sensor nodes). In the indirect approach, a gateway (or proxy) is located between

the Web and the IoT devices. The gateway is responsible for wrapping the heterogeneous

functionalities offered by the IoT devices into standard Web services, such that any Web-

based entity can communicate with the IoT devices behind the gateway as if there was a

direct Web-level communication link between them. This approach is adopted when either

the IoT devices are too resource-constrained (e.g., passive RFID tags) or are not allowed to

be directly connected to the Web (e.g., due to privacy, security, or authority reasons). An

example of this approach is the implementation of the Smart Service Proxy in the SPITFIRE

project41. Some other examples are [97] and [98].

Once Things have been integrated into the Web and start publishing data and services,

mashed-up IoT applications can be built based on them. However, due to the scale and

the dynamicity of the IoT, these data and services will be huge in amount and dynamic in

content. Furthermore, the data are heterogenous, unstructured, and unannotated as they

come from diverse sources (or Things) and are usually just streams of bytes. Thus, it will

be difficult for human users to manually discover and compile them to create applications.

The Semantic Web42 is an effort by the World Wide Web Consortium (W3C) to address

this difficulty. The core concept is that information in the Web should be represented as

resources each of which is identified by an unique URI, and by descriptions that precisely

define these resources based on their contents and properties (which also are identified by

URIs), values assigned to them (which can be URIs or literal values), and the relationships

between them (which are also URIs). This way, Web information has exact meaning and

the relationships between Web information are precisely defined, which enables computers

to “understand” the Web and to automatically (i.e., without direct support from humans)

gather, process, and integrate Web information, thus easing the otherwise difficult manual

process of service and data discovery and management in the WoT.

The core technologies that enable the Semantic Web concept are the REST (REpresentational

State Transfer) [99] architecture, the RDF (Resource Description Framework), SPARQL

41http://spitfire-project.eu/ssp
42http://www.w3.org/standards/semanticweb/

Chapter 2. The Internet of Things 33

(SPARQL Query Language for RDF)43, and LOD (Linking Open Data)44. Among these,

RDF is used to define the above interconnected network of resources as a knowledge graph of

triples of the form (subject, predicate, object) whose vertices (i.e., “subject” and “object”)

define the contents (which are also resources) of a resource and edges (i.e., “predicate”) define

the relationships between them. By navigating the knowledge graph, computers can explore

and infer knowledge. The LOD project is an attempt to connect distributed data across the

Web and present it as a knowledge graph of triples. To build services and applications on top

of the Semantic Web framework, SPARQL and REST are used. SPARQL is a query language

for expressing queries that are executed over RDF-described data sources (e.g., LOD). The

results of a SPARQL query are usually RDF graphs. Typically, SPARQL endpoints, an URI

to which SPARQL queries can be sent and RDF graphs are returned, are RESTful applica-

tions (i.e., they support REST interfaces). As an overview, REST is a client-server based

architecture for designing networked applications, with the core idea of using lightweight

HTTP methods (e.g., PUT, POST, GET) as a replacement of complex mechanisms such as

RPC (Remote Procedure Call) and CORBA (Common Object Request Broker Architecture)

to facilitate invocation of functions on remote computers. As REST operations are indepen-

dent of platforms (e.g., Linux, Windows), independent of programming languages (e.g., C,

Java, Delphi), self-contained (i.e., each REST-based request contains within it all necessary

information for the server to complete it), and standardized (using HTTP which the current

Web is based on), the architecture has been widely accepted as the “mainstream” mechanism

for designing Semantic Web applications.

2.5 Challenges

The IoT promises to reshape the scociety. Althougth the driving technologies discussed in

the previous section make the realization of the IoT feasible, more research efforts are still

required to overcome challenges at all layers as well as across layers, in order to make the

IoT vision a reality. In the following, we present the major challenges to a realization of the

IoT.

2.5.1 Small Physical Size

The IoT vision predicts a future where we will be surrounded by smart environments that

constantly take care of and unobstrusively assist us in every aspect of our life. We will

hardly notice this assistance as it will be seamlessly wowen into our daily activities. In order

to realize this future, it is desired that the augmenting devices, i.e., devices that are to be

attached to real-world objects to form Things, are as small in physical size as possible. For

example, in healthcare applications, body-worn sensors should be as small in physical size as

43http://www.w3.org/TR/rdf-sparql-query/
44http://linkeddata.org/

Chapter 2. The Internet of Things 34

possible in order to not interfere with patients’ daily activities. Current technologies already

help to reduce the size of a sensor node to fit in a cubic centimeter [2] via micro-integration

techniques and system-on-chip solutions, or even in a few cubic millimeters [3] via laser-based

communication.

2.5.2 Limited Resources

A direct consequence of physical size reduction are limited resources, namely energy, com-

putation, memory, and communication, that can be provided by a single IoT device such

as a sensor node or an RFID tag. A passive RFID tag, which is the most popular type of

RFID tag, has from 64 bits to 1 KB of non-volatile memory, and an antenna for transceiving

RF signals within the typical range of several meters. An RFID active tag has, in addition,

an on-board battery, longer tranmission-range antenna (could be up to 100 meters), more

memory (rarely but could be up to 128 KB), and possibly interfaces to external sensors (for

gathering information about the surrounding environment), and an external processing unit

(e.g., microcontroller). In a typical sensor node, the capabilities of the microcontroller are

a few MIPS processing power, few kilobytes of program memory, and few hundred kilobytes

of general purpose memory [87]. Such limited resources require a high level of optimiza-

tion and simplification of programs that run on IoT devices. Furthermore, energy saving is

of paramount important for IoT devices, since they are usually cheaply manufactured and

deployed in large quantities into the environment, and are expected to operate over long

periods of time without manual intervention, making replacement of energy supply (i.e.,

battery) for each IoT device extremely difficult. Thus, processing tasks must be optimized

as well. Last but not least, the IoT implies that every IoT devices should be connected to

the IoT network infrastructure and wirelessly communicable. Since wireless communication

usually dominates the energy consumption of an IoT device, it should be kept to the absolute

minimum.

2.5.3 Interoperability

As we discussed in Sec. 2.4.5, the wide range of heterogeneity issues introduced by the IoT

hampers the seamless interoperation among different IoT devices. Standardization therefore

is a must, but is not enough as no single standard can cover everthing, as well as some

organizations (manufacturers, software companies) would like to follow different standards

or even proprietary protocols. A solution is to extend IoT devices with multiple adapters,

each of which conforms to a specific standard. However, the complexity of this extension

would grow quadratically with the number of standards involved, which is inefficient at the

level of low-end IoT devices. To mitigate this problem, bridges between standards are intro-

duced. Implementation of bridges is usually in the form of a border gateway or proxy that

understands the “languages” of a number of different sets of IoT devices, thus acting as a

translator among them. Standard bridges, unfortunately, still do not scale with the number

Chapter 2. The Internet of Things 35

of standards, and especially, the number of the IoT devices. Therefore, middleware solutions

will play an important role of wrapping the functionalities of the underlying heterogenous

technological layers into well-defined and well-organized services that can be used for commu-

nication among IoT devices, or used by upper layers (e.g., application layer). For example,

some works, such as in [100] and those referenced therein, propose the embedding of a Web

server directly on the IoT device, making the device accessible to the outside world via Web

interfaces. The Semantic Web also has been developing data formats that can be readable

by IoT devices and understandable among them (e.g., RDF, SensorML), making their in-

teroperation seamless. Future research efforts, hence, should investigate and elaborate these

directions.

2.5.4 Dynamic Topology

One of the main characteristics of the IoT is the high dynamicity of its network topology.

There are several reasons for this dynamicity. Firstly, as IoT devices are made of low-power,

resource-constrained hardware platforms, systems that run on or functionally based on these

platforms should employ at least one mechanism for energy saving, making the IoT devices

switching between on and off states. Secondly, IoT devices are connected to and disconnected

from the Internet at unknown rate, as doing so is driven by specific user needs, application

scenarios, and authority regulations. Thirdly, Things change their locations from time to

time (e.g., a car, a person), which affects the underlying network topology as the wireless

links between the mobile IoT devices and other IoT devices in their proximity are reconfigured

accordingly. Finally, the low-power wireless link is unreliable, asymmetric, and transitional,

making the network topology highly dynamic.

2.5.5 Scalability

The size of the IoT is unprecedentedly large both in terms of the number of IoT devices

connected to it (which is anticipated to be multi-billions), and the geographic area that

it covers (which is expected to be the entire earth). Hence, scalability is of paramount

importance when building IoT-enabled applications. To illustrate this, we take the simple

example of an application that requires to know the number of empty parking spots on a

street of the city of Berlin at this moment. Assuming that each parking spot is equipped

with an occupancy sensor, answering this query would mean to sequentially communicate

with every occupancy sensors to check if they are reading “empty” or “occupied”, and count

the empty ones. This straightforward approach would work for a small system with only

a few occupancy sensors that cover the street. However, if we consider the entire city of

Berlin with millions of occupancy sensors in Berlin (which is a reasonable assumption),

the same approach would not scale due to the unacceptable delay incurred by and energy

cost required for the communication between the application and all occupancy sensors of

Berlin. Research efforts will be required to develop scalable systems, e.g., based on caching

Chapter 2. The Internet of Things 36

mechanisms, parallel computations, hierarchical architectures, on top of which IoT-enabled

applications are built.

2.5.6 Imperfect and Heterogenous Data

IoT devices are typically low-cost, low-power, and small in size, so that they can be deployed

in large quantity (e.g., large-scale RFID systems or WSNs), operate on their battery for long

time (e.g., environmental monitoring applications using WSNs), and be unobtrusive to human

users (e.g., convenience for patients in healthcare applications). Due to these factors, the data

collected by IoT devices will be subject to redundancy (e.g., due to RFID tags are read by

multiple RFID readers at multiple times), heterogeneity (e.g., data come from different kinds

of sensors of different organizations, with different sampling rates), and noise, jitter, outages,

and outliers (e.g., due to environmental influences or hardware malfunction). As IoT-enabled

applications and services are built based on the data generated by the IoT, appropriate

mechanisms will be needed to compensate for possible impacts of these imperfections on IoT

applications.

2.5.7 Security and Privacy

The attraction of the IoT comes from the pervasiveness of vast numbers of IoT devices that

are embedded into and constantly report information about the real world, so that we could

interact with the real world much like we can now with the “virtual” world of the Internet

and the Web. Unfortunately, this pervasiveness also poses serious security and privacy prob-

lems that need to be addressed in order for the IoT to be widely accepted by the public.

The reasons for this are due to the nature of how the IoT works. Firstly, IoT devices spend

most of their time unattended, thus can be easily physically attacked. Secondly, the wireless

communication between Things and between Things and the Internet is vulnurable to eaves-

dropping. Thirdly, complex and resource-demanding security mechanisms are not suitable

to be implemented on resource-constrained IoT devices (e.g., passive RFID tags or low-end

sensor nodes). Fourthly, information about the environment is autonomously and constantly

collected by IoT devices without human awareness (e.g., smart home applications recording

inhabitants’ living habits). Finally, how the extremely massive amount of heterogenous data

generated by the IoT is exploited, i.e., who has the right to access what kind of data and

when, is not clear. Example problems are replacement of IoT devices with harmful ones (due

to the devices’ unattendedness), man-in-middle attacks (due to wireless communication),

and mis-use of sensitive data. For more information, readers can find detailed discussions

about these and other problems as well as potential solutions in [101] [102] [103] [104].

Chapter 2. The Internet of Things 37

2.6 Summary

This chapter discussed important concepts of the IoT in detail. In particular, we discussed

the definition of the IoT, highlighted its three aspects, and presented its applications. We

introduced a layered view on the IoT in which we pointed out where the routing and sensor

search services can be placed, as well as how they are related to each other. We reviewed

the technologies that enable the existence of the IoT as well as drive its evolution. Finally,

we identified several technological challenges that need to be addressed for a realization of

the IoT.

Chapter 3

Routing in the IoT

Routing is an essential service in the IoT, since it enables the exchange of information between

Things, by efficiently directing and reliably delivering data on the network from their sources

to their destinations. However, routing in the IoT is also challenging, due to the global scale

of the IoT, the massive number of Things in the IoT, the dynamic topology of the IoT, and

the resource constraints of the IoT devices.

This chapter is devoted to the routing service in the IoT that addresses the above challenges1.

Specifically, we propose, implement, and evaluate two routing algorithms for wireless sensor

networks (a building block of the IoT), namely recursive multi-region geocasting and stochas-

tic forwarding-based routing. The novelty of these routing algorithms is three-fold: (i) their

simple design makes them suitable for resource-constrained sensor nodes; (ii) they require

only local information for operation, thus scale with the size of the IoT; and (iii) they are

aimed at IoT-specific routing scenarios. The structure of this chapter is as follow. In Sec.

3.1, we discuss the general routing problem in the context of the IoT. In Sec. 3.2, we focus

our discussion on the geographic routing approach, which is the base for our two proposed

routing algorithms in this thesis. In Sec. 3.5 we conclude the chapter.

3.1 The Routing Problem

Routing, in general, answers the question of “how an entity is brought from an origin to

a destination”. In the context of the IoT, the entity is a data packet, and the origin and

destination of the data packet are two computing devices and are called the source and

the destination, respectively. A computing device can either be an IoT device (such as an

RFID tag, a sensor node, or a smartphone) or an Internet device (such as a PC or a server

computer). We call a computing device a routing node. Due to the fact that there is not

always a direct physical connection between the source and the destination of a data packet,

1This chapter is based on our work in [4] and [5].

39

Chapter 4. Routing in the IoT 40

S

R1

p

R2

DR4

p

(c)

R5

Figure 3.1: The general routing problem

the packet must be relayed from one intermediate routing node to another before arriving

at the destination. This approach is known as multi-hop routing. The series of hops, i.e.,

intermediate routing nodes that are involved in relaying the data packet, is called a routing

path or a routing route. Suppose that it costs c(RP) units of network resources (e.g., energy,

wireless bandwidth) to send the data packet from a source over a routing path RP to a

destination, where c(·) is a cost function, the multi-hop routing problem is finding a routing

path RP such as c(RP) is minimized.

The multi-hop routing problem can be illustrated as in Fig. 3.1, which shows a generic and

simple routing scenario where the source S wants to send the data packet p to the destination

D. For the sake of explanation, we abstract the network as a graph whose vertices (e.g., S,

D, R1) represent routing nodes and edges (e.g., SR1) represent the routing links between

them. If we define the cost function as the number of hops, the routing path RPR1,R4 will

be selected instead of RPR2,R5,R4 for sending the packet p, because the former requires only

2 hops as opposed to 3 hops required by the latter. Specifically, p will be relayed from S to

R1, from R1 to R4, and finally from R4 to D.

As we mentioned in Sec. 2.4.4, routing in the IoT takes place in two domains: the Internet

and the networks of IoT devices such as RFID networks or WSNs. In this chapter, we focus

on routing in the latter domain, since IoT devices motivate the existence and evolution of

the IoT. Therefore, we define “routing in the IoT” as “routing in networks of IoT devices”

hereafter.

In the rest of this section, we discuss the major challenges in designing a routing protocol

for the IoT. After that, we present a set of routing requirements that usually are specified

by applications and derive a set of properties that a routing protocol should possess to meet

the set of routing requirements. Finally, we outline at the end of the section the design space

of IoT routing protocols.

3.1.1 Challenges

There are many challenges that can affect routing in the IoT. The challenges can come from

the routing layer itself, and/or from the layers underneath it such as physical and medium

access control (MAC) layers. Although a cross-layer approach can be employed to take

Chapter 4. Routing in the IoT 41

advantage from the properties of the lower layers in the design of a routing protocol, such

approach would tighten the routing protocol to a (set of) specific MAC and physical designs.

This would limit the use of the routing protocol to only a few types of IoT devices, whereas

IoT devices are known to be extremely heterogeneous. In this thesis, our focus is the routing

layer. In the following, we present the major challenges that directly affect routing in the

IoT.

3.1.1.1 Limited Resources

One of the main challenges to the IoT, as we mentioned in section 2.5.2, is the limitation of

resources, including energy supply, processing power, memory capacities, wireless commu-

nication range, and wireless communication bandwidth. This limitation affects routing in

many ways. The short wireless communication range dictates that routing must be done in a

multihop fashion, i.e., the data packets must be forwarded by multiple relay nodes in order to

reach to their destination. The low processing power and program memory require that the

routing process running on the IoT devices must be highly optimized and light-weight. The

small storage memory and scarce communication bandwidth may limit the size of the packets

to be forwarded. The scarce energy source (either battery-supplied or harvested) makes it

difficult to decide which nodes should forward the data packets, since wireless communication

dominates the energy consumption of the IoT devices.

3.1.1.2 Dynamic Routing Topology

The cause of the dynamicity of the routing topology is manyfold. Firstly, due to energy

constraint, IoT devices are usually scheduled to be idle or working (e.g., by turning the wire-

less radio on/off) to minimize energy consumption, making the routing topology dynamic.

Secondly, since users deploy or remove their IoT devices at will, routing nodes will be con-

nected to and disconnected from the IoT at unknown rate, which adds the unpredictability

to the dynamicity of the routing topology. Thirdly, node failures are common in the IoT. The

causes of a failure include hardware malfunctioning (e.g., antenna damage), exhausted en-

ergy supply (e.g., depleted batteries), and environmental impact (e.g., the air humidity level

is unexpectedly high causing shortcuts). Fourthly, node mobility causes the wireless links

between the mobile nodes and other nodes in their proximity to be reconfigured. Finally, the

low-power wireless links in networks of IoT devices (e.g., WPAN, WSN) are unreliable and

transitional, which also contributes to the dynamicity of the topology. The routing protocols,

hence, must be flexible enough to deal with such dynamicity of the IoT’s topology.

3.1.1.3 Scalability

The IoT will be large in scale, both in terms of number of nodes and geographically. As

routing means to decide over which routing path the data packet should be sent, the more

Chapter 4. Routing in the IoT 42

candidate relay nodes to be evaluated for inclusion in a routing path, the more complex

routing is. This complexity is manyfold, including what cost function to be used, how to

decide which of the neighbours of a node is the relay node, what is the cost to setup and

maintain a routing path, how to setup new a routing path when another one is broken, etc.

Such complexity will quickly grow unmanagable if the routing protocol was not carefully

designed with scalability challenge being taken into account.

3.1.1.4 Partitions and Voids

Another major challenge to routing in the IoT is the presence of network partitions and voids

in the network. A partition is a disconnected part of the network, such that nodes inside a

partition cannot communicate with nodes in the other parts of the network, because there

is no routing path to exchange data packets. A void is an area that is not covered by the

network. Since there is no node located inside the void that is connected to node(s) outside

it, data packets can only be forwarded around the void to reach to their destination. For

example, a WSN has been deployed by randomly scattering a large number of sensor nodes

over a geographical area. Due to the structure of the area, there may be lakes that cause

voids, or rivers that cause partitions in the WSN.

3.1.2 Requirements and Properties

We review here the application requirements to routing, and present a set of properties that

a routing protocol designed for the IoT should possess in order to meet these requirements.

The requirements are given below:

• Delivery time (R1): Delivery time is the traveling time of a data packet from its

source to its destination, and is usually specified by the application. For example, a

WSN-based forest fire detection application may require that the base station of the

WSN receives warnings within a hard time constraint of 3 seconds after the sensed

temperature exceeds a certain threshold.

• Delivery rate (R2): Delivery rate refers to the ratio between the number of the data

packets that successfully arrive at their destination and the total number of the data

packets that have been sent by their source. Obviously, the higher the delivery rate, the

better. The reason that causes unsuccessful delivery are routing loops, which is usually

due to a poor routing design (note that, reasons that come from MAC and physical

layers are beyond the scope of this thesis as we focus only on the routing layer).

• Energy-awareness (R3): As IoT devices usually operate on battery for long time periods

(e.g., WSNs to monitor the environment), it is desired that the routing protocol is

always aware of the energy status of the network, and acts on that accordingly.

Chapter 4. Routing in the IoT 43

Due to the challenges presented in the previous subsection, any routing protocol designed

for the IoT should possess the following properties in order to meet the above requirements:

• Highly adaptive (P1): The routing protocol should be highly adaptive to be able to

quickly react to the dynamicity of the network topology. For example, if a routing

path is broken due to node failure or the energy source of the nodes on the path being

exhausted, the routing protocol should be able to quickly find alternate paths.

• Load balancing (P2): The routing protocol should distribute its operation load, in-

cluding energy consuming, computation, and communication activities evenly across

the network, such that no part of the network would run out of resources faster than

the others. The operation load depends on how the cost function c(·) is defined for each

routing node or link in the network. For example, the cost function can be defined in

terms of residual energy of the routing node and/or the level of reliability of the routing

link.

• Loop-freedom (P3): As we mentioned in R2, the routing protocol should result in no

routing loop in order to archieve successful data packet delivery.

• Low overhead (P4): Due to resource constraints, the routing protocol should incur low

routing overhead, i.e., the cost required to meet some or all of the routing requirements.

The cost can be in terms of any type of resources, namely energy, computation, memory,

and communication, or a combination of them. Again, the cost function c(·) needs to

be defined in order to evaluate the incurred overhead.

3.1.3 Design Space

In this subsection we discuss the space of possible approaches a routing protocol for the IoT

could follow. We do not firmly conclude which approach a routing protocol should follow, but

rather discuss the advantages and the disadvantages of them while putting them in relation

to each other. We also refer the readers to some representative routing protocols that follow

certain approaches during discussion if needed.

Note that the approaches are not mutually exclusive but can be combined, and the choice for

an approach is driven by what kind of specific applications and/or what routing challenges

are more pronounced to a designer.

3.1.3.1 Distributed vs. Centralized

These two approaches refer to where the routing decision is made, i.e., deciding which path

to send the data packet along. There are two choices: centralized and distributed.

In a centralized approach, there is a super node that is assumed to have abundant resources

and knowledge about the state of the entire network. This super node has control over all

Chapter 4. Routing in the IoT 44

other nodes, computes the optimal routing path for every data packet, identifies bottlenecks

and underutilized nodes, and adapts the routing paths accordingly. The advantage of central-

ized routing is a complete control over all aspects of the network, therefore optimal routing

paths could be computed. The disadvantages are, however, costly maintainance of the super

node, the super node could potentially be the central point of failure, high control overhead

as instructions need to be communicated between the super node and other nodes, and last

but not least, the computed optimal routing paths may become obsolete quickly due to the

dynamicity of the network, especially in the context of the IoT.

In a distributed approach, an individual node or a set of nodes that are in proximity of each

other make the routing decision. These nodes do not have knowledge about the state of

the entire network, but only about their local state (and possibly the state of their neigh-

bors). The routing decision, therefore, is made only according to this limited knowledge.

The advantages of distributed routing are flexibility as decision making is distributed and

performed by each node, and responsiveness because nodes in proximity can quickly react to

any dynamicity-related issue that occurs locally. The disadvantages are possibly suboptimal

routing paths and potentially unbalanced load distribution, since only local information are

used. Almost every routing protocol designed for the IoT is distributed to ensure scalability.

3.1.3.2 Flat vs. Hierarchical

Once one decides to follow the distributed approach, one could further decide to follow either

the flat or the hierachical approaches. These two approaches refer to where the routing

algorithm is placed and run in the network. In a flat approach, a relatively simple routing

algorithm is implemented on every individual routing node of the network. A node makes

routing decisions based solely on its own state and the state of a number of other nodes in

its proximity. As the design is relatively simple, typical IoT devices such as sensor nodes

or active RFID tags can afford to run the routing algorithm. There is no super node that

controls the routing of the network in this case. The routing paths computed are the emergent

results of many nodes executing the same routing algorithm. This approach is also known

as flat routing (see [93] for some representative protocols), because every routing node plays

the same role in the network.

In a hierarchical approach, the routing nodes are divided into several hierarchical levels.

Nodes that belong to the same level are assumed to have similar resource budgets, while

nodes belonging to different levels have significantly different resource budgets. The routing

algorithm is also divided into components with different degrees of complexity. More complex

components are implemented on nodes that belong to the higher hierarchy level. Usually, a

node manages inferior-level nodes, reports to superior-level nodes, and only collaborates with

nodes at the same level. With such a distribution of roles and complexity, network resources

could be efficiently utilized for calculating routing paths. This approach is also known as

hierarchical routing. A set of routing protocols following this approach can be found in [93].

Chapter 4. Routing in the IoT 45

3.1.3.3 Location-based vs. State-based

These two approaches refer to the type of information used by the routing protocol to for-

ward data packets. In a location-based routing protocol, information about the location of

the routing nodes are used for addressing nodes and forwarding data packets. The nodes’ lo-

cations can be obtained via dedicated hardware (e.g., GPS sensors) or software (e.g., location

discovery algorithms such as in [105]). The forwarding decision is usually made based on a

distance metric (e.g., Euclidean distance). Sometimes, information about network resources

are also combined with the distance metric if one or more routing properties are to be inte-

grated into the design (e.g., P2). The advantages of location-based routing are low control

overhead, scalability, and robustness against network dynamicity, since the processes of route

discovery and maintenance (i.e., finding the destination and maintaining an established path

to it) are spared, and information about network topology is not required. The disadvantage

is the dependence on means for location discovery, which can be costly in terms of money

(e.g., buying GPS receiver hardware) or network resources (e.g., distributed algorithm for

location discovery). Several representative protocols following this approach can be found in

[93].

In a state-based routing protocol, a data packet is forwarded based on the information about

the current state of the network. The network state can be (i) stored at nodes and/or (ii)

included in the data packet. In the case (i), each node has a view on the current topology

of the network in terms of which nodes are connected to which other nodes, or the distances

from the node to all other nodes (distance is a measure of the cost to reach a certain node,

that usually is a cost function of hop count and/or a set of resources such as the node’s

residual energy). These two approaches are known as link state and distance vector routing,

respectively. Representative routing protocols that follow these approaches are [106] for

link state routing, and [107] for distance vector routing, and their variants. In the case

(ii), a routing path that the data packet should traverse to its destination is stored in its

header and is specified by the source. A relay node uses this information to make routing

decisions. This approach is known as source-based routing, and [108] is the representative

protocol. The main disadvantage of state-based routing is poor scalability, since the storage

required to store the network state at each node and the amount of information required to

be exchanged across the network to update topology changes do not scale with the number

of nodes. Additionally, network state may get obsolete quickly if topology changes are not

updated fast enough, leading to inefficiently computed routing paths.

3.1.3.4 Data-centric vs. Address-centric

The design choice to follow one of these two approaches depends on the type of the application

running on the network. In traditional networks such as the Internet or networks of wireless

computer devices (e.g., laptops, smart phones), data packets usually are routed based on

the addresses of their destination nodes. For example, in a video conferencing application,

Chapter 4. Routing in the IoT 46

multimedia data packets are destined only to the addresses of the participants in the video

conference (i.e., their laptops or smart phones). An address is unique to a network node,

which could be the node’s MAC address, IP address, or any other type of unique identification

(e.g., RFID, uCode). This approach is known as address-centric routing.

Many IoT-enabled applications require that data generated by all or a large percentage of

nodes are reported to a sink node for further processing. For example, an RFID reader scans

all RFID tags within its communication range, or sensor nodes in a WSN periodically send

their sensed data about a certain event to the WSN’s base station. In such applications, it

is important that nodes with certain types of data (e.g., temperature readings, free parking

lots) rather than with specific addresses (or identifications) send data packets to the sink.

Due to multiple nodes sampling the same type of data or observing the same event, there

are data redundancies which can be eliminated by performing data fusion at relay nodes as

the data packets travel to the sink. Data fusion at a relay node means to integrate similar

information contained in multiple data packets into a consistent, accurate, and useful piece

of information, that is to be forwarded by the relay node towards the sink. This type of

forwarding is known as data-centric or query-based routing. The data-centric routing is

usually a consequence of the sink dispersing a query (e.g., all sensor nodes that are reading

above 50◦C) into the network with the help of a routing protocol (e.g., a location-based

routing protocol to deliver the query to multiple geographical regions). Two representative

data-centric routing protocols are [109] and [110].

3.2 The Geographic Routing Approach

In this section, we focus our discussion on the geographic routing approach, which is the foun-

dation of our proposed routing algorithms in this thesis. The geographic routing approach

follows two design approaches, namely distributed and location-based. Routing decisions are

distributed throughout the network and performed by individual routing nodes. The only

information used for making routing decisions at a node is its location, the location of the

destination, and sometimes the locations of its neighboring nodes. In the context of the IoT

where networks are usually wireless, the locations of nodes typically correspond to their net-

work connectivity (radio signal strength is inversely proportional to the geographic distance),

which makes geographic routing a natural approach for routing in the IoT. Moreover, using

only locations, geographic routing provides an efficient way to route packets, since the state

required to be maintained at each node and the control overhead required to be exchanged

among neighboring nodes are minimized. As packets are always forwarded towards their

destination, there is no need for route discovery and maintenance before and during sending

data packets. Geographic routing also responds fast to network dynamics, since local changes

of network topology can be quickly adapted to (e.g., via a simple Hello protocol). For these

reasons we choose geographic routing as the approach for our proposed routing algorithms

for the IoT.

Chapter 4. Routing in the IoT 47

(a) UDG Model (b) Quasi-UDG Model

C

B

D

A

E

rr'
A

C

B

DE

r' r
A

C

B

r

(c) RIM Model

Figure 3.2: The wireless link models

A typical geographic routing scenario considers a network of a (large) number of nodes (IoT

devices) that are deployed on a (large) geographical area (e.g., a WSN deployed in a forest

to detect fire). Routing in the network is multi-hop because data packets must be forwarded

from one relay node to another until they reach their destination. Since there are multiple

routing paths between a pair of source and destination, the network has a mesh topology.

The dynamicity of the topology is due to the causes discussed in Sec. 3.1.1.2.

Before reviewing the major forwarding techniques that are used in geographic routing in Sec.

3.2.2, we present in Sec. 3.2.1 the common models for defining if two nodes in the network do

share a wireless link, since this is essential for designing and studying any routing protocol.

When the two nodes are connected by a link, they can directly and bidirectionally exchange

data packets with each other, and the wireless link is said to be symmetric.

3.2.1 Wireless Link Models

Perhaps the most commonly used model for representing the wireless link between a pair

of nodes is the unit disk graph (UDG) model, which assumes that all nodes in the network

have the same transmission range r. As illustrated in Fig. 3.2-(a), the transmission region of

node A is modeled as the circular region with radius r, that is centered at A, i.e., (xA, yA).

Node B is said to share a link with and is a neighbour node of A if and only if dE(A,B) ≤ r,
where dE(A,B) is the Euclidean distance between the two nodes and is given by

dE(A,B) =
√

(xA − xB)2 + (yA − yB)2 (3.1)

This definition is binary, since two nodes do either share or not share a link. With this

definition, nodes A and B share a link, whereas nodes A and C do not. The UDG model

is used pervasively during the design of geographic routing protocols, as its simplicity and

symmtry are ideal for studying the theoretical behaviour of the routing protocol in design,

as well as for performing mathematical analysis and inference. The disadvantage of UDG is,

however, that the model does not capture the inherent irregularity of the wireless medium,

thus may lead to significant difference between the theoretical and the practical performance

of the routing protocol.

Chapter 4. Routing in the IoT 48

To address this disadvantage, the work in [111] proposes a relaxation of the UDG model

called the Quasi-UDG or QUDG model. Given a parameter r′ ∈ [0, r], any two nodes A

and B of the network are said (i) to share a link if dE(A,B) ≤ r′; or (ii) to not share a

link if dE(A,B) > r. This definition does not specify whether two nodes A and B having

distance dE(A,B) ∈ (r′, r] share a link. Such a link may or may not be there depending on

a probabilistic model, hence the name “quasi”. Usually, a fixed probability is used to model

such quasiness. Clearly, the UDG model is a special case of the QUDG with r′ = r. The

advantage of QUDG is that it approximates the irregularities of the wireless medium, thus is

more realistic than the UDG model, while is still easy for theoretical analysis. An illustration

of the QUDG model is given in Fig. 3.2-(b), where the irregularity or “quasiness” of the

wireless medium is illustrated as the shaded area. Due to the given probability to model

the quasiness, the two nodes A and E share a symmetric link while A and D do not, even

though both D and E are located in the shaded area. On the other hand, the two nodes A

and B definitively share a symmetric link, while A and C do not share one.

An alternative to the QUDG model is the Radio Irregularity Model (RIM) proposed in [112].

The RIM model is actually the QUDG model from a practical point of view. This means the

irregularity of the wireless medium of RIM is not mathematically modeled as is in QUDG,

but is derived from empirical data taken from wireless sensor devices (see Fig. 3.2-(c)), thus is

the most realistic wireless link model. The drawback of RIM is that it is not mathematically

modeled, therefore a performance analysis of a RIM-based routing protocol would have to

be based on simulation.

3.2.2 Forwarding Techniques

The general forwarding principle of geographic routing is “greedy when possible and recovery

when not”, i.e., the next relay of a data packet should be selected such that it is closest to the

destinations among other neighbor nodes (the definition of closeness is based on a distance

metric such as the Euclidean distance). When a next relay cannot be found greedily (e.g.,

due to a void), a recovery mechanism is used to forward the data packet until the greedy

principle can be applied again (e.g., after the void is passed). The implementations of this

principle is, however, vary. We call such an implementation a forwarding technique. In the

following, we review the most common forwarding techniques that a node could employ to

select the next relay for the data packet. For each technique we refer the readers to the

original work that proposes it and describe how it works. For a complete and thorough list

of techniques and their variants, we refer the reader to [113].

In addition to the assumption that every node of the network knows their own location, all

forwarding techniques assume that the nodes also know the location of the destination of

the data packets. Due to the easiness of the UDG model in theoretical analysis, we use it to

present the forwarding techniques.

Chapter 4. Routing in the IoT 49

DR

C

B

S

E

F

G

G

H

K L

I

M

N

O

Figure 3.3: The forwarding techniques

Without loss of generality, we consider a network that is abstracted as the graph G = (V,E)

shown in Fig. 3.3, where V = {S,D,R,G, ...} and E = {RG,RF , FI, ...} are the set of

vertices and edges of the graph, respectively. Each vertex in V represents a node in the

network, and each edge in E represents the existence of a symmestric wireless link between

two nodes in the network. Suppose that the source S has sent a data packet p to the

destination D, and the routing path over which p has been routed is routeR,F,I,G,H,K,L,M,N .

Note that, vertices that are not filled represent nodes that were not involved in the routing

of p.

3.2.2.1 Greedy Techniques

We focus on the relay node R in Fig. 3.3. R has just received p from S, and will forward p

towards D. To do that, R will select one of its neighbour nodes (i.e., those that are located

within R’s transmission region) as the next relay of p and forward p to the relay node. We

present now the greedy forwarding techniques that help R select a relay.

• MFR: With the MFR [114] technique, the neighbour node that has the longest projec-

tion on the line connecting R and D is selected as the next relay, e.g., node B in Fig.

3.3.

• NFP : In contrast to MFR, the NFP [115] technique selects the neighbour node whose

projection on the line RD is shortest as the next relay, e.g., node C.

• DIR or Compass Routing : Proposed in [116], this technique selects a neighbour, i.e.,

node E, as the next relay such that the angle formed by E, R, and D is the minimum

among all neighbour nodes.

Chapter 4. Routing in the IoT 50

• GEDIR: The neighbour selection of the GEDIR [117] technique is based on the ge-

ographic distance between the neighbour and the destination nodes. The neighbour

node with the minimum distance is selected as the next relay, i.e., node F .

• Random Forwarding : With this technique, any neighbour node that has a positive

progress towards D can be selected as the next relay with an identical probability. A

neighbour node has positive progress if the length of its projection on the line segment

RD is greater than zero, e.g., B and C can be chosen, but not G. Examples of this

technique are [118] and the references therein.

• Resource-aware: The technique in [119] computes the theoretically optimal locations of

R’s neighbour nodes such that if p is forwarded to nodes at these locations, the power

consumption is minimized as well as the geographical progress to the destination is

maximized. Obviously, there is no guarantee that R’s neighbour nodes are located at

those locations in practice. However, the next best selections would be those neighbour

nodes that are located closest to those locations. This technique differs from the above

techniques in that it takes power consumption into account in addition to geographical

progress. The technique, hence, can be seen as a representative for a family of tech-

niques that, in addition to geographical progress, take network resources (i.e., energy,

memory, wireless bandwidth) into account. We call this the resource-aware family of

techniques.

The common and main goal of the above greedy forwarding techniques is to deliver a data

packet as fast as possible to its destination. However, due to the characteristics of the wireless

medium and the density of the network, the performance of the techniques varies, and none

of them is always superior than the others. For example, MFR minimizes the number of hops

in a dense network as the higher the network density the higher the probability that there

is a neighbour that is located close to both D and the line RD. However, if we assume that

the transmit power can be adjusted to the transmission range, a long transmission range in

a dense network would increase packet collisions, leading to retransmission which consumes

energy and time. In this case, NFP is recommended instead of MFR [118]. The choice

for a relatively dense network could be the DIR technique, as the hop count is somewhat

higher than that of MFR or GEDIR but with potentially less packet collision. Besides fast

packet delivery, other goals such as energy saving, load balancing, or loop-freedom are also

important. MFR and GEDIR are known to be loop-free. The random forwarding technique

can be used for equally distributing routing load across the network. And the resource-aware

technique can be used for resource optimization (including energy saving).

3.2.2.2 Recovery Techniques

When a greedy forwarding technique is used, it is possible that a relay node fails to select

the next relay of p, due to none of its neighbours satisfying the conditions of the forwarding

Chapter 4. Routing in the IoT 51

technique. We call such node a dead-end node. For example, if GEDIR is used, node G in

Fig. 3.3 is a dead-end node. In the following, we present recovery techniques that are used

to bypass the dead-end problem.

• Flooding : The simplest technique is to have the dead-end node (e.g., G) broadcast p

to all of its neighbours [120] (e.g., O and H). The dead-end node also includes in p

an indication that it is a dead-end node so that its neighbours record it and will not

forward data packets to it in the future. After broadcasting, neighbours that are also

dead-ends (e.g., H) repeat this process and reject further copies of p. Non-dead-end

neighbours (e.g., K) continue to forward p according to the greedy technique. The

disadvantages of flooding are redundancy and excessive resources usage, due to the

presence of multiple copies of p in the network, and nodes are required to store a list

of dead-end nodes in their memory.

• Route Discovery : With this technique, any route discovery scheme can be empolyed

to find a path from the dead-end node to the destination, e.g., from G to D. Once a

path has been discovered, p is only forwarded along that path to the destination, i.e.,

not using geographic routing any more. Examples of route discovery scheme are [121],

[108], [90]. Although this approach is more sophisticated and incurs less overhead than

the flooding technique, route discovery still does not scale well, since it follows the

state-based design approach (see Sec. 3.1.3.3).

• GFG : This technique is illustrated in Fig. 3.3. The dead-end node (e.g., G) constructs

a planar graph using the location of its own and its neighbours, and includes in p an

indication that p should be forwarded in recovery mode. The node, then, selects a

neighbour as the next relay of p according to the right hand rule [122], i.e., node H

is selected but not node O. If the neighbour is a dead-end node (e.g., H), it repeats

the same process as G did. Otherwise, e.g., node K is node a dead-end, it changes the

indication in p to be greedy mode, and forwards p according to the greedy forwarding

technique. The resulted routing path in the illustration figure is RPH,K,L,M,N . The

GFG technique and its variants are the mostly used recovery techniques in geographic

routing, as they are localized and low-overhead, therefore are robust and scalable.

3.3 Multi-region Geocast Routing for the IoT

In this section we present a routing algorithm called “Recursive Multi-region Geocasting”

(RMG). RMG follows the geographic routing approach and is targeted to the (very) large

scale of the IoT (see challenge C3 in Sec. 3.1.1.3).

Chapter 4. Routing in the IoT 52

3.3.1 Motivation

While originally most sensor network deployments are rather small with tens or few hun-

dreds of nodes [123], there is a recent trend towards much larger scale deployments with

several thousands of nodes being deployed over large geographical areas. In particular, the

IoT envisions globally interconnected sensor networks, and in the “smart cities” application

domain we are witnessing first actual large-scale deployments. For example, the FastPrk

smart parking solution2 relies on a mesh network of several thousand parking spot occu-

pancy sensors that are deployed over parking areas of the city of Barcelona, to help drivers

find empty parking spots to minimize search traffic and time. For a similar purpose, the

SFPark project3 has deployed sensor nodes on 7000 out of 28.800 parking spots of the city

of San Francisco, USA. At an even bigger scale, the U-City project [124] is being deployed

in South Korea with the ultimate vision of creating a ubiquitous society where the urban

environment is soaked with ubiquitous sensor networks and RFID systems.

In such systems, there is often a need to send a message to nodes that are located in multiple

geographic regions. With smart parking systems, for example, a user would send a request

for a free parking spot to all parking spot sensors located in certain streets, where each street

defines a geographic region. In a smart city, a request to locate a lost object (equipped with

a wireless tag whose presence can be detected by close-by sensor nodes or RFID readers)

would be sent to nodes in multiple geographic regions where the user usually spends time

(i.e., home, office, streets on the way from home to office, gym, restaurants) [125]. These

examples also demonstrate the relationship between the two services of routing and sensor

searching in the IoT, since the search service would need to communicate with all sensors

in the geographic regions to find out the sensors that match the search query (e.g., the

occupancy sensors that are reading “empty”). The routing service, thus, would be required

to realize this communication.

The underlying problem in these examples is geocasting a message from a source to multi-

ple geographic regions, respectively to all nodes located in one of those regions. Although

geocasting in general is a well-studied problem, most existing work focuses on geocasting

to either a single destination node at a given location, to few destination nodes where the

location of each destination node is given, or to a single geographic region respectively all

nodes located in this single region. Although one could invoke those protocols repeatedly to

send the same message to multiple regions, this would not be efficient, especially in networks

of IoT devices (e.g., WSN) with their severely limited energy, networking bandwidth, and

computational resources.

In this section, we therefore study the problem of multi-region geocast routing to a set of

remote regions in geographically large-scale networks of IoT devices. We call such a geograph-

ically remote region a destination region. Our contribution is two-fold. Firstly, we design

2www.worldsensing.com
3http://sfpark.org/about-the-project/

Chapter 4. Routing in the IoT 53

the Recursive Multi-region Geocasting (RMG) protocol to address the multi-region geocast

routing problem. RMG is tailored to large-scale networks and large numbers of destination

nodes. Secondly, we evaluate RMG and compare it to state-of-the-art protocols. We find

that RMG (i) minimizes the total number of forwards needed to successfully deliver a packet,

thus saving network bandwidth and energy; (ii) minimizes the length of the routing paths

between the source node and all destination regions; and (iii) minimizes the computation

overhead at relay nodes along a routing path.

3.3.2 Related Work

We structure the discussion of related geocasting approaches according specification of des-

tinations: a set of nodes, a single region, and finally – the focus of our work – multiple

regions.

3.3.2.1 Geocasting to a Set of Nodes

Approaches in this class support the delivery of a message from a source node to a set of

destinations nodes where the geographical location of each destination node is given. Specific

protocols have been designed where the destination nodes are a set of base stations [126],

actuators [127], or other sensors [128], [129]. The GMR protocol in [126] is somewhat similar

to our work as it divides the destination group into subgroups. For each relay node, a

minimal subset of the node’s neighbours that promises most geographical progress towards

the destinations is selected as the next relay of the packet. The selection is performed based

on the so-called cost-over-the-progress ratio. A drawback of GMR is that the computation

of such a minimal subset must be performed at all intermediate relay nodes along the paths

from the source to all destinations. This is expensive especially when the network density is

high and the routing paths are long (e.g., in geographically large scale WSN). Our approach,

in contrast, performs a lighter computation only when a particular condition is violated,

therefore saving processing resources.

However, all of the above protocols have been designed for small-scale networks and for a

small set of destinations (whose locations all have to be included in the header of the mes-

sage). In contrast, the multi-region geocast problem does not consider individual destination

sensors, but geographic regions each of which contains many nodes. Specifically, our solution

is tailored for regions located remotely from the source in geographically large-scale networks.

Comparison results in Sec. 3.3.5 between our protocol RMG and the above GMR protocol

show that RMG excels in such settings.

Chapter 4. Routing in the IoT 54

3.3.2.2 Geocasting to a Single Region

Single region geocast routing deals with the problem of delivering data packets from a source

node to all destination nodes located in a particular destination region. The protocol in

[130] uses flooding with restricted flooding zone to deliver a packet to the destination region.

Although flooding zones reduce bandwidth usage when compared to conventional flooding, it

does not scale in geographically large-scale networks, where the distance between the source

and the destination region can be long, resulting in a large forwarding zone, thus excessive

bandwidth usage. Moreover, the protocol will fail in the presence of network partitions within

the flooding zone.

To improve scalability and reliability, geographic unicast routing is used. The packet is

unicasted to a node located inside the destination region, from which it is further disseminated

to all other nodes in the destination region. If a void is encountered during unicasting, a

recovery forwarding technique (e.g., [131]) is invoked to detour the packet around the void,

thus guaranteeing the arrival of the packet at the destination region. Representatives of this

approach are [132] and [133], which differ from each other in the way they disseminate the

packet inside the destination region, i.e., [133] uses restricted flooding while [132] recursively

divides the destination region into 4 subregions and unicasts the packet to each subregion.

In-region packet dissemination is challenged by network partitions (e.g., due to sparse topol-

ogy or obstacles). To overcome this issue, [133], [134], and [135] propose to include out-region

nodes in packet dissemination. [133] uses the GFG recovery technique on the planar faces

intersecting the border of the destination region. [135] proposes to route the packet to the

entrance zone which is an internal border ring of the destination region, to make sure the

packet reaches every side of the destination region thus all partitions (if any) are reachable.

The idea in [134] is to repeatedly merge all faces intersecting with the destination region to

obtain a large virtual surrounding face that covers the destination region. The nodes on this

face are then traversed for disseminating the packet into the destination region.

3.3.2.3 Geocasting to Multiple Regions

The protocols reviewed above mainly focus on one destination region. For multiple destina-

tion regions there are few works including [136], [137], [138], [139]. The work in [137] relies

on flooding to discover routes to the destination regions using “route discovery” and “route

reply” messages. This approach clearly does not scale in large-size and dense networks. Also

relying on flooding but with a hierarchical approach, [138] groups nodes into clique-clusters.

A super cluster head is elected among these cluster heads. The packet is sent to super cluster

head which then floods it to all clique-cluster heads. Each clique-cluster head then forwards

the packet to its members if they belong to one of the regions. This approach is supposed to

be energy efficient, but it comes with the extra overhead of management and maintenance

of the clusters. The protocol in [139] geographically partitions the deployment area of the

Chapter 4. Routing in the IoT 55

network into disjoint and equally sized cells, and performs geocast routing on top of these

cells’ managers. Again, cell management and maintenance should be considered as extra

overhead for this protocol.

The closest work to ours is the GGP protocol in [136]. GGP employs the concept of Fermat

point, which is the point within a triangle from which the sum of distances to the vertices

of the triangle is minimized. To route a packet to a pair of destination regions, the packet

is first greedily forwarded to the pre-computed Fermat point of the triangle formed by the

packet’s source and two centres of the regions. The packet is, then, duplicated and forwarded

to the two regions. If more than two destination regions are given, e.g., for three regions

A, B, C, GGP computes the Fermat point F1 for the triangle formed by the source and the

centres of A and B, then computes F2 for the triangle formed by the source, C’s center, and

F1. The packet is routed to F2 first where it is duplicated and routed to F1 and C. When

the packet reaches F1 it is duplicated again and routed to A and B. The same principle is

applied for a larger number of destination regions. We can see that GGP delivers a packet to

the destination regions in a sequential fashion, which may result in a long routing path for

the packet to reach all regions. In contrast, our approach is to group closely located regions

and forward the packet along a forwarding line towards all group’s members in parallel, thus

requiring much shorter routing paths. Simulation results in Sec. 3.3.5 validate this claim.

3.3.3 Assumptions and Approach

We outline the basic approach of our multi-region geocast routing algorithm RMG using

an analogy with the real world, after presenting basic assumptions and models underlying

RMG.

3.3.3.1 Network Model

We study the multi-region geocast routing problem in geographically large-scale networks of

IoT devices. For the ease of exposition, we first model the wireless link using the UDG model,

and assume that each node has a fixed transmission range, which is identical for all nodes.

The radio link is therefore perfectly bidirectional, i.e., two nodes that lie within each other’s

transmission range can exchange data without packet loss. The dynamicity of the network

topology is the consequence of the causes presented in Sec. 3.1.1.2 (the routing challenge

C2). Note that our routing algorithm will still work with relaxation of these assumptions,

as we will discuss in detail in Sec. 3.3.5.

We also assume that all nodes are aware of their locations, e.g., through GPS receivers, or by

employing a distributed location discovery algorithm, such as in [105]. Each node also knows

the locations of its neighbours via a simple Hello protocol. Moreover, the information about

the shape of the destination regions are known to the source node before the data packet is

sent out.

Chapter 4. Routing in the IoT 56

P
C 1

23

4

5

6 7

8

A B

CD

H

PP

P

P

P P

P

R

r

Figure 3.4: Description of destination regions

3.3.3.2 Shape of Destination Regions

Many single-/multi-region geocasting protocols such as in [130], [133], [136], either treat the

shape of the destination regions as a convex closed polygon (square, rectangle, circle), or as

in [134], as a concave closed polygon shape. The authors implicitly assume that a closed

polygon is described by a set of points and some extra information, e.g., a circle is given by

its center and radius, which are included in the packet header.

There is a trade-off between how detail a destination region can be described and the amount

of information included in the packet header, which consumes network bandwidth resource.

For example, the region R in Fig. 3.4 could either be more accurately described by 8 points

P1, .., P8, which requires a storage overhead of 16 real numbers. Alternatively, R can be less

accurately described by the circle centring at C whose radius is r, which requires only 3 real

numbers. The choice for this trade-off depends on the particular applications. Our proposed

routing algorithm is flexible and supports any type of convex geometric shape as long as the

description of the destination regions and a formula to compute their centres are given.

Throughout this section we use rectangles to model the destination regions, since they provide

a good trade-off between detail and overhead, as well as geometric flexibility. In real life,

many application scenarios can benefit from this modeling, e.g., a building, a subregion in a

forest, a coast region by a sea, etc, because their shape can naturally be decomposed into a

set of rectangles.

We assume that the source node of the data packet can consult a service that resolves a

destination region into a set of rectangles described by their width, height, 1 corner, and the

polar angle formed between the polar axis and its width. For example, the rectangle ABCD

in Fig. 3.4 is described by its corner (xA, yA), its width |AB|, its height |AD|, and a polar

angle of 0. Thus, 5 real number are required to describe the region. Multiple destination

regions will then be represented as a set of regions of rectangular shape, which are included

in the packet header before the packet is sent out. To send a packet to a region, e.g., ABCD,

we forward the packet towards the region’s center (xH , yH). Thus from now on, we refer to

the region’s center as the destination of the data packet.

Chapter 4. Routing in the IoT 57

3.3.3.3 The Recursive Forwarding Approach

We illustrate the operation of our routing algorithm with the following analogy. Imagine

you live in Berlin and are visiting your friends living in Paris. In Berlin, you do not see any

detail of Paris because the city is too far away. To you, Paris looks just like a point, thus it

does not make much sense for you to spend time and effort to calculate the paths to each an

every friend in Paris at departure in Berlin, because the travel distance is dominated by the

distance between the two cities. So you decide to travel to Paris first, before you plan the

visit of your friends. The shortest way to get to Paris is obviously the straight line connecting

the two cities. When arriving at the entrance of Paris (the city gate that you enter from

the highway), you know in which districts your friends live. Since the districts are still far

apart, again you decide to travel to the districts before planning the visit of friends. The

shortest path to a district is again the connecting line between its center and the entrance of

Paris. This strategy is recursively repeated until you can directly see the house of a friend

(e.g., from an end of the street where your friend’s house resides). Now that you can see the

house, you approach it and knock on the door.

Consider a group of destination regions that are located closely to each other, and a source

node is transmitting data to the nodes inside these regions. The distance from the source

node to the group of regions is much larger than the average distance between the member

regions of the group. Applying the spirit of the above analogy, we forward data packets along

the straight line connecting the source node and a division point, which we define, similarly

to the entrance of Paris in the analogy. A division point is the point where new routing

decisions have to be made. At this point, the destination group is divided, and the packet is

forwarded to the sub-groups in the same manner. We call that straight line the forwarding

line.

The advantage of this approach is two-fold. Firstly, it is lightweight because we only have

to compute the division points and divide the destination group at some intermediate nodes

during the delivery of the data packet. Secondly, it saves bandwidth because instead of

sending a packet separately towards each an every destination (i.e., n transmissions), we only

send the packet once along the forwarding line towards all the destinations. The approach,

however, raises three questions: (i) how to compute the forwarding line; (ii) how to calculate

a division point; and (iii) how to divide a group of destinations into sub-groups. We will

address these questions in Sec. 3.3.4.

3.3.4 Recursive Multi-region Geocasting

In this section, we describe in detail the main two elements of RMG: the computation of the

forwarding line and the division of a group of destination regions into subgroups. Finally,

we outline how these two elements are integrated into a complete algorithm.

Chapter 4. Routing in the IoT 58

M

j φ

α
ϕ

j

S

Q

Lf

j

P

Mk

M l

polar axis

Figure 3.5: The recursive forwarding approach

3.3.4.1 Forwarding Line & Division Point

To understand the computation of the forwarding line and the division point, we take a

look at an illustration of our approach in Fig. 3.5, where the source node S is sending data

packets to a remote group of destination regions G = {Mj , j = 1..m}, where Mj is a center

point of a rectangular destination region. The dashed line Lf connecting the source S and

the division point P is the forwarding line along which data packets are sent. To compute

P , we need to compute ϕ and dE(S, P), where dE(·) stands for Euclidean distance.

Consider a destination Mj . If we assume that the cost of forwarding a data packet is pro-

portional to dE(S,Mj), then the minimum forwarding cost we could achieve by sending the

packet along Lf is when Lf coincides with the line ~SMj , i.e., |φj − ϕ| = 0. To minimize

forwarding cost to all Mj by using only Lf , we need to find a ϕ such that
∑m

j=1 |φj − ϕ| is

minimized. Hence

ϕ =
1

m

m∑
j=1

φj (3.2)

Since we want to use only Lf to send a data packet to all Mj to minimize the total forwading

cost, we want to place the division point P on Lf to be as close as possible to all Mj . This

means to find a P , such that
∑m

j=1 |PMj | is minimized. However, if the data packet is routed

via P on Lf to all Mj , the individual forwarding cost to each Mj is higher than sending the

packet along SMj . We define the individual forwarding cost of the transmission of the data

packet from S to Mj via P as

γjP = 1− dE(S,Mj)

dE(S, P) + dE(P,Mj)
(3.3)

Chapter 4. Routing in the IoT 59

Consider a point Q ∈ Lf . Due to the triangles inequality, if dE(S,Q) < dE(S, P) then γjQ <

γjP , which means that reducing individual forwarding cost would increase total forwarding

cost, and vice versa. A good trade-off would be to place P at a position on Lf such that P

is closest to all Mj and S, i.e., to minimize the sum of the distances from P to all Mj and

S. Such position can be found by minimizing:

d2E(S, P) +
m∑
j=1

d2E(P,Mj) (3.4)

There are two reasons why we use the square instead of the absolute value in this situation.

First, square is continuously differentiable, therefore is helpful when we want to find a mini-

mum. Second, square emphasizes larger differences, thus an asymmetric minimum would be

avoided.

Now according to the law of cosines we have:

d2E(P,Mj) = d2E(S,Mj) + d2E(S, P)− 2dE(S,Mj)dE(S, P) cosαj (3.5)

Supplying Eq. (3.5) into Eq. (3.4) and expanding, we obtain:

(m+ 1)d2E(S, P)− 2dE(S, P)
m∑
j=1

dE(S,Mj) cosαj +
m∑
j=1

d2E(S,Mj) (3.6)

Taking the first derivative of Eq. (3.6) with respect to dE(S, P) and setting it to zero, we

have:

2(m+ 1)dE(S, P)− 2

m∑
j=1

dE(S,Mj) cosαj = 0

Since 2(m+ 1) > 0, Eq. 3.4 is minimized when

dE(S, P) =
1

m+ 1

m∑
j=1

dE(S,Mj) cosαj (3.7)

Equation (3.7) says that instead of separately forwarding the data packet from S to each Mj ,

we can achieve a good trade-off between individual and total forwarding cost by forwarding

the packet from S, along Lf until P , then separately forwarding the packet to each Mj .

The point P is our division point and acts as the “entrance” of the city in our Berlin-Paris

example, while the group of destination regions acts as the city.

3.3.4.2 Group Division

We now discuss when and how we divide a group of destination regions into subgroups.

According to the philosophy of our approach, we use the group’s forwarding line to forward a

Chapter 4. Routing in the IoT 60

1

2

3
4

5

6

7

8 L

L

L

H
H

H

a

b

c

a

b

c

Figure 3.6: The GMGD algorithm

data packet as long as the group still looks “small”, until the group looks “big” such that it

cannot be considered a point destination any more. The group therefore needs to be divided.

Considering the Berlin-Paris analogy, the size of Paris as perceived by a traveller depends

on the ratio between the diameter of the city and the distance from the traveller to the city.

Similarly, to quantify how small a group G looks from the perspective of a relay node, we

denote δG ∈ [0, 1] as the smallness of G such that

δG =
2

π
max
j∈G

αj (3.8)

Where αj is the angle enclosed by the forwarding line and the line towards destination region

Mj . Now given an application-defined threshold δth ∈ (0, 1], G is said to look small if

δG < δth (3.9)

Based on the condition (3.9), we propose the greedy multi-geocast group division (GMGD)

algorithm. The idea is to divide G into a minimum number of subgroups, each of which has

the maximum number of destination regions that meet the condition (3.9).

We explain the algorithm by illustration (see Fig. 3.6). We first sort the members of G in

increasing order of their polar angles and assign an integer number corresponding to their

order. Then we pick the member whose polar angle is smallest (number 1) and iterate over

G in increasing order of polar angles, until a member (number 4) such that condition (3.9) is

violated i.e., δG1,4
≥ δth (where G1,4 is the subgroup consists of the just visited 4 members).

We insert this pair of indices, i.e., (L,H) = (1, 4) into an index list iList that is sorted by

decreasing number of members between the pair (i.e., nodes with polar angles greater than or

equal to L’s and smaller than H’s). Note that each index pair (L,H) will define a subgroup.

We repeat this process for each member until all 8 members of the group are picked.

After the iList is built, we iterate over the entries of iList and add a pair (Li, Hi) (i =

a, b, c, ...) to a final list fList if the pair does not overlap with any pair that is already in

fList. For example in Fig. 3.6, two pairs (La, Ha) and (Lb, Hb) are overlapped but (La, Ha)

and (Lc, Hc) are not. Note that since iList is sorted by decreasing subgroup size, biggest

Chapter 4. Routing in the IoT 61

subgroups are always added to fList first. The iteration is done when all entries of iList

have been visited.

To build the list of subgroups, we iterate all entries (Lj , Hj) (j = a, b, c, ...) of fList. Each

entry corresponds to a subgroup whose members are the members of G that are between Lj

and Hj .

The detail of GMGD is given in Algorithm 1 (written in pseudo Java programming lan-

guage). The function violateFrom(L) returns the smallest index H such that the subgroups

formed between two indices L and H would violate the condition (3.9). The function

overlap(L,H, fList) checks if the pair (L,H) overlaps any pair of indices in fList. The

notation |G| stands for the number of members of the group G.

Algorithm 1 The GMGD algorithm

1: Sort members of G (using Quicksort algorithm)
2: for (L = 0;L < |G|;L+ +) {
3: H = violateFrom(L);
4: iList.insertInDecreaseOrder(L,H − 1);
5: }
6: while (!iList.isEmpty()) {
7: (L,H) = iList.get(0);
8: if(!overlap(L,H, fList))
9: fList.add(L,H);

10: iList.remove(0);
11: }

To investigate the optimality of GMGD, we compare its performance against an exhaustive

algorithm that finds the minimum number of subgroups. The result in Fig. 3.7 is the average

of 100 experiments where the destination regions are randomly distributed over a square area

whose width is 30 times the transmission range. The source node is placed at the center of

the area. The figure shows that GMGD on average is within 20% of the optimal solution.

Theorem 1: The worst case complexity of GMGD is O(m2), where m is the number of

destination regions that the considered node is responsible for.

Proof. The worst case complexity of the Quicksort algorithm is O(m2). The worst case

complexity of the for loop would be O(m2) when there is no violation of the condition (3.9).

In that case, line 3 would need m − 1 comparisons and line 4 would need 1 comparison for

m iterations in total.

The complexity of the while loop is dominated by line 8. In the worst case, the index list

would consist of m disjoint pairs of indices of length |H-L|=1, thus over m iterations of the

while loop, line 8 would need 1 + 2 + .. + m = m2+m
2 comparisons to check if there is an

overlap.

In total, the worst case number of comparisons is 5m2+m
2 , which gives us an algorithm with

O(m2) comparison steps.

Chapter 4. Routing in the IoT 62

30

40

50

60

70

50 75 100

N
u

m
b

e
r

o
f

su
b

g
ro

u
b

s

GMGD (δth=0.2)

Optimum (δth=0.2)

Number of destination regions

Figure 3.7: GMGD: Optimality investigation

We can see in the proof that the complexity of GMGD is dominated by the number of

destinations (number of members of the geocast group). GMGD is therefore less complex

than the merging algorithm in [126] which isO(mkmin(m, k)3) (k is the number of neighbours

of the current node), especially when both the number of destinations and network density

increase. Moreover, we perform GMGD only when the condition in Inequ. (3.9) is violated

which further reduces the overhead of our algorithm in comparison with the one in [126],

since the latter is run at every relay node. Given that the worst case is highly improbable,

the average complexity of GMGD can be expected to be much smaller. This prediction is

verified by simulation in Sec. 3.3.5.

3.3.4.3 The Recursive Multi-region Geocasting Algorithm

Based on the discussion in previous sections, we present the Recursive Multi-region Geocast-

ing (RMG) algorithm (see Algorithm 2). The algorithm is completely localized and performed

on a per-packet basis by individual nodes in the network. At the source of the packet or the

node whose transmission range covers and is closest to the division point among its 1-hop

neighbours, the group of destination regions that the node is responsible for is divided into

subgroups using GMGD, if the condition (3.9) is violated. The forwarding line and division

point of each subgroup are computed using equations (3.2) and (3.7). For each subgroup, the

next relay of the packet towards the subgroup is selected using a greedy forwarding technique

(e.g., MFR). If a routing void is encountered, a recovery forwarding technique (e.g., GFG)

is used. The packet is then broadcasted to 1-hop neighbours.

On receiving the packet, a relay node strips out from the packet’s header all but the in-

formation about the subgroup that it is responsible for, and forwards the packet along the

subgroup’s forwarding line towards the division point. Note that, in reality nodes do not

necessarily fall on a forwarding line. Thus, the relay nodes select those neighbours that are

closest to the forwarding line as the next relays of the data packet. Also, routing voids

encountered during forwarding are circumvented by a recovery forwarding technique. This

Chapter 4. Routing in the IoT 63

process repeats until all destination regions are reached, i.e., a node that is inside a desti-

nation regions is reached. At this point, restricted flooding is performed to disseminate the

packet to all nodes inside a destination region.

Algorithm 2 The RMG Algorithm

1: if Node does NOT cover Division Point then
2: Forward the packet towards division point.
3: else
4: if Condition (3.9) is violated then
5: Perform GMGD algorithm.
6: end if
7: repeat
8: Pick a sub-group.
9: Calculate ϕ and P for the sub-group.

10: Select next relay node r for this sub-group.
11: until All sub-groups has been visited.
12: Add all ϕ, P , and r to packet’s header.
13: Broadcast the packet to 1-hop neighbours.
14: end if

3.3.5 Evaluation

We study the performance of our RMG algorithm, where the message is first routed to the

center points of all destination regions as described before and constrained flooding is then

used to disseminate the message within each region. We use simulation to compare RMG

with two related routing algorithms: GGP [136] and GMR [126]. GGP is selected because it

also addresses the multi-region geocasting problem, and its approach to compute a branching

point to fork the routing tree during forwarding is similar to our approach. Although GMR

does not support multiple regions but only multiple destination nodes, it can be applied to

multiple regions by first geocasting to the center points of all destination regions and then

flooding the messages within each region similar to RMG.

We consider the following comparison metrics:

� Relay load : The ratio between the number of forwards needed to successfully deliver

the data packet, and the total number of network nodes. The lower this ratio, the

lesser network resources (energy and bandwidth) are consumed for the delivery of the

packet.

� Average path length overhead : Path length overhead is the ratio between the length

of the shortest path (in terms of number of hops) from the source node to the center

point of a destination region, and the actual path length (also in terms of number of

hops) that the packet took to reach to that region. Suppose the packet has traversed

k hops from the source to the center point of a destination region Mj then the path

Chapter 4. Routing in the IoT 64

length overhead for Mj is εj = 1− dshortest(S,Mj)
k . The average path length overhead is

given by ε = 1
m

∑m
j=1 εj .

� Computation time: The total execution time it takes to successfully deliver a packet

from the source node to all nodes in all destination regions. As a relay node receives

a packet, the routing engine implemented in the node is invoked to compute the next

relay(s) for the packet, which takes a certain period of time. In order to eliminate the

impact of background activities, we run this routing engine for 1000 times and take

the average of those time periods as the execution time of the routing engine. This

approach for measuring execution time was suggested in [140]. For every nodes in the

routing path that the packet has traversed from the source node to all nodes in all

destination regions, we record the execution time and add them up to get the total

execution time.

The simulation setup consists of nodes randomly placed in a square deployment area. The

source node is placed at the center of the area. To achieve varying geographical scale of

the network, we vary the width of the deployment area in terms of the number of hops, i.e.,

gscale = AreaWidth
TransmissionRange . We vary the mean number of neighbours per node (meanNB) to

achieve different network densities. Configuration detail will be presented in the subsequent

subsections. Our results for each configuration are the average over 500 simulation runs.

To summarize our results, our proposed RMG algorithm achieves the best performance across

all comparison metrics i.e., computation overhead, relay load, and path length overhead,

compared to GMR and GGP. Moreover, RMG adapts well to various application requirements

in terms of relay load and path length overhead by tuning the value of δth accordingly, which

is not supported by the other algorithms.

3.3.5.1 Choice For δth

Although δth is given by the application, we are interested in its best experimental value in

an average case. We investigate relay load and average path length overhead for values of

δth ranging from 0.1 to 0.9. The investigation is performed with a gscale of 40, number of

destination regions (nregion) is 50, and a meanNB of 20 neighbours per node. After 100

simulation runs for each value of δth, and taking averages, we found that the best experimental

value is δth = 0.2. We will use this value to run our RMG algorithm in comparison with

GMR and GGP.

3.3.5.2 Computation Time

We evaluate the computation time (in µs) of the algorithms for three cases, namely varying

nregion (see Fig. 3.8), varying gscale (see Fig. 3.9), and varying meanNB (see Fig. 3.10).

The general result shows that RMG requires the least computation time among all three

Chapter 4. Routing in the IoT 65

 0

 5

 10

 15

 20

 25

 30

 50 75 100

C
o

m
p

u
ta

ti
o

n
 t

im
e

(µ
s
)

Number of geocast regions

RMG (δ=0.2)

GMR

GGP

Figure 3.8: Computation time evaluation with varying nregion

 0

 5

 10

 15

 20 30 40

C
o
m

p
u
ta

ti
o
n
 t
im

e
(µ

s
)

Geographical scale

RMG (δ=0.3)

GMR

GGP

Figure 3.9: Computation time evaluation with varying gscale

 0

 5

 10

 15

 20

 10 15 20

C
o

m
p

u
ta

ti
o

n
 t

im
e

(µ
s
)

Mean neighbours per node

RMG (δ=0.2)

GMR

GGP

Figure 3.10: Computation time evaluation with varying meanNB

Chapter 4. Routing in the IoT 66

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 75 100

R
e
la

y
 l
o
a
d

Number of geocast regions

RMG(δ=0.2)

RMG(δ=0.3)

GMR

GGP

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 50 75 100

R
e

la
y
 l
o

a
d

Number of geocast regions

RMG(δ=0.2)

RMG(δ=0.3)

GMR

Figure 3.11: Relay load evaluation with varying nregion

algorithms. The reason why the computation time of RMG is less than that of GGP in

spite of the fact that an O(m2) algorithm (GMGD) is executed is two-fold: (i) First, GMGD

benefits from the distribution of the geocast regions: In the best case where all regions reside

no farther than δth from each other, GMGD does not even have to be performed. Moreover,

GMGD is only run when a group of regions needs to be divided, which is expected to be

rare in the average case; (ii) Second, the computation time of both RMG and GGP depends

on the greedy neighbour selection algorithm, because the packet is greedily forwarded by

RMG to a division point and by GGP to a Fermat point. Thus the packet’s total travelling

distance dominates the computation time of the two algorithms. With GGP, the packet has

to go through all Fermat points which increases travelling distance for geocast regions at the

beginning of the Fermat chain. With RMG, the packet always progresses directly towards

a subgroup of destination regions, which results in a much shorter total travelling distance

when compared to GGP. The evaluation results in subsection V.D confirm this argument.

The computation time of GMR is expected to be high because it depends on GMR’s ex-

haustive neighbour selection algorithm (an O(mkmin(m, k)3) algorithm) which is executed

every time the data packet is forwarded. This expectation is confirmed in the two cases of

varying gscale (Fig. 3.9) and varying meanNB (Fig. 3.10) as we can see the computation

time of GMR grows faster than RMG’s and GGP’s. There is an exception in the case of

varying nregion where the computation time of GMR grows slower than GGP’s (Fig. 3.8).

An explanation for this case is that as nregion increases the total travelling distance of the

packet with GGP increases to be much larger than with GMR, thus GGP’s greedy neighbour

selection algorithm is invoked many more times than GMR’s exhaustive neighbour selection

algorithm.

3.3.5.3 Relay Load

We compare the relay load that each algorithm exerts on the network under varying nregion

and gscale. Specifically, nregion is 50, 75, and 100 (see Fig. 3.11-left) and gscale is 20, 30,

and 40 (see Fig. 3.12-left). Comparison results are in line with our expectation that GGP

incurs high relay load on the network because data packets have to go through all the Fermat

Chapter 4. Routing in the IoT 67

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 20 30 40

R
e
la

y
 l
o
a
d

Geographical scale

RMG(δ=0.2)

RMG(δ=0.3)

GMR

GGP

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20 30 40

R
e
la

y
 l
o
a
d

Geographical scale

RMG(δ=0.2)

RMG(δ=0.3)

GMR

Figure 3.12: Relay load evaluation with varying gscale

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 50 75 100

D
e
to

u
r

ra
te

Number of geocast regions

RMG(δ=0.2)

RMG(δ=0.3)

GMR

GGP

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 50 75 100

D
e
to

u
r

ra
te

Number of geocast regions

RMG(δ=0.2)

RMG(δ=0.3)

GMR

Figure 3.13: Average path length overhead evaluation with varying nregion

points before they reach all geocast regions, which creates unnecessary detours for regions

at the begin of the Fermat chain.

The performance of RMG is slightly better than that of GMR, which surprises us because we

expect that the exhaustive neighbour selection algorithm of GMR that ensures that the next

set of selected relays is minimal with regard to the cost-over-progress metric, would result

in minimal relay load to be exerted on the network. An explanation for this is that our

greedy group division algorithm (GMGD) tries to group as many as possible geocast regions

into one transmission which reduces network relay load. A closer look at the performance

comparison between RMG and GMR can be found in Fig. 3.12-right and Fig. 3.12-right.

3.3.5.4 Average Path Length Overhead

In this experiment we consider the same setup as in the above relay load experiment. The

comparison results in Fig. 3.13-left and 3.14-left agree with our expectation that there will

be a decent superiority of path length overhead of RMG over GMR’s, and a huge jump from

GGP’s. This is because RMG restricts path length overhead according to δth while GMR’s

main goal is to maximize cost-over-progress ratio which does not necessarily decrease path

length overhead. The GGP algorithm only forwards data packets to Fermat points in spite

of the actual distribution of geocast regions, thus creating extra path length overhead. A

zoomed version of Fig. 3.13-left and Fig. 3.14-left is given in Fig. 3.13-right and 3.14-right,

respectively.

Chapter 4. Routing in the IoT 68

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20 30 40

D
e
to

u
r

ra
te

Geographical scale

RMG(δ=0.2)

RMG(δ=0.3)

GMR

GGP

 0.3

 0.35

 0.4

 0.45

 0.5

 20 30 40

D
e

to
u

r
ra

te

Geographical scale

RMG(δ=0.2)

RMG(δ=0.3)

GMR

Figure 3.14: Average path length overhead evaluation with varying gscale

3.3.5.5 Flexibility

We consider the effect of value of the parameter δth on the performance of RMG. If we take

a closer look at the relay load and average path length overhead evaluation results given

in Fig. 3.11-right and Fig. 3.12-right as well as in Fig. 3.13-right and Fig. 3.14-right, we

can see that increasing δth reduces relay load but at the same time increases path length

overhead and vice versa. More specifically, with δth = 0.3, RMG achieves further reduced

relay load compared to that of GMR but at the same time still achieves lower path length

overhead than that of GMR in case of varying gscale (see Fig. 3.14-right). This observation

shows that RMG is flexible in tuning the value of δth to adapt to varying application need

in terms of network relay load or path length overhead. For a particular application with

specific relay load or path length overhead requirements, an appropriate value for δth that

best fits the application requirements could be selected.

3.3.5.6 Non-UDG Wireless Link Model

We elaborate here our statement in Sec. 3.3.3.1 that our proposed RMG algorithm will

still work with non-UDG wireless link models. We mentioned in Sec. 3.2.1 that the work

in [112] proposes the RIM wireless link model, that is based on empirical data from real

sensor devices. The model introduces realistic Degree of Irregularity (DOI) [141] values for

simulation purpose thus it provides a good approximation of radio irregularity for simulations.

We use this model as a relaxation for our UDG assumption in Sec. 3.3.3.1. Each node

determines its transmission region using the RIM model (with DOI = 0.004) at the beginning

of a simulation, and uses this transmission region throughout the simulation. This means

each node has a completely different irregular geometric shape of the transmission region.

An example of such a shape is given in Fig. 3.2-(c).

The evaluation results given in Fig. 3.15-left, Fig. 3.16-left, Fig. 3.17-left, and Fig. 3.18-left

are the average of 500 simulation runs. As we observe, RMG and GMR are not much affected

by the RIM model as they both achieve a similar performance of relay load and average path

length overhead when compared to the UDG model (see previous subsections). However, a

Chapter 4. Routing in the IoT 69

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 75 100

R
e
la

y
 l
o
a
d

Number of geocast regions

RMG(δ=0.2)

GMR

GGP

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 50 75 100

R
e

la
y
 l
o

a
d

Number of geocast regions

RMG(δ=0.2)

GMR

Figure 3.15: Relay load evaluation with varying nregion (using RIM model)

 0

 0.4

 0.8

 1.2

 1.6

 2

 20 30 40

R
e
la

y
 l
o
a
d

Geographical scale

RMG(δ=0.2)

GMR

GGP

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 20 30 40

R
e

la
y
 l
o

a
d

Geographical scale

RMG(δ=0.2)

GMR

Figure 3.16: Relay load evaluation with varying gscale (using RIM model)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 50 75 100

D
e
to

u
r

ra
te

Number of geocast regions

RMG(δ=0.2)

GMR

GGP

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 50 75 100

D
e
to

u
r

ra
te

Number of geocast regions

RMG(δ=0.2)

GMR

Figure 3.17: Average path length overhead evaluation with varying nregion (using RIM
model)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20 30 40

D
e
to

u
r

ra
te

Geographical scale

RMG(δ=0.2)

GMR

GGP

 0.3

 0.35

 0.4

 0.45

 20 30 40

D
e

to
u

r
ra

te

Geographical scale

RMG(δ=0.2)

GMR

Figure 3.18: Average path length overhead evaluation with varying gscale (using RIM
model)

Chapter 4. Routing in the IoT 70

closer look at the relay load comparison between RMG and GMR is given in Fig. 3.15-right

and Fig. 3.16-right showing that RMG still outperforms GMR under the RIM model.

In contrast, GGP exhibits a performance degradation in both relay load and path length

overhead under the RIM model. We know that in GGP the data packet must traverse the

main route connecting all Fermat points in order to reach all geocast regions. The irregularity

of the transmission range of the nodes on that route makes the route become more zigzag and

longer than under the UDG model, thus incurring extra relay load and path length overhead.

3.3.6 Conclusion

We have presented a novel multi-region geocast routing algorithm called Recursive Multi-

region Geocasting (RMG), which addresses the problem of delivering data from a source

to multiple remote geocast regions in large-scale networks of IoT devices. We compared

the performance of RMG with two state-of-the-art protocols, namely GMR and GGP, using

simulation. The comparison has shown that RMG outperforms the other protocols in all

comparison metrics including computation time, network relay load, and transmission la-

tency overhead. Furthermore, RMG is flexible with respect to application needs due to its

capability of tuning the parameter δth. A performance evaluation of RMG under a more re-

alistic wireless model [112] reveals that our proposed algorithm also works well with irregular

transmission regions.

3.4 Stochastic Routing in the IoT

In this section we present a routing algorithm called “Stochastic Forwarding-based Routing”

(SFR), which follows the geographic routing approach. The routing algorithm is targeted to

the routing property P2 (see Sec. 3.1.2), i.e., to maintain a fair distribution of the routing

load in terms of energy saving across the network, so that the life time of the network can

be increased.

3.4.1 Motivation

Conventional geographic routing protocols in networks of IoT devices (e.g., WSN) usually

send data packets over a single deterministic routing path from a source node to a destination

node. A routing path is deterministic if the relay nodes included in the path were selected

deterministically using a forwarding technique. An illustration of a deterministic routing

path is given in Fig. 3.19-(a), where the GEDIR forwarding technique always results in the

routing path RPB,E,G for 2 data packets ρ1 and ρ2 that need to be sent from S to D. This

is due to the selection of the next relay for every ρi, at every intermediate relay nodes being

deterministic following the GEDIR principle.

Chapter 4. Routing in the IoT 71

C

B
E

F

G

DR

A

p1
p2 p1 p2

H

p1 p2 p1 p2

C

B
E

F

G

DR

A

p1

p2 p1

p2

H

p1

p2
p1

p2

p1
p2

(a) Deterministic routing path

(b) Different routing paths for different data packets

Figure 3.19: Load balancing vs. Shortest path usage.

Iterative use of the same routing paths (e.g., routeB,E,G) increases the stress on the relay

nodes that lay on the paths (e.g., nodes B, E, and G), and eventually uses up the energy

budget of the nodes. This may cause partitions in the network since some of those relay nodes

may be the only links between different parts of the networks, rendering the network useless

as data packets cannot be exchanged between nodes in different partitions. For example, in

a forest fire monitoring application, the detection of a fire may not be delivered to the base

station due to network partitions.

In order to mitigate this problem, we propose to use different routing paths for sending

different data packets, therefore resulting in a fairer routing load distribution across the

network. Fig. 3.19-(b) illustrates our proposal, where the two data packets ρ1 and ρ2 are

sent using two different routing paths routeA,B,E,F,H and routeB,C,F,G. The routing load

is distributed to 7 nodes A,B,C,E, F,G,H instead of 3 nodes B,E,G as shown in Fig.

3.19-(a).

The use of multiple routing paths, however, has the drawback that data packets may be for-

warded along routing paths that are longer than the shortest routing path (e.g., routeA,B,E,F,H

is longer than routeB,E,G in Fig. 3.19-(b)). This results in a longer delay in delivering data

packets, which should be avoided in time-critical applications. For example, in the above

forest fire monitoring application, the detection of a fire must be reported to the base station

within a hard time bound of 2 seconds, which implies that the data packets should be sent

over shortest or, at least, near-shortest routing paths, whenever it is possible.

Our goal in designing SFR is to find a trade-off between these two apparently conflicting

objectives of load balancing and shortest path usage. To achieve the former, we follow the

random forwarding technique (see Sec. 3.2.2.1) to randomly select the next relay for each

data packet. We call this approach the randomized routing approach. To achieve the latter,

we design the neighbour selection process such that the resulting routing paths do not deviate

Chapter 4. Routing in the IoT 72

too much from the shortest path. In the following, we present related work and the details

of our SFR algorithm.

3.4.2 Related Work

Randomized routing is actually a well-studied approach in the literature, however it is

mostly used in non-geographic-routing domains (e.g., flooding-based, state-based routing,

etc). Many randomized routing protocols, such as [142–145], mostly consider a scenario

where the location of destination is not known and employ a pure random walk to discover

the destination. Among those, [144] provides an analysis of pure random walks on sensor

networks with regular deployment, such as triangular, hexagonal, or square-based topologies.

In [142], the authors also consider unbiased random walk on a regular deployment of nodes,

forming a hexagonal lattice pattern.

Another use of unbiased random walks is presented in [143] in order to detect outlier data

in sensor networks. Zhang et al. [145] utilize the random walk approach in a rather different

context in sensor networks, i.e., in order to enhance the source-location privacy by introducing

phantom sources in between the actual data source and the sink. A random walk is initiated

at the actual source and terminated after a predefined hop count, where the phantom source

is created. Data is then sent to the sink by the phantom source using a given routing protocol.

An overview and comparison of different random walk strategies for ad hoc networks is given

in [146], which covers random walk with memory, random walk with look-ahead, random

walk using highest degree, random walk proportional to the degree, and random walk using

minimum link weight. None of these approaches consider a given destination location, hence

there is no bias toward a target in the probabilities of the random walk.

Geographical Random Forwarding (GeRaF) [147] introduces a new concept of receiver con-

tention for packet forwarding. In this scheme, the relaying node does not specify the next hop

but the receiving neighbors decide which one should relay the packet based on the location

information, similar to the greedy approach. The paper presents an analysis of this scheme,

but does not fully address how contention among receivers is resolved in a distributed man-

ner. Probabilistic Geographic Routing (PGR) [148] is similar to our approach in the sense

that it assigns probabilities to a few candidate relaying nodes, but the assignment is uni-

form along the routing path, unlike our approach where the probability assignment scheme

(bias) changes as packets get closer to the destination. Barrett et al. introduce a family of

routing protocols based on probabilistic flooding in [149]. Our approach can be viewed as an

additional member to this family, albeit as one not utilizing flooding in order to ensure low

power operation.

Chapter 4. Routing in the IoT 73

3.4.3 Assumptions and Approach

3.4.3.1 Network Model

We consider a large multi-hop wireless network consisting of m stationary nodes, where each

node has a fixed circular transmission region, determining the set of nodes it can communicate

with directly, i.e., we follow the UDG wireless link model. We assume that all nodes are aware

of their geographical locations at network deployment time (e.g. through GPS receivers),

or shortly after deployment by employing a distributed location discovery algorithm, such

as in [105]. The locations of the neighbours of a node can be obtained using a simple Hello

protocol. Moreover, the location of the destination node is assumed to be known to the

source node.

3.4.3.2 The Stochastic Forwarding Approach

Existing geographic routing protocols exploit the fact that the shortest routing path between

a source node and a destination node in a network gets increasingly closer to the straight line

connecting the two nodes in the Euclidean space as the node density increases. In networks

of IoT devices where limited battery power is a vital resource, frequent use of such “straight

line” routing paths would quickly exhaust the energy of the relay nodes that lie on the paths.

Thus, critical applications should employ a load balancing strategy for relaxing the energy

consumption in order to maximize the network life-time, while keeping the length of the

routing paths for active flows at a reasonable level compared to the shortest routing path.

In this thesis, we present a novel forwarding approach called stochastic forwarding (SF), that

aims at fairly distributing the routing load of a transaction between a pair of source and

destination among network nodes such that the network life-time is maximized. We model

the movement of each packet sent during the transaction as a random walk [150], whose

transition behavior is influenced by intermediate relay nodes along the routing paths from

the packet’s source to destination. Upon receiving a packet to be forwarded, a relaying node

assigns transition probabilities to all of its 1-hop neighbors and randomly forwards the data

packet to a neighbor based on those probabilities.

The novelty of our approach is the assignment of the transition probabilities of the random

walk, which we formulate as a set of requirements:

• Load distribution: In the first steps of the random walk, the data packet should tend

to discover many different routing paths, rather than biasing too much toward the

shortest path.

• Convergence: In later steps, the bias should be increased toward the nodes that are

closer to the destination.

Chapter 4. Routing in the IoT 74

DS

Figure 3.20: The stochastic forwarding approach.

An illustration of our approach is given in Fig. 3.20, where the routing of multiple data

packets from the source S to the destination D results in a routing load distribution among

nodes that are located inside the ellipse region whose transverse diameter is the line segment

SD. Note that this set of requirements describes a generic stochastic forwarding method that

can be realized in different ways, according to the particular assignments of the transition

probabilities. In this thesis we present one such assignment (see Sec. 3.4.4) and evalu-

ate its performance. Note that, hereafter we interchangebly use the two terms “transition

probability” and “forwarding probability” as they convey the same assignment of probabil-

ity, and only differ semantically in that “transition” is used for random walk theory while

“forwarding” is used for routing.

3.4.4 A Heuristic for the SF Approach

We conceptualize and demonstrate our SF approach with a heuristic for assigning the for-

warding probabilities, which we call the SF heuristic 1 (SFH1). Consider a source or relaying

node R in a transmission session with packets destined to a destination D. Let dE(X,Y)

represent the Euclidean distance between the two nodes X and Y and πR the set of neigh-

bours of node R. For every neighbour Ni of R, i.e., Ni ∈ πR, we assign a weight wNi such

that

wNi =

dE(R,D) + max
Nk∈πR

{dE(R,Nk)} − dE(Ni, D)

dE(Ni, D)
(3.10)

Note that, it can be easily proven, using the triangle inequality, that ∀Ni, wNi > 0. The

weights are then normalized according to

pNi =
wNi∑

Nk∈πR
wNk

(3.11)

We use the normalized weights as the forwarding probabilities to be assigned to the neigh-

bours of node R.

Fig. 3.21 illustrates the probability assignment for two nodes, the source node S, and a

relay node R that is close to the destination D. Each node has three neighbors at identical

relative positions. We observe that all neighbours of the source are assigned relatively similar

forwarding probabilities, i.e., the difference among them is relatively small. In contrast,

Chapter 4. Routing in the IoT 75

C

B

DS

A

G

F

R

E
p = 0.315

p = 0.541
p = 0.143

p = 0.253

p = 0.736
p = 0.011

Figure 3.21: The SFH1 heuristic for assigning forwarding probabilities.

such difference is much greater among the forwarding probabilities that are assigned to the

neighbours of R. This observation illustrates the first two requirements of our approach,

i.e., load balancing and convergence. The third requirement, greedy forwarding, is also

observed. For both S and R, neighbours that are located closer to D are assigned with

greater forwarding probabilities, i.e., pB > pA > pC and pF > pE > pG.

3.4.5 The Stochastic Forwarding-based Routing (SFR) Algorithm

We present now the SFR algorithm (see Algorithm 3), given that an assignment for our SF

approach has been derived, e.g., the above SFH1 heuristic. The algorithm is implemented

on every nodes in the network and uses only local information, i.e., the location of neighbour

nodes, for computing the forwarding probabilities.

Algorithm 3 The SFR algorithm run on a relay node R holding the data packet p.

1: if D ∈ πR then
2: Forward p to D.
3: else
4: for each Ni ∈ πR do
5: Calculate pNi using Eq. (3.11).
6: end for
7: rand val← a random value ∈ [0, 1]
8: bound1 ← 0
9: bound2 ← 0

10: for each Ni ∈ πR do
11: bound2 ← bound1 + pNi

12: if rand val ∈ [bound1, bound2] then
13: Forward p to Ni.
14: Terminate the process.
15: else
16: bound1 ← bound2
17: end if
18: end for
19: end if

Chapter 4. Routing in the IoT 76

3.4.6 An Analytical Framework

We model our stochastic forwarding approach using the Markov chain theory [151] so that

its behaviour can be theoretically studied and analyzed.

A Markov chain can be specified by a set of states, C = {c1, c2, . . . , cn}, and a transition

probability matrix P, whose entry pij ∈ P represents the probability of the chain to be in

state cj at the next step given that it is currently in state ci. A state ci of a Markov chain is

called absorbing if it is not possible to leave it once reached (i.e., pii = 1). A Markov chain is

absorbing if it has at least one absorbing state and if from every state it is possible to reach

an absorbing state. In an absorbing Markov chain, a state which is not absorbing is called a

transient state.

Given the above definitions, we model the routing process of a data packet between a source

S and a destination D as an absorbing Markov chain, where network nodes represent the

set of states of the Markov chain, the destination D corresponds to an absorbing state cd,

and the source S corresponds to a transient state cs. The expected number of hops for

the data packet to travel from S to D corresponds to the number of steps for the Markov

chain, starting from state cs, to be absorbed at cd. For the routing process, we construct

the transition probability matrix P of the Markov chain by assigning each entry pij the

probability for the data packet to be forwarded from a relay node I to another relay node J .

In order to compute the number of steps for the modelled absorbing Markov chain to be

absorbed, we first write the matrix P in its Canonical form as in Eq. (3.12), where I is the

identity matrix, Q is an (m− 1)× (m− 1) matrix, R is a column vector with m− 1 entries,

and m is the number of nodes (or states).

P =

(
Q R
0 I

)
(3.12)

We, then, compute the fundamental matrix N of P as

N = (I−Q)−1 (3.13)

According to the Markov chain theory, an entry nij of the fundamental matrix N represents

the expected number of times the Markov process is in the transient state cj , given that it

started in state ci. Thus, adding all entries in the row i of N yields the expected number of

steps required before the Markov chain is absorbed, given that it started in state ci. This

addition can be written as

T = N× c (3.14)

where c is a column vector whose all entries are 1. The entry ti of T gives the expected

number of steps until the Markov Chain reaches the absorbing state cd.

Chapter 4. Routing in the IoT 77

D

F

A

R

E

p = 0.79 p = 1.0

p = 0.21

B

C

D

F

A

R

EB

C

D

F

A

R

EB

C

p = 1.0

D

F

A

R

EB

C

p = 0.92p = 0.08

(a) (b)

(c) (d)

Figure 3.22: Packet delivery guaranteed.

Therefore, the expected number of hops for data packets to be routed from the source S to

the destination D is given by ts and the expected number of forwards that a relay node J has

to perform in the routing process is given by nsj . This Markov chain-based framework allows

for performing analytical evaluation of any practical assignment of forwarding probabilities,

as well as any randomized routing approach (see Sec. 3.4.2).

3.4.7 Guaranteed Packet Delivery

An interesting side effect of our approach is that packet delivery can be guaranteed, although

in certain cases it may take very long time. Network voids may emerge in the network

especially when there is a sparse deployment of nodes. In some cases this may result in a

poor selection of routing paths by a forwarding technique, which is a common problem for

geographic routing protocols. With pure greedy forwarding techniques, the destination may

not even be reached unless there is a recovery mechanism to overcome the voids problem

(e.g., the GFG technique). In our approach, non-zero forwarding probability is assigned to

all neighbours ensures that the data packet will arrive (probably after very long time) at the

destination, as long as the network is connected.

To illustrate this property, we look at Fig. 3.22. The relay R is a dead-end node as it is closer

to the destination node D than its neighbours A and B. Due to our forwarding approach

that the forwarding probabilities are distributed to all neighbours such that sum of them

is exact 1, both A and B receive non-zero, significant values of 0.79 and 0.21, respectively.

Since pA > pB, A is more likely selected as the next relay of the data packet p, which leads

to the dead-end node C (see Fig. 3.22-(a)). From C, however, A is selected as the next relay

with forwarding probability of 1. At this point, there might be a temporary loop where p

Chapter 4. Routing in the IoT 78

traverses back and forward between A and C. The loop will eventually end because of the

random neighbour selection, and p is forwarded to R (see Fig. 3.22-(b)). This process goes

on until p reaches F (see Fig. 3.22-(c)). At F , since pE = 0.92 >> 0.08 = pB, it is very

likely that p is forwarded to E, and eventually to D (see Fig. 3.22-(d)).

The guaranteed packet delivery property can be easily theoretically proven using the above

Markov chain-based analytical framework. We model the network as an absorbing Markov

chain, with the destination node being the absorbing state and other nodes being transient

states. Due to the network being connected and SFH1, every relay nodes will be assigned

with a non-zero forwarding probability, which means the data packet always be forwarded,

until it reaches the destination.

The guaranteed packet delivery property does not only hold true for SFH1, but for any SF

heuristic that assigns a non-zero forwarding probability to all neighbours of a relay node. In

general, this means our SF approach can guarantee packet delivery, although it may take

long time in certain cases depending on specific forwarding probability assignments.

3.4.8 Evaluation

In order to evaluate our SF approach, we define the following two metrics that correspond to

our two design objectives of load balancing and shortest path usage. There is an apparent

trade-off between these two objectives. On the one hand, repeated use of shortest paths

provides fast routing with a poor forwarding load balancing. On the other hand, using many

alternative paths provides a fairer load distribution while requiring longer paths.

As radio communications constitute the major consumption of energy in networks of IoT

devices, we use the number of forwards that a relay node Ri has performed as a measure

of the energy consumption, and denote it as cRi , where i = 1..m and m is the number of

nodes in the network. Given that a data packet p has been successfully delivered from a

source to a destination, the average energy consumption of all nodes in the network except

the destination is denoted as cavg and is given by

cavg =
1

m− 1

m−1∑
i=1

cRi (3.15)

The standard deviation from the average energy consumption is given by

δc =

√√√√ 1

(m− 1)

m−1∑
i=1

(cRi − cavg)2 (3.16)

We use δc as the measure of the load balancing property of a routing protocol, since the

smaller δc, the smaller the difference between the number of forwards that network nodes

have performed.

Chapter 4. Routing in the IoT 79

We define how efficient p has been routed between a pair of source and destination as the

number of relay nodes required to deliver p, which should be small to be efficient. To measure

this efficiency, which we denote as e, we use the ratio between the length of the actual routing

path that has been used and the length of the shortest path. That is

e =
lap
lsp

(3.17)

where lap and lsp are the length of the actual routing path and the shortest routing path,

respectively. The value of lsp can be computed using the Dijkstra algorithm.

For an integrated approach that addresses both objectives, we introduce a linear combination

of the two metrics, controlled by a parameter α ∈ [0, 1]. For a given value of α, a routing

protocol should aim at minimizing the objective function f as given below

f = α · δc + (1− α) · e. (3.18)

3.4.8.1 Near-Optimal Forwarding Probability Assignment

In this section we present a centralized technique to derive the forwarding probability assign-

ment that minimizes the objective function f , i.e., a near-optimal assignment. This optimal

solution is helpful as it provides a means to quantify the performance of an SF heuristic such

as the SFH1 heuristic.

Given a network, a data source S, a destination D, an assignment of the forwarding proba-

bilities for each node of the network such that the sum of all probabilities is exactly 1, and

a value for α, we can theoretically compute the objective function f in Eq. (3.18), using the

Markov chain-based analytical framework that is presented in Sec. 3.4.6.

To do so, the network is modeled as an absorbing Markov chain with D being the only

absorbing state. Since the entry tS of the matrix T contains the expected length of the

routing path between S and D, the term lap in Eq. (3.17) can be replaced by tS . Moreover,

the expected number of forwards that a relay node R in the network has to perform can be

obtained from the entry nsr of the fundamental matrix N, thus the term cRi in Eq. (3.15)

can be replaced by nsr.

Using these replacements, we develop a genetic algorithm to compute the optimal assignment

that minimizes Eq. (3.18). We define a gene gR as the set of assigned forwarding proba-

bilities for the relay node R such that the sum of these probabilities is exactly 1. Thus, gR

corresponds to the row vector −−−−−−−→pr1, .., prm in the transition probability matrix P of the Markov

chain model. P is, therefore, the set of the genes of all nodes in the network, which we call

a genome (or an individual) according to the language of genetic algorithm. In this sense,

finding the optimal forwarding probability assignment is equivalent to finding the optimal

genome.

Chapter 4. Routing in the IoT 80

Alpha
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
b

je
ct

iv
e
 V

a
lu

e
 f

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Alpha
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

80

100

120

140

160

180

200

SFH1 Heuristic Genetic Algorithm
(g = 500)

Genetic Algorithm
(g = 2000)

Genetic Algorithm
(g = 32000)

f
in

 %

Figure 3.23: Performance comparison between SFH1 and the genetic algorithm.

Our genetic algorithm consists of the following steps:

1. Initialization: Create the first generation of genomes by randomly generating their

genes.

2. Comparison and Selection:

• Compare the quality of all genomes using the objective function f in Eq. (3.18).

• Select a specified number of genomes for the reproduction phase based on the

comparison.

3. Reproduction:

• Create a new generation of genomes by combining the genomes of the parent

generation.

• Apply some random modifications (mutations) to the genes of the new generation.

4. Iteration: Repeat steps 2 and 3 until the termination condition is reached, which in

this case is the number of iterations.

3.4.8.2 Near-Optimal Assignment vs. SFH1

In this section we compare the performance of the SFH1 heuristic with a near-optimal for-

warding probability assignment obtained by our genetic algorithm. Since the genetic algo-

rithm requires high computation time for obtaining near-optimal results, we use a moderate

network size of 100 nodes for the comparison. Nodes are randomly scattered in a unit square

area with a transmission range of 0.2 units. The source and destination nodes are selected

such that they are apart from each other and located at the opposite edges of the network.

The source sends 100 data packets to the destination. Using this configuration, each result

data point is the average of 100 generated networks.

Chapter 4. Routing in the IoT 81

Fig. 3.23 shows the comparison results for varying α values over the range of [0,1]. Note

that α does not affect the operation of the SFH1 heuristic, but the objective function value

is naturally affected by different values of α. For the genetic algorithm, each selected α

value requires a separate optimization process. The parameter g in the figure represents the

number of generations used for the genetic algorithm. The diagram on the left shows the

absolute value of f depending on the selected value for α. It also illustrates the convergence

of the genetic algorithm results towards the optimal solution, which is still not reached after

32000 generations, but is close enough to provide good benchmark values comparable to the

optimal solution. Note that, the optimal assignment which linearly minimizes f cannot be

obtained in practice due to the contradiction between our two design objectives.

The diagram on the right shows the same result values, but normalized with respect to

the best known solution, such that the results of the genetic optimization with g = 32000

are fixed at 100%. We observe that the performance of the SFH1 heuristic is at its best

compared to the near-optimal solution when α is around 0.5 and 0.6. This demonstrates

that the SFH1 heuristic is effective in simultaneously addressing both load balancing and

shortest path usage. Furthermore, it is important to note that, for all values of α, the

SFH1 heuristic always achieves a performance that is less than twice that of the best known

solution, which can only be obtained using the centralized genetic algorithm.

3.4.8.3 Performance Evaluation of SFH1

We now investigate the performance of the SFH1 heuristic in more detail using different net-

work topologies with respect to parameters such as network size, node density, and network

diameter. Two scenarios are evaluated for the results in this section:

• A varying number of nodes with fixed network dimensions to analyze the influence of

node density.

• A growing network size (in terms of both network dimensions and the number of nodes)

while keeping node density constant, in order to investigate the scalability.

In the first scenario, we use a unit square as the network dimensions while the number of

nodes is varied between 25 and 800. The second scenario uses a fixed node density with the

network dimensions being varied by setting the edge size to values between 0.5 and 2.5 units

(which results in network sizes between 25 and 625 nodes). In both scenarios, every data

point is an average over 100 random networks. For each random network, the source node

and the destination node are selected apart from each other so that the distance between

the nodes scales with the network diameter, and the source sends 100 data packets to the

destination.

Fig. 3.24 shows the performance of the SFH1 heuristic for the first scenario, i.e., networks

with constant dimensions and varying number of nodes. For small node densities (number

Chapter 4. Routing in the IoT 82

Node Number
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

O
b

je
c

ti
v

e
 V

a
lu

e
 f

0

1

2

3

4

5

6

7

8

9

10

alpha=0.25 alpha=0.50 alpha = 0.75alpha = 0

Figure 3.24: SFH1 vs. Increasing node density in a fixed network area.

Node Number
0 50 100 150 200 250 300 350 400 450 500 550 600 650

O
bj

ec
tiv

e
V

al
ue

 f

0

1

2

3

4

alpha=0.25 alpha=0.50 alpha=0.75alpha=0

Figure 3.25: SFH1 vs. Different network sizes and a fixed node density.

of nodes < 100), we observe a rather poor performance. However, when the node density

reaches some threshold (number of nodes is in between 100 and 150), the performance of

the heuristic stabilizes and stays constant regardless of the network size or density. This

result suggests that the SFH1 heuristic requires a minimal degree of connectivity in order

to perform well. For networks which are too sparse, a deterministic recovery forwarding

technique can be adopted to bypass network voids.

Fig. 3.25 show the performance of SFH1 while we proportionally increase the network di-

mensions and the number of nodes together to maintain a certain constant node density. At

a first glance, we see that SFH1 maintains relatively stable performance as the value of the

objective function f does not increase much with the increasing of the number of nodes and

the varying value of α. At a closer look, we can observe that SFH1 performs very well in

terms of load balancing (α = 0.75), performs good with both the load balancing and shortest

path usage objectives (α = 0.5), and performs relatively good in terms of shortest path usage

(α = 0.25 and α = 0).

Chapter 4. Routing in the IoT 83

3.4.9 Conclusion

We have introduced a novel geographic routing algorithm for the IoT, that is targeted to two

conflicting objectives: (i) fairly distributing the routing load across a network to improve

the network life time; and (ii) minimizing the number of routing hops for fast data packet

delivery. At the heart of the algorithm, we introduced a new stochastic forwarding approach

and proposed a heuristic to implement this approach. We presented an analytical framework

based on the Markov chain theory for modeling and analyzing our approach. The framework

can also be used generally for analyzing any other randomized routing protocol. Using this

framework we proved that our stochastic forwarding approach guarantees packet delivery.

To evaluate our work, we formulate the two design objectives into an integrated objective

function which should be minimized. We proposed and implemented a genetic algorithm

to find near-optimal forwarding probability assignments that minimize this objective func-

tion. Using the best near-optimal assignment, we found that our heuristic performs well

for both the design objectives. Furthermore, we provided numerical results for the heuris-

tic, demonstrating that our proposed heuristic scales well with respect to network size and

density.

3.5 Summary

We presented in this chapter a background review on the generic routing problem and the

specific geographic routing approach in the IoT. After that, we proposed two geographic

routing algorithms for the IoT, namely the Recursive Multi-region Geocast (RMG) and the

Stochastic Forwarding-based Routing (SFR) algorithms. While RMG is more scenario-driven

in the sense that it is targeted to a class of routing scenarios where the geographical area on

which the network is deployed is (very) large, SFR is more network-driven as it is designed to

improve routing load balancing, thus prolonging the operational life time of the network. The

two algorithms can be combined, since SFR can be used as a greedy forwarding technique

by RMG to forward data packets from one division point to another, creating an efficient

and load-balanced routing protocol for large-scale IoT application scenarios.

Chapter 4

Searching The Real World Via The

IoT

One of the most essential and mostly used services in the traditional Web is search, since

it enables Internet users to quickly find information of interest among the massive amount

of information available on the Web. Given a description of what a user wants to find, a

search service quickly returns matching information, which can be of any form such as web-

pages, multimedia, services etc. Similarly, in the WoT where billions of Things are connected

to the Internet and publish their data (i.e., real-world states perceived by their embedded

sensors) on the Web in real time, we believe that sensor search will be an essential service

for many IoT applications. A sensor search service that allows for finding Things (i.e., their

embedded sensors) with certain properties (i.e., the states of the physical world measured

by the embedded sensors) in real time would enable the users to search the real world for

objects and places via the IoT.

For example, in order to efficiently reproduce a newly developed type of corn, an agriculture

scientist may want to find places with similar climatic conditions to the current place where

he has successfully planted the new type of corn during the last agricultural season. Since

climatic sensory data are published in the WoT, the scientist can simply search for climatic

sensors whose published data are similar to the published data of the climatic sensor at the

current place. The location of the climatic sensors returned by the search service is what the

scientist is looking for. In another example, to find an empty parking spot in his proximity,

a car driver can simply search for near-by parking-spot sensors whose output at the moment

is “empty”. For later reference, we label the first and second applications as Ex1 and Ex2,

respectively.

In these applications, the underlying problem is finding sensors in the WoT whose output

measurements match certain search criteria. This chapter is devoted to addressing this

problem1. To focus our work on the core sensor search problem, we assume in this chapter

1This chapter is based on our work in [6] and [7].

85

Chapter 4. Searching The Real World Via The IoT 86

that any search query for Things, e.g., places in Ex1 or parking spots in Ex2, can be

translated to a search query for embedded sensors, e.g., climatic sensors or parking-spot

sensors.

This chapter is structured as follow. In Sec. 4.1, we discuss the general sensor search problem

in the context of the IoT and introduce a specific sensor search problem that we consider in

this thesis. In Sec. 4.1.3, we present a set of challenges to our specific sensor search problem

and derive a set of requirements for solving it. We outline a generic architecture and an

approach in Sec. 4.1.4, given those challenges and requirements. In the next two sections, we

present two sensor search algorithms for the sensor search problem in the WoT. In particular,

the sensor similarity search algorithm is presented in Sec. 4.2, and the content-based sensor

search algorithm is presented in Sec. 4.3. Finally, we conclude the chapter in Sec. 4.4.

4.1 The Sensor Search Problem

The general sensor search problem refers to the process of finding sensors with specified

properties in a search space (i.e., a collection of sensors). In this section, we will discuss this

problem in detail, which serves as the background for our proposed sensor search services

in this chapter. We first discuss the essential components of the sensor search problem in

Sec. 4.1.1. Based on this discussion, we introduce in Sec. 4.1.2 the specific sensor search

problem that we consider in this chapter, which focuses on a subset of parameters of the

essential components. In Sec. 4.1.3, we identify a set of challenges and derive from it a set of

requirements for solving this specific sensor search problem in the context of the IoT. Finally,

we present our approach and outline a distributed architecture for this problem in Sec. 4.1.4.

4.1.1 Essential Components

As implied by its definition, the essential components of the general sensor search problem

are sensor, sensor property, search space, search query, and search approach. In the following

we discuss each of them in detail.

4.1.1.1 Sensor

In the context of the IoT, a sensor is integrated into an IoT device such as a sensor node or an

RFID tag which, in turn, is embedded into real-world entities (e.g., a person, a chair, a plant),

i.e., Things. The mission of a sensor is to provide measurements about the environment so

that Things can perceive their state (e.g., whether a chair is being sat on). Commonly, a

sensor is uniquely identified by an absolute address such as a URI/URL, which serves as an

access point to the measurements of the sensor.

Chapter 4. Searching The Real World Via The IoT 87

4.1.1.2 Sensor Property

Based on its properties, a sensor can be found among a collection of sensors. There are

3 types of sensor property. Static properties of a sensor refer to the static descriptions of

the sensor such as its type (e.g., light, humidity), its date of production, and its production

number. These descriptions are usually stored on the sensor during the production by its

manufacturer and do not change over time. “Quasi-dynamic” properties of a sensor refer

to those descriptions that may slowly change over time. For example, the ownership of

the sensor, its location, and its deployment context. Dynamic properties of a sensor refer

to its output measurements which usually change (quickly) over time. For example, the

temperature of a room changes continuously over the course of 24 hours.

4.1.1.3 Search Space

A search space is a (very large) collection of sensors. A search space can be characterized by

the following factors:

• Close vs. open: In a closed search space, the number of sensors is known and fixed,

i.e., there will not be replacements of existing sensors with new sensors. In contrast,

the number of sensors is not known in an open search space as well as sensors can be

added to or removed from the search space. The IoT is an example of an open search

space.

• Structured vs. unstructured : In a structured search space, sensors are organized based

on either their identification or their properties, such that the search process can be

speeded up significantly (e.g., a binary search algorithm performs much faster than a

linear search algorithm on a sorted list of sensors). Usually, it is easier to structure a

closed search space, since everything is known. For example, sensors of the same type

could be grouped together, and within each group sensors located in the same place

could be further grouped and so on. An open search space, however, is difficult to

be structured due to its dynamicity and unknown size. The IoT is an example of an

unstructured search space.

• Small vs. large: This factor refers to the size of the search space in terms of the total

number of sensors within it, which can be small or large. Obviously, performing a

sensor search in a small search space would, in most cases, be faster than in a large

one, except that the latter being well-structured while the former being not. The IoT

is considered to be a very large search space.

Chapter 4. Searching The Real World Via The IoT 88

4.1.1.4 Search Query

A search query is a description of sensor properties and their relationships. Based on this

description, one or more sensors in the search space are found. In the following, we present

query types that are supported by many sensor search systems:

• One-time vs. continuous: A one-time search query will be completed after a search

result (i.e., a (set of) sensor(s)), while a continuous query returns changing search

results over a period of time before its completion.

• Time-constrained vs. time-independent : A time-constrained search query demands

that the search result must be returned immediately or within a hard time bound. A

time-independent search query, in contrast, does not specify a time bound for returning

search results.

• Description-based vs. output-based : This parameter refers to the types of sensor prop-

erties to be specified in a search query, which can be description-based, i.e., based

on the static/quasi-dynamic descriptions of sensors (e.g., sensor type or location), or

output-based, i.e., based on the output measurements of sensors (e.g., the current

temperature), or the combination of both.

• Raw output vs. abstracted output : An output-based search query can refer directly

to raw sensor measurements (e.g., “find rooms whose temperature at the moment is

below 16◦C”) or some high-level states derived from them (e.g., “find rooms that are

cold at the moment”, where “cold” is a high-level state of rooms, which is derived from

the measurement values of their attached temperature sensor being lower than 16◦C).

While abstracted output is close to human language which eases the user in creating

the search query, it requires proper domain expertise to derive high-level states from

raw sensor measurements (e.g., what temperature is considered as “cold”) as well as

confines the search to specific applications (e.g., smart home application). Searching

for sensors based on their raw measurements, however, does not have these limitations.

4.1.1.5 Search Approach

A search approach is the use of a set of strategies in developing and implementing a solution

for the sensor search problem. In the following we present a set of fundamental techniques

[152] that are used in many existing sensor search systems.

• Push and pull : In a push technique, changes in a search space such as new sensor

measurements or modified sensor descriptions are proactively pushed to the sensor

search engine and stored at its local storage, so that search queries can be resolved

using only this data. In a pull technique, these changes are stored at the sensors and

are pulled by the search engine when resolving search queries. In the IoT where the

Chapter 4. Searching The Real World Via The IoT 89

number of sensors is larger than the number of users and sensors typically produce

changes more frequently than users produce search queries, the pull technique might

be preferred as it incurs lower communication overhead.

• Divide-and-conquer : Due to the large size of the search space, e.g., the IoT, the execu-

tion of the search can be distributed and parallelized. Upon receiving a search query,

the search engine would forward the query to a number of search points (a computer

that runs the search algorithm) each of which maintains an aggregated view of sensors

in a (disjont) region of the search space. All search points perform search in parallel

and send their search results back to the search engine where they are aggregated and

presented to the user. This technique can be implemented in a hierarchical fashion

(e.g., a hierarchy of search points, where a search point has an aggregate view of its

sub-search-points).

• Indexers: An indexer provides a structure for a search space such that looking up for

sensors in the search space is optimized. Sensors are indexed (i.e., structured) according

to their properties, i.e., their description or output. Depending upon how dynamic the

sensor properties are, sensors may be reindexed over time. Indexers are usually desired

in large and open search spaces such as the IoT.

• Crawlers: A crawler is responsible for discovering changes in a search space and giving

them to an indexer so that an up-to-date view of sensors can be maintained. The

changes can be the (dis)appearance of existing/new sensors or changes in the properties

of already indexed sensors. Crawlers are an essential component of any sensor search

system designed for the IoT due to its large scale, openess, and dynamicity.

• Compression: Compression is usually used to reduce the amount of data to be com-

municated and stored in a sensor search system. For example, changes in the search

space can be compressed before being pushed/pulled or before indexed.

• Models: Models are used to infer information about sensors without having to actually

communicate with them (e.g., the model of an occupancy sensor in a meeting room

may predict that the meeting room is “unoccupied” at 23:00 PM, which is normally

the case). Accurate models, thus, can reduce communication cost. Models of sensors

are usually built using their past measurements.

• Scoring and ranking : Scoring refers to assigning a sensor a scalar value proportional to

its importance. For example, given a search query, the more it is relevant to the query,

the higher score it is assigned. Ranking is concerned with sorting sensors according to

their score. Scoring and ranking can be used to present the user with top-ranked (i.e.,

most relevant) sensors. The two techniques can also be used by an indexer to optimize

the search space for one or more sensor properties that are important to the search

engine.

Chapter 4. Searching The Real World Via The IoT 90

4.1.2 The Specific Sensor Search Problem

The specific sensor search problem that we consider in this thesis is characterized as follow:

• Sensor : All sensors that are and will be connected to the IoT.

• Sensor property : Dynamic property (i.e., sensor measurements).

• Search space: The IoT which is (very) large, open, dynamic, and unstructured.

• Search query : Output-based and raw output, i.e., we focus our work on searching for

sensors based on their output measurements.

• Search approach: Our proposed approach, which is a combination of all fundamental

search techniques presented in Sec. 4.1.1.5.

More specifically, we consider two sub-problems, namely sensor similarity search and content-

based sensor search. The first sub-problem is concerned with finding sensors whose recent

measurements are similar to that of an example sensor, thus is essentially dealing with the

similarity between streams of historical measurements of sensors. The second sub-problem

is concerned with finding sensors whose latest measurements fall in a given value range.

The reason for our choice for this specific sensor search problem, respectively its two sub-

problems, is two-fold: (i) these two search services are useful because they enable the user to

search the real world for objects and places via their embedded sensors with either a given

example object or place (e.g., see Ex1 at the beginning of this chapter), or a given “state”

defined by a range of values (e.g., see Ex2 at the beginning of this chapter); and (ii) the two

search services are novel.

4.1.3 Challenges and Requirements

We present in this section a set of challenges to our proposed specific sensor search problem

and derive from it a set of requirements that need to be met in designing solutions for

this problem. The challenges will are given below. For each challenge, we include a brief

discussion in italics.

• C1 : Wireless communication dominates power consumption of sensor nodes. With

state-of-the-art sensor node hardware, the radio consumes about 100 mW in active

mode, draining an AAA battery within a few days. In order to achieve lifetimes in

the order of months or years on a single battery, wireless communication needs to be

minimized. This is one of the fundamental research challenges in WSNs specifically

and in the IoT generally.

Chapter 4. Searching The Real World Via The IoT 91

• C2 : The statistical properties of sensor measurements may change over time. The

states of the real world, i.e., physical objects and processes monitored by sensors, may

change substantially over time, even if the sensor is immobile. For example, an oc-

cupancy sensor that is fixed on the wall of a lecture hall produce significantly different

measurements between during semester and during semester break.

• C3 : The computational and memory resources of sensor nodes are severly constrained.

Typical hardware platforms offer a simple micro controller with few MIPS and few kilo-

bytes of RAM. In particular, there is typically no support for floating point operations,

such that complex math needs to be avoided (see Sec. 2.5.2).

• C4 : Raw sensor measurements are inherently imperfect. Sensor data typically suf-

fers from noise, jitter, outages, or outliers (e.g., due to environmental influences or

hardware malfunctions), and is non-uniformly sampled (i.e., different sampling rates

at different times across different sensors).

• C5 : It is anticipated that billions of sensors will be connected to the IoT [153].

The following requirements are drawn from the above challenges, which must be met by a

sensor search algorithm designed for the WoT:

• R1 : In order for sensors to be discovered and matched, their identification and prop-

erties must be indexed, which implies that the sensor search algorithm should analyze

sensors’ measurements to extract their properties. Furthermore, such analysis should

be performed on a regular basis as dictated by C2. And it is not feasible for reg-

ularly downloading raw sensor measurements from sensor nodes, due to C1. Thus,

sensor nodes should compute a compact sketch from their time series of sensor mea-

surements, such that only the compact sketch is downloaded from the sensor nodes to

minimize wireless communication overhead and thus energy consumption. The com-

puted sketches should contain the properties of the sensors.

• R2 : Sketches of already indexed sensors need to be regularly updated due to C2.

• R3 : The time interval between two consecutive downloads of sketches from a sensor

node should not be two short due to C1.

• R4 : Computation of a sketch on a sensor node should be efficient and lightweight due

to C3.

• R5 : A sensor search algorithm should be scalable to a large number of sensors due to

C5.

• R6 : Matching of a sensor search request against indexed sensors should be fast and

efficient due to C5.

• R7 : The accuracy of a search result should be minimally impaired by the imperfectness

and non-uniformity of raw sensor data due to C4.

Chapter 4. Searching The Real World Via The IoT 92

°C

°C

°C

Figure 4.1: Fuzzy Set Illustration.

4.1.4 Architecture and Approach

Given the above challenges and requirements, we propose here an approach based on fuzzy

set theory for solving our proposed sensor search problem, and outline a generic sensor search

architecture to support the approach. As will be presented, the proposed architecture and

approach follow a set of fundamental search techniques discussed in Sec. 4.1.1.5, including

pull, divide-and-conquer, indexing, crawling, modelling, and scoring and ranking techniques.

4.1.4.1 A Fuzzy Set-based Approach

Our approach to solving the specific sensor search problem is based on fuzzy set theory. Fuzzy

set theory [154] deals with uncertainties using approximate reasoning (rather than fixed and

exact reasoning) to arrive at definite decisions. The imperfectness and non-uniformity of raw

sensor data, thus, make fuzzy sets a natural approach for our problem.

A fuzzy set is an extension of a crisp set which allows partial membership rather than only

binary membership. A fuzzy set F on a universe of discourse U is defined by its membership

function mfF (x), x ∈ U such that mfF (x) ∈ [0, 1]. The closer the value of this function is to

1 for a given x, the more x belongs to the fuzzy set F . With this definition, an element x ∈ U
can be member of more than one fuzzy set at a time, with different degrees of membership.

Fig. 4.1 illustrates this key concept of fuzzy set theory. We assume that on Monday we had

built two fuzzy sets from the measurements of two temperature sensors (Fig. 4.1-left) during

the last 30 days, one is located in Berlin and the other in Hanoi. The formal descriptions of the

two fuzzy sets are FBerlin = {(x,mfBerlin(x))|x ∈ R} and FHanoi = {(x,mfHanoi(x))|x ∈ R},
as illustrated in Fig. 4.1-right. Note that we assume the set of real numbers R as the universe

of discourse to represent scalar measurements of sensors. We also assume the measurement

ranges of the sensor in Berlin and the sensor in Hanoi are from 15◦C to 25◦C and from 20◦C

to 35◦C, respectively.

Chapter 4. Searching The Real World Via The IoT 93

Suppose that 5 days have passed since the fuzzy sets had been built and the present time is

Saturday. Now if we search for a temperature value x = 24◦C, the membership functions of

FBerlin and FHanoi will tell us the degree of membership of x in the two fuzzy sets, which

is mfBerlin(x) = 0.9 > 0.7 = mfHanoi(x). We, therefore, expect that the sensor in Berlin is

more likely currently reading 24◦C than the sensor in Hanoi. Likewise, the sensor located in

Berlin is expected to be currently reading values within a range of [22, 25]◦C if the sum of

the degree of memberships of all temperature values within [22, 25]◦C in FBerlin is greater

than that in FHanoi. That is∑
x∈[22,25]

mfBerlin(x) >
∑

x∈[22,25]

mfHanoi(x) (4.1)

The design of our two sensor search algorithms in Sec. 4.2 and Sec. 4.3 will be based on this

key idea of our fuzzy set approach. In particular, we will implement sketches of raw sensor

data as a fuzzy set associated with a membership function, and use this membership function

to compute a matching score given a set of search criteria. To satisfy the requirements

presented in Sec. 4.1.3, the fuzzy set will be small in size and the computation of a matching

score given a fuzzy set (i.e., a sketch) and a set of search criteria will take linear time and

therefore will be fast and efficient.

4.1.4.2 Sensor Search Architecture

Fig. 4.2 shows the overview of our architecture. We have the local sensor search (LSS)

component that is part of multiple sensor gateways that are distributed across the Internet.

Each LSS component is responsible for the local sensor networks that are managed by the

sensor gateway. Each LSS component is also associated with a database that contains indexed

identifications (id) and fuzzy sets of sensors. The network of LSS components forms a

distributed fuzzy set database system in the Internet.

Each sensor node in the WoT computes by itself a fuzzy set from its output measurements

over a time window. Periodically, the LSS component crawls sensors to download and index

those fuzzy sets in the distributed fuzzy set database. Each fuzzy set has a memory footprint

of few tens of bytes and can thus be efficiently downloaded from the sensor nodes.

To perform a search, the user specifies a set of search criteria and hands it to the global

sensor search (GSS) component via a user interface (GUI). As all sensor gateways register

with the GSS component, the latter will forward the set of search criteria to relevant LSS

components, where the search criteria are matched against the indexed fuzzy sets to compute

a matching score (mc) for each indexed sensor. After that, an LSS component forms a list of

sensors together with their identifications ranked by the matching scores and sends the list

to the GSS component.

Chapter 4. Searching The Real World Via The IoT 94

GSS
(globalsensor search)

crawls

Fuzzy Set Database

search criteria (C)

id1, mc1=0.9
id2, mc2=0.5

id3, mc3=0.7
id4, mc4=0.6

WoT

user

WSN

LSS (local sensor search)

C

C

C

final ranked list

partial ranked
list

partial ranked
list

a fuzzy set

id1, mc1=0.9
id3, mc3=0.7
id4, mc4=0.6
id2, mc2=0.5

Figure 4.2: A generic architecture for the problem of sensor search in the WoT.

After receiving all partial ranked lists from LSS components, the GSS component merges the

partial lists together to form the final ranked list that is sorted in descending order of the

computed matching scores. If needed, the GSS component also verifies sensors in this list

(via the LSS) whether they actually match the search query, and removes unmatched sensors

from the list. The (filtered) final ranked list is presented to the user as the search result.

The flow of information in this architecture demonstrates the relationship between the sensor

search service and the routing service. That is, the routing service is required to enable the

efficient and reliable communication between an LSS and one or multiple sensors in a local

WSN, e.g., crawling for fuzzy sets or verifying sensors.

4.2 Sensor Similarity Search in the WoT

In this section we propose, implement, and evaluate a sensor search algorithm for the IoT,

that addresses the sensor similarity search problem.

Chapter 4. Searching The Real World Via The IoT 95

4.2.1 Motivation

Most of current sensor search services define the search criteria based on the textual meta-

data of the sensors. For example, existing directories of online sensors such as Cosm, GSN

[25], or Microsoft SensorMap [155] support search for sensors based on textual meta-data

that describes the sensors (e.g., type and location of a sensor, measurement unit, object to

which the sensor is attached) and which is manually entered by the person deploying the

sensor. Other users can then search for sensors with certain metadata by entering appropriate

keywords. This approach, unfortunately, does not work well in practice, as humans make

mistakes when entering metadata, different users use different terms to describe the same

concept, or important metadata is not entered at all. For example, in [156] a user study is

described where 20 participants were asked to enter metadata for a weather station sensor

using a simple user interface. Those 20 persons made 45 mistakes in total.

An approach to address this problem is to store some metadata of a sensor such as sensor type

on the sensor during production using so-called Transducer Electronic Data Sheets (TEDS)

as defined by IEEE 1451, for example. However, most of the relevant metadata of a sensor

depends on the deployment and use of the sensor (e.g., logical location of the sensor, object

to which the sensor is attached) and cannot be provided by the producer of a sensor.

Another approach is to use standardized ontology for describing sensors. For example, Sen-

sorML2, SSN3, and RDF4 represent the meta-data of a sensor as a knowledge graph (e.g.,

sensor1 is-in room1), where ontologies define the meaning of the vertices (sensor1 and room1)

and edges (is-in) of the graph. However, these ontologies and their use are rather complex and

end users likely won’t be able to provide correct meta-data for sensors and their deployment

context without help from experts.

Note that, the same problem also applies to search for multimedia items on the traditional

Web such as images and videos, which typically can only be found if appropriate textual

descriptions are provided by users. One interesting alternative approach that avoids the use

of metadata altogether is searching by example. For example, Google Images includes an

option to find images that are similar to another image. There are even specialized search

algorithms such as TinEye5 which find images that are similar to a given image.

In this thesis, we adopt this search-by-example approach to sensors, i.e., a user provides a

sensor, respectively a fraction of its past output measurements as an example, and requests

sensors that produced similar output in the past. As the result, a list of sensors is returned

to the user, sorted in descending order of the values of a similarity score metric. A similarity

score value is computed using a similarity model. We call this the sensor similarity search

service. The set of search criteria, therefore, is defined as the past output measurements

2http://www.opengeospatial.org/standards/sensorml
3http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
4http://www.w3.org/RDF/
5www.tineye.com

Chapter 4. Searching The Real World Via The IoT 96

of the example sensor. This search service could be used for different purposes. Firstly,

it could be used to find places with similar physical properties (e.g., the above agriculture

scientist example). Secondly, it could be used to assist users with the formulation of a

metadata description of a newly deployed sensor. A user would deploy a new sensor and

then search for sensors with similar output, fetch the metadata of the found sensors, and

reuse appropriate fractions of the metadata for the new sensor.

The rest of this section is strutured as follow. In Sec. 4.2.2, we discuss related work. In

Sec. 4.2.3, we formulate the sensor similarity search problem. We then explain how the

architecture presented in Sec. 4.1.4.2 can be used for the sensor similarity search service in

Sec. 4.2.4. In Sec. 4.2.5, we explain how a similarity score is computed using the fuzzy set

approach. After that, we explain how a similarity model is constructed and how a research

problem related to it is addressed in Sec. 4.2.6 and Sec. 4.2.7. In Sec. 4.2.8, we present how

to reduce the size of a similarity model. In Sec. 4.2.9, evaluations of our proposed search

service are given. And finally, we conclude this section in Sec. 4.2.10.

4.2.2 Related Work

We put our work into the context of prior work that is concerned with search for sensors and

similarity of sensors. During discussion, we will point out why a particular related work is not

suitable for the sensor similarity search problem as it either violates a subset of assumptions

or does not meet a subset of requirements that are presented in Sec. 4.1.3.

4.2.2.1 Search based on Metadata

In the context of the IoT, a number of systems support search for sensors based on meta data

(i.e., textual annotations), for example Cosm, GSN, or Microsoft SensorMap. However, that

requires that each sensor has already been annotated with appropriate meta descriptions. In

[157], the authors propose a systematic design for a search application in the WoT. Their

design is based on clustering of sensors with similar semantic descriptions. Our work differs

as we are aiming at searching for sensors in the WoT that have produced similar output

measurements to the search criteria, i.e., the example time series of measurements.

4.2.2.2 Search based on Sensor Measurement

This type of search refers to the problem of finding a sensor that outputs a given value at

the time of a query and is investigated in [30] and [158]. The key idea is to exploit the

periodicities in sensor output (e.g., a meeting room is occupied every Monday from 8 to 10),

or correlations between sensors (e.g., parking spots close to the entrance of a building are

often all occupied, whereas spots further away are often free) to build prediction models that

predict which sensors would output the sought value at the time of the query. However, in

Chapter 4. Searching The Real World Via The IoT 97

this section we investigate the statistical similarity of sensors over a longer time window,

which is a fundamentally different problem.

4.2.2.3 Search based on Similarity of Data Streams

Computing a score that quantifies the similarity of two data streams is a fundamental problem

that has been studied in different contexts. In traditional multimedia systems, similarity of

audio data, images, and video streams is considered (e.g., [159], [160]). However, these

methods are often not tailored to typical sensor data we are interested in but multimedia

data such as audio and video. These solutions typically exceed the resources of low-power

sensor networks by far (R4).

Non-multimedia, general time-series data The authors in [161] address clustering

of data streams in general based on their similarity by developing an online version of the

K-means algorithm which involves discrete Fourier transform (DFT) and pairwise distance

computation of data streams on-the-fly. This technique is too resource-demanding for sensor

nodes, in particular with respect to computational overhead (R4).

Also based on DFT, [162] proposes to obtain and index the first few coefficients of the DFT

transform of every data stream of a database using R∗-trees. When a data stream is to be

sought, it needs to be DFT transformed, then the first few Fourier coefficients are used to

compute a distance to all indexed coefficients in the database. Those data streams in the

database whose computed distance is smaller than a user-defined threshold are considered

similar to the sought data stream. The DFT transformation, however, requires that data

streams are uniform, i.e., their data points are sampled at identical rates, which is impractical

in the sensor world as sensors usually have different sampling rates. Moreover, this work also

assumes that all data streams have the same length, i.e., the same number of data points,

which is not easy to achieve for sensor data streams (C4). The approach in [163] is close

to our work in the sense that it also supports similarity search for data streams of different

lengths. They propose to represent a data stream by a small set of rectangles in a feature

space, which then are indexed using R∗-trees to be used for future search. A rectangle is

the minimum bounding box of a set of points in the 2-dimensional plane that is formed by

taking the first 2 Fourier coefficients of the DFT transform of the data stream. Comparison

of two data streams means to compare their sets of representative rectangles. Again, DFT

is used here which is too heavy for sensor nodes (C3). Furthermore, approximation of data

using rectangles is rather crude as dissimilar sensor data streams might also be included in

the search result.

The work in [164] also investigates the notion of “user perceived similarity” between data

streams like we do, i.e., a broader notion of similarity which does not only include exact

Euclidean distance between two data streams, but also their scaling and shifting transfor-

mations. For example, the stock price data streams of two companies may have identical

Chapter 4. Searching The Real World Via The IoT 98

fluctuations, but one’s stock is worth twice as much as the other at all times; or the tem-

perature on two different days may start at different values but then gooes up and down in

exactly the same way. The authors propose that two data streams are similar if one can be

obtained from the other by means of affine transformations. This approach, however, cannot

handle the inherent small differences in sensor data, i.e., the slight differences between a pair

of sensor data streams, which is supported by our approach (C4).

Most of the above work assumes Euclidean distance as the underlying similarity measure. In

[165], a dynamic time warping (DTW) technique is used to measure the similarity between

two data streams. DTW, however, has complexity O(N×M), where N and M are the lengths

of two data streams, respectively. To narrow down the search space, the authors proposed a

filtering technique called “FastMap” that is based on DFT to map the data stream of interest

into a multi-dimensional space and use Euclidean distance to filter out those data streams

in the database whose indexed mapping (using FastMap) is dissimilar to that of the data

stream being sought. The remaining data streams are compared with the sought one using

the DTW technique. This approach is not suitable for sensor networks because it assumes

that all raw data streams are stored in a database, as well as extra storage is required for

FastMap filtering (due to C1). We, in contrast, do not assume that, and our approach has

only complexity O(N) with N being the length of the sensor data stream being sought (R6).

Sensor data In the domain of sensor networks, the work in [166] aims at identifying

similarities between data streams generated by neighbouring nodes in a sensor network so

that the streams can be aggregated to save bandwidth. A data stream is divided into multiple

chunks and these chunks are compared against the chunks of another data stream to find

similarities using the Jaccard similarity function. Our goal is, however, different as we do

not seek for similar parts of two data streams, but we want to determine if the two entire

streams are similar.

The authors in [29] cluster sensors based on the similarity of their data streams. Their

approach has a high memory footprint and communication overhead as all sensor measure-

ments need to be stored either at a central processing point or at sensors. Storing sensor

measurements at sensor nodes requires high memory capacity which is typically not possible

on sensor nodes (C3), while sending them over the wireless medium for storage at the central

processing point consumes a lot of communication bandwidth and energy (C1 and R1). We,

in contrast, only send sketches of data streams over the wireless medium, thus minimizing

communication overhead and energy consumption. Further, their approach also requires two

sensor data streams to have the same number of measurements which we do not assume in

our approach (C4).

The works in [27] and [28] explore secure pairing of devices if their sensors show similar output

data (e.g., two objects shaken together would experience similar acceleration patterns). The

technique used to compute similarity of sensor data streams is based on a coherence function

to measure the correlation in the frequency domain between data streams. This requires

Chapter 4. Searching The Real World Via The IoT 99

sensors to exchange raw data streams which is clearly not scalable to the magnitude of the

IoT (C5 and R5).

4.2.3 Problem Formulation

We introduce here formal models for the sensor similarity search problem. We model a sensor

S that monitors a physical entity (i.e., a physical object or process) by the function

S : T 7→ R (4.2)

where any t ∈ T denotes a point in time and S(t) ∈ R denotes the measurement of the sensor

at time t. The measurements of sensor S over time are represented by the time series

tsS = S(t1), S(t2), .., S(tn) (4.3)

where n ∈ N is the number of measurements, and ti < ti+1,∀i ∈ N.

We define a fuzzy set from a (long) time series tsS of S as a similarity model smS , that can

be computed directly by S and is given by:

smS : TS 7→ SM (4.4)

where TS = {ts} is the space of time series of sensors and SM = {sm} is the space of

similarity models of time series of sensors. With that, a similarity score between a time

series and a similarity model of a time series can be computed:

sc : TS × SM 7→ [0, 1] (4.5)

The higher the similarity score for the two time series, the more similar to each other the

two sensors are considered.

We define the set of already indexed sensors as

IS = {(smS1 , idS1), (smS2 , idS2), ...} (4.6)

where smSi is a similarity model of a time series obtained from sensor Si and idSi is the

unique identification of sensor Si.

With the above notation, we formulate the sensor similarity search problem as follows:

Given:

• The set of already annotated sensors IS

• An unannotated sensor V and its time series tsV

Chapter 4. Searching The Real World Via The IoT 100

GSS

crawls

Similarity Model Database

id1, sc1=0.9
id2, sc2=0.5

id3, sc3=0.7
id4, sc4=0.6

WoT

user

WSN

LSS

ts

ts

ts

final ranked list

partial ranked
list

partial ranked
lista similarity

model

id1, sc1=0.9
id3, sc3=0.7
id4, sc4=0.6
id2, sc2=0.5

a time series

example sensor

ts =

Figure 4.3: Sensor Similarity Search: Architecture.

Find: The list of similar sensors rl, which is defined as

rl = [(id1, sc1), (id2, sc2), ..., (idk, sck)] (4.7)

where k ∈ N is a user-defined parameter specifying the requested number of similar sensors,

idi are the identifications of the similar sensors from IS, and sci ∈ [0, 1] are similarity scores

indicating how well sensor Si matches sensor V . The result list rl shall be ranked by matching

score, that is, sci ≥ sci+1. In other words, the result list shall contain an entry (id, sc) if and

only if there exists an entry (sm, id) in IS such that sc = sc(tsV , sm) is among the k-highest

scores over all id.

4.2.4 Sensor Similarity Search Architecture

The generic architecture outlined in Sec. 4.1.4.2 can be used for the sensor similarity search

service with minor modification. As illustrated in Fig. 4.3, a fuzzy set of a sensor is used

as a similarity model for the sensor, a matching score for the sensor is used as a similarity

score (sc) for it, a time series of measurements (ts) obtained from a given example sensor is

used as the set of criteria, and the sketch database at each sensor gateway is implemented

as a similarity model database.

Chapter 4. Searching The Real World Via The IoT 101

11

10 20

15 25

10 20 10 20

21

δ(S,V) = (20-15) / (25-10) = 0.3 δ(S,V) = (20-11) / (21-10) = 0.8

S

V

S

V

Figure 4.4: The measurement range difference.

4.2.5 Similarity Score Computation

We use the reasoning in Ineq. (4.1) for computing a similarity score. Assuming that we have

two sensors S and V , and the similarity model smV is already constructed. Given a time

series tsS of S, the similarity score for S and V is computed as

sc(tsS , smV) = δ(S, V)
1

|tsS |
∑
x∈tsS

smV (x) (4.8)

We call δ(S, V) the range difference between two sensors S and V that is normalized to [0, 1]

and is given by

δ(S, V) =
min{qS3 , qV3 } −max{qS1 , qV1 }
max{qS3 , qV3 } −min{qS1 , qV1 }

(4.9)

where qS1 , qS3 ∈ tsS and qV1 , qV3 ∈ tsV are the first and third quartiles of the time series of

measurements of sensors S and V , respectively. The quartiles of a set of ordered values are

the three points that divide the set into four equal groups, each representing a fourth of the

population of the values.

Consider sensor S, to obtain the quartiles of the time series of measurements of S we first

sort the measurement values in decreasing order. The first quartile of tsS , denoted by qS1 , is

the maximum among the smallest 25% of measurements of tsS . The second quartile, or also

called median, is the value that cuts tsS in half, i.e., 50% of the measurements of tsS are

smaller than this value. The third quartile, denoted by qS3 , is the minimum among the largest

25% of measurements of tsS . The use of the quartiles makes sure that influence of outliers

is eliminated because outlier measurements would be located outside the interquartile range

[qS1 , qS3].

We call [qS1 , qS3] and [qV1 , qV3] the measurement ranges of sensor S and V . Fig. 4.4 shows

an example for measurement ranges of two sensors S and V . The small overlap in the left

between the two ranges implies a small δ(S, V), whereas the big overlap in the right implies

a big δ(S, V).

The aim of the range difference is two fold: (i) to quickly rule out sensors of different types

or sensors monitoring different physical entities because those sensors would produce very

different ranges of measurement values; and (ii) if there is no clear distinction between sensors

Chapter 4. Searching The Real World Via The IoT 102

L

H

L

H

16

29

sensor
measurement

time

Figure 4.5: Construction of a similarity model.

(types, or deployment contexts), then sensors that produce measurement values within the

same or very close ranges would have highest similarity scores. Thus, prior to examining

the structure of the measurement curve of sensors, a potentially large number of sensors are

already ruled out to narrow down the search space.

In summary, the similarity score is the higher, the more the measurement ranges overlap and

the more the measurements of sensor S belong to the similarity model defined by the output

of sensor V . Note that the similarity score of sensors with disjoint measurement ranges is

zero.

4.2.6 Similarity Model Construction

We elaborate here how a similarity model is constructed from a given time series of sensor

measurements. Consider Fig. 4.5. The left image shows the time series of measurements of

a temperature sensor S over a certain time period, i.e., tsS , and the graph in the right shows

the constructed similarity model smS , which is the membership function of a fuzzy set that

is defined by the measurements of S. We want to find a smS that best captures the shape

of the curve created by the series of measurements of the sensor over time.

We denote xSmin and xSmax ∈ tsS the minimum and maximum values among the measurements

of sensor S, respectively. Considering a real value rd ∈ (0,
xSmax−xSmin

2] and the interval ddx

= [x − rd, x + rd] ⊂ [xSmin, xSmax], we are interested in how many measurements x ∈ tsS

fall into [x− rd, x+ rd] over time because this captures the behaviour of the physical entity

that the sensor is measuring: “does temperature tend to be within the range ddx?”. Put

it another way, the density of the population of sensor measurements in ddx describes the

likelihood of temperature to be within ddx over time. By sliding ddx over [xSmin, xSmax] we

can calculate the likelihood for each temperature value x in the measurement range, and call

it the neighborhood density of x. smS(x) is then defined as this neighborhood density of

x ∈[xSmin, xSmax].

Chapter 4. Searching The Real World Via The IoT 103

V1

1 2 3 4 5

1

2

3
smV1

1 2 3

1
2

6 7 8 9

1 2 3 4 5

1

2

3

6 7

3
4

smV2

1 2 3

1
2
3
4

1 2 3 4 5

1

2

3

6 7

V2 V2

Figure 4.6: ”Jump” reordering of sensor measurements.

We evaluate the neighborhood density of sensor measurements within ddx around a mea-

surement x by calculating the distances between x and every sensor measurement y ∈ [xSmin,

xSmax], computing these distances’ weight as the exponential decay function (i.e., values with

larger distances have an exponentially smaller weight), and sum up the computed weights.

We then normalize the sum to [0, 1] by dividing it by the number of sensor measurements

|tsS |. Formally, the neighborhood density smS for a sensor measurement x is given by

smS(x) =
1

|tsS |

|tsS |∑
i=1

e
− |x−S(ti)|

rd (4.10)

Due to the exponential function, sensor measurements which are outside of [x−rd, x+rd] have

little influence on smS(x). The obtained fuzzy set therefore is FS = {(x, smS(x))|x ∈ tsS}.

For a visual explanation of the construction of a similarity model, consider Fig. 4.5 again,

which shows the neighborhood density function of the temperature sensor in the right. In

the right graph, the peak in region “H” results from a dense distribution of temperature

measurements within region “H” in the sensor data, while the low values in region “L” in

the right graph are explained by a sparse distribution of temperature measurements within

region “L” in the sensor data.

4.2.7 Injective Mapping Problem

Although the neighborhood density function in Eq. 4.10 is able to represent the series of

measurements of a sensor S over time by a compact similarity model (i.e., a fuzzy set), it does

not guarantee an injective mapping between the series of measurements and the computed

similarity model. This issue may lead to exceptional cases where two dissimilar sensors are

considered similar due to them having the same computed similarity model.

Chapter 4. Searching The Real World Via The IoT 104

V1

1 2 3 4 5

1

2

3
smV1

1 2 3

1

2

V2

1 2 3 4 5

1

2

3
smV2

1 2 3

1

2

Figure 4.7: Reordering by flipping the sensor measurement curve.

We observe that by reordering measurement values of a sensor on the time axis, one will

obtain the same similarity model. Some of these reorderings will probably not appear in

reality because the resulting measurement curve would have “jumps” which do not reflect

real-world phenomena as they are typically “smooth”, i.e., they do not suddenly change

from one state to another distant state but do gradually change between close states. For

example, the temperature within an office typically does not suddenly jump from 18 to

50 degree Celsius. Such “jumps” often indicate some fault (e.g., physical damage, battery

depletion, etc). Fig. 4.6 illustrates this effect where a reordering in the measurement values

of sensor V1 results in an identical similarity model to the computed similarity model of

sensor V2.

There are reorderings that preserve smoothness. Therefore, they may very well occur in

practice, e.g., by flipping the sensor measurement curve over a line parallel to the y-axis.

Fig. 4.7 illustrates this, where the measurement curves of sensor V1 and V2 look different

but one of them could be obtained by flipping the other over the line x = 3. The resulting

similarity models of the two sensors are identical.

However, reordering the measurement values of a time series on the time axis typically

changes the discrete derivative of the time series. Motivated by this fact, we propose to

incorporate information about the discrete derivative into the construction of the similarity

model to deal with the reordering effect.

We define

V ′(ti) =
V (ti+1)− V (ti)

ti+1 − ti
(4.11)

as the discrete derivative of V at ti. We then denote

tsV ′ = V ′(t1), V
′(t2), .., V

′(t|tsV ′ |−1) (4.12)

as the time series of discrete derivatives of a sensor V . The similarity model of the dis-

crete derivatives of V can be obtained using Eq. 4.10 and is denoted as smV ′ , thus the

corresponding fuzzy set of the discrete derivatives of V is VS′ = {(x′, smV ′(x
′))|x′ ∈ tsV ′}.

Chapter 4. Searching The Real World Via The IoT 105

We redefine the similarity score of the sensor S with respect to the sensor V in Eq. 4.8 as

sc(tsS , smV) = δ(S, V)
1

|tsS |

|tsS |∑
i=1

smV (S(ti))× smV ′(S
′(ti)) (4.13)

Eq. 4.13 says that the more the measurements and discrete derivatives of sensor S belong to

the fuzzy sets FV and FV ′ of sensor V , respectively, the higher is the similarity score. In the

language of fuzzy logic, this is equivalent to the “and”-operator [154]. Thus, our proposal

helps mitigate the reordering effect because of the following two reasons:

• For the same time series of measurements tsV , most of reorderings would generate

different discrete derivative, thus resulting in different derivative similarity models and

in different similarity scores.

• For two different time series of measurements tsV1 and tsV2 that have the same discrete

derivative, there is a very good chance that the resulting similarity models of the two

time series are different, thus resulting in different similarity scores from Eq. 4.13.

There is, however, an exceptional case in which Eq. 4.13 produces the same similarity score

even though the two time series of measurements as well as the two corresponding discrete

derivatives are different. Considering two sensors V1 and V2, this case happens if and only if

smV1 = smV ′2
and smV ′1

= smV2 due to commutative property of the multiplication in Eq.

4.13. In reality, however, it is extremely unlikely that both the two following cases happen

at the same time:

• tsV1 can be obtained from tsV ′2 by a form of reordering

• tsV ′1 can be obtained from tsV2 by a form of reordering

Thus, we have an effective heuristic approach for an injective mapping of sensor time series

to a pair of similarity models.

4.2.8 Similarity Model Approximation

Since the storage overhead for a similarity model of a sensor S is proportional to the size of

tsS , communication and storage for the similarity model may be expensive. We observe that

the curve of the similarity model function is typically smooth due to the exponential weight-

ing. Thus, we propose to represent this function by a set of line segments that approximate

its curve. As each line segment can be defined by two float values, the memory footprint is

small and typically in the order of few tens of bytes.

We use the similarity model function smS(x) for explanation. The illustration of our ap-

proach is given in Fig. 4.8, where in the left we have the similarity model whose linear

Chapter 4. Searching The Real World Via The IoT 106

dth

x

sm(x)

x

sm(x)

Figure 4.8: Approximation of a similarity model (sm).

approximation is shown in the right side of the figure. We first define a derivative threshold

dth, compute smS(x)’s first discrete derivative d1 at x1 (x1 is the second smallest value in

the measurement range of S), and mark the point A1 := (x1, smS(x1)). We then iterate over

points (xi, smS(xi)) on the curve and compute smS(x)’s first discrete derivative di, until

di − d1 > dth. We assign x2 := xi, A2 := (x2, smS(x2)), and store the line A1A2 as the ap-

proximation of smS(x) for the interval [x1, x2]. After that, we assign A1 := A2 and d1 := di,

and continue to iterate over points on the curve in the same fashion until we reach the point

(xSmax, smS(xSmax)). The resulting set of line segments is the desired approximation of smS .

4.2.9 Evaluation

In this subsection, we evaluate the performance of our sensor similarity search algorithm. As

a result for a search request (i.e., an example sensor), a list of sensors with their identifications

ranked by decreasing similarity score is obtained. Similar sensors should be ranked highly

(i.e., on top of the list), while dissimilar sensors should be ranked low (i.e., at the bottom of

the list). A list that has many similar sensors ranked on top is said to have a high degree of

accuracy.

In order to enable a quantitative evaluation, we manually group sensors based on their

location and name a group after each location. All sensors belonging to a group are manually

annotated with the location name of the group. For example, all temperature sensors in a

meeting room may thus form a group, and are annotated with “meeting-room”.

This way, we obtain groups of sensors G1, G2, We now pick a sensor S from a group Gi,

take a time series of it over a certain time window, and feed the time series to the sensor

similarity search algorithm. We would expect to receive a result list of sensors, where all

sensors belonging to Gi are ranked highest. However, the result may be imperfect, i.e.,

sensors from Gi might be ranked lower than sensors from other groups. Therefore, we need

a metric to quantify the accuracy of a rank list, which we describe next before we present

the evaluation setup and results.

Chapter 4. Searching The Real World Via The IoT 107

rl1 rl2 rl3 rl4

DOA=0 DOA=0.6DOA=0 DOA=0.63 DOA=1

Figure 4.9: Illustration of the doa metric.

4.2.9.1 Degree of Ranking Accuracy

Figure 4.9 shows possible rank lists obtained as a result when searching for a sensor S from

a group Gi. The check marks indicate matching sensors, i.e., sensors from the same group

Gi, while crosses indicate non-matching sensor from other groups. The best possible result

is list rl4 as all matching sensors are ranked highest. The worst result is list rl1.

We now define a metric that maps a rank list to a scaler value between 0 (worst result) and

1 (best result). For each matching sensor, we compute the ranking error, i.e., the number

of non-matching sensors ranked higher. We then compute the average ranking error of all

matching sensors, which equals 0 in the best case, and equals the number of non-matching

sensors in the worst case. To normalize to the range to the interval [0, 1], we devide by the

number of non-matching sensors. By subtracting the resulting value from 1, we obtain the

desired metric. Thus, we define the degree of ranking accuracy (doa) of a rank list rl as

follows:

doa(rl) = 1− 1

Crl(Nrl − Crl)
×

Nrl∑
i=1

erl(i) (4.14)

where Nrl is the length of rank list rl, Crl is the number of matching sensors in rl, and erl(i)

is the ranking error of a matching sensor at rank i, i.e., the number of non-matching sensors

ranking higher than i. If i is a non-matching sensor, then erl(i) := 0. Fig. 4.9 shows the

value of the metric for different rank lists.

4.2.9.2 Experiment Setup

We evaluate our sensor similarity search algorithm using simulation with realistic sensor

data. The advantage of using simulation is two-fold. First, we need to repeatedly run our

mechanism on the same set of sensor data to investigate the mechanism’s behavior and

Chapter 4. Searching The Real World Via The IoT 108

Figure 4.10: Grouping of sensors in the NOAA data set.

improvement. This is impossible in a real testbed as there are always variations between

two successive collections of sensor data. Second, the time needed to collect sufficiently large

amount of sensor data for testing is often too long, e.g., collecting 24 hours of temperature

data takes exactly 24 hours waiting time.

We develop a simulation tool in Java that is able to replay recorded measurements of multiple

sensors, execute search operations over these sensors, and compute the resulting ranking

accuracy according to the above metric.

We use three data sets with recorded sensor values from real-world deployments for the

evaluation. As described earlier, we group sensors in each of the data sets based on their

location, such that sensors in a group should observe similar (but not identical) output

measurements.

The first is the NOAA data set6 which contains the output of sensors monitoring ocean and

athmosphere (e.g., barometric pressure, wind speed, air temperature, conductivity, water

velocity) that are deployed along the coast lines of various places in North America. We

use 23 barometric-pressure sensors from this data set and group them into 5 groups, namely

Alaska (3 sensors), West-Coast, Great-Lakes, East-Coast, and Hawaii (5 sensors each) as

shown in Fig.4.10.

The second is the IntelLab data set7 which contains recorded measurements of 54 sensor

nodes equipped with four different sensors, namely temperature, light, battery voltage, and

humidity (i.e., 216 sensors in total). These sensors were deployed in the Intel Berkeley

Research Lab between February 28th and April 5th, 2004. We select a set of 12 humidity

sensors and group them into three groups, namely Lecture-Hall (4 sensors), Dining-Room (4

sensors), and Meeting-Room (4 sensors) as shown in Fig. 4.11.

6http://tidesandcurrents.noaa.gov/gmap3
7http://db.csail.mit.edu/labdata/labdata.html

Chapter 4. Searching The Real World Via The IoT 109

Figure 4.11: Grouping of sensors in the Intel Lab data set.

Figure 4.12: Grouping of sensors in the MavHome data set.

The third is the MavHome sensor data set8 that contains recorded measurements of sensors

monitoring daily living activities of people at home. The sensor types include light, humidity,

heat, and motion sensors. The data set was recorded from January 3 to February 2, 2005.

We select a set of 8 light sensors and group them into 2 groups based on their location:

“Living-Room” (5 sensors) and “Bedroom” (3 sensors) (see Fig.4.12).

To perform the evaluation, we sequentially pick one sensor after another from the selected

sets of sensors, take a time series from it over the time window of 24 hours, feed the time series

to the search algorithm, obtain a rank list, and compute the doa value. We call this series of

operations a search trial. For each sensor, we use the last 24 hours of measurements because

it is representative, since the sensor data tends to repeat every day. This, for example,

approximately equals 1500 data points in the IntelLab data set and 200 data points in the

NOAA data set.

Note that, as we outlined in Sec. 4.1.4, sensors are periodically crawled by the LSS component

to download their constructed fuzzy sets, which in this case are similarity models. Thus,

sensor similarity search algorithm should be evaluated over a certain period of time rather

than just once. We perform the evaluation described in the above paragraph for several

simulated days, during which new fuzzy sets are periodically updated once per day while

requests for similarity search arrive at the GSS component randomly at any time of a day.

8http://ailab.wsu.edu/mavhome/index.html

Chapter 4. Searching The Real World Via The IoT 110

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23

A
cc

ur
ac

y

Trial number i (i=1..23)

Figure 4.13: Average degree of accuracy (NOAA).

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

Trial number i (i=1..12)

A
cc
u
ra
cy

Figure 4.14: Average degree of accuracy (IntelLab).

1 2 3 4 5 6 7 8
0.9

1

A
cc

ur
ac

y

Trial number i (i = 1..8)

Figure 4.15: Average degree of accuracy (MavHome).

4.2.9.3 Numerical Results

Fig. 4.13, Fig. 4.14, and Fig. 4.15 show the resulting average doa values when searching for

each of the sensors in the NOAA, IntelLab, and MavHome data sets over the course of 20

days, respectively. Also, a box plot aggregating the results is shown next to each figure.

As observed in the figures, our sensor similarity search obtains a high degree of accuracy

as the average doa is above 0.97 for NOAA and MavHome data sets, and above 0.94 for

IntelLab data set. The boxplots show a stable performance of our approach with a small

inter-quartile range, i.e., 0.025 for the NOAA data set, 0.083 for the IntelLab data set, and

0.0 for the MavHome data set.

Chapter 4. Searching The Real World Via The IoT 111

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

Trial number i (i=1..12)

A
cc

ur
ac

y

Figure 4.16: IntelLab data set: Best case.

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

Trial number i (i=1..12)

A
cc

ur
ac

y

Figure 4.17: IntelLab data set: Worst case.

There are, however, a few outliers such as search trials number 22 and 23 in Fig.4.13, and

number 4 in Fig.4.14. The reason for this is that environmental conditions change over time,

and even though sensors in each group are deployed close to each other, they may experience

significant variations due to micro-climates (in the NOAA data set) or due to sensors being

close to the heating or air conditioner (in the IntelLab data set).

To further investigate how environmental conditions affect performance, worst case and best

case performance are included in Fig.4.16 and Fig.4.17 for the IntelLab data set. Our search

algorithm performs the best (100% accuracy) when there are clear climate differences among

the regions, and performs worst when (micro)climate conditions are similar among different

regions. For example, the Intel Lab is an indoor environment with no clear boundary between

regions, therefore humidity in the meeting room and the lecture hall is sometimes very similar,

thus causing a low degree of accuracy.

The light usage in a smart home, however, does not only depend on environmental conditions

but on habits of the people living in the house, which differs clearly between living room and

bedroom. This explains why evaluation of MavHome data set results in the highest accuracy

among the three data sets (see Fig.4.15).

Chapter 4. Searching The Real World Via The IoT 112

4.2.9.4 Performance and Scalability

We investigate the time needed to compute a matching score for a pair of sensors as this is

the fundamental operation performed by our sensor similarity search algorithm. We use the

approach in [167] to minimize the impact of garbage collection and just-in-time compilation

in the Java VM on computation time measurement.

For a matching score computation, we obtained an average computation time of 222µs for

the IntelLab data set, 28µs for NOAA, and 70µs for MavHome. The difference stems from

the fact that the number of measurements per day in NOAA (200) and MavHome (500) is

much smaller than for the IntelLab data set (1500). That is, we can compare against 4505 to

35714 sensors per second. The computer used in our experiment has an Intel Core i5 CPU

that runs at a clock rate of 2.4Ghz.

It is worth noting that, even though the number of measurements per day of NOAA and

MavHome sensors is much smaller than that of IntelLab sensors, the accuracy is high for all

three data sets as can be seen in Fig.4.13, Fig.4.14, and Fig.4.15. This can be exploited to

reduce the computation overhead by incrementally computing matching score of increasing

accuracy. As a search request arrives, we first compute an approximate matching score

according to Eq. 4.13 for a small subset of the measurements US of the given sensor, for

example, by only using every 10th sample from the time series. In a second pass, more

samples are added, say every 5th sample, and so on. This way, a first approximate search

result can be very quickly presented to the user which is continuously refined the longer the

user waits.

We applied this approach to the IntelLab data set by computing the matching score on a

subset of the date that contains only every 6th sample, (i.e., 250 data points per day). This

results in exactly the same doa as the doa obtained for the full set of 1500 data points per

day, but reduces the computation overhead to one sixth.

Finally, please note that similarity search can be efficiently parallelized on a cluster of com-

puters (as used by many Internet search companies) by partitioning the set of sensors, re-

spectively their indexed fuzzy sets, and distributing them to the computers in the cluster.

4.2.10 Conclusion

We identified that a fundamental service in the forming WoT is search for sensors. Instead

of relying on manual annotations (which are often incorrect, inconsistent, or incomplete), we

propose sensor similarity search service, where based on the past output of a sensor, sensors

with similar output are found. We designed an efficient mechanism to compute a similarity

score for a pair of sensors. All sensors compute similarity models that represent their past

output using only few tens of bytes. These similarity models are indexed in a database.

Given the output of another sensor, similarity scores are computed for each indexed sensor,

Chapter 4. Searching The Real World Via The IoT 113

sensors are ranked by this similarity score and returned to the user. Using sensor data from

three real-world deployments, we could show the high accuracy of our search algorithm.

4.3 Content-based Sensor Search in the WoT

In this section we propose, implement, and evaluate a sensor search algorithm for the IoT,

that addresses the content-based sensor search problem.

4.3.1 Motivation

With the formation of the WoT, we believe that another important functionality of a sensor

search service would be to allow the users to find real-world entities (i.e., physical objects and

places) that are currently exhibiting a certain state (e.g., the car driver example mentioned in

the beginning of this chapter, i.e., wheather a parking spot is “free” at the moment or not).

This means the search criteria should be defined based on the current output measurement

of sensors (which are embedded into real-world entities).

a

b

c

d

Figure 4.18: Direction measurements of a wind sensor.

However, sensor measurements usually fluctuate over time as the states of the monitored

physical processes change often quickly but marginally. Hence, searching for sensors with

a given single measurement value at an instant of time is of limited benefit. To illustrate

this, we take an example of a wind sensor (see Fig. 4.18) that is located on top of a hill to

measure the wind direction. Due to the nature of the wind, direction measurements may

change rapidly over time, making it hard to tell which direction the wind is blowing by just

considering the latest sensor measurement. However, if we consider sensor measurements

during the last 1 hour, statistics show that the wind has mainly blown towards the North as

measurements fell mostly within 80◦ and 100◦. Thus, a human would say that the wind has

been blowing north (for the past hour).

Inspired by this observation, we propose to search for sensors that have been producing sensor

measurements in a certain range of values for a certain amount of recent time. In particular,

Chapter 4. Searching The Real World Via The IoT 114

the majority of the sensor measurements in that time interval should fall into the desired

value range. A search query would then consist of a range of values and a recent time window.

We call this service the content-based search service.

There are, however, challenges to the contented-based search service. Firstly, sensor measure-

ments are very dynamic as the real-world states observed by the sensors change frequently.

This dynamicity makes current search algorithms designed for the traditional Web not suit-

able for the WoT, as they are usually designed for relatively static content and meta-data

tags of Web documents (e.g., Web pages, video and audio titles and tags, etc). Secondly,

the anticipated huge number of sensor nodes already connected, being connected, and to-be-

connected to the WoT [153] implies that a search service that needs to communicate with all

available sensors in the WoT when processing a user’s search query is impratical, due to the

tremendous communication overhead incurred. Thus, any search algorithm designed for the

content-based search service must be able to minimize the communication overhead, and at

the same time deal with the dynamicity of sensor measurements.

To reduce communication overhead, our approach is to only communicate with those sensors

that are likely to match the search query to verify if they actually match the query, and re-

turn the correctly verfied sensors to the user as the search result. To determine if sensors are

likely to match the query, we propose to construct a prediction model from past output mea-

surements of each sensor in the WoT (based on statistical properties of the measurements),

and index this model in a distributed database system in the Internet, that can be accessed

by the search algorithm with low overhead. These prediction models, in response to a search

query, will estimate the probability that a given sensor has recently been producing sensor

measurements that match the query. The search algorithm computes a list of sensors sorted

in descending order of these probabilities and contacts top-ranked sensors for query verifica-

tion until a sufficient number of matches has been found. Among the contacted sensors, only

those sensors, that are correctly verified, are returned to the user as a list of results. We call

such a list the rank list. This way we can drastically reduce not only communication, but

also time overhead to process the query.

To adapt to the frequent changes of sensor data, we propose to periodically construct a

new prediction model of an indexed sensor. The newly constructed prediction model is then

merged with the existing one in such a way that recent changes in sensor data are reflected,

and at the same time, the information from past sensor data is also preserved according to

a certain fading factor. We call this process the adaptation process.

The rest of this section is organized as follows. In Sec. 4.3.2, we discuss related work. The

content-based sensor search problem is formulated in Sec. 4.3.3. In Sec. 4.3.4, we explain how

the content-based sensor search service is fitted into the sensor search architecture outlined

in Sec. 4.1.4. In Sec. 4.3.5, we present in detail our solution to the content-based sensor

search problem. A thorough evaluation of the proposed solution is given in Sec. 4.3.6. And

finally, we conclude the section in Sec. 4.3.7.

Chapter 4. Searching The Real World Via The IoT 115

4.3.2 Related Work

Previous work in the literature that is related to our work mostly falls in two categories:

related work on time-series data forcasting and related work on sensor search. The former

category is considered because we also predict future data given past data. However, while

related work uses prediction models to forecast what value the data point at a future time

t would take, this value, e.g., v, is given in our work and prediction models are used to

estimate the probability of the data point at t being v. In the following, we present some

representative work on time-series data forecasting before discussing related work on sensor

search in the IoT.

4.3.2.1 Time-series Data Forecasting

Time-series data forecasting is a well-established research field, which has applications in

many domains such as financial data analysis or Internet traffic analysis. To forecast future

data, data mining techniques are usually used to extract features (e.g., statistical properties)

from training data sets, such that they can be used to build prediction models.

The work in [168] uses the LS-SVMs (Least Squares Support Vector Machines) method

within the Bayesian evidence framework [169] to extract from past data of financial time

series nonlinear prediction models. The goal of this work is to not only predict future

data points but also to calculate the error associated with them, such that people may make

optimal financial investments using the extracted models’ predictions and their potential risk.

In [170], a mechanism called ART (AutoRegressive Tree) models is proposed as prediction

models for a time series of data. An ART is a decision tree with an AR (AutoRegressive)

model at its leaves, is constructed over a training data set (i.e., past data of a time series),

and is refined (in terms of the tree’s structure and parameters) using a Bayesian technique.

A limitation of this work is that it does not support predicting data points at multiple

time-steps in the future, i.e., yt+n can only be predicted if y1, .., yt+n−1 are given. A neural

network based approach is proposed in [171], which uses a trained WP-MLP (Wavelet Packet

Multi-Layer Pceptron) neural network for prediction. The initial weights of the network are

generated using a clustering algorithm to reduce the training time that the network needs to

converge to a good solution (in comparison with a random assignment of the initial weights).

The authors in [172] follow a totally different approach. Instead of focusing on building a

specific prediction model, they select a set of already existing ones and combine them into a

“super” prediction model that has the best forecasting accuracy.

The common limitation of these approaches is that they require training the prediction mod-

els on sample data, which usually takes time and computational power. These approaches,

therefore, may not be suitable for predicting online and real-time sensor data due to time

constraint as well as for implemention on sensor nodes due to their constrained computa-

tional resources (see challenge C3). The work in [173] addresses this limitation by proposing

Chapter 4. Searching The Real World Via The IoT 116

3 different forecasting approaches. The first one approximates historical data of a time se-

ries using polynomial curves and use these curves to predict future data, which may not be

realistic as polynomial curves are a rather a crude approximation of reality. The second ap-

proach converts the historical data into DFT coefficients in the frequency domain, uses them

to extrapolate the DFT coefficients of future data points, and construct them using their

extrapolated DFT coefficients. Again, DFT may be too computation intensive for sensor

nodes. The third approach is probably the closest to our approach, since they also assume

that data appearing frequently in the past has a higher probability of occurring again in the

future. They divide a past time interval into time segments of the same length, calculate

the mean of data in each segment, and use these means for predicting the means of data in

future time segments. The future raw data, thus, cannot be predicted. Our approach, which

is based on fuzzy set, does not suffer from this problem.

4.3.2.2 Sensor Search in the IoT

Most of related work to the sensor search problem in the IoT has been discussed in Sec. 4.2.2,

in which we reviewed techniques for searching sensors based on their meta-data description

and based on the similarity between their output measurements.

Unfortunately, those techniques cannot be used to search for states of real-world entities e.g.,

“hot”, “empty”, which are dynamic and depend on the recent measurements of embedded

sensors. For example, we could find a “room” but cannot find a “room” that is currently

“empty”. The works in [30] and [158] address this issue by allowing a user to search for

sensors that output a given value at the query time. The key idea there is to exploit the

periodicities in sensor output (e.g., a meeting room is occupied every Monday from 8 to 10),

or correlations between sensors (e.g., parking spots close to the entrance of a building are

often all occupied, whereas spots further away are often free) to build prediction models that

predict which sensors would output the sought value at the time of the query.

These works, however, have limitations. Firstly, they assume that there is a class of sensors

that exhibits a high degree of periodicity (e.g., people-centric sensors) within a considered

time window. For example, the measurements of ocupancy sensors monitoring a lecture hall

exhibit a dominant periodic pattern of the lecture hall being “occupied” from Moday to

Friday and being “free” during the weekend. Secondly, the “sensor output value” consid-

ered is not a raw sensor value but a high-level state derived from raw sensor measurements

(e.g., “free” or “occupied” correspond to sensor measurements being lower or higher than a

certain threshold, respectively). This approach does not only require proper domain exper-

tise to derive those states from raw data, but also confines the search algorithm to specific

applications.

Chapter 4. Searching The Real World Via The IoT 117

Our content-based search service is different as we support search for raw sensor data which

requires no domain expertise and gives users the flexibility of defining their own application-

specific search. Furthermore, we make no specific assumption regarding periodicity in sensor

data beyond assuming that past output is statistically similar to future output.

4.3.3 Problem Formulation

We introduce here formal models for the content-based sensor search problem. To model a

sensor and its output measurements, we use the same modelling method as presented in Sec.

4.2.3, i.e., we model a sensor S that monitors a physical entity by the function

S : T 7→ R (4.15)

where any t ∈ T denotes a point in time and S(t) ∈ R denotes the measurement of the sensor

at time t. The measurements of sensor S over time are represented by the time series

tsS = S(t1), S(t2), .., S(tn) (4.16)

where n ∈ N is the number of measurements, and ti < ti+1,∀i ∈ N.

We model a user’s search query q that is submitted by the user at time tq ∈ T as the pair

q = ([a, b], h) (4.17)

where [a, b] ⊂ R, and h ∈ T. The query q means that the user wants to search for sensors in

the WoT that have been producing sensor measurements falling in the range [a, b] over the

time window [tq − h, tq]. We define Q = {q} as the space of possible user queries.

We define the prediction model that estimates the probability that sensor S is producing

sensor measurements that match a given query q as the function:

pmS : Q 7→ [0, 1] (4.18)

We call the estimated probability the prediction score of S for the query q and denote it as

pscqS . The higher the computed prediction score, the more likely S matches q.

We denote PM = {pm} the space of possible prediction models and TS = {ts} the space of

time series of sensors. A prediction model pmS for a sensor S is constructed from a (long)

time series tsS of S by the function

pmConstS : TS 7→ PM (4.19)

Chapter 4. Searching The Real World Via The IoT 118

We define the set of indexed sensors, i.e., those whose prediction models have been con-

structed and indexed in the database system, as

IS = {(idS1 , pmS1), (idS2 , pmS2), ...} (4.20)

where pmSi is a prediction model constructed from a time series obtained from sensor Si,

and idSi is a unique identification of sensor Si (e.g., an URI or a unique description of the

sensor).

With the above notation, we formulate the content-based sensor search problem as follows:

Given:

• The set of indexed sensors IS

• A search query q = ([a, b], h) at time tq

Find: The rank list of sensors that match q, which is defined as

rlq = [(id1, psc1), (id2, psc2), ..., (idk, psck)] (4.21)

where k ∈ N is a user-defined parameter specifying the requested number of matching sensors,

idi are the identifications of matching sensors from IS, and psci ∈ [0, 1] are prediction scores

indicating how well sensor idi matches the query q. The rank list rl shall be sorted by

prediction score, that is, psci ≥ psci+1. In other words, the rank list shall contain an entry

(id, psc) if and only if there exists an entry (id, pm) in IS such that psc = psc(pmS , q) is

among the k-highest prediction scores over all id.

4.3.4 Content-based Sensor Search Architecture

Our content-based sensor search service can be fitted into the generic sensor search archi-

tecture outlined in Sec. 4.1.4, with appropriate modifications and additions (see Fig.4.19).

In particular, a fuzzy set of a sensor S is used as a prediction model pmS , a matching score

for S is defined as the prediction score pscS , a search criterion is defined by a content-based

search query q = ([a, b], h), and the fuzzy set database at each sensor gateway is replaced by

a prediction model database.

After receiving all partial rank lists from LSS components, the GSS component merges the

partial lists together to form the final rank list that is sorted in descending order of the

computed prediction scores (see Eq. 4.21). The GSS component, then, processes the final

rank list from top to bottom to verify if sensors are actually matching query q. Verifying a

sensor is done by communicating with the sensor through the sensor gateways and asking if

the sensor has been producing measurements that fall in the range [a, b] over the time interval

h prior to the query submission time of q. The verification process stops when a k actual

Chapter 4. Searching The Real World Via The IoT 119

GSS

crawls

Prediction Model Database

q = ([a, b], h)

id1, psc1=0.9
id2, psc2=0.5 id3, psc3=0.7

id4, psc4=0.6

id1, psc1=0.9
id3, psc3=0.7
id4, psc4=0.6
id2, psc2=0.5

WoT

user

WSN

LSS

q

q

q

id1, psc1=0.9
id4, psc4=0.6
id2, psc2=0.5 sensor verification

id1, psc1=0.9
id3, psc3=0.7
id4, psc4=0.6
id2, psc2=0.5

final ranked list

X

correctly verified sensors

a prediction model

Figure 4.19: Content-based Sensor Search: Architecture.

matching sensors have been found. The GSS component presents these k matching sensors,

together with their prediction score, to the user as the search result, sorted in descending

order of the prediction scores.

4.3.5 Content-based Sensor Search

In this subsection, we present our content-based sensor search algorithm in detail, which

includes construction of a compact prediction model from a time series of sensor data, adap-

tation of a prediction model to changes in recent sensor data, and computation of prediction

scores for an indexed sensor given a search query.

Based on the key concept of fuzzy set theory that we presented in Sec. 4.1.4.1, we design

a prediction model called time-independent prediction model (TIPM), which consists of two

components, namely sensor measurement density and sensor measurement stability. We will

present TIPM in the following steps: (i) how it is constructed at sensor nodes; (ii) how

it is used to evaluate a search query; (iii) how it adapts to recent changes of the sensor’s

measurements at a LSS component; and (iv) how its size is reduced for efficient wireless

communication.

We are going to construct TIPM for a sensor using its past measurements. For the sake

of explanation, we consider a temperature sensor S monitoring a room, whose time series

of measurements over the time period [tc − w, tc] is tsS , where tc is the time at which the

model is constructed, and w is a given time window. We denote xSmin and xSmax ∈ tsS as the

minimum and maximum values among the measurements of sensor S over w, respectively.

Chapter 4. Searching The Real World Via The IoT 120

Figure 4.20: Histogram for temperature measurements.

4.3.5.1 Sensor Measurement Density

To estimate the probability that a given value is currently read by a sensor, a histogram

of the past sensor measurement distribution could be used. For example, by looking at the

histogram of measurements of a temperature sensor monitoring a room shown in Fig. 4.20-

right, we notice that the room temperature was mainly 20◦C during last 24 hours. Since we

are predicting if S is reading a value x, it can be assumed that the more times S read x in

the past, the higher the probability it is reading x at the current moment. Thus, a histogram

of every temperature readings of S in the last w time units helps predicting current readings

of S.

In reality, however, a simple histogram over sensor measurements is of limited benefit. The

reason is that sensor measurements are inherently imperfect (see C4 and R7) due to the

presence of jitter and noise. Moreover, we, as human beings, usually are not able to differ-

entiate between slight changes in the state of a physical entity. For example, temperature

values of 19.8◦ and 20.2◦ are, for many practical purposes, indistinguishable from 20◦C by a

human user (who is, for example, searching a well-tempered room).

Fig. 4.20 illustrates this limitation. In Fig. 4.20-left, the frequency of 18◦, 19.8◦, 20.2◦, and

22◦ are the same, which means all those temperature values would be predicted with the

same probability. However, if we group temperature measurements that are close to each

other and compute a histogram value for the group as in Fig. 4.20-right where 19.8◦ and

20.2◦ are grouped, we can say that a temperature value close to 20◦C is being read now

with high probability as the frequency of the small range around 20◦ is twice as high as the

frequency of the small ranges around 18◦ and 22◦.

Inspired by this observation, our approach is not to count the exact number of occurences

of distinct sensor measurements x, but to consider the density of sensor measurements sur-

rounding x. Considering a real value rd ∈ (0,
xSmax−xSmin

2] and the interval ddx = [x−rd, x+rd]

⊂ [xSmin, xSmax], the size of the population of sensor measurements in ddx is proportional to

the probability that x or sensor measurements y that are rd-close to x (i.e., |x− y| ≤ rd) will

Chapter 4. Searching The Real World Via The IoT 121

Figure 4.21: Stability illustration.

be read by S in the future. By sliding ddx over [xSmin, xSmax] we can calculate this density

for each sensor measurement x in the measurement range [xSmin, x
S
max].

In Sec. 4.2.6, we introduce a formula in the Eq. (4.10) to evaluate the neighborhood density of

sensor measurements within a given range of values. This formula could be used as a method

for computing our desired density, which we denote as mdwS (x) for a sensor measurement x,

and is given by

mdwS (x) =
1

|tsS |

|tsS |∑
i=1

e
− |x−S(ti)|

rd (4.22)

Due to the exponential function, sensor measurements which are outside of [x − rd, x + rd]

have little influence on mdwS (x). We call mdwS (x) the sensor measurement density function.

Note that, mdwS (x) is exactly the histogram value of x when rd = 0. However, as mentioned

above, rd should be greater than zero to reflect human perception as well as the jitter and

noise of raw sensor data.

4.3.5.2 Sensor Measurement Stability

As proposed in the beginning of this section and formulated in Sec. 4.3.3, we consider

search queries of the form q = ([a, b], h). This implies searching for sensors whose sensor

measurements fall “almost continuously” within [a, b] over the time interval [tq − h, tq].

The adverb “almost continuously” is a reflection of the human perception that a physical

entity is at a certain state, meaning it has been in that state for a certain period of time.

A change of the perceived state of the entity normally corresponds to a significant change

of measured sensor values from one range to another distinct or overlapping range. For

example, in Fig. 4.18, if you are standing at the northern part of the hill and feeling that

the wind blows towards you, that means the wind has been lately blowing north. In other

words, the wind sensor measurements continuously fall between 80◦ and 100◦ in the last 1

hour. Although you may notice there are points in time (a, b, c, d in Fig. 4.18) when the

wind did not blow north, “almost” all of the time during the last hour it did.

Considering our sensor S, we model a certain “perceived temperature” x of the room as the

range dsx = [x−rs, x+rs], where rs ∈ [0,
xSmax−xSmin

2]. We are interested in how continuous in

time are the temperature measurements that fall within [x− rs, x+ rs] during w. The closer

in time those measurements are sampled one after another, the more stable we consider that

Chapter 4. Searching The Real World Via The IoT 122

room temperature is at x during w. An illustration of stability is given in Fig. 4.21, where

the distribution of 5 sensor measurements in Fig. 4.21-right is considered more stable than

the distribution of other 5 sensor measurements in Fig. 4.21-left (sensor measurements fall

within dsx are depicted as filled circles, whereas ones do not are not filled).

To formally express stability, we denote the time series of temperature measurements that

fall in dsx during w as

tsxS = S(t1), S(t2), ..., S(tn)|S(tj) ∈ tsS , j = 1..n (4.23)

where n = |tsxS | is the number of temperature measurements found between [x− rs, x+ rs],

tj is the time at which S(tj) was sampled. Note that the set of {tj} is a subset of the set of

time stamps {ti|i = 1..|tsS |}, and we assume that ∀j, tj < tj+1.

We compute the stability mswS of sensor measurements around x during w by summing up the

exponentially weighted distances of adjacent timestamps tj and tj+1 (i.e., larger distances

have an exponentially smaller weight). This way, distributions like the one given in Fig.

4.21-right result in a much larger stability value than the one in Fig. 4.21-left, due to the

exponential weighting. We then normalize the sum to [0, 1] by dividing it by the number of

evaluated distances. Formally we obtain

mswS (x) =
1

n− 1

n−1∑
j=1

e
−

tj+1−tj
tn−t1 (4.24)

By sliding dsx over [xSmin, x
S
max], we can calculate a stability value for every sensor measure-

ment x ∈ [xSmin, x
S
max]. We call mswS (x) the sensor measurement stability function.

4.3.5.3 Constructing TIPM

Our prediction model is based on the density and stability of sensor values as introduced

above. In particular, the higher the product of the density and stability values of x, the

greater the probability that S is currently reading x. Formally, we obtain the prediction

model function pmw
S (x) for the time series tsS during w:

pmw
S (x) = mdwS (x)×mswS (x) (4.25)

With this TIPM defined, if we search for sensors that are reading x, those sensors S that have

highest values of pmw
S (x) will be ranked highest. If we search for sensors that are reading

either x or y, those S that have highest values of pmw
S (x)+pmw

S (y) will be ranked highest. In

general, if we search for sensors reading a value in the range [a, b], those S that have highest

Chapter 4. Searching The Real World Via The IoT 123

x x

10 3022 36 10 36

md(x) md(x)

old new adapted

Figure 4.22: TIPM Adaptation.

values of ∑
x∈[a,b]

pmw
S (x) (4.26)

will be ranked highest. To avoid performing this summation for each query, we precompute

and store the cummulative distribution function of pmw
S (x):

cdfpmw
S (x) =

∑
xSmin≤y≤x

pmw
S (y) (4.27)

4.3.5.4 Query Resolution

When a search query q = ([a, b], h) is submitted by a user, a rank list that contains matching

sensors is presented to the user. This implies two actions: (1) a prediction score is computed

for each indexed sensor; and (2) highly ranked sensors are contacted to verify if they actually

match q. Action (2) is executed by the GSS component once the final rank list is completed.

Action (1) is performed at LSS components using indexed prediction models. We present in

the following how a prediction score is computed using TIPM.

Once the search query is directed to a LSS component, all indexed sensors V with xVmax <

a < b and a < b < xVmin are ruled out to narrow down the search space. For the remaining

sensors, we calculate for each sensor V its prediction score as the sum of the estimated

probabilities for every x ∈ [a, b] that x is being read at the query time. Since we already

have the precomputed distribution function (Eq. 4.27), the prediction score pscqV is obtained

by simply substracting the values of the cummulative fuction for b and a, and normalizing

the value to the range [0, 1] by dividing it by the total cummulative probability of V :

pscqV =
cdfpmw

V (b)− cdfpmw
V (a)

cdfpmw
V (xVmax)− cdfpmw

V (xVmin)
(4.28)

4.3.5.5 TIPM Adaptation

With requirement R2 we specified that the prediction model of an indexed sensor should be

regularly updated to reflect significant changes in the sensor’s ouput. However, as we are

using past information of the monitored physical entity to predict its future behaviour, it is

Chapter 4. Searching The Real World Via The IoT 124

desired that this information is not totally discarded, but gradually fades away as time goes

by. If we look at Eq. 4.22 and Eq. 4.24 again, we can see that the density and stability

functions are additively constructed over the sensor’s measurement range. Thus, we employ

the exponentially weighted moving average technique to implement the adaptation process.

A function is adapted by combining the old and the new versions of the function over the

union of the two measurement ranges. Formally we have

mdwS (x) = (1− α)×mdwS (x)old + α×mdwS (x)new (4.29)

and

mswS (x) = (1− α)×mswS (x)old + α×mswS (x)new (4.30)

where the old and new indicators represent old and new density and stability functions

of sensor S, respectively. The factor α is a fading factor assigned to the old and new

functions of S’s prediction model. Through α we can control how “important” are the recent

measurements of sensor S in comparison with S’s measurements in the more distant past.

As time goes by, the resulting union of measurement ranges describes the value domain

whereas the adapted function predicts the sensor output. For example, in Fig. 4.22, the

combined value domain of the density function of the sensor in consideration is [10, 36],

which is the union of the two value domains [10, 30] and [22, 36].

4.3.5.6 TIPM Size Reduction

Similar to reducing the storage overhead for a similarity model in Sec. 4.2.8, the storage

overhead for TIPM can be greatly reduced by representing it as a set of line segments that

approximate it. This is possible due to the observation that the curves of the component

functions (i.e., density and stability) of TIPM are typically smooth due to the exponential

weighting. Thus, we apply the same approximation process as presented in Sec. 4.2.8

to the density and stability functions, and perform Eq. 4.25 and Eq. 4.27 based on the

approximated ones.

4.3.6 Evaluation

In this subsection we evaluate the performance of our content-based sensor search algorithm

using simulation. We implement a simulation tool using Java that is able to replay recorded

measurements of multiple sensors, execute search operations over these sensors, and compute

the communication overhead incurred by the resulted rank list. Note that the search results

presented to the user are always accurate, as the search algorithm verifies that sensors actually

match the search query. Therefore, the rank list only influences the communication overhead

but not the accuracy.

Chapter 4. Searching The Real World Via The IoT 125

Figure 4.23: Communication overhead of a rank list.

4.3.6.1 Communication Overhead of a Rank List

To be able to assess the performance of our search algorithm, we need to define a method to

measure the communication overhead incurred by the final rank list frlq that is computed by

the search algorithm based on a search query q = ([a, b], h). In order to present the user the

search result (see Eq. 4.21), the search algorithm has to process frlq from top to bottom to

find the top k-matching sensors (see Sec. 4.3.3). A sensor is matching the search query if its

sensor measurements actually fell in the value range [a, b] during the time interval [tq−h, tq],
else the sensor does not match.

Since sensor verification requires communication between the global search component and

the sensor nodes, the optimal rank list would have all matching sensors ranked on top, thus

minimizing communication overhead. Fig. 4.23 shows possible rank lists obtained after q

is evaluated. The character “C” indicates matching sensors, while character “X” indicates

non-matching ones. The best possible result is list frl1 as all matching sensors are ranked

highest. The worst result is list frl3.

We now define a metric that maps a rank list to a scalar value between 0 (best result) and

1 (worst result). For each matching sensor, we compute the ranking error, i.e., the number

of non-matching sensors ranked higher. We then compute the average ranking error of all

matching sensors, which equals 0 in the best case, and equals the number of non-matching

sensors in the worst case. To normalize to the interval [0, 1], we devide by the number

of non-matching sensors. The resulting value is the desired metric. Thus, we define the

communication overhead (co) incurred by a rank list rl as follows:

co(rlq) =
1

m(rlq) [|rl| −m(rlq)]
×
|rl|∑
i=1

erlq(i) (4.31)

where |rlq| is the length of rank list rlq, m(rlq) is the number of matching sensors in rlq, and

erlq(i) is the ranking error of a matching sensor at rank i, i.e., the number of non-matching

sensors ranking higher than i. If i is a non-matching sensor, then erlq(i) := 0. Fig. 4.23

shows the value of the metric for different rank lists.

Chapter 4. Searching The Real World Via The IoT 126

4.3.6.2 Simulation Setup

We use three sensor data sets that were mentioned in Sec. 4.2.9 for our evaluation, namely

IntelLab, NOAA, and MavHome data sets. For each data set, we select the size of the

periodical time window w for constructing the fuzzy-based prediction model function to be

24 hours. This is a natural choice as the stae of physical entities tends to repeat day after

day. We simulate the process of a human posing search queries by a Poisson process with

λ = 144 over 24 hours (i.e., on average 1 query each 10 minutes).

When there is a query q = ([a, b], h), the range [a, b] is randomized within [A,B] where

A and B are the minimum and maximum values of the sensor readings of all sensors in

the data set, respectively. The time interval h is fixed and smaller than w. The query

time tq is randomized between [0, w]. For each search query, we obtain a rank list whose

communication overhead is determined by Eq. 4.31. The average of the communication

overhead of all queries posed within a day, i.e., 24 hours, is used as the communication

overhead of our search algorithm during that day. At the end of each simulated day, sensors

compute the density and stability functions of their prediction model and send them to the

gateway for adaptation and indexing. The simulation is run until one of the sensors of the

data set has reached its last measurement. We repeat the simulation for 100 times and

compute the average as well as the standard deviation of the communication overhead of our

search algorithm.

We perform evaluation on 4 search spaces. The first is a set of 59 sensors of type humidity

and temperature from the IntelLab data set. The second is a set of 80 sensors of types air

temperature and water temperature from the NOAA data set. The third is a set of 23 sensors

of types light, humidity, heat from the MavHome data set. And the last search space is the

combination of the three search spaces. Evaluation on this combined search space gives us

an idea of how our search algorithm would perform in real life where sensors have different

types and diverse deployment contexts.

4.3.6.3 Tuning Parameters

There are several tunable parameters in the design of our content-based sensor search algo-

rithm. By performing extensive evaluations with different values of the parameters we could

experimentally gain more insight regarding the behaviour of the search algorithm. In the

following, we briefly discuss these parameters, and in the next sub-section we will present

numerical results obtained by varying the values of these parameters.

• The fading factor α is used to control the importance that we assign to recent sensor

data with respect to the data from the more distant past. We conducted evaluations

with varying values of α to investigate the effect of this parameter on the average

communication overhead.

Chapter 4. Searching The Real World Via The IoT 127

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
o

m
m

.
O

v
e

rh
e

a
d

Simulated Day

Figure 4.24: IntelLab: Communication overhead with α = 0.3.

• The time interval h controls how long in the past from the query time backward we

use sensor data for verifying if a sensor is matching the search query. We expect that

the greater the value of h the lower the average communication overhead would be.

• As the result for a search query q, we receive a rank list rlq sorted by prediction

scores psc (see Eq. 4.28). We denote pscmin as the minimum psc of all sensors in

rlq. We would expect that the larger the number of sensors available in the IoT, the

more likely sensors exist that match a query, and the more likely we obtain a rank

list with a large pscmin value. However, in our experiments we only have a limited

number of sensors (162 sensors). To get a feeling of how the TIPM would perform

with a larger number of sensors (and thus with a higher pscmin), we also evaluate

the communication overhead of those rlq whose pscmin is greater than a threshold

value. We performed evaluations with different threshold values and found that average

communication overhead decreases when we increase the threshold value.

4.3.6.4 Numerical Results

In the following, we discuss in detail the evaluation results of all search spaces (the combined

one also included) with 2 different values of α, namely 0.3, 0.8, to investigate its effect on

the average communication overhead (ACO). Other tunable parameters are fixed, i.e., h=60

minutes and pscmin=0. Other values of these parameters will be presented and discussed

later, for the combined data set.

Fig. 4.24 and Fig. 4.25 are evaluation results for the search space from IntelLab data set.

We can see the common trend that the ACO decreases over time, which reflects the effect of

our adaptation process. ACO on day 1 is around 0.35 and is much improved from day 2 to

day 19 to be around 0.23 on average. A closer look at the figures reveals that α = 0.3 results

Chapter 4. Searching The Real World Via The IoT 128

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
o

m
m

.
O

v
e

rh
e

a
d

Simulated Day

Figure 4.25: IntelLab: Communication overhead with α = 0.8.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
o

m
m

.
O

v
e

rh
e

a
d

Simulated Day

Figure 4.26: NOAA: Communication overhead with α = 0.3.

in lower overall ACO than does α = 0.8. This confirms our approach that not only recent

historical sensor data but also data from the more distant past should be used for prediction

(via the adaptation process).

Fig. 4.26 and Fig. 4.27 are evaluation results for the search space from NOAA data set.

Similar to the IntelLab data set, we also observe here the trend of decreasing ACO over

time. The ACO from day 14 onward is smaller than 0.1, which is very accurate. Also, we

can see that α = 0.3 results in a slightly smaller overall ACO than does α = 0.8. So the

same conclusion that sensor data from the more distant past should be used for prediction

can again be drawn for the NOAA data set.

Similar observations are found for the search space from MavPad data set in Fig. 4.28 and

Fig. 4.29, and for the combined search space in Fig. 4.30 and Fig. 4.31. That is, the ACO

Chapter 4. Searching The Real World Via The IoT 129

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
o

m
m

.
O

v
e

rh
e

a
d

Simulated Day

Figure 4.27: NOAA: Communication overhead with α = 0.8.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

C
o

m
m

.
O

v
e

rh
e

a
d

Simulated Day

Figure 4.28: MavPad: Communication overhead with α = 0.3.

decreases over time and α = 0.3 results in a better overall ACO than does α = 0.8.

With a general look at all results of the 4 search spaces, we notice the ACO decreases in

order of MavPad, IntelLab, combined, and NOAA data sets. The reason is, probably, the

nature of sensor data in different data sets. For example, the Intel Lab is a small, closed,

and mostly static environment, so we expect a low level of heterogeneity among the time

series of sensors of the same type in the IntelLab data set. In contrast, sensors of the NOAA

data set are spread over a large geographical area along the coast line in the northern part

of America. Therefore, weather sensors of the same type in the NOAA data set experience a

high level of heterogeneity in their time series. Thus, we expect that searching in the NOAA

data set would result in rank lists containing sensors with high psc value. Fig. 4.32 illustrates

the low level of heterogeneity in the time series of 2 humidity sensors in the IntelLab data

Chapter 4. Searching The Real World Via The IoT 130

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

C
o

m
m

.
O

v
e

rh
e

a
d

Simulated Day

Figure 4.29: MavPad: Communication overhead with α = 0.8.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
o

m
m

.
O

v
e

rh
e

a
d

Simulated Day

Figure 4.30: Combined: Communication overhead with α = 0.3, h = 60, and pscmin = 0.

set while the opposite is observed in the time series of 2 air temperature sensors from the

NOAA data set.

Besides α, the evaluation results also confirm our predictions on other tunable parameters.

In particular, ACO decreases when increasing h and pscmin. For example, a comparison

between h = 60 and h = 120 (α=0.3, pscmin=0) is presented in Fig. 4.30 and Fig. 4.33,

where we can see a small improvement of ACO from h = 60 to h = 120.

Fig. 4.30, Fig. 4.34, and Fig. 4.35 show how accurate were the prediction models constructed

during the simulation in terms of ACO. The evaluation was performed on the combined data

set. We see that the ACO decreases when we increase the threshold value for pscmin, i.e.,

pscmin=0, pscmin=0.2, and pscmin=0.5, which confirms the accuracy of the proposed TIPM.

This hints that the communication overhead decreases as the number of sensors in the IoT

Chapter 4. Searching The Real World Via The IoT 131

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
o

m
m

.
O

v
e

rh
e

a
d

Simulated Day

Figure 4.31: Combined: Communication overhead with α = 0.8.

Figure 4.32: Heterogeneity VS. homogeneity in time series of sensors in different data sets.

increases. The reason is that in a real IoT, sensors usually have highly different types and

diverse deployment contexts, thus resulting in highly heterogenous time series of sensor data.

Therefore, the probability to obtain rank lists with small pscmin decreases with increasing

number of sensors.

4.3.7 Conclusion

We proposed the content-based sensor search service for finding sensors in the WoT based

on their current raw output, and developed a search algorithm for it. The novelty of our

search algorithm lies in supporting search based on raw sensor data which requires no domain

Chapter 4. Searching The Real World Via The IoT 132

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
o

m
m

.
O

v
e

rh
e

a
d

Simulated Day

Figure 4.33: Combined data set: h = 120.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
o

m
m

.
O

v
e

rh
e

a
d

Simulated Day

Figure 4.34: Combined Data Set: pscmin = 0.2.

expertise for deriving high-level states from raw sensor data and gives users the flexibility of

defining their own application-specific search. The proposed hierachical architecture scales

well with the number of sensors in the IoT as computations and storage are distributed over

multiple sensor gateways. Moreover, since only compact prediction models are periodically

downloaded from sensor nodes, wireless communication is minimized which is crucial for

maximizing life time of battery-powered sensor nodes. The adaptation process that is per-

formed for each periodical download of a prediction model helps our service to deal with the

dynamicity of the states of the real world. At the same time, the fuzzy approach addresses

the imperfections of sensor data obtained from low-cost sensor hardware. We performed

an extensive evaluation of our search algorithm on a number of different data sets obtained

from real-world deployments, and showed that the search result is accurate and therefore the

search algorithm has low communication overhead.

Chapter 4. Searching The Real World Via The IoT 133

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
o

m
m

.
O

v
e

rh
e

a
d

Simulated Day

Figure 4.35: Combined Data Set: pscmin = 0.5.

4.4 Summary

In this chapter, we have discussed the need for sensor search in the WoT and proposed two

novel sensor search services for the WoT. Firstly, the sensor similarity search service enables

users to find sensors in the WoT whose output measurements are similar to the measurements

of an example sensor. Secondly, given a search query that is composed of a range of sensor

values and a time interval, the content-based sensor search service returns sensors that have

been reading values in the given value range during the given time interval prior to the

query submission time. We identified a set of challenges and derive the requirements that

sensor search services and algorithms for the WoT should meet, and proposed a generic

scalable architecture and an approach for both the services. For each sensor search service,

we designed a sensor search algorithm, implemented, and evaluated it. Despite the severly

constrained resources of embedded sensor nodes in the IoT, where wireless communication

must be minimized and computational and storage capacities are several orders of magnitude

more constrained than those of general purpose computers, our proposed algorithms offer

scalable search and address the imperfection of sensor data obtained from low-cost platforms.

Chapter 5

A Prototypical Sensor Search

Engine

In this chapter we present a prototypical sensor search engine to demonstrate the practical

feasibility and usability of the sensor search services and algorithms that we proposed and

developed in Chapter 4. The search engine supports searching the Web for sensors that are

connected to and publishing their data on Xively1, a cloud-based platform for deploying IoT

devices and building IoT applications on top of them. Via a proper graphical user interface

(GUI), users can find sensors that are similar to an example sensor (i.e., sensor similarity

search service), or users can find sensors with certain properties (i.e., content-based sensor

search service).

The structure of this chapter is as follows. In Sec. 5.1 and Sec. 5.2 we present the software

architecture of the search engine and its implementation. In Sec. 5.3, we describe the GUI

of our search engine. In Sec. 5.4, we present several demonstrations for the sensor search

services. Finally, Sec. 5.6 concludes this chapter.

5.1 Software Architecture

The software architecture of our sensor search engine is given in Fig. 5.1 which consists of

the Global Sensor Search (GSS), multiple Local Sensor Search (LSS) and multiple Search

Clients (SC) that are distributed across the Internet. Each LSS registers with the GSS and

is responsible for searching multiple Sensor Data Sources (SDS).

Inside an LSS, there are multiple Crawlers each of which is responsible for an SDS. Peri-

odically, a Crawler requests its SDS to discover new sensors, download sensor data or fuzzy

sets (i.e., similarity and prediction models) for both new and already indexed sensors, con-

struct fuzzy sets from sensor data if required, index, and update the fuzzy sets in the Fuzzy

1https://xively.com/

135

Chapter 5. A Prototypical Sensor Search Engine 136

Search Client

Sketch Database

Cayenne

Xively
(SDS)

Global Sensor Search

S
I
M
O
N

SIMON

Query ResolverCrawler Crawler...

Other
SDSes

Local Sensor Search

Figure 5.1: Prototypical search engine: Software architecture.

Set Database (FSDB). The Query Resolver is responsible for resolving search queries (in-

cluding both sensor similarity search and content-based sensor search), building partial rank

lists, and verifying if sensors from the SDSes actually match search queries as requested by

the GSS. The FSDB is responsible for organizing storage and access to data generated by

Crawlers.

The SC provides the user with a graphical user interface (GUI) for creating search queries

for both sensor similarity search and content-based sensor search services and for presenting

the user the search results.

The GSS is responsible for accepting search queries from an SC, forwarding them to LSSes,

merging partial rank lists sent by LSSes, requesting LSSes for sensor verification if needed,

and forwading the final search result to the SC.

5.2 Software Implementation

We implemented our sensor search engine using the Java programming language. In our

current implementation, all components reside at and run on the same computer with an

Intel Core i5 CPU clocked at 2.4 Ghz. However, they can be as well placed on different

computers across the Internet by simply modifying a config file without touching the code.

At a high level, the implementation of the sensor search engine consists of 6 interdependent

units corresponding to 6 separate Java projects. The searchenginelib project implements the

Chapter 5. A Prototypical Sensor Search Engine 137

QuerySearchByExampleQuerySearchByRange

SASAAlgorithmCSSAlgorithm IClientIServer

SearchEngineServer

1

TPair

* *

0..*

TPairArray

Config SessionServer

SimilarityModelConstruction

PredictionModelConstruction

IDataWriter IDataReader

DatabaseSQLWrapper

lssserver searchenginelib

serverlib

SimilarityModelGenerator

PredictionModelGenerator

0..*

crawlerlib

clientgssserver

Indexer

LSSConnectionManager ClientRequestHandler Requester

0..*

1

*

*

0..1

0..*

0..1

0..1

0..*

1 1

GSSRegister

1Crawler 1

0..1

Figure 5.2: Protypical sensor search engine: UML class diagram

most essential functions for use by all other units, which include sensor data manipulation,

client/server interfacing, client/server connection management, and system configuration.

The serverlib project implements the basic functions such as similarity model construction,

prediction model construction, and database organization and access, which are used by

the Crawler and Query Resolver components. The crawlerlib project implements the func-

tions for use by a Crawler including interfacing with the SDSes, sensor discovery, sensor

indexing and caching, and sensor data downloading. The lssserver project implements the

main function of the Query Resolver component (i.e., resolving sensor search queries), and

other functions of the LSS component such as LSS registration. The gssserver project im-

plements the GSS component and its functions. Finally, the client project implements the

SC component, which includes a GUI and the communication between the SC and the GSS

components.

The most important Java classes of these Java projects and the relationships between these

classes can be described by the UML class diagram given in Fig. 5.2. In this figure, a Java

Chapter 5. A Prototypical Sensor Search Engine 138

project is represented as a solid rectangle whose caption is the project’s name, and the most

important classes of the project is drawn within its representation rectangle.

In the searchenginelib project, a data point is defined by the class TPair which represents

a pair of real values. A time series of sensor data is defined by the class TPairArray whose

instances are basically an ArrayList of instances of TPair. The manipulation of sensor data

is implemented within this class. While the two Java interfaces IClient and IServer define

the necessary methods for a client/server communication session, the SessionServer class

is responsible for managing multiple and simultaneous client/server communication sessions.

The Config class defines how the sensor search engine can be configured.

In the serverlib project, the two interfaces IDataWriter and IDataReader define the nec-

essary methods for database access (e.g., writing and reading fuzzy sets to and from the

database). The DatabaseSQLWrapper class implements these two interfaces for the MySQL

database engine. The two classes SimilarityModelConstruction and PredictionModelConstruction

are responsible for constructing a similarity model and a prediction model from sensor data

(i.e., a TPairArray object), respectively.

In the lssserver project, the SearchEngineServer class implements the IServer inter-

face and is responsible for accepting requests from the GSS component, including sensor

similarity search (SSS) and content-based sensor search (CSS) requests. The two classes

QuerySearchByExample and QuerySearchByRange are two managers for a pool of ob-

jects of the two classes SASAAlgorithm and CSSAlgorithm, which implement the sensor

lookup algorithms for the SSS and CSS services, respectively. These two classes interact with

the database via the DatabaseSQLWrapper class. The GSSRegister class implements the

IClient interface so that it can register the LSS with the GSS by sending a register request

to the ClientRequestHandler class.

In the crawlerlib project, the Crawler class implements the IServer interface and is respon-

sible for accepting requests for downloading sensor data from an SDS well as communicating

with the SDS. The Indexer class implements the IClient interface so that it can request

a Crawler for sensor data, generate similarity models (via the SimilarityModelGenerator)

and prediction models (via the PredictionModelGenerator) from sensor data provided by

the Crawler class, and indexing them into the FSDB via the DatabaseSQLWrapper class.

In the gssserver project, the LSSConnectionManager class manages all LSSes that are

registered with it, distributes requests from the SC component to the registered LSSes, and

sends requests for sensor verification to the registered LSSes. The ClientRequestHandler

class implements the IServer interface and is responsible for accepting search requests from

and returning search results to the SC component. It also accepts other types of request

such as LSS registration.

In the client project, the Requester class implements the IClient interface and is responsible

for sending search requests to the GSS component.

Chapter 5. A Prototypical Sensor Search Engine 139

Note that, in the current implementation of our sensor search engine, we use several specific

tools including SIMON for the communication among the GSS, LSS, and SC components,

Cayenne for managing database access, and Xively as an SDS. However, while our sensor

search engine works well with these tools, it is not limited to them as it will also work with

any other set of tools that provide the same functionalities. In the following subsections we

will explain these tools.

5.2.1 Xively

Xively is an IoT-focused cloud service that allows users to connect sensors to and publish

sensor measurements on the Web, and to build their own IoT applications by mashing up

these sensors, sensor measurements, and Web data and services, using the Xively API2.

Currently, Xively already connects about 250 million sensors and has about 17 million users.

Xively corresponds to the local WSNs in Fig. 4.2.

The base URL of the Xively API is https://api.xively.com, from which it is possible to

securely read & write sensor data, read & write metadata, and read historical sensor data

using HTTP methods such as GET, PUT, and POST. In Xively’s terms, a Feed is an access

point to multiple sensors, their associated metadata, and their time series of measurements.

A time series of sensor measurements is represented as a Datastream. A Feed is usually a

group of related sensors according to certain criteria, e.g., sensors owned by the same person

or sensors deployed in the same location.

To get an idea of how the Xively API functions look like, we present in the following an

example Xively API call to read a snapshot of a single Feed at the current time, i.e.,

the current sensor data value of each Datastream and the Feed’s metadata. The snap-

shot can be returned in JSON, XML, or CSV format. The Xively API call for JSON is

https://api.xively.com/v2/feeds/FEED ID.json, where FEED ID is the unique identification

of a Feed. In response to this call, the Xively server sends the 200 OK status code and a

JSON body along with it, which looks like the code snippet below.

{
” id ” : 121180 ,

” t i t l e ” : ”Example” ,

” p r i v a t e ” : ” f a l s e ” ,

” f e ed ” : ” https : // api . x i v e l y . com/v2/ f e e d s /121180. j son ” ,

”updated” : ”2013−08−13T03 : 2 5 : 4 8 . 6 8 6 4 6 2Z” ,

” c rea ted ” : ”2013−04−29T12 : 5 0 : 4 3 . 3 9 4 2 8 8Z” ,

” c r e a t o r ” : ” https : // x i v e l y . com/ use r s / tduccuong ” ,

” ve r s i on ” : ” 1 . 0 . 0 ” ,

” datastreams ” : [

{
” id ” : ” stream1 ” ,

” c u r r e n t v a l u e ” : ”260” ,

2https://xively.com/dev/docs/api/

Chapter 5. A Prototypical Sensor Search Engine 140

sensors

smEntry

1

n

smDEntry

mdEntry

msEntry

cdfpmEntry

quartiles

urls

metadata

1

n

1n

1

n

1

n

1

1

1 1

1

1

Figure 5.3: Database schema for the search engine.

” at ” : ”2013−08−23T01 : 1 0 : 0 2 . 9 8 6 0 6 3Z” ,

”max value” : ” 260 .0 ” ,

” min value ” : ” 260 .0 ” } ,

{
” id ” : ”key” ,

” c u r r e n t v a l u e ” : ” value ” ,

” at ” : ”2013−08−23T00 : 4 0 : 3 4 . 0 3 2 9 7 9Z”

}] ,

” l o c a t i o n ” : {
”domain” : ” ct ”

}
}

This JSON body contains the current value of the only one Datastream (stream1) of the

Feed whose FEED ID is 121180.

5.2.2 Cayenne

At the time of writing, our FSDB component contains already more than 20000 sensors (i.e.,

their URL, meta-information, a similarity model, and a prediction model). It contains data

tables for both sensor similarity search and content-based sensor search services. In order to

avoid dependence on any particular database engine, we use Cayenne3 as an abstraction layer

for managing and accessing a database. Cayenne is an ORM (Object Relational Mapping)

framework that allows for seamlessly binding database schemas directly to Java objects,

managing atomic database transactions (e.g., commit and rollbacks, joins, sequences), thus

enabling programmers to work only with Java objects abstracted from a database. The

underlying database engine that we use for the FSDB component is MySQL.

3http://cayenne.apache.org

Chapter 5. A Prototypical Sensor Search Engine 141

In Fig. 5.3 we present the Cayenne objects (i.e., abstracted database tables) and the relation-

ships among them. The sensor object plays the central role to which all other objects are

connected to. The *Entry objects represent the models and functions built for the search

engine (see Sec. 4.2.6, Sec. 4.2.7, and Sec. 4.3.5), including similarity model (smEntry),

derivative similarity model (smDEntry), measurement density function (mdEntry), measure-

ment stability function (msEntry), and TIPM model (cdfpmEntry). Ech instance of these

objects contains a pair of values defining a data point of a particular model or function,

hence the 1-to-N relationships. The remaining objects, i.e., metadata, quartitles, and

urls, contain the metadata descrbing the sensor (e.g., its type and location), the pair of

first and third quartiles of its measurements, and the unique URL for communicating with

it. The relationship between a sensor object and these objects is 1-to-1.

5.2.3 SIMON

SIMON4 is responsible for the communication between the GSS and SC components as well

as between the GSS and LSS (i.e., its Query Resolver). SIMON is a tool that provides remote

method invocations. While the function of SIMON is similar to that of Java RMI5, SIMON

requires at most one socket connection for both client-server and server-client communica-

tions, which serves as a secured communication tunnel. Java RMI, in contrast, requires

at least one such socket connection. Furthermore, SIMON supports callback feature over

the Internet through its secured communication tunnel, which makes it practically easier

for network administrators to setup network firewalls/routers. With SIMON, we can access

Java objects that are located in another JVM on the same computer or on another server

computer somewhere on the Internet.

5.3 Graphical User Interface

The SC component provides the users with a GUI for creating search queries for both sensor

similarity search and content-based sensor search services, and for presenting the users the

search results. The context menu “Search” allows the users to switch between the two search

services. In the following we describe the GUI for each servive.

5.3.1 Sensor Similarity Search: GUI

Fig. 5.4 shows the GUI for the sensor similarity search service. To specify an example

sensor, respectively a fraction of its past measurements, a user selects from the dropdown

list of available sensors on Xively a sensor (i.e., its URL). The up-to-date measurements of

the selected sensor will be shown in a plot below the dropdown list. Now, the user specifies

4http://dev.root1.de/projects/2/wiki
5http://docs.oracle.com/javase/7/docs/api/java/rmi/package-summary.html

Chapter 5. A Prototypical Sensor Search Engine 142

Figure 5.4: GUI: Sensor similarity search.

Figure 5.5: GUI: Content-based sensor search.

his desired number of result sensors that are similar to the selected one and presses the

“Start” button to begin the search. After some time, a list of similar sensors will be shown

in the “Results” window. For each result sensor, its measurements are plotted and its URL

and metadata are shown.

Chapter 5. A Prototypical Sensor Search Engine 143

5.3.2 Content-based Sensor Search: GUI

Fig. 5.5 shows the GUI for the content-based sensor search service. A user specifies the

values for “a”, “b”, and “h” to create a content-based search query as described in Sec.

4.3.3, and click the “Start” button to begin the search. After some time, a list of matching

sensors with their measurements and URLs is shown in the “Results” window.

5.4 Demonstration

In order to demonstrate our search engine, we will manually perform several series of search

operations on each of the sensor search services and look at the results to see their actual

performance, i.e., the degree of accuracy and the communication overhead of a final ranked

list of sensors returned by the sensor similarity search and the content-based sensor search

services, respectively.

5.4.1 Sensor Similarity Search

Since we do not have a ground truth to assess the performance of the sensor similarity search

algorithm, we will randomly select 5 sensors from Xively, perform searches with them, present

the search results (in the form of screenshots) here, and discuss the performance of the search

engine based on these results. For each screenshot, both the data curve of the selected sensor

and the search results are presented.

As can be observed in the 5 figures (Figs. 5.6, 5.7, 5.8, 5.9, and 5.10), our sensor similarity

search engine can find “similar” sensors in Xively given an example sensor. This similarity

is evident in two aspects: (1) the measurement ranges of the found sensors always largely

overlap the measurement range of the example sensor; and (2) the data curve of the found

sensors “appear” to resemble the data curve of the example sensor.

5.4.2 Content-based Sensor Search (CSS)

For this sensor search service, since it computes the search result based on predicting if

sensors currently match a content-based search query q = {[a, b], h} (i.e., if their generated

measurements during [now − h, now] fall within [a, b]), it can easily be concluded that the

content-based sensor search algorithm will likely perform better with queries q whose b−a is

large when compared with those q whose b− a is small. For example, in an extreme case the

prediction that a sensor is generating measurements in [−∞,+∞] would always be correct

(assuming that the sensor has been actually generating measurements).

As Xively is a cloud-based platform for people to connect their sensors to, the sensors available

on Xively are usually of common types such as temperature, humidity, light, voltage, gas,

Chapter 5. A Prototypical Sensor Search Engine 144

Figure 5.6: Demonstration of the sensor similarity search engine.

etc, that measure the common physical processes in our environment. Thus, as a rough

estimation, the distribution of their generated measurements is likely to be concentrated

between zero and a few hundreds or a few thoundsands (note that we ignore the measurement

units as we care only about absolute measurement values).

Thus, we perform in this demonstration 4 series of search operations, each of which contains

20 search operations. For each series, all 20 searches are performed with a fixed length of

l = b−a but changing values of a and b (e.g., q1 = {[10, 20], 60} and q2 = {[25, 35], 60} where

l = 20 − 10 = 35 − 25 = 10). Due to the above conclusion and estimation, we choose the

specific values of l in the 4 series of search operations to be l1 = 50, l2 = 10, l3 = 5, and

l4 = 1 for the first, the second, the third, and the fourth series, respectively.

Chapter 5. A Prototypical Sensor Search Engine 145

Figure 5.7: Demonstration of the sensor similarity search engine.

For each series of search operations i = 1..4, for each individual search number j = 1..20 we

assign aj = bj−1 (i.e., the value of b of the individual search number j − 1) and bj = aj + li.

We assign a1 = 0. After that, we present a plot of the communication overhead of the search

result of 20 individual searches j for the search series i. The communication overhead is

computed according to Eq. 4.31.

The communication overhead of the 4 series of search operations are shown in Fig. 5.11,

Fig. 5.12, Fig. 5.13, and Fig. 5.14 for l = 50, l = 10, l = 5, and l = 1, respectively. As we

observe in the figures, the content-based sensor search algorithm performs well for all 4 series

of searches as the communication overhead is zero in most individual search operations, and

the average communication overhead of all series of search operations is well below 0.1 (see

Fig. 5.15), which is very low.

Chapter 5. A Prototypical Sensor Search Engine 146

Figure 5.8: Demonstration of the sensor similarity search engine.

5.5 Performance

In order to give the reader an idea of how “heavy” our sensor search engine is, we briefly

discuss in this section the performance of our sensor search engine, i.e., of its current imple-

mentation which runs on a computer with an Intel Core i5 CPU clocked at 2.4 Ghz. We are

interested in the cost for resolving search queries in terms of time (i.e., the time period start-

ing at the submission time of a search query and ending at the time the query’s search result

is returned), and of memory consumption (i.e., the amount of memory that each component

of the search engine consumes). To obtain specific numbers, we performed serveral search

operations, took note of these query resolution costs, and calculated the average of them.

Chapter 5. A Prototypical Sensor Search Engine 147

Figure 5.9: Demonstration of the sensor similarity search engine.

For query resolution time, the average query resolution time of the sensor similarity search

service is about 45 seconds (i.e., performing Eq. 4.13 sequentially for about 20000 sensors in

our current database), while that of the content-based sensor search service is only 2 seconds

(i.e., performing Eq. 4.28 also sequentially for about 20000 sensors). The difference is due to

Eq. 4.13 being more complex than Eq. 4.28. While Eq. 4.13 performs N calculations where

N is the number of measurements contained in the sensor similarity search query, Eq. 4.28

always performs only one calculation.

To see the amount of memory that is consumed by our search engine while it runs, we

use VisualVM6, an “all-in-one Java trouble shooting” tool that allows the user to visually

observe many factors (e.g., CPU, memory, running threads) during the run-time of a Java

6http://visualvm.java.net/

Chapter 5. A Prototypical Sensor Search Engine 148

Figure 5.10: Demonstration of the sensor similarity search engine.

 0

 0.2

 0.4

 0.6

 0.8

 1 3 5 7 9 11 13 15 17 19

C
o
m

m
.
O

v
e
rh

e
a
d

CSS search number

Figure 5.11: Evaluation of the content-based sensor search algorithm for b− a = 50

Chapter 5. A Prototypical Sensor Search Engine 149

 0

 0.2

 0.4

 0.6

 0.8

 1 3 5 7 9 11 13 15 17 19

C
o
m

m
.
O

v
e
rh

e
a
d

CSS search number

Figure 5.12: Evaluation of the content-based sensor search algorithm for b− a = 10

 0

 0.2

 0.4

 0.6

 0.8

 1 3 5 7 9 11 13 15 17 19

C
o
m

m
.
O

v
e
rh

e
a
d

CSS search number

Figure 5.13: Evaluation of the content-based sensor search algorithm for b− a = 5

 0

 0.2

 0.4

 0.6

 0.8

 1 3 5 7 9 11 13 15 17 19

C
o
m

m
.
O

v
e
rh

e
a
d

CSS search number

Figure 5.14: Evaluation of the content-based sensor search algorithm for b− a = 1

Chapter 5. A Prototypical Sensor Search Engine 150

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 2 3 4

A
v
g
.
C

o
m

m
.
O

v
e
rh

e
a
d

Search series number

Figure 5.15: Average communication overhead for each search series

program. After we start all components of the search engine, i.e., GSS, LSS, Crawler, and

Search Client, and let them run in the “idle” mode (i.e., wait for a search query), we observe

that the amount of consumed memory of the Crawler is within the range of 30 Mb and 100

MB (see Fig. 5.16), and of each of the other 3 components is within 5 Mb and 30 Mb (see

Fig. 5.17, and Fig. 5.18). The difference is because the Crawler periodically performs sensor

discovery and indexing (if neccessary). As soon as a search query is submitted, the Search

Client and GSS components do not consume more than 30 Mb of memory, as the Search

Client simply forwards the search query to the GSS and the GSS simply forwards it to the

LSS component. In contrast, the LSS component consumes much more memory, since it

has to process the query. Below we discuss the memory consumption for resolving sensor

similarity search query and content-based search query.

The amount of memory that the LSS component consumes for processing content-based

search queries is well below 500 Mb, which includes the memory needed for caching the list

of sensor URLs and prediction models that the LSS component retrieved from the FSDB for

subsequent queries (around 300 Mb), and for processing the queries (on average 100 Mb).

Fig. 5.19 shows this memory consumption, where we perform 5 search operations (search

i = 1..5).

The consumed amount of memory for processing sensor similarity search queries is well below

750 Mb as we can observe in Fig. 5.20. This amount also includes memory required for query

processing as well as caching. Fig. 5.20 also shows the memory consumption for 5 search

operations (search i = 1..5) that we perform.

5.6 Conclusion

We presented in this chapter a prototypical sensor search engine that enables the user to find

sensors that are currently available in the Web using our proposed sensor search algorithms,

namely sensor similarity search and content-based sensor search. By performing serveral

number of search operations for sensors that are available in Xively, an IoT-focused cloud

Chapter 5. A Prototypical Sensor Search Engine 151

Figure 5.16: Memory consumption of the Crawler component

Chapter 5. A Prototypical Sensor Search Engine 152

Figure 5.17: Memory consumption of the GSS component

Chapter 5. A Prototypical Sensor Search Engine 153

Figure 5.18: Memory consumption of the Search Client component

Chapter 5. A Prototypical Sensor Search Engine 154

Figure 5.19: Memory consumption of the LSS component while processing content-based
sensor search queries

Chapter 5. A Prototypical Sensor Search Engine 155

Figure 5.20: Memory consumption of the LSS component while processing sensor similarity
search queries

Chapter 5. A Prototypical Sensor Search Engine 156

service that allows users to connect their sensors to the IoT, we could demonstrate the

feasibility and usability of our sensor search services.

Chapter 6

Conclusion and Future Work

The Internet of Things (IoT) allows real-world objects (e.g., people, plants, cars) and places

(e.g., homes, offices, farm fields, forests) to be connected to the Internet, to publish their

(real-time) states (perceived by embedded sensors/sensor networks), and to expose their

functionalities on the Web, thus enabling them to be observed and controlled using Web

technologies. This promises to reshape our society as entities of the physical world (i.e.,

objects and places) can be mashed up with data and services on the Web to create novel and

valuabe IoT applications.

In this thesis we have studied the IoT in general and focused our work on two essential

services for the IoT, namely sensor search and routing. In this final chapter, we summarize

our contributions, discuss some limitations of our approaches, and sketch potential future

work.

6.1 Contributions

Two of the main challenges to the provision of routing and sensor search services in the IoT are

the large scale of the IoT and the resource limitations of Things (i.e., of their embedded IoT

devices) connected to it. Our contributions in this thesis work showed that efficient solutions

for the routing and sensor search services for the IoT can actually be provided, inspite of

these challenges. We will summarize our contributions in the following subsections.

6.1.1 Routing

With respect to the routing service, we proposed Recursive Multi-region Geocasting (RMG)

and Stochastic Forwarding-based Routing (SFR) for routing of information in WSN (which

is a building block of the IoT).

157

Chapter 5. Conclusion and Future Work 158

The RMG algorithm is targeted to large-scale WSN where information needs to be delivered

from a source to multiple geographic regions that are remotely located from the source,

respectively to all Things, i.e., sensor nodes that are located therein. We showed that existing

algorithms are not appropriately designed for this class of routing scenarios. In particular,

they do not appropriately support large-scale WSN, both in terms of number of the network

nodes and the geographic area that the WSN covers, since routing decisions are made at

every intermediate node. In contrast, RMG makes routing decisions and duplicates a packet

only at a few selected nodes on the routing path of the packet and is therefore scalable as

processing and energy resources as well as wireless bandwidth are saved. This is confirmed by

our evaluation results, which showed that RMG minimizes the total number of transmissions

needed for the successful delivery of a data packet, while at the same time incuring little

computation overhead on the network.

The SFR algorithm aims at improving the operational life time of WSN by balancing the

energy consumption caused by the routing task across the network. Given a pair of source

and destination, existing algorithms usually send data packets over a single deterministic

routing path, which eventually uses up the energy budget of the nodes on the path. This

may cause partitions in the network since some of those nodes may be the only links between

different parts of the network. In contrast to this approach, we model the route of a packet

as a random walk, such that different packets travel on different routing paths between the

source and the destination. This way routing load is spread among multiple paths rather than

concentrated on a single one. This, however, may increase the total time it takes to deliver all

packets as they may travel on routing paths that are much longer than the shortest routing

path (e.g., in terms of number of hops). To achieve a trade-off, we designed the random

walk such that the ratio between the average length of the routing paths taken by all packets

and the length of the shortest routing path (path length overhead) is small. Our evaluation

results showed that SFR fairly balances the routing load across the network for a pair of

source and destination while keeping the path length overhead small. Furthermore, SFR is

scalable since routing decisions are made using only local information.

6.1.2 Sensor Search

With respect to the sensor search service, we proposed sensor similarity search and content-

based sensor search for searching sensors on the Web with certain search criteria. These two

sensor search services are novel and useful because they enable users to search the physical

world for objects and places with a given state (i.e., the output measurements of their em-

bedded sensors/sensor networks) via the IoT. We showed that state-of-the-art sensor search

systems for the IoT do not support search based on the similarity between time series of

output measurements of sensors and search based on the recent output measurements of sen-

sors. There are, however, some systems that do support search based on the current output

of sensors, with the assumption that an “output” is a high-level state abstracted from the

raw measurements of sensors (e.g., “hot” and “cold” are abstracted from the temperature

Chapter 5. Conclusion and Future Work 159

being 35◦C and 10◦C, respectively). Complementary to these systems, our sensor search

services support search based directly on raw measurements of sensors. In particular, the

sensor similarity search service allows for finding sensors (i.e., Things) whose recent measure-

ments (i.e., perceived states of Things) are similar to that of an example sensor (or Thing).

The content-based sensor search service allows for finding sensors (i.e., Things) whose latest

measurements (i.e., current state) fall in a given value range (which could be defined as a

high-level state, e.g., temperatures being in the range of [15◦C, 25◦C] could be defined as

“cool”).

We proposed an architecture suitable for both two sensor search services, which is scalable

because the search is distributed and executed in parallel among multiple sensor search servers

across the Internet. Our fuzzy-set-based approach requires reasonable computation on IoT

devices and incurs low storage and wireless communication overhead as the size of a fuzzy

set is small (in the order of few tens of bytes), thus is suitable for resource-constrained IoT

devices. The efficiency of our approach is confirmed by our evaluation results which showed

that the proposed sensor similarity search algorithm is highly accurate, and the proposed

content-based sensor search algorithm incurs low wireless communication overhead.

We demonstrated the practical feasibility of our solutions by implementing and integrating

our proposed sensor search algorithms into a sensor search engine, and using it to search for

sensors that are available on the Web based on our proposed sensor search services.

6.2 Limitations and Future Work

As our contributions to the routing and sensor search services in the IoT are focused on a

subset of challenges (i.e., scalability and resource limitations) and targeted to certain classes

of IoT applications (e.g., routing in geographically large-scale WSN, sensor search based on

raw sensor measurements), it is natural that they are less suited for other challenges and

application scenarios. In the following we discuss some of the limitations of each of our

proposed algorithm and sketch some future work based on that.

6.2.1 Recursive Multi-region Geocasting Algorithm

Although RMG is efficient, it is not designed to handle network voids. In the current work,

we combine RMG with a recovery mechanism (see Sec. 3.2.2.2) so that when a dead-end

node receives the data packet, it initiates the recovery mechanism which will be used to

forward the packet until it arrives at a non-dead-end node).

Another limitation of RMG is that we use the flooding approach to disseminate a data packet

to all sensor nodes in a geographic region once it reaches a node located within the region.

The flooding approach may fail in the presence of network partitions (e.g., a river dividing the

region into two separate parts). To address this in a future work, the data packet may have

Chapter 5. Conclusion and Future Work 160

to enter the region at different crossing points on its border, such that it will be delivered to

all nodes in all possible partitions.

6.2.2 Stochastic Forwarding-based Routing Algorithm

Again, SFR is not designed for handling network voids. There is, however, a side effect of our

approach which guarantees that data packets will eventually be delivered, but this may take

long time (see Sec. 3.4.7). A possible approach for this could be to adjust the forwarding

probability of nodes that are on and close to the border of a network void such that data

packets are likely to travel around but not towards the network void. For example, when

a node discovers that it is a dead-end it notifies its neighbor nodes so that they lower the

forwarding probability for it. These neighbor nodes, in turn, notify their neighbors in the

same manner. The notification process can be limited by the number of hops so that only

nodes in the proximity of the network void are notified. Depending on the dynamicity of

the network topology, this process may need to be triggered time after time. An alternative

approach is to combine SFR with a recovery mechanism as we did in the case of RMG.

6.2.3 Sensor Similarity Search Algorithm

To further improve the accuracy of this algorithm, the similarity models of sensors may need

to be updated more frequently in order to incorporate latest sensor measurements into them.

The limitation with this is that it imposes more computation on sensor nodes and the update

of similarity models of billions of sensors that are (anticipated to be) available in the IoT

takes time. To address the former, one would need to further simplify the computation of a

similarity model, or put more computing power on sensor nodes (which is reasonable given

the fast advancement in all technological fields), or a combination of both. A possible solution

for the latter is to add more sensor servers into the sensor search architecture presented in

Sec. 4.1.4.2.

Another possible limitation is the time it takes for computing a similarity score according

to Eq. 4.13. Although it already is efficient, performing Eq. 4.13 for billions of sensors still

takes a long time. For example, the average query resolution time of the sensor similarity

search algorithm in our prototypical sensor search engine is about 45 seconds, i.e., performing

Eq. 4.13 sequentially for about 20000 sensors in our current database in a computer with

an Intel Core i5 CPU clocking at 2.4 Ghz. To address this, one could always parallelize the

search using multiple computers. At the same time, for each computer, one could also apply

a better search technique (i.e., instead of squentially evaluating all sensors) to reduce the

searching time.

Bibliography 161

6.2.4 Content-based Sensor Search Algorithm

The query resolution time for a search in this algorithm is much shorter than in the sensor

similarity search algorithm due to the simplicity of Eq. 4.28 (e.g., on average only 2 seconds

as opposed to 45 seconds). However, this algorithm still faces the scalability problem as we

discussed above, when the number of sensors is too large and the search is performed linearly.

The same approaches outlined above also apply here.

6.3 Final Conclusion

In this thesis we studied routing and sensor search in the IoT, which are two essential services

for the IoT. In order to facilitate the sensor search service, and also other IoT applications,

the routing service is required to enable efficient communication among IoT devices and

between IoT devices and Internet nodes.

We proposed, implemented, and evaluated novel solutions for these services, which address

the unprecedentedly large scale of the IoT and the resource limitations of IoT devices. Our

proposed routing algorithms are suited to specific IoT application scenarios, where informa-

tion needs to be transmitted over long distances in geographically large-scale networks of

IoT devices and the operatational time of these networks must be long. Our original sensor

search algorithms enable searching the physical world for objects and places via the IoT.

These solutions support our thesis that despite the large scale of the IoT and the resource

limitations of IoT devices, efficient solutions for the routing and sensor search services for

the IoT can actually be provided.

Bibliography

[1] Rob van Kranenburg, Alessandro Bassi, Dan Caprio, Sean Dodson, and Matt Ratto.

The Internet of Things. First Berlin Symposium on Internet and Society, October

2011.

[2] Fraunhofer Research. The eGRAIN Project. URL http://cyberphysicalsystem.de/

egrain-projekt/.

[3] B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M.

Kahn, B. E. Boser, and K. S. J. Pister. An Autonomous 16 Cubic mm Solar-Powered

Node for Distributed Wireless Sensor Networks. In IEEE International Conference on

Sensors 2002, pages 1510–1515, Orlando, USA, June 2002.

[4] Cuong Truong and Kay Römer. Efficient Geocasting to Multiple Regions in Large-Scale

WSNs. 37th Int. Conf. on Local Computer Networks (LCN 2012), 2012.

[5] F. Sivrikaya, T. Geithner, Cuong Truong, M. A. Khan, and S. Albayrak. Stochastic

Routing in Wireless Sensor Networks. IEEE ICC 2009.

[6] Cuong Truong, Kay Römer, and Kai Chen. Fuzzy-based Sensor Search in the Web of

Things. 3rd Int. Conf. on Internet of Things (IoT-2012), 2012.

[7] Cuong Truong and Kay Römer. Content-based Sensor Search for the Web of Things.

IEEE Global Communications Conference (Globecom’13), 2013.

[8] INFSO D.4 Networked Enterprise & RFID INFSO G.2 Micro & Nanosystems. Internet

of Things in 2020, Roadmap for the Future, Version 1.1. In: Co-operation with the

Working Group RFID of the ETP EPOSS, 27 May 2008.

[9] Charu C. Aggarwal, Naveen Ashish, and Amit Sheth. The Internet of Things: A Survey

From The Data-Centric Perspective. Book: Managing and Mining Sensor Data, pages

383–428, 2013.

[10] ITU Internet Reports. The Internet of Things. November 2005.

[11] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A Survey.

Computer Networks, 2010.

163

http://cyberphysicalsystem.de/egrain-projekt/
http://cyberphysicalsystem.de/egrain-projekt/

Bibliography 164

[12] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami.

Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions.

Future Generation Computer Systems, 29:1645–1660, September 2013.

[13] Adam Dunkels and JP Vasseur. Internet Protocol for Smart Objects. White Paper,

2008.

[14] Maarten Botterman. Internet of Things: An Early Reality of the Future Internet.

For the European Commission, Information Society and Media Directorate General,

Networked Enterprise & RFID Unit (D4).

[15] Adam Dunkels and JP Vasseur. IP for Smart Objects. White Paper No. 1, IPSO

Alliance, July 2010.

[16] Neil Gershenfeld, Raffi Krikorian, and Danny Cohen. The Internet of Things. Scientific

American, 2004.

[17] V. Bychkovskiy, S. Megerian, and D. Estrin. Collaborative Approach to In-place Sen-

sor Calibration. In 2nd Intl. Conf. on Information Processing in Sensor Networks

(IPSN’03), 2003.

[18] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-driven

Data Acquisition in Sensor Networks. In Proc. of the 13th Intl. Conf. on Very Large

Databases (VLDB’04), 2004.

[19] C. C. Aggarwal and J. Han. Managing and Mining Sensor Data. Springer, 2013.

[20] J. Dean and S. Ghemawat. MapReduce: A Flexible Data Processing Took. Commu-

nication of the ACM, 53:72–77, 2010.

[21] T. White. Hadoop: The Definitive Guide. Yahoo! Press, 2011.

[22] H. Wang, C. C. Tan, and Q. Li. Snoogle: A Search Engine for Pervasive Environments.

IEEE Trans. on Parallel and Distributed Systems, (8):1188–1202, 2010.

[23] C. C. Tan, B. Sheng, H. Wang, and Q. Li. Microsearch: When Search Engines Meet

Small Devices. Pervasive, 5013:93–110.

[24] K. K. Yap, V. Srinivasan, and M. Motani. MAX: Human-centric Search of the Phys-

ical World. In Proc. of the 3rd Intl. Conf. on Embedded Networked Sensor Systems

(Sensys’05), New York, NY, USA, 2005.

[25] Ali Salehi, M. Riahi, S. Michel, and Karl Aberer. GSN, Middleware for Streaming

World. In Proc. 10th Int. Conf. on Mobile Data Management, 2009.

[26] A. Kansal, S. Nath, J. Liu, and F. Zhao. SenseWeb: An Infrastructure for Shared

Sensing. IEEE Multimedia, 14:8–13, 2007.

Bibliography 165

[27] Lars Erik Holmquist, Friedemann Mattern, Bernt Schiele, Petteri Alahuhta, Michael

Beigl, and Hans-W. Gellersen. Smart-Its Friends: A Technique for Users to Easily

Establish Connections between Smart Artefacts. In Proc. of the 3rd Intl. Conf. on

Ubiquitous Computing (UbiComp’01), 2001.

[28] Jonathan Lester, Blake Hannaford, and Geatano Borriello. “Are you with me?” -

Using Accelerometers to Determine if Two Devices are Carried by the Same Person.

In Proc. 2nd Int. Conf. Pervasive Computing (PerCom’04), 2004.

[29] Matthias Gauger, Olga Saukh, Marcus Handte, and Pedro Jose Marron. Sensor-based

Culstering for Indoor Applications. SECON’08, 2008.

[30] B. Maryam Elahi, Kay Römer, Benedikt Ostermaier, Michael Fahrmair, and Wolfgang

Kellerer. Sensor Ranking: A Primitive for Efficient Content-based Sensor Search. In

Intl. Conf. on Information Processing in Sensor Networks (IPSN’09), San Francisco,

CA, USA, 2009.

[31] Arne Broring, Johannes Echterhoff, Simon Jirka, Ingo Simonis, Thomas Everding,

Christoph Stasch, Steve Liang, and Rob Lemmens. New Generation Sensor Web En-

ablement. Sensors, 11:2652–2699, 2011.

[32] Jin Cheng and Thomas Kunz. A Survey on Smart Home Networking. Carleton Uni-

versity, Systems and Computer Engineering, Technical Report SCE-09-10, September

2009.

[33] Abowd G and Mynatt E. Designing for the human experience in smart environments.

In: Cook D, Das S, editors. Smart Environments: Technology, Protocols, and Applica-

tions, 2004.

[34] Rashvand Habib F. and Alcaraz Calero Jose M. Distributed Sensor Systems: Practice

and Applications. John Wiley & Sons., Ltd, 2012.

[35] G. Michael Youngblood and Diane J. Cook. Data Mining for Hierarchical Model Cre-

ation. IEEE Transactions on Systems, Man, and Cybernetics, 37:561–572, July 2007.

[36] F. Doctor, H. Hagras, and V. Callaghan. A Fuzzy Embedded Agent-based Approach

for Realizing Ambient Intelligence in Intelligent Inhabited Environments. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 35:55–65,

January 2005.

[37] Sumi Helal, William Mann, Hicham El-Zabadani, Jeffrey King, Youssef Kaddoura,

and Erwin Jansen. The Gator Tech Smart House: A Programmable Pervasive Space.

Computer, 38(3):50–60, 2005.

[38] Dipak Surie, Olivier Laguionie, and Thomas Pederson. Wireless Sensor Networking of

Everyday Objects in a Smart Home Environment. ISSNIP’08, 2008.

Bibliography 166

[39] G. Broll, E. Rukzio, M. Paolucci, M. Wagner, A. Schmidt, and H. Hussmann. PERCI:

Pervasive service integration with the Internet of Things. IEEE Internet Computing,

13:74–81, November 2009.

[40] D. Reilly, M. Welsman-Dinelle, C. Bate, and K. Inkpen. Just Point and Click? Using

Handhelds to Interact with Paper Maps. In Proc. of the 7th Intl. Conf. on Human Com-

puter Interaction with Mobile Devices & Services (MobileHCI’05), September 2005.

[41] R. Hardy and E. Rukzio. Touch & Interact: Touch-based Interaction of Mobile Phones

with Displays. In Proc. of 10th Intl. Conf. on Human Computer Interaction with Mobile

Devices and Services (MobileHCI’08), September 2008.

[42] SENSEI FP7 Project. Senario Portfolio: User and Context Requirements. URL http:

//www.sensei-project.eu.

[43] RSA Labotaries. RFID, a Vision of the Future. URL http://www.rsa.com/rsalabs/

node.asp?id=2117.

[44] Rachael McBrearty. The Future of Retail Customer Loyalty RFID Enables Break-

through Shopping Experiences. Cisco’s Whitepaper, June 2011.

[45] H. Baldus, K. Klabunde, and G. Muesch. Reliable Set-Up of Medical Body Sensor

Networks. In Proc. of European Conference on Wireless Sensor Networks (EWSN

2004), Berlin, Germany.

[46] G. Schreier. Pervasive Healthcare via “The Internet of Medical Things”. In Proceedings

of Medetel, 2010.

[47] Xiao Ming Zhang and Cheng Xu. A Multimedia Telemedicine System in Internet

of Things. 2nd International Conference on Information and Multimedia Technology,

2010.

[48] Mikhail Simonov, Riccardo Zich, and Flavia Mazzitelli. Personalized Healthcare Com-

munication in Internet of Things. Proceedings of URSI, 2008.

[49] H. Hawkeye King, Thomas Low, Kevin Hufford, and Timothy Broderick. Acceleration

Compensation for Vehicle Based Telesurgery on Earth or in Space. 2008 IEEE/RSJ

International Conference on Intelligent Robots and Systems.

[50] Michael Stark, Tahar Benhidjeb, Stefano Gidaro, and Emilio Ruiz Morales. The Future

of Telesurgery: A Universal System with Haptic Sensation. Journal on Turkish-German

Gynecological Association, 2012.

[51] Sebastian Dengler, Abdalkarim Awad, and Falko Dressler. Sensor/Actuator Networks

in Smart Homes for Supporting Elderly and Handicapped People. In Proc. of 21st

IEEE Intl. Conf. on Advanced Information Networking and Applications (AINA-07),

2007.

http://www.sensei-project.eu
http://www.sensei-project.eu
http://www.rsa.com/rsalabs/node.asp?id=2117
http://www.rsa.com/rsalabs/node.asp?id=2117

Bibliography 167

[52] Monica Tentori and Jesus Favela. Activity-Aware Computing for Healthcare. IEEE

Pervasive Computing, 7(2):51–57, 2008.

[53] Universitat Politècnica de Catalunya. Advances In Medical Technology: What Does

The Future Hold? ScienceDaily, 16 Jun. 2009. Web. 30 Mar. 2013.

[54] Future Trends in Medical Technology. URL www.medica.de.

[55] Ben-Jye Chang, Bo-Jhang Huang, and Ying-Hsin Liang. Wireless Sensor Network-

Based Adaptive Vehicle Navigation in Multihop-Relay WiMAX Networks. Advanced

Information Networking and Applications, 2008.

[56] Swarun Kumar, Shyamnath Gollakota, and Dina Katabi. A Cloud-Assisted Design for

Autonomous Driving. MCC’12, August 17, 2012, Helsinki, Finland.

[57] Arun Hampapur, Lisa Brown, Jonathan Connell, Sharat Pankanti, Andrew Senior,

and Yingli Tian. Smart Surveillance: Applications, Technologies and Implications. In

IEEE Pacific-Rim Conference On Multimedia, 2003.

[58] Umakishore Ramachandran, Kirak Hong, Liviu Iftode, Ramesh Jain, Rajnish Kumar,

Kurt Rothermel, Junsuk Shin, and Raghupathy Sivakumar. Large-scale Situation

Awareness with Camera Networks and Multimodal Sensing. Proceedings of the IEEE,

Vol. 100, No. 4. (April 2012).

[59] Justin Patton and Bill C. Hardgrave. RFID As Electronic Article Surveillance (EAS):

Feasibility Assessment. Information Technology Research Institute.

[60] Indraveer Singh and Harshawardhan Patil. RFID: Dynamic Surveillance Approach.

IJCSI International Journal of Computer Science Issues, 7(7), May 2010.

[61] Alessandro Oltramari and Christian Lebiere. Using Ontologies in a Cognitive-Grounded

System: Automatic Action Recognition in Video Surveillance. In Proc. of Semantic

Technology for Intelligence, Defense, and Security, 2012.

[62] Dae-Hyeong Kim et al. Epidermal Electronics. Science, 333:838–843, August 2011.

[63] University of Pennsylvania. Mind Reading from Brain Recordings? “Neural Finger-

prints” of Memory Associations Decoded. ScienceDaily, 26 Jun. 2012. Web. 28 Mar.

2013.

[64] Austin Harney. Smart Metering Technology Promotes Energy Efficiency for a Greener

World. Analog Dialogue 43-01, January 2009.

[65] KNX-Gebaeudesysteme. Smart Home and Intelligent Building Control Energy Effi-

ciency in Buildings with ABB i-bus R© KNX.

[66] Wenqi Guo, Willam M. Healy, and Mengchu Zhou. Wireless Mesh Networks in In-

telligent Building Automation Control: A Survey. International Journal of Intelligent

Control and Systems, March 2011.

www.medica.de

Bibliography 168

[67] Siemens. Desigo Building Automation Energy-Efficient and Flexible: The Innovative

System for Cost-Effective Buildings.

[68] Rodrigo Pantoni, Cleber Fonseca, and Dennis Brandão. Street Lighting System Based

on Wireless Sensor Networks, Energy Efficiency - The Innovative Ways for Smart En-

ergy, the Future Towards Modern Utilities. Dr. Moustafa Eissa (Ed.), 2012.

[69] European Commission: Community Research. European SmartGrids Technology Plat-

form: Vision and Strategy for Europe’s Electricity Networks of the Future. Technical

Report, 2006.

[70] Jorge Gil, Júlio Almeida, and José Pinto Duarte. The backbone of a City Information

Model (CIM): Implementing a spatial data model for urban design. City Modelling -

eCAADe, 2011.

[71] Bentley Systems. City Information Modeling for Sustaining Cities: Lessons Learned

from Advanced Users. Case Study Showcase, August 2011.

[72] Hamid Gharavi and Reza Ghafurian. Smart Grid: The Electric Energy System of the

Future. Proceedings of the IEEE, 99(6):917–921, June 2011.

[73] A. Illic, T. Staake, and E. Fleisch. Using Sensor Information to Reduce the Carbon

Footprint of Perishable Goods. IEEE Pervasive Computing, 8(1):22–29, 2009.

[74] A. Dada and F. Thiesse. Sensor Applications in the Supply Chain: The Example of

Quality-based Issuing of Perishables. In Proc. of Internet of Things.

[75] IBM. The smarter supply chain of the future: Insights from the Global Chief Supply

Chain Officer Study.

[76] IoT-A Project. SOTA Report on Existing Integration Frameworks/Architectures for

WSN, RFID and Other Emerging IoT Related Technologies. Project Deliverable D1.1,

March 2011.

[77] Frank F. Kuo. The ALOHA System. ACM Computer Communication Review, 1995.

[78] Bill Glover and Himanshu Bhatt. RFID Essentials. O’Reilly Media, Inc., 2006 ISBN

0-596-00944-5, pages 88-89.

[79] EPC Global. Standards. URL http://www.gs1.org/epcglobal/standards/.

[80] MIT Auto ID Center. 3.56 MHz ISM Band Class 1 Radio Frequency Identification

Tag Interference Specification: Candidate recommendation, Version 1.0.0. Technical

Report MIT-AUTOID-WH-002.

[81] N. Kushalnagar, G. Montenegro, and C. Schumacher. IPv6 over Low-Power Wireless

Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement,

and Goals. IETF Draft, RFC4919.

http://www.gs1.org/epcglobal/standards/

Bibliography 169

[82] IEEE Task Group 4 (TG4). IEEE 802.15 WPAN Standard. URL http://www.

ieee802.org/15/pub/TG4.html.

[83] Bluetooth SIG. Bluetooth Technical Information. URL http://www.bluetooth.com/

Pages/Tech-Info.aspx.

[84] Maria-Gabriella Di Benedetto and GuerinoGiancola. Understanding Ultra Wide Band

Radio Fundamentals. Prentice Hall, June 27, 2004.

[85] Moe Z. Win and Robert A. Scholtz. Impulse Radio: How It Works. IEEE Communi-

cations Letters, 2(1), Jan 1998.

[86] IEEE Task Group 4a (TG4a). IEEE 802.15 WPAN Low Rate Alternative PHY. URL

http://www.ieee802.org/15/pub/TG4a.html.

[87] Kay Römer. Time Synchronization and Localization in Sensor Networks. Ph.D. Dis-

sertation, 2005.

[88] K. Kim, S. D. Park, G. Montenegro, S. Yoo, and N. Kushalnagar. 6LoWPAN Ad

Hoc On-Demand Distance Vector Routing (LOAD). Internet Draft, work in progress,

draft-daniel-6lowpan-load-adhoc-routing-03, .

[89] K. Kim, S. D. Park, G. Montenegro, I. Chakeres, and C. Perkins. Dynamic MANET

On-demand for 6LoWPAN (DYMO-low) Routing. Internet Draft, work in progress,

draft-montenegro-6lowpan-dymo-low-routing-03, .

[90] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc On-Demand Distance Vector Rout-

ing. In Proc. of 2nd IEEE Workshop on Mobile Computing Systems and Applications,

1997.

[91] K. Kim, S. Yoo, J. Park, S. D. Park, and J. Lee. Internet Draft: Hierar-

chical Routing over 6LoWPAN (HiLow), . URL http://tools.ietf.org/html/

draft-daniel-6lowpan-hilow-hierarchical-routing-01.

[92] IETF ROLL Working Group. RPL: The IP Routing Protocol Designed for Low Power

and Lossy Networks. Internet-Draft, RFC6550.

[93] Jamal N. Al-karaki and Ahmed E. Kamal. Routing Techniques in Wireless Sensor

Networks: A Survey. IEEE Wireless Communications, 11:6–28, 2004.

[94] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle. Smews: Smart and Mobile Embed-

ded Web Server. In Intl. Conf. on CISIS, 2009.

[95] I. Agranat. Engineering Web Technologies for Embedded Applications. IEEE Internet

Computing, 2(3):40–45, 1998.

[96] O. Akribopoulos, I. Chatzigiannakis, C. Koninis, and E. Theodoridis. A Web Services-

oriented Architecture for Integrating Small Programmable Objects in the Web of

Things. Development in E-systems Engineering, pages 70–75, 2010.

http://www.ieee802.org/15/pub/TG4.html
http://www.ieee802.org/15/pub/TG4.html
http://www.bluetooth.com/Pages/Tech-Info.aspx
http://www.bluetooth.com/Pages/Tech-Info.aspx
http://www.ieee802.org/15/pub/TG4a.html
http://tools.ietf.org/html/draft-daniel-6lowpan-hilow-hierarchical-routing-01
http://tools.ietf.org/html/draft-daniel-6lowpan-hilow-hierarchical-routing-01

Bibliography 170

[97] Kwang il Hwang, Jeongsik In, Nhokyung Park, and Doo seop Eom. A design and

Implementation of Wireless Sensor Gateway for Effiecient Querying and Managing

through World Wide Web. IEEE Transactions on Consumer Electronics, 2003.

[98] Vlad Trifa, Samuel Wiel, Dominique Guinard, and Thomas Bohnert. Design and Im-

plementation of a Gateway for Web-based Interaction and Management of Embedded

Devices. In Proc. of IWSNE 2009.

[99] Roy Thomas Fielding. REST: Architectural Styles and the Design of Network-based

Software Architectures. University of California, Irvine, Doctoral dissertation, 2000.

[100] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle. The Web of Things: Interconnecting

Devices with High Usability and Performance. In Proc. of ICESS’09, May 2009.

[101] A. Jules. RFID Security and Privacy: a Research Survey. IEEE Journal on Selected

Areas in Communications, 24:381–394, 2006.

[102] R. Acharya and K. Asha. Data Integrity and Intrusion Detection in Wireless Sensor

Networks. In Proc. of 16th Intl. Conf. on Networks, ICON’08, New Delhi, India, 2008.

[103] C. M. Medaglia and A. Serbanati. An Overview of Privacy and Security Issues in the

Internet of Things. In Proc. of TIWDC, Pula, Italy, 2009.

[104] V. Mayer-Schoenberger. Delete: The Virtue of Forgetting in the Digital Age. Princeton

University Press, 2009.

[105] Seapahn Meguerdichian, Sasa Slijepcevic, Vahag Karayan, and Miodrag Potkonjak.

Localized Algorithms in Wireless Ad-hoc Networks: Location Discovery and Sensor

Exposure. MobiHoc ’01.

[106] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR). URL

http://tools.ietf.org/html/rfc3626.

[107] E. Perkins Charles and Bhagwat Pravin. Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers. In SIGCOMM’94, London,

August 1994.

[108] David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad Hoc Wireless

Networks. Book: Mobile Computing, pages 153–181, 1996.

[109] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidemann, and

Fabio Silva. Directed Diffusion for Wireless Sensor Networking. IEEE/ACM Transac-

tions on Networking, 11:2–16, February 2003.

[110] Joanna Kulik, Wendi Heinzelman, and Hari Balakrishnan. Negotiation-based Proto-

cols for Disseminating Information in Wireless Sensor Networks. Journal on Wireless

Networks, March-May 2002.

http://tools.ietf.org/html/rfc3626

Bibliography 171

[111] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad-Hoc Networks Beyond

Unit Disk Graphs. In Proc. of Joint Workshop on Foundations of Mobile Computing

(DIALM-POMC ’03), 2003.

[112] Gang Zhou, Tian He, Sudha Krishnamurthy, and John A. Stankovic. Impact of Radio

Irregularity on Wireless Sensor Networks. In Proc. of the 2nd Intl. Conf. on Mobile

Systems, Applications, and Services (MobiSys’04), pages 125–138, 2004.

[113] Ana Maria Popescu, Gabriel Ion Tudorache, Bo Peng, and Andrew H. Kemp. Surveying

Position Based Routing Protocols for Wireless Sensor and Ad-hoc Networks. IJCNIS

2012, 4(1).

[114] H. Takagi and L. Kleinrock. Optimal Transmission Ranges for Randomly Distributed

Packet Radio Terminals. IEEE Transaction on Communications, 32:246–257, 1984.

[115] H. Takagi and L. Kleinrock. Transmission Range Control in Multihop Packet Radio

Networks. IEEE Transaction on Communications, 34(1):38–44, 1986.

[116] E. Kranakis, H. Singh, and J. Urrutia. Compass Routing on Geometric Networks. In

Proc. 11th Canadian Conf. Computational Geometry, August 1999.

[117] I. Stojmenovic and X. Lin. GEDIR: Loop-Free Location Based Routing in Wireless

Networks. Int’l Assoc. Science and Technology for Development (IASTED) and Conf.

Parallel and Distributed Computing and Systems, pages 1025–1028, Nov. 1999.

[118] R. Nelson and L. Kleinrock. The Spatial Capacity of a Slotted ALOHA Multihop

Packet Radio Network with Capture. IEEE Transaction on Communications, 32(6):

684–694, 1984.

[119] I. Stojmenovic and X. Lin. Power-Aware Localized Routing in Wireless Networks.

IEEE Trans. Parallel and Distributed System, 12(11), November 2001.

[120] Ivan Stojmenovic and Xu Lin. Loop-free Hybrid Single-path/Flooding Routing Al-

gorithms with Guaranteed Delivery for Wireless Networks. IEEE Transactions on

Parallel and Distributed Systems, 2001.

[121] Ivan Stojmenovic, Mark Russell, and Bosko Vukojevic. Depth First Search and Lo-

cation Based Localized Routing and QoS Routing in Wireless Networks. Book Title:

Computers and Informatics, pages 21–24, 2000.

[122] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier North-

Holland, 1976.

[123] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A Survey on Sensor

Networks. IEEE Communications Magazine, pages 102–114, August 2002.

[124] Dong-Hee Shin. Ubiquitous city: Urban technologies, urban infrastructure and urban

informatics. Journal of Information Science, 35:515–526, 2009.

Bibliography 172

[125] Christian Frank, Philipp Bolliger, Friedemann Mattern, and Wolfgang Kellerer. The

sensor internet at work: Locating everyday items using mobile phones. Pervasive and

Mobile Computing, 4(3):421–447, 2008.

[126] J. Sanchez, P. Ruiz, X. Liu, and I. Stojmenovic. GMR: Geographic Multicast Routing

for Wireless Sensor Networks. In Proc. of the 3rd Annual IEEE Conf. on Sensor and

Ad Hoc Communications and Networks (SECON’06), 2006.

[127] Juan A. Sanchez, Pedro M. Ruiz, and Ivan Stojmenovic. Energy-efficient Geographic

Multicast Routing for Sensor and Actuator Networks. Computer Communication, pages

2519–2531, 2007.

[128] M. Transier, H.Fueler, J. Widmer, Martin Mauve, and Wolfgang Effelsberg. Scalable

Position-based Multicast for Mobile Ad-hoc Networks. In First Intl. Workshop on

Broadband Wireless Multimedia: Algorithms, Architectures and Applications (Broad-

Wim ’04), 2004.

[129] Shibo Wu and K. Selcuk Candan. GMP: Distributed Geographic Multicast Routing

in Wireless Sensor Networks. In Proc. of the 26th IEEE Intl. Conf. on Distributed

Computing Systems (ICDCS’06), 2006.

[130] Young-Bae Ko and Nitin H. Vaidya. Geocasting in Mobile Ad Hoc Networks: Location-

Based Multicast Algorithms. In Proc. of the Second IEEE Workshop on Mobile Com-

puter Systems and Applications (WMCSA’99), 1999.

[131] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing with Guar-

anteed Delivery in Ad Hoc Wireless Networks. Wireless Networks, pages 609–616,

2001.

[132] Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and Energy Aware

Routing: A Recursive Data Dissemination Protocol for Wireless Sensor Networks.

UCLA Computer Science Department, Technical Report UCLA/CSD-TR-01-0023,

2001.

[133] Karim Seada and Ahmed Helmy. Efficient Geocasting with Perfect Delivery in

Wireless Networks. In IEEE Wireless Communications and Networking Conference

(WCNC’04), pages 2551–2556, 2004.

[134] Jie Lian, Kshirasagar Naik, Yunhao Liu, and Lei Chen. Virtual Surrounding Face

Geocasting in Wireless Ad Hoc and Sensor Networks. IEEE/ACM Transactions on

Networking, 17:200–211, February 2009.

[135] Ivan Stojmenivic. Geocasting with Guaranteed Delivery in Sensor Network. IEEE

Wireless Communications, 2004.

[136] Young-Mi Song, Sung-Hee Lee, and Young-Bae Ko. FERMA: An Efficient Geocasting

Protocol for Wireless Sensor Networks with Multiple Target Regions. In Proc. of Intl.

Conf. on Embedded and Ubiquitous Computing (EUC’05), 2005.

Bibliography 173

[137] Nassima Hadid and Jean Frederic Myoupo. Multi-Geocast Algorithms for Wireless

Sparse or Dense Ad Hoc Sensor Networks. In Fourth International Conference on

Networking and Services (ICNS’08), 2008.

[138] Alain Bertrand Bomgni and Jean Frederic Myoupo. An Energy-Efficient Clique-Based

Geocast Algorithm for Dense Sensor Networks. Communications and Networks, 2(2):

125–133, 2010.

[139] Chih-Yung Chang, Chao-Tsun Chang, and Shin-Chih Tu. Obstacle-Free Geocasting

Protocols for Single/Multi-Destination Short Message Services in Ad-hoc Networks.

Wireless Networks, 9:143–155, March 2003.

[140] Brent Boyer. Robust java Benchmarking: Part 1 and Part 2. IBM’s developerWorks,

Technical Library, 2008.

[141] T. He, C. Huang, B. M. Blum, J. A. Atankovic, and T. F. Abdelzaher. Range-Free

Localization Schemes in Large Scale Sensor Networks. In Proc. of the 9th Intl. Conf.

on Mobile Computing and Networking (MobiCom’03), 2003.

[142] Issam Mabrouki, Xavier Lagrange, and Gwillerm Froc. Random walk based routing

protocol for wireless sensor networks. In Proc. of the 2nd Intl. Conf. on Performance

Evaluation Methodologies and Tools (ValueTools ’07), pages 1–10, 2007.

[143] K. Padmanabh, A.M.R. Vanteddu, S. Sen, and P. Gupta. Random Walk on Random

Graph based Outlier Detection in Wireless Sensor Networks. Wireless Communication

and Sensor Networks, 2007. WCSN ’07. Third International Conference on, pages

45–49, Dec. 2007.

[144] Hui Tian, Hong Shen, and T. Matsuzawa. RandomWalk Routing for Wireless Sensor

Networks. In Sixth Intl. Conf. on Parallel and Distributed Computing, Applications

and Technologies (PDCAT 2005), pages 196–200, December 2005.

[145] Liang Zhang. A Self-adjusting Directed Random Walk Approach for Enhancing Source-

Location Privacy in Sensor Network Routing. In Proc. of the 2006 International Conf.

on Wireless Communications and Mobile Computing (IWCMC ’06), pages 33–38, New

York, NY, USA, 2006.

[146] Santpal S. Dhillon and Piet Van Mieghem. Comparison of Random Walk Strategies

for Ad Hoc Networks. In Proc. of the Sixth Annual Mediterranean Ad Hoc Networking

Workshop (Med-Hoc-Net 2007), pages 196–203, Corfu, Greece, June 2007.

[147] M. Zorzi and R. R. Rao. Geographic Random Forwarding (GeRaF) for Ad Hoc and

Sensor Networks: Multihop Performance. IEEE Transactions on Mobile Computing, 2

(4):337–348, 2003.

[148] M. Menzo T. Roosta and S. Sastry. Probabilistic Geographic Routing Protocol for Ad

Hoc and Sensor Networks. In Proc. Int. WorkshopWireless Ad Hoc Networks, 2006.

Bibliography 174

[149] Christopher L. Barrett, Stephan J. Eidenbenz, Lukas Kroc, Madhav Marathe, and

James P. Smith. Parametric Probabilistic Sensor Network Routing. In Proc. of 2nd

ACM Intl. Conf. on Wireless Sensor Networks and Applications, WSNA’03, 2003.

[150] Karl Pearson. The Problem of the Random Walk. Nature, 72(1867), 1905.

[151] S. P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. 2005.

[152] Kay Römer, Benedikt Ostermaier, Friedemann Mattern, Michael Fahrmair, and Wolf-

gang Kellerer. Real-Time Search for Real-World Entities: A Survey. Proc. of the IEEE,

pages 1887–1902, 2010.

[153] Dave Evans. The Internet of Things: How the Next Evolution of the Internet is

Changing Everything. White Paper, Cisco Internet Business Solutions Group, April

2011.

[154] L. A. Zadeh. Outline of A New Approach to the Analysis of Complex Systems and

Decision Processes. IEEE Trans. on Sys., Man and Cybern., SMC-3:28–44, 1973.

[155] Suman Nath, Jie Liu, and Feng Zhao. SensorMap for Wide-Area Sensor Webs. IEEE

Computer, 40(7):90–93, 2007.

[156] Arne Broering, Felix Bache, Thomas Bartoschek, and Corne P.J.M.van Elzakker. The

SID Creator: A Visual Approach for Integrating Sensors with the Sensor Web. In 14th

Int. Conf. on Geographic Information Science, Utrecht, Netherlands, April 2011.

[157] Benoit Christophe, Vincent Verdot, and Vincent Toubiana. Searching the Web of

Things. In IEEE Intl. Conf. Semantic Computing, 2011.

[158] Dennis Pfisterer, Kay Römer, Daniel Bimschas, Henning Hasemann, Manfred

Hauswirth, Marcel Karnstedt, Oliver Kleine, Alexander Kroller, Myriam Leggieri,

Richard Mietz, Max Pagel, Alexandre Passant, Ray Richardson, and Cuong Truong.

SPITFIRE: Towards a Semantic Web of Things. IEEE Communications Magazine,

Nov 2011.

[159] Petros Darasb, Theodoros Semertzidis, Lambros Makrisb, and Michael G. Strintzisa.

Similarity Content Search in Content Centric Networks. In Proc. Intl. Conf. on Mul-

timedia (MM’10), 2010.

[160] Zhe Wang, Matthew D. Hoffman, Perry R. Cook, and Kai Li. Vferret: Content-

based Similarity Search Tool for Continuous Archived Video. In Proc. of the 3rd ACM

Workshop on Continuous Archival and Retrival of Personal Experences (CARPE’06),

2006.

[161] Juergen Beringer and Eyke Huellermeister. Online Clustering of Parralel Data Streams.

Data and Knowledge Engineering, 58:180–204, August, 2006.

Bibliography 175

[162] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient Similarity Search in

Sequence Databases. In Proc. of 4th Intl. Conf. on Foundations of Data Organization

and Algorithms (FODO’93), pages 69–84, 1993.

[163] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast Subsequence

Matching in Time-Series Databases. In Proc. of the ACM Intl. Conf. on Management

of Data (ACM SIGMOD’94), pages 419–429, 1994.

[164] Dina Q Goldin and Paris C Kanellakis. On Similarity Queries for Time-Series Data:

Constraint Specification and Implementation. Principles and Practice of Constraint

Programming, pages 137–153, 1995.

[165] Byoung-Kee Yi, H.V. Jagadish, and Christos Faloutsos. Efficient Retrieval of Similar

Time Sequences Under Time Warping. Proc. 14th Int. Conf. on Data Engineering,

1997.

[166] Jacques M. Bahi, Abdallah Makhoul, and Maguy Medlej. Data Aggregation for Pe-

riodic Sensor Networks Using Sets Similarity Functions. In 7th IEEE Intl. Wireless

Communications and Mobile Computing Conference (IWCMC 2011), Istanbul, Turkey,

2011.

[167] Brent Boyer. Robust Java benchmarking: Part 1 and Part 2. IBM’s developerWorks,

Technical Library, 2008.

[168] Tony Van Gestel, Johan A. K. Suykens, Dirk emma Baestaens, Annemie Lambrechts,

Gert Lanckriet, Bruno Vandaele, Bart De Moor, and Joos Vandewalle. Financial Time

Series Prediction using Least Squares Support Vector Machines within the Evidence

Framework. IEEE Trans. Neural Networks, 2001.

[169] David J.C. MacKay. Bayesian Interpolation. Neural Computation, 4:415–447, 1991.

[170] Christopher Meek, David Maxwell Chickering, and David Heckerman. Autoregressive

Tree Models for Time-Series Analysis. Proc. 2nd SIAM Intl. Conf. Data Mining, 2002.

[171] Kok Keong Teo, Lipo Wang, and Zhiping Lin. Wavelet Packet Multi-layer Perceptron

for Chaotic Time Series Prediction: Effects of Weight Initialization. In Proc. Intl. Conf.

on Computational Science (ICCS’01), 2001.

[172] Hui Zou and Yuhong Yang. Combining Time Series Models for Forecasting. Interna-

tional Journal of Forecasting, 20:69–84, December 2003.

[173] Xiang Lian and Lei Chen. Efficient Similarity Search over Future Stream Time Series.

IEEE Transactions on Knowledge and Data Engineering, 20:40–54, January 2008.

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure

	2 The Internet of Things
	2.1 Definition
	2.1.1 Making Things Smart
	2.1.2 Networking Smart Things
	2.1.3 Managing Data from Smart Things

	2.2 Applications
	2.2.1 Comfort Living
	2.2.1.1 Home and Office
	2.2.1.2 Travelling
	2.2.1.3 Shopping
	2.2.1.4 Futuristic Applications

	2.2.2 Healthcare
	2.2.2.1 Smart Monitoring
	2.2.2.2 Smart Assistance
	2.2.2.3 Futuristic Applications

	2.2.3 Automotive
	2.2.4 Security
	2.2.4.1 Futuristic Applications

	2.2.5 Energy Saving
	2.2.5.1 Home, Office, and City
	2.2.5.2 Futuristic Applications

	2.2.6 Supply Chain
	2.2.6.1 Futuristic Applications

	2.3 A Layered View on the IoT
	2.4 Driving Technologies
	2.4.1 Radio-Frequency Identification
	2.4.1.1 EPCGlobal UHF Gen 2
	2.4.1.2 ISO14443/NFC
	2.4.1.3 ISO15693

	2.4.2 Wireless Personal Area Networks
	2.4.2.1 IEEE 802.15.4
	2.4.2.2 Bluetooth
	2.4.2.3 Bluetooth Low Energy
	2.4.2.4 Ultra Wide Band

	2.4.3 Wireless Sensor Networks
	2.4.3.1 Computing Subsystem
	2.4.3.2 Wireless Communication Subsystem
	2.4.3.3 Input/Output (IO) Interfaces
	2.4.3.4 Sensors and Actuators
	2.4.3.5 Power Source

	2.4.4 Routing
	2.4.5 The Web of Things

	2.5 Challenges
	2.5.1 Small Physical Size
	2.5.2 Limited Resources
	2.5.3 Interoperability
	2.5.4 Dynamic Topology
	2.5.5 Scalability
	2.5.6 Imperfect and Heterogenous Data
	2.5.7 Security and Privacy

	2.6 Summary

	3 Routing in the IoT
	3.1 The Routing Problem
	3.1.1 Challenges
	3.1.1.1 Limited Resources
	3.1.1.2 Dynamic Routing Topology
	3.1.1.3 Scalability
	3.1.1.4 Partitions and Voids

	3.1.2 Requirements and Properties
	3.1.3 Design Space
	3.1.3.1 Distributed vs. Centralized
	3.1.3.2 Flat vs. Hierarchical
	3.1.3.3 Location-based vs. State-based
	3.1.3.4 Data-centric vs. Address-centric

	3.2 The Geographic Routing Approach
	3.2.1 Wireless Link Models
	3.2.2 Forwarding Techniques
	3.2.2.1 Greedy Techniques
	3.2.2.2 Recovery Techniques

	3.3 Multi-region Geocast Routing for the IoT
	3.3.1 Motivation
	3.3.2 Related Work
	3.3.2.1 Geocasting to a Set of Nodes
	3.3.2.2 Geocasting to a Single Region
	3.3.2.3 Geocasting to Multiple Regions

	3.3.3 Assumptions and Approach
	3.3.3.1 Network Model
	3.3.3.2 Shape of Destination Regions
	3.3.3.3 The Recursive Forwarding Approach

	3.3.4 Recursive Multi-region Geocasting
	3.3.4.1 Forwarding Line & Division Point
	3.3.4.2 Group Division
	3.3.4.3 The Recursive Multi-region Geocasting Algorithm

	3.3.5 Evaluation
	3.3.5.1 Choice For th
	3.3.5.2 Computation Time
	3.3.5.3 Relay Load
	3.3.5.4 Average Path Length Overhead
	3.3.5.5 Flexibility
	3.3.5.6 Non-UDG Wireless Link Model

	3.3.6 Conclusion

	3.4 Stochastic Routing in the IoT
	3.4.1 Motivation
	3.4.2 Related Work
	3.4.3 Assumptions and Approach
	3.4.3.1 Network Model
	3.4.3.2 The Stochastic Forwarding Approach

	3.4.4 A Heuristic for the SF Approach
	3.4.5 The Stochastic Forwarding-based Routing (SFR) Algorithm
	3.4.6 An Analytical Framework
	3.4.7 Guaranteed Packet Delivery
	3.4.8 Evaluation
	3.4.8.1 Near-Optimal Forwarding Probability Assignment
	3.4.8.2 Near-Optimal Assignment vs. SFH1
	3.4.8.3 Performance Evaluation of SFH1

	3.4.9 Conclusion

	3.5 Summary

	4 Searching The Real World Via The IoT
	4.1 The Sensor Search Problem
	4.1.1 Essential Components
	4.1.1.1 Sensor
	4.1.1.2 Sensor Property
	4.1.1.3 Search Space
	4.1.1.4 Search Query
	4.1.1.5 Search Approach

	4.1.2 The Specific Sensor Search Problem
	4.1.3 Challenges and Requirements
	4.1.4 Architecture and Approach
	4.1.4.1 A Fuzzy Set-based Approach
	4.1.4.2 Sensor Search Architecture

	4.2 Sensor Similarity Search in the WoT
	4.2.1 Motivation
	4.2.2 Related Work
	4.2.2.1 Search based on Metadata
	4.2.2.2 Search based on Sensor Measurement
	4.2.2.3 Search based on Similarity of Data Streams
	Non-multimedia, general time-series data
	Sensor data

	4.2.3 Problem Formulation
	4.2.4 Sensor Similarity Search Architecture
	4.2.5 Similarity Score Computation
	4.2.6 Similarity Model Construction
	4.2.7 Injective Mapping Problem
	4.2.8 Similarity Model Approximation
	4.2.9 Evaluation
	4.2.9.1 Degree of Ranking Accuracy
	4.2.9.2 Experiment Setup
	4.2.9.3 Numerical Results
	4.2.9.4 Performance and Scalability

	4.2.10 Conclusion

	4.3 Content-based Sensor Search in the WoT
	4.3.1 Motivation
	4.3.2 Related Work
	4.3.2.1 Time-series Data Forecasting
	4.3.2.2 Sensor Search in the IoT

	4.3.3 Problem Formulation
	4.3.4 Content-based Sensor Search Architecture
	4.3.5 Content-based Sensor Search
	4.3.5.1 Sensor Measurement Density
	4.3.5.2 Sensor Measurement Stability
	4.3.5.3 Constructing TIPM
	4.3.5.4 Query Resolution
	4.3.5.5 TIPM Adaptation
	4.3.5.6 TIPM Size Reduction

	4.3.6 Evaluation
	4.3.6.1 Communication Overhead of a Rank List
	4.3.6.2 Simulation Setup
	4.3.6.3 Tuning Parameters
	4.3.6.4 Numerical Results

	4.3.7 Conclusion

	4.4 Summary

	5 A Prototypical Sensor Search Engine
	5.1 Software Architecture
	5.2 Software Implementation
	5.2.1 Xively
	5.2.2 Cayenne
	5.2.3 SIMON

	5.3 Graphical User Interface
	5.3.1 Sensor Similarity Search: GUI
	5.3.2 Content-based Sensor Search: GUI

	5.4 Demonstration
	5.4.1 Sensor Similarity Search
	5.4.2 Content-based Sensor Search (CSS)

	5.5 Performance
	5.6 Conclusion

	6 Conclusion and Future Work
	6.1 Contributions
	6.1.1 Routing
	6.1.2 Sensor Search

	6.2 Limitations and Future Work
	6.2.1 Recursive Multi-region Geocasting Algorithm
	6.2.2 Stochastic Forwarding-based Routing Algorithm
	6.2.3 Sensor Similarity Search Algorithm
	6.2.4 Content-based Sensor Search Algorithm

	6.3 Final Conclusion

